1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * Class loading, including bootstrap class loader, linking, and
19 * initialization.
20 */
21
22#define LOG_CLASS_LOADING 0
23
24#include "Dalvik.h"
25#include "libdex/DexClass.h"
26#include "analysis/Optimize.h"
27
28#include <stdlib.h>
29#include <stddef.h>
30#include <sys/stat.h>
31
32#if LOG_CLASS_LOADING
33#include <unistd.h>
34#include <pthread.h>
35#include <cutils/process_name.h>
36#include <sys/types.h>
37#endif
38
39/*
40Notes on Linking and Verification
41
42The basic way to retrieve a class is to load it, make sure its superclass
43and interfaces are available, prepare its fields, and return it.  This gets
44a little more complicated when multiple threads can be trying to retrieve
45the class simultaneously, requiring that we use the class object's monitor
46to keep things orderly.
47
48The linking (preparing, resolving) of a class can cause us to recursively
49load superclasses and interfaces.  Barring circular references (e.g. two
50classes that are superclasses of each other), this will complete without
51the loader attempting to access the partially-linked class.
52
53With verification, the situation is different.  If we try to verify
54every class as we load it, we quickly run into trouble.  Even the lowly
55java.lang.Object requires CloneNotSupportedException; follow the list
56of referenced classes and you can head down quite a trail.  The trail
57eventually leads back to Object, which is officially not fully-formed yet.
58
59The VM spec (specifically, v2 5.4.1) notes that classes pulled in during
60verification do not need to be prepared or verified.  This means that we
61are allowed to have loaded but unverified classes.  It further notes that
62the class must be verified before it is initialized, which allows us to
63defer verification for all classes until class init.  You can't execute
64code or access fields in an uninitialized class, so this is safe.
65
66It also allows a more peaceful coexistence between verified and
67unverifiable code.  If class A refers to B, and B has a method that
68refers to a bogus class C, should we allow class A to be verified?
69If A only exercises parts of B that don't use class C, then there is
70nothing wrong with running code in A.  We can fully verify both A and B,
71and allow execution to continue until B causes initialization of C.  The
72VerifyError is thrown close to the point of use.
73
74This gets a little weird with java.lang.Class, which is the only class
75that can be instantiated before it is initialized.  We have to force
76initialization right after the class is created, because by definition we
77have instances of it on the heap, and somebody might get a class object and
78start making virtual calls on it.  We can end up going recursive during
79verification of java.lang.Class, but we avoid that by checking to see if
80verification is already in progress before we try to initialize it.
81*/
82
83/*
84Notes on class loaders and interaction with optimization / verification
85
86In what follows, "pre-verification" and "optimization" are the steps
87performed by the dexopt command, which attempts to verify and optimize
88classes as part of unpacking jar files and storing the DEX data in the
89dalvik-cache directory.  These steps are performed by loading the DEX
90files directly, without any assistance from ClassLoader instances.
91
92When we pre-verify and optimize a class in a DEX file, we make some
93assumptions about where the class loader will go to look for classes.
94If we can't guarantee those assumptions, e.g. because a class ("AppClass")
95references something not defined in the bootstrap jars or the AppClass jar,
96we can't pre-verify or optimize the class.
97
98The VM doesn't define the behavior of user-defined class loaders.
99For example, suppose application class AppClass, loaded by UserLoader,
100has a method that creates a java.lang.String.  The first time
101AppClass.stringyMethod tries to do something with java.lang.String, it
102asks UserLoader to find it.  UserLoader is expected to defer to its parent
103loader, but isn't required to.  UserLoader might provide a replacement
104for String.
105
106We can run into trouble if we pre-verify AppClass with the assumption that
107java.lang.String will come from core.jar, and don't verify this assumption
108at runtime.  There are two places that an alternate implementation of
109java.lang.String can come from: the AppClass jar, or from some other jar
110that UserLoader knows about.  (Someday UserLoader will be able to generate
111some bytecode and call DefineClass, but not yet.)
112
113To handle the first situation, the pre-verifier will explicitly check for
114conflicts between the class being optimized/verified and the bootstrap
115classes.  If an app jar contains a class that has the same package and
116class name as a class in a bootstrap jar, the verification resolver refuses
117to find either, which will block pre-verification and optimization on
118classes that reference ambiguity.  The VM will postpone verification of
119the app class until first load.
120
121For the second situation, we need to ensure that all references from a
122pre-verified class are satisified by the class' jar or earlier bootstrap
123jars.  In concrete terms: when resolving a reference to NewClass,
124which was caused by a reference in class AppClass, we check to see if
125AppClass was pre-verified.  If so, we require that NewClass comes out
126of either the AppClass jar or one of the jars in the bootstrap path.
127(We may not control the class loaders, but we do manage the DEX files.
128We can verify that it's either (loader==null && dexFile==a_boot_dex)
129or (loader==UserLoader && dexFile==AppClass.dexFile).  Classes from
130DefineClass can't be pre-verified, so this doesn't apply.)
131
132This should ensure that you can't "fake out" the pre-verifier by creating
133a user-defined class loader that replaces system classes.  It should
134also ensure that you can write such a loader and have it work in the
135expected fashion; all you lose is some performance due to "just-in-time
136verification" and the lack of DEX optimizations.
137
138There is a "back door" of sorts in the class resolution check, due to
139the fact that the "class ref" entries are shared between the bytecode
140and meta-data references (e.g. annotations and exception handler lists).
141The class references in annotations have no bearing on class verification,
142so when a class does an annotation query that causes a class reference
143index to be resolved, we don't want to fail just because the calling
144class was pre-verified and the resolved class is in some random DEX file.
145The successful resolution adds the class to the "resolved classes" table,
146so when optimized bytecode references it we don't repeat the resolve-time
147check.  We can avoid this by not updating the "resolved classes" table
148when the class reference doesn't come out of something that has been
149checked by the verifier, but that has a nonzero performance impact.
150Since the ultimate goal of this test is to catch an unusual situation
151(user-defined class loaders redefining core classes), the added caution
152may not be worth the performance hit.
153*/
154
155/*
156 * Class serial numbers start at this value.  We use a nonzero initial
157 * value so they stand out in binary dumps (e.g. hprof output).
158 */
159#define INITIAL_CLASS_SERIAL_NUMBER 0x50000000
160
161/*
162 * Constant used to size an auxillary class object data structure.
163 * For optimum memory use this should be equal to or slightly larger than
164 * the number of classes loaded when the zygote finishes initializing.
165 */
166#define ZYGOTE_CLASS_CUTOFF 2304
167
168#define CLASS_SFIELD_SLOTS 1
169
170static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap);
171static void freeCpeArray(ClassPathEntry* cpe);
172
173static ClassObject* findClassFromLoaderNoInit(
174    const char* descriptor, Object* loader);
175static ClassObject* findClassNoInit(const char* descriptor, Object* loader,\
176    DvmDex* pDvmDex);
177static ClassObject* loadClassFromDex(DvmDex* pDvmDex,
178    const DexClassDef* pClassDef, Object* loader);
179static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,\
180    Method* meth);
181static int computeJniArgInfo(const DexProto* proto);
182static void loadSFieldFromDex(ClassObject* clazz,
183    const DexField* pDexSField, StaticField* sfield);
184static void loadIFieldFromDex(ClassObject* clazz,
185    const DexField* pDexIField, InstField* field);
186static bool precacheReferenceOffsets(ClassObject* clazz);
187static void computeRefOffsets(ClassObject* clazz);
188static void freeMethodInnards(Method* meth);
189static bool createVtable(ClassObject* clazz);
190static bool createIftable(ClassObject* clazz);
191static bool insertMethodStubs(ClassObject* clazz);
192static bool computeFieldOffsets(ClassObject* clazz);
193static void throwEarlierClassFailure(ClassObject* clazz);
194
195#if LOG_CLASS_LOADING
196/*
197 * Logs information about a class loading with given timestamp.
198 *
199 * TODO: In the case where we fail in dvmLinkClass() and log the class as closing (type='<'),
200 * it would probably be better to use a new type code to indicate the failure.  This change would
201 * require a matching change in the parser and analysis code in frameworks/base/tools/preload.
202 */
203static void logClassLoadWithTime(char type, ClassObject* clazz, u8 time) {
204    pid_t ppid = getppid();
205    pid_t pid = getpid();
206    unsigned int tid = (unsigned int) pthread_self();
207
208    ALOG(LOG_INFO, "PRELOAD", "%c%d:%d:%d:%s:%d:%s:%lld", type, ppid, pid, tid,
209        get_process_name(), (int) clazz->classLoader, clazz->descriptor,
210        time);
211}
212
213/*
214 * Logs information about a class loading.
215 */
216static void logClassLoad(char type, ClassObject* clazz) {
217    logClassLoadWithTime(type, clazz, dvmGetThreadCpuTimeNsec());
218}
219#endif
220
221/*
222 * Some LinearAlloc unit tests.
223 */
224static void linearAllocTests()
225{
226    char* fiddle;
227    int test = 1;
228
229    switch (test) {
230    case 0:
231        fiddle = (char*)dvmLinearAlloc(NULL, 3200-28);
232        dvmLinearReadOnly(NULL, (char*)fiddle);
233        break;
234    case 1:
235        fiddle = (char*)dvmLinearAlloc(NULL, 3200-24);
236        dvmLinearReadOnly(NULL, (char*)fiddle);
237        break;
238    case 2:
239        fiddle = (char*)dvmLinearAlloc(NULL, 3200-20);
240        dvmLinearReadOnly(NULL, (char*)fiddle);
241        break;
242    case 3:
243        fiddle = (char*)dvmLinearAlloc(NULL, 3200-16);
244        dvmLinearReadOnly(NULL, (char*)fiddle);
245        break;
246    case 4:
247        fiddle = (char*)dvmLinearAlloc(NULL, 3200-12);
248        dvmLinearReadOnly(NULL, (char*)fiddle);
249        break;
250    }
251    fiddle = (char*)dvmLinearAlloc(NULL, 896);
252    dvmLinearReadOnly(NULL, (char*)fiddle);
253    fiddle = (char*)dvmLinearAlloc(NULL, 20);      // watch addr of this alloc
254    dvmLinearReadOnly(NULL, (char*)fiddle);
255
256    fiddle = (char*)dvmLinearAlloc(NULL, 1);
257    fiddle[0] = 'q';
258    dvmLinearReadOnly(NULL, fiddle);
259    fiddle = (char*)dvmLinearAlloc(NULL, 4096);
260    fiddle[0] = 'x';
261    fiddle[4095] = 'y';
262    dvmLinearReadOnly(NULL, fiddle);
263    dvmLinearFree(NULL, fiddle);
264    fiddle = (char*)dvmLinearAlloc(NULL, 0);
265    dvmLinearReadOnly(NULL, fiddle);
266    fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 12);
267    fiddle[11] = 'z';
268    dvmLinearReadOnly(NULL, (char*)fiddle);
269    fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 5);
270    dvmLinearReadOnly(NULL, fiddle);
271    fiddle = (char*)dvmLinearAlloc(NULL, 17001);
272    fiddle[0] = 'x';
273    fiddle[17000] = 'y';
274    dvmLinearReadOnly(NULL, (char*)fiddle);
275
276    char* str = (char*)dvmLinearStrdup(NULL, "This is a test!");
277    ALOGI("GOT: '%s'", str);
278
279    /* try to check the bounds; allocator may round allocation size up */
280    fiddle = (char*)dvmLinearAlloc(NULL, 12);
281    ALOGI("Should be 1: %d", dvmLinearAllocContains(fiddle, 12));
282    ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle, 13));
283    ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle - 128*1024, 1));
284
285    dvmLinearAllocDump(NULL);
286    dvmLinearFree(NULL, (char*)str);
287}
288
289static size_t classObjectSize(size_t sfieldCount)
290{
291    size_t offset = OFFSETOF_MEMBER(ClassObject, sfields);
292    return offset + sizeof(StaticField) * sfieldCount;
293}
294
295size_t dvmClassObjectSize(const ClassObject *clazz)
296{
297    assert(clazz != NULL);
298    return classObjectSize(clazz->sfieldCount);
299}
300
301/* (documented in header) */
302ClassObject* dvmFindPrimitiveClass(char type)
303{
304    PrimitiveType primitiveType = dexGetPrimitiveTypeFromDescriptorChar(type);
305
306    switch (primitiveType) {
307        case PRIM_VOID:    return gDvm.typeVoid;
308        case PRIM_BOOLEAN: return gDvm.typeBoolean;
309        case PRIM_BYTE:    return gDvm.typeByte;
310        case PRIM_SHORT:   return gDvm.typeShort;
311        case PRIM_CHAR:    return gDvm.typeChar;
312        case PRIM_INT:     return gDvm.typeInt;
313        case PRIM_LONG:    return gDvm.typeLong;
314        case PRIM_FLOAT:   return gDvm.typeFloat;
315        case PRIM_DOUBLE:  return gDvm.typeDouble;
316        default: {
317            ALOGW("Unknown primitive type '%c'", type);
318            return NULL;
319        }
320    }
321}
322
323/*
324 * Synthesize a primitive class.
325 *
326 * Just creates the class and returns it (does not add it to the class list).
327 */
328static bool createPrimitiveType(PrimitiveType primitiveType, ClassObject** pClass)
329{
330    /*
331     * Fill out a few fields in the ClassObject.
332     *
333     * Note that primitive classes do not sub-class the class Object.
334     * This matters for "instanceof" checks. Also, we assume that the
335     * primitive class does not override finalize().
336     */
337
338    const char* descriptor = dexGetPrimitiveTypeDescriptor(primitiveType);
339    assert(descriptor != NULL);
340
341    ClassObject* newClass = (ClassObject*) dvmMalloc(sizeof(*newClass), ALLOC_NON_MOVING);
342    if (newClass == NULL) {
343        return false;
344    }
345
346    DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass);
347    dvmSetClassSerialNumber(newClass);
348    SET_CLASS_FLAG(newClass, ACC_PUBLIC | ACC_FINAL | ACC_ABSTRACT);
349    newClass->primitiveType = primitiveType;
350    newClass->descriptorAlloc = NULL;
351    newClass->descriptor = descriptor;
352    newClass->super = NULL;
353    newClass->status = CLASS_INITIALIZED;
354
355    /* don't need to set newClass->objectSize */
356
357    LOGVV("Constructed class for primitive type '%s'", newClass->descriptor);
358
359    *pClass = newClass;
360    dvmReleaseTrackedAlloc((Object*) newClass, NULL);
361
362    return true;
363}
364
365/*
366 * Create the initial class instances. These consist of the class
367 * Class and all of the classes representing primitive types.
368 */
369static bool createInitialClasses() {
370    /*
371     * Initialize the class Class. This has to be done specially, particularly
372     * because it is an instance of itself.
373     */
374    ClassObject* clazz = (ClassObject*)
375        dvmMalloc(classObjectSize(CLASS_SFIELD_SLOTS), ALLOC_NON_MOVING);
376    if (clazz == NULL) {
377        return false;
378    }
379    DVM_OBJECT_INIT(clazz, clazz);
380    SET_CLASS_FLAG(clazz, ACC_PUBLIC | ACC_FINAL | CLASS_ISCLASS);
381    clazz->descriptor = "Ljava/lang/Class;";
382    gDvm.classJavaLangClass = clazz;
383    LOGVV("Constructed the class Class.");
384
385    /*
386     * Initialize the classes representing primitive types. These are
387     * instances of the class Class, but other than that they're fairly
388     * different from regular classes.
389     */
390    bool ok = true;
391    ok &= createPrimitiveType(PRIM_VOID,    &gDvm.typeVoid);
392    ok &= createPrimitiveType(PRIM_BOOLEAN, &gDvm.typeBoolean);
393    ok &= createPrimitiveType(PRIM_BYTE,    &gDvm.typeByte);
394    ok &= createPrimitiveType(PRIM_SHORT,   &gDvm.typeShort);
395    ok &= createPrimitiveType(PRIM_CHAR,    &gDvm.typeChar);
396    ok &= createPrimitiveType(PRIM_INT,     &gDvm.typeInt);
397    ok &= createPrimitiveType(PRIM_LONG,    &gDvm.typeLong);
398    ok &= createPrimitiveType(PRIM_FLOAT,   &gDvm.typeFloat);
399    ok &= createPrimitiveType(PRIM_DOUBLE,  &gDvm.typeDouble);
400
401    return ok;
402}
403
404/*
405 * Initialize the bootstrap class loader.
406 *
407 * Call this after the bootclasspath string has been finalized.
408 */
409bool dvmClassStartup()
410{
411    /* make this a requirement -- don't currently support dirs in path */
412    if (strcmp(gDvm.bootClassPathStr, ".") == 0) {
413        ALOGE("ERROR: must specify non-'.' bootclasspath");
414        return false;
415    }
416
417    gDvm.loadedClasses =
418        dvmHashTableCreate(256, (HashFreeFunc) dvmFreeClassInnards);
419
420    gDvm.pBootLoaderAlloc = dvmLinearAllocCreate(NULL);
421    if (gDvm.pBootLoaderAlloc == NULL)
422        return false;
423
424    if (false) {
425        linearAllocTests();
426        exit(0);
427    }
428
429    /*
430     * Class serial number.  We start with a high value to make it distinct
431     * in binary dumps (e.g. hprof).
432     */
433    gDvm.classSerialNumber = INITIAL_CLASS_SERIAL_NUMBER;
434
435    /*
436     * Set up the table we'll use for tracking initiating loaders for
437     * early classes.
438     * If it's NULL, we just fall back to the InitiatingLoaderList in the
439     * ClassObject, so it's not fatal to fail this allocation.
440     */
441    gDvm.initiatingLoaderList = (InitiatingLoaderList*)
442        calloc(ZYGOTE_CLASS_CUTOFF, sizeof(InitiatingLoaderList));
443
444    /*
445     * Create the initial classes. These are the first objects constructed
446     * within the nascent VM.
447     */
448    if (!createInitialClasses()) {
449        return false;
450    }
451
452    /*
453     * Process the bootstrap class path.  This means opening the specified
454     * DEX or Jar files and possibly running them through the optimizer.
455     */
456    assert(gDvm.bootClassPath == NULL);
457    processClassPath(gDvm.bootClassPathStr, true);
458
459    if (gDvm.bootClassPath == NULL)
460        return false;
461
462    return true;
463}
464
465/*
466 * Clean up.
467 */
468void dvmClassShutdown()
469{
470    /* discard all system-loaded classes */
471    dvmHashTableFree(gDvm.loadedClasses);
472    gDvm.loadedClasses = NULL;
473
474    /* discard primitive classes created for arrays */
475    dvmFreeClassInnards(gDvm.typeVoid);
476    dvmFreeClassInnards(gDvm.typeBoolean);
477    dvmFreeClassInnards(gDvm.typeByte);
478    dvmFreeClassInnards(gDvm.typeShort);
479    dvmFreeClassInnards(gDvm.typeChar);
480    dvmFreeClassInnards(gDvm.typeInt);
481    dvmFreeClassInnards(gDvm.typeLong);
482    dvmFreeClassInnards(gDvm.typeFloat);
483    dvmFreeClassInnards(gDvm.typeDouble);
484
485    /* this closes DEX files, JAR files, etc. */
486    freeCpeArray(gDvm.bootClassPath);
487    gDvm.bootClassPath = NULL;
488
489    dvmLinearAllocDestroy(NULL);
490
491    free(gDvm.initiatingLoaderList);
492}
493
494
495/*
496 * ===========================================================================
497 *      Bootstrap class loader
498 * ===========================================================================
499 */
500
501/*
502 * Dump the contents of a ClassPathEntry array.
503 */
504static void dumpClassPath(const ClassPathEntry* cpe)
505{
506    int idx = 0;
507
508    while (cpe->kind != kCpeLastEntry) {
509        const char* kindStr;
510
511        switch (cpe->kind) {
512        case kCpeJar:       kindStr = "jar";    break;
513        case kCpeDex:       kindStr = "dex";    break;
514        default:            kindStr = "???";    break;
515        }
516
517        ALOGI("  %2d: type=%s %s %p", idx, kindStr, cpe->fileName, cpe->ptr);
518        if (CALC_CACHE_STATS && cpe->kind == kCpeJar) {
519            JarFile* pJarFile = (JarFile*) cpe->ptr;
520            DvmDex* pDvmDex = dvmGetJarFileDex(pJarFile);
521            dvmDumpAtomicCacheStats(pDvmDex->pInterfaceCache);
522        }
523
524        cpe++;
525        idx++;
526    }
527}
528
529/*
530 * Dump the contents of the bootstrap class path.
531 */
532void dvmDumpBootClassPath()
533{
534    dumpClassPath(gDvm.bootClassPath);
535}
536
537/*
538 * Returns "true" if the class path contains the specified path.
539 */
540bool dvmClassPathContains(const ClassPathEntry* cpe, const char* path)
541{
542    while (cpe->kind != kCpeLastEntry) {
543        if (strcmp(cpe->fileName, path) == 0)
544            return true;
545
546        cpe++;
547    }
548    return false;
549}
550
551/*
552 * Free an array of ClassPathEntry structs.
553 *
554 * We release the contents of each entry, then free the array itself.
555 */
556static void freeCpeArray(ClassPathEntry* cpe)
557{
558    ClassPathEntry* cpeStart = cpe;
559
560    if (cpe == NULL)
561        return;
562
563    while (cpe->kind != kCpeLastEntry) {
564        switch (cpe->kind) {
565        case kCpeJar:
566            /* free JarFile */
567            dvmJarFileFree((JarFile*) cpe->ptr);
568            break;
569        case kCpeDex:
570            /* free RawDexFile */
571            dvmRawDexFileFree((RawDexFile*) cpe->ptr);
572            break;
573        default:
574            assert(false);
575            break;
576        }
577
578        free(cpe->fileName);
579        cpe++;
580    }
581
582    free(cpeStart);
583}
584
585/*
586 * Get the filename suffix of the given file (everything after the
587 * last "." if any, or "<none>" if there's no apparent suffix). The
588 * passed-in buffer will always be '\0' terminated.
589 */
590static void getFileNameSuffix(const char* fileName, char* suffixBuf, size_t suffixBufLen)
591{
592    const char* lastDot = strrchr(fileName, '.');
593
594    strlcpy(suffixBuf, (lastDot == NULL) ? "<none>" : (lastDot + 1), suffixBufLen);
595}
596
597/*
598 * Prepare a ClassPathEntry struct, which at this point only has a valid
599 * filename.  We need to figure out what kind of file it is, and for
600 * everything other than directories we need to open it up and see
601 * what's inside.
602 */
603static bool prepareCpe(ClassPathEntry* cpe, bool isBootstrap)
604{
605    struct stat sb;
606
607    if (stat(cpe->fileName, &sb) < 0) {
608        ALOGD("Unable to stat classpath element '%s'", cpe->fileName);
609        return false;
610    }
611    if (S_ISDIR(sb.st_mode)) {
612        ALOGE("Directory classpath elements are not supported: %s", cpe->fileName);
613        return false;
614    }
615
616    char suffix[10];
617    getFileNameSuffix(cpe->fileName, suffix, sizeof(suffix));
618
619    if ((strcmp(suffix, "jar") == 0) || (strcmp(suffix, "zip") == 0) ||
620            (strcmp(suffix, "apk") == 0)) {
621        JarFile* pJarFile = NULL;
622        if (dvmJarFileOpen(cpe->fileName, NULL, &pJarFile, isBootstrap) == 0) {
623            cpe->kind = kCpeJar;
624            cpe->ptr = pJarFile;
625            return true;
626        }
627    } else if (strcmp(suffix, "dex") == 0) {
628        RawDexFile* pRawDexFile = NULL;
629        if (dvmRawDexFileOpen(cpe->fileName, NULL, &pRawDexFile, isBootstrap) == 0) {
630            cpe->kind = kCpeDex;
631            cpe->ptr = pRawDexFile;
632            return true;
633        }
634    } else {
635        ALOGE("Unknown type suffix '%s'", suffix);
636    }
637
638    ALOGD("Unable to process classpath element '%s'", cpe->fileName);
639    return false;
640}
641
642/*
643 * Convert a colon-separated list of directories, Zip files, and DEX files
644 * into an array of ClassPathEntry structs.
645 *
646 * During normal startup we fail if there are no entries, because we won't
647 * get very far without the basic language support classes, but if we're
648 * optimizing a DEX file we allow it.
649 *
650 * If entries are added or removed from the bootstrap class path, the
651 * dependencies in the DEX files will break, and everything except the
652 * very first entry will need to be regenerated.
653 */
654static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap)
655{
656    ClassPathEntry* cpe = NULL;
657    char* mangle;
658    char* cp;
659    const char* end;
660    int idx, count;
661
662    assert(pathStr != NULL);
663
664    mangle = strdup(pathStr);
665
666    /*
667     * Run through and essentially strtok() the string.  Get a count of
668     * the #of elements while we're at it.
669     *
670     * If the path was constructed strangely (e.g. ":foo::bar:") this will
671     * over-allocate, which isn't ideal but is mostly harmless.
672     */
673    count = 1;
674    for (cp = mangle; *cp != '\0'; cp++) {
675        if (*cp == ':') {   /* separates two entries */
676            count++;
677            *cp = '\0';
678        }
679    }
680    end = cp;
681
682    /*
683     * Allocate storage.  We over-alloc by one so we can set an "end" marker.
684     */
685    cpe = (ClassPathEntry*) calloc(count+1, sizeof(ClassPathEntry));
686
687    /*
688     * Set the global pointer so the DEX file dependency stuff can find it.
689     */
690    gDvm.bootClassPath = cpe;
691
692    /*
693     * Go through a second time, pulling stuff out.
694     */
695    cp = mangle;
696    idx = 0;
697    while (cp < end) {
698        if (*cp == '\0') {
699            /* leading, trailing, or doubled ':'; ignore it */
700        } else {
701            if (isBootstrap &&
702                    dvmPathToAbsolutePortion(cp) == NULL) {
703                ALOGE("Non-absolute bootclasspath entry '%s'", cp);
704                free(cpe);
705                cpe = NULL;
706                goto bail;
707            }
708
709            ClassPathEntry tmp;
710            tmp.kind = kCpeUnknown;
711            tmp.fileName = strdup(cp);
712            tmp.ptr = NULL;
713
714            /*
715             * Drop an end marker here so DEX loader can walk unfinished
716             * list.
717             */
718            cpe[idx].kind = kCpeLastEntry;
719            cpe[idx].fileName = NULL;
720            cpe[idx].ptr = NULL;
721
722            if (!prepareCpe(&tmp, isBootstrap)) {
723                /* drop from list and continue on */
724                free(tmp.fileName);
725            } else {
726                /* copy over, pointers and all */
727                cpe[idx] = tmp;
728                idx++;
729            }
730        }
731
732        cp += strlen(cp) +1;
733    }
734    assert(idx <= count);
735    if (idx == 0 && !gDvm.optimizing) {
736        /*
737         * There's no way the vm will be doing anything if this is the
738         * case, so just bail out (reasonably) gracefully.
739         */
740        ALOGE("No valid entries found in bootclasspath '%s'", pathStr);
741        gDvm.lastMessage = pathStr;
742        dvmAbort();
743    }
744
745    LOGVV("  (filled %d of %d slots)", idx, count);
746
747    /* put end marker in over-alloc slot */
748    cpe[idx].kind = kCpeLastEntry;
749    cpe[idx].fileName = NULL;
750    cpe[idx].ptr = NULL;
751
752    //dumpClassPath(cpe);
753
754bail:
755    free(mangle);
756    gDvm.bootClassPath = cpe;
757    return cpe;
758}
759
760/*
761 * Search the DEX files we loaded from the bootstrap class path for a DEX
762 * file that has the class with the matching descriptor.
763 *
764 * Returns the matching DEX file and DexClassDef entry if found, otherwise
765 * returns NULL.
766 */
767static DvmDex* searchBootPathForClass(const char* descriptor,
768    const DexClassDef** ppClassDef)
769{
770    const ClassPathEntry* cpe = gDvm.bootClassPath;
771    const DexClassDef* pFoundDef = NULL;
772    DvmDex* pFoundFile = NULL;
773
774    LOGVV("+++ class '%s' not yet loaded, scanning bootclasspath...",
775        descriptor);
776
777    while (cpe->kind != kCpeLastEntry) {
778        //ALOGV("+++  checking '%s' (%d)", cpe->fileName, cpe->kind);
779
780        switch (cpe->kind) {
781        case kCpeJar:
782            {
783                JarFile* pJarFile = (JarFile*) cpe->ptr;
784                const DexClassDef* pClassDef;
785                DvmDex* pDvmDex;
786
787                pDvmDex = dvmGetJarFileDex(pJarFile);
788                pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
789                if (pClassDef != NULL) {
790                    /* found */
791                    pFoundDef = pClassDef;
792                    pFoundFile = pDvmDex;
793                    goto found;
794                }
795            }
796            break;
797        case kCpeDex:
798            {
799                RawDexFile* pRawDexFile = (RawDexFile*) cpe->ptr;
800                const DexClassDef* pClassDef;
801                DvmDex* pDvmDex;
802
803                pDvmDex = dvmGetRawDexFileDex(pRawDexFile);
804                pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
805                if (pClassDef != NULL) {
806                    /* found */
807                    pFoundDef = pClassDef;
808                    pFoundFile = pDvmDex;
809                    goto found;
810                }
811            }
812            break;
813        default:
814            ALOGE("Unknown kind %d", cpe->kind);
815            assert(false);
816            break;
817        }
818
819        cpe++;
820    }
821
822    /*
823     * Special handling during verification + optimization.
824     *
825     * The DEX optimizer needs to load classes from the DEX file it's working
826     * on.  Rather than trying to insert it into the bootstrap class path
827     * or synthesizing a class loader to manage it, we just make it available
828     * here.  It logically comes after all existing entries in the bootstrap
829     * class path.
830     */
831    if (gDvm.bootClassPathOptExtra != NULL) {
832        const DexClassDef* pClassDef;
833
834        pClassDef =
835            dexFindClass(gDvm.bootClassPathOptExtra->pDexFile, descriptor);
836        if (pClassDef != NULL) {
837            /* found */
838            pFoundDef = pClassDef;
839            pFoundFile = gDvm.bootClassPathOptExtra;
840        }
841    }
842
843found:
844    *ppClassDef = pFoundDef;
845    return pFoundFile;
846}
847
848/*
849 * Set the "extra" DEX, which becomes a de facto member of the bootstrap
850 * class set.
851 */
852void dvmSetBootPathExtraDex(DvmDex* pDvmDex)
853{
854    gDvm.bootClassPathOptExtra = pDvmDex;
855}
856
857
858/*
859 * Return the #of entries in the bootstrap class path.
860 *
861 * (Used for ClassLoader.getResources().)
862 */
863int dvmGetBootPathSize()
864{
865    const ClassPathEntry* cpe = gDvm.bootClassPath;
866
867    while (cpe->kind != kCpeLastEntry)
868        cpe++;
869
870    return cpe - gDvm.bootClassPath;
871}
872
873/*
874 * Find a resource with the specified name in entry N of the boot class path.
875 *
876 * We return a newly-allocated String of one of these forms:
877 *   file://path/name
878 *   jar:file://path!/name
879 * Where "path" is the bootstrap class path entry and "name" is the string
880 * passed into this method.  "path" needs to be an absolute path (starting
881 * with '/'); if it's not we'd need to "absolutify" it as part of forming
882 * the URL string.
883 */
884StringObject* dvmGetBootPathResource(const char* name, int idx)
885{
886    const int kUrlOverhead = 13;        // worst case for Jar URL
887    const ClassPathEntry* cpe = gDvm.bootClassPath;
888    StringObject* urlObj = NULL;
889
890    ALOGV("+++ searching for resource '%s' in %d(%s)",
891        name, idx, cpe[idx].fileName);
892
893    /* we could use direct array index, but I don't entirely trust "idx" */
894    while (idx-- && cpe->kind != kCpeLastEntry)
895        cpe++;
896    if (cpe->kind == kCpeLastEntry) {
897        assert(false);
898        return NULL;
899    }
900
901    char urlBuf[strlen(name) + strlen(cpe->fileName) + kUrlOverhead +1];
902
903    switch (cpe->kind) {
904    case kCpeJar:
905        {
906            JarFile* pJarFile = (JarFile*) cpe->ptr;
907            if (dexZipFindEntry(&pJarFile->archive, name) == NULL)
908                goto bail;
909            sprintf(urlBuf, "jar:file://%s!/%s", cpe->fileName, name);
910        }
911        break;
912    case kCpeDex:
913        ALOGV("No resources in DEX files");
914        goto bail;
915    default:
916        assert(false);
917        goto bail;
918    }
919
920    ALOGV("+++ using URL='%s'", urlBuf);
921    urlObj = dvmCreateStringFromCstr(urlBuf);
922
923bail:
924    return urlObj;
925}
926
927
928/*
929 * ===========================================================================
930 *      Class list management
931 * ===========================================================================
932 */
933
934/* search for these criteria in the Class hash table */
935struct ClassMatchCriteria {
936    const char* descriptor;
937    Object*     loader;
938};
939
940#define kInitLoaderInc  4       /* must be power of 2 */
941
942static InitiatingLoaderList *dvmGetInitiatingLoaderList(ClassObject* clazz)
943{
944    assert(clazz->serialNumber >= INITIAL_CLASS_SERIAL_NUMBER);
945    int classIndex = clazz->serialNumber-INITIAL_CLASS_SERIAL_NUMBER;
946    if (gDvm.initiatingLoaderList != NULL &&
947        classIndex < ZYGOTE_CLASS_CUTOFF) {
948        return &(gDvm.initiatingLoaderList[classIndex]);
949    } else {
950        return &(clazz->initiatingLoaderList);
951    }
952}
953
954/*
955 * Determine if "loader" appears in clazz' initiating loader list.
956 *
957 * The class hash table lock must be held when calling here, since
958 * it's also used when updating a class' initiating loader list.
959 *
960 * TODO: switch to some sort of lock-free data structure so we don't have
961 * to grab the lock to do a lookup.  Among other things, this would improve
962 * the speed of compareDescriptorClasses().
963 */
964bool dvmLoaderInInitiatingList(const ClassObject* clazz, const Object* loader)
965{
966    /*
967     * The bootstrap class loader can't be just an initiating loader for
968     * anything (it's always the defining loader if the class is visible
969     * to it).  We don't put defining loaders in the initiating list.
970     */
971    if (loader == NULL)
972        return false;
973
974    /*
975     * Scan the list for a match.  The list is expected to be short.
976     */
977    /* Cast to remove the const from clazz, but use const loaderList */
978    ClassObject* nonConstClazz = (ClassObject*) clazz;
979    const InitiatingLoaderList *loaderList =
980        dvmGetInitiatingLoaderList(nonConstClazz);
981    int i;
982    for (i = loaderList->initiatingLoaderCount-1; i >= 0; --i) {
983        if (loaderList->initiatingLoaders[i] == loader) {
984            //ALOGI("+++ found initiating match %p in %s",
985            //    loader, clazz->descriptor);
986            return true;
987        }
988    }
989    return false;
990}
991
992/*
993 * Add "loader" to clazz's initiating loader set, unless it's the defining
994 * class loader.
995 *
996 * In the common case this will be a short list, so we don't need to do
997 * anything too fancy here.
998 *
999 * This locks gDvm.loadedClasses for synchronization, so don't hold it
1000 * when calling here.
1001 */
1002void dvmAddInitiatingLoader(ClassObject* clazz, Object* loader)
1003{
1004    if (loader != clazz->classLoader) {
1005        assert(loader != NULL);
1006
1007        LOGVV("Adding %p to '%s' init list", loader, clazz->descriptor);
1008        dvmHashTableLock(gDvm.loadedClasses);
1009
1010        /*
1011         * Make sure nobody snuck in.  The penalty for adding twice is
1012         * pretty minor, and probably outweighs the O(n^2) hit for
1013         * checking before every add, so we may not want to do this.
1014         */
1015        //if (dvmLoaderInInitiatingList(clazz, loader)) {
1016        //    ALOGW("WOW: simultaneous add of initiating class loader");
1017        //    goto bail_unlock;
1018        //}
1019
1020        /*
1021         * The list never shrinks, so we just keep a count of the
1022         * number of elements in it, and reallocate the buffer when
1023         * we run off the end.
1024         *
1025         * The pointer is initially NULL, so we *do* want to call realloc
1026         * when count==0.
1027         */
1028        InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz);
1029        if ((loaderList->initiatingLoaderCount & (kInitLoaderInc-1)) == 0) {
1030            Object** newList;
1031
1032            newList = (Object**) realloc(loaderList->initiatingLoaders,
1033                        (loaderList->initiatingLoaderCount + kInitLoaderInc)
1034                         * sizeof(Object*));
1035            if (newList == NULL) {
1036                /* this is mainly a cache, so it's not the EotW */
1037                assert(false);
1038                goto bail_unlock;
1039            }
1040            loaderList->initiatingLoaders = newList;
1041
1042            //ALOGI("Expanded init list to %d (%s)",
1043            //    loaderList->initiatingLoaderCount+kInitLoaderInc,
1044            //    clazz->descriptor);
1045        }
1046        loaderList->initiatingLoaders[loaderList->initiatingLoaderCount++] =
1047            loader;
1048
1049bail_unlock:
1050        dvmHashTableUnlock(gDvm.loadedClasses);
1051    }
1052}
1053
1054/*
1055 * (This is a dvmHashTableLookup callback.)
1056 *
1057 * Entries in the class hash table are stored as { descriptor, d-loader }
1058 * tuples.  If the hashed class descriptor matches the requested descriptor,
1059 * and the hashed defining class loader matches the requested class
1060 * loader, we're good.  If only the descriptor matches, we check to see if the
1061 * loader is in the hashed class' initiating loader list.  If so, we
1062 * can return "true" immediately and skip some of the loadClass melodrama.
1063 *
1064 * The caller must lock the hash table before calling here.
1065 *
1066 * Returns 0 if a matching entry is found, nonzero otherwise.
1067 */
1068static int hashcmpClassByCrit(const void* vclazz, const void* vcrit)
1069{
1070    const ClassObject* clazz = (const ClassObject*) vclazz;
1071    const ClassMatchCriteria* pCrit = (const ClassMatchCriteria*) vcrit;
1072    bool match;
1073
1074    match = (strcmp(clazz->descriptor, pCrit->descriptor) == 0 &&
1075             (clazz->classLoader == pCrit->loader ||
1076              (pCrit->loader != NULL &&
1077               dvmLoaderInInitiatingList(clazz, pCrit->loader)) ));
1078    //if (match)
1079    //    ALOGI("+++ %s %p matches existing %s %p",
1080    //        pCrit->descriptor, pCrit->loader,
1081    //        clazz->descriptor, clazz->classLoader);
1082    return !match;
1083}
1084
1085/*
1086 * Like hashcmpClassByCrit, but passing in a fully-formed ClassObject
1087 * instead of a ClassMatchCriteria.
1088 */
1089static int hashcmpClassByClass(const void* vclazz, const void* vaddclazz)
1090{
1091    const ClassObject* clazz = (const ClassObject*) vclazz;
1092    const ClassObject* addClazz = (const ClassObject*) vaddclazz;
1093    bool match;
1094
1095    match = (strcmp(clazz->descriptor, addClazz->descriptor) == 0 &&
1096             (clazz->classLoader == addClazz->classLoader ||
1097              (addClazz->classLoader != NULL &&
1098               dvmLoaderInInitiatingList(clazz, addClazz->classLoader)) ));
1099    return !match;
1100}
1101
1102/*
1103 * Search through the hash table to find an entry with a matching descriptor
1104 * and an initiating class loader that matches "loader".
1105 *
1106 * The table entries are hashed on descriptor only, because they're unique
1107 * on *defining* class loader, not *initiating* class loader.  This isn't
1108 * great, because it guarantees we will have to probe when multiple
1109 * class loaders are used.
1110 *
1111 * Note this does NOT try to load a class; it just finds a class that
1112 * has already been loaded.
1113 *
1114 * If "unprepOkay" is set, this will return classes that have been added
1115 * to the hash table but are not yet fully loaded and linked.  Otherwise,
1116 * such classes are ignored.  (The only place that should set "unprepOkay"
1117 * is findClassNoInit(), which will wait for the prep to finish.)
1118 *
1119 * Returns NULL if not found.
1120 */
1121ClassObject* dvmLookupClass(const char* descriptor, Object* loader,
1122    bool unprepOkay)
1123{
1124    ClassMatchCriteria crit;
1125    void* found;
1126    u4 hash;
1127
1128    crit.descriptor = descriptor;
1129    crit.loader = loader;
1130    hash = dvmComputeUtf8Hash(descriptor);
1131
1132    LOGVV("threadid=%d: dvmLookupClass searching for '%s' %p",
1133        dvmThreadSelf()->threadId, descriptor, loader);
1134
1135    dvmHashTableLock(gDvm.loadedClasses);
1136    found = dvmHashTableLookup(gDvm.loadedClasses, hash, &crit,
1137                hashcmpClassByCrit, false);
1138    dvmHashTableUnlock(gDvm.loadedClasses);
1139
1140    /*
1141     * The class has been added to the hash table but isn't ready for use.
1142     * We're going to act like we didn't see it, so that the caller will
1143     * go through the full "find class" path, which includes locking the
1144     * object and waiting until it's ready.  We could do that lock/wait
1145     * here, but this is an extremely rare case, and it's simpler to have
1146     * the wait-for-class code centralized.
1147     */
1148    if (found && !unprepOkay && !dvmIsClassLinked((ClassObject*)found)) {
1149        ALOGV("Ignoring not-yet-ready %s, using slow path",
1150            ((ClassObject*)found)->descriptor);
1151        found = NULL;
1152    }
1153
1154    return (ClassObject*) found;
1155}
1156
1157/*
1158 * Add a new class to the hash table.
1159 *
1160 * The class is considered "new" if it doesn't match on both the class
1161 * descriptor and the defining class loader.
1162 *
1163 * TODO: we should probably have separate hash tables for each
1164 * ClassLoader. This could speed up dvmLookupClass and
1165 * other common operations. It does imply a VM-visible data structure
1166 * for each ClassLoader object with loaded classes, which we don't
1167 * have yet.
1168 */
1169bool dvmAddClassToHash(ClassObject* clazz)
1170{
1171    void* found;
1172    u4 hash;
1173
1174    hash = dvmComputeUtf8Hash(clazz->descriptor);
1175
1176    dvmHashTableLock(gDvm.loadedClasses);
1177    found = dvmHashTableLookup(gDvm.loadedClasses, hash, clazz,
1178                hashcmpClassByClass, true);
1179    dvmHashTableUnlock(gDvm.loadedClasses);
1180
1181    ALOGV("+++ dvmAddClassToHash '%s' %p (isnew=%d) --> %p",
1182        clazz->descriptor, clazz->classLoader,
1183        (found == (void*) clazz), clazz);
1184
1185    //dvmCheckClassTablePerf();
1186
1187    /* can happen if two threads load the same class simultaneously */
1188    return (found == (void*) clazz);
1189}
1190
1191#if 0
1192/*
1193 * Compute hash value for a class.
1194 */
1195u4 hashcalcClass(const void* item)
1196{
1197    return dvmComputeUtf8Hash(((const ClassObject*) item)->descriptor);
1198}
1199
1200/*
1201 * Check the performance of the "loadedClasses" hash table.
1202 */
1203void dvmCheckClassTablePerf()
1204{
1205    dvmHashTableLock(gDvm.loadedClasses);
1206    dvmHashTableProbeCount(gDvm.loadedClasses, hashcalcClass,
1207        hashcmpClassByClass);
1208    dvmHashTableUnlock(gDvm.loadedClasses);
1209}
1210#endif
1211
1212/*
1213 * Remove a class object from the hash table.
1214 */
1215static void removeClassFromHash(ClassObject* clazz)
1216{
1217    ALOGV("+++ removeClassFromHash '%s'", clazz->descriptor);
1218
1219    u4 hash = dvmComputeUtf8Hash(clazz->descriptor);
1220
1221    dvmHashTableLock(gDvm.loadedClasses);
1222    if (!dvmHashTableRemove(gDvm.loadedClasses, hash, clazz))
1223        ALOGW("Hash table remove failed on class '%s'", clazz->descriptor);
1224    dvmHashTableUnlock(gDvm.loadedClasses);
1225}
1226
1227
1228/*
1229 * ===========================================================================
1230 *      Class creation
1231 * ===========================================================================
1232 */
1233
1234/*
1235 * Set clazz->serialNumber to the next available value.
1236 *
1237 * This usually happens *very* early in class creation, so don't expect
1238 * anything else in the class to be ready.
1239 */
1240void dvmSetClassSerialNumber(ClassObject* clazz)
1241{
1242    assert(clazz->serialNumber == 0);
1243    clazz->serialNumber = android_atomic_inc(&gDvm.classSerialNumber);
1244}
1245
1246
1247/*
1248 * Find the named class (by descriptor), using the specified
1249 * initiating ClassLoader.
1250 *
1251 * The class will be loaded and initialized if it has not already been.
1252 * If necessary, the superclass will be loaded.
1253 *
1254 * If the class can't be found, returns NULL with an appropriate exception
1255 * raised.
1256 */
1257ClassObject* dvmFindClass(const char* descriptor, Object* loader)
1258{
1259    ClassObject* clazz;
1260
1261    clazz = dvmFindClassNoInit(descriptor, loader);
1262    if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
1263        /* initialize class */
1264        if (!dvmInitClass(clazz)) {
1265            /* init failed; leave it in the list, marked as bad */
1266            assert(dvmCheckException(dvmThreadSelf()));
1267            assert(clazz->status == CLASS_ERROR);
1268            return NULL;
1269        }
1270    }
1271
1272    return clazz;
1273}
1274
1275/*
1276 * Find the named class (by descriptor), using the specified
1277 * initiating ClassLoader.
1278 *
1279 * The class will be loaded if it has not already been, as will its
1280 * superclass.  It will not be initialized.
1281 *
1282 * If the class can't be found, returns NULL with an appropriate exception
1283 * raised.
1284 */
1285ClassObject* dvmFindClassNoInit(const char* descriptor,
1286        Object* loader)
1287{
1288    assert(descriptor != NULL);
1289    //assert(loader != NULL);
1290
1291    LOGVV("FindClassNoInit '%s' %p", descriptor, loader);
1292
1293    if (*descriptor == '[') {
1294        /*
1295         * Array class.  Find in table, generate if not found.
1296         */
1297        return dvmFindArrayClass(descriptor, loader);
1298    } else {
1299        /*
1300         * Regular class.  Find in table, load if not found.
1301         */
1302        if (loader != NULL) {
1303            return findClassFromLoaderNoInit(descriptor, loader);
1304        } else {
1305            return dvmFindSystemClassNoInit(descriptor);
1306        }
1307    }
1308}
1309
1310/*
1311 * Load the named class (by descriptor) from the specified class
1312 * loader.  This calls out to let the ClassLoader object do its thing.
1313 *
1314 * Returns with NULL and an exception raised on error.
1315 */
1316static ClassObject* findClassFromLoaderNoInit(const char* descriptor,
1317    Object* loader)
1318{
1319    //ALOGI("##### findClassFromLoaderNoInit (%s,%p)",
1320    //        descriptor, loader);
1321
1322    Thread* self = dvmThreadSelf();
1323
1324    assert(loader != NULL);
1325
1326    /*
1327     * Do we already have it?
1328     *
1329     * The class loader code does the "is it already loaded" check as
1330     * well.  However, this call is much faster than calling through
1331     * interpreted code.  Doing this does mean that in the common case
1332     * (365 out of 420 calls booting the sim) we're doing the
1333     * lookup-by-descriptor twice.  It appears this is still a win, so
1334     * I'm keeping it in.
1335     */
1336    ClassObject* clazz = dvmLookupClass(descriptor, loader, false);
1337    if (clazz != NULL) {
1338        LOGVV("Already loaded: %s %p", descriptor, loader);
1339        return clazz;
1340    } else {
1341        LOGVV("Not already loaded: %s %p", descriptor, loader);
1342    }
1343
1344    char* dotName = NULL;
1345    StringObject* nameObj = NULL;
1346
1347    /* convert "Landroid/debug/Stuff;" to "android.debug.Stuff" */
1348    dotName = dvmDescriptorToDot(descriptor);
1349    if (dotName == NULL) {
1350        dvmThrowOutOfMemoryError(NULL);
1351        return NULL;
1352    }
1353    nameObj = dvmCreateStringFromCstr(dotName);
1354    if (nameObj == NULL) {
1355        assert(dvmCheckException(self));
1356        goto bail;
1357    }
1358
1359    dvmMethodTraceClassPrepBegin();
1360
1361    /*
1362     * Invoke loadClass().  This will probably result in a couple of
1363     * exceptions being thrown, because the ClassLoader.loadClass()
1364     * implementation eventually calls VMClassLoader.loadClass to see if
1365     * the bootstrap class loader can find it before doing its own load.
1366     */
1367    LOGVV("--- Invoking loadClass(%s, %p)", dotName, loader);
1368    {
1369        const Method* loadClass =
1370            loader->clazz->vtable[gDvm.voffJavaLangClassLoader_loadClass];
1371        JValue result;
1372        dvmCallMethod(self, loadClass, loader, &result, nameObj);
1373        clazz = (ClassObject*) result.l;
1374
1375        dvmMethodTraceClassPrepEnd();
1376        Object* excep = dvmGetException(self);
1377        if (excep != NULL) {
1378#if DVM_SHOW_EXCEPTION >= 2
1379            ALOGD("NOTE: loadClass '%s' %p threw exception %s",
1380                 dotName, loader, excep->clazz->descriptor);
1381#endif
1382            dvmAddTrackedAlloc(excep, self);
1383            dvmClearException(self);
1384            dvmThrowChainedNoClassDefFoundError(descriptor, excep);
1385            dvmReleaseTrackedAlloc(excep, self);
1386            clazz = NULL;
1387            goto bail;
1388        } else if (clazz == NULL) {
1389            ALOGW("ClassLoader returned NULL w/o exception pending");
1390            dvmThrowNullPointerException("ClassLoader returned null");
1391            goto bail;
1392        }
1393    }
1394
1395    /* not adding clazz to tracked-alloc list, because it's a ClassObject */
1396
1397    dvmAddInitiatingLoader(clazz, loader);
1398
1399    LOGVV("--- Successfully loaded %s %p (thisldr=%p clazz=%p)",
1400        descriptor, clazz->classLoader, loader, clazz);
1401
1402bail:
1403    dvmReleaseTrackedAlloc((Object*)nameObj, NULL);
1404    free(dotName);
1405    return clazz;
1406}
1407
1408/*
1409 * Load the named class (by descriptor) from the specified DEX file.
1410 * Used by class loaders to instantiate a class object from a
1411 * VM-managed DEX.
1412 */
1413ClassObject* dvmDefineClass(DvmDex* pDvmDex, const char* descriptor,
1414    Object* classLoader)
1415{
1416    assert(pDvmDex != NULL);
1417
1418    return findClassNoInit(descriptor, classLoader, pDvmDex);
1419}
1420
1421
1422/*
1423 * Find the named class (by descriptor), scanning through the
1424 * bootclasspath if it hasn't already been loaded.
1425 *
1426 * "descriptor" looks like "Landroid/debug/Stuff;".
1427 *
1428 * Uses NULL as the defining class loader.
1429 */
1430ClassObject* dvmFindSystemClass(const char* descriptor)
1431{
1432    ClassObject* clazz;
1433
1434    clazz = dvmFindSystemClassNoInit(descriptor);
1435    if (clazz != NULL && clazz->status < CLASS_INITIALIZED) {
1436        /* initialize class */
1437        if (!dvmInitClass(clazz)) {
1438            /* init failed; leave it in the list, marked as bad */
1439            assert(dvmCheckException(dvmThreadSelf()));
1440            assert(clazz->status == CLASS_ERROR);
1441            return NULL;
1442        }
1443    }
1444
1445    return clazz;
1446}
1447
1448/*
1449 * Find the named class (by descriptor), searching for it in the
1450 * bootclasspath.
1451 *
1452 * On failure, this returns NULL with an exception raised.
1453 */
1454ClassObject* dvmFindSystemClassNoInit(const char* descriptor)
1455{
1456    return findClassNoInit(descriptor, NULL, NULL);
1457}
1458
1459/*
1460 * Find the named class (by descriptor). If it's not already loaded,
1461 * we load it and link it, but don't execute <clinit>. (The VM has
1462 * specific limitations on which events can cause initialization.)
1463 *
1464 * If "pDexFile" is NULL, we will search the bootclasspath for an entry.
1465 *
1466 * On failure, this returns NULL with an exception raised.
1467 *
1468 * TODO: we need to return an indication of whether we loaded the class or
1469 * used an existing definition.  If somebody deliberately tries to load a
1470 * class twice in the same class loader, they should get a LinkageError,
1471 * but inadvertent simultaneous class references should "just work".
1472 */
1473static ClassObject* findClassNoInit(const char* descriptor, Object* loader,
1474    DvmDex* pDvmDex)
1475{
1476    Thread* self = dvmThreadSelf();
1477    ClassObject* clazz;
1478    bool profilerNotified = false;
1479
1480    if (loader != NULL) {
1481        LOGVV("#### findClassNoInit(%s,%p,%p)", descriptor, loader,
1482            pDvmDex->pDexFile);
1483    }
1484
1485    /*
1486     * We don't expect an exception to be raised at this point.  The
1487     * exception handling code is good about managing this.  This *can*
1488     * happen if a JNI lookup fails and the JNI code doesn't do any
1489     * error checking before doing another class lookup, so we may just
1490     * want to clear this and restore it on exit.  If we don't, some kinds
1491     * of failures can't be detected without rearranging other stuff.
1492     *
1493     * Most often when we hit this situation it means that something is
1494     * broken in the VM or in JNI code, so I'm keeping it in place (and
1495     * making it an informative abort rather than an assert).
1496     */
1497    if (dvmCheckException(self)) {
1498        ALOGE("Class lookup %s attempted with exception pending", descriptor);
1499        ALOGW("Pending exception is:");
1500        dvmLogExceptionStackTrace();
1501        dvmDumpAllThreads(false);
1502        dvmAbort();
1503    }
1504
1505    clazz = dvmLookupClass(descriptor, loader, true);
1506    if (clazz == NULL) {
1507        const DexClassDef* pClassDef;
1508
1509        dvmMethodTraceClassPrepBegin();
1510        profilerNotified = true;
1511
1512#if LOG_CLASS_LOADING
1513        u8 startTime = dvmGetThreadCpuTimeNsec();
1514#endif
1515
1516        if (pDvmDex == NULL) {
1517            assert(loader == NULL);     /* shouldn't be here otherwise */
1518            pDvmDex = searchBootPathForClass(descriptor, &pClassDef);
1519        } else {
1520            pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor);
1521        }
1522
1523        if (pDvmDex == NULL || pClassDef == NULL) {
1524            if (gDvm.noClassDefFoundErrorObj != NULL) {
1525                /* usual case -- use prefabricated object */
1526                dvmSetException(self, gDvm.noClassDefFoundErrorObj);
1527            } else {
1528                /* dexopt case -- can't guarantee prefab (core.jar) */
1529                dvmThrowNoClassDefFoundError(descriptor);
1530            }
1531            goto bail;
1532        }
1533
1534        /* found a match, try to load it */
1535        clazz = loadClassFromDex(pDvmDex, pClassDef, loader);
1536        if (dvmCheckException(self)) {
1537            /* class was found but had issues */
1538            if (clazz != NULL) {
1539                dvmFreeClassInnards(clazz);
1540                dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1541            }
1542            goto bail;
1543        }
1544
1545        /*
1546         * Lock the class while we link it so other threads must wait for us
1547         * to finish.  Set the "initThreadId" so we can identify recursive
1548         * invocation.  (Note all accesses to initThreadId here are
1549         * guarded by the class object's lock.)
1550         */
1551        dvmLockObject(self, (Object*) clazz);
1552        clazz->initThreadId = self->threadId;
1553
1554        /*
1555         * Add to hash table so lookups succeed.
1556         *
1557         * [Are circular references possible when linking a class?]
1558         */
1559        assert(clazz->classLoader == loader);
1560        if (!dvmAddClassToHash(clazz)) {
1561            /*
1562             * Another thread must have loaded the class after we
1563             * started but before we finished.  Discard what we've
1564             * done and leave some hints for the GC.
1565             *
1566             * (Yes, this happens.)
1567             */
1568            //ALOGW("WOW: somebody loaded %s simultaneously", descriptor);
1569            clazz->initThreadId = 0;
1570            dvmUnlockObject(self, (Object*) clazz);
1571
1572            /* Let the GC free the class.
1573             */
1574            dvmFreeClassInnards(clazz);
1575            dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1576
1577            /* Grab the winning class.
1578             */
1579            clazz = dvmLookupClass(descriptor, loader, true);
1580            assert(clazz != NULL);
1581            goto got_class;
1582        }
1583        dvmReleaseTrackedAlloc((Object*) clazz, NULL);
1584
1585#if LOG_CLASS_LOADING
1586        logClassLoadWithTime('>', clazz, startTime);
1587#endif
1588        /*
1589         * Prepare and resolve.
1590         */
1591        if (!dvmLinkClass(clazz)) {
1592            assert(dvmCheckException(self));
1593
1594            /* Make note of the error and clean up the class.
1595             */
1596            removeClassFromHash(clazz);
1597            clazz->status = CLASS_ERROR;
1598            dvmFreeClassInnards(clazz);
1599
1600            /* Let any waiters know.
1601             */
1602            clazz->initThreadId = 0;
1603            dvmObjectNotifyAll(self, (Object*) clazz);
1604            dvmUnlockObject(self, (Object*) clazz);
1605
1606#if LOG_CLASS_LOADING
1607            ALOG(LOG_INFO, "DVMLINK FAILED FOR CLASS ", "%s in %s",
1608                clazz->descriptor, get_process_name());
1609
1610            /*
1611             * TODO: It would probably be better to use a new type code here (instead of '<') to
1612             * indicate the failure.  This change would require a matching change in the parser
1613             * and analysis code in frameworks/base/tools/preload.
1614             */
1615            logClassLoad('<', clazz);
1616#endif
1617            clazz = NULL;
1618            if (gDvm.optimizing) {
1619                /* happens with "external" libs */
1620                ALOGV("Link of class '%s' failed", descriptor);
1621            } else {
1622                ALOGW("Link of class '%s' failed", descriptor);
1623            }
1624            goto bail;
1625        }
1626        dvmObjectNotifyAll(self, (Object*) clazz);
1627        dvmUnlockObject(self, (Object*) clazz);
1628
1629        /*
1630         * Add class stats to global counters.
1631         *
1632         * TODO: these should probably be atomic ops.
1633         */
1634        gDvm.numLoadedClasses++;
1635        gDvm.numDeclaredMethods +=
1636            clazz->virtualMethodCount + clazz->directMethodCount;
1637        gDvm.numDeclaredInstFields += clazz->ifieldCount;
1638        gDvm.numDeclaredStaticFields += clazz->sfieldCount;
1639
1640        /*
1641         * Cache pointers to basic classes.  We want to use these in
1642         * various places, and it's easiest to initialize them on first
1643         * use rather than trying to force them to initialize (startup
1644         * ordering makes it weird).
1645         */
1646        if (gDvm.classJavaLangObject == NULL &&
1647            strcmp(descriptor, "Ljava/lang/Object;") == 0)
1648        {
1649            /* It should be impossible to get here with anything
1650             * but the bootclasspath loader.
1651             */
1652            assert(loader == NULL);
1653            gDvm.classJavaLangObject = clazz;
1654        }
1655
1656#if LOG_CLASS_LOADING
1657        logClassLoad('<', clazz);
1658#endif
1659
1660    } else {
1661got_class:
1662        if (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) {
1663            /*
1664             * We can race with other threads for class linking.  We should
1665             * never get here recursively; doing so indicates that two
1666             * classes have circular dependencies.
1667             *
1668             * One exception: we force discovery of java.lang.Class in
1669             * dvmLinkClass(), and Class has Object as its superclass.  So
1670             * if the first thing we ever load is Object, we will init
1671             * Object->Class->Object.  The easiest way to avoid this is to
1672             * ensure that Object is never the first thing we look up, so
1673             * we get Foo->Class->Object instead.
1674             */
1675            dvmLockObject(self, (Object*) clazz);
1676            if (!dvmIsClassLinked(clazz) &&
1677                clazz->initThreadId == self->threadId)
1678            {
1679                ALOGW("Recursive link on class %s", clazz->descriptor);
1680                dvmUnlockObject(self, (Object*) clazz);
1681                dvmThrowClassCircularityError(clazz->descriptor);
1682                clazz = NULL;
1683                goto bail;
1684            }
1685            //ALOGI("WAITING  for '%s' (owner=%d)",
1686            //    clazz->descriptor, clazz->initThreadId);
1687            while (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) {
1688                dvmObjectWait(self, (Object*) clazz, 0, 0, false);
1689            }
1690            dvmUnlockObject(self, (Object*) clazz);
1691        }
1692        if (clazz->status == CLASS_ERROR) {
1693            /*
1694             * Somebody else tried to load this and failed.  We need to raise
1695             * an exception and report failure.
1696             */
1697            throwEarlierClassFailure(clazz);
1698            clazz = NULL;
1699            goto bail;
1700        }
1701    }
1702
1703    /* check some invariants */
1704    assert(dvmIsClassLinked(clazz));
1705    assert(gDvm.classJavaLangClass != NULL);
1706    assert(clazz->clazz == gDvm.classJavaLangClass);
1707    assert(dvmIsClassObject(clazz));
1708    assert(clazz == gDvm.classJavaLangObject || clazz->super != NULL);
1709    if (!dvmIsInterfaceClass(clazz)) {
1710        //ALOGI("class=%s vtableCount=%d, virtualMeth=%d",
1711        //    clazz->descriptor, clazz->vtableCount,
1712        //    clazz->virtualMethodCount);
1713        assert(clazz->vtableCount >= clazz->virtualMethodCount);
1714    }
1715
1716bail:
1717    if (profilerNotified)
1718        dvmMethodTraceClassPrepEnd();
1719    assert(clazz != NULL || dvmCheckException(self));
1720    return clazz;
1721}
1722
1723/*
1724 * Helper for loadClassFromDex, which takes a DexClassDataHeader and
1725 * encoded data pointer in addition to the other arguments.
1726 */
1727static ClassObject* loadClassFromDex0(DvmDex* pDvmDex,
1728    const DexClassDef* pClassDef, const DexClassDataHeader* pHeader,
1729    const u1* pEncodedData, Object* classLoader)
1730{
1731    ClassObject* newClass = NULL;
1732    const DexFile* pDexFile;
1733    const char* descriptor;
1734    int i;
1735
1736    pDexFile = pDvmDex->pDexFile;
1737    descriptor = dexGetClassDescriptor(pDexFile, pClassDef);
1738
1739    /*
1740     * Make sure the aren't any "bonus" flags set, since we use them for
1741     * runtime state.
1742     */
1743    /* bits we can reasonably expect to see set in a DEX access flags field */
1744    const uint32_t EXPECTED_FILE_FLAGS = (ACC_CLASS_MASK | CLASS_ISPREVERIFIED |
1745                                          CLASS_ISOPTIMIZED);
1746    if ((pClassDef->accessFlags & ~EXPECTED_FILE_FLAGS) != 0) {
1747        ALOGW("Invalid file flags in class %s: %04x",
1748            descriptor, pClassDef->accessFlags);
1749        return NULL;
1750    }
1751
1752    /*
1753     * Allocate storage for the class object on the GC heap, so that other
1754     * objects can have references to it.  We bypass the usual mechanism
1755     * (allocObject), because we don't have all the bits and pieces yet.
1756     *
1757     * Note that we assume that java.lang.Class does not override
1758     * finalize().
1759     */
1760    /* TODO: Can there be fewer special checks in the usual path? */
1761    assert(descriptor != NULL);
1762    if (classLoader == NULL &&
1763        strcmp(descriptor, "Ljava/lang/Class;") == 0) {
1764        assert(gDvm.classJavaLangClass != NULL);
1765        newClass = gDvm.classJavaLangClass;
1766    } else {
1767        size_t size = classObjectSize(pHeader->staticFieldsSize);
1768        newClass = (ClassObject*) dvmMalloc(size, ALLOC_NON_MOVING);
1769    }
1770    if (newClass == NULL)
1771        return NULL;
1772
1773    DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass);
1774    dvmSetClassSerialNumber(newClass);
1775    newClass->descriptor = descriptor;
1776    assert(newClass->descriptorAlloc == NULL);
1777    SET_CLASS_FLAG(newClass, pClassDef->accessFlags);
1778    dvmSetFieldObject((Object *)newClass,
1779                      OFFSETOF_MEMBER(ClassObject, classLoader),
1780                      (Object *)classLoader);
1781    newClass->pDvmDex = pDvmDex;
1782    newClass->primitiveType = PRIM_NOT;
1783    newClass->status = CLASS_IDX;
1784
1785    /*
1786     * Stuff the superclass index into the object pointer field.  The linker
1787     * pulls it out and replaces it with a resolved ClassObject pointer.
1788     * I'm doing it this way (rather than having a dedicated superclassIdx
1789     * field) to save a few bytes of overhead per class.
1790     *
1791     * newClass->super is not traversed or freed by dvmFreeClassInnards, so
1792     * this is safe.
1793     */
1794    assert(sizeof(u4) == sizeof(ClassObject*)); /* 32-bit check */
1795    newClass->super = (ClassObject*) pClassDef->superclassIdx;
1796
1797    /*
1798     * Stuff class reference indices into the pointer fields.
1799     *
1800     * The elements of newClass->interfaces are not traversed or freed by
1801     * dvmFreeClassInnards, so this is GC-safe.
1802     */
1803    const DexTypeList* pInterfacesList;
1804    pInterfacesList = dexGetInterfacesList(pDexFile, pClassDef);
1805    if (pInterfacesList != NULL) {
1806        newClass->interfaceCount = pInterfacesList->size;
1807        newClass->interfaces = (ClassObject**) dvmLinearAlloc(classLoader,
1808                newClass->interfaceCount * sizeof(ClassObject*));
1809
1810        for (i = 0; i < newClass->interfaceCount; i++) {
1811            const DexTypeItem* pType = dexGetTypeItem(pInterfacesList, i);
1812            newClass->interfaces[i] = (ClassObject*)(u4) pType->typeIdx;
1813        }
1814        dvmLinearReadOnly(classLoader, newClass->interfaces);
1815    }
1816
1817    /* load field definitions */
1818
1819    /*
1820     * Over-allocate the class object and append static field info
1821     * onto the end.  It's fixed-size and known at alloc time.  This
1822     * seems to increase zygote sharing.  Heap compaction will have to
1823     * be careful if it ever tries to move ClassObject instances,
1824     * because we pass Field pointers around internally. But at least
1825     * now these Field pointers are in the object heap.
1826     */
1827
1828    if (pHeader->staticFieldsSize != 0) {
1829        /* static fields stay on system heap; field data isn't "write once" */
1830        int count = (int) pHeader->staticFieldsSize;
1831        u4 lastIndex = 0;
1832        DexField field;
1833
1834        newClass->sfieldCount = count;
1835        for (i = 0; i < count; i++) {
1836            dexReadClassDataField(&pEncodedData, &field, &lastIndex);
1837            loadSFieldFromDex(newClass, &field, &newClass->sfields[i]);
1838        }
1839    }
1840
1841    if (pHeader->instanceFieldsSize != 0) {
1842        int count = (int) pHeader->instanceFieldsSize;
1843        u4 lastIndex = 0;
1844        DexField field;
1845
1846        newClass->ifieldCount = count;
1847        newClass->ifields = (InstField*) dvmLinearAlloc(classLoader,
1848                count * sizeof(InstField));
1849        for (i = 0; i < count; i++) {
1850            dexReadClassDataField(&pEncodedData, &field, &lastIndex);
1851            loadIFieldFromDex(newClass, &field, &newClass->ifields[i]);
1852        }
1853        dvmLinearReadOnly(classLoader, newClass->ifields);
1854    }
1855
1856    /*
1857     * Load method definitions.  We do this in two batches, direct then
1858     * virtual.
1859     *
1860     * If register maps have already been generated for this class, and
1861     * precise GC is enabled, we pull out pointers to them.  We know that
1862     * they were streamed to the DEX file in the same order in which the
1863     * methods appear.
1864     *
1865     * If the class wasn't pre-verified, the maps will be generated when
1866     * the class is verified during class initialization.
1867     */
1868    u4 classDefIdx = dexGetIndexForClassDef(pDexFile, pClassDef);
1869    const void* classMapData;
1870    u4 numMethods;
1871
1872    if (gDvm.preciseGc) {
1873        classMapData =
1874            dvmRegisterMapGetClassData(pDexFile, classDefIdx, &numMethods);
1875
1876        /* sanity check */
1877        if (classMapData != NULL &&
1878            pHeader->directMethodsSize + pHeader->virtualMethodsSize != numMethods)
1879        {
1880            ALOGE("ERROR: in %s, direct=%d virtual=%d, maps have %d",
1881                newClass->descriptor, pHeader->directMethodsSize,
1882                pHeader->virtualMethodsSize, numMethods);
1883            assert(false);
1884            classMapData = NULL;        /* abandon */
1885        }
1886    } else {
1887        classMapData = NULL;
1888    }
1889
1890    if (pHeader->directMethodsSize != 0) {
1891        int count = (int) pHeader->directMethodsSize;
1892        u4 lastIndex = 0;
1893        DexMethod method;
1894
1895        newClass->directMethodCount = count;
1896        newClass->directMethods = (Method*) dvmLinearAlloc(classLoader,
1897                count * sizeof(Method));
1898        for (i = 0; i < count; i++) {
1899            dexReadClassDataMethod(&pEncodedData, &method, &lastIndex);
1900            loadMethodFromDex(newClass, &method, &newClass->directMethods[i]);
1901            if (classMapData != NULL) {
1902                const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData);
1903                if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) {
1904                    newClass->directMethods[i].registerMap = pMap;
1905                    /* TODO: add rigorous checks */
1906                    assert((newClass->directMethods[i].registersSize+7) / 8 ==
1907                        newClass->directMethods[i].registerMap->regWidth);
1908                }
1909            }
1910        }
1911        dvmLinearReadOnly(classLoader, newClass->directMethods);
1912    }
1913
1914    if (pHeader->virtualMethodsSize != 0) {
1915        int count = (int) pHeader->virtualMethodsSize;
1916        u4 lastIndex = 0;
1917        DexMethod method;
1918
1919        newClass->virtualMethodCount = count;
1920        newClass->virtualMethods = (Method*) dvmLinearAlloc(classLoader,
1921                count * sizeof(Method));
1922        for (i = 0; i < count; i++) {
1923            dexReadClassDataMethod(&pEncodedData, &method, &lastIndex);
1924            loadMethodFromDex(newClass, &method, &newClass->virtualMethods[i]);
1925            if (classMapData != NULL) {
1926                const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData);
1927                if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) {
1928                    newClass->virtualMethods[i].registerMap = pMap;
1929                    /* TODO: add rigorous checks */
1930                    assert((newClass->virtualMethods[i].registersSize+7) / 8 ==
1931                        newClass->virtualMethods[i].registerMap->regWidth);
1932                }
1933            }
1934        }
1935        dvmLinearReadOnly(classLoader, newClass->virtualMethods);
1936    }
1937
1938    newClass->sourceFile = dexGetSourceFile(pDexFile, pClassDef);
1939
1940    /* caller must call dvmReleaseTrackedAlloc */
1941    return newClass;
1942}
1943
1944/*
1945 * Try to load the indicated class from the specified DEX file.
1946 *
1947 * This is effectively loadClass()+defineClass() for a DexClassDef.  The
1948 * loading was largely done when we crunched through the DEX.
1949 *
1950 * Returns NULL on failure.  If we locate the class but encounter an error
1951 * while processing it, an appropriate exception is thrown.
1952 */
1953static ClassObject* loadClassFromDex(DvmDex* pDvmDex,
1954    const DexClassDef* pClassDef, Object* classLoader)
1955{
1956    ClassObject* result;
1957    DexClassDataHeader header;
1958    const u1* pEncodedData;
1959    const DexFile* pDexFile;
1960
1961    assert((pDvmDex != NULL) && (pClassDef != NULL));
1962    pDexFile = pDvmDex->pDexFile;
1963
1964    if (gDvm.verboseClass) {
1965        ALOGV("CLASS: loading '%s'...",
1966            dexGetClassDescriptor(pDexFile, pClassDef));
1967    }
1968
1969    pEncodedData = dexGetClassData(pDexFile, pClassDef);
1970
1971    if (pEncodedData != NULL) {
1972        dexReadClassDataHeader(&pEncodedData, &header);
1973    } else {
1974        // Provide an all-zeroes header for the rest of the loading.
1975        memset(&header, 0, sizeof(header));
1976    }
1977
1978    result = loadClassFromDex0(pDvmDex, pClassDef, &header, pEncodedData,
1979            classLoader);
1980
1981    if (gDvm.verboseClass && (result != NULL)) {
1982        ALOGI("[Loaded %s from DEX %p (cl=%p)]",
1983            result->descriptor, pDvmDex, classLoader);
1984    }
1985
1986    return result;
1987}
1988
1989/*
1990 * Free anything in a ClassObject that was allocated on the system heap.
1991 *
1992 * The ClassObject itself is allocated on the GC heap, so we leave it for
1993 * the garbage collector.
1994 *
1995 * NOTE: this may be called with a partially-constructed object.
1996 * NOTE: there is no particular ordering imposed, so don't go poking at
1997 * superclasses.
1998 */
1999void dvmFreeClassInnards(ClassObject* clazz)
2000{
2001    void *tp;
2002    int i;
2003
2004    if (clazz == NULL)
2005        return;
2006
2007    assert(clazz->clazz == gDvm.classJavaLangClass);
2008    assert(dvmIsClassObject(clazz));
2009
2010    /* Guarantee that dvmFreeClassInnards can be called on a given
2011     * class multiple times by clearing things out as we free them.
2012     * We don't make any attempt at real atomicity here; higher
2013     * levels need to make sure that no two threads can free the
2014     * same ClassObject at the same time.
2015     *
2016     * TODO: maybe just make it so the GC will never free the
2017     * innards of an already-freed class.
2018     *
2019     * TODO: this #define isn't MT-safe -- the compiler could rearrange it.
2020     */
2021#define NULL_AND_FREE(p) \
2022    do { \
2023        if ((p) != NULL) { \
2024            tp = (p); \
2025            (p) = NULL; \
2026            free(tp); \
2027        } \
2028    } while (0)
2029#define NULL_AND_LINEAR_FREE(p) \
2030    do { \
2031        if ((p) != NULL) { \
2032            tp = (p); \
2033            (p) = NULL; \
2034            dvmLinearFree(clazz->classLoader, tp); \
2035        } \
2036    } while (0)
2037
2038    /* arrays just point at Object's vtable; don't free vtable in this case.
2039     */
2040    clazz->vtableCount = -1;
2041    if (clazz->vtable == gDvm.classJavaLangObject->vtable) {
2042        clazz->vtable = NULL;
2043    } else {
2044        NULL_AND_LINEAR_FREE(clazz->vtable);
2045    }
2046
2047    clazz->descriptor = NULL;
2048    NULL_AND_FREE(clazz->descriptorAlloc);
2049
2050    if (clazz->directMethods != NULL) {
2051        Method *directMethods = clazz->directMethods;
2052        int directMethodCount = clazz->directMethodCount;
2053        clazz->directMethods = NULL;
2054        clazz->directMethodCount = -1;
2055        dvmLinearReadWrite(clazz->classLoader, directMethods);
2056        for (i = 0; i < directMethodCount; i++) {
2057            freeMethodInnards(&directMethods[i]);
2058        }
2059        dvmLinearReadOnly(clazz->classLoader, directMethods);
2060        dvmLinearFree(clazz->classLoader, directMethods);
2061    }
2062    if (clazz->virtualMethods != NULL) {
2063        Method *virtualMethods = clazz->virtualMethods;
2064        int virtualMethodCount = clazz->virtualMethodCount;
2065        clazz->virtualMethodCount = -1;
2066        clazz->virtualMethods = NULL;
2067        dvmLinearReadWrite(clazz->classLoader, virtualMethods);
2068        for (i = 0; i < virtualMethodCount; i++) {
2069            freeMethodInnards(&virtualMethods[i]);
2070        }
2071        dvmLinearReadOnly(clazz->classLoader, virtualMethods);
2072        dvmLinearFree(clazz->classLoader, virtualMethods);
2073    }
2074
2075    InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz);
2076    loaderList->initiatingLoaderCount = -1;
2077    NULL_AND_FREE(loaderList->initiatingLoaders);
2078
2079    clazz->interfaceCount = -1;
2080    NULL_AND_LINEAR_FREE(clazz->interfaces);
2081
2082    clazz->iftableCount = -1;
2083    NULL_AND_LINEAR_FREE(clazz->iftable);
2084
2085    clazz->ifviPoolCount = -1;
2086    NULL_AND_LINEAR_FREE(clazz->ifviPool);
2087
2088    clazz->sfieldCount = -1;
2089    /* The sfields are attached to the ClassObject, and will be freed
2090     * with it. */
2091
2092    clazz->ifieldCount = -1;
2093    NULL_AND_LINEAR_FREE(clazz->ifields);
2094
2095#undef NULL_AND_FREE
2096#undef NULL_AND_LINEAR_FREE
2097}
2098
2099/*
2100 * Free anything in a Method that was allocated on the system heap.
2101 *
2102 * The containing class is largely torn down by this point.
2103 */
2104static void freeMethodInnards(Method* meth)
2105{
2106#if 0
2107    free(meth->exceptions);
2108    free(meth->lines);
2109    free(meth->locals);
2110#endif
2111
2112    /*
2113     * Some register maps are allocated on the heap, either because of late
2114     * verification or because we're caching an uncompressed form.
2115     */
2116    const RegisterMap* pMap = meth->registerMap;
2117    if (pMap != NULL && dvmRegisterMapGetOnHeap(pMap)) {
2118        dvmFreeRegisterMap((RegisterMap*) pMap);
2119        meth->registerMap = NULL;
2120    }
2121
2122    /*
2123     * We may have copied the instructions.
2124     */
2125    if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
2126        DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2127        dvmLinearFree(meth->clazz->classLoader, methodDexCode);
2128    }
2129}
2130
2131/*
2132 * Clone a Method, making new copies of anything that will be freed up
2133 * by freeMethodInnards().  This is used for "miranda" methods.
2134 */
2135static void cloneMethod(Method* dst, const Method* src)
2136{
2137    if (src->registerMap != NULL) {
2138        ALOGE("GLITCH: only expected abstract methods here");
2139        ALOGE("        cloning %s.%s", src->clazz->descriptor, src->name);
2140        dvmAbort();
2141    }
2142    memcpy(dst, src, sizeof(Method));
2143}
2144
2145/*
2146 * Pull the interesting pieces out of a DexMethod.
2147 *
2148 * The DEX file isn't going anywhere, so we don't need to make copies of
2149 * the code area.
2150 */
2151static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,
2152    Method* meth)
2153{
2154    DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2155    const DexMethodId* pMethodId;
2156    const DexCode* pDexCode;
2157
2158    pMethodId = dexGetMethodId(pDexFile, pDexMethod->methodIdx);
2159
2160    meth->name = dexStringById(pDexFile, pMethodId->nameIdx);
2161    dexProtoSetFromMethodId(&meth->prototype, pDexFile, pMethodId);
2162    meth->shorty = dexProtoGetShorty(&meth->prototype);
2163    meth->accessFlags = pDexMethod->accessFlags;
2164    meth->clazz = clazz;
2165    meth->jniArgInfo = 0;
2166
2167    if (dvmCompareNameDescriptorAndMethod("finalize", "()V", meth) == 0) {
2168        /*
2169         * The Enum class declares a "final" finalize() method to
2170         * prevent subclasses from introducing a finalizer.  We don't
2171         * want to set the finalizable flag for Enum or its subclasses,
2172         * so we check for it here.
2173         *
2174         * We also want to avoid setting it on Object, but it's easier
2175         * to just strip that out later.
2176         */
2177        if (clazz->classLoader != NULL ||
2178            strcmp(clazz->descriptor, "Ljava/lang/Enum;") != 0)
2179        {
2180            SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2181        }
2182    }
2183
2184    pDexCode = dexGetCode(pDexFile, pDexMethod);
2185    if (pDexCode != NULL) {
2186        /* integer constants, copy over for faster access */
2187        meth->registersSize = pDexCode->registersSize;
2188        meth->insSize = pDexCode->insSize;
2189        meth->outsSize = pDexCode->outsSize;
2190
2191        /* pointer to code area */
2192        meth->insns = pDexCode->insns;
2193    } else {
2194        /*
2195         * We don't have a DexCode block, but we still want to know how
2196         * much space is needed for the arguments (so we don't have to
2197         * compute it later).  We also take this opportunity to compute
2198         * JNI argument info.
2199         *
2200         * We do this for abstract methods as well, because we want to
2201         * be able to substitute our exception-throwing "stub" in.
2202         */
2203        int argsSize = dvmComputeMethodArgsSize(meth);
2204        if (!dvmIsStaticMethod(meth))
2205            argsSize++;
2206        meth->registersSize = meth->insSize = argsSize;
2207        assert(meth->outsSize == 0);
2208        assert(meth->insns == NULL);
2209
2210        if (dvmIsNativeMethod(meth)) {
2211            meth->nativeFunc = dvmResolveNativeMethod;
2212            meth->jniArgInfo = computeJniArgInfo(&meth->prototype);
2213        }
2214    }
2215}
2216
2217#if 0       /* replaced with private/read-write mapping */
2218/*
2219 * We usually map bytecode directly out of the DEX file, which is mapped
2220 * shared read-only.  If we want to be able to modify it, we have to make
2221 * a new copy.
2222 *
2223 * Once copied, the code will be in the LinearAlloc region, which may be
2224 * marked read-only.
2225 *
2226 * The bytecode instructions are embedded inside a DexCode structure, so we
2227 * need to copy all of that.  (The dvmGetMethodCode function backs up the
2228 * instruction pointer to find the start of the DexCode.)
2229 */
2230void dvmMakeCodeReadWrite(Method* meth)
2231{
2232    DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2233
2234    if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
2235        dvmLinearReadWrite(meth->clazz->classLoader, methodDexCode);
2236        return;
2237    }
2238
2239    assert(!dvmIsNativeMethod(meth) && !dvmIsAbstractMethod(meth));
2240
2241    size_t dexCodeSize = dexGetDexCodeSize(methodDexCode);
2242    ALOGD("Making a copy of %s.%s code (%d bytes)",
2243        meth->clazz->descriptor, meth->name, dexCodeSize);
2244
2245    DexCode* newCode =
2246        (DexCode*) dvmLinearAlloc(meth->clazz->classLoader, dexCodeSize);
2247    memcpy(newCode, methodDexCode, dexCodeSize);
2248
2249    meth->insns = newCode->insns;
2250    SET_METHOD_FLAG(meth, METHOD_ISWRITABLE);
2251}
2252
2253/*
2254 * Mark the bytecode read-only.
2255 *
2256 * If the contents of the DexCode haven't actually changed, we could revert
2257 * to the original shared page.
2258 */
2259void dvmMakeCodeReadOnly(Method* meth)
2260{
2261    DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth);
2262    ALOGV("+++ marking %p read-only", methodDexCode);
2263    dvmLinearReadOnly(meth->clazz->classLoader, methodDexCode);
2264}
2265#endif
2266
2267
2268/*
2269 * jniArgInfo (32-bit int) layout:
2270 *   SRRRHHHH HHHHHHHH HHHHHHHH HHHHHHHH
2271 *
2272 *   S - if set, do things the hard way (scan the signature)
2273 *   R - return-type enumeration
2274 *   H - target-specific hints
2275 *
2276 * This info is used at invocation time by dvmPlatformInvoke.  In most
2277 * cases, the target-specific hints allow dvmPlatformInvoke to avoid
2278 * having to fully parse the signature.
2279 *
2280 * The return-type bits are always set, even if target-specific hint bits
2281 * are unavailable.
2282 */
2283static int computeJniArgInfo(const DexProto* proto)
2284{
2285    const char* sig = dexProtoGetShorty(proto);
2286    int returnType, jniArgInfo;
2287    u4 hints;
2288
2289    /* The first shorty character is the return type. */
2290    switch (*(sig++)) {
2291    case 'V':
2292        returnType = DALVIK_JNI_RETURN_VOID;
2293        break;
2294    case 'F':
2295        returnType = DALVIK_JNI_RETURN_FLOAT;
2296        break;
2297    case 'D':
2298        returnType = DALVIK_JNI_RETURN_DOUBLE;
2299        break;
2300    case 'J':
2301        returnType = DALVIK_JNI_RETURN_S8;
2302        break;
2303    case 'Z':
2304    case 'B':
2305        returnType = DALVIK_JNI_RETURN_S1;
2306        break;
2307    case 'C':
2308        returnType = DALVIK_JNI_RETURN_U2;
2309        break;
2310    case 'S':
2311        returnType = DALVIK_JNI_RETURN_S2;
2312        break;
2313    default:
2314        returnType = DALVIK_JNI_RETURN_S4;
2315        break;
2316    }
2317
2318    jniArgInfo = returnType << DALVIK_JNI_RETURN_SHIFT;
2319
2320    hints = dvmPlatformInvokeHints(proto);
2321
2322    if (hints & DALVIK_JNI_NO_ARG_INFO) {
2323        jniArgInfo |= DALVIK_JNI_NO_ARG_INFO;
2324    } else {
2325        assert((hints & DALVIK_JNI_RETURN_MASK) == 0);
2326        jniArgInfo |= hints;
2327    }
2328
2329    return jniArgInfo;
2330}
2331
2332/*
2333 * Load information about a static field.
2334 *
2335 * This also "prepares" static fields by initializing them
2336 * to their "standard default values".
2337 */
2338static void loadSFieldFromDex(ClassObject* clazz,
2339    const DexField* pDexSField, StaticField* sfield)
2340{
2341    DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2342    const DexFieldId* pFieldId;
2343
2344    pFieldId = dexGetFieldId(pDexFile, pDexSField->fieldIdx);
2345
2346    sfield->clazz = clazz;
2347    sfield->name = dexStringById(pDexFile, pFieldId->nameIdx);
2348    sfield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx);
2349    sfield->accessFlags = pDexSField->accessFlags;
2350
2351    /* Static object field values are set to "standard default values"
2352     * (null or 0) until the class is initialized.  We delay loading
2353     * constant values from the class until that time.
2354     */
2355    //sfield->value.j = 0;
2356    assert(sfield->value.j == 0LL);     // cleared earlier with calloc
2357}
2358
2359/*
2360 * Load information about an instance field.
2361 */
2362static void loadIFieldFromDex(ClassObject* clazz,
2363    const DexField* pDexIField, InstField* ifield)
2364{
2365    DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2366    const DexFieldId* pFieldId;
2367
2368    pFieldId = dexGetFieldId(pDexFile, pDexIField->fieldIdx);
2369
2370    ifield->clazz = clazz;
2371    ifield->name = dexStringById(pDexFile, pFieldId->nameIdx);
2372    ifield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx);
2373    ifield->accessFlags = pDexIField->accessFlags;
2374#ifndef NDEBUG
2375    assert(ifield->byteOffset == 0);    // cleared earlier with calloc
2376    ifield->byteOffset = -1;    // make it obvious if we fail to set later
2377#endif
2378}
2379
2380/*
2381 * Cache java.lang.ref.Reference fields and methods.
2382 */
2383static bool precacheReferenceOffsets(ClassObject* clazz)
2384{
2385    int i;
2386
2387    /* We trick the GC object scanner by not counting
2388     * java.lang.ref.Reference.referent as an object
2389     * field.  It will get explicitly scanned as part
2390     * of the reference-walking process.
2391     *
2392     * Find the object field named "referent" and put it
2393     * just after the list of object reference fields.
2394     */
2395    dvmLinearReadWrite(clazz->classLoader, clazz->ifields);
2396    for (i = 0; i < clazz->ifieldRefCount; i++) {
2397        InstField *pField = &clazz->ifields[i];
2398        if (strcmp(pField->name, "referent") == 0) {
2399            int targetIndex;
2400
2401            /* Swap this field with the last object field.
2402             */
2403            targetIndex = clazz->ifieldRefCount - 1;
2404            if (i != targetIndex) {
2405                InstField *swapField = &clazz->ifields[targetIndex];
2406                InstField tmpField;
2407                int tmpByteOffset;
2408
2409                /* It's not currently strictly necessary
2410                 * for the fields to be in byteOffset order,
2411                 * but it's more predictable that way.
2412                 */
2413                tmpByteOffset = swapField->byteOffset;
2414                swapField->byteOffset = pField->byteOffset;
2415                pField->byteOffset = tmpByteOffset;
2416
2417                tmpField = *swapField;
2418                *swapField = *pField;
2419                *pField = tmpField;
2420            }
2421
2422            /* One fewer object field (wink wink).
2423             */
2424            clazz->ifieldRefCount--;
2425            i--;        /* don't trip "didn't find it" test if field was last */
2426            break;
2427        }
2428    }
2429    dvmLinearReadOnly(clazz->classLoader, clazz->ifields);
2430    if (i == clazz->ifieldRefCount) {
2431        ALOGE("Unable to reorder 'referent' in %s", clazz->descriptor);
2432        return false;
2433    }
2434
2435    /*
2436     * Now that the above has been done, it is safe to cache
2437     * info about the class.
2438     */
2439    if (!dvmFindReferenceMembers(clazz)) {
2440        ALOGE("Trouble with Reference setup");
2441        return false;
2442    }
2443
2444    return true;
2445}
2446
2447
2448/*
2449 * Set the bitmap of reference offsets, refOffsets, from the ifields
2450 * list.
2451 */
2452static void computeRefOffsets(ClassObject* clazz)
2453{
2454    if (clazz->super != NULL) {
2455        clazz->refOffsets = clazz->super->refOffsets;
2456    } else {
2457        clazz->refOffsets = 0;
2458    }
2459    /*
2460     * If our superclass overflowed, we don't stand a chance.
2461     */
2462    if (clazz->refOffsets != CLASS_WALK_SUPER) {
2463        InstField *f;
2464        int i;
2465
2466        /* All of the fields that contain object references
2467         * are guaranteed to be at the beginning of the ifields list.
2468         */
2469        f = clazz->ifields;
2470        const int ifieldRefCount = clazz->ifieldRefCount;
2471        for (i = 0; i < ifieldRefCount; i++) {
2472          /*
2473           * Note that, per the comment on struct InstField,
2474           * f->byteOffset is the offset from the beginning of
2475           * obj, not the offset into obj->instanceData.
2476           */
2477          assert(f->byteOffset >= (int) CLASS_SMALLEST_OFFSET);
2478          assert((f->byteOffset & (CLASS_OFFSET_ALIGNMENT - 1)) == 0);
2479          if (CLASS_CAN_ENCODE_OFFSET(f->byteOffset)) {
2480              u4 newBit = CLASS_BIT_FROM_OFFSET(f->byteOffset);
2481              assert(newBit != 0);
2482              clazz->refOffsets |= newBit;
2483          } else {
2484              clazz->refOffsets = CLASS_WALK_SUPER;
2485              break;
2486          }
2487          f++;
2488        }
2489    }
2490}
2491
2492
2493/*
2494 * Link (prepare and resolve).  Verification is deferred until later.
2495 *
2496 * This converts symbolic references into pointers.  It's independent of
2497 * the source file format.
2498 *
2499 * If clazz->status is CLASS_IDX, then clazz->super and interfaces[] are
2500 * holding class reference indices rather than pointers.  The class
2501 * references will be resolved during link.  (This is done when
2502 * loading from DEX to avoid having to create additional storage to
2503 * pass the indices around.)
2504 *
2505 * Returns "false" with an exception pending on failure.
2506 */
2507bool dvmLinkClass(ClassObject* clazz)
2508{
2509    u4 superclassIdx = 0;
2510    u4 *interfaceIdxArray = NULL;
2511    bool okay = false;
2512    int i;
2513
2514    assert(clazz != NULL);
2515    assert(clazz->descriptor != NULL);
2516    assert(clazz->status == CLASS_IDX || clazz->status == CLASS_LOADED);
2517    if (gDvm.verboseClass)
2518        ALOGV("CLASS: linking '%s'...", clazz->descriptor);
2519
2520    assert(gDvm.classJavaLangClass != NULL);
2521    assert(clazz->clazz == gDvm.classJavaLangClass);
2522    assert(dvmIsClassObject(clazz));
2523    if (clazz->classLoader == NULL &&
2524        (strcmp(clazz->descriptor, "Ljava/lang/Class;") == 0))
2525    {
2526        if (gDvm.classJavaLangClass->ifieldCount > CLASS_FIELD_SLOTS) {
2527            ALOGE("java.lang.Class has %d instance fields (expected at most %d)",
2528                 gDvm.classJavaLangClass->ifieldCount, CLASS_FIELD_SLOTS);
2529            dvmAbort();
2530        }
2531        if (gDvm.classJavaLangClass->sfieldCount != CLASS_SFIELD_SLOTS) {
2532            ALOGE("java.lang.Class has %d static fields (expected %d)",
2533                 gDvm.classJavaLangClass->sfieldCount, CLASS_SFIELD_SLOTS);
2534            dvmAbort();
2535        }
2536    }
2537
2538    /* "Resolve" the class.
2539     *
2540     * At this point, clazz's reference fields may contain Dex file
2541     * indices instead of direct object references.  Proxy objects are
2542     * an exception, and may be the only exception.  We need to
2543     * translate those indices into real references, and let the GC
2544     * look inside this ClassObject.
2545     */
2546    if (clazz->status == CLASS_IDX) {
2547        if (clazz->interfaceCount > 0) {
2548            /* Copy u4 DEX idx values out of the ClassObject* array
2549             * where we stashed them.
2550             */
2551            assert(sizeof(*interfaceIdxArray) == sizeof(*clazz->interfaces));
2552            size_t len = clazz->interfaceCount * sizeof(*interfaceIdxArray);
2553            interfaceIdxArray = (u4*)malloc(len);
2554            if (interfaceIdxArray == NULL) {
2555                ALOGW("Unable to allocate memory to link %s", clazz->descriptor);
2556                goto bail;
2557            }
2558            memcpy(interfaceIdxArray, clazz->interfaces, len);
2559
2560            dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
2561            memset(clazz->interfaces, 0, len);
2562            dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2563        }
2564
2565        assert(sizeof(superclassIdx) == sizeof(clazz->super));
2566        superclassIdx = (u4) clazz->super;
2567        clazz->super = NULL;
2568        /* After this line, clazz will be fair game for the GC. The
2569         * superclass and interfaces are all NULL.
2570         */
2571        clazz->status = CLASS_LOADED;
2572
2573        if (superclassIdx != kDexNoIndex) {
2574            ClassObject* super = dvmResolveClass(clazz, superclassIdx, false);
2575            if (super == NULL) {
2576                assert(dvmCheckException(dvmThreadSelf()));
2577                if (gDvm.optimizing) {
2578                    /* happens with "external" libs */
2579                    ALOGV("Unable to resolve superclass of %s (%d)",
2580                         clazz->descriptor, superclassIdx);
2581                } else {
2582                    ALOGW("Unable to resolve superclass of %s (%d)",
2583                         clazz->descriptor, superclassIdx);
2584                }
2585                goto bail;
2586            }
2587            dvmSetFieldObject((Object *)clazz,
2588                              OFFSETOF_MEMBER(ClassObject, super),
2589                              (Object *)super);
2590        }
2591
2592        if (clazz->interfaceCount > 0) {
2593            /* Resolve the interfaces implemented directly by this class. */
2594            assert(interfaceIdxArray != NULL);
2595            dvmLinearReadWrite(clazz->classLoader, clazz->interfaces);
2596            for (i = 0; i < clazz->interfaceCount; i++) {
2597                assert(interfaceIdxArray[i] != kDexNoIndex);
2598                clazz->interfaces[i] =
2599                    dvmResolveClass(clazz, interfaceIdxArray[i], false);
2600                if (clazz->interfaces[i] == NULL) {
2601                    const DexFile* pDexFile = clazz->pDvmDex->pDexFile;
2602
2603                    assert(dvmCheckException(dvmThreadSelf()));
2604                    dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2605
2606                    const char* classDescriptor;
2607                    classDescriptor =
2608                        dexStringByTypeIdx(pDexFile, interfaceIdxArray[i]);
2609                    if (gDvm.optimizing) {
2610                        /* happens with "external" libs */
2611                        ALOGV("Failed resolving %s interface %d '%s'",
2612                             clazz->descriptor, interfaceIdxArray[i],
2613                             classDescriptor);
2614                    } else {
2615                        ALOGI("Failed resolving %s interface %d '%s'",
2616                             clazz->descriptor, interfaceIdxArray[i],
2617                             classDescriptor);
2618                    }
2619                    goto bail;
2620                }
2621
2622                /* are we allowed to implement this interface? */
2623                if (!dvmCheckClassAccess(clazz, clazz->interfaces[i])) {
2624                    dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2625                    ALOGW("Interface '%s' is not accessible to '%s'",
2626                         clazz->interfaces[i]->descriptor, clazz->descriptor);
2627                    dvmThrowIllegalAccessError("interface not accessible");
2628                    goto bail;
2629                }
2630                LOGVV("+++  found interface '%s'",
2631                      clazz->interfaces[i]->descriptor);
2632            }
2633            dvmLinearReadOnly(clazz->classLoader, clazz->interfaces);
2634        }
2635    }
2636    /*
2637     * There are now Class references visible to the GC in super and
2638     * interfaces.
2639     */
2640
2641    /*
2642     * All classes have a direct superclass, except for
2643     * java/lang/Object and primitive classes. Primitive classes are
2644     * are created CLASS_INITIALIZED, so won't get here.
2645     */
2646    assert(clazz->primitiveType == PRIM_NOT);
2647    if (strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0) {
2648        if (clazz->super != NULL) {
2649            /* TODO: is this invariant true for all java/lang/Objects,
2650             * regardless of the class loader?  For now, assume it is.
2651             */
2652            dvmThrowClassFormatError("java.lang.Object has a superclass");
2653            goto bail;
2654        }
2655
2656        /* Don't finalize objects whose classes use the
2657         * default (empty) Object.finalize().
2658         */
2659        CLEAR_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2660    } else {
2661        if (clazz->super == NULL) {
2662            dvmThrowLinkageError("no superclass defined");
2663            goto bail;
2664        }
2665        /* verify */
2666        if (dvmIsFinalClass(clazz->super)) {
2667            ALOGW("Superclass of '%s' is final '%s'",
2668                clazz->descriptor, clazz->super->descriptor);
2669            dvmThrowIncompatibleClassChangeError("superclass is final");
2670            goto bail;
2671        } else if (dvmIsInterfaceClass(clazz->super)) {
2672            ALOGW("Superclass of '%s' is interface '%s'",
2673                clazz->descriptor, clazz->super->descriptor);
2674            dvmThrowIncompatibleClassChangeError("superclass is an interface");
2675            goto bail;
2676        } else if (!dvmCheckClassAccess(clazz, clazz->super)) {
2677            ALOGW("Superclass of '%s' (%s) is not accessible",
2678                clazz->descriptor, clazz->super->descriptor);
2679            dvmThrowIllegalAccessError("superclass not accessible");
2680            goto bail;
2681        }
2682
2683        /* Inherit finalizability from the superclass.  If this
2684         * class also overrides finalize(), its CLASS_ISFINALIZABLE
2685         * bit will already be set.
2686         */
2687        if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISFINALIZABLE)) {
2688            SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE);
2689        }
2690
2691        /* See if this class descends from java.lang.Reference
2692         * and set the class flags appropriately.
2693         */
2694        if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISREFERENCE)) {
2695            u4 superRefFlags;
2696
2697            /* We've already determined the reference type of this
2698             * inheritance chain.  Inherit reference-ness from the superclass.
2699             */
2700            superRefFlags = GET_CLASS_FLAG_GROUP(clazz->super,
2701                    CLASS_ISREFERENCE |
2702                    CLASS_ISWEAKREFERENCE |
2703                    CLASS_ISFINALIZERREFERENCE |
2704                    CLASS_ISPHANTOMREFERENCE);
2705            SET_CLASS_FLAG(clazz, superRefFlags);
2706        } else if (clazz->classLoader == NULL &&
2707                clazz->super->classLoader == NULL &&
2708                strcmp(clazz->super->descriptor,
2709                       "Ljava/lang/ref/Reference;") == 0)
2710        {
2711            u4 refFlags;
2712
2713            /* This class extends Reference, which means it should
2714             * be one of the magic Soft/Weak/PhantomReference classes.
2715             */
2716            refFlags = CLASS_ISREFERENCE;
2717            if (strcmp(clazz->descriptor,
2718                       "Ljava/lang/ref/SoftReference;") == 0)
2719            {
2720                /* Only CLASS_ISREFERENCE is set for soft references.
2721                 */
2722            } else if (strcmp(clazz->descriptor,
2723                       "Ljava/lang/ref/WeakReference;") == 0)
2724            {
2725                refFlags |= CLASS_ISWEAKREFERENCE;
2726            } else if (strcmp(clazz->descriptor,
2727                       "Ljava/lang/ref/FinalizerReference;") == 0)
2728            {
2729                refFlags |= CLASS_ISFINALIZERREFERENCE;
2730            }  else if (strcmp(clazz->descriptor,
2731                       "Ljava/lang/ref/PhantomReference;") == 0)
2732            {
2733                refFlags |= CLASS_ISPHANTOMREFERENCE;
2734            } else {
2735                /* No-one else is allowed to inherit directly
2736                 * from Reference.
2737                 */
2738//xxx is this the right exception?  better than an assertion.
2739                dvmThrowLinkageError("illegal inheritance from Reference");
2740                goto bail;
2741            }
2742
2743            /* The class should not have any reference bits set yet.
2744             */
2745            assert(GET_CLASS_FLAG_GROUP(clazz,
2746                    CLASS_ISREFERENCE |
2747                    CLASS_ISWEAKREFERENCE |
2748                    CLASS_ISFINALIZERREFERENCE |
2749                    CLASS_ISPHANTOMREFERENCE) == 0);
2750
2751            SET_CLASS_FLAG(clazz, refFlags);
2752        }
2753    }
2754
2755    /*
2756     * Populate vtable.
2757     */
2758    if (dvmIsInterfaceClass(clazz)) {
2759        /* no vtable; just set the method indices */
2760        int count = clazz->virtualMethodCount;
2761
2762        if (count != (u2) count) {
2763            ALOGE("Too many methods (%d) in interface '%s'", count,
2764                 clazz->descriptor);
2765            goto bail;
2766        }
2767
2768        dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
2769
2770        for (i = 0; i < count; i++)
2771            clazz->virtualMethods[i].methodIndex = (u2) i;
2772
2773        dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
2774    } else {
2775        if (!createVtable(clazz)) {
2776            ALOGW("failed creating vtable");
2777            goto bail;
2778        }
2779    }
2780
2781    /*
2782     * Populate interface method tables.  Can alter the vtable.
2783     */
2784    if (!createIftable(clazz))
2785        goto bail;
2786
2787    /*
2788     * Insert special-purpose "stub" method implementations.
2789     */
2790    if (!insertMethodStubs(clazz))
2791        goto bail;
2792
2793    /*
2794     * Compute instance field offsets and, hence, the size of the object.
2795     */
2796    if (!computeFieldOffsets(clazz))
2797        goto bail;
2798
2799    /*
2800     * Cache field and method info for the class Reference (as loaded
2801     * by the boot classloader). This has to happen after the call to
2802     * computeFieldOffsets().
2803     */
2804    if ((clazz->classLoader == NULL)
2805            && (strcmp(clazz->descriptor, "Ljava/lang/ref/Reference;") == 0)) {
2806        if (!precacheReferenceOffsets(clazz)) {
2807            ALOGE("failed pre-caching Reference offsets");
2808            dvmThrowInternalError(NULL);
2809            goto bail;
2810        }
2811    }
2812
2813    /*
2814     * Compact the offsets the GC has to examine into a bitmap, if
2815     * possible.  (This has to happen after Reference.referent is
2816     * massaged in precacheReferenceOffsets.)
2817     */
2818    computeRefOffsets(clazz);
2819
2820    /*
2821     * Done!
2822     */
2823    if (IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED))
2824        clazz->status = CLASS_VERIFIED;
2825    else
2826        clazz->status = CLASS_RESOLVED;
2827    okay = true;
2828    if (gDvm.verboseClass)
2829        ALOGV("CLASS: linked '%s'", clazz->descriptor);
2830
2831    /*
2832     * We send CLASS_PREPARE events to the debugger from here.  The
2833     * definition of "preparation" is creating the static fields for a
2834     * class and initializing them to the standard default values, but not
2835     * executing any code (that comes later, during "initialization").
2836     *
2837     * We did the static prep in loadSFieldFromDex() while loading the class.
2838     *
2839     * The class has been prepared and resolved but possibly not yet verified
2840     * at this point.
2841     */
2842    if (gDvm.debuggerActive) {
2843        dvmDbgPostClassPrepare(clazz);
2844    }
2845
2846bail:
2847    if (!okay) {
2848        clazz->status = CLASS_ERROR;
2849        if (!dvmCheckException(dvmThreadSelf())) {
2850            dvmThrowVirtualMachineError(NULL);
2851        }
2852    }
2853    if (interfaceIdxArray != NULL) {
2854        free(interfaceIdxArray);
2855    }
2856
2857    return okay;
2858}
2859
2860/*
2861 * Create the virtual method table.
2862 *
2863 * The top part of the table is a copy of the table from our superclass,
2864 * with our local methods overriding theirs.  The bottom part of the table
2865 * has any new methods we defined.
2866 */
2867static bool createVtable(ClassObject* clazz)
2868{
2869    bool result = false;
2870    int maxCount;
2871    int i;
2872
2873    if (clazz->super != NULL) {
2874        //ALOGI("SUPER METHODS %d %s->%s", clazz->super->vtableCount,
2875        //    clazz->descriptor, clazz->super->descriptor);
2876    }
2877
2878    /* the virtual methods we define, plus the superclass vtable size */
2879    maxCount = clazz->virtualMethodCount;
2880    if (clazz->super != NULL) {
2881        maxCount += clazz->super->vtableCount;
2882    } else {
2883        /* TODO: is this invariant true for all java/lang/Objects,
2884         * regardless of the class loader?  For now, assume it is.
2885         */
2886        assert(strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0);
2887    }
2888    //ALOGD("+++ max vmethods for '%s' is %d", clazz->descriptor, maxCount);
2889
2890    /*
2891     * Over-allocate the table, then realloc it down if necessary.  So
2892     * long as we don't allocate anything in between we won't cause
2893     * fragmentation, and reducing the size should be unlikely to cause
2894     * a buffer copy.
2895     */
2896    dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
2897    clazz->vtable = (Method**) dvmLinearAlloc(clazz->classLoader,
2898                        sizeof(Method*) * maxCount);
2899    if (clazz->vtable == NULL)
2900        goto bail;
2901
2902    if (clazz->super != NULL) {
2903        int actualCount;
2904
2905        memcpy(clazz->vtable, clazz->super->vtable,
2906            sizeof(*(clazz->vtable)) * clazz->super->vtableCount);
2907        actualCount = clazz->super->vtableCount;
2908
2909        /*
2910         * See if any of our virtual methods override the superclass.
2911         */
2912        for (i = 0; i < clazz->virtualMethodCount; i++) {
2913            Method* localMeth = &clazz->virtualMethods[i];
2914            int si;
2915
2916            for (si = 0; si < clazz->super->vtableCount; si++) {
2917                Method* superMeth = clazz->vtable[si];
2918
2919                if (dvmCompareMethodNamesAndProtos(localMeth, superMeth) == 0) {
2920                    // We should have an access check here, but some apps rely on us not
2921                    // checking access: http://b/7301030
2922                    bool isAccessible = dvmCheckMethodAccess(clazz, superMeth);
2923                    if (dvmIsFinalMethod(superMeth)) {
2924                        ALOGE("Method %s.%s overrides final %s.%s",
2925                              localMeth->clazz->descriptor, localMeth->name,
2926                              superMeth->clazz->descriptor, superMeth->name);
2927                        goto bail;
2928                    }
2929
2930                    // Warn if we just spotted code relying on this bug...
2931                    if (!isAccessible) {
2932                        ALOGW("method %s.%s incorrectly overrides "
2933                              "package-private method with same name in %s",
2934                              localMeth->clazz->descriptor, localMeth->name,
2935                              superMeth->clazz->descriptor);
2936                    }
2937
2938                    clazz->vtable[si] = localMeth;
2939                    localMeth->methodIndex = (u2) si;
2940                    //ALOGV("+++   override %s.%s (slot %d)",
2941                    //    clazz->descriptor, localMeth->name, si);
2942                    break;
2943                }
2944            }
2945
2946            if (si == clazz->super->vtableCount) {
2947                /* not an override, add to end */
2948                clazz->vtable[actualCount] = localMeth;
2949                localMeth->methodIndex = (u2) actualCount;
2950                actualCount++;
2951
2952                //ALOGV("+++   add method %s.%s",
2953                //    clazz->descriptor, localMeth->name);
2954            }
2955        }
2956
2957        if (actualCount != (u2) actualCount) {
2958            ALOGE("Too many methods (%d) in class '%s'", actualCount,
2959                 clazz->descriptor);
2960            goto bail;
2961        }
2962
2963        assert(actualCount <= maxCount);
2964
2965        if (actualCount < maxCount) {
2966            assert(clazz->vtable != NULL);
2967            dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
2968            clazz->vtable = (Method **)dvmLinearRealloc(clazz->classLoader,
2969                clazz->vtable, sizeof(*(clazz->vtable)) * actualCount);
2970            if (clazz->vtable == NULL) {
2971                ALOGE("vtable realloc failed");
2972                goto bail;
2973            } else {
2974                LOGVV("+++  reduced vtable from %d to %d",
2975                    maxCount, actualCount);
2976            }
2977        }
2978
2979        clazz->vtableCount = actualCount;
2980    } else {
2981        /* java/lang/Object case */
2982        int count = clazz->virtualMethodCount;
2983        if (count != (u2) count) {
2984            ALOGE("Too many methods (%d) in base class '%s'", count,
2985                 clazz->descriptor);
2986            goto bail;
2987        }
2988
2989        for (i = 0; i < count; i++) {
2990            clazz->vtable[i] = &clazz->virtualMethods[i];
2991            clazz->virtualMethods[i].methodIndex = (u2) i;
2992        }
2993        clazz->vtableCount = clazz->virtualMethodCount;
2994    }
2995
2996    result = true;
2997
2998bail:
2999    dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3000    dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3001    return result;
3002}
3003
3004/*
3005 * Create and populate "iftable".
3006 *
3007 * The set of interfaces we support is the combination of the interfaces
3008 * we implement directly and those implemented by our superclass.  Each
3009 * interface can have one or more "superinterfaces", which we must also
3010 * support.  For speed we flatten the tree out.
3011 *
3012 * We might be able to speed this up when there are lots of interfaces
3013 * by merge-sorting the class pointers and binary-searching when removing
3014 * duplicates.  We could also drop the duplicate removal -- it's only
3015 * there to reduce the memory footprint.
3016 *
3017 * Because of "Miranda methods", this may reallocate clazz->virtualMethods.
3018 *
3019 * Returns "true" on success.
3020 */
3021static bool createIftable(ClassObject* clazz)
3022{
3023    bool result = false;
3024    bool zapIftable = false;
3025    bool zapVtable = false;
3026    bool zapIfvipool = false;
3027    int poolOffset = 0, poolSize = 0;
3028    Method** mirandaList = NULL;
3029    int mirandaCount = 0, mirandaAlloc = 0;
3030
3031    int superIfCount;
3032    if (clazz->super != NULL)
3033        superIfCount = clazz->super->iftableCount;
3034    else
3035        superIfCount = 0;
3036
3037    int ifCount = superIfCount;
3038    ifCount += clazz->interfaceCount;
3039    for (int i = 0; i < clazz->interfaceCount; i++)
3040        ifCount += clazz->interfaces[i]->iftableCount;
3041
3042    LOGVV("INTF: class '%s' direct w/supra=%d super=%d total=%d",
3043        clazz->descriptor, ifCount - superIfCount, superIfCount, ifCount);
3044
3045    if (ifCount == 0) {
3046        assert(clazz->iftableCount == 0);
3047        assert(clazz->iftable == NULL);
3048        return true;
3049    }
3050
3051    /*
3052     * Create a table with enough space for all interfaces, and copy the
3053     * superclass' table in.
3054     */
3055    clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader,
3056                        sizeof(InterfaceEntry) * ifCount);
3057    zapIftable = true;
3058    memset(clazz->iftable, 0x00, sizeof(InterfaceEntry) * ifCount);
3059    if (superIfCount != 0) {
3060        memcpy(clazz->iftable, clazz->super->iftable,
3061            sizeof(InterfaceEntry) * superIfCount);
3062    }
3063
3064    /*
3065     * Create a flattened interface hierarchy of our immediate interfaces.
3066     */
3067    int idx = superIfCount;
3068
3069    for (int i = 0; i < clazz->interfaceCount; i++) {
3070        ClassObject* interf = clazz->interfaces[i];
3071        assert(interf != NULL);
3072
3073        /* make sure this is still an interface class */
3074        if (!dvmIsInterfaceClass(interf)) {
3075            ALOGW("Class '%s' implements non-interface '%s'",
3076                clazz->descriptor, interf->descriptor);
3077            dvmThrowIncompatibleClassChangeErrorWithClassMessage(
3078                clazz->descriptor);
3079            goto bail;
3080        }
3081
3082        /* add entry for this interface */
3083        clazz->iftable[idx++].clazz = interf;
3084
3085        /* add entries for the interface's superinterfaces */
3086        for (int j = 0; j < interf->iftableCount; j++) {
3087            int k;
3088            ClassObject *cand;
3089
3090            cand = interf->iftable[j].clazz;
3091
3092            /*
3093             * Check if this interface was already added and add only if new.
3094             * This is to avoid a potential blowup in the number of
3095             * interfaces for sufficiently complicated interface hierarchies.
3096             * This has quadratic runtime in the number of interfaces.
3097             * However, in common cases with little interface inheritance, this
3098             * doesn't make much of a difference.
3099             */
3100            for (k = 0; k < idx; k++)
3101                if (clazz->iftable[k].clazz == cand)
3102                    break;
3103
3104            if (k == idx)
3105                clazz->iftable[idx++].clazz = cand;
3106        }
3107    }
3108
3109    assert(idx <= ifCount);
3110
3111    /*
3112     * Adjust the ifCount. We could reallocate the interface memory here,
3113     * but it's probably not worth the effort, the important thing here
3114     * is to avoid the interface blowup and keep the ifCount low.
3115     */
3116    if (false) {
3117        if (idx != ifCount) {
3118            int newIfCount = idx;
3119            InterfaceEntry* oldmem = clazz->iftable;
3120
3121            clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader,
3122                            sizeof(InterfaceEntry) * newIfCount);
3123            memcpy(clazz->iftable, oldmem, sizeof(InterfaceEntry) * newIfCount);
3124            dvmLinearFree(clazz->classLoader, oldmem);
3125        }
3126    }
3127
3128    ifCount = idx;
3129    clazz->iftableCount = ifCount;
3130
3131    /*
3132     * If we're an interface, we don't need the vtable pointers, so
3133     * we're done.  If this class doesn't implement an interface that our
3134     * superclass doesn't have, then we again have nothing to do.
3135     */
3136    if (dvmIsInterfaceClass(clazz) || superIfCount == ifCount) {
3137        //dvmDumpClass(clazz, kDumpClassFullDetail);
3138        result = true;
3139        goto bail;
3140    }
3141
3142    /*
3143     * When we're handling invokeinterface, we probably have an object
3144     * whose type is an interface class rather than a concrete class.  We
3145     * need to convert the method reference into a vtable index.  So, for
3146     * every entry in "iftable", we create a list of vtable indices.
3147     *
3148     * Because our vtable encompasses the superclass vtable, we can use
3149     * the vtable indices from our superclass for all of the interfaces
3150     * that weren't directly implemented by us.
3151     *
3152     * Each entry in "iftable" has a pointer to the start of its set of
3153     * vtable offsets.  The iftable entries in the superclass point to
3154     * storage allocated in the superclass, and the iftable entries added
3155     * for this class point to storage allocated in this class.  "iftable"
3156     * is flat for fast access in a class and all of its subclasses, but
3157     * "ifviPool" is only created for the topmost implementor.
3158     */
3159    for (int i = superIfCount; i < ifCount; i++) {
3160        /*
3161         * Note it's valid for an interface to have no methods (e.g.
3162         * java/io/Serializable).
3163         */
3164        LOGVV("INTF: pool: %d from %s",
3165            clazz->iftable[i].clazz->virtualMethodCount,
3166            clazz->iftable[i].clazz->descriptor);
3167        poolSize += clazz->iftable[i].clazz->virtualMethodCount;
3168    }
3169
3170    if (poolSize == 0) {
3171        LOGVV("INTF: didn't find any new interfaces with methods");
3172        result = true;
3173        goto bail;
3174    }
3175
3176    clazz->ifviPoolCount = poolSize;
3177    clazz->ifviPool = (int*) dvmLinearAlloc(clazz->classLoader,
3178                        poolSize * sizeof(int*));
3179    zapIfvipool = true;
3180
3181    /*
3182     * Fill in the vtable offsets for the interfaces that weren't part of
3183     * our superclass.
3184     */
3185    for (int i = superIfCount; i < ifCount; i++) {
3186        ClassObject* interface;
3187        int methIdx;
3188
3189        clazz->iftable[i].methodIndexArray = clazz->ifviPool + poolOffset;
3190        interface = clazz->iftable[i].clazz;
3191        poolOffset += interface->virtualMethodCount;    // end here
3192
3193        /*
3194         * For each method listed in the interface's method list, find the
3195         * matching method in our class's method list.  We want to favor the
3196         * subclass over the superclass, which just requires walking
3197         * back from the end of the vtable.  (This only matters if the
3198         * superclass defines a private method and this class redefines
3199         * it -- otherwise it would use the same vtable slot.  In Dalvik
3200         * those don't end up in the virtual method table, so it shouldn't
3201         * matter which direction we go.  We walk it backward anyway.)
3202         *
3203         *
3204         * Suppose we have the following arrangement:
3205         *   public interface MyInterface
3206         *     public boolean inInterface();
3207         *   public abstract class MirandaAbstract implements MirandaInterface
3208         *     //public abstract boolean inInterface(); // not declared!
3209         *     public boolean inAbstract() { stuff }    // in vtable
3210         *   public class MirandClass extends MirandaAbstract
3211         *     public boolean inInterface() { stuff }
3212         *     public boolean inAbstract() { stuff }    // in vtable
3213         *
3214         * The javac compiler happily compiles MirandaAbstract even though
3215         * it doesn't declare all methods from its interface.  When we try
3216         * to set up a vtable for MirandaAbstract, we find that we don't
3217         * have an slot for inInterface.  To prevent this, we synthesize
3218         * abstract method declarations in MirandaAbstract.
3219         *
3220         * We have to expand vtable and update some things that point at it,
3221         * so we accumulate the method list and do it all at once below.
3222         */
3223        for (methIdx = 0; methIdx < interface->virtualMethodCount; methIdx++) {
3224            Method* imeth = &interface->virtualMethods[methIdx];
3225            int j;
3226
3227            IF_LOGVV() {
3228                char* desc = dexProtoCopyMethodDescriptor(&imeth->prototype);
3229                LOGVV("INTF:  matching '%s' '%s'", imeth->name, desc);
3230                free(desc);
3231            }
3232
3233            for (j = clazz->vtableCount-1; j >= 0; j--) {
3234                if (dvmCompareMethodNamesAndProtos(imeth, clazz->vtable[j])
3235                    == 0)
3236                {
3237                    LOGVV("INTF:   matched at %d", j);
3238                    if (!dvmIsAbstractMethod(clazz->vtable[j]) &&
3239                        !dvmIsPublicMethod(clazz->vtable[j]))
3240                    {
3241                        ALOGW("Implementation of %s.%s is not public",
3242                            clazz->descriptor, clazz->vtable[j]->name);
3243                        dvmThrowIllegalAccessError(
3244                            "interface implementation not public");
3245                        goto bail;
3246                    }
3247                    clazz->iftable[i].methodIndexArray[methIdx] = j;
3248                    break;
3249                }
3250            }
3251            if (j < 0) {
3252                IF_ALOGV() {
3253                    char* desc =
3254                        dexProtoCopyMethodDescriptor(&imeth->prototype);
3255                    ALOGV("No match for '%s' '%s' in '%s' (creating miranda)",
3256                            imeth->name, desc, clazz->descriptor);
3257                    free(desc);
3258                }
3259                //dvmThrowRuntimeException("Miranda!");
3260                //return false;
3261
3262                if (mirandaCount == mirandaAlloc) {
3263                    mirandaAlloc += 8;
3264                    if (mirandaList == NULL) {
3265                        mirandaList = (Method**)dvmLinearAlloc(
3266                                        clazz->classLoader,
3267                                        mirandaAlloc * sizeof(Method*));
3268                    } else {
3269                        dvmLinearReadOnly(clazz->classLoader, mirandaList);
3270                        mirandaList = (Method**)dvmLinearRealloc(
3271                                clazz->classLoader,
3272                                mirandaList, mirandaAlloc * sizeof(Method*));
3273                    }
3274                    assert(mirandaList != NULL);    // mem failed + we leaked
3275                }
3276
3277                /*
3278                 * These may be redundant (e.g. method with same name and
3279                 * signature declared in two interfaces implemented by the
3280                 * same abstract class).  We can squeeze the duplicates
3281                 * out here.
3282                 */
3283                int mir;
3284                for (mir = 0; mir < mirandaCount; mir++) {
3285                    if (dvmCompareMethodNamesAndProtos(
3286                            mirandaList[mir], imeth) == 0)
3287                    {
3288                        IF_LOGVV() {
3289                            char* desc = dexProtoCopyMethodDescriptor(
3290                                    &imeth->prototype);
3291                            LOGVV("MIRANDA dupe: %s and %s %s%s",
3292                                mirandaList[mir]->clazz->descriptor,
3293                                imeth->clazz->descriptor,
3294                                imeth->name, desc);
3295                            free(desc);
3296                        }
3297                        break;
3298                    }
3299                }
3300
3301                /* point the iftable at a phantom slot index */
3302                clazz->iftable[i].methodIndexArray[methIdx] =
3303                    clazz->vtableCount + mir;
3304                LOGVV("MIRANDA: %s points at slot %d",
3305                    imeth->name, clazz->vtableCount + mir);
3306
3307                /* if non-duplicate among Mirandas, add to Miranda list */
3308                if (mir == mirandaCount) {
3309                    //ALOGV("MIRANDA: holding '%s' in slot %d",
3310                    //    imeth->name, mir);
3311                    mirandaList[mirandaCount++] = imeth;
3312                }
3313            }
3314        }
3315    }
3316
3317    if (mirandaCount != 0) {
3318        static const int kManyMirandas = 150;   /* arbitrary */
3319        Method* newVirtualMethods;
3320        Method* meth;
3321        int oldMethodCount, oldVtableCount;
3322
3323        for (int i = 0; i < mirandaCount; i++) {
3324            LOGVV("MIRANDA %d: %s.%s", i,
3325                mirandaList[i]->clazz->descriptor, mirandaList[i]->name);
3326        }
3327        if (mirandaCount > kManyMirandas) {
3328            /*
3329             * Some obfuscators like to create an interface with a huge
3330             * pile of methods, declare classes as implementing it, and then
3331             * only define a couple of methods.  This leads to a rather
3332             * massive collection of Miranda methods and a lot of wasted
3333             * space, sometimes enough to blow out the LinearAlloc cap.
3334             */
3335            ALOGD("Note: class %s has %d unimplemented (abstract) methods",
3336                clazz->descriptor, mirandaCount);
3337        }
3338
3339        /*
3340         * We found methods in one or more interfaces for which we do not
3341         * have vtable entries.  We have to expand our virtualMethods
3342         * table (which might be empty) to hold some new entries.
3343         */
3344        if (clazz->virtualMethods == NULL) {
3345            newVirtualMethods = (Method*) dvmLinearAlloc(clazz->classLoader,
3346                sizeof(Method) * (clazz->virtualMethodCount + mirandaCount));
3347        } else {
3348            //dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3349            newVirtualMethods = (Method*) dvmLinearRealloc(clazz->classLoader,
3350                clazz->virtualMethods,
3351                sizeof(Method) * (clazz->virtualMethodCount + mirandaCount));
3352        }
3353        if (newVirtualMethods != clazz->virtualMethods) {
3354            /*
3355             * Table was moved in memory.  We have to run through the
3356             * vtable and fix the pointers.  The vtable entries might be
3357             * pointing at superclasses, so we flip it around: run through
3358             * all locally-defined virtual methods, and fix their entries
3359             * in the vtable.  (This would get really messy if sub-classes
3360             * had already been loaded.)
3361             *
3362             * Reminder: clazz->virtualMethods and clazz->virtualMethodCount
3363             * hold the virtual methods declared by this class.  The
3364             * method's methodIndex is the vtable index, and is the same
3365             * for all sub-classes (and all super classes in which it is
3366             * defined).  We're messing with these because the Miranda
3367             * stuff makes it look like the class actually has an abstract
3368             * method declaration in it.
3369             */
3370            LOGVV("MIRANDA fixing vtable pointers");
3371            dvmLinearReadWrite(clazz->classLoader, clazz->vtable);
3372            Method* meth = newVirtualMethods;
3373            for (int i = 0; i < clazz->virtualMethodCount; i++, meth++)
3374                clazz->vtable[meth->methodIndex] = meth;
3375            dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3376        }
3377
3378        oldMethodCount = clazz->virtualMethodCount;
3379        clazz->virtualMethods = newVirtualMethods;
3380        clazz->virtualMethodCount += mirandaCount;
3381
3382        dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3383
3384        /*
3385         * We also have to expand the vtable.
3386         */
3387        assert(clazz->vtable != NULL);
3388        clazz->vtable = (Method**) dvmLinearRealloc(clazz->classLoader,
3389                        clazz->vtable,
3390                        sizeof(Method*) * (clazz->vtableCount + mirandaCount));
3391        if (clazz->vtable == NULL) {
3392            assert(false);
3393            goto bail;
3394        }
3395        zapVtable = true;
3396
3397        oldVtableCount = clazz->vtableCount;
3398        clazz->vtableCount += mirandaCount;
3399
3400        /*
3401         * Now we need to create the fake methods.  We clone the abstract
3402         * method definition from the interface and then replace a few
3403         * things.
3404         *
3405         * The Method will be an "abstract native", with nativeFunc set to
3406         * dvmAbstractMethodStub().
3407         */
3408        meth = clazz->virtualMethods + oldMethodCount;
3409        for (int i = 0; i < mirandaCount; i++, meth++) {
3410            dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
3411            cloneMethod(meth, mirandaList[i]);
3412            meth->clazz = clazz;
3413            meth->accessFlags |= ACC_MIRANDA;
3414            meth->methodIndex = (u2) (oldVtableCount + i);
3415            dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3416
3417            /* point the new vtable entry at the new method */
3418            clazz->vtable[oldVtableCount + i] = meth;
3419        }
3420
3421        dvmLinearReadOnly(clazz->classLoader, mirandaList);
3422        dvmLinearFree(clazz->classLoader, mirandaList);
3423
3424    }
3425
3426    /*
3427     * TODO?
3428     * Sort the interfaces by number of declared methods.  All we really
3429     * want is to get the interfaces with zero methods at the end of the
3430     * list, so that when we walk through the list during invoke-interface
3431     * we don't examine interfaces that can't possibly be useful.
3432     *
3433     * The set will usually be small, so a simple insertion sort works.
3434     *
3435     * We have to be careful not to change the order of two interfaces
3436     * that define the same method.  (Not a problem if we only move the
3437     * zero-method interfaces to the end.)
3438     *
3439     * PROBLEM:
3440     * If we do this, we will no longer be able to identify super vs.
3441     * current class interfaces by comparing clazz->super->iftableCount.  This
3442     * breaks anything that only wants to find interfaces declared directly
3443     * by the class (dvmFindStaticFieldHier, ReferenceType.Interfaces,
3444     * dvmDbgOutputAllInterfaces, etc).  Need to provide a workaround.
3445     *
3446     * We can sort just the interfaces implemented directly by this class,
3447     * but that doesn't seem like it would provide much of an advantage.  I'm
3448     * not sure this is worthwhile.
3449     *
3450     * (This has been made largely obsolete by the interface cache mechanism.)
3451     */
3452
3453    //dvmDumpClass(clazz);
3454
3455    result = true;
3456
3457bail:
3458    if (zapIftable)
3459        dvmLinearReadOnly(clazz->classLoader, clazz->iftable);
3460    if (zapVtable)
3461        dvmLinearReadOnly(clazz->classLoader, clazz->vtable);
3462    if (zapIfvipool)
3463        dvmLinearReadOnly(clazz->classLoader, clazz->ifviPool);
3464    return result;
3465}
3466
3467
3468/*
3469 * Provide "stub" implementations for methods without them.
3470 *
3471 * Currently we provide an implementation for all abstract methods that
3472 * throws an AbstractMethodError exception.  This allows us to avoid an
3473 * explicit check for abstract methods in every virtual call.
3474 *
3475 * NOTE: for Miranda methods, the method declaration is a clone of what
3476 * was found in the interface class.  That copy may already have had the
3477 * function pointer filled in, so don't be surprised if it's not NULL.
3478 *
3479 * NOTE: this sets the "native" flag, giving us an "abstract native" method,
3480 * which is nonsensical.  Need to make sure that this doesn't escape the
3481 * VM.  We can either mask it out in reflection calls, or copy "native"
3482 * into the high 16 bits of accessFlags and check that internally.
3483 */
3484static bool insertMethodStubs(ClassObject* clazz)
3485{
3486    dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
3487
3488    Method* meth;
3489    int i;
3490
3491    meth = clazz->virtualMethods;
3492    for (i = 0; i < clazz->virtualMethodCount; i++, meth++) {
3493        if (dvmIsAbstractMethod(meth)) {
3494            assert(meth->insns == NULL);
3495            assert(meth->nativeFunc == NULL ||
3496                meth->nativeFunc == (DalvikBridgeFunc)dvmAbstractMethodStub);
3497
3498            meth->accessFlags |= ACC_NATIVE;
3499            meth->nativeFunc = (DalvikBridgeFunc) dvmAbstractMethodStub;
3500        }
3501    }
3502
3503    dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
3504    return true;
3505}
3506
3507
3508/*
3509 * Swap two instance fields.
3510 */
3511static inline void swapField(InstField* pOne, InstField* pTwo)
3512{
3513    InstField swap;
3514
3515    LOGVV("  --- swap '%s' and '%s'", pOne->name, pTwo->name);
3516    swap = *pOne;
3517    *pOne = *pTwo;
3518    *pTwo = swap;
3519}
3520
3521/*
3522 * Assign instance fields to u4 slots.
3523 *
3524 * The top portion of the instance field area is occupied by the superclass
3525 * fields, the bottom by the fields for this class.
3526 *
3527 * "long" and "double" fields occupy two adjacent slots.  On some
3528 * architectures, 64-bit quantities must be 64-bit aligned, so we need to
3529 * arrange fields (or introduce padding) to ensure this.  We assume the
3530 * fields of the topmost superclass (i.e. Object) are 64-bit aligned, so
3531 * we can just ensure that the offset is "even".  To avoid wasting space,
3532 * we want to move non-reference 32-bit fields into gaps rather than
3533 * creating pad words.
3534 *
3535 * In the worst case we will waste 4 bytes, but because objects are
3536 * allocated on >= 64-bit boundaries, those bytes may well be wasted anyway
3537 * (assuming this is the most-derived class).
3538 *
3539 * Pad words are not represented in the field table, so the field table
3540 * itself does not change size.
3541 *
3542 * The number of field slots determines the size of the object, so we
3543 * set that here too.
3544 *
3545 * This function feels a little more complicated than I'd like, but it
3546 * has the property of moving the smallest possible set of fields, which
3547 * should reduce the time required to load a class.
3548 *
3549 * NOTE: reference fields *must* come first, or precacheReferenceOffsets()
3550 * will break.
3551 */
3552static bool computeFieldOffsets(ClassObject* clazz)
3553{
3554    int fieldOffset;
3555    int i, j;
3556
3557    dvmLinearReadWrite(clazz->classLoader, clazz->ifields);
3558
3559    if (clazz->super != NULL)
3560        fieldOffset = clazz->super->objectSize;
3561    else
3562        fieldOffset = OFFSETOF_MEMBER(DataObject, instanceData);
3563
3564    LOGVV("--- computeFieldOffsets '%s'", clazz->descriptor);
3565
3566    //ALOGI("OFFSETS fieldCount=%d", clazz->ifieldCount);
3567    //ALOGI("dataobj, instance: %d", offsetof(DataObject, instanceData));
3568    //ALOGI("classobj, access: %d", offsetof(ClassObject, accessFlags));
3569    //ALOGI("super=%p, fieldOffset=%d", clazz->super, fieldOffset);
3570
3571    /*
3572     * Start by moving all reference fields to the front.
3573     */
3574    clazz->ifieldRefCount = 0;
3575    j = clazz->ifieldCount - 1;
3576    for (i = 0; i < clazz->ifieldCount; i++) {
3577        InstField* pField = &clazz->ifields[i];
3578        char c = pField->signature[0];
3579
3580        if (c != '[' && c != 'L') {
3581            /* This isn't a reference field; see if any reference fields
3582             * follow this one.  If so, we'll move it to this position.
3583             * (quicksort-style partitioning)
3584             */
3585            while (j > i) {
3586                InstField* refField = &clazz->ifields[j--];
3587                char rc = refField->signature[0];
3588
3589                if (rc == '[' || rc == 'L') {
3590                    /* Here's a reference field that follows at least one
3591                     * non-reference field.  Swap it with the current field.
3592                     * (When this returns, "pField" points to the reference
3593                     * field, and "refField" points to the non-ref field.)
3594                     */
3595                    swapField(pField, refField);
3596
3597                    /* Fix the signature.
3598                     */
3599                    c = rc;
3600
3601                    clazz->ifieldRefCount++;
3602                    break;
3603                }
3604            }
3605            /* We may or may not have swapped a field.
3606             */
3607        } else {
3608            /* This is a reference field.
3609             */
3610            clazz->ifieldRefCount++;
3611        }
3612
3613        /*
3614         * If we've hit the end of the reference fields, break.
3615         */
3616        if (c != '[' && c != 'L')
3617            break;
3618
3619        pField->byteOffset = fieldOffset;
3620        fieldOffset += sizeof(u4);
3621        LOGVV("  --- offset1 '%s'=%d", pField->name,pField->byteOffset);
3622    }
3623
3624    /*
3625     * Now we want to pack all of the double-wide fields together.  If we're
3626     * not aligned, though, we want to shuffle one 32-bit field into place.
3627     * If we can't find one, we'll have to pad it.
3628     */
3629    if (i != clazz->ifieldCount && (fieldOffset & 0x04) != 0) {
3630        LOGVV("  +++ not aligned");
3631
3632        InstField* pField = &clazz->ifields[i];
3633        char c = pField->signature[0];
3634
3635        if (c != 'J' && c != 'D') {
3636            /*
3637             * The field that comes next is 32-bit, so just advance past it.
3638             */
3639            assert(c != '[' && c != 'L');
3640            pField->byteOffset = fieldOffset;
3641            fieldOffset += sizeof(u4);
3642            i++;
3643            LOGVV("  --- offset2 '%s'=%d",
3644                pField->name, pField->byteOffset);
3645        } else {
3646            /*
3647             * Next field is 64-bit, so search for a 32-bit field we can
3648             * swap into it.
3649             */
3650            bool found = false;
3651            j = clazz->ifieldCount - 1;
3652            while (j > i) {
3653                InstField* singleField = &clazz->ifields[j--];
3654                char rc = singleField->signature[0];
3655
3656                if (rc != 'J' && rc != 'D') {
3657                    swapField(pField, singleField);
3658                    //c = rc;
3659                    LOGVV("  +++ swapped '%s' for alignment",
3660                        pField->name);
3661                    pField->byteOffset = fieldOffset;
3662                    fieldOffset += sizeof(u4);
3663                    LOGVV("  --- offset3 '%s'=%d",
3664                        pField->name, pField->byteOffset);
3665                    found = true;
3666                    i++;
3667                    break;
3668                }
3669            }
3670            if (!found) {
3671                ALOGV("  +++ inserting pad field in '%s'", clazz->descriptor);
3672                fieldOffset += sizeof(u4);
3673            }
3674        }
3675    }
3676
3677    /*
3678     * Alignment is good, shuffle any double-wide fields forward, and
3679     * finish assigning field offsets to all fields.
3680     */
3681    assert(i == clazz->ifieldCount || (fieldOffset & 0x04) == 0);
3682    j = clazz->ifieldCount - 1;
3683    for ( ; i < clazz->ifieldCount; i++) {
3684        InstField* pField = &clazz->ifields[i];
3685        char c = pField->signature[0];
3686
3687        if (c != 'D' && c != 'J') {
3688            /* This isn't a double-wide field; see if any double fields
3689             * follow this one.  If so, we'll move it to this position.
3690             * (quicksort-style partitioning)
3691             */
3692            while (j > i) {
3693                InstField* doubleField = &clazz->ifields[j--];
3694                char rc = doubleField->signature[0];
3695
3696                if (rc == 'D' || rc == 'J') {
3697                    /* Here's a double-wide field that follows at least one
3698                     * non-double field.  Swap it with the current field.
3699                     * (When this returns, "pField" points to the reference
3700                     * field, and "doubleField" points to the non-double field.)
3701                     */
3702                    swapField(pField, doubleField);
3703                    c = rc;
3704
3705                    break;
3706                }
3707            }
3708            /* We may or may not have swapped a field.
3709             */
3710        } else {
3711            /* This is a double-wide field, leave it be.
3712             */
3713        }
3714
3715        pField->byteOffset = fieldOffset;
3716        LOGVV("  --- offset4 '%s'=%d", pField->name,pField->byteOffset);
3717        fieldOffset += sizeof(u4);
3718        if (c == 'J' || c == 'D')
3719            fieldOffset += sizeof(u4);
3720    }
3721
3722#ifndef NDEBUG
3723    /* Make sure that all reference fields appear before
3724     * non-reference fields, and all double-wide fields are aligned.
3725     */
3726    j = 0;  // seen non-ref
3727    for (i = 0; i < clazz->ifieldCount; i++) {
3728        InstField *pField = &clazz->ifields[i];
3729        char c = pField->signature[0];
3730
3731        if (c == 'D' || c == 'J') {
3732            assert((pField->byteOffset & 0x07) == 0);
3733        }
3734
3735        if (c != '[' && c != 'L') {
3736            if (!j) {
3737                assert(i == clazz->ifieldRefCount);
3738                j = 1;
3739            }
3740        } else if (j) {
3741            assert(false);
3742        }
3743    }
3744    if (!j) {
3745        assert(clazz->ifieldRefCount == clazz->ifieldCount);
3746    }
3747#endif
3748
3749    /*
3750     * We map a C struct directly on top of java/lang/Class objects.  Make
3751     * sure we left enough room for the instance fields.
3752     */
3753    assert(!dvmIsTheClassClass(clazz) || (size_t)fieldOffset <
3754        OFFSETOF_MEMBER(ClassObject, instanceData) + sizeof(clazz->instanceData));
3755
3756    clazz->objectSize = fieldOffset;
3757
3758    dvmLinearReadOnly(clazz->classLoader, clazz->ifields);
3759    return true;
3760}
3761
3762/*
3763 * The class failed to initialize on a previous attempt, so we want to throw
3764 * a NoClassDefFoundError (v2 2.17.5).  The exception to this rule is if we
3765 * failed in verification, in which case v2 5.4.1 says we need to re-throw
3766 * the previous error.
3767 */
3768static void throwEarlierClassFailure(ClassObject* clazz)
3769{
3770    ALOGI("Rejecting re-init on previously-failed class %s v=%p",
3771        clazz->descriptor, clazz->verifyErrorClass);
3772
3773    if (clazz->verifyErrorClass == NULL) {
3774        dvmThrowNoClassDefFoundError(clazz->descriptor);
3775    } else {
3776        dvmThrowExceptionWithClassMessage(clazz->verifyErrorClass,
3777            clazz->descriptor);
3778    }
3779}
3780
3781/*
3782 * Initialize any static fields whose values are stored in
3783 * the DEX file.  This must be done during class initialization.
3784 */
3785static void initSFields(ClassObject* clazz)
3786{
3787    Thread* self = dvmThreadSelf(); /* for dvmReleaseTrackedAlloc() */
3788    DexFile* pDexFile;
3789    const DexClassDef* pClassDef;
3790    const DexEncodedArray* pValueList;
3791    EncodedArrayIterator iterator;
3792    int i;
3793
3794    if (clazz->sfieldCount == 0) {
3795        return;
3796    }
3797    if (clazz->pDvmDex == NULL) {
3798        /* generated class; any static fields should already be set up */
3799        ALOGV("Not initializing static fields in %s", clazz->descriptor);
3800        return;
3801    }
3802    pDexFile = clazz->pDvmDex->pDexFile;
3803
3804    pClassDef = dexFindClass(pDexFile, clazz->descriptor);
3805    assert(pClassDef != NULL);
3806
3807    pValueList = dexGetStaticValuesList(pDexFile, pClassDef);
3808    if (pValueList == NULL) {
3809        return;
3810    }
3811
3812    dvmEncodedArrayIteratorInitialize(&iterator, pValueList, clazz);
3813
3814    /*
3815     * Iterate over the initial values array, setting the corresponding
3816     * static field for each array element.
3817     */
3818
3819    for (i = 0; dvmEncodedArrayIteratorHasNext(&iterator); i++) {
3820        AnnotationValue value;
3821        bool parsed = dvmEncodedArrayIteratorGetNext(&iterator, &value);
3822        StaticField* sfield = &clazz->sfields[i];
3823        const char* descriptor = sfield->signature;
3824        bool isObj = false;
3825
3826        if (! parsed) {
3827            /*
3828             * TODO: Eventually verification should attempt to ensure
3829             * that this can't happen at least due to a data integrity
3830             * problem.
3831             */
3832            ALOGE("Static initializer parse failed for %s at index %d",
3833                    clazz->descriptor, i);
3834            dvmAbort();
3835        }
3836
3837        /* Verify that the value we got was of a valid type. */
3838
3839        switch (descriptor[0]) {
3840            case 'Z': parsed = (value.type == kDexAnnotationBoolean); break;
3841            case 'B': parsed = (value.type == kDexAnnotationByte);    break;
3842            case 'C': parsed = (value.type == kDexAnnotationChar);    break;
3843            case 'S': parsed = (value.type == kDexAnnotationShort);   break;
3844            case 'I': parsed = (value.type == kDexAnnotationInt);     break;
3845            case 'J': parsed = (value.type == kDexAnnotationLong);    break;
3846            case 'F': parsed = (value.type == kDexAnnotationFloat);   break;
3847            case 'D': parsed = (value.type == kDexAnnotationDouble);  break;
3848            case '[': parsed = (value.type == kDexAnnotationNull);    break;
3849            case 'L': {
3850                switch (value.type) {
3851                    case kDexAnnotationNull: {
3852                        /* No need for further tests. */
3853                        break;
3854                    }
3855                    case kDexAnnotationString: {
3856                        parsed =
3857                            (strcmp(descriptor, "Ljava/lang/String;") == 0);
3858                        isObj = true;
3859                        break;
3860                    }
3861                    case kDexAnnotationType: {
3862                        parsed =
3863                            (strcmp(descriptor, "Ljava/lang/Class;") == 0);
3864                        isObj = true;
3865                        break;
3866                    }
3867                    default: {
3868                        parsed = false;
3869                        break;
3870                    }
3871                }
3872                break;
3873            }
3874            default: {
3875                parsed = false;
3876                break;
3877            }
3878        }
3879
3880        if (parsed) {
3881            /*
3882             * All's well, so store the value.
3883             */
3884            if (isObj) {
3885                dvmSetStaticFieldObject(sfield, (Object*)value.value.l);
3886                dvmReleaseTrackedAlloc((Object*)value.value.l, self);
3887            } else {
3888                /*
3889                 * Note: This always stores the full width of a
3890                 * JValue, even though most of the time only the first
3891                 * word is needed.
3892                 */
3893                sfield->value = value.value;
3894            }
3895        } else {
3896            /*
3897             * Something up above had a problem. TODO: See comment
3898             * above the switch about verfication.
3899             */
3900            ALOGE("Bogus static initialization: value type %d in field type "
3901                    "%s for %s at index %d",
3902                value.type, descriptor, clazz->descriptor, i);
3903            dvmAbort();
3904        }
3905    }
3906}
3907
3908
3909/*
3910 * Determine whether "descriptor" yields the same class object in the
3911 * context of clazz1 and clazz2.
3912 *
3913 * The caller must hold gDvm.loadedClasses.
3914 *
3915 * Returns "true" if they match.
3916 */
3917static bool compareDescriptorClasses(const char* descriptor,
3918    const ClassObject* clazz1, const ClassObject* clazz2)
3919{
3920    ClassObject* result1;
3921    ClassObject* result2;
3922
3923    /*
3924     * Do the first lookup by name.
3925     */
3926    result1 = dvmFindClassNoInit(descriptor, clazz1->classLoader);
3927
3928    /*
3929     * We can skip a second lookup by name if the second class loader is
3930     * in the initiating loader list of the class object we retrieved.
3931     * (This means that somebody already did a lookup of this class through
3932     * the second loader, and it resolved to the same class.)  If it's not
3933     * there, we may simply not have had an opportunity to add it yet, so
3934     * we do the full lookup.
3935     *
3936     * The initiating loader test should catch the majority of cases
3937     * (in particular, the zillions of references to String/Object).
3938     *
3939     * Unfortunately we're still stuck grabbing a mutex to do the lookup.
3940     *
3941     * For this to work, the superclass/interface should be the first
3942     * argument, so that way if it's from the bootstrap loader this test
3943     * will work.  (The bootstrap loader, by definition, never shows up
3944     * as the initiating loader of a class defined by some other loader.)
3945     */
3946    dvmHashTableLock(gDvm.loadedClasses);
3947    bool isInit = dvmLoaderInInitiatingList(result1, clazz2->classLoader);
3948    dvmHashTableUnlock(gDvm.loadedClasses);
3949
3950    if (isInit) {
3951        //printf("%s(obj=%p) / %s(cl=%p): initiating\n",
3952        //    result1->descriptor, result1,
3953        //    clazz2->descriptor, clazz2->classLoader);
3954        return true;
3955    } else {
3956        //printf("%s(obj=%p) / %s(cl=%p): RAW\n",
3957        //    result1->descriptor, result1,
3958        //    clazz2->descriptor, clazz2->classLoader);
3959        result2 = dvmFindClassNoInit(descriptor, clazz2->classLoader);
3960    }
3961
3962    if (result1 == NULL || result2 == NULL) {
3963        dvmClearException(dvmThreadSelf());
3964        if (result1 == result2) {
3965            /*
3966             * Neither class loader could find this class.  Apparently it
3967             * doesn't exist.
3968             *
3969             * We can either throw some sort of exception now, or just
3970             * assume that it'll fail later when something actually tries
3971             * to use the class.  For strict handling we should throw now,
3972             * because a "tricky" class loader could start returning
3973             * something later, and a pair of "tricky" loaders could set
3974             * us up for confusion.
3975             *
3976             * I'm not sure if we're allowed to complain about nonexistent
3977             * classes in method signatures during class init, so for now
3978             * this will just return "true" and let nature take its course.
3979             */
3980            return true;
3981        } else {
3982            /* only one was found, so clearly they're not the same */
3983            return false;
3984        }
3985    }
3986
3987    return result1 == result2;
3988}
3989
3990/*
3991 * For every component in the method descriptor, resolve the class in the
3992 * context of the two classes and compare the results.
3993 *
3994 * For best results, the "superclass" class should be first.
3995 *
3996 * Returns "true" if the classes match, "false" otherwise.
3997 */
3998static bool checkMethodDescriptorClasses(const Method* meth,
3999    const ClassObject* clazz1, const ClassObject* clazz2)
4000{
4001    DexParameterIterator iterator;
4002    const char* descriptor;
4003
4004    /* walk through the list of parameters */
4005    dexParameterIteratorInit(&iterator, &meth->prototype);
4006    while (true) {
4007        descriptor = dexParameterIteratorNextDescriptor(&iterator);
4008
4009        if (descriptor == NULL)
4010            break;
4011
4012        if (descriptor[0] == 'L' || descriptor[0] == '[') {
4013            /* non-primitive type */
4014            if (!compareDescriptorClasses(descriptor, clazz1, clazz2))
4015                return false;
4016        }
4017    }
4018
4019    /* check the return type */
4020    descriptor = dexProtoGetReturnType(&meth->prototype);
4021    if (descriptor[0] == 'L' || descriptor[0] == '[') {
4022        if (!compareDescriptorClasses(descriptor, clazz1, clazz2))
4023            return false;
4024    }
4025    return true;
4026}
4027
4028/*
4029 * Validate the descriptors in the superclass and interfaces.
4030 *
4031 * What we need to do is ensure that the classes named in the method
4032 * descriptors in our ancestors and ourselves resolve to the same class
4033 * objects.  We can get conflicts when the classes come from different
4034 * class loaders, and the resolver comes up with different results for
4035 * the same class name in different contexts.
4036 *
4037 * An easy way to cause the problem is to declare a base class that uses
4038 * class Foo in a method signature (e.g. as the return type).  Then,
4039 * define a subclass and a different version of Foo, and load them from a
4040 * different class loader.  If the subclass overrides the method, it will
4041 * have a different concept of what Foo is than its parent does, so even
4042 * though the method signature strings are identical, they actually mean
4043 * different things.
4044 *
4045 * A call to the method through a base-class reference would be treated
4046 * differently than a call to the method through a subclass reference, which
4047 * isn't the way polymorphism works, so we have to reject the subclass.
4048 * If the subclass doesn't override the base method, then there's no
4049 * problem, because calls through base-class references and subclass
4050 * references end up in the same place.
4051 *
4052 * We don't need to check to see if an interface's methods match with its
4053 * superinterface's methods, because you can't instantiate an interface
4054 * and do something inappropriate with it.  If interface I1 extends I2
4055 * and is implemented by C, and I1 and I2 are in separate class loaders
4056 * and have conflicting views of other classes, we will catch the conflict
4057 * when we process C.  Anything that implements I1 is doomed to failure,
4058 * but we don't need to catch that while processing I1.
4059 *
4060 * On failure, throws an exception and returns "false".
4061 */
4062static bool validateSuperDescriptors(const ClassObject* clazz)
4063{
4064    int i;
4065
4066    if (dvmIsInterfaceClass(clazz))
4067        return true;
4068
4069    /*
4070     * Start with the superclass-declared methods.
4071     */
4072    if (clazz->super != NULL &&
4073        clazz->classLoader != clazz->super->classLoader)
4074    {
4075        /*
4076         * Walk through every overridden method and compare resolved
4077         * descriptor components.  We pull the Method structs out of
4078         * the vtable.  It doesn't matter whether we get the struct from
4079         * the parent or child, since we just need the UTF-8 descriptor,
4080         * which must match.
4081         *
4082         * We need to do this even for the stuff inherited from Object,
4083         * because it's possible that the new class loader has redefined
4084         * a basic class like String.
4085         *
4086         * We don't need to check stuff defined in a superclass because
4087         * it was checked when the superclass was loaded.
4088         */
4089        const Method* meth;
4090
4091        //printf("Checking %s %p vs %s %p\n",
4092        //    clazz->descriptor, clazz->classLoader,
4093        //    clazz->super->descriptor, clazz->super->classLoader);
4094        for (i = clazz->super->vtableCount - 1; i >= 0; i--) {
4095            meth = clazz->vtable[i];
4096            if (meth != clazz->super->vtable[i] &&
4097                !checkMethodDescriptorClasses(meth, clazz->super, clazz))
4098            {
4099                ALOGW("Method mismatch: %s in %s (cl=%p) and super %s (cl=%p)",
4100                    meth->name, clazz->descriptor, clazz->classLoader,
4101                    clazz->super->descriptor, clazz->super->classLoader);
4102                dvmThrowLinkageError(
4103                    "Classes resolve differently in superclass");
4104                return false;
4105            }
4106        }
4107    }
4108
4109    /*
4110     * Check the methods defined by this class against the interfaces it
4111     * implements.  If we inherited the implementation from a superclass,
4112     * we have to check it against the superclass (which might be in a
4113     * different class loader).  If the superclass also implements the
4114     * interface, we could skip the check since by definition it was
4115     * performed when the class was loaded.
4116     */
4117    for (i = 0; i < clazz->iftableCount; i++) {
4118        const InterfaceEntry* iftable = &clazz->iftable[i];
4119
4120        if (clazz->classLoader != iftable->clazz->classLoader) {
4121            const ClassObject* iface = iftable->clazz;
4122            int j;
4123
4124            for (j = 0; j < iface->virtualMethodCount; j++) {
4125                const Method* meth;
4126                int vtableIndex;
4127
4128                vtableIndex = iftable->methodIndexArray[j];
4129                meth = clazz->vtable[vtableIndex];
4130
4131                if (!checkMethodDescriptorClasses(meth, iface, meth->clazz)) {
4132                    ALOGW("Method mismatch: %s in %s (cl=%p) and "
4133                            "iface %s (cl=%p)",
4134                        meth->name, clazz->descriptor, clazz->classLoader,
4135                        iface->descriptor, iface->classLoader);
4136                    dvmThrowLinkageError(
4137                        "Classes resolve differently in interface");
4138                    return false;
4139                }
4140            }
4141        }
4142    }
4143
4144    return true;
4145}
4146
4147/*
4148 * Returns true if the class is being initialized by us (which means that
4149 * calling dvmInitClass will return immediately after fiddling with locks).
4150 * Returns false if it's not being initialized, or if it's being
4151 * initialized by another thread.
4152 *
4153 * The value for initThreadId is always set to "self->threadId", by the
4154 * thread doing the initializing.  If it was done by the current thread,
4155 * we are guaranteed to see "initializing" and our thread ID, even on SMP.
4156 * If it was done by another thread, the only bad situation is one in
4157 * which we see "initializing" and a stale copy of our own thread ID
4158 * while another thread is actually handling init.
4159 *
4160 * The initThreadId field is used during class linking, so it *is*
4161 * possible to have a stale value floating around.  We need to ensure
4162 * that memory accesses happen in the correct order.
4163 */
4164bool dvmIsClassInitializing(const ClassObject* clazz)
4165{
4166    const int32_t* addr = (const int32_t*)(const void*)&clazz->status;
4167    int32_t value = android_atomic_acquire_load(addr);
4168    ClassStatus status = static_cast<ClassStatus>(value);
4169    return (status == CLASS_INITIALIZING &&
4170            clazz->initThreadId == dvmThreadSelf()->threadId);
4171}
4172
4173/*
4174 * If a class has not been initialized, do so by executing the code in
4175 * <clinit>.  The sequence is described in the VM spec v2 2.17.5.
4176 *
4177 * It is possible for multiple threads to arrive here simultaneously, so
4178 * we need to lock the class while we check stuff.  We know that no
4179 * interpreted code has access to the class yet, so we can use the class's
4180 * monitor lock.
4181 *
4182 * We will often be called recursively, e.g. when the <clinit> code resolves
4183 * one of its fields, the field resolution will try to initialize the class.
4184 * In that case we will return "true" even though the class isn't actually
4185 * ready to go.  The ambiguity can be resolved with dvmIsClassInitializing().
4186 * (TODO: consider having this return an enum to avoid the extra call --
4187 * return -1 on failure, 0 on success, 1 on still-initializing.  Looks like
4188 * dvmIsClassInitializing() is always paired with *Initialized())
4189 *
4190 * This can get very interesting if a class has a static field initialized
4191 * to a new instance of itself.  <clinit> will end up calling <init> on
4192 * the members it is initializing, which is fine unless it uses the contents
4193 * of static fields to initialize instance fields.  This will leave the
4194 * static-referenced objects in a partially initialized state.  This is
4195 * reasonably rare and can sometimes be cured with proper field ordering.
4196 *
4197 * On failure, returns "false" with an exception raised.
4198 *
4199 * -----
4200 *
4201 * It is possible to cause a deadlock by having a situation like this:
4202 *   class A { static { sleep(10000); new B(); } }
4203 *   class B { static { sleep(10000); new A(); } }
4204 *   new Thread() { public void run() { new A(); } }.start();
4205 *   new Thread() { public void run() { new B(); } }.start();
4206 * This appears to be expected under the spec.
4207 *
4208 * The interesting question is what to do if somebody calls Thread.interrupt()
4209 * on one of the deadlocked threads.  According to the VM spec, they're both
4210 * sitting in "wait".  Should the interrupt code quietly raise the
4211 * "interrupted" flag, or should the "wait" return immediately with an
4212 * exception raised?
4213 *
4214 * This gets a little murky.  The VM spec says we call "wait", and the
4215 * spec for Thread.interrupt says Object.wait is interruptible.  So it
4216 * seems that, if we get unlucky and interrupt class initialization, we
4217 * are expected to throw (which gets converted to ExceptionInInitializerError
4218 * since InterruptedException is checked).
4219 *
4220 * There are a couple of problems here.  First, all threads are expected to
4221 * present a consistent view of class initialization, so we can't have it
4222 * fail in one thread and succeed in another.  Second, once a class fails
4223 * to initialize, it must *always* fail.  This means that a stray interrupt()
4224 * call could render a class unusable for the lifetime of the VM.
4225 *
4226 * In most cases -- the deadlock example above being a counter-example --
4227 * the interrupting thread can't tell whether the target thread handled
4228 * the initialization itself or had to wait while another thread did the
4229 * work.  Refusing to interrupt class initialization is, in most cases,
4230 * not something that a program can reliably detect.
4231 *
4232 * On the assumption that interrupting class initialization is highly
4233 * undesirable in most circumstances, and that failing to do so does not
4234 * deviate from the spec in a meaningful way, we don't allow class init
4235 * to be interrupted by Thread.interrupt().
4236 */
4237bool dvmInitClass(ClassObject* clazz)
4238{
4239    u8 startWhen = 0;
4240
4241#if LOG_CLASS_LOADING
4242    bool initializedByUs = false;
4243#endif
4244
4245    Thread* self = dvmThreadSelf();
4246    const Method* method;
4247
4248    dvmLockObject(self, (Object*) clazz);
4249    assert(dvmIsClassLinked(clazz) || clazz->status == CLASS_ERROR);
4250
4251    /*
4252     * If the class hasn't been verified yet, do so now.
4253     */
4254    if (clazz->status < CLASS_VERIFIED) {
4255        /*
4256         * If we're in an "erroneous" state, throw an exception and bail.
4257         */
4258        if (clazz->status == CLASS_ERROR) {
4259            throwEarlierClassFailure(clazz);
4260            goto bail_unlock;
4261        }
4262
4263        assert(clazz->status == CLASS_RESOLVED);
4264        assert(!IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED));
4265
4266        if (gDvm.classVerifyMode == VERIFY_MODE_NONE ||
4267            (gDvm.classVerifyMode == VERIFY_MODE_REMOTE &&
4268             clazz->classLoader == NULL))
4269        {
4270            /* advance to "verified" state */
4271            ALOGV("+++ not verifying class %s (cl=%p)",
4272                clazz->descriptor, clazz->classLoader);
4273            clazz->status = CLASS_VERIFIED;
4274            goto noverify;
4275        }
4276
4277        if (!gDvm.optimizing)
4278            ALOGV("+++ late verify on %s", clazz->descriptor);
4279
4280        /*
4281         * We're not supposed to optimize an unverified class, but during
4282         * development this mode was useful.  We can't verify an optimized
4283         * class because the optimization process discards information.
4284         */
4285        if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED)) {
4286            ALOGW("Class '%s' was optimized without verification; "
4287                 "not verifying now",
4288                clazz->descriptor);
4289            ALOGW("  ('rm /data/dalvik-cache/*' and restart to fix this)");
4290            goto verify_failed;
4291        }
4292
4293        clazz->status = CLASS_VERIFYING;
4294        if (!dvmVerifyClass(clazz)) {
4295verify_failed:
4296            dvmThrowVerifyError(clazz->descriptor);
4297            dvmSetFieldObject((Object*) clazz,
4298                OFFSETOF_MEMBER(ClassObject, verifyErrorClass),
4299                (Object*) dvmGetException(self)->clazz);
4300            clazz->status = CLASS_ERROR;
4301            goto bail_unlock;
4302        }
4303
4304        clazz->status = CLASS_VERIFIED;
4305    }
4306noverify:
4307
4308    /*
4309     * We need to ensure that certain instructions, notably accesses to
4310     * volatile fields, are replaced before any code is executed.  This
4311     * must happen even if DEX optimizations are disabled.
4312     *
4313     * The only exception to this rule is that we don't want to do this
4314     * during dexopt.  We don't generally initialize classes at all
4315     * during dexopt, but because we're loading classes we need Class and
4316     * Object (and possibly some Throwable stuff if a class isn't found).
4317     * If optimizations are disabled, we don't want to output optimized
4318     * instructions at this time.  This means we will be executing <clinit>
4319     * code with un-fixed volatiles, but we're only doing it for a few
4320     * system classes, and dexopt runs single-threaded.
4321     */
4322    if (!IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED) && !gDvm.optimizing) {
4323        ALOGV("+++ late optimize on %s (pv=%d)",
4324            clazz->descriptor, IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED));
4325        bool essentialOnly = (gDvm.dexOptMode != OPTIMIZE_MODE_FULL);
4326        dvmOptimizeClass(clazz, essentialOnly);
4327        SET_CLASS_FLAG(clazz, CLASS_ISOPTIMIZED);
4328    }
4329
4330    /* update instruction stream now that verification + optimization is done */
4331    dvmFlushBreakpoints(clazz);
4332
4333    if (clazz->status == CLASS_INITIALIZED)
4334        goto bail_unlock;
4335
4336    while (clazz->status == CLASS_INITIALIZING) {
4337        /* we caught somebody else in the act; was it us? */
4338        if (clazz->initThreadId == self->threadId) {
4339            //ALOGV("HEY: found a recursive <clinit>");
4340            goto bail_unlock;
4341        }
4342
4343        if (dvmCheckException(self)) {
4344            ALOGW("GLITCH: exception pending at start of class init");
4345            dvmAbort();
4346        }
4347
4348        /*
4349         * Wait for the other thread to finish initialization.  We pass
4350         * "false" for the "interruptShouldThrow" arg so it doesn't throw
4351         * an exception on interrupt.
4352         */
4353        dvmObjectWait(self, (Object*) clazz, 0, 0, false);
4354
4355        /*
4356         * When we wake up, repeat the test for init-in-progress.  If there's
4357         * an exception pending (only possible if "interruptShouldThrow"
4358         * was set), bail out.
4359         */
4360        if (dvmCheckException(self)) {
4361            ALOGI("Class init of '%s' failing with wait() exception",
4362                clazz->descriptor);
4363            /*
4364             * TODO: this is bogus, because it means the two threads have a
4365             * different idea of the class status.  We need to flag the
4366             * class as bad and ensure that the initializer thread respects
4367             * our notice.  If we get lucky and wake up after the class has
4368             * finished initialization but before being woken, we have to
4369             * swallow the exception, perhaps raising thread->interrupted
4370             * to preserve semantics.
4371             *
4372             * Since we're not currently allowing interrupts, this should
4373             * never happen and we don't need to fix this.
4374             */
4375            assert(false);
4376            dvmThrowExceptionInInitializerError();
4377            clazz->status = CLASS_ERROR;
4378            goto bail_unlock;
4379        }
4380        if (clazz->status == CLASS_INITIALIZING) {
4381            ALOGI("Waiting again for class init");
4382            continue;
4383        }
4384        assert(clazz->status == CLASS_INITIALIZED ||
4385               clazz->status == CLASS_ERROR);
4386        if (clazz->status == CLASS_ERROR) {
4387            /*
4388             * The caller wants an exception, but it was thrown in a
4389             * different thread.  Synthesize one here.
4390             */
4391            dvmThrowUnsatisfiedLinkError(
4392                "(<clinit> failed, see exception in other thread)");
4393        }
4394        goto bail_unlock;
4395    }
4396
4397    /* see if we failed previously */
4398    if (clazz->status == CLASS_ERROR) {
4399        // might be wise to unlock before throwing; depends on which class
4400        // it is that we have locked
4401        dvmUnlockObject(self, (Object*) clazz);
4402        throwEarlierClassFailure(clazz);
4403        return false;
4404    }
4405
4406    if (gDvm.allocProf.enabled) {
4407        startWhen = dvmGetRelativeTimeNsec();
4408    }
4409
4410    /*
4411     * We're ready to go, and have exclusive access to the class.
4412     *
4413     * Before we start initialization, we need to do one extra bit of
4414     * validation: make sure that the methods declared here match up
4415     * with our superclass and interfaces.  We know that the UTF-8
4416     * descriptors match, but classes from different class loaders can
4417     * have the same name.
4418     *
4419     * We do this now, rather than at load/link time, for the same reason
4420     * that we defer verification.
4421     *
4422     * It's unfortunate that we need to do this at all, but we risk
4423     * mixing reference types with identical names (see Dalvik test 068).
4424     */
4425    if (!validateSuperDescriptors(clazz)) {
4426        assert(dvmCheckException(self));
4427        clazz->status = CLASS_ERROR;
4428        goto bail_unlock;
4429    }
4430
4431    /*
4432     * Let's initialize this thing.
4433     *
4434     * We unlock the object so that other threads can politely sleep on
4435     * our mutex with Object.wait(), instead of hanging or spinning trying
4436     * to grab our mutex.
4437     */
4438    assert(clazz->status < CLASS_INITIALIZING);
4439
4440#if LOG_CLASS_LOADING
4441    // We started initializing.
4442    logClassLoad('+', clazz);
4443    initializedByUs = true;
4444#endif
4445
4446    /* order matters here, esp. interaction with dvmIsClassInitializing */
4447    clazz->initThreadId = self->threadId;
4448    android_atomic_release_store(CLASS_INITIALIZING,
4449                                 (int32_t*)(void*)&clazz->status);
4450    dvmUnlockObject(self, (Object*) clazz);
4451
4452    /* init our superclass */
4453    if (clazz->super != NULL && clazz->super->status != CLASS_INITIALIZED) {
4454        assert(!dvmIsInterfaceClass(clazz));
4455        if (!dvmInitClass(clazz->super)) {
4456            assert(dvmCheckException(self));
4457            clazz->status = CLASS_ERROR;
4458            /* wake up anybody who started waiting while we were unlocked */
4459            dvmLockObject(self, (Object*) clazz);
4460            goto bail_notify;
4461        }
4462    }
4463
4464    /* Initialize any static fields whose values are
4465     * stored in the Dex file.  This should include all of the
4466     * simple "final static" fields, which are required to
4467     * be initialized first. (vmspec 2 sec 2.17.5 item 8)
4468     * More-complicated final static fields should be set
4469     * at the beginning of <clinit>;  all we can do is trust
4470     * that the compiler did the right thing.
4471     */
4472    initSFields(clazz);
4473
4474    /* Execute any static initialization code.
4475     */
4476    method = dvmFindDirectMethodByDescriptor(clazz, "<clinit>", "()V");
4477    if (method == NULL) {
4478        LOGVV("No <clinit> found for %s", clazz->descriptor);
4479    } else {
4480        LOGVV("Invoking %s.<clinit>", clazz->descriptor);
4481        JValue unused;
4482        dvmCallMethod(self, method, NULL, &unused);
4483    }
4484
4485    if (dvmCheckException(self)) {
4486        /*
4487         * We've had an exception thrown during static initialization.  We
4488         * need to throw an ExceptionInInitializerError, but we want to
4489         * tuck the original exception into the "cause" field.
4490         */
4491        ALOGW("Exception %s thrown while initializing %s",
4492            (dvmGetException(self)->clazz)->descriptor, clazz->descriptor);
4493        dvmThrowExceptionInInitializerError();
4494        //ALOGW("+++ replaced");
4495
4496        dvmLockObject(self, (Object*) clazz);
4497        clazz->status = CLASS_ERROR;
4498    } else {
4499        /* success! */
4500        dvmLockObject(self, (Object*) clazz);
4501        clazz->status = CLASS_INITIALIZED;
4502        LOGVV("Initialized class: %s", clazz->descriptor);
4503
4504        /*
4505         * Update alloc counters.  TODO: guard with mutex.
4506         */
4507        if (gDvm.allocProf.enabled && startWhen != 0) {
4508            u8 initDuration = dvmGetRelativeTimeNsec() - startWhen;
4509            gDvm.allocProf.classInitTime += initDuration;
4510            self->allocProf.classInitTime += initDuration;
4511            gDvm.allocProf.classInitCount++;
4512            self->allocProf.classInitCount++;
4513        }
4514    }
4515
4516bail_notify:
4517    /*
4518     * Notify anybody waiting on the object.
4519     */
4520    dvmObjectNotifyAll(self, (Object*) clazz);
4521
4522bail_unlock:
4523
4524#if LOG_CLASS_LOADING
4525    if (initializedByUs) {
4526        // We finished initializing.
4527        logClassLoad('-', clazz);
4528    }
4529#endif
4530
4531    dvmUnlockObject(self, (Object*) clazz);
4532
4533    return (clazz->status != CLASS_ERROR);
4534}
4535
4536/*
4537 * Replace method->nativeFunc and method->insns with new values.  This is
4538 * commonly performed after successful resolution of a native method.
4539 *
4540 * There are three basic states:
4541 *  (1) (initial) nativeFunc = dvmResolveNativeMethod, insns = NULL
4542 *  (2) (internal native) nativeFunc = <impl>, insns = NULL
4543 *  (3) (JNI) nativeFunc = JNI call bridge, insns = <impl>
4544 *
4545 * nativeFunc must never be NULL for a native method.
4546 *
4547 * The most common transitions are (1)->(2) and (1)->(3).  The former is
4548 * atomic, since only one field is updated; the latter is not, but since
4549 * dvmResolveNativeMethod ignores the "insns" field we just need to make
4550 * sure the update happens in the correct order.
4551 *
4552 * A transition from (2)->(1) would work fine, but (3)->(1) will not,
4553 * because both fields change.  If we did this while a thread was executing
4554 * in the call bridge, we could null out the "insns" field right before
4555 * the bridge tried to call through it.  So, once "insns" is set, we do
4556 * not allow it to be cleared.  A NULL value for the "insns" argument is
4557 * treated as "do not change existing value".
4558 */
4559void dvmSetNativeFunc(Method* method, DalvikBridgeFunc func,
4560    const u2* insns)
4561{
4562    ClassObject* clazz = method->clazz;
4563
4564    assert(func != NULL);
4565
4566    /* just open up both; easier that way */
4567    dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
4568    dvmLinearReadWrite(clazz->classLoader, clazz->directMethods);
4569
4570    if (insns != NULL) {
4571        /* update both, ensuring that "insns" is observed first */
4572        method->insns = insns;
4573        android_atomic_release_store((int32_t) func,
4574            (volatile int32_t*)(void*) &method->nativeFunc);
4575    } else {
4576        /* only update nativeFunc */
4577        method->nativeFunc = func;
4578    }
4579
4580    dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
4581    dvmLinearReadOnly(clazz->classLoader, clazz->directMethods);
4582}
4583
4584/*
4585 * Add a RegisterMap to a Method.  This is done when we verify the class
4586 * and compute the register maps at class initialization time (i.e. when
4587 * we don't have a pre-generated map).  This means "pMap" is on the heap
4588 * and should be freed when the Method is discarded.
4589 */
4590void dvmSetRegisterMap(Method* method, const RegisterMap* pMap)
4591{
4592    ClassObject* clazz = method->clazz;
4593
4594    if (method->registerMap != NULL) {
4595        /* unexpected during class loading, okay on first use (uncompress) */
4596        ALOGV("NOTE: registerMap already set for %s.%s",
4597            method->clazz->descriptor, method->name);
4598        /* keep going */
4599    }
4600    assert(!dvmIsNativeMethod(method) && !dvmIsAbstractMethod(method));
4601
4602    /* might be virtual or direct */
4603    dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods);
4604    dvmLinearReadWrite(clazz->classLoader, clazz->directMethods);
4605
4606    method->registerMap = pMap;
4607
4608    dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods);
4609    dvmLinearReadOnly(clazz->classLoader, clazz->directMethods);
4610}
4611
4612/*
4613 * dvmHashForeach callback.  A nonzero return value causes foreach to
4614 * bail out.
4615 */
4616static int findClassCallback(void* vclazz, void* arg)
4617{
4618    ClassObject* clazz = (ClassObject*)vclazz;
4619    const char* descriptor = (const char*) arg;
4620
4621    if (strcmp(clazz->descriptor, descriptor) == 0)
4622        return (int) clazz;
4623    return 0;
4624}
4625
4626/*
4627 * Find a loaded class by descriptor. Returns the first one found.
4628 * Because there can be more than one if class loaders are involved,
4629 * this is not an especially good API. (Currently only used by the
4630 * debugger and "checking" JNI.)
4631 *
4632 * "descriptor" should have the form "Ljava/lang/Class;" or
4633 * "[Ljava/lang/Class;", i.e. a descriptor and not an internal-form
4634 * class name.
4635 */
4636ClassObject* dvmFindLoadedClass(const char* descriptor)
4637{
4638    int result;
4639
4640    dvmHashTableLock(gDvm.loadedClasses);
4641    result = dvmHashForeach(gDvm.loadedClasses, findClassCallback,
4642            (void*) descriptor);
4643    dvmHashTableUnlock(gDvm.loadedClasses);
4644
4645    return (ClassObject*) result;
4646}
4647
4648/*
4649 * Retrieve the system (a/k/a application) class loader.
4650 *
4651 * The caller must call dvmReleaseTrackedAlloc on the result.
4652 */
4653Object* dvmGetSystemClassLoader()
4654{
4655    Thread* self = dvmThreadSelf();
4656    ClassObject* clClass = gDvm.classJavaLangClassLoader;
4657
4658    if (!dvmIsClassInitialized(clClass) && !dvmInitClass(clClass))
4659        return NULL;
4660
4661    JValue result;
4662    dvmCallMethod(self, gDvm.methJavaLangClassLoader_getSystemClassLoader,
4663        NULL, &result);
4664    Object* loader = (Object*)result.l;
4665    dvmAddTrackedAlloc(loader, self);
4666    return loader;
4667}
4668
4669
4670/*
4671 * This is a dvmHashForeach callback.
4672 */
4673static int dumpClass(void* vclazz, void* varg)
4674{
4675    const ClassObject* clazz = (const ClassObject*) vclazz;
4676    const ClassObject* super;
4677    int flags = (int) varg;
4678    char* desc;
4679    int i;
4680
4681    if (clazz == NULL) {
4682        ALOGI("dumpClass: ignoring request to dump null class");
4683        return 0;
4684    }
4685
4686    if ((flags & kDumpClassFullDetail) == 0) {
4687        bool showInit = (flags & kDumpClassInitialized) != 0;
4688        bool showLoader = (flags & kDumpClassClassLoader) != 0;
4689        const char* initStr;
4690
4691        initStr = dvmIsClassInitialized(clazz) ? "true" : "false";
4692
4693        if (showInit && showLoader)
4694            ALOGI("%s %p %s", clazz->descriptor, clazz->classLoader, initStr);
4695        else if (showInit)
4696            ALOGI("%s %s", clazz->descriptor, initStr);
4697        else if (showLoader)
4698            ALOGI("%s %p", clazz->descriptor, clazz->classLoader);
4699        else
4700            ALOGI("%s", clazz->descriptor);
4701
4702        return 0;
4703    }
4704
4705    /* clazz->super briefly holds the superclass index during class prep */
4706    if ((u4)clazz->super > 0x10000 && (u4) clazz->super != (u4)-1)
4707        super = clazz->super;
4708    else
4709        super = NULL;
4710
4711    ALOGI("----- %s '%s' cl=%p ser=0x%08x -----",
4712        dvmIsInterfaceClass(clazz) ? "interface" : "class",
4713        clazz->descriptor, clazz->classLoader, clazz->serialNumber);
4714    ALOGI("  objectSize=%d (%d from super)", (int) clazz->objectSize,
4715        super != NULL ? (int) super->objectSize : -1);
4716    ALOGI("  access=0x%04x.%04x", clazz->accessFlags >> 16,
4717        clazz->accessFlags & JAVA_FLAGS_MASK);
4718    if (super != NULL)
4719        ALOGI("  super='%s' (cl=%p)", super->descriptor, super->classLoader);
4720    if (dvmIsArrayClass(clazz)) {
4721        ALOGI("  dimensions=%d elementClass=%s",
4722            clazz->arrayDim, clazz->elementClass->descriptor);
4723    }
4724    if (clazz->iftableCount > 0) {
4725        ALOGI("  interfaces (%d):", clazz->iftableCount);
4726        for (i = 0; i < clazz->iftableCount; i++) {
4727            InterfaceEntry* ent = &clazz->iftable[i];
4728            int j;
4729
4730            ALOGI("    %2d: %s (cl=%p)",
4731                i, ent->clazz->descriptor, ent->clazz->classLoader);
4732
4733            /* enable when needed */
4734            if (false && ent->methodIndexArray != NULL) {
4735                for (j = 0; j < ent->clazz->virtualMethodCount; j++)
4736                    ALOGI("      %2d: %d %s %s",
4737                        j, ent->methodIndexArray[j],
4738                        ent->clazz->virtualMethods[j].name,
4739                        clazz->vtable[ent->methodIndexArray[j]]->name);
4740            }
4741        }
4742    }
4743    if (!dvmIsInterfaceClass(clazz)) {
4744        ALOGI("  vtable (%d entries, %d in super):", clazz->vtableCount,
4745            super != NULL ? super->vtableCount : 0);
4746        for (i = 0; i < clazz->vtableCount; i++) {
4747            desc = dexProtoCopyMethodDescriptor(&clazz->vtable[i]->prototype);
4748            ALOGI("    %s%2d: %p %20s %s",
4749                (i != clazz->vtable[i]->methodIndex) ? "*** " : "",
4750                (u4) clazz->vtable[i]->methodIndex, clazz->vtable[i],
4751                clazz->vtable[i]->name, desc);
4752            free(desc);
4753        }
4754        ALOGI("  direct methods (%d entries):", clazz->directMethodCount);
4755        for (i = 0; i < clazz->directMethodCount; i++) {
4756            desc = dexProtoCopyMethodDescriptor(
4757                    &clazz->directMethods[i].prototype);
4758            ALOGI("    %2d: %20s %s", i, clazz->directMethods[i].name,
4759                desc);
4760            free(desc);
4761        }
4762    } else {
4763        ALOGI("  interface methods (%d):", clazz->virtualMethodCount);
4764        for (i = 0; i < clazz->virtualMethodCount; i++) {
4765            desc = dexProtoCopyMethodDescriptor(
4766                    &clazz->virtualMethods[i].prototype);
4767            ALOGI("    %2d: %2d %20s %s", i,
4768                (u4) clazz->virtualMethods[i].methodIndex,
4769                clazz->virtualMethods[i].name,
4770                desc);
4771            free(desc);
4772        }
4773    }
4774    if (clazz->sfieldCount > 0) {
4775        ALOGI("  static fields (%d entries):", clazz->sfieldCount);
4776        for (i = 0; i < clazz->sfieldCount; i++) {
4777            ALOGI("    %2d: %20s %s", i, clazz->sfields[i].name,
4778                clazz->sfields[i].signature);
4779        }
4780    }
4781    if (clazz->ifieldCount > 0) {
4782        ALOGI("  instance fields (%d entries):", clazz->ifieldCount);
4783        for (i = 0; i < clazz->ifieldCount; i++) {
4784            ALOGI("    %2d: %20s %s", i, clazz->ifields[i].name,
4785                clazz->ifields[i].signature);
4786        }
4787    }
4788    return 0;
4789}
4790
4791/*
4792 * Dump the contents of a single class.
4793 *
4794 * Pass kDumpClassFullDetail into "flags" to get lots of detail.
4795 */
4796void dvmDumpClass(const ClassObject* clazz, int flags)
4797{
4798    dumpClass((void*) clazz, (void*) flags);
4799}
4800
4801/*
4802 * Dump the contents of all classes.
4803 */
4804void dvmDumpAllClasses(int flags)
4805{
4806    dvmHashTableLock(gDvm.loadedClasses);
4807    dvmHashForeach(gDvm.loadedClasses, dumpClass, (void*) flags);
4808    dvmHashTableUnlock(gDvm.loadedClasses);
4809}
4810
4811/*
4812 * Get the number of loaded classes
4813 */
4814int dvmGetNumLoadedClasses()
4815{
4816    int count;
4817    dvmHashTableLock(gDvm.loadedClasses);
4818    count = dvmHashTableNumEntries(gDvm.loadedClasses);
4819    dvmHashTableUnlock(gDvm.loadedClasses);
4820    return count;
4821}
4822
4823/*
4824 * Write some statistics to the log file.
4825 */
4826void dvmDumpLoaderStats(const char* msg)
4827{
4828    ALOGV("VM stats (%s): cls=%d/%d meth=%d ifld=%d sfld=%d linear=%d",
4829        msg, gDvm.numLoadedClasses, dvmHashTableNumEntries(gDvm.loadedClasses),
4830        gDvm.numDeclaredMethods, gDvm.numDeclaredInstFields,
4831        gDvm.numDeclaredStaticFields, gDvm.pBootLoaderAlloc->curOffset);
4832#ifdef COUNT_PRECISE_METHODS
4833    ALOGI("GC precise methods: %d",
4834        dvmPointerSetGetCount(gDvm.preciseMethods));
4835#endif
4836}
4837
4838/*
4839 * ===========================================================================
4840 *      Method Prototypes and Descriptors
4841 * ===========================================================================
4842 */
4843
4844/*
4845 * Compare the two method names and prototypes, a la strcmp(). The
4846 * name is considered the "major" order and the prototype the "minor"
4847 * order. The prototypes are compared as if by dvmCompareMethodProtos().
4848 */
4849int dvmCompareMethodNamesAndProtos(const Method* method1,
4850        const Method* method2)
4851{
4852    int result = strcmp(method1->name, method2->name);
4853
4854    if (result != 0) {
4855        return result;
4856    }
4857
4858    return dvmCompareMethodProtos(method1, method2);
4859}
4860
4861/*
4862 * Compare the two method names and prototypes, a la strcmp(), ignoring
4863 * the return value. The name is considered the "major" order and the
4864 * prototype the "minor" order. The prototypes are compared as if by
4865 * dvmCompareMethodArgProtos().
4866 */
4867int dvmCompareMethodNamesAndParameterProtos(const Method* method1,
4868        const Method* method2)
4869{
4870    int result = strcmp(method1->name, method2->name);
4871
4872    if (result != 0) {
4873        return result;
4874    }
4875
4876    return dvmCompareMethodParameterProtos(method1, method2);
4877}
4878
4879/*
4880 * Compare a (name, prototype) pair with the (name, prototype) of
4881 * a method, a la strcmp(). The name is considered the "major" order and
4882 * the prototype the "minor" order. The descriptor and prototype are
4883 * compared as if by dvmCompareDescriptorAndMethodProto().
4884 */
4885int dvmCompareNameProtoAndMethod(const char* name,
4886    const DexProto* proto, const Method* method)
4887{
4888    int result = strcmp(name, method->name);
4889
4890    if (result != 0) {
4891        return result;
4892    }
4893
4894    return dexProtoCompare(proto, &method->prototype);
4895}
4896
4897/*
4898 * Compare a (name, method descriptor) pair with the (name, prototype) of
4899 * a method, a la strcmp(). The name is considered the "major" order and
4900 * the prototype the "minor" order. The descriptor and prototype are
4901 * compared as if by dvmCompareDescriptorAndMethodProto().
4902 */
4903int dvmCompareNameDescriptorAndMethod(const char* name,
4904    const char* descriptor, const Method* method)
4905{
4906    int result = strcmp(name, method->name);
4907
4908    if (result != 0) {
4909        return result;
4910    }
4911
4912    return dvmCompareDescriptorAndMethodProto(descriptor, method);
4913}
4914