InputReader.cpp revision bb3fcba0caf697f1d238a2cbefdf1efe06eded99
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "InputReader"
18
19//#define LOG_NDEBUG 0
20
21// Log debug messages for each raw event received from the EventHub.
22#define DEBUG_RAW_EVENTS 0
23
24// Log debug messages about touch screen filtering hacks.
25#define DEBUG_HACKS 0
26
27// Log debug messages about virtual key processing.
28#define DEBUG_VIRTUAL_KEYS 0
29
30// Log debug messages about pointers.
31#define DEBUG_POINTERS 0
32
33// Log debug messages about pointer assignment calculations.
34#define DEBUG_POINTER_ASSIGNMENT 0
35
36// Log debug messages about gesture detection.
37#define DEBUG_GESTURES 0
38
39// Specifies whether spots follow fingers or touch points.
40// If 1, show exactly one spot per finger in multitouch gestures.
41// If 0, show exactly one spot per generated touch point in multitouch gestures, so the
42//     spots indicate exactly which points on screen are being touched.
43#define SPOT_FOLLOWS_FINGER 0
44
45#include "InputReader.h"
46
47#include <cutils/atomic.h>
48#include <cutils/log.h>
49#include <ui/Keyboard.h>
50#include <ui/VirtualKeyMap.h>
51
52#include <stddef.h>
53#include <stdlib.h>
54#include <unistd.h>
55#include <errno.h>
56#include <limits.h>
57#include <math.h>
58
59#define INDENT "  "
60#define INDENT2 "    "
61#define INDENT3 "      "
62#define INDENT4 "        "
63
64namespace android {
65
66// --- Static Functions ---
67
68template<typename T>
69inline static T abs(const T& value) {
70    return value < 0 ? - value : value;
71}
72
73template<typename T>
74inline static T min(const T& a, const T& b) {
75    return a < b ? a : b;
76}
77
78template<typename T>
79inline static void swap(T& a, T& b) {
80    T temp = a;
81    a = b;
82    b = temp;
83}
84
85inline static float avg(float x, float y) {
86    return (x + y) / 2;
87}
88
89inline static float distance(float x1, float y1, float x2, float y2) {
90    return hypotf(x1 - x2, y1 - y2);
91}
92
93inline static int32_t signExtendNybble(int32_t value) {
94    return value >= 8 ? value - 16 : value;
95}
96
97static inline const char* toString(bool value) {
98    return value ? "true" : "false";
99}
100
101static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
102        const int32_t map[][4], size_t mapSize) {
103    if (orientation != DISPLAY_ORIENTATION_0) {
104        for (size_t i = 0; i < mapSize; i++) {
105            if (value == map[i][0]) {
106                return map[i][orientation];
107            }
108        }
109    }
110    return value;
111}
112
113static const int32_t keyCodeRotationMap[][4] = {
114        // key codes enumerated counter-clockwise with the original (unrotated) key first
115        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
116        { AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT },
117        { AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN },
118        { AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT },
119        { AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP },
120};
121static const size_t keyCodeRotationMapSize =
122        sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
123
124int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
125    return rotateValueUsingRotationMap(keyCode, orientation,
126            keyCodeRotationMap, keyCodeRotationMapSize);
127}
128
129static const int32_t edgeFlagRotationMap[][4] = {
130        // edge flags enumerated counter-clockwise with the original (unrotated) edge flag first
131        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
132        { AMOTION_EVENT_EDGE_FLAG_BOTTOM,   AMOTION_EVENT_EDGE_FLAG_RIGHT,
133                AMOTION_EVENT_EDGE_FLAG_TOP,     AMOTION_EVENT_EDGE_FLAG_LEFT },
134        { AMOTION_EVENT_EDGE_FLAG_RIGHT,  AMOTION_EVENT_EDGE_FLAG_TOP,
135                AMOTION_EVENT_EDGE_FLAG_LEFT,   AMOTION_EVENT_EDGE_FLAG_BOTTOM },
136        { AMOTION_EVENT_EDGE_FLAG_TOP,     AMOTION_EVENT_EDGE_FLAG_LEFT,
137                AMOTION_EVENT_EDGE_FLAG_BOTTOM,   AMOTION_EVENT_EDGE_FLAG_RIGHT },
138        { AMOTION_EVENT_EDGE_FLAG_LEFT,   AMOTION_EVENT_EDGE_FLAG_BOTTOM,
139                AMOTION_EVENT_EDGE_FLAG_RIGHT,  AMOTION_EVENT_EDGE_FLAG_TOP },
140};
141static const size_t edgeFlagRotationMapSize =
142        sizeof(edgeFlagRotationMap) / sizeof(edgeFlagRotationMap[0]);
143
144static int32_t rotateEdgeFlag(int32_t edgeFlag, int32_t orientation) {
145    return rotateValueUsingRotationMap(edgeFlag, orientation,
146            edgeFlagRotationMap, edgeFlagRotationMapSize);
147}
148
149static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
150    return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
151}
152
153static uint32_t getButtonStateForScanCode(int32_t scanCode) {
154    // Currently all buttons are mapped to the primary button.
155    switch (scanCode) {
156    case BTN_LEFT:
157    case BTN_RIGHT:
158    case BTN_MIDDLE:
159    case BTN_SIDE:
160    case BTN_EXTRA:
161    case BTN_FORWARD:
162    case BTN_BACK:
163    case BTN_TASK:
164        return BUTTON_STATE_PRIMARY;
165    default:
166        return 0;
167    }
168}
169
170// Returns true if the pointer should be reported as being down given the specified
171// button states.
172static bool isPointerDown(uint32_t buttonState) {
173    return buttonState & BUTTON_STATE_PRIMARY;
174}
175
176static int32_t calculateEdgeFlagsUsingPointerBounds(
177        const sp<PointerControllerInterface>& pointerController, float x, float y) {
178    int32_t edgeFlags = 0;
179    float minX, minY, maxX, maxY;
180    if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
181        if (x <= minX) {
182            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
183        } else if (x >= maxX) {
184            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
185        }
186        if (y <= minY) {
187            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
188        } else if (y >= maxY) {
189            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
190        }
191    }
192    return edgeFlags;
193}
194
195static float calculateCommonVector(float a, float b) {
196    if (a > 0 && b > 0) {
197        return a < b ? a : b;
198    } else if (a < 0 && b < 0) {
199        return a > b ? a : b;
200    } else {
201        return 0;
202    }
203}
204
205
206// --- InputReader ---
207
208InputReader::InputReader(const sp<EventHubInterface>& eventHub,
209        const sp<InputReaderPolicyInterface>& policy,
210        const sp<InputDispatcherInterface>& dispatcher) :
211        mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
212        mGlobalMetaState(0), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX),
213        mRefreshConfiguration(0) {
214    configure(true /*firstTime*/);
215    updateGlobalMetaState();
216    updateInputConfiguration();
217}
218
219InputReader::~InputReader() {
220    for (size_t i = 0; i < mDevices.size(); i++) {
221        delete mDevices.valueAt(i);
222    }
223}
224
225void InputReader::loopOnce() {
226    if (android_atomic_acquire_load(&mRefreshConfiguration)) {
227        android_atomic_release_store(0, &mRefreshConfiguration);
228        configure(false /*firstTime*/);
229    }
230
231    int32_t timeoutMillis = -1;
232    if (mNextTimeout != LLONG_MAX) {
233        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
234        timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
235    }
236
237    size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
238    if (count) {
239        processEvents(mEventBuffer, count);
240    }
241    if (!count || timeoutMillis == 0) {
242        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
243#if DEBUG_RAW_EVENTS
244        LOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
245#endif
246        mNextTimeout = LLONG_MAX;
247        timeoutExpired(now);
248    }
249}
250
251void InputReader::processEvents(const RawEvent* rawEvents, size_t count) {
252    for (const RawEvent* rawEvent = rawEvents; count;) {
253        int32_t type = rawEvent->type;
254        size_t batchSize = 1;
255        if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
256            int32_t deviceId = rawEvent->deviceId;
257            while (batchSize < count) {
258                if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
259                        || rawEvent[batchSize].deviceId != deviceId) {
260                    break;
261                }
262                batchSize += 1;
263            }
264#if DEBUG_RAW_EVENTS
265            LOGD("BatchSize: %d Count: %d", batchSize, count);
266#endif
267            processEventsForDevice(deviceId, rawEvent, batchSize);
268        } else {
269            switch (rawEvent->type) {
270            case EventHubInterface::DEVICE_ADDED:
271                addDevice(rawEvent->deviceId);
272                break;
273            case EventHubInterface::DEVICE_REMOVED:
274                removeDevice(rawEvent->deviceId);
275                break;
276            case EventHubInterface::FINISHED_DEVICE_SCAN:
277                handleConfigurationChanged(rawEvent->when);
278                break;
279            default:
280                assert(false); // can't happen
281                break;
282            }
283        }
284        count -= batchSize;
285        rawEvent += batchSize;
286    }
287}
288
289void InputReader::addDevice(int32_t deviceId) {
290    String8 name = mEventHub->getDeviceName(deviceId);
291    uint32_t classes = mEventHub->getDeviceClasses(deviceId);
292
293    InputDevice* device = createDevice(deviceId, name, classes);
294    device->configure();
295
296    if (device->isIgnored()) {
297        LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
298    } else {
299        LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
300                device->getSources());
301    }
302
303    bool added = false;
304    { // acquire device registry writer lock
305        RWLock::AutoWLock _wl(mDeviceRegistryLock);
306
307        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
308        if (deviceIndex < 0) {
309            mDevices.add(deviceId, device);
310            added = true;
311        }
312    } // release device registry writer lock
313
314    if (! added) {
315        LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
316        delete device;
317        return;
318    }
319}
320
321void InputReader::removeDevice(int32_t deviceId) {
322    bool removed = false;
323    InputDevice* device = NULL;
324    { // acquire device registry writer lock
325        RWLock::AutoWLock _wl(mDeviceRegistryLock);
326
327        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
328        if (deviceIndex >= 0) {
329            device = mDevices.valueAt(deviceIndex);
330            mDevices.removeItemsAt(deviceIndex, 1);
331            removed = true;
332        }
333    } // release device registry writer lock
334
335    if (! removed) {
336        LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
337        return;
338    }
339
340    if (device->isIgnored()) {
341        LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
342                device->getId(), device->getName().string());
343    } else {
344        LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
345                device->getId(), device->getName().string(), device->getSources());
346    }
347
348    device->reset();
349
350    delete device;
351}
352
353InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
354    InputDevice* device = new InputDevice(this, deviceId, name);
355
356    // External devices.
357    if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
358        device->setExternal(true);
359    }
360
361    // Switch-like devices.
362    if (classes & INPUT_DEVICE_CLASS_SWITCH) {
363        device->addMapper(new SwitchInputMapper(device));
364    }
365
366    // Keyboard-like devices.
367    uint32_t keyboardSource = 0;
368    int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
369    if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
370        keyboardSource |= AINPUT_SOURCE_KEYBOARD;
371    }
372    if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
373        keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
374    }
375    if (classes & INPUT_DEVICE_CLASS_DPAD) {
376        keyboardSource |= AINPUT_SOURCE_DPAD;
377    }
378    if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
379        keyboardSource |= AINPUT_SOURCE_GAMEPAD;
380    }
381
382    if (keyboardSource != 0) {
383        device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
384    }
385
386    // Cursor-like devices.
387    if (classes & INPUT_DEVICE_CLASS_CURSOR) {
388        device->addMapper(new CursorInputMapper(device));
389    }
390
391    // Touchscreens and touchpad devices.
392    if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
393        device->addMapper(new MultiTouchInputMapper(device));
394    } else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
395        device->addMapper(new SingleTouchInputMapper(device));
396    }
397
398    // Joystick-like devices.
399    if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
400        device->addMapper(new JoystickInputMapper(device));
401    }
402
403    return device;
404}
405
406void InputReader::processEventsForDevice(int32_t deviceId,
407        const RawEvent* rawEvents, size_t count) {
408    { // acquire device registry reader lock
409        RWLock::AutoRLock _rl(mDeviceRegistryLock);
410
411        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
412        if (deviceIndex < 0) {
413            LOGW("Discarding event for unknown deviceId %d.", deviceId);
414            return;
415        }
416
417        InputDevice* device = mDevices.valueAt(deviceIndex);
418        if (device->isIgnored()) {
419            //LOGD("Discarding event for ignored deviceId %d.", deviceId);
420            return;
421        }
422
423        device->process(rawEvents, count);
424    } // release device registry reader lock
425}
426
427void InputReader::timeoutExpired(nsecs_t when) {
428    { // acquire device registry reader lock
429        RWLock::AutoRLock _rl(mDeviceRegistryLock);
430
431        for (size_t i = 0; i < mDevices.size(); i++) {
432            InputDevice* device = mDevices.valueAt(i);
433            if (!device->isIgnored()) {
434                device->timeoutExpired(when);
435            }
436        }
437    } // release device registry reader lock
438}
439
440void InputReader::handleConfigurationChanged(nsecs_t when) {
441    // Reset global meta state because it depends on the list of all configured devices.
442    updateGlobalMetaState();
443
444    // Update input configuration.
445    updateInputConfiguration();
446
447    // Enqueue configuration changed.
448    mDispatcher->notifyConfigurationChanged(when);
449}
450
451void InputReader::configure(bool firstTime) {
452    mPolicy->getReaderConfiguration(&mConfig);
453    mEventHub->setExcludedDevices(mConfig.excludedDeviceNames);
454
455    if (!firstTime) {
456        mEventHub->reopenDevices();
457    }
458}
459
460void InputReader::updateGlobalMetaState() {
461    { // acquire state lock
462        AutoMutex _l(mStateLock);
463
464        mGlobalMetaState = 0;
465
466        { // acquire device registry reader lock
467            RWLock::AutoRLock _rl(mDeviceRegistryLock);
468
469            for (size_t i = 0; i < mDevices.size(); i++) {
470                InputDevice* device = mDevices.valueAt(i);
471                mGlobalMetaState |= device->getMetaState();
472            }
473        } // release device registry reader lock
474    } // release state lock
475}
476
477int32_t InputReader::getGlobalMetaState() {
478    { // acquire state lock
479        AutoMutex _l(mStateLock);
480
481        return mGlobalMetaState;
482    } // release state lock
483}
484
485void InputReader::updateInputConfiguration() {
486    { // acquire state lock
487        AutoMutex _l(mStateLock);
488
489        int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
490        int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
491        int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
492        { // acquire device registry reader lock
493            RWLock::AutoRLock _rl(mDeviceRegistryLock);
494
495            InputDeviceInfo deviceInfo;
496            for (size_t i = 0; i < mDevices.size(); i++) {
497                InputDevice* device = mDevices.valueAt(i);
498                device->getDeviceInfo(& deviceInfo);
499                uint32_t sources = deviceInfo.getSources();
500
501                if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
502                    touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
503                }
504                if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
505                    navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
506                } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
507                    navigationConfig = InputConfiguration::NAVIGATION_DPAD;
508                }
509                if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
510                    keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
511                }
512            }
513        } // release device registry reader lock
514
515        mInputConfiguration.touchScreen = touchScreenConfig;
516        mInputConfiguration.keyboard = keyboardConfig;
517        mInputConfiguration.navigation = navigationConfig;
518    } // release state lock
519}
520
521void InputReader::disableVirtualKeysUntil(nsecs_t time) {
522    mDisableVirtualKeysTimeout = time;
523}
524
525bool InputReader::shouldDropVirtualKey(nsecs_t now,
526        InputDevice* device, int32_t keyCode, int32_t scanCode) {
527    if (now < mDisableVirtualKeysTimeout) {
528        LOGI("Dropping virtual key from device %s because virtual keys are "
529                "temporarily disabled for the next %0.3fms.  keyCode=%d, scanCode=%d",
530                device->getName().string(),
531                (mDisableVirtualKeysTimeout - now) * 0.000001,
532                keyCode, scanCode);
533        return true;
534    } else {
535        return false;
536    }
537}
538
539void InputReader::fadePointer() {
540    { // acquire device registry reader lock
541        RWLock::AutoRLock _rl(mDeviceRegistryLock);
542
543        for (size_t i = 0; i < mDevices.size(); i++) {
544            InputDevice* device = mDevices.valueAt(i);
545            device->fadePointer();
546        }
547    } // release device registry reader lock
548}
549
550void InputReader::requestTimeoutAtTime(nsecs_t when) {
551    if (when < mNextTimeout) {
552        mNextTimeout = when;
553    }
554}
555
556void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
557    { // acquire state lock
558        AutoMutex _l(mStateLock);
559
560        *outConfiguration = mInputConfiguration;
561    } // release state lock
562}
563
564status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
565    { // acquire device registry reader lock
566        RWLock::AutoRLock _rl(mDeviceRegistryLock);
567
568        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
569        if (deviceIndex < 0) {
570            return NAME_NOT_FOUND;
571        }
572
573        InputDevice* device = mDevices.valueAt(deviceIndex);
574        if (device->isIgnored()) {
575            return NAME_NOT_FOUND;
576        }
577
578        device->getDeviceInfo(outDeviceInfo);
579        return OK;
580    } // release device registy reader lock
581}
582
583void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
584    outDeviceIds.clear();
585
586    { // acquire device registry reader lock
587        RWLock::AutoRLock _rl(mDeviceRegistryLock);
588
589        size_t numDevices = mDevices.size();
590        for (size_t i = 0; i < numDevices; i++) {
591            InputDevice* device = mDevices.valueAt(i);
592            if (! device->isIgnored()) {
593                outDeviceIds.add(device->getId());
594            }
595        }
596    } // release device registy reader lock
597}
598
599int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
600        int32_t keyCode) {
601    return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
602}
603
604int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
605        int32_t scanCode) {
606    return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
607}
608
609int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
610    return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
611}
612
613int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
614        GetStateFunc getStateFunc) {
615    { // acquire device registry reader lock
616        RWLock::AutoRLock _rl(mDeviceRegistryLock);
617
618        int32_t result = AKEY_STATE_UNKNOWN;
619        if (deviceId >= 0) {
620            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
621            if (deviceIndex >= 0) {
622                InputDevice* device = mDevices.valueAt(deviceIndex);
623                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
624                    result = (device->*getStateFunc)(sourceMask, code);
625                }
626            }
627        } else {
628            size_t numDevices = mDevices.size();
629            for (size_t i = 0; i < numDevices; i++) {
630                InputDevice* device = mDevices.valueAt(i);
631                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
632                    result = (device->*getStateFunc)(sourceMask, code);
633                    if (result >= AKEY_STATE_DOWN) {
634                        return result;
635                    }
636                }
637            }
638        }
639        return result;
640    } // release device registy reader lock
641}
642
643bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
644        size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
645    memset(outFlags, 0, numCodes);
646    return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
647}
648
649bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
650        const int32_t* keyCodes, uint8_t* outFlags) {
651    { // acquire device registry reader lock
652        RWLock::AutoRLock _rl(mDeviceRegistryLock);
653        bool result = false;
654        if (deviceId >= 0) {
655            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
656            if (deviceIndex >= 0) {
657                InputDevice* device = mDevices.valueAt(deviceIndex);
658                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
659                    result = device->markSupportedKeyCodes(sourceMask,
660                            numCodes, keyCodes, outFlags);
661                }
662            }
663        } else {
664            size_t numDevices = mDevices.size();
665            for (size_t i = 0; i < numDevices; i++) {
666                InputDevice* device = mDevices.valueAt(i);
667                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
668                    result |= device->markSupportedKeyCodes(sourceMask,
669                            numCodes, keyCodes, outFlags);
670                }
671            }
672        }
673        return result;
674    } // release device registy reader lock
675}
676
677void InputReader::refreshConfiguration() {
678    android_atomic_release_store(1, &mRefreshConfiguration);
679}
680
681void InputReader::dump(String8& dump) {
682    mEventHub->dump(dump);
683    dump.append("\n");
684
685    dump.append("Input Reader State:\n");
686
687    { // acquire device registry reader lock
688        RWLock::AutoRLock _rl(mDeviceRegistryLock);
689
690        for (size_t i = 0; i < mDevices.size(); i++) {
691            mDevices.valueAt(i)->dump(dump);
692        }
693    } // release device registy reader lock
694
695    dump.append(INDENT "Configuration:\n");
696    dump.append(INDENT2 "ExcludedDeviceNames: [");
697    for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) {
698        if (i != 0) {
699            dump.append(", ");
700        }
701        dump.append(mConfig.excludedDeviceNames.itemAt(i).string());
702    }
703    dump.append("]\n");
704    dump.appendFormat(INDENT2 "FilterTouchEvents: %s\n",
705            toString(mConfig.filterTouchEvents));
706    dump.appendFormat(INDENT2 "FilterJumpyTouchEvents: %s\n",
707            toString(mConfig.filterJumpyTouchEvents));
708    dump.appendFormat(INDENT2 "VirtualKeyQuietTime: %0.1fms\n",
709            mConfig.virtualKeyQuietTime * 0.000001f);
710
711    dump.appendFormat(INDENT2 "PointerVelocityControlParameters: "
712            "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
713            mConfig.pointerVelocityControlParameters.scale,
714            mConfig.pointerVelocityControlParameters.lowThreshold,
715            mConfig.pointerVelocityControlParameters.highThreshold,
716            mConfig.pointerVelocityControlParameters.acceleration);
717
718    dump.appendFormat(INDENT2 "WheelVelocityControlParameters: "
719            "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n",
720            mConfig.wheelVelocityControlParameters.scale,
721            mConfig.wheelVelocityControlParameters.lowThreshold,
722            mConfig.wheelVelocityControlParameters.highThreshold,
723            mConfig.wheelVelocityControlParameters.acceleration);
724
725    dump.appendFormat(INDENT2 "PointerGesture:\n");
726    dump.appendFormat(INDENT3 "QuietInterval: %0.1fms\n",
727            mConfig.pointerGestureQuietInterval * 0.000001f);
728    dump.appendFormat(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n",
729            mConfig.pointerGestureDragMinSwitchSpeed);
730    dump.appendFormat(INDENT3 "TapInterval: %0.1fms\n",
731            mConfig.pointerGestureTapInterval * 0.000001f);
732    dump.appendFormat(INDENT3 "TapDragInterval: %0.1fms\n",
733            mConfig.pointerGestureTapDragInterval * 0.000001f);
734    dump.appendFormat(INDENT3 "TapSlop: %0.1fpx\n",
735            mConfig.pointerGestureTapSlop);
736    dump.appendFormat(INDENT3 "MultitouchSettleInterval: %0.1fms\n",
737            mConfig.pointerGestureMultitouchSettleInterval * 0.000001f);
738    dump.appendFormat(INDENT3 "MultitouchMinDistance: %0.1fpx\n",
739            mConfig.pointerGestureMultitouchMinDistance);
740    dump.appendFormat(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n",
741            mConfig.pointerGestureSwipeTransitionAngleCosine);
742    dump.appendFormat(INDENT3 "SwipeMaxWidthRatio: %0.1f\n",
743            mConfig.pointerGestureSwipeMaxWidthRatio);
744    dump.appendFormat(INDENT3 "MovementSpeedRatio: %0.1f\n",
745            mConfig.pointerGestureMovementSpeedRatio);
746    dump.appendFormat(INDENT3 "ZoomSpeedRatio: %0.1f\n",
747            mConfig.pointerGestureZoomSpeedRatio);
748}
749
750
751// --- InputReaderThread ---
752
753InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
754        Thread(/*canCallJava*/ true), mReader(reader) {
755}
756
757InputReaderThread::~InputReaderThread() {
758}
759
760bool InputReaderThread::threadLoop() {
761    mReader->loopOnce();
762    return true;
763}
764
765
766// --- InputDevice ---
767
768InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
769        mContext(context), mId(id), mName(name), mSources(0), mIsExternal(false) {
770}
771
772InputDevice::~InputDevice() {
773    size_t numMappers = mMappers.size();
774    for (size_t i = 0; i < numMappers; i++) {
775        delete mMappers[i];
776    }
777    mMappers.clear();
778}
779
780void InputDevice::dump(String8& dump) {
781    InputDeviceInfo deviceInfo;
782    getDeviceInfo(& deviceInfo);
783
784    dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
785            deviceInfo.getName().string());
786    dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
787    dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
788    dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
789
790    const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
791    if (!ranges.isEmpty()) {
792        dump.append(INDENT2 "Motion Ranges:\n");
793        for (size_t i = 0; i < ranges.size(); i++) {
794            const InputDeviceInfo::MotionRange& range = ranges.itemAt(i);
795            const char* label = getAxisLabel(range.axis);
796            char name[32];
797            if (label) {
798                strncpy(name, label, sizeof(name));
799                name[sizeof(name) - 1] = '\0';
800            } else {
801                snprintf(name, sizeof(name), "%d", range.axis);
802            }
803            dump.appendFormat(INDENT3 "%s: source=0x%08x, "
804                    "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
805                    name, range.source, range.min, range.max, range.flat, range.fuzz);
806        }
807    }
808
809    size_t numMappers = mMappers.size();
810    for (size_t i = 0; i < numMappers; i++) {
811        InputMapper* mapper = mMappers[i];
812        mapper->dump(dump);
813    }
814}
815
816void InputDevice::addMapper(InputMapper* mapper) {
817    mMappers.add(mapper);
818}
819
820void InputDevice::configure() {
821    if (! isIgnored()) {
822        mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
823    }
824
825    mSources = 0;
826
827    size_t numMappers = mMappers.size();
828    for (size_t i = 0; i < numMappers; i++) {
829        InputMapper* mapper = mMappers[i];
830        mapper->configure();
831        mSources |= mapper->getSources();
832    }
833}
834
835void InputDevice::reset() {
836    size_t numMappers = mMappers.size();
837    for (size_t i = 0; i < numMappers; i++) {
838        InputMapper* mapper = mMappers[i];
839        mapper->reset();
840    }
841}
842
843void InputDevice::process(const RawEvent* rawEvents, size_t count) {
844    // Process all of the events in order for each mapper.
845    // We cannot simply ask each mapper to process them in bulk because mappers may
846    // have side-effects that must be interleaved.  For example, joystick movement events and
847    // gamepad button presses are handled by different mappers but they should be dispatched
848    // in the order received.
849    size_t numMappers = mMappers.size();
850    for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
851#if DEBUG_RAW_EVENTS
852        LOGD("Input event: device=%d type=0x%04x scancode=0x%04x "
853                "keycode=0x%04x value=0x%04x flags=0x%08x",
854                rawEvent->deviceId, rawEvent->type, rawEvent->scanCode, rawEvent->keyCode,
855                rawEvent->value, rawEvent->flags);
856#endif
857
858        for (size_t i = 0; i < numMappers; i++) {
859            InputMapper* mapper = mMappers[i];
860            mapper->process(rawEvent);
861        }
862    }
863}
864
865void InputDevice::timeoutExpired(nsecs_t when) {
866    size_t numMappers = mMappers.size();
867    for (size_t i = 0; i < numMappers; i++) {
868        InputMapper* mapper = mMappers[i];
869        mapper->timeoutExpired(when);
870    }
871}
872
873void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
874    outDeviceInfo->initialize(mId, mName);
875
876    size_t numMappers = mMappers.size();
877    for (size_t i = 0; i < numMappers; i++) {
878        InputMapper* mapper = mMappers[i];
879        mapper->populateDeviceInfo(outDeviceInfo);
880    }
881}
882
883int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
884    return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
885}
886
887int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
888    return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
889}
890
891int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
892    return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
893}
894
895int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
896    int32_t result = AKEY_STATE_UNKNOWN;
897    size_t numMappers = mMappers.size();
898    for (size_t i = 0; i < numMappers; i++) {
899        InputMapper* mapper = mMappers[i];
900        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
901            result = (mapper->*getStateFunc)(sourceMask, code);
902            if (result >= AKEY_STATE_DOWN) {
903                return result;
904            }
905        }
906    }
907    return result;
908}
909
910bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
911        const int32_t* keyCodes, uint8_t* outFlags) {
912    bool result = false;
913    size_t numMappers = mMappers.size();
914    for (size_t i = 0; i < numMappers; i++) {
915        InputMapper* mapper = mMappers[i];
916        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
917            result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
918        }
919    }
920    return result;
921}
922
923int32_t InputDevice::getMetaState() {
924    int32_t result = 0;
925    size_t numMappers = mMappers.size();
926    for (size_t i = 0; i < numMappers; i++) {
927        InputMapper* mapper = mMappers[i];
928        result |= mapper->getMetaState();
929    }
930    return result;
931}
932
933void InputDevice::fadePointer() {
934    size_t numMappers = mMappers.size();
935    for (size_t i = 0; i < numMappers; i++) {
936        InputMapper* mapper = mMappers[i];
937        mapper->fadePointer();
938    }
939}
940
941
942// --- InputMapper ---
943
944InputMapper::InputMapper(InputDevice* device) :
945        mDevice(device), mContext(device->getContext()) {
946}
947
948InputMapper::~InputMapper() {
949}
950
951void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
952    info->addSource(getSources());
953}
954
955void InputMapper::dump(String8& dump) {
956}
957
958void InputMapper::configure() {
959}
960
961void InputMapper::reset() {
962}
963
964void InputMapper::timeoutExpired(nsecs_t when) {
965}
966
967int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
968    return AKEY_STATE_UNKNOWN;
969}
970
971int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
972    return AKEY_STATE_UNKNOWN;
973}
974
975int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
976    return AKEY_STATE_UNKNOWN;
977}
978
979bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
980        const int32_t* keyCodes, uint8_t* outFlags) {
981    return false;
982}
983
984int32_t InputMapper::getMetaState() {
985    return 0;
986}
987
988void InputMapper::fadePointer() {
989}
990
991void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
992        const RawAbsoluteAxisInfo& axis, const char* name) {
993    if (axis.valid) {
994        dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n",
995                name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz);
996    } else {
997        dump.appendFormat(INDENT4 "%s: unknown range\n", name);
998    }
999}
1000
1001
1002// --- SwitchInputMapper ---
1003
1004SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
1005        InputMapper(device) {
1006}
1007
1008SwitchInputMapper::~SwitchInputMapper() {
1009}
1010
1011uint32_t SwitchInputMapper::getSources() {
1012    return AINPUT_SOURCE_SWITCH;
1013}
1014
1015void SwitchInputMapper::process(const RawEvent* rawEvent) {
1016    switch (rawEvent->type) {
1017    case EV_SW:
1018        processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
1019        break;
1020    }
1021}
1022
1023void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
1024    getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
1025}
1026
1027int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
1028    return getEventHub()->getSwitchState(getDeviceId(), switchCode);
1029}
1030
1031
1032// --- KeyboardInputMapper ---
1033
1034KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
1035        uint32_t source, int32_t keyboardType) :
1036        InputMapper(device), mSource(source),
1037        mKeyboardType(keyboardType) {
1038    initializeLocked();
1039}
1040
1041KeyboardInputMapper::~KeyboardInputMapper() {
1042}
1043
1044void KeyboardInputMapper::initializeLocked() {
1045    mLocked.metaState = AMETA_NONE;
1046    mLocked.downTime = 0;
1047}
1048
1049uint32_t KeyboardInputMapper::getSources() {
1050    return mSource;
1051}
1052
1053void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1054    InputMapper::populateDeviceInfo(info);
1055
1056    info->setKeyboardType(mKeyboardType);
1057}
1058
1059void KeyboardInputMapper::dump(String8& dump) {
1060    { // acquire lock
1061        AutoMutex _l(mLock);
1062        dump.append(INDENT2 "Keyboard Input Mapper:\n");
1063        dumpParameters(dump);
1064        dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
1065        dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
1066        dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
1067        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
1068    } // release lock
1069}
1070
1071
1072void KeyboardInputMapper::configure() {
1073    InputMapper::configure();
1074
1075    // Configure basic parameters.
1076    configureParameters();
1077
1078    // Reset LEDs.
1079    {
1080        AutoMutex _l(mLock);
1081        resetLedStateLocked();
1082    }
1083}
1084
1085void KeyboardInputMapper::configureParameters() {
1086    mParameters.orientationAware = false;
1087    getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
1088            mParameters.orientationAware);
1089
1090    mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1;
1091}
1092
1093void KeyboardInputMapper::dumpParameters(String8& dump) {
1094    dump.append(INDENT3 "Parameters:\n");
1095    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1096            mParameters.associatedDisplayId);
1097    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1098            toString(mParameters.orientationAware));
1099}
1100
1101void KeyboardInputMapper::reset() {
1102    for (;;) {
1103        int32_t keyCode, scanCode;
1104        { // acquire lock
1105            AutoMutex _l(mLock);
1106
1107            // Synthesize key up event on reset if keys are currently down.
1108            if (mLocked.keyDowns.isEmpty()) {
1109                initializeLocked();
1110                resetLedStateLocked();
1111                break; // done
1112            }
1113
1114            const KeyDown& keyDown = mLocked.keyDowns.top();
1115            keyCode = keyDown.keyCode;
1116            scanCode = keyDown.scanCode;
1117        } // release lock
1118
1119        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
1120        processKey(when, false, keyCode, scanCode, 0);
1121    }
1122
1123    InputMapper::reset();
1124    getContext()->updateGlobalMetaState();
1125}
1126
1127void KeyboardInputMapper::process(const RawEvent* rawEvent) {
1128    switch (rawEvent->type) {
1129    case EV_KEY: {
1130        int32_t scanCode = rawEvent->scanCode;
1131        if (isKeyboardOrGamepadKey(scanCode)) {
1132            processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
1133                    rawEvent->flags);
1134        }
1135        break;
1136    }
1137    }
1138}
1139
1140bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
1141    return scanCode < BTN_MOUSE
1142        || scanCode >= KEY_OK
1143        || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE)
1144        || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
1145}
1146
1147void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
1148        int32_t scanCode, uint32_t policyFlags) {
1149    int32_t newMetaState;
1150    nsecs_t downTime;
1151    bool metaStateChanged = false;
1152
1153    { // acquire lock
1154        AutoMutex _l(mLock);
1155
1156        if (down) {
1157            // Rotate key codes according to orientation if needed.
1158            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1159            if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
1160                int32_t orientation;
1161                if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1162                        NULL, NULL, & orientation)) {
1163                    orientation = DISPLAY_ORIENTATION_0;
1164                }
1165
1166                keyCode = rotateKeyCode(keyCode, orientation);
1167            }
1168
1169            // Add key down.
1170            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
1171            if (keyDownIndex >= 0) {
1172                // key repeat, be sure to use same keycode as before in case of rotation
1173                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
1174            } else {
1175                // key down
1176                if ((policyFlags & POLICY_FLAG_VIRTUAL)
1177                        && mContext->shouldDropVirtualKey(when,
1178                                getDevice(), keyCode, scanCode)) {
1179                    return;
1180                }
1181
1182                mLocked.keyDowns.push();
1183                KeyDown& keyDown = mLocked.keyDowns.editTop();
1184                keyDown.keyCode = keyCode;
1185                keyDown.scanCode = scanCode;
1186            }
1187
1188            mLocked.downTime = when;
1189        } else {
1190            // Remove key down.
1191            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
1192            if (keyDownIndex >= 0) {
1193                // key up, be sure to use same keycode as before in case of rotation
1194                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
1195                mLocked.keyDowns.removeAt(size_t(keyDownIndex));
1196            } else {
1197                // key was not actually down
1198                LOGI("Dropping key up from device %s because the key was not down.  "
1199                        "keyCode=%d, scanCode=%d",
1200                        getDeviceName().string(), keyCode, scanCode);
1201                return;
1202            }
1203        }
1204
1205        int32_t oldMetaState = mLocked.metaState;
1206        newMetaState = updateMetaState(keyCode, down, oldMetaState);
1207        if (oldMetaState != newMetaState) {
1208            mLocked.metaState = newMetaState;
1209            metaStateChanged = true;
1210            updateLedStateLocked(false);
1211        }
1212
1213        downTime = mLocked.downTime;
1214    } // release lock
1215
1216    // Key down on external an keyboard should wake the device.
1217    // We don't do this for internal keyboards to prevent them from waking up in your pocket.
1218    // For internal keyboards, the key layout file should specify the policy flags for
1219    // each wake key individually.
1220    // TODO: Use the input device configuration to control this behavior more finely.
1221    if (down && getDevice()->isExternal()
1222            && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
1223        policyFlags |= POLICY_FLAG_WAKE_DROPPED;
1224    }
1225
1226    if (metaStateChanged) {
1227        getContext()->updateGlobalMetaState();
1228    }
1229
1230    if (down && !isMetaKey(keyCode)) {
1231        getContext()->fadePointer();
1232    }
1233
1234    getDispatcher()->notifyKey(when, getDeviceId(), mSource, policyFlags,
1235            down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
1236            AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
1237}
1238
1239ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
1240    size_t n = mLocked.keyDowns.size();
1241    for (size_t i = 0; i < n; i++) {
1242        if (mLocked.keyDowns[i].scanCode == scanCode) {
1243            return i;
1244        }
1245    }
1246    return -1;
1247}
1248
1249int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
1250    return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
1251}
1252
1253int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1254    return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1255}
1256
1257bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
1258        const int32_t* keyCodes, uint8_t* outFlags) {
1259    return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
1260}
1261
1262int32_t KeyboardInputMapper::getMetaState() {
1263    { // acquire lock
1264        AutoMutex _l(mLock);
1265        return mLocked.metaState;
1266    } // release lock
1267}
1268
1269void KeyboardInputMapper::resetLedStateLocked() {
1270    initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL);
1271    initializeLedStateLocked(mLocked.numLockLedState, LED_NUML);
1272    initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL);
1273
1274    updateLedStateLocked(true);
1275}
1276
1277void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) {
1278    ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
1279    ledState.on = false;
1280}
1281
1282void KeyboardInputMapper::updateLedStateLocked(bool reset) {
1283    updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL,
1284            AMETA_CAPS_LOCK_ON, reset);
1285    updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML,
1286            AMETA_NUM_LOCK_ON, reset);
1287    updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL,
1288            AMETA_SCROLL_LOCK_ON, reset);
1289}
1290
1291void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState,
1292        int32_t led, int32_t modifier, bool reset) {
1293    if (ledState.avail) {
1294        bool desiredState = (mLocked.metaState & modifier) != 0;
1295        if (reset || ledState.on != desiredState) {
1296            getEventHub()->setLedState(getDeviceId(), led, desiredState);
1297            ledState.on = desiredState;
1298        }
1299    }
1300}
1301
1302
1303// --- CursorInputMapper ---
1304
1305CursorInputMapper::CursorInputMapper(InputDevice* device) :
1306        InputMapper(device) {
1307    initializeLocked();
1308}
1309
1310CursorInputMapper::~CursorInputMapper() {
1311}
1312
1313uint32_t CursorInputMapper::getSources() {
1314    return mSource;
1315}
1316
1317void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1318    InputMapper::populateDeviceInfo(info);
1319
1320    if (mParameters.mode == Parameters::MODE_POINTER) {
1321        float minX, minY, maxX, maxY;
1322        if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1323            info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f);
1324            info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f);
1325        }
1326    } else {
1327        info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale);
1328        info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale);
1329    }
1330    info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f);
1331
1332    if (mHaveVWheel) {
1333        info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
1334    }
1335    if (mHaveHWheel) {
1336        info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
1337    }
1338}
1339
1340void CursorInputMapper::dump(String8& dump) {
1341    { // acquire lock
1342        AutoMutex _l(mLock);
1343        dump.append(INDENT2 "Cursor Input Mapper:\n");
1344        dumpParameters(dump);
1345        dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
1346        dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
1347        dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
1348        dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
1349        dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mHaveVWheel));
1350        dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mHaveHWheel));
1351        dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
1352        dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
1353        dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mLocked.buttonState);
1354        dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mLocked.buttonState)));
1355        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
1356    } // release lock
1357}
1358
1359void CursorInputMapper::configure() {
1360    InputMapper::configure();
1361
1362    // Configure basic parameters.
1363    configureParameters();
1364
1365    // Configure device mode.
1366    switch (mParameters.mode) {
1367    case Parameters::MODE_POINTER:
1368        mSource = AINPUT_SOURCE_MOUSE;
1369        mXPrecision = 1.0f;
1370        mYPrecision = 1.0f;
1371        mXScale = 1.0f;
1372        mYScale = 1.0f;
1373        mPointerController = getPolicy()->obtainPointerController(getDeviceId());
1374        break;
1375    case Parameters::MODE_NAVIGATION:
1376        mSource = AINPUT_SOURCE_TRACKBALL;
1377        mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1378        mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1379        mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1380        mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1381        break;
1382    }
1383
1384    mVWheelScale = 1.0f;
1385    mHWheelScale = 1.0f;
1386
1387    mHaveVWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_WHEEL);
1388    mHaveHWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_HWHEEL);
1389
1390    mPointerVelocityControl.setParameters(getConfig()->pointerVelocityControlParameters);
1391    mWheelXVelocityControl.setParameters(getConfig()->wheelVelocityControlParameters);
1392    mWheelYVelocityControl.setParameters(getConfig()->wheelVelocityControlParameters);
1393}
1394
1395void CursorInputMapper::configureParameters() {
1396    mParameters.mode = Parameters::MODE_POINTER;
1397    String8 cursorModeString;
1398    if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
1399        if (cursorModeString == "navigation") {
1400            mParameters.mode = Parameters::MODE_NAVIGATION;
1401        } else if (cursorModeString != "pointer" && cursorModeString != "default") {
1402            LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
1403        }
1404    }
1405
1406    mParameters.orientationAware = false;
1407    getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
1408            mParameters.orientationAware);
1409
1410    mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER
1411            || mParameters.orientationAware ? 0 : -1;
1412}
1413
1414void CursorInputMapper::dumpParameters(String8& dump) {
1415    dump.append(INDENT3 "Parameters:\n");
1416    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1417            mParameters.associatedDisplayId);
1418
1419    switch (mParameters.mode) {
1420    case Parameters::MODE_POINTER:
1421        dump.append(INDENT4 "Mode: pointer\n");
1422        break;
1423    case Parameters::MODE_NAVIGATION:
1424        dump.append(INDENT4 "Mode: navigation\n");
1425        break;
1426    default:
1427        assert(false);
1428    }
1429
1430    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1431            toString(mParameters.orientationAware));
1432}
1433
1434void CursorInputMapper::initializeLocked() {
1435    mAccumulator.clear();
1436
1437    mLocked.buttonState = 0;
1438    mLocked.downTime = 0;
1439}
1440
1441void CursorInputMapper::reset() {
1442    for (;;) {
1443        uint32_t buttonState;
1444        { // acquire lock
1445            AutoMutex _l(mLock);
1446
1447            buttonState = mLocked.buttonState;
1448            if (!buttonState) {
1449                initializeLocked();
1450                break; // done
1451            }
1452        } // release lock
1453
1454        // Reset velocity.
1455        mPointerVelocityControl.reset();
1456        mWheelXVelocityControl.reset();
1457        mWheelYVelocityControl.reset();
1458
1459        // Synthesize button up event on reset.
1460        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
1461        mAccumulator.clear();
1462        mAccumulator.buttonDown = 0;
1463        mAccumulator.buttonUp = buttonState;
1464        mAccumulator.fields = Accumulator::FIELD_BUTTONS;
1465        sync(when);
1466    }
1467
1468    InputMapper::reset();
1469}
1470
1471void CursorInputMapper::process(const RawEvent* rawEvent) {
1472    switch (rawEvent->type) {
1473    case EV_KEY: {
1474        uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
1475        if (buttonState) {
1476            if (rawEvent->value) {
1477                mAccumulator.buttonDown = buttonState;
1478                mAccumulator.buttonUp = 0;
1479            } else {
1480                mAccumulator.buttonDown = 0;
1481                mAccumulator.buttonUp = buttonState;
1482            }
1483            mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
1484
1485            // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
1486            // we need to ensure that we report the up/down promptly.
1487            sync(rawEvent->when);
1488            break;
1489        }
1490        break;
1491    }
1492
1493    case EV_REL:
1494        switch (rawEvent->scanCode) {
1495        case REL_X:
1496            mAccumulator.fields |= Accumulator::FIELD_REL_X;
1497            mAccumulator.relX = rawEvent->value;
1498            break;
1499        case REL_Y:
1500            mAccumulator.fields |= Accumulator::FIELD_REL_Y;
1501            mAccumulator.relY = rawEvent->value;
1502            break;
1503        case REL_WHEEL:
1504            mAccumulator.fields |= Accumulator::FIELD_REL_WHEEL;
1505            mAccumulator.relWheel = rawEvent->value;
1506            break;
1507        case REL_HWHEEL:
1508            mAccumulator.fields |= Accumulator::FIELD_REL_HWHEEL;
1509            mAccumulator.relHWheel = rawEvent->value;
1510            break;
1511        }
1512        break;
1513
1514    case EV_SYN:
1515        switch (rawEvent->scanCode) {
1516        case SYN_REPORT:
1517            sync(rawEvent->when);
1518            break;
1519        }
1520        break;
1521    }
1522}
1523
1524void CursorInputMapper::sync(nsecs_t when) {
1525    uint32_t fields = mAccumulator.fields;
1526    if (fields == 0) {
1527        return; // no new state changes, so nothing to do
1528    }
1529
1530    int32_t motionEventAction;
1531    int32_t motionEventEdgeFlags;
1532    PointerCoords pointerCoords;
1533    nsecs_t downTime;
1534    float vscroll, hscroll;
1535    { // acquire lock
1536        AutoMutex _l(mLock);
1537
1538        bool down, downChanged;
1539        bool wasDown = isPointerDown(mLocked.buttonState);
1540        bool buttonsChanged = fields & Accumulator::FIELD_BUTTONS;
1541        if (buttonsChanged) {
1542            mLocked.buttonState = (mLocked.buttonState | mAccumulator.buttonDown)
1543                    & ~mAccumulator.buttonUp;
1544
1545            down = isPointerDown(mLocked.buttonState);
1546
1547            if (!wasDown && down) {
1548                mLocked.downTime = when;
1549                downChanged = true;
1550            } else if (wasDown && !down) {
1551                downChanged = true;
1552            } else {
1553                downChanged = false;
1554            }
1555        } else {
1556            down = wasDown;
1557            downChanged = false;
1558        }
1559
1560        downTime = mLocked.downTime;
1561        float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
1562        float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;
1563
1564        if (downChanged) {
1565            motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
1566        } else if (down || mPointerController == NULL) {
1567            motionEventAction = AMOTION_EVENT_ACTION_MOVE;
1568        } else {
1569            motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
1570        }
1571
1572        if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
1573                && (deltaX != 0.0f || deltaY != 0.0f)) {
1574            // Rotate motion based on display orientation if needed.
1575            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1576            int32_t orientation;
1577            if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1578                    NULL, NULL, & orientation)) {
1579                orientation = DISPLAY_ORIENTATION_0;
1580            }
1581
1582            float temp;
1583            switch (orientation) {
1584            case DISPLAY_ORIENTATION_90:
1585                temp = deltaX;
1586                deltaX = deltaY;
1587                deltaY = -temp;
1588                break;
1589
1590            case DISPLAY_ORIENTATION_180:
1591                deltaX = -deltaX;
1592                deltaY = -deltaY;
1593                break;
1594
1595            case DISPLAY_ORIENTATION_270:
1596                temp = deltaX;
1597                deltaX = -deltaY;
1598                deltaY = temp;
1599                break;
1600            }
1601        }
1602
1603        pointerCoords.clear();
1604
1605        motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
1606
1607        if (mHaveVWheel && (fields & Accumulator::FIELD_REL_WHEEL)) {
1608            vscroll = mAccumulator.relWheel;
1609        } else {
1610            vscroll = 0;
1611        }
1612        mWheelYVelocityControl.move(when, NULL, &vscroll);
1613
1614        if (mHaveHWheel && (fields & Accumulator::FIELD_REL_HWHEEL)) {
1615            hscroll = mAccumulator.relHWheel;
1616        } else {
1617            hscroll = 0;
1618        }
1619        mWheelXVelocityControl.move(when, &hscroll, NULL);
1620
1621        mPointerVelocityControl.move(when, &deltaX, &deltaY);
1622
1623        if (mPointerController != NULL) {
1624            if (deltaX != 0 || deltaY != 0 || vscroll != 0 || hscroll != 0
1625                    || buttonsChanged) {
1626                mPointerController->setPresentation(
1627                        PointerControllerInterface::PRESENTATION_POINTER);
1628
1629                if (deltaX != 0 || deltaY != 0) {
1630                    mPointerController->move(deltaX, deltaY);
1631                }
1632
1633                if (buttonsChanged) {
1634                    mPointerController->setButtonState(mLocked.buttonState);
1635                }
1636
1637                mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
1638            }
1639
1640            float x, y;
1641            mPointerController->getPosition(&x, &y);
1642            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
1643            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
1644
1645            if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
1646                motionEventEdgeFlags = calculateEdgeFlagsUsingPointerBounds(
1647                        mPointerController, x, y);
1648            }
1649        } else {
1650            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
1651            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
1652        }
1653
1654        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f);
1655    } // release lock
1656
1657    // Moving an external trackball or mouse should wake the device.
1658    // We don't do this for internal cursor devices to prevent them from waking up
1659    // the device in your pocket.
1660    // TODO: Use the input device configuration to control this behavior more finely.
1661    uint32_t policyFlags = 0;
1662    if (getDevice()->isExternal()) {
1663        policyFlags |= POLICY_FLAG_WAKE_DROPPED;
1664    }
1665
1666    int32_t metaState = mContext->getGlobalMetaState();
1667    int32_t pointerId = 0;
1668    getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
1669            motionEventAction, 0, metaState, motionEventEdgeFlags,
1670            1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1671
1672    mAccumulator.clear();
1673
1674    if (vscroll != 0 || hscroll != 0) {
1675        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
1676        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
1677
1678        getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
1679                AMOTION_EVENT_ACTION_SCROLL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
1680                1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1681    }
1682}
1683
1684int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1685    if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
1686        return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1687    } else {
1688        return AKEY_STATE_UNKNOWN;
1689    }
1690}
1691
1692void CursorInputMapper::fadePointer() {
1693    { // acquire lock
1694        AutoMutex _l(mLock);
1695        if (mPointerController != NULL) {
1696            mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
1697        }
1698    } // release lock
1699}
1700
1701
1702// --- TouchInputMapper ---
1703
1704TouchInputMapper::TouchInputMapper(InputDevice* device) :
1705        InputMapper(device) {
1706    mConfig = getConfig();
1707
1708    mLocked.surfaceOrientation = -1;
1709    mLocked.surfaceWidth = -1;
1710    mLocked.surfaceHeight = -1;
1711
1712    initializeLocked();
1713}
1714
1715TouchInputMapper::~TouchInputMapper() {
1716}
1717
1718uint32_t TouchInputMapper::getSources() {
1719    return mTouchSource | mPointerSource;
1720}
1721
1722void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1723    InputMapper::populateDeviceInfo(info);
1724
1725    { // acquire lock
1726        AutoMutex _l(mLock);
1727
1728        // Ensure surface information is up to date so that orientation changes are
1729        // noticed immediately.
1730        if (!configureSurfaceLocked()) {
1731            return;
1732        }
1733
1734        info->addMotionRange(mLocked.orientedRanges.x);
1735        info->addMotionRange(mLocked.orientedRanges.y);
1736
1737        if (mLocked.orientedRanges.havePressure) {
1738            info->addMotionRange(mLocked.orientedRanges.pressure);
1739        }
1740
1741        if (mLocked.orientedRanges.haveSize) {
1742            info->addMotionRange(mLocked.orientedRanges.size);
1743        }
1744
1745        if (mLocked.orientedRanges.haveTouchSize) {
1746            info->addMotionRange(mLocked.orientedRanges.touchMajor);
1747            info->addMotionRange(mLocked.orientedRanges.touchMinor);
1748        }
1749
1750        if (mLocked.orientedRanges.haveToolSize) {
1751            info->addMotionRange(mLocked.orientedRanges.toolMajor);
1752            info->addMotionRange(mLocked.orientedRanges.toolMinor);
1753        }
1754
1755        if (mLocked.orientedRanges.haveOrientation) {
1756            info->addMotionRange(mLocked.orientedRanges.orientation);
1757        }
1758
1759        if (mPointerController != NULL) {
1760            float minX, minY, maxX, maxY;
1761            if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1762                info->addMotionRange(AMOTION_EVENT_AXIS_X, mPointerSource,
1763                        minX, maxX, 0.0f, 0.0f);
1764                info->addMotionRange(AMOTION_EVENT_AXIS_Y, mPointerSource,
1765                        minY, maxY, 0.0f, 0.0f);
1766            }
1767            info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mPointerSource,
1768                    0.0f, 1.0f, 0.0f, 0.0f);
1769        }
1770    } // release lock
1771}
1772
1773void TouchInputMapper::dump(String8& dump) {
1774    { // acquire lock
1775        AutoMutex _l(mLock);
1776        dump.append(INDENT2 "Touch Input Mapper:\n");
1777        dumpParameters(dump);
1778        dumpVirtualKeysLocked(dump);
1779        dumpRawAxes(dump);
1780        dumpCalibration(dump);
1781        dumpSurfaceLocked(dump);
1782
1783        dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
1784        dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
1785        dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
1786        dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
1787        dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
1788        dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
1789        dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
1790        dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
1791        dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
1792        dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
1793        dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
1794        dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
1795        dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mLocked.orientationScale);
1796
1797        dump.appendFormat(INDENT3 "Last Touch:\n");
1798        dump.appendFormat(INDENT4 "Pointer Count: %d\n", mLastTouch.pointerCount);
1799        dump.appendFormat(INDENT4 "Button State: 0x%08x\n", mLastTouch.buttonState);
1800
1801        if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
1802            dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n");
1803            dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n",
1804                    mLocked.pointerGestureXMovementScale);
1805            dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n",
1806                    mLocked.pointerGestureYMovementScale);
1807            dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n",
1808                    mLocked.pointerGestureXZoomScale);
1809            dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n",
1810                    mLocked.pointerGestureYZoomScale);
1811            dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n",
1812                    mLocked.pointerGestureMaxSwipeWidth);
1813        }
1814    } // release lock
1815}
1816
1817void TouchInputMapper::initializeLocked() {
1818    mCurrentTouch.clear();
1819    mLastTouch.clear();
1820    mDownTime = 0;
1821
1822    for (uint32_t i = 0; i < MAX_POINTERS; i++) {
1823        mAveragingTouchFilter.historyStart[i] = 0;
1824        mAveragingTouchFilter.historyEnd[i] = 0;
1825    }
1826
1827    mJumpyTouchFilter.jumpyPointsDropped = 0;
1828
1829    mLocked.currentVirtualKey.down = false;
1830
1831    mLocked.orientedRanges.havePressure = false;
1832    mLocked.orientedRanges.haveSize = false;
1833    mLocked.orientedRanges.haveTouchSize = false;
1834    mLocked.orientedRanges.haveToolSize = false;
1835    mLocked.orientedRanges.haveOrientation = false;
1836
1837    mPointerGesture.reset();
1838    mPointerGesture.pointerVelocityControl.setParameters(mConfig->pointerVelocityControlParameters);
1839}
1840
1841void TouchInputMapper::configure() {
1842    InputMapper::configure();
1843
1844    // Configure basic parameters.
1845    configureParameters();
1846
1847    // Configure sources.
1848    switch (mParameters.deviceType) {
1849    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1850        mTouchSource = AINPUT_SOURCE_TOUCHSCREEN;
1851        mPointerSource = 0;
1852        break;
1853    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1854        mTouchSource = AINPUT_SOURCE_TOUCHPAD;
1855        mPointerSource = 0;
1856        break;
1857    case Parameters::DEVICE_TYPE_POINTER:
1858        mTouchSource = AINPUT_SOURCE_TOUCHPAD;
1859        mPointerSource = AINPUT_SOURCE_MOUSE;
1860        break;
1861    default:
1862        assert(false);
1863    }
1864
1865    // Configure absolute axis information.
1866    configureRawAxes();
1867
1868    // Prepare input device calibration.
1869    parseCalibration();
1870    resolveCalibration();
1871
1872    { // acquire lock
1873        AutoMutex _l(mLock);
1874
1875         // Configure surface dimensions and orientation.
1876        configureSurfaceLocked();
1877    } // release lock
1878}
1879
1880void TouchInputMapper::configureParameters() {
1881    mParameters.useBadTouchFilter = mConfig->filterTouchEvents;
1882    mParameters.useAveragingTouchFilter = mConfig->filterTouchEvents;
1883    mParameters.useJumpyTouchFilter = mConfig->filterJumpyTouchEvents;
1884
1885    // TODO: select the default gesture mode based on whether the device supports
1886    // distinct multitouch
1887    mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS;
1888
1889    String8 gestureModeString;
1890    if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"),
1891            gestureModeString)) {
1892        if (gestureModeString == "pointer") {
1893            mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER;
1894        } else if (gestureModeString == "spots") {
1895            mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS;
1896        } else if (gestureModeString != "default") {
1897            LOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string());
1898        }
1899    }
1900
1901    if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X)
1902            || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) {
1903        // The device is a cursor device with a touch pad attached.
1904        // By default don't use the touch pad to move the pointer.
1905        mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
1906    } else {
1907        // The device is just a touch pad.
1908        // By default use the touch pad to move the pointer and to perform related gestures.
1909        mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
1910    }
1911
1912    String8 deviceTypeString;
1913    if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
1914            deviceTypeString)) {
1915        if (deviceTypeString == "touchScreen") {
1916            mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1917        } else if (deviceTypeString == "touchPad") {
1918            mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
1919        } else if (deviceTypeString == "pointer") {
1920            mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
1921        } else if (deviceTypeString != "default") {
1922            LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
1923        }
1924    }
1925
1926    mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1927    getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
1928            mParameters.orientationAware);
1929
1930    mParameters.associatedDisplayId = mParameters.orientationAware
1931            || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
1932            || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
1933            ? 0 : -1;
1934}
1935
1936void TouchInputMapper::dumpParameters(String8& dump) {
1937    dump.append(INDENT3 "Parameters:\n");
1938
1939    switch (mParameters.gestureMode) {
1940    case Parameters::GESTURE_MODE_POINTER:
1941        dump.append(INDENT4 "GestureMode: pointer\n");
1942        break;
1943    case Parameters::GESTURE_MODE_SPOTS:
1944        dump.append(INDENT4 "GestureMode: spots\n");
1945        break;
1946    default:
1947        assert(false);
1948    }
1949
1950    switch (mParameters.deviceType) {
1951    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1952        dump.append(INDENT4 "DeviceType: touchScreen\n");
1953        break;
1954    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1955        dump.append(INDENT4 "DeviceType: touchPad\n");
1956        break;
1957    case Parameters::DEVICE_TYPE_POINTER:
1958        dump.append(INDENT4 "DeviceType: pointer\n");
1959        break;
1960    default:
1961        assert(false);
1962    }
1963
1964    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1965            mParameters.associatedDisplayId);
1966    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1967            toString(mParameters.orientationAware));
1968
1969    dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n",
1970            toString(mParameters.useBadTouchFilter));
1971    dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n",
1972            toString(mParameters.useAveragingTouchFilter));
1973    dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n",
1974            toString(mParameters.useJumpyTouchFilter));
1975}
1976
1977void TouchInputMapper::configureRawAxes() {
1978    mRawAxes.x.clear();
1979    mRawAxes.y.clear();
1980    mRawAxes.pressure.clear();
1981    mRawAxes.touchMajor.clear();
1982    mRawAxes.touchMinor.clear();
1983    mRawAxes.toolMajor.clear();
1984    mRawAxes.toolMinor.clear();
1985    mRawAxes.orientation.clear();
1986}
1987
1988void TouchInputMapper::dumpRawAxes(String8& dump) {
1989    dump.append(INDENT3 "Raw Axes:\n");
1990    dumpRawAbsoluteAxisInfo(dump, mRawAxes.x, "X");
1991    dumpRawAbsoluteAxisInfo(dump, mRawAxes.y, "Y");
1992    dumpRawAbsoluteAxisInfo(dump, mRawAxes.pressure, "Pressure");
1993    dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
1994    dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
1995    dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
1996    dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
1997    dumpRawAbsoluteAxisInfo(dump, mRawAxes.orientation, "Orientation");
1998}
1999
2000bool TouchInputMapper::configureSurfaceLocked() {
2001    // Ensure we have valid X and Y axes.
2002    if (!mRawAxes.x.valid || !mRawAxes.y.valid) {
2003        LOGW(INDENT "Touch device '%s' did not report support for X or Y axis!  "
2004                "The device will be inoperable.", getDeviceName().string());
2005        return false;
2006    }
2007
2008    // Update orientation and dimensions if needed.
2009    int32_t orientation = DISPLAY_ORIENTATION_0;
2010    int32_t width = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
2011    int32_t height = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
2012
2013    if (mParameters.associatedDisplayId >= 0) {
2014        // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
2015        if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
2016                &mLocked.associatedDisplayWidth, &mLocked.associatedDisplayHeight,
2017                &mLocked.associatedDisplayOrientation)) {
2018            return false;
2019        }
2020
2021        // A touch screen inherits the dimensions of the display.
2022        if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
2023            width = mLocked.associatedDisplayWidth;
2024            height = mLocked.associatedDisplayHeight;
2025        }
2026
2027        // The device inherits the orientation of the display if it is orientation aware.
2028        if (mParameters.orientationAware) {
2029            orientation = mLocked.associatedDisplayOrientation;
2030        }
2031    }
2032
2033    if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
2034            && mPointerController == NULL) {
2035        mPointerController = getPolicy()->obtainPointerController(getDeviceId());
2036    }
2037
2038    bool orientationChanged = mLocked.surfaceOrientation != orientation;
2039    if (orientationChanged) {
2040        mLocked.surfaceOrientation = orientation;
2041    }
2042
2043    bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
2044    if (sizeChanged) {
2045        LOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d",
2046                getDeviceId(), getDeviceName().string(), width, height);
2047
2048        mLocked.surfaceWidth = width;
2049        mLocked.surfaceHeight = height;
2050
2051        // Configure X and Y factors.
2052        mLocked.xScale = float(width) / (mRawAxes.x.maxValue - mRawAxes.x.minValue + 1);
2053        mLocked.yScale = float(height) / (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1);
2054        mLocked.xPrecision = 1.0f / mLocked.xScale;
2055        mLocked.yPrecision = 1.0f / mLocked.yScale;
2056
2057        mLocked.orientedRanges.x.axis = AMOTION_EVENT_AXIS_X;
2058        mLocked.orientedRanges.x.source = mTouchSource;
2059        mLocked.orientedRanges.y.axis = AMOTION_EVENT_AXIS_Y;
2060        mLocked.orientedRanges.y.source = mTouchSource;
2061
2062        configureVirtualKeysLocked();
2063
2064        // Scale factor for terms that are not oriented in a particular axis.
2065        // If the pixels are square then xScale == yScale otherwise we fake it
2066        // by choosing an average.
2067        mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);
2068
2069        // Size of diagonal axis.
2070        float diagonalSize = hypotf(width, height);
2071
2072        // TouchMajor and TouchMinor factors.
2073        if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
2074            mLocked.orientedRanges.haveTouchSize = true;
2075
2076            mLocked.orientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR;
2077            mLocked.orientedRanges.touchMajor.source = mTouchSource;
2078            mLocked.orientedRanges.touchMajor.min = 0;
2079            mLocked.orientedRanges.touchMajor.max = diagonalSize;
2080            mLocked.orientedRanges.touchMajor.flat = 0;
2081            mLocked.orientedRanges.touchMajor.fuzz = 0;
2082
2083            mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
2084            mLocked.orientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR;
2085        }
2086
2087        // ToolMajor and ToolMinor factors.
2088        mLocked.toolSizeLinearScale = 0;
2089        mLocked.toolSizeLinearBias = 0;
2090        mLocked.toolSizeAreaScale = 0;
2091        mLocked.toolSizeAreaBias = 0;
2092        if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
2093            if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
2094                if (mCalibration.haveToolSizeLinearScale) {
2095                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
2096                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
2097                    mLocked.toolSizeLinearScale = float(min(width, height))
2098                            / mRawAxes.toolMajor.maxValue;
2099                }
2100
2101                if (mCalibration.haveToolSizeLinearBias) {
2102                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
2103                }
2104            } else if (mCalibration.toolSizeCalibration ==
2105                    Calibration::TOOL_SIZE_CALIBRATION_AREA) {
2106                if (mCalibration.haveToolSizeLinearScale) {
2107                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
2108                } else {
2109                    mLocked.toolSizeLinearScale = min(width, height);
2110                }
2111
2112                if (mCalibration.haveToolSizeLinearBias) {
2113                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
2114                }
2115
2116                if (mCalibration.haveToolSizeAreaScale) {
2117                    mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
2118                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
2119                    mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
2120                }
2121
2122                if (mCalibration.haveToolSizeAreaBias) {
2123                    mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
2124                }
2125            }
2126
2127            mLocked.orientedRanges.haveToolSize = true;
2128
2129            mLocked.orientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR;
2130            mLocked.orientedRanges.toolMajor.source = mTouchSource;
2131            mLocked.orientedRanges.toolMajor.min = 0;
2132            mLocked.orientedRanges.toolMajor.max = diagonalSize;
2133            mLocked.orientedRanges.toolMajor.flat = 0;
2134            mLocked.orientedRanges.toolMajor.fuzz = 0;
2135
2136            mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
2137            mLocked.orientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR;
2138        }
2139
2140        // Pressure factors.
2141        mLocked.pressureScale = 0;
2142        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
2143            RawAbsoluteAxisInfo rawPressureAxis;
2144            switch (mCalibration.pressureSource) {
2145            case Calibration::PRESSURE_SOURCE_PRESSURE:
2146                rawPressureAxis = mRawAxes.pressure;
2147                break;
2148            case Calibration::PRESSURE_SOURCE_TOUCH:
2149                rawPressureAxis = mRawAxes.touchMajor;
2150                break;
2151            default:
2152                rawPressureAxis.clear();
2153            }
2154
2155            if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
2156                    || mCalibration.pressureCalibration
2157                            == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
2158                if (mCalibration.havePressureScale) {
2159                    mLocked.pressureScale = mCalibration.pressureScale;
2160                } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
2161                    mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
2162                }
2163            }
2164
2165            mLocked.orientedRanges.havePressure = true;
2166
2167            mLocked.orientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE;
2168            mLocked.orientedRanges.pressure.source = mTouchSource;
2169            mLocked.orientedRanges.pressure.min = 0;
2170            mLocked.orientedRanges.pressure.max = 1.0;
2171            mLocked.orientedRanges.pressure.flat = 0;
2172            mLocked.orientedRanges.pressure.fuzz = 0;
2173        }
2174
2175        // Size factors.
2176        mLocked.sizeScale = 0;
2177        if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
2178            if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
2179                if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
2180                    mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
2181                }
2182            }
2183
2184            mLocked.orientedRanges.haveSize = true;
2185
2186            mLocked.orientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE;
2187            mLocked.orientedRanges.size.source = mTouchSource;
2188            mLocked.orientedRanges.size.min = 0;
2189            mLocked.orientedRanges.size.max = 1.0;
2190            mLocked.orientedRanges.size.flat = 0;
2191            mLocked.orientedRanges.size.fuzz = 0;
2192        }
2193
2194        // Orientation
2195        mLocked.orientationScale = 0;
2196        if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
2197            if (mCalibration.orientationCalibration
2198                    == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
2199                if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
2200                    mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
2201                }
2202            }
2203
2204            mLocked.orientedRanges.haveOrientation = true;
2205
2206            mLocked.orientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
2207            mLocked.orientedRanges.orientation.source = mTouchSource;
2208            mLocked.orientedRanges.orientation.min = - M_PI_2;
2209            mLocked.orientedRanges.orientation.max = M_PI_2;
2210            mLocked.orientedRanges.orientation.flat = 0;
2211            mLocked.orientedRanges.orientation.fuzz = 0;
2212        }
2213    }
2214
2215    if (orientationChanged || sizeChanged) {
2216        // Compute oriented surface dimensions, precision, scales and ranges.
2217        // Note that the maximum value reported is an inclusive maximum value so it is one
2218        // unit less than the total width or height of surface.
2219        switch (mLocked.surfaceOrientation) {
2220        case DISPLAY_ORIENTATION_90:
2221        case DISPLAY_ORIENTATION_270:
2222            mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
2223            mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
2224
2225            mLocked.orientedXPrecision = mLocked.yPrecision;
2226            mLocked.orientedYPrecision = mLocked.xPrecision;
2227
2228            mLocked.orientedRanges.x.min = 0;
2229            mLocked.orientedRanges.x.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
2230                    * mLocked.yScale;
2231            mLocked.orientedRanges.x.flat = 0;
2232            mLocked.orientedRanges.x.fuzz = mLocked.yScale;
2233
2234            mLocked.orientedRanges.y.min = 0;
2235            mLocked.orientedRanges.y.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
2236                    * mLocked.xScale;
2237            mLocked.orientedRanges.y.flat = 0;
2238            mLocked.orientedRanges.y.fuzz = mLocked.xScale;
2239            break;
2240
2241        default:
2242            mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
2243            mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
2244
2245            mLocked.orientedXPrecision = mLocked.xPrecision;
2246            mLocked.orientedYPrecision = mLocked.yPrecision;
2247
2248            mLocked.orientedRanges.x.min = 0;
2249            mLocked.orientedRanges.x.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
2250                    * mLocked.xScale;
2251            mLocked.orientedRanges.x.flat = 0;
2252            mLocked.orientedRanges.x.fuzz = mLocked.xScale;
2253
2254            mLocked.orientedRanges.y.min = 0;
2255            mLocked.orientedRanges.y.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
2256                    * mLocked.yScale;
2257            mLocked.orientedRanges.y.flat = 0;
2258            mLocked.orientedRanges.y.fuzz = mLocked.yScale;
2259            break;
2260        }
2261
2262        // Compute pointer gesture detection parameters.
2263        // TODO: These factors should not be hardcoded.
2264        if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
2265            int32_t rawWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
2266            int32_t rawHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
2267            float rawDiagonal = hypotf(rawWidth, rawHeight);
2268            float displayDiagonal = hypotf(mLocked.associatedDisplayWidth,
2269                    mLocked.associatedDisplayHeight);
2270
2271            // Scale movements such that one whole swipe of the touch pad covers a
2272            // given area relative to the diagonal size of the display when no acceleration
2273            // is applied.
2274            // Assume that the touch pad has a square aspect ratio such that movements in
2275            // X and Y of the same number of raw units cover the same physical distance.
2276            mLocked.pointerGestureXMovementScale = mConfig->pointerGestureMovementSpeedRatio
2277                    * displayDiagonal / rawDiagonal;
2278            mLocked.pointerGestureYMovementScale = mLocked.pointerGestureXMovementScale;
2279
2280            // Scale zooms to cover a smaller range of the display than movements do.
2281            // This value determines the area around the pointer that is affected by freeform
2282            // pointer gestures.
2283            mLocked.pointerGestureXZoomScale = mConfig->pointerGestureZoomSpeedRatio
2284                    * displayDiagonal / rawDiagonal;
2285            mLocked.pointerGestureYZoomScale = mLocked.pointerGestureXZoomScale;
2286
2287            // Max width between pointers to detect a swipe gesture is more than some fraction
2288            // of the diagonal axis of the touch pad.  Touches that are wider than this are
2289            // translated into freeform gestures.
2290            mLocked.pointerGestureMaxSwipeWidth =
2291                    mConfig->pointerGestureSwipeMaxWidthRatio * rawDiagonal;
2292
2293            // Reset the current pointer gesture.
2294            mPointerGesture.reset();
2295
2296            // Remove any current spots.
2297            if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
2298                mPointerController->clearSpots();
2299            }
2300        }
2301    }
2302
2303    return true;
2304}
2305
2306void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
2307    dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
2308    dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
2309    dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
2310}
2311
2312void TouchInputMapper::configureVirtualKeysLocked() {
2313    Vector<VirtualKeyDefinition> virtualKeyDefinitions;
2314    getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
2315
2316    mLocked.virtualKeys.clear();
2317
2318    if (virtualKeyDefinitions.size() == 0) {
2319        return;
2320    }
2321
2322    mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());
2323
2324    int32_t touchScreenLeft = mRawAxes.x.minValue;
2325    int32_t touchScreenTop = mRawAxes.y.minValue;
2326    int32_t touchScreenWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
2327    int32_t touchScreenHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
2328
2329    for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
2330        const VirtualKeyDefinition& virtualKeyDefinition =
2331                virtualKeyDefinitions[i];
2332
2333        mLocked.virtualKeys.add();
2334        VirtualKey& virtualKey = mLocked.virtualKeys.editTop();
2335
2336        virtualKey.scanCode = virtualKeyDefinition.scanCode;
2337        int32_t keyCode;
2338        uint32_t flags;
2339        if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode,
2340                & keyCode, & flags)) {
2341            LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
2342                    virtualKey.scanCode);
2343            mLocked.virtualKeys.pop(); // drop the key
2344            continue;
2345        }
2346
2347        virtualKey.keyCode = keyCode;
2348        virtualKey.flags = flags;
2349
2350        // convert the key definition's display coordinates into touch coordinates for a hit box
2351        int32_t halfWidth = virtualKeyDefinition.width / 2;
2352        int32_t halfHeight = virtualKeyDefinition.height / 2;
2353
2354        virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
2355                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
2356        virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
2357                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
2358        virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
2359                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
2360        virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
2361                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
2362    }
2363}
2364
2365void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
2366    if (!mLocked.virtualKeys.isEmpty()) {
2367        dump.append(INDENT3 "Virtual Keys:\n");
2368
2369        for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
2370            const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
2371            dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
2372                    "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
2373                    i, virtualKey.scanCode, virtualKey.keyCode,
2374                    virtualKey.hitLeft, virtualKey.hitRight,
2375                    virtualKey.hitTop, virtualKey.hitBottom);
2376        }
2377    }
2378}
2379
2380void TouchInputMapper::parseCalibration() {
2381    const PropertyMap& in = getDevice()->getConfiguration();
2382    Calibration& out = mCalibration;
2383
2384    // Touch Size
2385    out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
2386    String8 touchSizeCalibrationString;
2387    if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
2388        if (touchSizeCalibrationString == "none") {
2389            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
2390        } else if (touchSizeCalibrationString == "geometric") {
2391            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
2392        } else if (touchSizeCalibrationString == "pressure") {
2393            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
2394        } else if (touchSizeCalibrationString != "default") {
2395            LOGW("Invalid value for touch.touchSize.calibration: '%s'",
2396                    touchSizeCalibrationString.string());
2397        }
2398    }
2399
2400    // Tool Size
2401    out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
2402    String8 toolSizeCalibrationString;
2403    if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
2404        if (toolSizeCalibrationString == "none") {
2405            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
2406        } else if (toolSizeCalibrationString == "geometric") {
2407            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
2408        } else if (toolSizeCalibrationString == "linear") {
2409            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
2410        } else if (toolSizeCalibrationString == "area") {
2411            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
2412        } else if (toolSizeCalibrationString != "default") {
2413            LOGW("Invalid value for touch.toolSize.calibration: '%s'",
2414                    toolSizeCalibrationString.string());
2415        }
2416    }
2417
2418    out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
2419            out.toolSizeLinearScale);
2420    out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
2421            out.toolSizeLinearBias);
2422    out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
2423            out.toolSizeAreaScale);
2424    out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
2425            out.toolSizeAreaBias);
2426    out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
2427            out.toolSizeIsSummed);
2428
2429    // Pressure
2430    out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
2431    String8 pressureCalibrationString;
2432    if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
2433        if (pressureCalibrationString == "none") {
2434            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
2435        } else if (pressureCalibrationString == "physical") {
2436            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
2437        } else if (pressureCalibrationString == "amplitude") {
2438            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
2439        } else if (pressureCalibrationString != "default") {
2440            LOGW("Invalid value for touch.pressure.calibration: '%s'",
2441                    pressureCalibrationString.string());
2442        }
2443    }
2444
2445    out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
2446    String8 pressureSourceString;
2447    if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
2448        if (pressureSourceString == "pressure") {
2449            out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
2450        } else if (pressureSourceString == "touch") {
2451            out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
2452        } else if (pressureSourceString != "default") {
2453            LOGW("Invalid value for touch.pressure.source: '%s'",
2454                    pressureSourceString.string());
2455        }
2456    }
2457
2458    out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
2459            out.pressureScale);
2460
2461    // Size
2462    out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
2463    String8 sizeCalibrationString;
2464    if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
2465        if (sizeCalibrationString == "none") {
2466            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2467        } else if (sizeCalibrationString == "normalized") {
2468            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2469        } else if (sizeCalibrationString != "default") {
2470            LOGW("Invalid value for touch.size.calibration: '%s'",
2471                    sizeCalibrationString.string());
2472        }
2473    }
2474
2475    // Orientation
2476    out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
2477    String8 orientationCalibrationString;
2478    if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
2479        if (orientationCalibrationString == "none") {
2480            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2481        } else if (orientationCalibrationString == "interpolated") {
2482            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2483        } else if (orientationCalibrationString == "vector") {
2484            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
2485        } else if (orientationCalibrationString != "default") {
2486            LOGW("Invalid value for touch.orientation.calibration: '%s'",
2487                    orientationCalibrationString.string());
2488        }
2489    }
2490}
2491
2492void TouchInputMapper::resolveCalibration() {
2493    // Pressure
2494    switch (mCalibration.pressureSource) {
2495    case Calibration::PRESSURE_SOURCE_DEFAULT:
2496        if (mRawAxes.pressure.valid) {
2497            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
2498        } else if (mRawAxes.touchMajor.valid) {
2499            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
2500        }
2501        break;
2502
2503    case Calibration::PRESSURE_SOURCE_PRESSURE:
2504        if (! mRawAxes.pressure.valid) {
2505            LOGW("Calibration property touch.pressure.source is 'pressure' but "
2506                    "the pressure axis is not available.");
2507        }
2508        break;
2509
2510    case Calibration::PRESSURE_SOURCE_TOUCH:
2511        if (! mRawAxes.touchMajor.valid) {
2512            LOGW("Calibration property touch.pressure.source is 'touch' but "
2513                    "the touchMajor axis is not available.");
2514        }
2515        break;
2516
2517    default:
2518        break;
2519    }
2520
2521    switch (mCalibration.pressureCalibration) {
2522    case Calibration::PRESSURE_CALIBRATION_DEFAULT:
2523        if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
2524            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
2525        } else {
2526            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
2527        }
2528        break;
2529
2530    default:
2531        break;
2532    }
2533
2534    // Tool Size
2535    switch (mCalibration.toolSizeCalibration) {
2536    case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
2537        if (mRawAxes.toolMajor.valid) {
2538            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
2539        } else {
2540            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
2541        }
2542        break;
2543
2544    default:
2545        break;
2546    }
2547
2548    // Touch Size
2549    switch (mCalibration.touchSizeCalibration) {
2550    case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
2551        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
2552                && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
2553            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
2554        } else {
2555            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
2556        }
2557        break;
2558
2559    default:
2560        break;
2561    }
2562
2563    // Size
2564    switch (mCalibration.sizeCalibration) {
2565    case Calibration::SIZE_CALIBRATION_DEFAULT:
2566        if (mRawAxes.toolMajor.valid) {
2567            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2568        } else {
2569            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2570        }
2571        break;
2572
2573    default:
2574        break;
2575    }
2576
2577    // Orientation
2578    switch (mCalibration.orientationCalibration) {
2579    case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
2580        if (mRawAxes.orientation.valid) {
2581            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2582        } else {
2583            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2584        }
2585        break;
2586
2587    default:
2588        break;
2589    }
2590}
2591
2592void TouchInputMapper::dumpCalibration(String8& dump) {
2593    dump.append(INDENT3 "Calibration:\n");
2594
2595    // Touch Size
2596    switch (mCalibration.touchSizeCalibration) {
2597    case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
2598        dump.append(INDENT4 "touch.touchSize.calibration: none\n");
2599        break;
2600    case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2601        dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
2602        break;
2603    case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2604        dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
2605        break;
2606    default:
2607        assert(false);
2608    }
2609
2610    // Tool Size
2611    switch (mCalibration.toolSizeCalibration) {
2612    case Calibration::TOOL_SIZE_CALIBRATION_NONE:
2613        dump.append(INDENT4 "touch.toolSize.calibration: none\n");
2614        break;
2615    case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2616        dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
2617        break;
2618    case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2619        dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
2620        break;
2621    case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2622        dump.append(INDENT4 "touch.toolSize.calibration: area\n");
2623        break;
2624    default:
2625        assert(false);
2626    }
2627
2628    if (mCalibration.haveToolSizeLinearScale) {
2629        dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
2630                mCalibration.toolSizeLinearScale);
2631    }
2632
2633    if (mCalibration.haveToolSizeLinearBias) {
2634        dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
2635                mCalibration.toolSizeLinearBias);
2636    }
2637
2638    if (mCalibration.haveToolSizeAreaScale) {
2639        dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
2640                mCalibration.toolSizeAreaScale);
2641    }
2642
2643    if (mCalibration.haveToolSizeAreaBias) {
2644        dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
2645                mCalibration.toolSizeAreaBias);
2646    }
2647
2648    if (mCalibration.haveToolSizeIsSummed) {
2649        dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
2650                toString(mCalibration.toolSizeIsSummed));
2651    }
2652
2653    // Pressure
2654    switch (mCalibration.pressureCalibration) {
2655    case Calibration::PRESSURE_CALIBRATION_NONE:
2656        dump.append(INDENT4 "touch.pressure.calibration: none\n");
2657        break;
2658    case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2659        dump.append(INDENT4 "touch.pressure.calibration: physical\n");
2660        break;
2661    case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2662        dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
2663        break;
2664    default:
2665        assert(false);
2666    }
2667
2668    switch (mCalibration.pressureSource) {
2669    case Calibration::PRESSURE_SOURCE_PRESSURE:
2670        dump.append(INDENT4 "touch.pressure.source: pressure\n");
2671        break;
2672    case Calibration::PRESSURE_SOURCE_TOUCH:
2673        dump.append(INDENT4 "touch.pressure.source: touch\n");
2674        break;
2675    case Calibration::PRESSURE_SOURCE_DEFAULT:
2676        break;
2677    default:
2678        assert(false);
2679    }
2680
2681    if (mCalibration.havePressureScale) {
2682        dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
2683                mCalibration.pressureScale);
2684    }
2685
2686    // Size
2687    switch (mCalibration.sizeCalibration) {
2688    case Calibration::SIZE_CALIBRATION_NONE:
2689        dump.append(INDENT4 "touch.size.calibration: none\n");
2690        break;
2691    case Calibration::SIZE_CALIBRATION_NORMALIZED:
2692        dump.append(INDENT4 "touch.size.calibration: normalized\n");
2693        break;
2694    default:
2695        assert(false);
2696    }
2697
2698    // Orientation
2699    switch (mCalibration.orientationCalibration) {
2700    case Calibration::ORIENTATION_CALIBRATION_NONE:
2701        dump.append(INDENT4 "touch.orientation.calibration: none\n");
2702        break;
2703    case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
2704        dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
2705        break;
2706    case Calibration::ORIENTATION_CALIBRATION_VECTOR:
2707        dump.append(INDENT4 "touch.orientation.calibration: vector\n");
2708        break;
2709    default:
2710        assert(false);
2711    }
2712}
2713
2714void TouchInputMapper::reset() {
2715    // Synthesize touch up event if touch is currently down.
2716    // This will also take care of finishing virtual key processing if needed.
2717    if (mLastTouch.pointerCount != 0) {
2718        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
2719        mCurrentTouch.clear();
2720        syncTouch(when, true);
2721    }
2722
2723    { // acquire lock
2724        AutoMutex _l(mLock);
2725        initializeLocked();
2726
2727        if (mPointerController != NULL
2728                && mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
2729            mPointerController->clearSpots();
2730        }
2731    } // release lock
2732
2733    InputMapper::reset();
2734}
2735
2736void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
2737#if DEBUG_RAW_EVENTS
2738    if (!havePointerIds) {
2739        LOGD("syncTouch: pointerCount=%d, no pointer ids", mCurrentTouch.pointerCount);
2740    } else {
2741        LOGD("syncTouch: pointerCount=%d, up=0x%08x, down=0x%08x, move=0x%08x, "
2742                "last=0x%08x, current=0x%08x", mCurrentTouch.pointerCount,
2743                mLastTouch.idBits.value & ~mCurrentTouch.idBits.value,
2744                mCurrentTouch.idBits.value & ~mLastTouch.idBits.value,
2745                mLastTouch.idBits.value & mCurrentTouch.idBits.value,
2746                mLastTouch.idBits.value, mCurrentTouch.idBits.value);
2747    }
2748#endif
2749
2750    // Preprocess pointer data.
2751    if (mParameters.useBadTouchFilter) {
2752        if (applyBadTouchFilter()) {
2753            havePointerIds = false;
2754        }
2755    }
2756
2757    if (mParameters.useJumpyTouchFilter) {
2758        if (applyJumpyTouchFilter()) {
2759            havePointerIds = false;
2760        }
2761    }
2762
2763    if (!havePointerIds) {
2764        calculatePointerIds();
2765    }
2766
2767    TouchData temp;
2768    TouchData* savedTouch;
2769    if (mParameters.useAveragingTouchFilter) {
2770        temp.copyFrom(mCurrentTouch);
2771        savedTouch = & temp;
2772
2773        applyAveragingTouchFilter();
2774    } else {
2775        savedTouch = & mCurrentTouch;
2776    }
2777
2778    uint32_t policyFlags = 0;
2779    if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
2780        if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
2781            // If this is a touch screen, hide the pointer on an initial down.
2782            getContext()->fadePointer();
2783        }
2784
2785        // Initial downs on external touch devices should wake the device.
2786        // We don't do this for internal touch screens to prevent them from waking
2787        // up in your pocket.
2788        // TODO: Use the input device configuration to control this behavior more finely.
2789        if (getDevice()->isExternal()) {
2790            policyFlags |= POLICY_FLAG_WAKE_DROPPED;
2791        }
2792    }
2793
2794    TouchResult touchResult;
2795    if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount == 0
2796            && mLastTouch.buttonState == mCurrentTouch.buttonState) {
2797        // Drop spurious syncs.
2798        touchResult = DROP_STROKE;
2799    } else {
2800        // Process touches and virtual keys.
2801        touchResult = consumeOffScreenTouches(when, policyFlags);
2802        if (touchResult == DISPATCH_TOUCH) {
2803            suppressSwipeOntoVirtualKeys(when);
2804            if (mPointerController != NULL) {
2805                dispatchPointerGestures(when, policyFlags, false /*isTimeout*/);
2806            }
2807            dispatchTouches(when, policyFlags);
2808        }
2809    }
2810
2811    // Copy current touch to last touch in preparation for the next cycle.
2812    // Keep the button state so we can track edge-triggered button state changes.
2813    if (touchResult == DROP_STROKE) {
2814        mLastTouch.clear();
2815        mLastTouch.buttonState = savedTouch->buttonState;
2816    } else {
2817        mLastTouch.copyFrom(*savedTouch);
2818    }
2819}
2820
2821void TouchInputMapper::timeoutExpired(nsecs_t when) {
2822    if (mPointerController != NULL) {
2823        dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/);
2824    }
2825}
2826
2827TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
2828        nsecs_t when, uint32_t policyFlags) {
2829    int32_t keyEventAction, keyEventFlags;
2830    int32_t keyCode, scanCode, downTime;
2831    TouchResult touchResult;
2832
2833    { // acquire lock
2834        AutoMutex _l(mLock);
2835
2836        // Update surface size and orientation, including virtual key positions.
2837        if (! configureSurfaceLocked()) {
2838            return DROP_STROKE;
2839        }
2840
2841        // Check for virtual key press.
2842        if (mLocked.currentVirtualKey.down) {
2843            if (mCurrentTouch.pointerCount == 0) {
2844                // Pointer went up while virtual key was down.
2845                mLocked.currentVirtualKey.down = false;
2846#if DEBUG_VIRTUAL_KEYS
2847                LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
2848                        mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2849#endif
2850                keyEventAction = AKEY_EVENT_ACTION_UP;
2851                keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2852                touchResult = SKIP_TOUCH;
2853                goto DispatchVirtualKey;
2854            }
2855
2856            if (mCurrentTouch.pointerCount == 1) {
2857                int32_t x = mCurrentTouch.pointers[0].x;
2858                int32_t y = mCurrentTouch.pointers[0].y;
2859                const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2860                if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
2861                    // Pointer is still within the space of the virtual key.
2862                    return SKIP_TOUCH;
2863                }
2864            }
2865
2866            // Pointer left virtual key area or another pointer also went down.
2867            // Send key cancellation and drop the stroke so subsequent motions will be
2868            // considered fresh downs.  This is useful when the user swipes away from the
2869            // virtual key area into the main display surface.
2870            mLocked.currentVirtualKey.down = false;
2871#if DEBUG_VIRTUAL_KEYS
2872            LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
2873                    mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2874#endif
2875            keyEventAction = AKEY_EVENT_ACTION_UP;
2876            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
2877                    | AKEY_EVENT_FLAG_CANCELED;
2878
2879            // Check whether the pointer moved inside the display area where we should
2880            // start a new stroke.
2881            int32_t x = mCurrentTouch.pointers[0].x;
2882            int32_t y = mCurrentTouch.pointers[0].y;
2883            if (isPointInsideSurfaceLocked(x, y)) {
2884                mLastTouch.clear();
2885                touchResult = DISPATCH_TOUCH;
2886            } else {
2887                touchResult = DROP_STROKE;
2888            }
2889        } else {
2890            if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
2891                // Pointer just went down.  Handle off-screen touches, if needed.
2892                int32_t x = mCurrentTouch.pointers[0].x;
2893                int32_t y = mCurrentTouch.pointers[0].y;
2894                if (! isPointInsideSurfaceLocked(x, y)) {
2895                    // If exactly one pointer went down, check for virtual key hit.
2896                    // Otherwise we will drop the entire stroke.
2897                    if (mCurrentTouch.pointerCount == 1) {
2898                        const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2899                        if (virtualKey) {
2900                            if (mContext->shouldDropVirtualKey(when, getDevice(),
2901                                    virtualKey->keyCode, virtualKey->scanCode)) {
2902                                return DROP_STROKE;
2903                            }
2904
2905                            mLocked.currentVirtualKey.down = true;
2906                            mLocked.currentVirtualKey.downTime = when;
2907                            mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
2908                            mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
2909#if DEBUG_VIRTUAL_KEYS
2910                            LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
2911                                    mLocked.currentVirtualKey.keyCode,
2912                                    mLocked.currentVirtualKey.scanCode);
2913#endif
2914                            keyEventAction = AKEY_EVENT_ACTION_DOWN;
2915                            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
2916                                    | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2917                            touchResult = SKIP_TOUCH;
2918                            goto DispatchVirtualKey;
2919                        }
2920                    }
2921                    return DROP_STROKE;
2922                }
2923            }
2924            return DISPATCH_TOUCH;
2925        }
2926
2927    DispatchVirtualKey:
2928        // Collect remaining state needed to dispatch virtual key.
2929        keyCode = mLocked.currentVirtualKey.keyCode;
2930        scanCode = mLocked.currentVirtualKey.scanCode;
2931        downTime = mLocked.currentVirtualKey.downTime;
2932    } // release lock
2933
2934    // Dispatch virtual key.
2935    int32_t metaState = mContext->getGlobalMetaState();
2936    policyFlags |= POLICY_FLAG_VIRTUAL;
2937    getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
2938            keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
2939    return touchResult;
2940}
2941
2942void TouchInputMapper::suppressSwipeOntoVirtualKeys(nsecs_t when) {
2943    // Disable all virtual key touches that happen within a short time interval of the
2944    // most recent touch.  The idea is to filter out stray virtual key presses when
2945    // interacting with the touch screen.
2946    //
2947    // Problems we're trying to solve:
2948    //
2949    // 1. While scrolling a list or dragging the window shade, the user swipes down into a
2950    //    virtual key area that is implemented by a separate touch panel and accidentally
2951    //    triggers a virtual key.
2952    //
2953    // 2. While typing in the on screen keyboard, the user taps slightly outside the screen
2954    //    area and accidentally triggers a virtual key.  This often happens when virtual keys
2955    //    are layed out below the screen near to where the on screen keyboard's space bar
2956    //    is displayed.
2957    if (mConfig->virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) {
2958        mContext->disableVirtualKeysUntil(when + mConfig->virtualKeyQuietTime);
2959    }
2960}
2961
2962void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
2963    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2964    uint32_t lastPointerCount = mLastTouch.pointerCount;
2965    if (currentPointerCount == 0 && lastPointerCount == 0) {
2966        return; // nothing to do!
2967    }
2968
2969    // Update current touch coordinates.
2970    int32_t edgeFlags;
2971    float xPrecision, yPrecision;
2972    prepareTouches(&edgeFlags, &xPrecision, &yPrecision);
2973
2974    // Dispatch motions.
2975    BitSet32 currentIdBits = mCurrentTouch.idBits;
2976    BitSet32 lastIdBits = mLastTouch.idBits;
2977    uint32_t metaState = getContext()->getGlobalMetaState();
2978
2979    if (currentIdBits == lastIdBits) {
2980        // No pointer id changes so this is a move event.
2981        // The dispatcher takes care of batching moves so we don't have to deal with that here.
2982        dispatchMotion(when, policyFlags, mTouchSource,
2983                AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
2984                mCurrentTouchCoords, mCurrentTouch.idToIndex, currentIdBits, -1,
2985                xPrecision, yPrecision, mDownTime);
2986    } else {
2987        // There may be pointers going up and pointers going down and pointers moving
2988        // all at the same time.
2989        BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
2990        BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
2991        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
2992        BitSet32 dispatchedIdBits(lastIdBits.value);
2993
2994        // Update last coordinates of pointers that have moved so that we observe the new
2995        // pointer positions at the same time as other pointers that have just gone up.
2996        bool moveNeeded = updateMovedPointerCoords(
2997                mCurrentTouchCoords, mCurrentTouch.idToIndex,
2998                mLastTouchCoords, mLastTouch.idToIndex,
2999                moveIdBits);
3000
3001        // Dispatch pointer up events.
3002        while (!upIdBits.isEmpty()) {
3003            uint32_t upId = upIdBits.firstMarkedBit();
3004            upIdBits.clearBit(upId);
3005
3006            dispatchMotion(when, policyFlags, mTouchSource,
3007                    AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, 0,
3008                    mLastTouchCoords, mLastTouch.idToIndex, dispatchedIdBits, upId,
3009                    xPrecision, yPrecision, mDownTime);
3010            dispatchedIdBits.clearBit(upId);
3011        }
3012
3013        // Dispatch move events if any of the remaining pointers moved from their old locations.
3014        // Although applications receive new locations as part of individual pointer up
3015        // events, they do not generally handle them except when presented in a move event.
3016        if (moveNeeded) {
3017            assert(moveIdBits.value == dispatchedIdBits.value);
3018            dispatchMotion(when, policyFlags, mTouchSource,
3019                    AMOTION_EVENT_ACTION_MOVE, 0, metaState, 0,
3020                    mCurrentTouchCoords, mCurrentTouch.idToIndex, dispatchedIdBits, -1,
3021                    xPrecision, yPrecision, mDownTime);
3022        }
3023
3024        // Dispatch pointer down events using the new pointer locations.
3025        while (!downIdBits.isEmpty()) {
3026            uint32_t downId = downIdBits.firstMarkedBit();
3027            downIdBits.clearBit(downId);
3028            dispatchedIdBits.markBit(downId);
3029
3030            if (dispatchedIdBits.count() == 1) {
3031                // First pointer is going down.  Set down time.
3032                mDownTime = when;
3033            } else {
3034                // Only send edge flags with first pointer down.
3035                edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
3036            }
3037
3038            dispatchMotion(when, policyFlags, mTouchSource,
3039                    AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, edgeFlags,
3040                    mCurrentTouchCoords, mCurrentTouch.idToIndex, dispatchedIdBits, downId,
3041                    xPrecision, yPrecision, mDownTime);
3042        }
3043    }
3044
3045    // Update state for next time.
3046    for (uint32_t i = 0; i < currentPointerCount; i++) {
3047        mLastTouchCoords[i].copyFrom(mCurrentTouchCoords[i]);
3048    }
3049}
3050
3051void TouchInputMapper::prepareTouches(int32_t* outEdgeFlags,
3052        float* outXPrecision, float* outYPrecision) {
3053    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
3054    uint32_t lastPointerCount = mLastTouch.pointerCount;
3055
3056    AutoMutex _l(mLock);
3057
3058    // Walk through the the active pointers and map touch screen coordinates (TouchData) into
3059    // display or surface coordinates (PointerCoords) and adjust for display orientation.
3060    for (uint32_t i = 0; i < currentPointerCount; i++) {
3061        const PointerData& in = mCurrentTouch.pointers[i];
3062
3063        // ToolMajor and ToolMinor
3064        float toolMajor, toolMinor;
3065        switch (mCalibration.toolSizeCalibration) {
3066        case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
3067            toolMajor = in.toolMajor * mLocked.geometricScale;
3068            if (mRawAxes.toolMinor.valid) {
3069                toolMinor = in.toolMinor * mLocked.geometricScale;
3070            } else {
3071                toolMinor = toolMajor;
3072            }
3073            break;
3074        case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
3075            toolMajor = in.toolMajor != 0
3076                    ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
3077                    : 0;
3078            if (mRawAxes.toolMinor.valid) {
3079                toolMinor = in.toolMinor != 0
3080                        ? in.toolMinor * mLocked.toolSizeLinearScale
3081                                + mLocked.toolSizeLinearBias
3082                        : 0;
3083            } else {
3084                toolMinor = toolMajor;
3085            }
3086            break;
3087        case Calibration::TOOL_SIZE_CALIBRATION_AREA:
3088            if (in.toolMajor != 0) {
3089                float diameter = sqrtf(in.toolMajor
3090                        * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
3091                toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
3092            } else {
3093                toolMajor = 0;
3094            }
3095            toolMinor = toolMajor;
3096            break;
3097        default:
3098            toolMajor = 0;
3099            toolMinor = 0;
3100            break;
3101        }
3102
3103        if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
3104            toolMajor /= currentPointerCount;
3105            toolMinor /= currentPointerCount;
3106        }
3107
3108        // Pressure
3109        float rawPressure;
3110        switch (mCalibration.pressureSource) {
3111        case Calibration::PRESSURE_SOURCE_PRESSURE:
3112            rawPressure = in.pressure;
3113            break;
3114        case Calibration::PRESSURE_SOURCE_TOUCH:
3115            rawPressure = in.touchMajor;
3116            break;
3117        default:
3118            rawPressure = 0;
3119        }
3120
3121        float pressure;
3122        switch (mCalibration.pressureCalibration) {
3123        case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
3124        case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
3125            pressure = rawPressure * mLocked.pressureScale;
3126            break;
3127        default:
3128            pressure = 1;
3129            break;
3130        }
3131
3132        // TouchMajor and TouchMinor
3133        float touchMajor, touchMinor;
3134        switch (mCalibration.touchSizeCalibration) {
3135        case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
3136            touchMajor = in.touchMajor * mLocked.geometricScale;
3137            if (mRawAxes.touchMinor.valid) {
3138                touchMinor = in.touchMinor * mLocked.geometricScale;
3139            } else {
3140                touchMinor = touchMajor;
3141            }
3142            break;
3143        case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
3144            touchMajor = toolMajor * pressure;
3145            touchMinor = toolMinor * pressure;
3146            break;
3147        default:
3148            touchMajor = 0;
3149            touchMinor = 0;
3150            break;
3151        }
3152
3153        if (touchMajor > toolMajor) {
3154            touchMajor = toolMajor;
3155        }
3156        if (touchMinor > toolMinor) {
3157            touchMinor = toolMinor;
3158        }
3159
3160        // Size
3161        float size;
3162        switch (mCalibration.sizeCalibration) {
3163        case Calibration::SIZE_CALIBRATION_NORMALIZED: {
3164            float rawSize = mRawAxes.toolMinor.valid
3165                    ? avg(in.toolMajor, in.toolMinor)
3166                    : in.toolMajor;
3167            size = rawSize * mLocked.sizeScale;
3168            break;
3169        }
3170        default:
3171            size = 0;
3172            break;
3173        }
3174
3175        // Orientation
3176        float orientation;
3177        switch (mCalibration.orientationCalibration) {
3178        case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
3179            orientation = in.orientation * mLocked.orientationScale;
3180            break;
3181        case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
3182            int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
3183            int32_t c2 = signExtendNybble(in.orientation & 0x0f);
3184            if (c1 != 0 || c2 != 0) {
3185                orientation = atan2f(c1, c2) * 0.5f;
3186                float scale = 1.0f + hypotf(c1, c2) / 16.0f;
3187                touchMajor *= scale;
3188                touchMinor /= scale;
3189                toolMajor *= scale;
3190                toolMinor /= scale;
3191            } else {
3192                orientation = 0;
3193            }
3194            break;
3195        }
3196        default:
3197            orientation = 0;
3198        }
3199
3200        // X and Y
3201        // Adjust coords for surface orientation.
3202        float x, y;
3203        switch (mLocked.surfaceOrientation) {
3204        case DISPLAY_ORIENTATION_90:
3205            x = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
3206            y = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
3207            orientation -= M_PI_2;
3208            if (orientation < - M_PI_2) {
3209                orientation += M_PI;
3210            }
3211            break;
3212        case DISPLAY_ORIENTATION_180:
3213            x = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
3214            y = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
3215            break;
3216        case DISPLAY_ORIENTATION_270:
3217            x = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
3218            y = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
3219            orientation += M_PI_2;
3220            if (orientation > M_PI_2) {
3221                orientation -= M_PI;
3222            }
3223            break;
3224        default:
3225            x = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
3226            y = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
3227            break;
3228        }
3229
3230        // Write output coords.
3231        PointerCoords& out = mCurrentTouchCoords[i];
3232        out.clear();
3233        out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
3234        out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3235        out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
3236        out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
3237        out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
3238        out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
3239        out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
3240        out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
3241        out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
3242    }
3243
3244    // Check edge flags by looking only at the first pointer since the flags are
3245    // global to the event.
3246    *outEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
3247    if (lastPointerCount == 0 && currentPointerCount > 0) {
3248        const PointerData& in = mCurrentTouch.pointers[0];
3249
3250        if (in.x <= mRawAxes.x.minValue) {
3251            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_LEFT,
3252                    mLocked.surfaceOrientation);
3253        } else if (in.x >= mRawAxes.x.maxValue) {
3254            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_RIGHT,
3255                    mLocked.surfaceOrientation);
3256        }
3257        if (in.y <= mRawAxes.y.minValue) {
3258            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_TOP,
3259                    mLocked.surfaceOrientation);
3260        } else if (in.y >= mRawAxes.y.maxValue) {
3261            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_BOTTOM,
3262                    mLocked.surfaceOrientation);
3263        }
3264    }
3265
3266    *outXPrecision = mLocked.orientedXPrecision;
3267    *outYPrecision = mLocked.orientedYPrecision;
3268}
3269
3270void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags,
3271        bool isTimeout) {
3272    // Update current gesture coordinates.
3273    bool cancelPreviousGesture, finishPreviousGesture;
3274    bool sendEvents = preparePointerGestures(when,
3275            &cancelPreviousGesture, &finishPreviousGesture, isTimeout);
3276    if (!sendEvents) {
3277        return;
3278    }
3279    if (finishPreviousGesture) {
3280        cancelPreviousGesture = false;
3281    }
3282
3283    // Update the pointer presentation and spots.
3284    if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3285        mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT);
3286        if (finishPreviousGesture || cancelPreviousGesture) {
3287            mPointerController->clearSpots();
3288        }
3289        mPointerController->setSpots(mPointerGesture.spotGesture,
3290                mPointerGesture.spotCoords, mPointerGesture.spotIdToIndex,
3291                mPointerGesture.spotIdBits);
3292    } else {
3293        mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER);
3294    }
3295
3296    // Show or hide the pointer if needed.
3297    switch (mPointerGesture.currentGestureMode) {
3298    case PointerGesture::NEUTRAL:
3299    case PointerGesture::QUIET:
3300        if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
3301                && (mPointerGesture.lastGestureMode == PointerGesture::SWIPE
3302                        || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)) {
3303            // Remind the user of where the pointer is after finishing a gesture with spots.
3304            mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL);
3305        }
3306        break;
3307    case PointerGesture::TAP:
3308    case PointerGesture::TAP_DRAG:
3309    case PointerGesture::BUTTON_CLICK_OR_DRAG:
3310    case PointerGesture::HOVER:
3311    case PointerGesture::PRESS:
3312        // Unfade the pointer when the current gesture manipulates the
3313        // area directly under the pointer.
3314        mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
3315        break;
3316    case PointerGesture::SWIPE:
3317    case PointerGesture::FREEFORM:
3318        // Fade the pointer when the current gesture manipulates a different
3319        // area and there are spots to guide the user experience.
3320        if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3321            mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
3322        } else {
3323            mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE);
3324        }
3325        break;
3326    }
3327
3328    // Send events!
3329    uint32_t metaState = getContext()->getGlobalMetaState();
3330
3331    // Update last coordinates of pointers that have moved so that we observe the new
3332    // pointer positions at the same time as other pointers that have just gone up.
3333    bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP
3334            || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG
3335            || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
3336            || mPointerGesture.currentGestureMode == PointerGesture::PRESS
3337            || mPointerGesture.currentGestureMode == PointerGesture::SWIPE
3338            || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM;
3339    bool moveNeeded = false;
3340    if (down && !cancelPreviousGesture && !finishPreviousGesture
3341            && !mPointerGesture.lastGestureIdBits.isEmpty()
3342            && !mPointerGesture.currentGestureIdBits.isEmpty()) {
3343        BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value
3344                & mPointerGesture.lastGestureIdBits.value);
3345        moveNeeded = updateMovedPointerCoords(
3346                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3347                mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
3348                movedGestureIdBits);
3349    }
3350
3351    // Send motion events for all pointers that went up or were canceled.
3352    BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits);
3353    if (!dispatchedGestureIdBits.isEmpty()) {
3354        if (cancelPreviousGesture) {
3355            dispatchMotion(when, policyFlags, mPointerSource,
3356                    AMOTION_EVENT_ACTION_CANCEL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3357                    mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
3358                    dispatchedGestureIdBits, -1,
3359                    0, 0, mPointerGesture.downTime);
3360
3361            dispatchedGestureIdBits.clear();
3362        } else {
3363            BitSet32 upGestureIdBits;
3364            if (finishPreviousGesture) {
3365                upGestureIdBits = dispatchedGestureIdBits;
3366            } else {
3367                upGestureIdBits.value = dispatchedGestureIdBits.value
3368                        & ~mPointerGesture.currentGestureIdBits.value;
3369            }
3370            while (!upGestureIdBits.isEmpty()) {
3371                uint32_t id = upGestureIdBits.firstMarkedBit();
3372                upGestureIdBits.clearBit(id);
3373
3374                dispatchMotion(when, policyFlags, mPointerSource,
3375                        AMOTION_EVENT_ACTION_POINTER_UP, 0,
3376                        metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3377                        mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
3378                        dispatchedGestureIdBits, id,
3379                        0, 0, mPointerGesture.downTime);
3380
3381                dispatchedGestureIdBits.clearBit(id);
3382            }
3383        }
3384    }
3385
3386    // Send motion events for all pointers that moved.
3387    if (moveNeeded) {
3388        dispatchMotion(when, policyFlags, mPointerSource,
3389                AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3390                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3391                dispatchedGestureIdBits, -1,
3392                0, 0, mPointerGesture.downTime);
3393    }
3394
3395    // Send motion events for all pointers that went down.
3396    if (down) {
3397        BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value
3398                & ~dispatchedGestureIdBits.value);
3399        while (!downGestureIdBits.isEmpty()) {
3400            uint32_t id = downGestureIdBits.firstMarkedBit();
3401            downGestureIdBits.clearBit(id);
3402            dispatchedGestureIdBits.markBit(id);
3403
3404            int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
3405            if (dispatchedGestureIdBits.count() == 1) {
3406                // First pointer is going down.  Calculate edge flags and set down time.
3407                uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
3408                const PointerCoords& downCoords = mPointerGesture.currentGestureCoords[index];
3409                edgeFlags = calculateEdgeFlagsUsingPointerBounds(mPointerController,
3410                        downCoords.getAxisValue(AMOTION_EVENT_AXIS_X),
3411                        downCoords.getAxisValue(AMOTION_EVENT_AXIS_Y));
3412                mPointerGesture.downTime = when;
3413            }
3414
3415            dispatchMotion(when, policyFlags, mPointerSource,
3416                    AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, edgeFlags,
3417                    mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3418                    dispatchedGestureIdBits, id,
3419                    0, 0, mPointerGesture.downTime);
3420        }
3421    }
3422
3423    // Send motion events for hover.
3424    if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) {
3425        dispatchMotion(when, policyFlags, mPointerSource,
3426                AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3427                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3428                mPointerGesture.currentGestureIdBits, -1,
3429                0, 0, mPointerGesture.downTime);
3430    }
3431
3432    // Update state.
3433    mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode;
3434    if (!down) {
3435        mPointerGesture.lastGestureIdBits.clear();
3436    } else {
3437        mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits;
3438        for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
3439            uint32_t id = idBits.firstMarkedBit();
3440            idBits.clearBit(id);
3441            uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
3442            mPointerGesture.lastGestureCoords[index].copyFrom(
3443                    mPointerGesture.currentGestureCoords[index]);
3444            mPointerGesture.lastGestureIdToIndex[id] = index;
3445        }
3446    }
3447}
3448
3449bool TouchInputMapper::preparePointerGestures(nsecs_t when,
3450        bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) {
3451    *outCancelPreviousGesture = false;
3452    *outFinishPreviousGesture = false;
3453
3454    AutoMutex _l(mLock);
3455
3456    // Handle TAP timeout.
3457    if (isTimeout) {
3458#if DEBUG_GESTURES
3459        LOGD("Gestures: Processing timeout");
3460#endif
3461
3462        if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
3463            if (when <= mPointerGesture.tapUpTime + mConfig->pointerGestureTapDragInterval) {
3464                // The tap/drag timeout has not yet expired.
3465                getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime
3466                        + mConfig->pointerGestureTapDragInterval);
3467            } else {
3468                // The tap is finished.
3469#if DEBUG_GESTURES
3470                LOGD("Gestures: TAP finished");
3471#endif
3472                *outFinishPreviousGesture = true;
3473
3474                mPointerGesture.activeGestureId = -1;
3475                mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
3476                mPointerGesture.currentGestureIdBits.clear();
3477
3478                mPointerGesture.pointerVelocityControl.reset();
3479
3480                if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3481                    mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL;
3482                    mPointerGesture.spotIdBits.clear();
3483                }
3484                return true;
3485            }
3486        }
3487
3488        // We did not handle this timeout.
3489        return false;
3490    }
3491
3492    // Update the velocity tracker.
3493    {
3494        VelocityTracker::Position positions[MAX_POINTERS];
3495        uint32_t count = 0;
3496        for (BitSet32 idBits(mCurrentTouch.idBits); !idBits.isEmpty(); count++) {
3497            uint32_t id = idBits.firstMarkedBit();
3498            idBits.clearBit(id);
3499            uint32_t index = mCurrentTouch.idToIndex[id];
3500            positions[count].x = mCurrentTouch.pointers[index].x
3501                    * mLocked.pointerGestureXMovementScale;
3502            positions[count].y = mCurrentTouch.pointers[index].y
3503                    * mLocked.pointerGestureYMovementScale;
3504        }
3505        mPointerGesture.velocityTracker.addMovement(when, mCurrentTouch.idBits, positions);
3506    }
3507
3508    // Pick a new active touch id if needed.
3509    // Choose an arbitrary pointer that just went down, if there is one.
3510    // Otherwise choose an arbitrary remaining pointer.
3511    // This guarantees we always have an active touch id when there is at least one pointer.
3512    // We keep the same active touch id for as long as possible.
3513    bool activeTouchChanged = false;
3514    int32_t lastActiveTouchId = mPointerGesture.activeTouchId;
3515    int32_t activeTouchId = lastActiveTouchId;
3516    if (activeTouchId < 0) {
3517        if (!mCurrentTouch.idBits.isEmpty()) {
3518            activeTouchChanged = true;
3519            activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit();
3520            mPointerGesture.firstTouchTime = when;
3521        }
3522    } else if (!mCurrentTouch.idBits.hasBit(activeTouchId)) {
3523        activeTouchChanged = true;
3524        if (!mCurrentTouch.idBits.isEmpty()) {
3525            activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit();
3526        } else {
3527            activeTouchId = mPointerGesture.activeTouchId = -1;
3528        }
3529    }
3530
3531    // Determine whether we are in quiet time.
3532    bool isQuietTime = false;
3533    if (activeTouchId < 0) {
3534        mPointerGesture.resetQuietTime();
3535    } else {
3536        isQuietTime = when < mPointerGesture.quietTime + mConfig->pointerGestureQuietInterval;
3537        if (!isQuietTime) {
3538            if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS
3539                    || mPointerGesture.lastGestureMode == PointerGesture::SWIPE
3540                    || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)
3541                    && mCurrentTouch.pointerCount < 2) {
3542                // Enter quiet time when exiting swipe or freeform state.
3543                // This is to prevent accidentally entering the hover state and flinging the
3544                // pointer when finishing a swipe and there is still one pointer left onscreen.
3545                isQuietTime = true;
3546            } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG
3547                    && mCurrentTouch.pointerCount >= 2
3548                    && !isPointerDown(mCurrentTouch.buttonState)) {
3549                // Enter quiet time when releasing the button and there are still two or more
3550                // fingers down.  This may indicate that one finger was used to press the button
3551                // but it has not gone up yet.
3552                isQuietTime = true;
3553            }
3554            if (isQuietTime) {
3555                mPointerGesture.quietTime = when;
3556            }
3557        }
3558    }
3559
3560    // Switch states based on button and pointer state.
3561    if (isQuietTime) {
3562        // Case 1: Quiet time. (QUIET)
3563#if DEBUG_GESTURES
3564        LOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime
3565                + mConfig->pointerGestureQuietInterval - when) * 0.000001f);
3566#endif
3567        if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) {
3568            *outFinishPreviousGesture = true;
3569        }
3570
3571        mPointerGesture.activeGestureId = -1;
3572        mPointerGesture.currentGestureMode = PointerGesture::QUIET;
3573        mPointerGesture.currentGestureIdBits.clear();
3574
3575        mPointerGesture.pointerVelocityControl.reset();
3576
3577        if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3578            mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL;
3579            mPointerGesture.spotIdBits.clear();
3580        }
3581    } else if (isPointerDown(mCurrentTouch.buttonState)) {
3582        // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG)
3583        // The pointer follows the active touch point.
3584        // Emit DOWN, MOVE, UP events at the pointer location.
3585        //
3586        // Only the active touch matters; other fingers are ignored.  This policy helps
3587        // to handle the case where the user places a second finger on the touch pad
3588        // to apply the necessary force to depress an integrated button below the surface.
3589        // We don't want the second finger to be delivered to applications.
3590        //
3591        // For this to work well, we need to make sure to track the pointer that is really
3592        // active.  If the user first puts one finger down to click then adds another
3593        // finger to drag then the active pointer should switch to the finger that is
3594        // being dragged.
3595#if DEBUG_GESTURES
3596        LOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, "
3597                "currentTouchPointerCount=%d", activeTouchId, mCurrentTouch.pointerCount);
3598#endif
3599        // Reset state when just starting.
3600        if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) {
3601            *outFinishPreviousGesture = true;
3602            mPointerGesture.activeGestureId = 0;
3603        }
3604
3605        // Switch pointers if needed.
3606        // Find the fastest pointer and follow it.
3607        if (activeTouchId >= 0 && mCurrentTouch.pointerCount > 1) {
3608            int32_t bestId = -1;
3609            float bestSpeed = mConfig->pointerGestureDragMinSwitchSpeed;
3610            for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
3611                uint32_t id = mCurrentTouch.pointers[i].id;
3612                float vx, vy;
3613                if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) {
3614                    float speed = hypotf(vx, vy);
3615                    if (speed > bestSpeed) {
3616                        bestId = id;
3617                        bestSpeed = speed;
3618                    }
3619                }
3620            }
3621            if (bestId >= 0 && bestId != activeTouchId) {
3622                mPointerGesture.activeTouchId = activeTouchId = bestId;
3623                activeTouchChanged = true;
3624#if DEBUG_GESTURES
3625                LOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, "
3626                        "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed);
3627#endif
3628            }
3629        }
3630
3631        if (activeTouchId >= 0 && mLastTouch.idBits.hasBit(activeTouchId)) {
3632            const PointerData& currentPointer =
3633                    mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
3634            const PointerData& lastPointer =
3635                    mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
3636            float deltaX = (currentPointer.x - lastPointer.x)
3637                    * mLocked.pointerGestureXMovementScale;
3638            float deltaY = (currentPointer.y - lastPointer.y)
3639                    * mLocked.pointerGestureYMovementScale;
3640
3641            mPointerGesture.pointerVelocityControl.move(when, &deltaX, &deltaY);
3642
3643            // Move the pointer using a relative motion.
3644            // When using spots, the click will occur at the position of the anchor
3645            // spot and all other spots will move there.
3646            mPointerController->move(deltaX, deltaY);
3647        } else {
3648            mPointerGesture.pointerVelocityControl.reset();
3649        }
3650
3651        float x, y;
3652        mPointerController->getPosition(&x, &y);
3653
3654        mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG;
3655        mPointerGesture.currentGestureIdBits.clear();
3656        mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
3657        mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
3658        mPointerGesture.currentGestureCoords[0].clear();
3659        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
3660        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3661        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
3662
3663        if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3664            if (activeTouchId >= 0) {
3665                // Collapse all spots into one point at the pointer location.
3666                mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_BUTTON_DRAG;
3667                mPointerGesture.spotIdBits.clear();
3668                for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
3669                    uint32_t id = mCurrentTouch.pointers[i].id;
3670                    mPointerGesture.spotIdBits.markBit(id);
3671                    mPointerGesture.spotIdToIndex[id] = i;
3672                    mPointerGesture.spotCoords[i] = mPointerGesture.currentGestureCoords[0];
3673                }
3674            } else {
3675                // No fingers.  Generate a spot at the pointer location so the
3676                // anchor appears to be pressed.
3677                mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_BUTTON_CLICK;
3678                mPointerGesture.spotIdBits.clear();
3679                mPointerGesture.spotIdBits.markBit(0);
3680                mPointerGesture.spotIdToIndex[0] = 0;
3681                mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0];
3682            }
3683        }
3684    } else if (mCurrentTouch.pointerCount == 0) {
3685        // Case 3. No fingers down and button is not pressed. (NEUTRAL)
3686        if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) {
3687            *outFinishPreviousGesture = true;
3688        }
3689
3690        // Watch for taps coming out of HOVER or TAP_DRAG mode.
3691        // Checking for taps after TAP_DRAG allows us to detect double-taps.
3692        bool tapped = false;
3693        if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER
3694                || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG)
3695                && mLastTouch.pointerCount == 1) {
3696            if (when <= mPointerGesture.tapDownTime + mConfig->pointerGestureTapInterval) {
3697                float x, y;
3698                mPointerController->getPosition(&x, &y);
3699                if (fabs(x - mPointerGesture.tapX) <= mConfig->pointerGestureTapSlop
3700                        && fabs(y - mPointerGesture.tapY) <= mConfig->pointerGestureTapSlop) {
3701#if DEBUG_GESTURES
3702                    LOGD("Gestures: TAP");
3703#endif
3704
3705                    mPointerGesture.tapUpTime = when;
3706                    getContext()->requestTimeoutAtTime(when
3707                            + mConfig->pointerGestureTapDragInterval);
3708
3709                    mPointerGesture.activeGestureId = 0;
3710                    mPointerGesture.currentGestureMode = PointerGesture::TAP;
3711                    mPointerGesture.currentGestureIdBits.clear();
3712                    mPointerGesture.currentGestureIdBits.markBit(
3713                            mPointerGesture.activeGestureId);
3714                    mPointerGesture.currentGestureIdToIndex[
3715                            mPointerGesture.activeGestureId] = 0;
3716                    mPointerGesture.currentGestureCoords[0].clear();
3717                    mPointerGesture.currentGestureCoords[0].setAxisValue(
3718                            AMOTION_EVENT_AXIS_X, mPointerGesture.tapX);
3719                    mPointerGesture.currentGestureCoords[0].setAxisValue(
3720                            AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY);
3721                    mPointerGesture.currentGestureCoords[0].setAxisValue(
3722                            AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
3723
3724                    if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3725                        mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_TAP;
3726                        mPointerGesture.spotIdBits.clear();
3727                        mPointerGesture.spotIdBits.markBit(lastActiveTouchId);
3728                        mPointerGesture.spotIdToIndex[lastActiveTouchId] = 0;
3729                        mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0];
3730                    }
3731
3732                    tapped = true;
3733                } else {
3734#if DEBUG_GESTURES
3735                    LOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f",
3736                            x - mPointerGesture.tapX,
3737                            y - mPointerGesture.tapY);
3738#endif
3739                }
3740            } else {
3741#if DEBUG_GESTURES
3742                LOGD("Gestures: Not a TAP, %0.3fms since down",
3743                        (when - mPointerGesture.tapDownTime) * 0.000001f);
3744#endif
3745            }
3746        }
3747
3748        mPointerGesture.pointerVelocityControl.reset();
3749
3750        if (!tapped) {
3751#if DEBUG_GESTURES
3752            LOGD("Gestures: NEUTRAL");
3753#endif
3754            mPointerGesture.activeGestureId = -1;
3755            mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
3756            mPointerGesture.currentGestureIdBits.clear();
3757
3758            if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3759                mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL;
3760                mPointerGesture.spotIdBits.clear();
3761            }
3762        }
3763    } else if (mCurrentTouch.pointerCount == 1) {
3764        // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG)
3765        // The pointer follows the active touch point.
3766        // When in HOVER, emit HOVER_MOVE events at the pointer location.
3767        // When in TAP_DRAG, emit MOVE events at the pointer location.
3768        LOG_ASSERT(activeTouchId >= 0);
3769
3770        mPointerGesture.currentGestureMode = PointerGesture::HOVER;
3771        if (mPointerGesture.lastGestureMode == PointerGesture::TAP) {
3772            if (when <= mPointerGesture.tapUpTime + mConfig->pointerGestureTapDragInterval) {
3773                float x, y;
3774                mPointerController->getPosition(&x, &y);
3775                if (fabs(x - mPointerGesture.tapX) <= mConfig->pointerGestureTapSlop
3776                        && fabs(y - mPointerGesture.tapY) <= mConfig->pointerGestureTapSlop) {
3777                    mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
3778                } else {
3779#if DEBUG_GESTURES
3780                    LOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f",
3781                            x - mPointerGesture.tapX,
3782                            y - mPointerGesture.tapY);
3783#endif
3784                }
3785            } else {
3786#if DEBUG_GESTURES
3787                LOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up",
3788                        (when - mPointerGesture.tapUpTime) * 0.000001f);
3789#endif
3790            }
3791        } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) {
3792            mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG;
3793        }
3794
3795        if (mLastTouch.idBits.hasBit(activeTouchId)) {
3796            const PointerData& currentPointer =
3797                    mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
3798            const PointerData& lastPointer =
3799                    mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
3800            float deltaX = (currentPointer.x - lastPointer.x)
3801                    * mLocked.pointerGestureXMovementScale;
3802            float deltaY = (currentPointer.y - lastPointer.y)
3803                    * mLocked.pointerGestureYMovementScale;
3804
3805            mPointerGesture.pointerVelocityControl.move(when, &deltaX, &deltaY);
3806
3807            // Move the pointer using a relative motion.
3808            // When using spots, the hover or drag will occur at the position of the anchor spot.
3809            mPointerController->move(deltaX, deltaY);
3810        } else {
3811            mPointerGesture.pointerVelocityControl.reset();
3812        }
3813
3814        bool down;
3815        if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) {
3816#if DEBUG_GESTURES
3817            LOGD("Gestures: TAP_DRAG");
3818#endif
3819            down = true;
3820        } else {
3821#if DEBUG_GESTURES
3822            LOGD("Gestures: HOVER");
3823#endif
3824            if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) {
3825                *outFinishPreviousGesture = true;
3826            }
3827            mPointerGesture.activeGestureId = 0;
3828            down = false;
3829        }
3830
3831        float x, y;
3832        mPointerController->getPosition(&x, &y);
3833
3834        mPointerGesture.currentGestureIdBits.clear();
3835        mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
3836        mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
3837        mPointerGesture.currentGestureCoords[0].clear();
3838        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
3839        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3840        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE,
3841                down ? 1.0f : 0.0f);
3842
3843        if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
3844            mPointerGesture.resetTap();
3845            mPointerGesture.tapDownTime = when;
3846            mPointerGesture.tapX = x;
3847            mPointerGesture.tapY = y;
3848        }
3849
3850        if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
3851            mPointerGesture.spotGesture = down ? PointerControllerInterface::SPOT_GESTURE_DRAG
3852                    : PointerControllerInterface::SPOT_GESTURE_HOVER;
3853            mPointerGesture.spotIdBits.clear();
3854            mPointerGesture.spotIdBits.markBit(activeTouchId);
3855            mPointerGesture.spotIdToIndex[activeTouchId] = 0;
3856            mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0];
3857        }
3858    } else {
3859        // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM)
3860        // We need to provide feedback for each finger that goes down so we cannot wait
3861        // for the fingers to move before deciding what to do.
3862        //
3863        // The ambiguous case is deciding what to do when there are two fingers down but they
3864        // have not moved enough to determine whether they are part of a drag or part of a
3865        // freeform gesture, or just a press or long-press at the pointer location.
3866        //
3867        // When there are two fingers we start with the PRESS hypothesis and we generate a
3868        // down at the pointer location.
3869        //
3870        // When the two fingers move enough or when additional fingers are added, we make
3871        // a decision to transition into SWIPE or FREEFORM mode accordingly.
3872        LOG_ASSERT(activeTouchId >= 0);
3873
3874        bool settled = when >= mPointerGesture.firstTouchTime
3875                + mConfig->pointerGestureMultitouchSettleInterval;
3876        if (mPointerGesture.lastGestureMode != PointerGesture::PRESS
3877                && mPointerGesture.lastGestureMode != PointerGesture::SWIPE
3878                && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
3879            *outFinishPreviousGesture = true;
3880        } else if (!settled && mCurrentTouch.pointerCount > mLastTouch.pointerCount) {
3881            // Additional pointers have gone down but not yet settled.
3882            // Reset the gesture.
3883#if DEBUG_GESTURES
3884            LOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, "
3885                    "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
3886                            + mConfig->pointerGestureMultitouchSettleInterval - when)
3887                            * 0.000001f);
3888#endif
3889            *outCancelPreviousGesture = true;
3890        } else {
3891            // Continue previous gesture.
3892            mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode;
3893        }
3894
3895        if (*outFinishPreviousGesture || *outCancelPreviousGesture) {
3896            mPointerGesture.currentGestureMode = PointerGesture::PRESS;
3897            mPointerGesture.activeGestureId = 0;
3898            mPointerGesture.referenceIdBits.clear();
3899            mPointerGesture.pointerVelocityControl.reset();
3900
3901            if (settled && mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS
3902                    && mLastTouch.idBits.hasBit(mPointerGesture.activeTouchId)) {
3903                // The spot is already visible and has settled, use it as the reference point
3904                // for the gesture.  Other spots will be positioned relative to this one.
3905#if DEBUG_GESTURES
3906                LOGD("Gestures: Using active spot as reference for MULTITOUCH, "
3907                        "settle time expired %0.3fms ago", (when - mPointerGesture.firstTouchTime
3908                                - mConfig->pointerGestureMultitouchSettleInterval)
3909                                * 0.000001f);
3910#endif
3911                const PointerData& d = mLastTouch.pointers[mLastTouch.idToIndex[
3912                        mPointerGesture.activeTouchId]];
3913                mPointerGesture.referenceTouchX = d.x;
3914                mPointerGesture.referenceTouchY = d.y;
3915                const PointerCoords& c = mPointerGesture.spotCoords[mPointerGesture.spotIdToIndex[
3916                        mPointerGesture.activeTouchId]];
3917                mPointerGesture.referenceGestureX = c.getAxisValue(AMOTION_EVENT_AXIS_X);
3918                mPointerGesture.referenceGestureY = c.getAxisValue(AMOTION_EVENT_AXIS_Y);
3919            } else {
3920                // Use the centroid and pointer location as the reference points for the gesture.
3921#if DEBUG_GESTURES
3922                LOGD("Gestures: Using centroid as reference for MULTITOUCH, "
3923                        "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime
3924                                + mConfig->pointerGestureMultitouchSettleInterval - when)
3925                                * 0.000001f);
3926#endif
3927                mCurrentTouch.getCentroid(&mPointerGesture.referenceTouchX,
3928                        &mPointerGesture.referenceTouchY);
3929                mPointerController->getPosition(&mPointerGesture.referenceGestureX,
3930                        &mPointerGesture.referenceGestureY);
3931            }
3932        }
3933
3934        // Clear the reference deltas for fingers not yet included in the reference calculation.
3935        for (BitSet32 idBits(mCurrentTouch.idBits.value & ~mPointerGesture.referenceIdBits.value);
3936                !idBits.isEmpty(); ) {
3937            uint32_t id = idBits.firstMarkedBit();
3938            idBits.clearBit(id);
3939
3940            mPointerGesture.referenceDeltas[id].dx = 0;
3941            mPointerGesture.referenceDeltas[id].dy = 0;
3942        }
3943        mPointerGesture.referenceIdBits = mCurrentTouch.idBits;
3944
3945        // Add delta for all fingers and calculate a common movement delta.
3946        float commonDeltaX = 0, commonDeltaY = 0;
3947        BitSet32 commonIdBits(mLastTouch.idBits.value & mCurrentTouch.idBits.value);
3948        for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) {
3949            bool first = (idBits == commonIdBits);
3950            uint32_t id = idBits.firstMarkedBit();
3951            idBits.clearBit(id);
3952
3953            const PointerData& cpd = mCurrentTouch.pointers[mCurrentTouch.idToIndex[id]];
3954            const PointerData& lpd = mLastTouch.pointers[mLastTouch.idToIndex[id]];
3955            PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
3956            delta.dx += cpd.x - lpd.x;
3957            delta.dy += cpd.y - lpd.y;
3958
3959            if (first) {
3960                commonDeltaX = delta.dx;
3961                commonDeltaY = delta.dy;
3962            } else {
3963                commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx);
3964                commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy);
3965            }
3966        }
3967
3968        // Consider transitions from PRESS to SWIPE or MULTITOUCH.
3969        if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
3970            float dist[MAX_POINTER_ID + 1];
3971            int32_t distOverThreshold = 0;
3972            for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
3973                uint32_t id = idBits.firstMarkedBit();
3974                idBits.clearBit(id);
3975
3976                PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
3977                dist[id] = hypotf(delta.dx * mLocked.pointerGestureXZoomScale,
3978                        delta.dy * mLocked.pointerGestureYZoomScale);
3979                if (dist[id] > mConfig->pointerGestureMultitouchMinDistance) {
3980                    distOverThreshold += 1;
3981                }
3982            }
3983
3984            // Only transition when at least two pointers have moved further than
3985            // the minimum distance threshold.
3986            if (distOverThreshold >= 2) {
3987                float d;
3988                if (mCurrentTouch.pointerCount > 2) {
3989                    // There are more than two pointers, switch to FREEFORM.
3990#if DEBUG_GESTURES
3991                    LOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2",
3992                            mCurrentTouch.pointerCount);
3993#endif
3994                    *outCancelPreviousGesture = true;
3995                    mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
3996                } else if (((d = distance(
3997                        mCurrentTouch.pointers[0].x, mCurrentTouch.pointers[0].y,
3998                        mCurrentTouch.pointers[1].x, mCurrentTouch.pointers[1].y))
3999                                > mLocked.pointerGestureMaxSwipeWidth)) {
4000                    // There are two pointers but they are too far apart for a SWIPE,
4001                    // switch to FREEFORM.
4002#if DEBUG_GESTURES
4003                    LOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f",
4004                            d, mLocked.pointerGestureMaxSwipeWidth);
4005#endif
4006                    *outCancelPreviousGesture = true;
4007                    mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
4008                } else {
4009                    // There are two pointers.  Wait for both pointers to start moving
4010                    // before deciding whether this is a SWIPE or FREEFORM gesture.
4011                    uint32_t id1 = mCurrentTouch.pointers[0].id;
4012                    uint32_t id2 = mCurrentTouch.pointers[1].id;
4013                    float dist1 = dist[id1];
4014                    float dist2 = dist[id2];
4015                    if (dist1 >= mConfig->pointerGestureMultitouchMinDistance
4016                            && dist2 >= mConfig->pointerGestureMultitouchMinDistance) {
4017                        // Calculate the dot product of the displacement vectors.
4018                        // When the vectors are oriented in approximately the same direction,
4019                        // the angle betweeen them is near zero and the cosine of the angle
4020                        // approches 1.0.  Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2).
4021                        PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1];
4022                        PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2];
4023                        float dot = delta1.dx * delta2.dx + delta1.dy * delta2.dy;
4024                        float cosine = dot / (dist1 * dist2); // denominator always > 0
4025                        if (cosine >= mConfig->pointerGestureSwipeTransitionAngleCosine) {
4026                            // Pointers are moving in the same direction.  Switch to SWIPE.
4027#if DEBUG_GESTURES
4028                            LOGD("Gestures: PRESS transitioned to SWIPE, "
4029                                    "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
4030                                    "cosine %0.3f >= %0.3f",
4031                                    dist1, mConfig->pointerGestureMultitouchMinDistance,
4032                                    dist2, mConfig->pointerGestureMultitouchMinDistance,
4033                                    cosine, mConfig->pointerGestureSwipeTransitionAngleCosine);
4034#endif
4035                            mPointerGesture.currentGestureMode = PointerGesture::SWIPE;
4036                        } else {
4037                            // Pointers are moving in different directions.  Switch to FREEFORM.
4038#if DEBUG_GESTURES
4039                            LOGD("Gestures: PRESS transitioned to FREEFORM, "
4040                                    "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, "
4041                                    "cosine %0.3f < %0.3f",
4042                                    dist1, mConfig->pointerGestureMultitouchMinDistance,
4043                                    dist2, mConfig->pointerGestureMultitouchMinDistance,
4044                                    cosine, mConfig->pointerGestureSwipeTransitionAngleCosine);
4045#endif
4046                            *outCancelPreviousGesture = true;
4047                            mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
4048                        }
4049                    }
4050                }
4051            }
4052        } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
4053            // Switch from SWIPE to FREEFORM if additional pointers go down.
4054            // Cancel previous gesture.
4055            if (mCurrentTouch.pointerCount > 2) {
4056#if DEBUG_GESTURES
4057                LOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2",
4058                        mCurrentTouch.pointerCount);
4059#endif
4060                *outCancelPreviousGesture = true;
4061                mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
4062            }
4063        }
4064
4065        // Move the reference points based on the overall group motion of the fingers
4066        // except in PRESS mode while waiting for a transition to occur.
4067        if (mPointerGesture.currentGestureMode != PointerGesture::PRESS
4068                && (commonDeltaX || commonDeltaY)) {
4069            for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) {
4070                uint32_t id = idBits.firstMarkedBit();
4071                idBits.clearBit(id);
4072
4073                PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id];
4074                delta.dx = 0;
4075                delta.dy = 0;
4076            }
4077
4078            mPointerGesture.referenceTouchX += commonDeltaX;
4079            mPointerGesture.referenceTouchY += commonDeltaY;
4080
4081            commonDeltaX *= mLocked.pointerGestureXMovementScale;
4082            commonDeltaY *= mLocked.pointerGestureYMovementScale;
4083            mPointerGesture.pointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY);
4084
4085            mPointerGesture.referenceGestureX += commonDeltaX;
4086            mPointerGesture.referenceGestureY += commonDeltaY;
4087        }
4088
4089        // Report gestures.
4090        if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) {
4091            // PRESS mode.
4092#if DEBUG_GESTURES
4093            LOGD("Gestures: PRESS activeTouchId=%d,"
4094                    "activeGestureId=%d, currentTouchPointerCount=%d",
4095                    activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
4096#endif
4097            LOG_ASSERT(mPointerGesture.activeGestureId >= 0);
4098
4099            mPointerGesture.currentGestureIdBits.clear();
4100            mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
4101            mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
4102            mPointerGesture.currentGestureCoords[0].clear();
4103            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
4104                    mPointerGesture.referenceGestureX);
4105            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
4106                    mPointerGesture.referenceGestureY);
4107            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
4108
4109            if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
4110                mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_PRESS;
4111            }
4112        } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
4113            // SWIPE mode.
4114#if DEBUG_GESTURES
4115            LOGD("Gestures: SWIPE activeTouchId=%d,"
4116                    "activeGestureId=%d, currentTouchPointerCount=%d",
4117                    activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
4118#endif
4119            assert(mPointerGesture.activeGestureId >= 0);
4120
4121            mPointerGesture.currentGestureIdBits.clear();
4122            mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
4123            mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
4124            mPointerGesture.currentGestureCoords[0].clear();
4125            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
4126                    mPointerGesture.referenceGestureX);
4127            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y,
4128                    mPointerGesture.referenceGestureY);
4129            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
4130
4131            if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
4132                mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_SWIPE;
4133            }
4134        } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) {
4135            // FREEFORM mode.
4136#if DEBUG_GESTURES
4137            LOGD("Gestures: FREEFORM activeTouchId=%d,"
4138                    "activeGestureId=%d, currentTouchPointerCount=%d",
4139                    activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount);
4140#endif
4141            assert(mPointerGesture.activeGestureId >= 0);
4142
4143            mPointerGesture.currentGestureIdBits.clear();
4144
4145            BitSet32 mappedTouchIdBits;
4146            BitSet32 usedGestureIdBits;
4147            if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
4148                // Initially, assign the active gesture id to the active touch point
4149                // if there is one.  No other touch id bits are mapped yet.
4150                if (!*outCancelPreviousGesture) {
4151                    mappedTouchIdBits.markBit(activeTouchId);
4152                    usedGestureIdBits.markBit(mPointerGesture.activeGestureId);
4153                    mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] =
4154                            mPointerGesture.activeGestureId;
4155                } else {
4156                    mPointerGesture.activeGestureId = -1;
4157                }
4158            } else {
4159                // Otherwise, assume we mapped all touches from the previous frame.
4160                // Reuse all mappings that are still applicable.
4161                mappedTouchIdBits.value = mLastTouch.idBits.value & mCurrentTouch.idBits.value;
4162                usedGestureIdBits = mPointerGesture.lastGestureIdBits;
4163
4164                // Check whether we need to choose a new active gesture id because the
4165                // current went went up.
4166                for (BitSet32 upTouchIdBits(mLastTouch.idBits.value & ~mCurrentTouch.idBits.value);
4167                        !upTouchIdBits.isEmpty(); ) {
4168                    uint32_t upTouchId = upTouchIdBits.firstMarkedBit();
4169                    upTouchIdBits.clearBit(upTouchId);
4170                    uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId];
4171                    if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) {
4172                        mPointerGesture.activeGestureId = -1;
4173                        break;
4174                    }
4175                }
4176            }
4177
4178#if DEBUG_GESTURES
4179            LOGD("Gestures: FREEFORM follow up "
4180                    "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, "
4181                    "activeGestureId=%d",
4182                    mappedTouchIdBits.value, usedGestureIdBits.value,
4183                    mPointerGesture.activeGestureId);
4184#endif
4185
4186            for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
4187                uint32_t touchId = mCurrentTouch.pointers[i].id;
4188                uint32_t gestureId;
4189                if (!mappedTouchIdBits.hasBit(touchId)) {
4190                    gestureId = usedGestureIdBits.firstUnmarkedBit();
4191                    usedGestureIdBits.markBit(gestureId);
4192                    mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId;
4193#if DEBUG_GESTURES
4194                    LOGD("Gestures: FREEFORM "
4195                            "new mapping for touch id %d -> gesture id %d",
4196                            touchId, gestureId);
4197#endif
4198                } else {
4199                    gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId];
4200#if DEBUG_GESTURES
4201                    LOGD("Gestures: FREEFORM "
4202                            "existing mapping for touch id %d -> gesture id %d",
4203                            touchId, gestureId);
4204#endif
4205                }
4206                mPointerGesture.currentGestureIdBits.markBit(gestureId);
4207                mPointerGesture.currentGestureIdToIndex[gestureId] = i;
4208
4209                float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX)
4210                        * mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX;
4211                float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY)
4212                        * mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY;
4213
4214                mPointerGesture.currentGestureCoords[i].clear();
4215                mPointerGesture.currentGestureCoords[i].setAxisValue(
4216                        AMOTION_EVENT_AXIS_X, x);
4217                mPointerGesture.currentGestureCoords[i].setAxisValue(
4218                        AMOTION_EVENT_AXIS_Y, y);
4219                mPointerGesture.currentGestureCoords[i].setAxisValue(
4220                        AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
4221            }
4222
4223            if (mPointerGesture.activeGestureId < 0) {
4224                mPointerGesture.activeGestureId =
4225                        mPointerGesture.currentGestureIdBits.firstMarkedBit();
4226#if DEBUG_GESTURES
4227                LOGD("Gestures: FREEFORM new "
4228                        "activeGestureId=%d", mPointerGesture.activeGestureId);
4229#endif
4230            }
4231
4232            if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
4233                mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_FREEFORM;
4234            }
4235        }
4236
4237        // Update spot locations for PRESS, SWIPE and FREEFORM.
4238        if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) {
4239#if SPOT_FOLLOWS_FINGER
4240            // Use the same calculation as we do to calculate the gesture pointers
4241            // for FREEFORM so that the spots smoothly track fingers across gestures.
4242            mPointerGesture.spotIdBits.clear();
4243            for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
4244                uint32_t id = mCurrentTouch.pointers[i].id;
4245                mPointerGesture.spotIdBits.markBit(id);
4246                mPointerGesture.spotIdToIndex[id] = i;
4247
4248                float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX)
4249                        * mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX;
4250                float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY)
4251                        * mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY;
4252
4253                mPointerGesture.spotCoords[i].clear();
4254                mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, x);
4255                mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
4256                mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
4257            }
4258#else
4259            // Show one spot per generated touch point.
4260            // This may cause apparent discontinuities in spot motion when transitioning
4261            // from PRESS to FREEFORM.
4262            mPointerGesture.spotIdBits = mPointerGesture.currentGestureIdBits;
4263            for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
4264                uint32_t id = idBits.firstMarkedBit();
4265                idBits.clearBit(id);
4266                uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
4267                mPointerGesture.spotIdToIndex[id] = index;
4268                mPointerGesture.spotCoords[index] = mPointerGesture.currentGestureCoords[index];
4269            }
4270#endif
4271        }
4272    }
4273
4274    mPointerController->setButtonState(mCurrentTouch.buttonState);
4275
4276#if DEBUG_GESTURES
4277    LOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, "
4278            "currentGestureMode=%d, currentGestureIdBits=0x%08x, "
4279            "lastGestureMode=%d, lastGestureIdBits=0x%08x",
4280            toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture),
4281            mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value,
4282            mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value);
4283    for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) {
4284        uint32_t id = idBits.firstMarkedBit();
4285        idBits.clearBit(id);
4286        uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
4287        const PointerCoords& coords = mPointerGesture.currentGestureCoords[index];
4288        LOGD("  currentGesture[%d]: index=%d, x=%0.3f, y=%0.3f, pressure=%0.3f",
4289                id, index, coords.getAxisValue(AMOTION_EVENT_AXIS_X),
4290                coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
4291                coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
4292    }
4293    for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) {
4294        uint32_t id = idBits.firstMarkedBit();
4295        idBits.clearBit(id);
4296        uint32_t index = mPointerGesture.lastGestureIdToIndex[id];
4297        const PointerCoords& coords = mPointerGesture.lastGestureCoords[index];
4298        LOGD("  lastGesture[%d]: index=%d, x=%0.3f, y=%0.3f, pressure=%0.3f",
4299                id, index, coords.getAxisValue(AMOTION_EVENT_AXIS_X),
4300                coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
4301                coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
4302    }
4303#endif
4304    return true;
4305}
4306
4307void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
4308        int32_t action, int32_t flags, uint32_t metaState, int32_t edgeFlags,
4309        const PointerCoords* coords, const uint32_t* idToIndex, BitSet32 idBits,
4310        int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
4311    PointerCoords pointerCoords[MAX_POINTERS];
4312    int32_t pointerIds[MAX_POINTERS];
4313    uint32_t pointerCount = 0;
4314    while (!idBits.isEmpty()) {
4315        uint32_t id = idBits.firstMarkedBit();
4316        idBits.clearBit(id);
4317        uint32_t index = idToIndex[id];
4318        pointerIds[pointerCount] = id;
4319        pointerCoords[pointerCount].copyFrom(coords[index]);
4320
4321        if (changedId >= 0 && id == uint32_t(changedId)) {
4322            action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
4323        }
4324
4325        pointerCount += 1;
4326    }
4327
4328    assert(pointerCount != 0);
4329
4330    if (changedId >= 0 && pointerCount == 1) {
4331        // Replace initial down and final up action.
4332        // We can compare the action without masking off the changed pointer index
4333        // because we know the index is 0.
4334        if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
4335            action = AMOTION_EVENT_ACTION_DOWN;
4336        } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
4337            action = AMOTION_EVENT_ACTION_UP;
4338        } else {
4339            // Can't happen.
4340            assert(false);
4341        }
4342    }
4343
4344    getDispatcher()->notifyMotion(when, getDeviceId(), source, policyFlags,
4345            action, flags, metaState, edgeFlags,
4346            pointerCount, pointerIds, pointerCoords, xPrecision, yPrecision, downTime);
4347}
4348
4349bool TouchInputMapper::updateMovedPointerCoords(
4350        const PointerCoords* inCoords, const uint32_t* inIdToIndex,
4351        PointerCoords* outCoords, const uint32_t* outIdToIndex, BitSet32 idBits) const {
4352    bool changed = false;
4353    while (!idBits.isEmpty()) {
4354        uint32_t id = idBits.firstMarkedBit();
4355        idBits.clearBit(id);
4356
4357        uint32_t inIndex = inIdToIndex[id];
4358        uint32_t outIndex = outIdToIndex[id];
4359        const PointerCoords& curInCoords = inCoords[inIndex];
4360        PointerCoords& curOutCoords = outCoords[outIndex];
4361
4362        if (curInCoords != curOutCoords) {
4363            curOutCoords.copyFrom(curInCoords);
4364            changed = true;
4365        }
4366    }
4367    return changed;
4368}
4369
4370void TouchInputMapper::fadePointer() {
4371    { // acquire lock
4372        AutoMutex _l(mLock);
4373        if (mPointerController != NULL) {
4374            mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL);
4375        }
4376    } // release lock
4377}
4378
4379bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
4380    return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
4381            && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
4382}
4383
4384const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
4385        int32_t x, int32_t y) {
4386    size_t numVirtualKeys = mLocked.virtualKeys.size();
4387    for (size_t i = 0; i < numVirtualKeys; i++) {
4388        const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4389
4390#if DEBUG_VIRTUAL_KEYS
4391        LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
4392                "left=%d, top=%d, right=%d, bottom=%d",
4393                x, y,
4394                virtualKey.keyCode, virtualKey.scanCode,
4395                virtualKey.hitLeft, virtualKey.hitTop,
4396                virtualKey.hitRight, virtualKey.hitBottom);
4397#endif
4398
4399        if (virtualKey.isHit(x, y)) {
4400            return & virtualKey;
4401        }
4402    }
4403
4404    return NULL;
4405}
4406
4407void TouchInputMapper::calculatePointerIds() {
4408    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
4409    uint32_t lastPointerCount = mLastTouch.pointerCount;
4410
4411    if (currentPointerCount == 0) {
4412        // No pointers to assign.
4413        mCurrentTouch.idBits.clear();
4414    } else if (lastPointerCount == 0) {
4415        // All pointers are new.
4416        mCurrentTouch.idBits.clear();
4417        for (uint32_t i = 0; i < currentPointerCount; i++) {
4418            mCurrentTouch.pointers[i].id = i;
4419            mCurrentTouch.idToIndex[i] = i;
4420            mCurrentTouch.idBits.markBit(i);
4421        }
4422    } else if (currentPointerCount == 1 && lastPointerCount == 1) {
4423        // Only one pointer and no change in count so it must have the same id as before.
4424        uint32_t id = mLastTouch.pointers[0].id;
4425        mCurrentTouch.pointers[0].id = id;
4426        mCurrentTouch.idToIndex[id] = 0;
4427        mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
4428    } else {
4429        // General case.
4430        // We build a heap of squared euclidean distances between current and last pointers
4431        // associated with the current and last pointer indices.  Then, we find the best
4432        // match (by distance) for each current pointer.
4433        PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
4434
4435        uint32_t heapSize = 0;
4436        for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
4437                currentPointerIndex++) {
4438            for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
4439                    lastPointerIndex++) {
4440                int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
4441                        - mLastTouch.pointers[lastPointerIndex].x;
4442                int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
4443                        - mLastTouch.pointers[lastPointerIndex].y;
4444
4445                uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
4446
4447                // Insert new element into the heap (sift up).
4448                heap[heapSize].currentPointerIndex = currentPointerIndex;
4449                heap[heapSize].lastPointerIndex = lastPointerIndex;
4450                heap[heapSize].distance = distance;
4451                heapSize += 1;
4452            }
4453        }
4454
4455        // Heapify
4456        for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
4457            startIndex -= 1;
4458            for (uint32_t parentIndex = startIndex; ;) {
4459                uint32_t childIndex = parentIndex * 2 + 1;
4460                if (childIndex >= heapSize) {
4461                    break;
4462                }
4463
4464                if (childIndex + 1 < heapSize
4465                        && heap[childIndex + 1].distance < heap[childIndex].distance) {
4466                    childIndex += 1;
4467                }
4468
4469                if (heap[parentIndex].distance <= heap[childIndex].distance) {
4470                    break;
4471                }
4472
4473                swap(heap[parentIndex], heap[childIndex]);
4474                parentIndex = childIndex;
4475            }
4476        }
4477
4478#if DEBUG_POINTER_ASSIGNMENT
4479        LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
4480        for (size_t i = 0; i < heapSize; i++) {
4481            LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
4482                    i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
4483                    heap[i].distance);
4484        }
4485#endif
4486
4487        // Pull matches out by increasing order of distance.
4488        // To avoid reassigning pointers that have already been matched, the loop keeps track
4489        // of which last and current pointers have been matched using the matchedXXXBits variables.
4490        // It also tracks the used pointer id bits.
4491        BitSet32 matchedLastBits(0);
4492        BitSet32 matchedCurrentBits(0);
4493        BitSet32 usedIdBits(0);
4494        bool first = true;
4495        for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
4496            for (;;) {
4497                if (first) {
4498                    // The first time through the loop, we just consume the root element of
4499                    // the heap (the one with smallest distance).
4500                    first = false;
4501                } else {
4502                    // Previous iterations consumed the root element of the heap.
4503                    // Pop root element off of the heap (sift down).
4504                    heapSize -= 1;
4505                    assert(heapSize > 0);
4506
4507                    // Sift down.
4508                    heap[0] = heap[heapSize];
4509                    for (uint32_t parentIndex = 0; ;) {
4510                        uint32_t childIndex = parentIndex * 2 + 1;
4511                        if (childIndex >= heapSize) {
4512                            break;
4513                        }
4514
4515                        if (childIndex + 1 < heapSize
4516                                && heap[childIndex + 1].distance < heap[childIndex].distance) {
4517                            childIndex += 1;
4518                        }
4519
4520                        if (heap[parentIndex].distance <= heap[childIndex].distance) {
4521                            break;
4522                        }
4523
4524                        swap(heap[parentIndex], heap[childIndex]);
4525                        parentIndex = childIndex;
4526                    }
4527
4528#if DEBUG_POINTER_ASSIGNMENT
4529                    LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
4530                    for (size_t i = 0; i < heapSize; i++) {
4531                        LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
4532                                i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
4533                                heap[i].distance);
4534                    }
4535#endif
4536                }
4537
4538                uint32_t currentPointerIndex = heap[0].currentPointerIndex;
4539                if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
4540
4541                uint32_t lastPointerIndex = heap[0].lastPointerIndex;
4542                if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
4543
4544                matchedCurrentBits.markBit(currentPointerIndex);
4545                matchedLastBits.markBit(lastPointerIndex);
4546
4547                uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
4548                mCurrentTouch.pointers[currentPointerIndex].id = id;
4549                mCurrentTouch.idToIndex[id] = currentPointerIndex;
4550                usedIdBits.markBit(id);
4551
4552#if DEBUG_POINTER_ASSIGNMENT
4553                LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
4554                        lastPointerIndex, currentPointerIndex, id, heap[0].distance);
4555#endif
4556                break;
4557            }
4558        }
4559
4560        // Assign fresh ids to new pointers.
4561        if (currentPointerCount > lastPointerCount) {
4562            for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
4563                uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
4564                uint32_t id = usedIdBits.firstUnmarkedBit();
4565
4566                mCurrentTouch.pointers[currentPointerIndex].id = id;
4567                mCurrentTouch.idToIndex[id] = currentPointerIndex;
4568                usedIdBits.markBit(id);
4569
4570#if DEBUG_POINTER_ASSIGNMENT
4571                LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
4572                        currentPointerIndex, id);
4573#endif
4574
4575                if (--i == 0) break; // done
4576                matchedCurrentBits.markBit(currentPointerIndex);
4577            }
4578        }
4579
4580        // Fix id bits.
4581        mCurrentTouch.idBits = usedIdBits;
4582    }
4583}
4584
4585/* Special hack for devices that have bad screen data: if one of the
4586 * points has moved more than a screen height from the last position,
4587 * then drop it. */
4588bool TouchInputMapper::applyBadTouchFilter() {
4589    uint32_t pointerCount = mCurrentTouch.pointerCount;
4590
4591    // Nothing to do if there are no points.
4592    if (pointerCount == 0) {
4593        return false;
4594    }
4595
4596    // Don't do anything if a finger is going down or up.  We run
4597    // here before assigning pointer IDs, so there isn't a good
4598    // way to do per-finger matching.
4599    if (pointerCount != mLastTouch.pointerCount) {
4600        return false;
4601    }
4602
4603    // We consider a single movement across more than a 7/16 of
4604    // the long size of the screen to be bad.  This was a magic value
4605    // determined by looking at the maximum distance it is feasible
4606    // to actually move in one sample.
4607    int32_t maxDeltaY = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) * 7 / 16;
4608
4609    // XXX The original code in InputDevice.java included commented out
4610    //     code for testing the X axis.  Note that when we drop a point
4611    //     we don't actually restore the old X either.  Strange.
4612    //     The old code also tries to track when bad points were previously
4613    //     detected but it turns out that due to the placement of a "break"
4614    //     at the end of the loop, we never set mDroppedBadPoint to true
4615    //     so it is effectively dead code.
4616    // Need to figure out if the old code is busted or just overcomplicated
4617    // but working as intended.
4618
4619    // Look through all new points and see if any are farther than
4620    // acceptable from all previous points.
4621    for (uint32_t i = pointerCount; i-- > 0; ) {
4622        int32_t y = mCurrentTouch.pointers[i].y;
4623        int32_t closestY = INT_MAX;
4624        int32_t closestDeltaY = 0;
4625
4626#if DEBUG_HACKS
4627        LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
4628#endif
4629
4630        for (uint32_t j = pointerCount; j-- > 0; ) {
4631            int32_t lastY = mLastTouch.pointers[j].y;
4632            int32_t deltaY = abs(y - lastY);
4633
4634#if DEBUG_HACKS
4635            LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
4636                    j, lastY, deltaY);
4637#endif
4638
4639            if (deltaY < maxDeltaY) {
4640                goto SkipSufficientlyClosePoint;
4641            }
4642            if (deltaY < closestDeltaY) {
4643                closestDeltaY = deltaY;
4644                closestY = lastY;
4645            }
4646        }
4647
4648        // Must not have found a close enough match.
4649#if DEBUG_HACKS
4650        LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
4651                i, y, closestY, closestDeltaY, maxDeltaY);
4652#endif
4653
4654        mCurrentTouch.pointers[i].y = closestY;
4655        return true; // XXX original code only corrects one point
4656
4657    SkipSufficientlyClosePoint: ;
4658    }
4659
4660    // No change.
4661    return false;
4662}
4663
4664/* Special hack for devices that have bad screen data: drop points where
4665 * the coordinate value for one axis has jumped to the other pointer's location.
4666 */
4667bool TouchInputMapper::applyJumpyTouchFilter() {
4668    uint32_t pointerCount = mCurrentTouch.pointerCount;
4669    if (mLastTouch.pointerCount != pointerCount) {
4670#if DEBUG_HACKS
4671        LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
4672                mLastTouch.pointerCount, pointerCount);
4673        for (uint32_t i = 0; i < pointerCount; i++) {
4674            LOGD("  Pointer %d (%d, %d)", i,
4675                    mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
4676        }
4677#endif
4678
4679        if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
4680            if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
4681                // Just drop the first few events going from 1 to 2 pointers.
4682                // They're bad often enough that they're not worth considering.
4683                mCurrentTouch.pointerCount = 1;
4684                mJumpyTouchFilter.jumpyPointsDropped += 1;
4685
4686#if DEBUG_HACKS
4687                LOGD("JumpyTouchFilter: Pointer 2 dropped");
4688#endif
4689                return true;
4690            } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
4691                // The event when we go from 2 -> 1 tends to be messed up too
4692                mCurrentTouch.pointerCount = 2;
4693                mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
4694                mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
4695                mJumpyTouchFilter.jumpyPointsDropped += 1;
4696
4697#if DEBUG_HACKS
4698                for (int32_t i = 0; i < 2; i++) {
4699                    LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
4700                            mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
4701                }
4702#endif
4703                return true;
4704            }
4705        }
4706        // Reset jumpy points dropped on other transitions or if limit exceeded.
4707        mJumpyTouchFilter.jumpyPointsDropped = 0;
4708
4709#if DEBUG_HACKS
4710        LOGD("JumpyTouchFilter: Transition - drop limit reset");
4711#endif
4712        return false;
4713    }
4714
4715    // We have the same number of pointers as last time.
4716    // A 'jumpy' point is one where the coordinate value for one axis
4717    // has jumped to the other pointer's location. No need to do anything
4718    // else if we only have one pointer.
4719    if (pointerCount < 2) {
4720        return false;
4721    }
4722
4723    if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
4724        int jumpyEpsilon = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) / JUMPY_EPSILON_DIVISOR;
4725
4726        // We only replace the single worst jumpy point as characterized by pointer distance
4727        // in a single axis.
4728        int32_t badPointerIndex = -1;
4729        int32_t badPointerReplacementIndex = -1;
4730        int32_t badPointerDistance = INT_MIN; // distance to be corrected
4731
4732        for (uint32_t i = pointerCount; i-- > 0; ) {
4733            int32_t x = mCurrentTouch.pointers[i].x;
4734            int32_t y = mCurrentTouch.pointers[i].y;
4735
4736#if DEBUG_HACKS
4737            LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
4738#endif
4739
4740            // Check if a touch point is too close to another's coordinates
4741            bool dropX = false, dropY = false;
4742            for (uint32_t j = 0; j < pointerCount; j++) {
4743                if (i == j) {
4744                    continue;
4745                }
4746
4747                if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
4748                    dropX = true;
4749                    break;
4750                }
4751
4752                if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
4753                    dropY = true;
4754                    break;
4755                }
4756            }
4757            if (! dropX && ! dropY) {
4758                continue; // not jumpy
4759            }
4760
4761            // Find a replacement candidate by comparing with older points on the
4762            // complementary (non-jumpy) axis.
4763            int32_t distance = INT_MIN; // distance to be corrected
4764            int32_t replacementIndex = -1;
4765
4766            if (dropX) {
4767                // X looks too close.  Find an older replacement point with a close Y.
4768                int32_t smallestDeltaY = INT_MAX;
4769                for (uint32_t j = 0; j < pointerCount; j++) {
4770                    int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
4771                    if (deltaY < smallestDeltaY) {
4772                        smallestDeltaY = deltaY;
4773                        replacementIndex = j;
4774                    }
4775                }
4776                distance = abs(x - mLastTouch.pointers[replacementIndex].x);
4777            } else {
4778                // Y looks too close.  Find an older replacement point with a close X.
4779                int32_t smallestDeltaX = INT_MAX;
4780                for (uint32_t j = 0; j < pointerCount; j++) {
4781                    int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
4782                    if (deltaX < smallestDeltaX) {
4783                        smallestDeltaX = deltaX;
4784                        replacementIndex = j;
4785                    }
4786                }
4787                distance = abs(y - mLastTouch.pointers[replacementIndex].y);
4788            }
4789
4790            // If replacing this pointer would correct a worse error than the previous ones
4791            // considered, then use this replacement instead.
4792            if (distance > badPointerDistance) {
4793                badPointerIndex = i;
4794                badPointerReplacementIndex = replacementIndex;
4795                badPointerDistance = distance;
4796            }
4797        }
4798
4799        // Correct the jumpy pointer if one was found.
4800        if (badPointerIndex >= 0) {
4801#if DEBUG_HACKS
4802            LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
4803                    badPointerIndex,
4804                    mLastTouch.pointers[badPointerReplacementIndex].x,
4805                    mLastTouch.pointers[badPointerReplacementIndex].y);
4806#endif
4807
4808            mCurrentTouch.pointers[badPointerIndex].x =
4809                    mLastTouch.pointers[badPointerReplacementIndex].x;
4810            mCurrentTouch.pointers[badPointerIndex].y =
4811                    mLastTouch.pointers[badPointerReplacementIndex].y;
4812            mJumpyTouchFilter.jumpyPointsDropped += 1;
4813            return true;
4814        }
4815    }
4816
4817    mJumpyTouchFilter.jumpyPointsDropped = 0;
4818    return false;
4819}
4820
4821/* Special hack for devices that have bad screen data: aggregate and
4822 * compute averages of the coordinate data, to reduce the amount of
4823 * jitter seen by applications. */
4824void TouchInputMapper::applyAveragingTouchFilter() {
4825    for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
4826        uint32_t id = mCurrentTouch.pointers[currentIndex].id;
4827        int32_t x = mCurrentTouch.pointers[currentIndex].x;
4828        int32_t y = mCurrentTouch.pointers[currentIndex].y;
4829        int32_t pressure;
4830        switch (mCalibration.pressureSource) {
4831        case Calibration::PRESSURE_SOURCE_PRESSURE:
4832            pressure = mCurrentTouch.pointers[currentIndex].pressure;
4833            break;
4834        case Calibration::PRESSURE_SOURCE_TOUCH:
4835            pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
4836            break;
4837        default:
4838            pressure = 1;
4839            break;
4840        }
4841
4842        if (mLastTouch.idBits.hasBit(id)) {
4843            // Pointer was down before and is still down now.
4844            // Compute average over history trace.
4845            uint32_t start = mAveragingTouchFilter.historyStart[id];
4846            uint32_t end = mAveragingTouchFilter.historyEnd[id];
4847
4848            int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
4849            int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
4850            uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
4851
4852#if DEBUG_HACKS
4853            LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
4854                    id, distance);
4855#endif
4856
4857            if (distance < AVERAGING_DISTANCE_LIMIT) {
4858                // Increment end index in preparation for recording new historical data.
4859                end += 1;
4860                if (end > AVERAGING_HISTORY_SIZE) {
4861                    end = 0;
4862                }
4863
4864                // If the end index has looped back to the start index then we have filled
4865                // the historical trace up to the desired size so we drop the historical
4866                // data at the start of the trace.
4867                if (end == start) {
4868                    start += 1;
4869                    if (start > AVERAGING_HISTORY_SIZE) {
4870                        start = 0;
4871                    }
4872                }
4873
4874                // Add the raw data to the historical trace.
4875                mAveragingTouchFilter.historyStart[id] = start;
4876                mAveragingTouchFilter.historyEnd[id] = end;
4877                mAveragingTouchFilter.historyData[end].pointers[id].x = x;
4878                mAveragingTouchFilter.historyData[end].pointers[id].y = y;
4879                mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;
4880
4881                // Average over all historical positions in the trace by total pressure.
4882                int32_t averagedX = 0;
4883                int32_t averagedY = 0;
4884                int32_t totalPressure = 0;
4885                for (;;) {
4886                    int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
4887                    int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
4888                    int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
4889                            .pointers[id].pressure;
4890
4891                    averagedX += historicalX * historicalPressure;
4892                    averagedY += historicalY * historicalPressure;
4893                    totalPressure += historicalPressure;
4894
4895                    if (start == end) {
4896                        break;
4897                    }
4898
4899                    start += 1;
4900                    if (start > AVERAGING_HISTORY_SIZE) {
4901                        start = 0;
4902                    }
4903                }
4904
4905                if (totalPressure != 0) {
4906                    averagedX /= totalPressure;
4907                    averagedY /= totalPressure;
4908
4909#if DEBUG_HACKS
4910                    LOGD("AveragingTouchFilter: Pointer id %d - "
4911                            "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
4912                            averagedX, averagedY);
4913#endif
4914
4915                    mCurrentTouch.pointers[currentIndex].x = averagedX;
4916                    mCurrentTouch.pointers[currentIndex].y = averagedY;
4917                }
4918            } else {
4919#if DEBUG_HACKS
4920                LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
4921#endif
4922            }
4923        } else {
4924#if DEBUG_HACKS
4925            LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
4926#endif
4927        }
4928
4929        // Reset pointer history.
4930        mAveragingTouchFilter.historyStart[id] = 0;
4931        mAveragingTouchFilter.historyEnd[id] = 0;
4932        mAveragingTouchFilter.historyData[0].pointers[id].x = x;
4933        mAveragingTouchFilter.historyData[0].pointers[id].y = y;
4934        mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
4935    }
4936}
4937
4938int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
4939    { // acquire lock
4940        AutoMutex _l(mLock);
4941
4942        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
4943            return AKEY_STATE_VIRTUAL;
4944        }
4945
4946        size_t numVirtualKeys = mLocked.virtualKeys.size();
4947        for (size_t i = 0; i < numVirtualKeys; i++) {
4948            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4949            if (virtualKey.keyCode == keyCode) {
4950                return AKEY_STATE_UP;
4951            }
4952        }
4953    } // release lock
4954
4955    return AKEY_STATE_UNKNOWN;
4956}
4957
4958int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
4959    { // acquire lock
4960        AutoMutex _l(mLock);
4961
4962        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
4963            return AKEY_STATE_VIRTUAL;
4964        }
4965
4966        size_t numVirtualKeys = mLocked.virtualKeys.size();
4967        for (size_t i = 0; i < numVirtualKeys; i++) {
4968            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4969            if (virtualKey.scanCode == scanCode) {
4970                return AKEY_STATE_UP;
4971            }
4972        }
4973    } // release lock
4974
4975    return AKEY_STATE_UNKNOWN;
4976}
4977
4978bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
4979        const int32_t* keyCodes, uint8_t* outFlags) {
4980    { // acquire lock
4981        AutoMutex _l(mLock);
4982
4983        size_t numVirtualKeys = mLocked.virtualKeys.size();
4984        for (size_t i = 0; i < numVirtualKeys; i++) {
4985            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4986
4987            for (size_t i = 0; i < numCodes; i++) {
4988                if (virtualKey.keyCode == keyCodes[i]) {
4989                    outFlags[i] = 1;
4990                }
4991            }
4992        }
4993    } // release lock
4994
4995    return true;
4996}
4997
4998
4999// --- SingleTouchInputMapper ---
5000
5001SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
5002        TouchInputMapper(device) {
5003    initialize();
5004}
5005
5006SingleTouchInputMapper::~SingleTouchInputMapper() {
5007}
5008
5009void SingleTouchInputMapper::initialize() {
5010    mAccumulator.clear();
5011
5012    mDown = false;
5013    mX = 0;
5014    mY = 0;
5015    mPressure = 0; // default to 0 for devices that don't report pressure
5016    mToolWidth = 0; // default to 0 for devices that don't report tool width
5017    mButtonState = 0;
5018}
5019
5020void SingleTouchInputMapper::reset() {
5021    TouchInputMapper::reset();
5022
5023    initialize();
5024 }
5025
5026void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
5027    switch (rawEvent->type) {
5028    case EV_KEY:
5029        switch (rawEvent->scanCode) {
5030        case BTN_TOUCH:
5031            mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
5032            mAccumulator.btnTouch = rawEvent->value != 0;
5033            // Don't sync immediately.  Wait until the next SYN_REPORT since we might
5034            // not have received valid position information yet.  This logic assumes that
5035            // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
5036            break;
5037        default:
5038            if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
5039                uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
5040                if (buttonState) {
5041                    if (rawEvent->value) {
5042                        mAccumulator.buttonDown |= buttonState;
5043                    } else {
5044                        mAccumulator.buttonUp |= buttonState;
5045                    }
5046                    mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
5047                }
5048            }
5049            break;
5050        }
5051        break;
5052
5053    case EV_ABS:
5054        switch (rawEvent->scanCode) {
5055        case ABS_X:
5056            mAccumulator.fields |= Accumulator::FIELD_ABS_X;
5057            mAccumulator.absX = rawEvent->value;
5058            break;
5059        case ABS_Y:
5060            mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
5061            mAccumulator.absY = rawEvent->value;
5062            break;
5063        case ABS_PRESSURE:
5064            mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
5065            mAccumulator.absPressure = rawEvent->value;
5066            break;
5067        case ABS_TOOL_WIDTH:
5068            mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
5069            mAccumulator.absToolWidth = rawEvent->value;
5070            break;
5071        }
5072        break;
5073
5074    case EV_SYN:
5075        switch (rawEvent->scanCode) {
5076        case SYN_REPORT:
5077            sync(rawEvent->when);
5078            break;
5079        }
5080        break;
5081    }
5082}
5083
5084void SingleTouchInputMapper::sync(nsecs_t when) {
5085    uint32_t fields = mAccumulator.fields;
5086    if (fields == 0) {
5087        return; // no new state changes, so nothing to do
5088    }
5089
5090    if (fields & Accumulator::FIELD_BTN_TOUCH) {
5091        mDown = mAccumulator.btnTouch;
5092    }
5093
5094    if (fields & Accumulator::FIELD_ABS_X) {
5095        mX = mAccumulator.absX;
5096    }
5097
5098    if (fields & Accumulator::FIELD_ABS_Y) {
5099        mY = mAccumulator.absY;
5100    }
5101
5102    if (fields & Accumulator::FIELD_ABS_PRESSURE) {
5103        mPressure = mAccumulator.absPressure;
5104    }
5105
5106    if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
5107        mToolWidth = mAccumulator.absToolWidth;
5108    }
5109
5110    if (fields & Accumulator::FIELD_BUTTONS) {
5111        mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
5112    }
5113
5114    mCurrentTouch.clear();
5115
5116    if (mDown) {
5117        mCurrentTouch.pointerCount = 1;
5118        mCurrentTouch.pointers[0].id = 0;
5119        mCurrentTouch.pointers[0].x = mX;
5120        mCurrentTouch.pointers[0].y = mY;
5121        mCurrentTouch.pointers[0].pressure = mPressure;
5122        mCurrentTouch.pointers[0].touchMajor = 0;
5123        mCurrentTouch.pointers[0].touchMinor = 0;
5124        mCurrentTouch.pointers[0].toolMajor = mToolWidth;
5125        mCurrentTouch.pointers[0].toolMinor = mToolWidth;
5126        mCurrentTouch.pointers[0].orientation = 0;
5127        mCurrentTouch.idToIndex[0] = 0;
5128        mCurrentTouch.idBits.markBit(0);
5129        mCurrentTouch.buttonState = mButtonState;
5130    }
5131
5132    syncTouch(when, true);
5133
5134    mAccumulator.clear();
5135}
5136
5137void SingleTouchInputMapper::configureRawAxes() {
5138    TouchInputMapper::configureRawAxes();
5139
5140    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
5141    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
5142    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
5143    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
5144}
5145
5146
5147// --- MultiTouchInputMapper ---
5148
5149MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
5150        TouchInputMapper(device) {
5151    initialize();
5152}
5153
5154MultiTouchInputMapper::~MultiTouchInputMapper() {
5155}
5156
5157void MultiTouchInputMapper::initialize() {
5158    mAccumulator.clear();
5159    mButtonState = 0;
5160}
5161
5162void MultiTouchInputMapper::reset() {
5163    TouchInputMapper::reset();
5164
5165    initialize();
5166}
5167
5168void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
5169    switch (rawEvent->type) {
5170    case EV_KEY: {
5171        if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
5172            uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
5173            if (buttonState) {
5174                if (rawEvent->value) {
5175                    mAccumulator.buttonDown |= buttonState;
5176                } else {
5177                    mAccumulator.buttonUp |= buttonState;
5178                }
5179            }
5180        }
5181        break;
5182    }
5183
5184    case EV_ABS: {
5185        uint32_t pointerIndex = mAccumulator.pointerCount;
5186        Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex];
5187
5188        switch (rawEvent->scanCode) {
5189        case ABS_MT_POSITION_X:
5190            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
5191            pointer->absMTPositionX = rawEvent->value;
5192            break;
5193        case ABS_MT_POSITION_Y:
5194            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
5195            pointer->absMTPositionY = rawEvent->value;
5196            break;
5197        case ABS_MT_TOUCH_MAJOR:
5198            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
5199            pointer->absMTTouchMajor = rawEvent->value;
5200            break;
5201        case ABS_MT_TOUCH_MINOR:
5202            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
5203            pointer->absMTTouchMinor = rawEvent->value;
5204            break;
5205        case ABS_MT_WIDTH_MAJOR:
5206            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
5207            pointer->absMTWidthMajor = rawEvent->value;
5208            break;
5209        case ABS_MT_WIDTH_MINOR:
5210            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
5211            pointer->absMTWidthMinor = rawEvent->value;
5212            break;
5213        case ABS_MT_ORIENTATION:
5214            pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
5215            pointer->absMTOrientation = rawEvent->value;
5216            break;
5217        case ABS_MT_TRACKING_ID:
5218            pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
5219            pointer->absMTTrackingId = rawEvent->value;
5220            break;
5221        case ABS_MT_PRESSURE:
5222            pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
5223            pointer->absMTPressure = rawEvent->value;
5224            break;
5225        }
5226        break;
5227    }
5228
5229    case EV_SYN:
5230        switch (rawEvent->scanCode) {
5231        case SYN_MT_REPORT: {
5232            // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
5233            uint32_t pointerIndex = mAccumulator.pointerCount;
5234
5235            if (mAccumulator.pointers[pointerIndex].fields) {
5236                if (pointerIndex == MAX_POINTERS) {
5237                    LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
5238                            MAX_POINTERS);
5239                } else {
5240                    pointerIndex += 1;
5241                    mAccumulator.pointerCount = pointerIndex;
5242                }
5243            }
5244
5245            mAccumulator.pointers[pointerIndex].clear();
5246            break;
5247        }
5248
5249        case SYN_REPORT:
5250            sync(rawEvent->when);
5251            break;
5252        }
5253        break;
5254    }
5255}
5256
5257void MultiTouchInputMapper::sync(nsecs_t when) {
5258    static const uint32_t REQUIRED_FIELDS =
5259            Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;
5260
5261    uint32_t inCount = mAccumulator.pointerCount;
5262    uint32_t outCount = 0;
5263    bool havePointerIds = true;
5264
5265    mCurrentTouch.clear();
5266
5267    for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
5268        const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex];
5269        uint32_t fields = inPointer.fields;
5270
5271        if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
5272            // Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
5273            // Drop this finger.
5274            continue;
5275        }
5276
5277        PointerData& outPointer = mCurrentTouch.pointers[outCount];
5278        outPointer.x = inPointer.absMTPositionX;
5279        outPointer.y = inPointer.absMTPositionY;
5280
5281        if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
5282            if (inPointer.absMTPressure <= 0) {
5283                // Some devices send sync packets with X / Y but with a 0 pressure to indicate
5284                // a pointer going up.  Drop this finger.
5285                continue;
5286            }
5287            outPointer.pressure = inPointer.absMTPressure;
5288        } else {
5289            // Default pressure to 0 if absent.
5290            outPointer.pressure = 0;
5291        }
5292
5293        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
5294            if (inPointer.absMTTouchMajor <= 0) {
5295                // Some devices send sync packets with X / Y but with a 0 touch major to indicate
5296                // a pointer going up.  Drop this finger.
5297                continue;
5298            }
5299            outPointer.touchMajor = inPointer.absMTTouchMajor;
5300        } else {
5301            // Default touch area to 0 if absent.
5302            outPointer.touchMajor = 0;
5303        }
5304
5305        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
5306            outPointer.touchMinor = inPointer.absMTTouchMinor;
5307        } else {
5308            // Assume touch area is circular.
5309            outPointer.touchMinor = outPointer.touchMajor;
5310        }
5311
5312        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
5313            outPointer.toolMajor = inPointer.absMTWidthMajor;
5314        } else {
5315            // Default tool area to 0 if absent.
5316            outPointer.toolMajor = 0;
5317        }
5318
5319        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
5320            outPointer.toolMinor = inPointer.absMTWidthMinor;
5321        } else {
5322            // Assume tool area is circular.
5323            outPointer.toolMinor = outPointer.toolMajor;
5324        }
5325
5326        if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
5327            outPointer.orientation = inPointer.absMTOrientation;
5328        } else {
5329            // Default orientation to vertical if absent.
5330            outPointer.orientation = 0;
5331        }
5332
5333        // Assign pointer id using tracking id if available.
5334        if (havePointerIds) {
5335            if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
5336                uint32_t id = uint32_t(inPointer.absMTTrackingId);
5337
5338                if (id > MAX_POINTER_ID) {
5339#if DEBUG_POINTERS
5340                    LOGD("Pointers: Ignoring driver provided pointer id %d because "
5341                            "it is larger than max supported id %d",
5342                            id, MAX_POINTER_ID);
5343#endif
5344                    havePointerIds = false;
5345                }
5346                else {
5347                    outPointer.id = id;
5348                    mCurrentTouch.idToIndex[id] = outCount;
5349                    mCurrentTouch.idBits.markBit(id);
5350                }
5351            } else {
5352                havePointerIds = false;
5353            }
5354        }
5355
5356        outCount += 1;
5357    }
5358
5359    mCurrentTouch.pointerCount = outCount;
5360
5361    mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
5362    mCurrentTouch.buttonState = mButtonState;
5363
5364    syncTouch(when, havePointerIds);
5365
5366    mAccumulator.clear();
5367}
5368
5369void MultiTouchInputMapper::configureRawAxes() {
5370    TouchInputMapper::configureRawAxes();
5371
5372    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x);
5373    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y);
5374    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor);
5375    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor);
5376    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor);
5377    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor);
5378    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation);
5379    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure);
5380}
5381
5382
5383// --- JoystickInputMapper ---
5384
5385JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
5386        InputMapper(device) {
5387}
5388
5389JoystickInputMapper::~JoystickInputMapper() {
5390}
5391
5392uint32_t JoystickInputMapper::getSources() {
5393    return AINPUT_SOURCE_JOYSTICK;
5394}
5395
5396void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
5397    InputMapper::populateDeviceInfo(info);
5398
5399    for (size_t i = 0; i < mAxes.size(); i++) {
5400        const Axis& axis = mAxes.valueAt(i);
5401        info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK,
5402                axis.min, axis.max, axis.flat, axis.fuzz);
5403        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
5404            info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK,
5405                    axis.min, axis.max, axis.flat, axis.fuzz);
5406        }
5407    }
5408}
5409
5410void JoystickInputMapper::dump(String8& dump) {
5411    dump.append(INDENT2 "Joystick Input Mapper:\n");
5412
5413    dump.append(INDENT3 "Axes:\n");
5414    size_t numAxes = mAxes.size();
5415    for (size_t i = 0; i < numAxes; i++) {
5416        const Axis& axis = mAxes.valueAt(i);
5417        const char* label = getAxisLabel(axis.axisInfo.axis);
5418        if (label) {
5419            dump.appendFormat(INDENT4 "%s", label);
5420        } else {
5421            dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
5422        }
5423        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
5424            label = getAxisLabel(axis.axisInfo.highAxis);
5425            if (label) {
5426                dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
5427            } else {
5428                dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
5429                        axis.axisInfo.splitValue);
5430            }
5431        } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
5432            dump.append(" (invert)");
5433        }
5434
5435        dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n",
5436                axis.min, axis.max, axis.flat, axis.fuzz);
5437        dump.appendFormat(INDENT4 "  scale=%0.5f, offset=%0.5f, "
5438                "highScale=%0.5f, highOffset=%0.5f\n",
5439                axis.scale, axis.offset, axis.highScale, axis.highOffset);
5440        dump.appendFormat(INDENT4 "  rawAxis=%d, rawMin=%d, rawMax=%d, rawFlat=%d, rawFuzz=%d\n",
5441                mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
5442                axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz);
5443    }
5444}
5445
5446void JoystickInputMapper::configure() {
5447    InputMapper::configure();
5448
5449    // Collect all axes.
5450    for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
5451        RawAbsoluteAxisInfo rawAxisInfo;
5452        getEventHub()->getAbsoluteAxisInfo(getDeviceId(), abs, &rawAxisInfo);
5453        if (rawAxisInfo.valid) {
5454            // Map axis.
5455            AxisInfo axisInfo;
5456            bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
5457            if (!explicitlyMapped) {
5458                // Axis is not explicitly mapped, will choose a generic axis later.
5459                axisInfo.mode = AxisInfo::MODE_NORMAL;
5460                axisInfo.axis = -1;
5461            }
5462
5463            // Apply flat override.
5464            int32_t rawFlat = axisInfo.flatOverride < 0
5465                    ? rawAxisInfo.flat : axisInfo.flatOverride;
5466
5467            // Calculate scaling factors and limits.
5468            Axis axis;
5469            if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
5470                float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
5471                float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
5472                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
5473                        scale, 0.0f, highScale, 0.0f,
5474                        0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
5475            } else if (isCenteredAxis(axisInfo.axis)) {
5476                float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
5477                float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
5478                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
5479                        scale, offset, scale, offset,
5480                        -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
5481            } else {
5482                float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
5483                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
5484                        scale, 0.0f, scale, 0.0f,
5485                        0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
5486            }
5487
5488            // To eliminate noise while the joystick is at rest, filter out small variations
5489            // in axis values up front.
5490            axis.filter = axis.flat * 0.25f;
5491
5492            mAxes.add(abs, axis);
5493        }
5494    }
5495
5496    // If there are too many axes, start dropping them.
5497    // Prefer to keep explicitly mapped axes.
5498    if (mAxes.size() > PointerCoords::MAX_AXES) {
5499        LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
5500                getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
5501        pruneAxes(true);
5502        pruneAxes(false);
5503    }
5504
5505    // Assign generic axis ids to remaining axes.
5506    int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
5507    size_t numAxes = mAxes.size();
5508    for (size_t i = 0; i < numAxes; i++) {
5509        Axis& axis = mAxes.editValueAt(i);
5510        if (axis.axisInfo.axis < 0) {
5511            while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
5512                    && haveAxis(nextGenericAxisId)) {
5513                nextGenericAxisId += 1;
5514            }
5515
5516            if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
5517                axis.axisInfo.axis = nextGenericAxisId;
5518                nextGenericAxisId += 1;
5519            } else {
5520                LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
5521                        "have already been assigned to other axes.",
5522                        getDeviceName().string(), mAxes.keyAt(i));
5523                mAxes.removeItemsAt(i--);
5524                numAxes -= 1;
5525            }
5526        }
5527    }
5528}
5529
5530bool JoystickInputMapper::haveAxis(int32_t axisId) {
5531    size_t numAxes = mAxes.size();
5532    for (size_t i = 0; i < numAxes; i++) {
5533        const Axis& axis = mAxes.valueAt(i);
5534        if (axis.axisInfo.axis == axisId
5535                || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
5536                        && axis.axisInfo.highAxis == axisId)) {
5537            return true;
5538        }
5539    }
5540    return false;
5541}
5542
5543void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
5544    size_t i = mAxes.size();
5545    while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
5546        if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
5547            continue;
5548        }
5549        LOGI("Discarding joystick '%s' axis %d because there are too many axes.",
5550                getDeviceName().string(), mAxes.keyAt(i));
5551        mAxes.removeItemsAt(i);
5552    }
5553}
5554
5555bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
5556    switch (axis) {
5557    case AMOTION_EVENT_AXIS_X:
5558    case AMOTION_EVENT_AXIS_Y:
5559    case AMOTION_EVENT_AXIS_Z:
5560    case AMOTION_EVENT_AXIS_RX:
5561    case AMOTION_EVENT_AXIS_RY:
5562    case AMOTION_EVENT_AXIS_RZ:
5563    case AMOTION_EVENT_AXIS_HAT_X:
5564    case AMOTION_EVENT_AXIS_HAT_Y:
5565    case AMOTION_EVENT_AXIS_ORIENTATION:
5566    case AMOTION_EVENT_AXIS_RUDDER:
5567    case AMOTION_EVENT_AXIS_WHEEL:
5568        return true;
5569    default:
5570        return false;
5571    }
5572}
5573
5574void JoystickInputMapper::reset() {
5575    // Recenter all axes.
5576    nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
5577
5578    size_t numAxes = mAxes.size();
5579    for (size_t i = 0; i < numAxes; i++) {
5580        Axis& axis = mAxes.editValueAt(i);
5581        axis.resetValue();
5582    }
5583
5584    sync(when, true /*force*/);
5585
5586    InputMapper::reset();
5587}
5588
5589void JoystickInputMapper::process(const RawEvent* rawEvent) {
5590    switch (rawEvent->type) {
5591    case EV_ABS: {
5592        ssize_t index = mAxes.indexOfKey(rawEvent->scanCode);
5593        if (index >= 0) {
5594            Axis& axis = mAxes.editValueAt(index);
5595            float newValue, highNewValue;
5596            switch (axis.axisInfo.mode) {
5597            case AxisInfo::MODE_INVERT:
5598                newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
5599                        * axis.scale + axis.offset;
5600                highNewValue = 0.0f;
5601                break;
5602            case AxisInfo::MODE_SPLIT:
5603                if (rawEvent->value < axis.axisInfo.splitValue) {
5604                    newValue = (axis.axisInfo.splitValue - rawEvent->value)
5605                            * axis.scale + axis.offset;
5606                    highNewValue = 0.0f;
5607                } else if (rawEvent->value > axis.axisInfo.splitValue) {
5608                    newValue = 0.0f;
5609                    highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
5610                            * axis.highScale + axis.highOffset;
5611                } else {
5612                    newValue = 0.0f;
5613                    highNewValue = 0.0f;
5614                }
5615                break;
5616            default:
5617                newValue = rawEvent->value * axis.scale + axis.offset;
5618                highNewValue = 0.0f;
5619                break;
5620            }
5621            axis.newValue = newValue;
5622            axis.highNewValue = highNewValue;
5623        }
5624        break;
5625    }
5626
5627    case EV_SYN:
5628        switch (rawEvent->scanCode) {
5629        case SYN_REPORT:
5630            sync(rawEvent->when, false /*force*/);
5631            break;
5632        }
5633        break;
5634    }
5635}
5636
5637void JoystickInputMapper::sync(nsecs_t when, bool force) {
5638    if (!filterAxes(force)) {
5639        return;
5640    }
5641
5642    int32_t metaState = mContext->getGlobalMetaState();
5643
5644    PointerCoords pointerCoords;
5645    pointerCoords.clear();
5646
5647    size_t numAxes = mAxes.size();
5648    for (size_t i = 0; i < numAxes; i++) {
5649        const Axis& axis = mAxes.valueAt(i);
5650        pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue);
5651        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
5652            pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue);
5653        }
5654    }
5655
5656    // Moving a joystick axis should not wake the devide because joysticks can
5657    // be fairly noisy even when not in use.  On the other hand, pushing a gamepad
5658    // button will likely wake the device.
5659    // TODO: Use the input device configuration to control this behavior more finely.
5660    uint32_t policyFlags = 0;
5661
5662    int32_t pointerId = 0;
5663    getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
5664            AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
5665            1, &pointerId, &pointerCoords, 0, 0, 0);
5666}
5667
5668bool JoystickInputMapper::filterAxes(bool force) {
5669    bool atLeastOneSignificantChange = force;
5670    size_t numAxes = mAxes.size();
5671    for (size_t i = 0; i < numAxes; i++) {
5672        Axis& axis = mAxes.editValueAt(i);
5673        if (force || hasValueChangedSignificantly(axis.filter,
5674                axis.newValue, axis.currentValue, axis.min, axis.max)) {
5675            axis.currentValue = axis.newValue;
5676            atLeastOneSignificantChange = true;
5677        }
5678        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
5679            if (force || hasValueChangedSignificantly(axis.filter,
5680                    axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
5681                axis.highCurrentValue = axis.highNewValue;
5682                atLeastOneSignificantChange = true;
5683            }
5684        }
5685    }
5686    return atLeastOneSignificantChange;
5687}
5688
5689bool JoystickInputMapper::hasValueChangedSignificantly(
5690        float filter, float newValue, float currentValue, float min, float max) {
5691    if (newValue != currentValue) {
5692        // Filter out small changes in value unless the value is converging on the axis
5693        // bounds or center point.  This is intended to reduce the amount of information
5694        // sent to applications by particularly noisy joysticks (such as PS3).
5695        if (fabs(newValue - currentValue) > filter
5696                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
5697                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
5698                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
5699            return true;
5700        }
5701    }
5702    return false;
5703}
5704
5705bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
5706        float filter, float newValue, float currentValue, float thresholdValue) {
5707    float newDistance = fabs(newValue - thresholdValue);
5708    if (newDistance < filter) {
5709        float oldDistance = fabs(currentValue - thresholdValue);
5710        if (newDistance < oldDistance) {
5711            return true;
5712        }
5713    }
5714    return false;
5715}
5716
5717} // namespace android
5718