/external/eigen/test/ |
H A D | diagonal.cpp | 12 template<typename MatrixType> void diagonal(const MatrixType& m) function 26 //check diagonal() 27 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); 28 m2.diagonal() = 2 * m1.diagonal(); 29 m2.diagonal()[0] *= 3; 38 // check sub/super diagonal 39 if(m1.template diagonal<N1>().RowsAtCompileTime!=Dynamic) 41 VERIFY(m1.template diagonal<N [all...] |
H A D | nesting_ops.cpp | 29 VERIFY_IS_APPROX( (m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum() ); 30 VERIFY_IS_APPROX( (m.transpose() * m).diagonal().array().abs().sum(), (m.transpose() * m).diagonal().array().abs().sum() );
|
H A D | bandmatrix.cpp | 29 m.diagonal().setConstant(123); 30 dm1.diagonal().setConstant(123); 33 m.diagonal(i).setConstant(static_cast<RealScalar>(i)); 34 dm1.diagonal(i).setConstant(static_cast<RealScalar>(i)); 38 m.diagonal(-i).setConstant(-static_cast<RealScalar>(i)); 39 dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
|
H A D | selfadjoint.cpp | 27 m1.diagonal() = m1.diagonal().real().template cast<Scalar>();
|
H A D | diagonalmatrices.cpp | 45 VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal()); 47 VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal()); 57 VERIFY_IS_APPROX( ((ldm1 * m1)(i,j)) , ldm1.diagonal()(i) * m1(i,j) ); 58 VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j)) , ldm1.diagonal()(i) * (m1+m2)(i,j) ); 59 VERIFY_IS_APPROX( ((m1 * rdm1)(i,j)) , rdm1.diagonal()(j) * m1(i,j) );
|
/external/eigen/doc/snippets/ |
H A D | MatrixBase_diagonal_int.cpp | 3 cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl 4 << m.diagonal(1).transpose() << endl 5 << m.diagonal(-2).transpose() << endl;
|
H A D | MatrixBase_diagonal_template_int.cpp | 3 cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl 4 << m.diagonal<1>().transpose() << endl 5 << m.diagonal<-2>().transpose() << endl;
|
H A D | MatrixBase_diagonal.cpp | 3 cout << "Here are the coefficients on the main diagonal of m:" << endl 4 << m.diagonal() << endl;
|
H A D | Tridiagonalization_diagonal.cpp | 10 VectorXd diag = triOfA.diagonal(); 11 cout << "The diagonal is:" << endl << diag << endl;
|
/external/eigen/failtest/ |
H A D | const_qualified_diagonal_method_retval.cpp | 12 Diagonal<Matrix3d> b(m.diagonal());
|
/external/eigen/Eigen/src/Core/ |
H A D | DiagonalMatrix.h | 47 { other.diagonal() += diagonal(); } 50 { other.diagonal() -= diagonal(); } 52 inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } function in class:Eigen::DiagonalBase 53 inline DiagonalVectorType& diagonal() { return derived().diagonal(); } function in class:Eigen::DiagonalBase 55 inline Index rows() const { return diagonal().size(); } 56 inline Index cols() const { return diagonal() 137 inline const DiagonalVectorType& diagonal() const { return m_diagonal; } function in class:Eigen::DiagonalMatrix 139 inline DiagonalVectorType& diagonal() { return m_diagonal; } function in class:Eigen::DiagonalMatrix 241 DiagonalWrapper(DiagonalVectorType& diagonal) argument 244 const DiagonalVectorType& diagonal() const { return m_diagonal; } function in class:Eigen::DiagonalWrapper [all...] |
H A D | DiagonalProduct.h | 51 inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal) argument 52 : m_matrix(matrix), m_diagonal(diagonal) 54 eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols())); 62 return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col); 83 internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id))); 94 m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id)); 101 /** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal [all...] |
H A D | BandMatrix.h | 83 /** \returns a vector expression of the main diagonal */ 84 inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal() function in class:Eigen::internal::BandMatrixBase 87 /** \returns a vector expression of the main diagonal (const version) */ 88 inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const function in class:Eigen::internal::BandMatrixBase 108 /** \returns a vector expression of the \a N -th sub or super diagonal */ 109 template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal() function in class:Eigen::internal::BandMatrixBase 114 /** \returns a vector expression of the \a N -th sub or super diagonal */ 115 template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const function in class:Eigen::internal::BandMatrixBase 120 /** \returns a vector expression of the \a i -th sub or super diagonal */ 121 inline Block<CoefficientsType,1,Dynamic> diagonal(Inde function in class:Eigen::internal::BandMatrixBase 128 inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const function in class:Eigen::internal::BandMatrixBase [all...] |
H A D | Diagonal.h | 19 * \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix 21 * \param MatrixType the type of the object in which we are taking a sub/main/super diagonal 22 * \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal. 28 * This class represents an expression of the main diagonal, or any sub/super diagonal 29 * of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the 32 * \sa MatrixBase::diagonal(), MatrixBase::diagonal(Inde 167 MatrixBase<Derived>::diagonal() function in class:Eigen::MatrixBase 175 MatrixBase<Derived>::diagonal() const function in class:Eigen::MatrixBase 193 MatrixBase<Derived>::diagonal(Index index) function in class:Eigen::MatrixBase 201 MatrixBase<Derived>::diagonal(Index index) const function in class:Eigen::MatrixBase 220 MatrixBase<Derived>::diagonal() function in class:Eigen::MatrixBase 229 MatrixBase<Derived>::diagonal() const function in class:Eigen::MatrixBase [all...] |
/external/ceres-solver/internal/ceres/ |
H A D | levenberg_marquardt_strategy_test.cc | 56 RegularizationCheckingLinearSolver(const int num_cols, const double* diagonal) argument 58 diagonal_(diagonal) { 131 double diagonal[3]; local 132 diagonal[0] = options.min_lm_diagonal; 133 diagonal[1] = 2.0; 134 diagonal[2] = options.max_lm_diagonal; 136 diagonal[i] = sqrt(diagonal[i] / options.initial_radius); 139 RegularizationCheckingLinearSolver linear_solver(3, diagonal);
|
H A D | compressed_row_sparse_matrix_test.cc | 184 Vector diagonal(5); 186 diagonal(i) = i + 1; 191 diagonal.data(), blocks)); 205 for (int i = 0; i < diagonal.size(); ++i) { 206 EXPECT_EQ(y[i], diagonal[i]); 211 for (int i = 0; i < diagonal.size(); ++i) { 212 EXPECT_EQ(y[i], diagonal[i]); 217 EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0);
|
H A D | compressed_row_sparse_matrix.h | 74 // Build a square sparse diagonal matrix with num_rows rows and 75 // columns. The diagonal m(i,i) = diagonal(i); 76 CompressedRowSparseMatrix(const double* diagonal, int num_rows); 128 const double* diagonal,
|
H A D | symmetric_linear_solver_test.cc | 50 double diagonal[] = { 1.0, 1.0, 1.0 }; local 52 A(TripletSparseMatrix::CreateSparseDiagonalMatrix(diagonal, 3));
|
H A D | polynomial.cc | 54 companion_matrix_offdiagonal.diagonal().setZero(); 96 companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal(); 110 companion_matrix.diagonal(-1).setOnes();
|
/external/eigen/doc/ |
H A D | tutorial.cpp | 15 m3.diagonal().setOnes(); 33 m4.diagonal().block(1,2).setOnes(); 34 std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl; 35 std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl;
|
/external/eigen/test/eigen2/ |
H A D | eigen2_submatrices.cpp | 93 //check diagonal() 94 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); 95 m2.diagonal() = 2 * m1.diagonal(); 96 m2.diagonal()[0] *= 3; 97 VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
|
H A D | eigen2_svd.cpp | 62 for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity 68 for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
/external/eigen/Eigen/src/Eigenvalues/ |
H A D | Tridiagonalization.h | 44 * main diagonal and the first diagonal below and above it. The Hessenberg 197 * - the diagonal and lower sub-diagonal represent the real tridiagonal 257 * returned by diagonal() and subDiagonal() instead of creating a new 261 * matrixQ(), packedMatrix(), diagonal(), subDiagonal() 269 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. 271 * \returns expression representing the diagonal of T 282 DiagonalReturnType diagonal() const; 292 * \sa diagonal() fo 305 Tridiagonalization<MatrixType>::diagonal() const function in class:Eigen::Tridiagonalization [all...] |
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
H A D | qrsolv.h | 28 // the diagonal, though the diagonal is restored afterward 31 /* in particular, save the diagonal elements of r in x. */ 32 x = s.diagonal(); 37 /* eliminate the diagonal matrix d using a givens rotation. */ 41 /* diagonal element using p from the qr factorization. */ 57 /* compute the modified diagonal element of r and */ 82 sdiag = s.diagonal(); 83 s.diagonal() = x;
|
/external/eigen/Eigen/src/SVD/ |
H A D | UpperBidiagonalization.h | 71 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); 77 return HouseholderVSequenceType(m_householder, m_householder.const_derived().template diagonal<1>()) 108 m_bidiagonal.template diagonal<0>().coeffRef(k)); 120 m_bidiagonal.template diagonal<1>().coeffRef(k));
|