Interp.cpp revision cf2aac7e6a29e7e1e5f622fd6123e0d1a9a75bda
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * Main interpreter entry point and support functions.
19 *
20 * The entry point selects the "standard" or "debug" interpreter and
21 * facilitates switching between them.  The standard interpreter may
22 * use the "fast" or "portable" implementation.
23 *
24 * Some debugger support functions are included here.
25 */
26#include "Dalvik.h"
27#include "interp/InterpDefs.h"
28#if defined(WITH_JIT)
29#include "interp/Jit.h"
30#endif
31
32
33/*
34 * ===========================================================================
35 *      Debugger support
36 * ===========================================================================
37 */
38
39// fwd
40static BreakpointSet* dvmBreakpointSetAlloc();
41static void dvmBreakpointSetFree(BreakpointSet* pSet);
42
43#if defined(WITH_JIT)
44/* Target-specific save/restore */
45extern "C" void dvmJitCalleeSave(double *saveArea);
46extern "C" void dvmJitCalleeRestore(double *saveArea);
47/* Interpreter entry points from compiled code */
48extern "C" void dvmJitToInterpNormal();
49extern "C" void dvmJitToInterpNoChain();
50extern "C" void dvmJitToInterpPunt();
51extern "C" void dvmJitToInterpSingleStep();
52extern "C" void dvmJitToInterpTraceSelect();
53#if defined(WITH_SELF_VERIFICATION)
54extern "C" void dvmJitToInterpBackwardBranch();
55#endif
56#endif
57
58/*
59 * Initialize global breakpoint structures.
60 */
61bool dvmBreakpointStartup()
62{
63    gDvm.breakpointSet = dvmBreakpointSetAlloc();
64    return (gDvm.breakpointSet != NULL);
65}
66
67/*
68 * Free resources.
69 */
70void dvmBreakpointShutdown()
71{
72    dvmBreakpointSetFree(gDvm.breakpointSet);
73}
74
75
76/*
77 * This represents a breakpoint inserted in the instruction stream.
78 *
79 * The debugger may ask us to create the same breakpoint multiple times.
80 * We only remove the breakpoint when the last instance is cleared.
81 */
82typedef struct {
83    Method*     method;                 /* method we're associated with */
84    u2*         addr;                   /* absolute memory address */
85    u1          originalOpcode;         /* original 8-bit opcode value */
86    int         setCount;               /* #of times this breakpoint was set */
87} Breakpoint;
88
89/*
90 * Set of breakpoints.
91 */
92struct BreakpointSet {
93    /* grab lock before reading or writing anything else in here */
94    pthread_mutex_t lock;
95
96    /* vector of breakpoint structures */
97    int         alloc;
98    int         count;
99    Breakpoint* breakpoints;
100};
101
102/*
103 * Initialize a BreakpointSet.  Initially empty.
104 */
105static BreakpointSet* dvmBreakpointSetAlloc()
106{
107    BreakpointSet* pSet = (BreakpointSet*) calloc(1, sizeof(*pSet));
108
109    dvmInitMutex(&pSet->lock);
110    /* leave the rest zeroed -- will alloc on first use */
111
112    return pSet;
113}
114
115/*
116 * Free storage associated with a BreakpointSet.
117 */
118static void dvmBreakpointSetFree(BreakpointSet* pSet)
119{
120    if (pSet == NULL)
121        return;
122
123    free(pSet->breakpoints);
124    free(pSet);
125}
126
127/*
128 * Lock the breakpoint set.
129 *
130 * It's not currently necessary to switch to VMWAIT in the event of
131 * contention, because nothing in here can block.  However, it's possible
132 * that the bytecode-updater code could become fancier in the future, so
133 * we do the trylock dance as a bit of future-proofing.
134 */
135static void dvmBreakpointSetLock(BreakpointSet* pSet)
136{
137    if (dvmTryLockMutex(&pSet->lock) != 0) {
138        Thread* self = dvmThreadSelf();
139        ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);
140        dvmLockMutex(&pSet->lock);
141        dvmChangeStatus(self, oldStatus);
142    }
143}
144
145/*
146 * Unlock the breakpoint set.
147 */
148static void dvmBreakpointSetUnlock(BreakpointSet* pSet)
149{
150    dvmUnlockMutex(&pSet->lock);
151}
152
153/*
154 * Return the #of breakpoints.
155 */
156static int dvmBreakpointSetCount(const BreakpointSet* pSet)
157{
158    return pSet->count;
159}
160
161/*
162 * See if we already have an entry for this address.
163 *
164 * The BreakpointSet's lock must be acquired before calling here.
165 *
166 * Returns the index of the breakpoint entry, or -1 if not found.
167 */
168static int dvmBreakpointSetFind(const BreakpointSet* pSet, const u2* addr)
169{
170    int i;
171
172    for (i = 0; i < pSet->count; i++) {
173        Breakpoint* pBreak = &pSet->breakpoints[i];
174        if (pBreak->addr == addr)
175            return i;
176    }
177
178    return -1;
179}
180
181/*
182 * Retrieve the opcode that was originally at the specified location.
183 *
184 * The BreakpointSet's lock must be acquired before calling here.
185 *
186 * Returns "true" with the opcode in *pOrig on success.
187 */
188static bool dvmBreakpointSetOriginalOpcode(const BreakpointSet* pSet,
189    const u2* addr, u1* pOrig)
190{
191    int idx = dvmBreakpointSetFind(pSet, addr);
192    if (idx < 0)
193        return false;
194
195    *pOrig = pSet->breakpoints[idx].originalOpcode;
196    return true;
197}
198
199/*
200 * Check the opcode.  If it's a "magic" NOP, indicating the start of
201 * switch or array data in the instruction stream, we don't want to set
202 * a breakpoint.
203 *
204 * This can happen because the line number information dx generates
205 * associates the switch data with the switch statement's line number,
206 * and some debuggers put breakpoints at every address associated with
207 * a given line.  The result is that the breakpoint stomps on the NOP
208 * instruction that doubles as a data table magic number, and an explicit
209 * check in the interpreter results in an exception being thrown.
210 *
211 * We don't want to simply refuse to add the breakpoint to the table,
212 * because that confuses the housekeeping.  We don't want to reject the
213 * debugger's event request, and we want to be sure that there's exactly
214 * one un-set operation for every set op.
215 */
216static bool instructionIsMagicNop(const u2* addr)
217{
218    u2 curVal = *addr;
219    return ((GET_OPCODE(curVal)) == OP_NOP && (curVal >> 8) != 0);
220}
221
222/*
223 * Add a breakpoint at a specific address.  If the address is already
224 * present in the table, this just increments the count.
225 *
226 * For a new entry, this will extract and preserve the current opcode from
227 * the instruction stream, and replace it with a breakpoint opcode.
228 *
229 * The BreakpointSet's lock must be acquired before calling here.
230 *
231 * Returns "true" on success.
232 */
233static bool dvmBreakpointSetAdd(BreakpointSet* pSet, Method* method,
234    unsigned int instrOffset)
235{
236    const int kBreakpointGrowth = 10;
237    const u2* addr = method->insns + instrOffset;
238    int idx = dvmBreakpointSetFind(pSet, addr);
239    Breakpoint* pBreak;
240
241    if (idx < 0) {
242        if (pSet->count == pSet->alloc) {
243            int newSize = pSet->alloc + kBreakpointGrowth;
244            Breakpoint* newVec;
245
246            LOGV("+++ increasing breakpoint set size to %d\n", newSize);
247
248            /* pSet->breakpoints will be NULL on first entry */
249            newVec = (Breakpoint*)realloc(pSet->breakpoints, newSize * sizeof(Breakpoint));
250            if (newVec == NULL)
251                return false;
252
253            pSet->breakpoints = newVec;
254            pSet->alloc = newSize;
255        }
256
257        pBreak = &pSet->breakpoints[pSet->count++];
258        pBreak->method = method;
259        pBreak->addr = (u2*)addr;
260        pBreak->originalOpcode = *(u1*)addr;
261        pBreak->setCount = 1;
262
263        /*
264         * Change the opcode.  We must ensure that the BreakpointSet
265         * updates happen before we change the opcode.
266         *
267         * If the method has not been verified, we do NOT insert the
268         * breakpoint yet, since that will screw up the verifier.  The
269         * debugger is allowed to insert breakpoints in unverified code,
270         * but since we don't execute unverified code we don't need to
271         * alter the bytecode yet.
272         *
273         * The class init code will "flush" all pending opcode writes
274         * before verification completes.
275         */
276        assert(*(u1*)addr != OP_BREAKPOINT);
277        if (dvmIsClassVerified(method->clazz)) {
278            LOGV("Class %s verified, adding breakpoint at %p\n",
279                method->clazz->descriptor, addr);
280            if (instructionIsMagicNop(addr)) {
281                LOGV("Refusing to set breakpoint on %04x at %s.%s + 0x%x\n",
282                    *addr, method->clazz->descriptor, method->name,
283                    instrOffset);
284            } else {
285                ANDROID_MEMBAR_FULL();
286                dvmDexChangeDex1(method->clazz->pDvmDex, (u1*)addr,
287                    OP_BREAKPOINT);
288            }
289        } else {
290            LOGV("Class %s NOT verified, deferring breakpoint at %p\n",
291                method->clazz->descriptor, addr);
292        }
293    } else {
294        /*
295         * Breakpoint already exists, just increase the count.
296         */
297        pBreak = &pSet->breakpoints[idx];
298        pBreak->setCount++;
299    }
300
301    return true;
302}
303
304/*
305 * Remove one instance of the specified breakpoint.  When the count
306 * reaches zero, the entry is removed from the table, and the original
307 * opcode is restored.
308 *
309 * The BreakpointSet's lock must be acquired before calling here.
310 */
311static void dvmBreakpointSetRemove(BreakpointSet* pSet, Method* method,
312    unsigned int instrOffset)
313{
314    const u2* addr = method->insns + instrOffset;
315    int idx = dvmBreakpointSetFind(pSet, addr);
316
317    if (idx < 0) {
318        /* breakpoint not found in set -- unexpected */
319        if (*(u1*)addr == OP_BREAKPOINT) {
320            LOGE("Unable to restore breakpoint opcode (%s.%s +0x%x)\n",
321                method->clazz->descriptor, method->name, instrOffset);
322            dvmAbort();
323        } else {
324            LOGW("Breakpoint was already restored? (%s.%s +0x%x)\n",
325                method->clazz->descriptor, method->name, instrOffset);
326        }
327    } else {
328        Breakpoint* pBreak = &pSet->breakpoints[idx];
329        if (pBreak->setCount == 1) {
330            /*
331             * Must restore opcode before removing set entry.
332             *
333             * If the breakpoint was never flushed, we could be ovewriting
334             * a value with the same value.  Not a problem, though we
335             * could end up causing a copy-on-write here when we didn't
336             * need to.  (Not worth worrying about.)
337             */
338            dvmDexChangeDex1(method->clazz->pDvmDex, (u1*)addr,
339                pBreak->originalOpcode);
340            ANDROID_MEMBAR_FULL();
341
342            if (idx != pSet->count-1) {
343                /* shift down */
344                memmove(&pSet->breakpoints[idx], &pSet->breakpoints[idx+1],
345                    (pSet->count-1 - idx) * sizeof(pSet->breakpoints[0]));
346            }
347            pSet->count--;
348            pSet->breakpoints[pSet->count].addr = (u2*) 0xdecadead; // debug
349        } else {
350            pBreak->setCount--;
351            assert(pBreak->setCount > 0);
352        }
353    }
354}
355
356/*
357 * Flush any breakpoints associated with methods in "clazz".  We want to
358 * change the opcode, which might not have happened when the breakpoint
359 * was initially set because the class was in the process of being
360 * verified.
361 *
362 * The BreakpointSet's lock must be acquired before calling here.
363 */
364static void dvmBreakpointSetFlush(BreakpointSet* pSet, ClassObject* clazz)
365{
366    int i;
367    for (i = 0; i < pSet->count; i++) {
368        Breakpoint* pBreak = &pSet->breakpoints[i];
369        if (pBreak->method->clazz == clazz) {
370            /*
371             * The breakpoint is associated with a method in this class.
372             * It might already be there or it might not; either way,
373             * flush it out.
374             */
375            LOGV("Flushing breakpoint at %p for %s\n",
376                pBreak->addr, clazz->descriptor);
377            if (instructionIsMagicNop(pBreak->addr)) {
378                LOGV("Refusing to flush breakpoint on %04x at %s.%s + 0x%x\n",
379                    *pBreak->addr, pBreak->method->clazz->descriptor,
380                    pBreak->method->name, pBreak->addr - pBreak->method->insns);
381            } else {
382                dvmDexChangeDex1(clazz->pDvmDex, (u1*)pBreak->addr,
383                    OP_BREAKPOINT);
384            }
385        }
386    }
387}
388
389
390/*
391 * Do any debugger-attach-time initialization.
392 */
393void dvmInitBreakpoints()
394{
395    /* quick sanity check */
396    BreakpointSet* pSet = gDvm.breakpointSet;
397    dvmBreakpointSetLock(pSet);
398    if (dvmBreakpointSetCount(pSet) != 0) {
399        LOGW("WARNING: %d leftover breakpoints\n", dvmBreakpointSetCount(pSet));
400        /* generally not good, but we can keep going */
401    }
402    dvmBreakpointSetUnlock(pSet);
403}
404
405/*
406 * Add an address to the list, putting it in the first non-empty slot.
407 *
408 * Sometimes the debugger likes to add two entries for one breakpoint.
409 * We add two entries here, so that we get the right behavior when it's
410 * removed twice.
411 *
412 * This will only be run from the JDWP thread, and it will happen while
413 * we are updating the event list, which is synchronized.  We're guaranteed
414 * to be the only one adding entries, and the lock ensures that nobody
415 * will be trying to remove them while we're in here.
416 *
417 * "addr" is the absolute address of the breakpoint bytecode.
418 */
419void dvmAddBreakAddr(Method* method, unsigned int instrOffset)
420{
421    BreakpointSet* pSet = gDvm.breakpointSet;
422    dvmBreakpointSetLock(pSet);
423    dvmBreakpointSetAdd(pSet, method, instrOffset);
424    dvmBreakpointSetUnlock(pSet);
425}
426
427/*
428 * Remove an address from the list by setting the entry to NULL.
429 *
430 * This can be called from the JDWP thread (because the debugger has
431 * cancelled the breakpoint) or from an event thread (because it's a
432 * single-shot breakpoint, e.g. "run to line").  We only get here as
433 * the result of removing an entry from the event list, which is
434 * synchronized, so it should not be possible for two threads to be
435 * updating breakpoints at the same time.
436 */
437void dvmClearBreakAddr(Method* method, unsigned int instrOffset)
438{
439    BreakpointSet* pSet = gDvm.breakpointSet;
440    dvmBreakpointSetLock(pSet);
441    dvmBreakpointSetRemove(pSet, method, instrOffset);
442    dvmBreakpointSetUnlock(pSet);
443}
444
445/*
446 * Get the original opcode from under a breakpoint.
447 *
448 * On SMP hardware it's possible one core might try to execute a breakpoint
449 * after another core has cleared it.  We need to handle the case where
450 * there's no entry in the breakpoint set.  (The memory barriers in the
451 * locks and in the breakpoint update code should ensure that, once we've
452 * observed the absence of a breakpoint entry, we will also now observe
453 * the restoration of the original opcode.  The fact that we're holding
454 * the lock prevents other threads from confusing things further.)
455 */
456u1 dvmGetOriginalOpcode(const u2* addr)
457{
458    BreakpointSet* pSet = gDvm.breakpointSet;
459    u1 orig = 0;
460
461    dvmBreakpointSetLock(pSet);
462    if (!dvmBreakpointSetOriginalOpcode(pSet, addr, &orig)) {
463        orig = *(u1*)addr;
464        if (orig == OP_BREAKPOINT) {
465            LOGE("GLITCH: can't find breakpoint, opcode is still set\n");
466            dvmAbort();
467        }
468    }
469    dvmBreakpointSetUnlock(pSet);
470
471    return orig;
472}
473
474/*
475 * Flush any breakpoints associated with methods in "clazz".
476 *
477 * We don't want to modify the bytecode of a method before the verifier
478 * gets a chance to look at it, so we postpone opcode replacement until
479 * after verification completes.
480 */
481void dvmFlushBreakpoints(ClassObject* clazz)
482{
483    BreakpointSet* pSet = gDvm.breakpointSet;
484
485    if (pSet == NULL)
486        return;
487
488    assert(dvmIsClassVerified(clazz));
489    dvmBreakpointSetLock(pSet);
490    dvmBreakpointSetFlush(pSet, clazz);
491    dvmBreakpointSetUnlock(pSet);
492}
493
494/*
495 * Add a single step event.  Currently this is a global item.
496 *
497 * We set up some initial values based on the thread's current state.  This
498 * won't work well if the thread is running, so it's up to the caller to
499 * verify that it's suspended.
500 *
501 * This is only called from the JDWP thread.
502 */
503bool dvmAddSingleStep(Thread* thread, int size, int depth)
504{
505    StepControl* pCtrl = &gDvm.stepControl;
506
507    if (pCtrl->active && thread != pCtrl->thread) {
508        LOGW("WARNING: single-step active for %p; adding %p\n",
509            pCtrl->thread, thread);
510
511        /*
512         * Keep going, overwriting previous.  This can happen if you
513         * suspend a thread in Object.wait, hit the single-step key, then
514         * switch to another thread and do the same thing again.
515         * The first thread's step is still pending.
516         *
517         * TODO: consider making single-step per-thread.  Adds to the
518         * overhead, but could be useful in rare situations.
519         */
520    }
521
522    pCtrl->size = static_cast<JdwpStepSize>(size);
523    pCtrl->depth = static_cast<JdwpStepDepth>(depth);
524    pCtrl->thread = thread;
525
526    /*
527     * We may be stepping into or over method calls, or running until we
528     * return from the current method.  To make this work we need to track
529     * the current line, current method, and current stack depth.  We need
530     * to be checking these after most instructions, notably those that
531     * call methods, return from methods, or are on a different line from the
532     * previous instruction.
533     *
534     * We have to start with a snapshot of the current state.  If we're in
535     * an interpreted method, everything we need is in the current frame.  If
536     * we're in a native method, possibly with some extra JNI frames pushed
537     * on by PushLocalFrame, we want to use the topmost native method.
538     */
539    const StackSaveArea* saveArea;
540    u4* fp;
541    u4* prevFp = NULL;
542
543    for (fp = thread->interpSave.curFrame; fp != NULL;
544         fp = saveArea->prevFrame) {
545        const Method* method;
546
547        saveArea = SAVEAREA_FROM_FP(fp);
548        method = saveArea->method;
549
550        if (!dvmIsBreakFrame((u4*)fp) && !dvmIsNativeMethod(method))
551            break;
552        prevFp = fp;
553    }
554    if (fp == NULL) {
555        LOGW("Unexpected: step req in native-only threadid=%d\n",
556            thread->threadId);
557        return false;
558    }
559    if (prevFp != NULL) {
560        /*
561         * First interpreted frame wasn't the one at the bottom.  Break
562         * frames are only inserted when calling from native->interp, so we
563         * don't need to worry about one being here.
564         */
565        LOGV("##### init step while in native method\n");
566        fp = prevFp;
567        assert(!dvmIsBreakFrame((u4*)fp));
568        assert(dvmIsNativeMethod(SAVEAREA_FROM_FP(fp)->method));
569        saveArea = SAVEAREA_FROM_FP(fp);
570    }
571
572    /*
573     * Pull the goodies out.  "xtra.currentPc" should be accurate since
574     * we update it on every instruction while the debugger is connected.
575     */
576    pCtrl->method = saveArea->method;
577    // Clear out any old address set
578    if (pCtrl->pAddressSet != NULL) {
579        // (discard const)
580        free((void *)pCtrl->pAddressSet);
581        pCtrl->pAddressSet = NULL;
582    }
583    if (dvmIsNativeMethod(pCtrl->method)) {
584        pCtrl->line = -1;
585    } else {
586        pCtrl->line = dvmLineNumFromPC(saveArea->method,
587                        saveArea->xtra.currentPc - saveArea->method->insns);
588        pCtrl->pAddressSet
589                = dvmAddressSetForLine(saveArea->method, pCtrl->line);
590    }
591    pCtrl->frameDepth =
592        dvmComputeVagueFrameDepth(thread, thread->interpSave.curFrame);
593    pCtrl->active = true;
594
595    LOGV("##### step init: thread=%p meth=%p '%s' line=%d frameDepth=%d depth=%s size=%s\n",
596        pCtrl->thread, pCtrl->method, pCtrl->method->name,
597        pCtrl->line, pCtrl->frameDepth,
598        dvmJdwpStepDepthStr(pCtrl->depth),
599        dvmJdwpStepSizeStr(pCtrl->size));
600
601    return true;
602}
603
604/*
605 * Disable a single step event.
606 */
607void dvmClearSingleStep(Thread* thread)
608{
609    UNUSED_PARAMETER(thread);
610
611    gDvm.stepControl.active = false;
612}
613
614/*
615 * The interpreter just threw.  Handle any special subMode requirements.
616 * All interpSave state must be valid on entry.
617 */
618void dvmReportExceptionThrow(Thread* self, Object* exception)
619{
620    const Method* curMethod = self->interpSave.method;
621#if defined(WITH_JIT)
622    if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) {
623        dvmJitEndTraceSelect(self, self->interpSave.pc);
624    }
625    if (self->interpBreak.ctl.breakFlags & kInterpSingleStep) {
626        /* Discard any single-step native returns to translation */
627        self->jitResumeNPC = NULL;
628    }
629#endif
630    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
631        void *catchFrame;
632        int offset = self->interpSave.pc - curMethod->insns;
633        int catchRelPc = dvmFindCatchBlock(self, offset, exception,
634                                           true, &catchFrame);
635        dvmDbgPostException(self->interpSave.curFrame, offset, catchFrame,
636                            catchRelPc, exception);
637    }
638}
639
640/*
641 * The interpreter is preparing to do an invoke (both native & normal).
642 * Handle any special subMode requirements.  All interpSave state
643 * must be valid on entry.
644 */
645void dvmReportInvoke(Thread* self, const Method* methodToCall)
646{
647    TRACE_METHOD_ENTER(self, methodToCall);
648}
649
650/*
651 * The interpreter is preparing to do a native invoke. Handle any
652 * special subMode requirements.  NOTE: for a native invoke,
653 * dvmReportInvoke() and dvmReportPreNativeInvoke() will both
654 * be called prior to the invoke.  fp is the Dalvik FP of the calling
655 * method.
656 */
657void dvmReportPreNativeInvoke(const Method* methodToCall, Thread* self, u4* fp)
658{
659#if defined(WITH_JIT)
660    /*
661     * Actively building a trace?  If so, end it now.   The trace
662     * builder can't follow into or through a native method.
663     */
664    if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) {
665        dvmCheckJit(self->interpSave.pc, self);
666    }
667#endif
668    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
669        Object* thisPtr = dvmGetThisPtr(self->interpSave.method, fp);
670        assert(thisPtr == NULL || dvmIsValidObject(thisPtr));
671        dvmDbgPostLocationEvent(methodToCall, -1, thisPtr, DBG_METHOD_ENTRY);
672    }
673}
674
675/*
676 * The interpreter has returned from a native invoke. Handle any
677 * special subMode requirements.  fp is the Dalvik FP of the calling
678 * method.
679 */
680void dvmReportPostNativeInvoke(const Method* methodToCall, Thread* self, u4* fp)
681{
682    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
683        Object* thisPtr = dvmGetThisPtr(self->interpSave.method, fp);
684        assert(thisPtr == NULL || dvmIsValidObject(thisPtr));
685        dvmDbgPostLocationEvent(methodToCall, -1, thisPtr, DBG_METHOD_EXIT);
686    }
687    if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) {
688        dvmFastNativeMethodTraceExit(methodToCall, self);
689    }
690}
691
692/*
693 * The interpreter has returned from a normal method.  Handle any special
694 * subMode requirements.  All interpSave state must be valid on entry.
695 */
696void dvmReportReturn(Thread* self)
697{
698    TRACE_METHOD_EXIT(self, self->interpSave.method);
699#if defined(WITH_JIT)
700    if (dvmIsBreakFrame(self->interpSave.curFrame) &&
701        (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild)) {
702        dvmCheckJit(self->interpSave.pc, self);
703    }
704#endif
705}
706
707/*
708 * Update the debugger on interesting events, such as hitting a breakpoint
709 * or a single-step point.  This is called from the top of the interpreter
710 * loop, before the current instruction is processed.
711 *
712 * Set "methodEntry" if we've just entered the method.  This detects
713 * method exit by checking to see if the next instruction is "return".
714 *
715 * This can't catch native method entry/exit, so we have to handle that
716 * at the point of invocation.  We also need to catch it in dvmCallMethod
717 * if we want to capture native->native calls made through JNI.
718 *
719 * Notes to self:
720 * - Don't want to switch to VMWAIT while posting events to the debugger.
721 *   Let the debugger code decide if we need to change state.
722 * - We may want to check for debugger-induced thread suspensions on
723 *   every instruction.  That would make a "suspend all" more responsive
724 *   and reduce the chances of multiple simultaneous events occurring.
725 *   However, it could change the behavior some.
726 *
727 * TODO: method entry/exit events are probably less common than location
728 * breakpoints.  We may be able to speed things up a bit if we don't query
729 * the event list unless we know there's at least one lurking within.
730 */
731static void updateDebugger(const Method* method, const u2* pc, const u4* fp,
732                           Thread* self)
733{
734    int eventFlags = 0;
735
736    /*
737     * Update xtra.currentPc on every instruction.  We need to do this if
738     * there's a chance that we could get suspended.  This can happen if
739     * eventFlags != 0 here, or somebody manually requests a suspend
740     * (which gets handled at PERIOD_CHECKS time).  One place where this
741     * needs to be correct is in dvmAddSingleStep().
742     */
743    dvmExportPC(pc, fp);
744
745    if (self->debugIsMethodEntry) {
746        eventFlags |= DBG_METHOD_ENTRY;
747        self->debugIsMethodEntry = false;
748    }
749
750    /*
751     * See if we have a breakpoint here.
752     *
753     * Depending on the "mods" associated with event(s) on this address,
754     * we may or may not actually send a message to the debugger.
755     */
756    if (GET_OPCODE(*pc) == OP_BREAKPOINT) {
757        LOGV("+++ breakpoint hit at %p\n", pc);
758        eventFlags |= DBG_BREAKPOINT;
759    }
760
761    /*
762     * If the debugger is single-stepping one of our threads, check to
763     * see if we're that thread and we've reached a step point.
764     */
765    const StepControl* pCtrl = &gDvm.stepControl;
766    if (pCtrl->active && pCtrl->thread == self) {
767        int frameDepth;
768        bool doStop = false;
769        const char* msg = NULL;
770
771        assert(!dvmIsNativeMethod(method));
772
773        if (pCtrl->depth == SD_INTO) {
774            /*
775             * Step into method calls.  We break when the line number
776             * or method pointer changes.  If we're in SS_MIN mode, we
777             * always stop.
778             */
779            if (pCtrl->method != method) {
780                doStop = true;
781                msg = "new method";
782            } else if (pCtrl->size == SS_MIN) {
783                doStop = true;
784                msg = "new instruction";
785            } else if (!dvmAddressSetGet(
786                    pCtrl->pAddressSet, pc - method->insns)) {
787                doStop = true;
788                msg = "new line";
789            }
790        } else if (pCtrl->depth == SD_OVER) {
791            /*
792             * Step over method calls.  We break when the line number is
793             * different and the frame depth is <= the original frame
794             * depth.  (We can't just compare on the method, because we
795             * might get unrolled past it by an exception, and it's tricky
796             * to identify recursion.)
797             */
798            frameDepth = dvmComputeVagueFrameDepth(self, fp);
799            if (frameDepth < pCtrl->frameDepth) {
800                /* popped up one or more frames, always trigger */
801                doStop = true;
802                msg = "method pop";
803            } else if (frameDepth == pCtrl->frameDepth) {
804                /* same depth, see if we moved */
805                if (pCtrl->size == SS_MIN) {
806                    doStop = true;
807                    msg = "new instruction";
808                } else if (!dvmAddressSetGet(pCtrl->pAddressSet,
809                            pc - method->insns)) {
810                    doStop = true;
811                    msg = "new line";
812                }
813            }
814        } else {
815            assert(pCtrl->depth == SD_OUT);
816            /*
817             * Return from the current method.  We break when the frame
818             * depth pops up.
819             *
820             * This differs from the "method exit" break in that it stops
821             * with the PC at the next instruction in the returned-to
822             * function, rather than the end of the returning function.
823             */
824            frameDepth = dvmComputeVagueFrameDepth(self, fp);
825            if (frameDepth < pCtrl->frameDepth) {
826                doStop = true;
827                msg = "method pop";
828            }
829        }
830
831        if (doStop) {
832            LOGV("#####S %s\n", msg);
833            eventFlags |= DBG_SINGLE_STEP;
834        }
835    }
836
837    /*
838     * Check to see if this is a "return" instruction.  JDWP says we should
839     * send the event *after* the code has been executed, but it also says
840     * the location we provide is the last instruction.  Since the "return"
841     * instruction has no interesting side effects, we should be safe.
842     * (We can't just move this down to the returnFromMethod label because
843     * we potentially need to combine it with other events.)
844     *
845     * We're also not supposed to generate a method exit event if the method
846     * terminates "with a thrown exception".
847     */
848    u2 opcode = GET_OPCODE(*pc);
849    if (opcode == OP_RETURN_VOID || opcode == OP_RETURN ||
850        opcode == OP_RETURN_WIDE ||opcode == OP_RETURN_OBJECT)
851    {
852        eventFlags |= DBG_METHOD_EXIT;
853    }
854
855    /*
856     * If there's something interesting going on, see if it matches one
857     * of the debugger filters.
858     */
859    if (eventFlags != 0) {
860        Object* thisPtr = dvmGetThisPtr(method, fp);
861        if (thisPtr != NULL && !dvmIsValidObject(thisPtr)) {
862            /*
863             * TODO: remove this check if we're confident that the "this"
864             * pointer is where it should be -- slows us down, especially
865             * during single-step.
866             */
867            char* desc = dexProtoCopyMethodDescriptor(&method->prototype);
868            LOGE("HEY: invalid 'this' ptr %p (%s.%s %s)\n", thisPtr,
869                method->clazz->descriptor, method->name, desc);
870            free(desc);
871            dvmAbort();
872        }
873        dvmDbgPostLocationEvent(method, pc - method->insns, thisPtr,
874            eventFlags);
875    }
876}
877
878/*
879 * Recover the "this" pointer from the current interpreted method.  "this"
880 * is always in "in0" for non-static methods.
881 *
882 * The "ins" start at (#of registers - #of ins).  Note in0 != v0.
883 *
884 * This works because "dx" guarantees that it will work.  It's probably
885 * fairly common to have a virtual method that doesn't use its "this"
886 * pointer, in which case we're potentially wasting a register.  However,
887 * the debugger doesn't treat "this" as just another argument.  For
888 * example, events (such as breakpoints) can be enabled for specific
889 * values of "this".  There is also a separate StackFrame.ThisObject call
890 * in JDWP that is expected to work for any non-native non-static method.
891 *
892 * Because we need it when setting up debugger event filters, we want to
893 * be able to do this quickly.
894 */
895Object* dvmGetThisPtr(const Method* method, const u4* fp)
896{
897    if (dvmIsStaticMethod(method))
898        return NULL;
899    return (Object*)fp[method->registersSize - method->insSize];
900}
901
902
903#if defined(WITH_TRACKREF_CHECKS)
904/*
905 * Verify that all internally-tracked references have been released.  If
906 * they haven't, print them and abort the VM.
907 *
908 * "debugTrackedRefStart" indicates how many refs were on the list when
909 * we were first invoked.
910 */
911void dvmInterpCheckTrackedRefs(Thread* self, const Method* method,
912    int debugTrackedRefStart)
913{
914    if (dvmReferenceTableEntries(&self->internalLocalRefTable)
915        != (size_t) debugTrackedRefStart)
916    {
917        char* desc;
918        Object** top;
919        int count;
920
921        count = dvmReferenceTableEntries(&self->internalLocalRefTable);
922
923        LOGE("TRACK: unreleased internal reference (prev=%d total=%d)\n",
924            debugTrackedRefStart, count);
925        desc = dexProtoCopyMethodDescriptor(&method->prototype);
926        LOGE("       current method is %s.%s %s\n", method->clazz->descriptor,
927            method->name, desc);
928        free(desc);
929        top = self->internalLocalRefTable.table + debugTrackedRefStart;
930        while (top < self->internalLocalRefTable.nextEntry) {
931            LOGE("  %p (%s)\n",
932                 *top,
933                 ((*top)->clazz != NULL) ? (*top)->clazz->descriptor : "");
934            top++;
935        }
936        dvmDumpThread(self, false);
937
938        dvmAbort();
939    }
940    //LOGI("TRACK OK\n");
941}
942#endif
943
944
945#ifdef LOG_INSTR
946/*
947 * Dump the v-registers.  Sent to the ILOG log tag.
948 */
949void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly)
950{
951    int i, localCount;
952
953    localCount = method->registersSize - method->insSize;
954
955    LOG(LOG_VERBOSE, LOG_TAG"i", "Registers (fp=%p):\n", framePtr);
956    for (i = method->registersSize-1; i >= 0; i--) {
957        if (i >= localCount) {
958            LOG(LOG_VERBOSE, LOG_TAG"i", "  v%-2d in%-2d : 0x%08x\n",
959                i, i-localCount, framePtr[i]);
960        } else {
961            if (inOnly) {
962                LOG(LOG_VERBOSE, LOG_TAG"i", "  [...]\n");
963                break;
964            }
965            const char* name = "";
966#if 0   // "locals" structure has changed -- need to rewrite this
967            int j;
968            DexFile* pDexFile = method->clazz->pDexFile;
969            const DexCode* pDexCode = dvmGetMethodCode(method);
970            int localsSize = dexGetLocalsSize(pDexFile, pDexCode);
971            const DexLocal* locals = dvmDexGetLocals(pDexFile, pDexCode);
972            for (j = 0; j < localsSize, j++) {
973                if (locals[j].registerNum == (u4) i) {
974                    name = dvmDexStringStr(locals[j].pName);
975                    break;
976                }
977            }
978#endif
979            LOG(LOG_VERBOSE, LOG_TAG"i", "  v%-2d      : 0x%08x %s\n",
980                i, framePtr[i], name);
981        }
982    }
983}
984#endif
985
986
987/*
988 * ===========================================================================
989 *      Entry point and general support functions
990 * ===========================================================================
991 */
992
993/*
994 * Construct an s4 from two consecutive half-words of switch data.
995 * This needs to check endianness because the DEX optimizer only swaps
996 * half-words in instruction stream.
997 *
998 * "switchData" must be 32-bit aligned.
999 */
1000#if __BYTE_ORDER == __LITTLE_ENDIAN
1001static inline s4 s4FromSwitchData(const void* switchData) {
1002    return *(s4*) switchData;
1003}
1004#else
1005static inline s4 s4FromSwitchData(const void* switchData) {
1006    u2* data = switchData;
1007    return data[0] | (((s4) data[1]) << 16);
1008}
1009#endif
1010
1011/*
1012 * Find the matching case.  Returns the offset to the handler instructions.
1013 *
1014 * Returns 3 if we don't find a match (it's the size of the packed-switch
1015 * instruction).
1016 */
1017s4 dvmInterpHandlePackedSwitch(const u2* switchData, s4 testVal)
1018{
1019    const int kInstrLen = 3;
1020    u2 size;
1021    s4 firstKey;
1022    const s4* entries;
1023
1024    /*
1025     * Packed switch data format:
1026     *  ushort ident = 0x0100   magic value
1027     *  ushort size             number of entries in the table
1028     *  int first_key           first (and lowest) switch case value
1029     *  int targets[size]       branch targets, relative to switch opcode
1030     *
1031     * Total size is (4+size*2) 16-bit code units.
1032     */
1033    if (*switchData++ != kPackedSwitchSignature) {
1034        /* should have been caught by verifier */
1035        dvmThrowInternalError("bad packed switch magic");
1036        return kInstrLen;
1037    }
1038
1039    size = *switchData++;
1040    assert(size > 0);
1041
1042    firstKey = *switchData++;
1043    firstKey |= (*switchData++) << 16;
1044
1045    if (testVal < firstKey || testVal >= firstKey + size) {
1046        LOGVV("Value %d not found in switch (%d-%d)\n",
1047            testVal, firstKey, firstKey+size-1);
1048        return kInstrLen;
1049    }
1050
1051    /* The entries are guaranteed to be aligned on a 32-bit boundary;
1052     * we can treat them as a native int array.
1053     */
1054    entries = (const s4*) switchData;
1055    assert(((u4)entries & 0x3) == 0);
1056
1057    assert(testVal - firstKey >= 0 && testVal - firstKey < size);
1058    LOGVV("Value %d found in slot %d (goto 0x%02x)\n",
1059        testVal, testVal - firstKey,
1060        s4FromSwitchData(&entries[testVal - firstKey]));
1061    return s4FromSwitchData(&entries[testVal - firstKey]);
1062}
1063
1064/*
1065 * Find the matching case.  Returns the offset to the handler instructions.
1066 *
1067 * Returns 3 if we don't find a match (it's the size of the sparse-switch
1068 * instruction).
1069 */
1070s4 dvmInterpHandleSparseSwitch(const u2* switchData, s4 testVal)
1071{
1072    const int kInstrLen = 3;
1073    u2 size;
1074    const s4* keys;
1075    const s4* entries;
1076
1077    /*
1078     * Sparse switch data format:
1079     *  ushort ident = 0x0200   magic value
1080     *  ushort size             number of entries in the table; > 0
1081     *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
1082     *  int targets[size]       branch targets, relative to switch opcode
1083     *
1084     * Total size is (2+size*4) 16-bit code units.
1085     */
1086
1087    if (*switchData++ != kSparseSwitchSignature) {
1088        /* should have been caught by verifier */
1089        dvmThrowInternalError("bad sparse switch magic");
1090        return kInstrLen;
1091    }
1092
1093    size = *switchData++;
1094    assert(size > 0);
1095
1096    /* The keys are guaranteed to be aligned on a 32-bit boundary;
1097     * we can treat them as a native int array.
1098     */
1099    keys = (const s4*) switchData;
1100    assert(((u4)keys & 0x3) == 0);
1101
1102    /* The entries are guaranteed to be aligned on a 32-bit boundary;
1103     * we can treat them as a native int array.
1104     */
1105    entries = keys + size;
1106    assert(((u4)entries & 0x3) == 0);
1107
1108    /*
1109     * Binary-search through the array of keys, which are guaranteed to
1110     * be sorted low-to-high.
1111     */
1112    int lo = 0;
1113    int hi = size - 1;
1114    while (lo <= hi) {
1115        int mid = (lo + hi) >> 1;
1116
1117        s4 foundVal = s4FromSwitchData(&keys[mid]);
1118        if (testVal < foundVal) {
1119            hi = mid - 1;
1120        } else if (testVal > foundVal) {
1121            lo = mid + 1;
1122        } else {
1123            LOGVV("Value %d found in entry %d (goto 0x%02x)\n",
1124                testVal, mid, s4FromSwitchData(&entries[mid]));
1125            return s4FromSwitchData(&entries[mid]);
1126        }
1127    }
1128
1129    LOGVV("Value %d not found in switch\n", testVal);
1130    return kInstrLen;
1131}
1132
1133/*
1134 * Copy data for a fill-array-data instruction.  On a little-endian machine
1135 * we can just do a memcpy(), on a big-endian system we have work to do.
1136 *
1137 * The trick here is that dexopt has byte-swapped each code unit, which is
1138 * exactly what we want for short/char data.  For byte data we need to undo
1139 * the swap, and for 4- or 8-byte values we need to swap pieces within
1140 * each word.
1141 */
1142static void copySwappedArrayData(void* dest, const u2* src, u4 size, u2 width)
1143{
1144#if __BYTE_ORDER == __LITTLE_ENDIAN
1145    memcpy(dest, src, size*width);
1146#else
1147    int i;
1148
1149    switch (width) {
1150    case 1:
1151        /* un-swap pairs of bytes as we go */
1152        for (i = (size-1) & ~1; i >= 0; i -= 2) {
1153            ((u1*)dest)[i] = ((u1*)src)[i+1];
1154            ((u1*)dest)[i+1] = ((u1*)src)[i];
1155        }
1156        /*
1157         * "src" is padded to end on a two-byte boundary, but we don't want to
1158         * assume "dest" is, so we handle odd length specially.
1159         */
1160        if ((size & 1) != 0) {
1161            ((u1*)dest)[size-1] = ((u1*)src)[size];
1162        }
1163        break;
1164    case 2:
1165        /* already swapped correctly */
1166        memcpy(dest, src, size*width);
1167        break;
1168    case 4:
1169        /* swap word halves */
1170        for (i = 0; i < (int) size; i++) {
1171            ((u4*)dest)[i] = (src[(i << 1) + 1] << 16) | src[i << 1];
1172        }
1173        break;
1174    case 8:
1175        /* swap word halves and words */
1176        for (i = 0; i < (int) (size << 1); i += 2) {
1177            ((int*)dest)[i] = (src[(i << 1) + 3] << 16) | src[(i << 1) + 2];
1178            ((int*)dest)[i+1] = (src[(i << 1) + 1] << 16) | src[i << 1];
1179        }
1180        break;
1181    default:
1182        LOGE("Unexpected width %d in copySwappedArrayData\n", width);
1183        dvmAbort();
1184        break;
1185    }
1186#endif
1187}
1188
1189/*
1190 * Fill the array with predefined constant values.
1191 *
1192 * Returns true if job is completed, otherwise false to indicate that
1193 * an exception has been thrown.
1194 */
1195bool dvmInterpHandleFillArrayData(ArrayObject* arrayObj, const u2* arrayData)
1196{
1197    u2 width;
1198    u4 size;
1199
1200    if (arrayObj == NULL) {
1201        dvmThrowNullPointerException(NULL);
1202        return false;
1203    }
1204    assert (!IS_CLASS_FLAG_SET(((Object *)arrayObj)->clazz,
1205                               CLASS_ISOBJECTARRAY));
1206
1207    /*
1208     * Array data table format:
1209     *  ushort ident = 0x0300   magic value
1210     *  ushort width            width of each element in the table
1211     *  uint   size             number of elements in the table
1212     *  ubyte  data[size*width] table of data values (may contain a single-byte
1213     *                          padding at the end)
1214     *
1215     * Total size is 4+(width * size + 1)/2 16-bit code units.
1216     */
1217    if (arrayData[0] != kArrayDataSignature) {
1218        dvmThrowInternalError("bad array data magic");
1219        return false;
1220    }
1221
1222    width = arrayData[1];
1223    size = arrayData[2] | (((u4)arrayData[3]) << 16);
1224
1225    if (size > arrayObj->length) {
1226        dvmThrowArrayIndexOutOfBoundsException(arrayObj->length, size);
1227        return false;
1228    }
1229    copySwappedArrayData(arrayObj->contents, &arrayData[4], size, width);
1230    return true;
1231}
1232
1233/*
1234 * Find the concrete method that corresponds to "methodIdx".  The code in
1235 * "method" is executing invoke-method with "thisClass" as its first argument.
1236 *
1237 * Returns NULL with an exception raised on failure.
1238 */
1239Method* dvmInterpFindInterfaceMethod(ClassObject* thisClass, u4 methodIdx,
1240    const Method* method, DvmDex* methodClassDex)
1241{
1242    Method* absMethod;
1243    Method* methodToCall;
1244    int i, vtableIndex;
1245
1246    /*
1247     * Resolve the method.  This gives us the abstract method from the
1248     * interface class declaration.
1249     */
1250    absMethod = dvmDexGetResolvedMethod(methodClassDex, methodIdx);
1251    if (absMethod == NULL) {
1252        absMethod = dvmResolveInterfaceMethod(method->clazz, methodIdx);
1253        if (absMethod == NULL) {
1254            LOGV("+ unknown method\n");
1255            return NULL;
1256        }
1257    }
1258
1259    /* make sure absMethod->methodIndex means what we think it means */
1260    assert(dvmIsAbstractMethod(absMethod));
1261
1262    /*
1263     * Run through the "this" object's iftable.  Find the entry for
1264     * absMethod's class, then use absMethod->methodIndex to find
1265     * the method's entry.  The value there is the offset into our
1266     * vtable of the actual method to execute.
1267     *
1268     * The verifier does not guarantee that objects stored into
1269     * interface references actually implement the interface, so this
1270     * check cannot be eliminated.
1271     */
1272    for (i = 0; i < thisClass->iftableCount; i++) {
1273        if (thisClass->iftable[i].clazz == absMethod->clazz)
1274            break;
1275    }
1276    if (i == thisClass->iftableCount) {
1277        /* impossible in verified DEX, need to check for it in unverified */
1278        dvmThrowIncompatibleClassChangeError("interface not implemented");
1279        return NULL;
1280    }
1281
1282    assert(absMethod->methodIndex <
1283        thisClass->iftable[i].clazz->virtualMethodCount);
1284
1285    vtableIndex =
1286        thisClass->iftable[i].methodIndexArray[absMethod->methodIndex];
1287    assert(vtableIndex >= 0 && vtableIndex < thisClass->vtableCount);
1288    methodToCall = thisClass->vtable[vtableIndex];
1289
1290#if 0
1291    /* this can happen when there's a stale class file */
1292    if (dvmIsAbstractMethod(methodToCall)) {
1293        dvmThrowAbstractMethodError("interface method not implemented");
1294        return NULL;
1295    }
1296#else
1297    assert(!dvmIsAbstractMethod(methodToCall) ||
1298        methodToCall->nativeFunc != NULL);
1299#endif
1300
1301    LOGVV("+++ interface=%s.%s concrete=%s.%s\n",
1302        absMethod->clazz->descriptor, absMethod->name,
1303        methodToCall->clazz->descriptor, methodToCall->name);
1304    assert(methodToCall != NULL);
1305
1306    return methodToCall;
1307}
1308
1309
1310
1311/*
1312 * Helpers for dvmThrowVerificationError().
1313 *
1314 * Each returns a newly-allocated string.
1315 */
1316#define kThrowShow_accessFromClass     1
1317static char* classNameFromIndex(const Method* method, int ref,
1318    VerifyErrorRefType refType, int flags)
1319{
1320    static const int kBufLen = 256;
1321    const DvmDex* pDvmDex = method->clazz->pDvmDex;
1322
1323    if (refType == VERIFY_ERROR_REF_FIELD) {
1324        /* get class ID from field ID */
1325        const DexFieldId* pFieldId = dexGetFieldId(pDvmDex->pDexFile, ref);
1326        ref = pFieldId->classIdx;
1327    } else if (refType == VERIFY_ERROR_REF_METHOD) {
1328        /* get class ID from method ID */
1329        const DexMethodId* pMethodId = dexGetMethodId(pDvmDex->pDexFile, ref);
1330        ref = pMethodId->classIdx;
1331    }
1332
1333    const char* className = dexStringByTypeIdx(pDvmDex->pDexFile, ref);
1334    char* dotClassName = dvmHumanReadableDescriptor(className);
1335    if (flags == 0)
1336        return dotClassName;
1337
1338    char* result = (char*) malloc(kBufLen);
1339
1340    if ((flags & kThrowShow_accessFromClass) != 0) {
1341        char* dotFromName =
1342            dvmHumanReadableDescriptor(method->clazz->descriptor);
1343        snprintf(result, kBufLen, "tried to access class %s from class %s",
1344            dotClassName, dotFromName);
1345        free(dotFromName);
1346    } else {
1347        assert(false);      // should've been caught above
1348        result[0] = '\0';
1349    }
1350
1351    free(dotClassName);
1352    return result;
1353}
1354static char* fieldNameFromIndex(const Method* method, int ref,
1355    VerifyErrorRefType refType, int flags)
1356{
1357    static const int kBufLen = 256;
1358    const DvmDex* pDvmDex = method->clazz->pDvmDex;
1359    const DexFieldId* pFieldId;
1360    const char* className;
1361    const char* fieldName;
1362
1363    if (refType != VERIFY_ERROR_REF_FIELD) {
1364        LOGW("Expected ref type %d, got %d\n", VERIFY_ERROR_REF_FIELD, refType);
1365        return NULL;    /* no message */
1366    }
1367
1368    pFieldId = dexGetFieldId(pDvmDex->pDexFile, ref);
1369    className = dexStringByTypeIdx(pDvmDex->pDexFile, pFieldId->classIdx);
1370    fieldName = dexStringById(pDvmDex->pDexFile, pFieldId->nameIdx);
1371
1372    char* dotName = dvmHumanReadableDescriptor(className);
1373    char* result = (char*) malloc(kBufLen);
1374
1375    if ((flags & kThrowShow_accessFromClass) != 0) {
1376        char* dotFromName =
1377            dvmHumanReadableDescriptor(method->clazz->descriptor);
1378        snprintf(result, kBufLen, "tried to access field %s.%s from class %s",
1379            dotName, fieldName, dotFromName);
1380        free(dotFromName);
1381    } else {
1382        snprintf(result, kBufLen, "%s.%s", dotName, fieldName);
1383    }
1384
1385    free(dotName);
1386    return result;
1387}
1388static char* methodNameFromIndex(const Method* method, int ref,
1389    VerifyErrorRefType refType, int flags)
1390{
1391    static const int kBufLen = 384;
1392    const DvmDex* pDvmDex = method->clazz->pDvmDex;
1393    const DexMethodId* pMethodId;
1394    const char* className;
1395    const char* methodName;
1396
1397    if (refType != VERIFY_ERROR_REF_METHOD) {
1398        LOGW("Expected ref type %d, got %d\n", VERIFY_ERROR_REF_METHOD,refType);
1399        return NULL;    /* no message */
1400    }
1401
1402    pMethodId = dexGetMethodId(pDvmDex->pDexFile, ref);
1403    className = dexStringByTypeIdx(pDvmDex->pDexFile, pMethodId->classIdx);
1404    methodName = dexStringById(pDvmDex->pDexFile, pMethodId->nameIdx);
1405
1406    char* dotName = dvmHumanReadableDescriptor(className);
1407    char* result = (char*) malloc(kBufLen);
1408
1409    if ((flags & kThrowShow_accessFromClass) != 0) {
1410        char* dotFromName =
1411            dvmHumanReadableDescriptor(method->clazz->descriptor);
1412        char* desc = dexProtoCopyMethodDescriptor(&method->prototype);
1413        snprintf(result, kBufLen,
1414            "tried to access method %s.%s:%s from class %s",
1415            dotName, methodName, desc, dotFromName);
1416        free(dotFromName);
1417        free(desc);
1418    } else {
1419        snprintf(result, kBufLen, "%s.%s", dotName, methodName);
1420    }
1421
1422    free(dotName);
1423    return result;
1424}
1425
1426/*
1427 * Throw an exception for a problem identified by the verifier.
1428 *
1429 * This is used by the invoke-verification-error instruction.  It always
1430 * throws an exception.
1431 *
1432 * "kind" indicates the kind of failure encountered by the verifier.  It
1433 * has two parts, an error code and an indication of the reference type.
1434 */
1435void dvmThrowVerificationError(const Method* method, int kind, int ref)
1436{
1437    int errorPart = kind & ~(0xff << kVerifyErrorRefTypeShift);
1438    int errorRefPart = kind >> kVerifyErrorRefTypeShift;
1439    VerifyError errorKind = static_cast<VerifyError>(errorPart);
1440    VerifyErrorRefType refType = static_cast<VerifyErrorRefType>(errorRefPart);
1441    ClassObject* exceptionClass = gDvm.exVerifyError;
1442    char* msg = NULL;
1443
1444    switch ((VerifyError) errorKind) {
1445    case VERIFY_ERROR_NO_CLASS:
1446        exceptionClass = gDvm.exNoClassDefFoundError;
1447        msg = classNameFromIndex(method, ref, refType, 0);
1448        break;
1449    case VERIFY_ERROR_NO_FIELD:
1450        exceptionClass = gDvm.exNoSuchFieldError;
1451        msg = fieldNameFromIndex(method, ref, refType, 0);
1452        break;
1453    case VERIFY_ERROR_NO_METHOD:
1454        exceptionClass = gDvm.exNoSuchMethodError;
1455        msg = methodNameFromIndex(method, ref, refType, 0);
1456        break;
1457    case VERIFY_ERROR_ACCESS_CLASS:
1458        exceptionClass = gDvm.exIllegalAccessError;
1459        msg = classNameFromIndex(method, ref, refType,
1460            kThrowShow_accessFromClass);
1461        break;
1462    case VERIFY_ERROR_ACCESS_FIELD:
1463        exceptionClass = gDvm.exIllegalAccessError;
1464        msg = fieldNameFromIndex(method, ref, refType,
1465            kThrowShow_accessFromClass);
1466        break;
1467    case VERIFY_ERROR_ACCESS_METHOD:
1468        exceptionClass = gDvm.exIllegalAccessError;
1469        msg = methodNameFromIndex(method, ref, refType,
1470            kThrowShow_accessFromClass);
1471        break;
1472    case VERIFY_ERROR_CLASS_CHANGE:
1473        exceptionClass = gDvm.exIncompatibleClassChangeError;
1474        msg = classNameFromIndex(method, ref, refType, 0);
1475        break;
1476    case VERIFY_ERROR_INSTANTIATION:
1477        exceptionClass = gDvm.exInstantiationError;
1478        msg = classNameFromIndex(method, ref, refType, 0);
1479        break;
1480
1481    case VERIFY_ERROR_GENERIC:
1482        /* generic VerifyError; use default exception, no message */
1483        break;
1484    case VERIFY_ERROR_NONE:
1485        /* should never happen; use default exception */
1486        assert(false);
1487        msg = strdup("weird - no error specified");
1488        break;
1489
1490    /* no default clause -- want warning if enum updated */
1491    }
1492
1493    dvmThrowException(exceptionClass, msg);
1494    free(msg);
1495}
1496
1497/*
1498 * Update interpBreak for a single thread.
1499 */
1500void updateInterpBreak(Thread* thread, ExecutionSubModes subMode, bool enable)
1501{
1502    InterpBreak oldValue, newValue;
1503    do {
1504        oldValue = newValue = thread->interpBreak;
1505        newValue.ctl.breakFlags = kInterpNoBreak;  // Assume full reset
1506        if (enable)
1507            newValue.ctl.subMode |= subMode;
1508        else
1509            newValue.ctl.subMode &= ~subMode;
1510        if (newValue.ctl.subMode & SINGLESTEP_BREAK_MASK)
1511            newValue.ctl.breakFlags |= kInterpSingleStep;
1512        if (newValue.ctl.subMode & SAFEPOINT_BREAK_MASK)
1513            newValue.ctl.breakFlags |= kInterpSafePoint;
1514        newValue.ctl.curHandlerTable = (newValue.ctl.breakFlags) ?
1515            thread->altHandlerTable : thread->mainHandlerTable;
1516    } while (dvmQuasiAtomicCas64(oldValue.all, newValue.all,
1517             &thread->interpBreak.all) != 0);
1518}
1519
1520/*
1521 * Update interpBreak for all threads.
1522 */
1523void updateAllInterpBreak(ExecutionSubModes subMode, bool enable)
1524{
1525    Thread* self = dvmThreadSelf();
1526    Thread* thread;
1527
1528    dvmLockThreadList(self);
1529    for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
1530        updateInterpBreak(thread, subMode, enable);
1531    }
1532    dvmUnlockThreadList();
1533}
1534
1535/*
1536 * Update the normal and debugger suspend counts for a thread.
1537 * threadSuspendCount must be acquired before calling this to
1538 * ensure a clean update of suspendCount, dbgSuspendCount and
1539 * sumThreadSuspendCount.
1540 *
1541 * CLEANUP TODO: Currently only the JIT is using sumThreadSuspendCount.
1542 * Move under WITH_JIT ifdefs.
1543*/
1544void dvmAddToSuspendCounts(Thread* thread, int delta, int dbgDelta)
1545{
1546    thread->suspendCount += delta;
1547    thread->dbgSuspendCount += dbgDelta;
1548    updateInterpBreak(thread, kSubModeSuspendPending,
1549                      (thread->suspendCount != 0));
1550    // Update the global suspend count total
1551    gDvm.sumThreadSuspendCount += delta;
1552}
1553
1554
1555void dvmDisableSubMode(Thread* thread, ExecutionSubModes subMode)
1556{
1557    updateInterpBreak(thread, subMode, false);
1558}
1559
1560void dvmEnableSubMode(Thread* thread, ExecutionSubModes subMode)
1561{
1562    updateInterpBreak(thread, subMode, true);
1563}
1564
1565void dvmEnableAllSubMode(ExecutionSubModes subMode)
1566{
1567    updateAllInterpBreak(subMode, true);
1568}
1569
1570void dvmDisableAllSubMode(ExecutionSubModes subMode)
1571{
1572    updateAllInterpBreak(subMode, false);
1573}
1574
1575/*
1576 * Do a sanity check on interpreter state saved to Thread.
1577 * A failure here doesn't necessarily mean that something is wrong,
1578 * so this code should only be used during development to suggest
1579 * a possible problem.
1580 */
1581void dvmCheckInterpStateConsistency()
1582{
1583    Thread* self = dvmThreadSelf();
1584    Thread* thread;
1585    uint8_t breakFlags;
1586    uint8_t subMode;
1587    void* handlerTable;
1588
1589    dvmLockThreadList(self);
1590    breakFlags = self->interpBreak.ctl.breakFlags;
1591    subMode = self->interpBreak.ctl.subMode;
1592    handlerTable = self->interpBreak.ctl.curHandlerTable;
1593    for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
1594        if (subMode != thread->interpBreak.ctl.subMode) {
1595            LOGD("Warning: subMode mismatch - 0x%x:0x%x, tid[%d]",
1596                subMode,thread->interpBreak.ctl.subMode,thread->threadId);
1597         }
1598        if (breakFlags != thread->interpBreak.ctl.breakFlags) {
1599            LOGD("Warning: breakFlags mismatch - 0x%x:0x%x, tid[%d]",
1600                breakFlags,thread->interpBreak.ctl.breakFlags,thread->threadId);
1601         }
1602        if (handlerTable != thread->interpBreak.ctl.curHandlerTable) {
1603            LOGD("Warning: curHandlerTable mismatch - 0x%x:0x%x, tid[%d]",
1604                (int)handlerTable,(int)thread->interpBreak.ctl.curHandlerTable,
1605                thread->threadId);
1606         }
1607#if defined(WITH_JIT)
1608         if (thread->pJitProfTable != gDvmJit.pProfTable) {
1609             LOGD("Warning: pJitProfTable mismatch - 0x%x:0x%x, tid[%d]",
1610                  (int)thread->pJitProfTable,(int)gDvmJit.pProfTable,
1611                  thread->threadId);
1612         }
1613         if (thread->jitThreshold != gDvmJit.threshold) {
1614             LOGD("Warning: jitThreshold mismatch - 0x%x:0x%x, tid[%d]",
1615                  (int)thread->jitThreshold,(int)gDvmJit.threshold,
1616                  thread->threadId);
1617         }
1618#endif
1619    }
1620    dvmUnlockThreadList();
1621}
1622
1623/*
1624 * Arm a safepoint callback for a thread.  If funct is null,
1625 * clear any pending callback.
1626 * TODO: only gc is currently using this feature, and will have
1627 * at most a single outstanding callback request.  Until we need
1628 * something more capable and flexible, enforce this limit.
1629 */
1630void dvmArmSafePointCallback(Thread* thread, SafePointCallback funct,
1631                             void* arg)
1632{
1633    dvmLockMutex(&thread->callbackMutex);
1634    if ((funct == NULL) || (thread->callback == NULL)) {
1635        thread->callback = funct;
1636        thread->callbackArg = arg;
1637        if (funct != NULL) {
1638            dvmEnableSubMode(thread, kSubModeCallbackPending);
1639        } else {
1640            dvmDisableSubMode(thread, kSubModeCallbackPending);
1641        }
1642    } else {
1643        // Already armed.  Different?
1644        if ((funct != thread->callback) ||
1645            (arg != thread->callbackArg)) {
1646            // Yes - report failure and die
1647            LOGE("ArmSafePointCallback failed, thread %d", thread->threadId);
1648            dvmUnlockMutex(&thread->callbackMutex);
1649            dvmAbort();
1650        }
1651    }
1652    dvmUnlockMutex(&thread->callbackMutex);
1653}
1654
1655/*
1656 * One-time initialization at thread creation.  Here we initialize
1657 * useful constants.
1658 */
1659void dvmInitInterpreterState(Thread* self)
1660{
1661#if defined(WITH_JIT)
1662    /*
1663     * Reserve a static entity here to quickly setup runtime contents as
1664     * gcc will issue block copy instructions.
1665     */
1666    static struct JitToInterpEntries jitToInterpEntries = {
1667        dvmJitToInterpNormal,
1668        dvmJitToInterpNoChain,
1669        dvmJitToInterpPunt,
1670        dvmJitToInterpSingleStep,
1671        dvmJitToInterpTraceSelect,
1672#if defined(WITH_SELF_VERIFICATION)
1673        dvmJitToInterpBackwardBranch,
1674#else
1675        NULL,
1676#endif
1677    };
1678#endif
1679
1680    // Begin initialization
1681    self->cardTable = gDvm.biasedCardTableBase;
1682#if defined(WITH_JIT)
1683    // One-time initializations
1684    self->jitToInterpEntries = jitToInterpEntries;
1685    self->icRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
1686    self->pProfileCountdown = &gDvmJit.profileCountdown;
1687    // Jit state that can change
1688    dvmJitUpdateThreadStateSingle(self);
1689#endif
1690}
1691
1692/*
1693 * For a newly-created thread, we need to start off with interpBreak
1694 * set to any existing global modes.  The caller must hold the
1695 * thread list lock.
1696 */
1697void dvmInitializeInterpBreak(Thread* thread)
1698{
1699    if (gDvm.instructionCountEnableCount > 0) {
1700        dvmEnableSubMode(thread, kSubModeInstCounting);
1701    }
1702    if (dvmIsMethodTraceActive()) {
1703        dvmEnableSubMode(thread, kSubModeMethodTrace);
1704    }
1705    if (gDvm.emulatorTraceEnableCount > 0) {
1706        dvmEnableSubMode(thread, kSubModeEmulatorTrace);
1707    }
1708    if (gDvm.debuggerActive) {
1709        dvmEnableSubMode(thread, kSubModeDebuggerActive);
1710    }
1711}
1712
1713/*
1714 * Inter-instruction handler invoked in between instruction interpretations
1715 * to handle exceptional events such as debugging housekeeping, instruction
1716 * count profiling, JIT trace building, etc.  Dalvik PC has been exported
1717 * prior to call, but Thread copy of dPC & fp are not current.
1718 */
1719void dvmCheckBefore(const u2 *pc, u4 *fp, Thread* self)
1720{
1721    const Method* method = self->interpSave.method;
1722    assert(self->interpBreak.ctl.breakFlags != 0);
1723    assert(pc >= method->insns && pc <
1724           method->insns + dvmGetMethodInsnsSize(method));
1725
1726#if 0
1727    /*
1728     * When we hit a specific method, enable verbose instruction logging.
1729     * Sometimes it's helpful to use the debugger attach as a trigger too.
1730     */
1731    if (*pIsMethodEntry) {
1732        static const char* cd = "Landroid/test/Arithmetic;";
1733        static const char* mn = "shiftTest2";
1734        static const char* sg = "()V";
1735
1736        if (/*self->interpBreak.ctl.subMode & kSubModeDebuggerActive &&*/
1737            strcmp(method->clazz->descriptor, cd) == 0 &&
1738            strcmp(method->name, mn) == 0 &&
1739            strcmp(method->shorty, sg) == 0)
1740        {
1741            LOGW("Reached %s.%s, enabling verbose mode\n",
1742                method->clazz->descriptor, method->name);
1743            android_setMinPriority(LOG_TAG"i", ANDROID_LOG_VERBOSE);
1744            dumpRegs(method, fp, true);
1745        }
1746
1747        if (!gDvm.debuggerActive)
1748            *pIsMethodEntry = false;
1749    }
1750#endif
1751
1752    /* Safe point handling */
1753    if (self->suspendCount ||
1754        (self->interpBreak.ctl.subMode & kSubModeCallbackPending)) {
1755        // Are we are a safe point?
1756        int flags;
1757        flags = dexGetFlagsFromOpcode(dexOpcodeFromCodeUnit(*pc));
1758        if (flags & VERIFY_GC_INST_MASK) {
1759            // Yes, at a safe point.  Pending callback?
1760            if (self->interpBreak.ctl.subMode & kSubModeCallbackPending) {
1761                SafePointCallback callback;
1762                void* arg;
1763                // Get consistent funct/arg pair
1764                dvmLockMutex(&self->callbackMutex);
1765                callback = self->callback;
1766                arg = self->callbackArg;
1767                dvmUnlockMutex(&self->callbackMutex);
1768                // Update Thread structure
1769                self->interpSave.pc = pc;
1770                self->interpSave.curFrame = fp;
1771                if (callback != NULL) {
1772                    // Do the callback
1773                    if (!callback(self,arg)) {
1774                        // disarm
1775                        dvmArmSafePointCallback(self, NULL, NULL);
1776                    }
1777                }
1778            }
1779            // Need to suspend?
1780            if (self->suspendCount) {
1781                dvmExportPC(pc, fp);
1782                dvmCheckSuspendPending(self);
1783            }
1784        }
1785    }
1786
1787    if (self->interpBreak.ctl.subMode & kSubModeDebuggerActive) {
1788        updateDebugger(method, pc, fp, self);
1789    }
1790    if (gDvm.instructionCountEnableCount != 0) {
1791        /*
1792         * Count up the #of executed instructions.  This isn't synchronized
1793         * for thread-safety; if we need that we should make this
1794         * thread-local and merge counts into the global area when threads
1795         * exit (perhaps suspending all other threads GC-style and pulling
1796         * the data out of them).
1797         */
1798        gDvm.executedInstrCounts[GET_OPCODE(*pc)]++;
1799    }
1800
1801
1802#if defined(WITH_TRACKREF_CHECKS)
1803    dvmInterpCheckTrackedRefs(self, method,
1804                              self->interpSave.debugTrackedRefStart);
1805#endif
1806
1807#if defined(WITH_JIT)
1808    // Does the JIT need anything done now?
1809    if (self->interpBreak.ctl.subMode &
1810            (kSubModeJitTraceBuild | kSubModeJitSV)) {
1811        // Are we building a trace?
1812        if (self->interpBreak.ctl.subMode & kSubModeJitTraceBuild) {
1813            dvmCheckJit(pc, self);
1814        }
1815
1816#if defined(WITH_SELF_VERIFICATION)
1817        // Are we replaying a trace?
1818        if (self->interpBreak.ctl.subMode & kSubModeJitSV) {
1819            dvmCheckSelfVerification(pc, self);
1820        }
1821#endif
1822    }
1823#endif
1824
1825    /*
1826     * SingleStep processing.  NOTE: must be the last here to allow
1827     * preceeding special case handler to manipulate single-step count.
1828     */
1829    if (self->interpBreak.ctl.breakFlags & kInterpSingleStep) {
1830        if (self->singleStepCount == 0) {
1831            // We've exhausted our single step count
1832            dvmDisableSubMode(self, kSubModeCountedStep);
1833#if defined(WITH_JIT)
1834#if 0
1835            /*
1836             * For debugging.  If jitResumeDPC is non-zero, then
1837             * we expect to return to a trace in progress.   There
1838             * are valid reasons why we wouldn't (such as an exception
1839             * throw), but here we can keep track.
1840             */
1841            if (self->jitResumeDPC != NULL) {
1842                if (self->jitResumeDPC == pc) {
1843                    if (self->jitResumeNPC != NULL) {
1844                        LOGD("SS return to trace - pc:0x%x to 0x:%x",
1845                             (int)pc, (int)self->jitResumeNPC);
1846                    } else {
1847                        LOGD("SS return to interp - pc:0x%x",(int)pc);
1848                    }
1849                } else {
1850                    LOGD("SS failed to return.  Expected 0x%x, now at 0x%x",
1851                         (int)self->jitResumeDPC, (int)pc);
1852                }
1853            }
1854#endif
1855            // If we've got a native return and no other reasons to
1856            // remain in singlestep/break mode, do a long jump
1857            if (self->jitResumeNPC != NULL &&
1858                self->interpBreak.ctl.breakFlags == 0) {
1859                assert(self->jitResumeDPC == pc);
1860                self->jitResumeDPC = NULL;
1861                dvmJitResumeTranslation(self, pc, fp);
1862                // Doesn't return
1863                dvmAbort();
1864            }
1865            self->jitResumeDPC = NULL;
1866            self->inJitCodeCache = NULL;
1867#endif
1868        } else {
1869            self->singleStepCount--;
1870#if defined(WITH_JIT)
1871            if ((self->singleStepCount > 0) && (self->jitResumeNPC != NULL)) {
1872                /*
1873                 * Direct return to an existing translation following a
1874                 * single step is valid only if we step once.  If we're
1875                 * here, an additional step was added so we need to invalidate
1876                 * the return to translation.
1877                 */
1878                self->jitResumeNPC = NULL;
1879                self->inJitCodeCache = NULL;
1880            }
1881#endif
1882        }
1883    }
1884}
1885
1886/*
1887 * Main interpreter loop entry point.
1888 *
1889 * This begins executing code at the start of "method".  On exit, "pResult"
1890 * holds the return value of the method (or, if "method" returns NULL, it
1891 * holds an undefined value).
1892 *
1893 * The interpreted stack frame, which holds the method arguments, has
1894 * already been set up.
1895 */
1896void dvmInterpret(Thread* self, const Method* method, JValue* pResult)
1897{
1898    InterpSaveState interpSaveState;
1899    ExecutionSubModes savedSubModes;
1900
1901#if defined(WITH_JIT)
1902    /* Target-specific save/restore */
1903    double calleeSave[JIT_CALLEE_SAVE_DOUBLE_COUNT];
1904    /*
1905     * If the previous VM left the code cache through single-stepping the
1906     * inJitCodeCache flag will be set when the VM is re-entered (for example,
1907     * in self-verification mode we single-step NEW_INSTANCE which may re-enter
1908     * the VM through findClassFromLoaderNoInit). Because of that, we cannot
1909     * assert that self->inJitCodeCache is NULL here.
1910     */
1911#endif
1912
1913    /*
1914     * Save interpreter state from previous activation, linking
1915     * new to last.
1916     */
1917    interpSaveState = self->interpSave;
1918    self->interpSave.prev = &interpSaveState;
1919    /*
1920     * Strip out and save any flags that should not be inherited by
1921     * nested interpreter activation.
1922     */
1923    savedSubModes = (ExecutionSubModes)(
1924              self->interpBreak.ctl.subMode & LOCAL_SUBMODE);
1925    if (savedSubModes != kSubModeNormal) {
1926        dvmDisableSubMode(self, savedSubModes);
1927    }
1928#if defined(WITH_JIT)
1929    dvmJitCalleeSave(calleeSave);
1930#endif
1931
1932
1933#if defined(WITH_TRACKREF_CHECKS)
1934    self->interpSave.debugTrackedRefStart =
1935        dvmReferenceTableEntries(&self->internalLocalRefTable);
1936#endif
1937    self->debugIsMethodEntry = true;
1938#if defined(WITH_JIT)
1939    dvmJitCalleeSave(calleeSave);
1940    /* Initialize the state to kJitNot */
1941    self->jitState = kJitNot;
1942#endif
1943
1944    /*
1945     * Initialize working state.
1946     *
1947     * No need to initialize "retval".
1948     */
1949    self->interpSave.method = method;
1950    self->interpSave.curFrame = (u4*) self->interpSave.curFrame;
1951    self->interpSave.pc = method->insns;
1952
1953    assert(!dvmIsNativeMethod(method));
1954
1955    /*
1956     * Make sure the class is ready to go.  Shouldn't be possible to get
1957     * here otherwise.
1958     */
1959    if (method->clazz->status < CLASS_INITIALIZING ||
1960        method->clazz->status == CLASS_ERROR)
1961    {
1962        LOGE("ERROR: tried to execute code in unprepared class '%s' (%d)\n",
1963            method->clazz->descriptor, method->clazz->status);
1964        dvmDumpThread(self, false);
1965        dvmAbort();
1966    }
1967
1968    typedef void (*Interpreter)(Thread*);
1969    Interpreter stdInterp;
1970    if (gDvm.executionMode == kExecutionModeInterpFast)
1971        stdInterp = dvmMterpStd;
1972#if defined(WITH_JIT)
1973    else if (gDvm.executionMode == kExecutionModeJit)
1974        stdInterp = dvmMterpStd;
1975#endif
1976    else
1977        stdInterp = dvmInterpretPortable;
1978
1979    // Call the interpreter
1980    (*stdInterp)(self);
1981
1982    *pResult = self->retval;
1983
1984    /* Restore interpreter state from previous activation */
1985    self->interpSave = interpSaveState;
1986#if defined(WITH_JIT)
1987    dvmJitCalleeRestore(calleeSave);
1988#endif
1989    if (savedSubModes != kSubModeNormal) {
1990        dvmEnableSubMode(self, savedSubModes);
1991    }
1992}
1993