1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Preconditioners for linear systems that arise in Structure from
32// Motion problems. VisibilityBasedPreconditioner implements:
33//
34//  CLUSTER_JACOBI
35//  CLUSTER_TRIDIAGONAL
36//
37// Detailed descriptions of these preconditions beyond what is
38// documented here can be found in
39//
40// Visibility Based Preconditioning for Bundle Adjustment
41// A. Kushal & S. Agarwal, CVPR 2012.
42//
43// http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
44//
45// The two preconditioners share enough code that its most efficient
46// to implement them as part of the same code base.
47
48#ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
49#define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
50
51#include <set>
52#include <vector>
53#include <utility>
54#include "ceres/collections_port.h"
55#include "ceres/graph.h"
56#include "ceres/internal/macros.h"
57#include "ceres/internal/scoped_ptr.h"
58#include "ceres/preconditioner.h"
59#include "ceres/suitesparse.h"
60
61namespace ceres {
62namespace internal {
63
64class BlockRandomAccessSparseMatrix;
65class BlockSparseMatrix;
66struct CompressedRowBlockStructure;
67class SchurEliminatorBase;
68
69// This class implements visibility based preconditioners for
70// Structure from Motion/Bundle Adjustment problems. The name
71// VisibilityBasedPreconditioner comes from the fact that the sparsity
72// structure of the preconditioner matrix is determined by analyzing
73// the visibility structure of the scene, i.e. which cameras see which
74// points.
75//
76// The key idea of visibility based preconditioning is to identify
77// cameras that we expect have strong interactions, and then using the
78// entries in the Schur complement matrix corresponding to these
79// camera pairs as an approximation to the full Schur complement.
80//
81// CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
82// and considering all non-zero camera pairs within each cluster. The
83// clustering in the current implementation is done using the
84// Canonical Views algorithm of Simon et al. (see
85// canonical_views_clustering.h). For the purposes of clustering, the
86// similarity or the degree of interaction between a pair of cameras
87// is measured by counting the number of points visible in both the
88// cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
89// were to permute the parameter blocks such that all the cameras in
90// the same cluster occur contiguously, the preconditioner matrix will
91// be a block diagonal matrix with blocks corresponding to the
92// clusters. Thus in analogy with the Jacobi preconditioner we refer
93// to this as the CLUSTER_JACOBI preconditioner.
94//
95// CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
96// preconditioner by considering the interaction between clusters and
97// identifying strong interactions between cluster pairs. This is done
98// by constructing a weighted graph on the clusters, with the weight
99// on the edges connecting two clusters proportional to the number of
100// 3D points visible to cameras in both the clusters. A degree-2
101// maximum spanning forest is identified in this graph and the camera
102// pairs contained in the edges of this forest are added to the
103// preconditioner. The detailed reasoning for this construction is
104// explained in the paper mentioned above.
105//
106// Degree-2 spanning trees and forests have the property that they
107// correspond to tri-diagonal matrices. Thus there exist a permutation
108// of the camera blocks under which the CLUSTER_TRIDIAGONAL
109// preconditioner matrix is a block tridiagonal matrix, and thus the
110// name for the preconditioner.
111//
112// Thread Safety: This class is NOT thread safe.
113//
114// Example usage:
115//
116//   LinearSolver::Options options;
117//   options.preconditioner_type = CLUSTER_JACOBI;
118//   options.elimination_groups.push_back(num_points);
119//   options.elimination_groups.push_back(num_cameras);
120//   VisibilityBasedPreconditioner preconditioner(
121//      *A.block_structure(), options);
122//   preconditioner.Update(A, NULL);
123//   preconditioner.RightMultiply(x, y);
124//
125#ifndef CERES_NO_SUITESPARSE
126class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
127 public:
128  // Initialize the symbolic structure of the preconditioner. bs is
129  // the block structure of the linear system to be solved. It is used
130  // to determine the sparsity structure of the preconditioner matrix.
131  //
132  // It has the same structural requirement as other Schur complement
133  // based solvers. Please see schur_eliminator.h for more details.
134  VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
135                                const Preconditioner::Options& options);
136  virtual ~VisibilityBasedPreconditioner();
137
138  // Preconditioner interface
139  virtual void RightMultiply(const double* x, double* y) const;
140  virtual int num_rows() const;
141
142  friend class VisibilityBasedPreconditionerTest;
143
144 private:
145  virtual bool UpdateImpl(const BlockSparseMatrix& A, const double* D);
146  void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
147  void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
148  void InitStorage(const CompressedRowBlockStructure& bs);
149  void InitEliminator(const CompressedRowBlockStructure& bs);
150  bool Factorize();
151  void ScaleOffDiagonalCells();
152
153  void ClusterCameras(const vector< set<int> >& visibility);
154  void FlattenMembershipMap(const HashMap<int, int>& membership_map,
155                            vector<int>* membership_vector) const;
156  void ComputeClusterVisibility(const vector<set<int> >& visibility,
157                                vector<set<int> >* cluster_visibility) const;
158  Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const;
159  void ForestToClusterPairs(const Graph<int>& forest,
160                            HashSet<pair<int, int> >* cluster_pairs) const;
161  void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
162  bool IsBlockPairInPreconditioner(int block1, int block2) const;
163  bool IsBlockPairOffDiagonal(int block1, int block2) const;
164
165  Preconditioner::Options options_;
166
167  // Number of parameter blocks in the schur complement.
168  int num_blocks_;
169  int num_clusters_;
170
171  // Sizes of the blocks in the schur complement.
172  vector<int> block_size_;
173
174  // Mapping from cameras to clusters.
175  vector<int> cluster_membership_;
176
177  // Non-zero camera pairs from the schur complement matrix that are
178  // present in the preconditioner, sorted by row (first element of
179  // each pair), then column (second).
180  set<pair<int, int> > block_pairs_;
181
182  // Set of cluster pairs (including self pairs (i,i)) in the
183  // preconditioner.
184  HashSet<pair<int, int> > cluster_pairs_;
185  scoped_ptr<SchurEliminatorBase> eliminator_;
186
187  // Preconditioner matrix.
188  scoped_ptr<BlockRandomAccessSparseMatrix> m_;
189
190  // RightMultiply is a const method for LinearOperators. It is
191  // implemented using CHOLMOD's sparse triangular matrix solve
192  // function. This however requires non-const access to the
193  // SuiteSparse context object, even though it does not result in any
194  // of the state of the preconditioner being modified.
195  SuiteSparse ss_;
196
197  // Symbolic and numeric factorization of the preconditioner.
198  cholmod_factor* factor_;
199
200  // Temporary vector used by RightMultiply.
201  cholmod_dense* tmp_rhs_;
202  CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner);
203};
204#else  // SuiteSparse
205// If SuiteSparse is not compiled in, the preconditioner is not
206// available.
207class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
208 public:
209  VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
210                                const Preconditioner::Options& options) {
211    LOG(FATAL) << "Visibility based preconditioning is not available. Please "
212        "build Ceres with SuiteSparse.";
213  }
214  virtual ~VisibilityBasedPreconditioner() {}
215  virtual void RightMultiply(const double* x, double* y) const {}
216  virtual void LeftMultiply(const double* x, double* y) const {}
217  virtual int num_rows() const { return -1; }
218  virtual int num_cols() const { return -1; }
219
220 private:
221  bool UpdateImpl(const BlockSparseMatrix& A, const double* D) {
222    return false;
223  }
224};
225#endif  // CERES_NO_SUITESPARSE
226
227}  // namespace internal
228}  // namespace ceres
229
230#endif  // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
231