balsa_headers.h revision 731df977c0511bca2206b5f333555b1205ff1f43
1// Copyright (c) 2009 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_
6#define NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_
7#pragma once
8
9#include <algorithm>
10#include <iosfwd>
11#include <iterator>
12#include <string>
13#include <utility>
14#include <vector>
15
16#include "base/port.h"
17#include "base/logging.h"
18#include "base/string_piece.h"
19#include "net/tools/flip_server/balsa_enums.h"
20#include "net/tools/flip_server/string_piece_utils.h"
21
22namespace net {
23
24// WARNING:
25// Note that -no- char* returned by any function in this
26// file is null-terminated.
27
28// This class exists to service the specific needs of BalsaHeaders.
29//
30// Functional goals:
31//   1) provide a backing-store for all of the StringPieces that BalsaHeaders
32//      returns. Every StringPiece returned from BalsaHeaders should remain
33//      valid until the BalsaHeader's object is cleared, or the header-line is
34//      erased.
35//   2) provide a backing-store for BalsaFrame, which requires contiguous memory
36//      for its fast-path parsing functions. Note that the cost of copying is
37//      less than the cost of requiring the parser to do slow-path parsing, as
38//      it would have to check for bounds every byte, instead of every 16 bytes.
39//
40// This class is optimized for the case where headers are stored in one of two
41// buffers. It doesn't make a lot of effort to densely pack memory-- in fact,
42// it -may- be somewhat memory inefficient. This possible inefficiency allows a
43// certain simplicity of implementation and speed which makes it worthwhile.
44// If, in the future, better memory density is required, it should be possible
45// to reuse the abstraction presented by this object to achieve those goals.
46//
47// In the most common use-case, this memory inefficiency should be relatively
48// small.
49//
50// Alternate implementations of BalsaBuffer may include:
51//  - vector of strings, one per header line (similar to HTTPHeaders)
52//  - densely packed strings:
53//    - keep a sorted array/map of free-space linked lists or numbers.
54//      - use the entry that most closely first your needs.
55//    - at this point, perhaps just use a vector of strings, and let
56//      the allocator do the right thing.
57//
58class BalsaBuffer {
59 public:
60  static const size_t kDefaultBlocksize = 4096;
61  // We have two friends here. These exist as friends as we
62  // want to allow access to the constructors for the test
63  // class and the Balsa* classes. We put this into the
64  // header file as we want this class to be inlined into the
65  // BalsaHeaders implementation, yet be testable.
66  friend class BalsaBufferTestSpouse;
67  friend class BalsaHeaders;
68
69  // The BufferBlock is a structure used internally by the
70  // BalsaBuffer class to store the base buffer pointers to
71  // each block, as well as the important metadata for buffer
72  // sizes and bytes free.
73  struct BufferBlock {
74   public:
75    char* buffer;
76    size_t buffer_size;
77    size_t bytes_free;
78
79    size_t bytes_used() const {
80      return buffer_size - bytes_free;
81    }
82    char* start_of_unused_bytes() const {
83      return buffer + bytes_used();
84    }
85
86    BufferBlock() : buffer(NULL), buffer_size(0), bytes_free(0) {}
87    ~BufferBlock() {}
88
89    BufferBlock(char* buf, size_t size, size_t free) :
90        buffer(buf), buffer_size(size), bytes_free(free) {}
91    // Yes we want this to be copyable (it gets stuck into vectors).
92    // For this reason, we don't use scoped ptrs, etc. here-- it
93    // is more efficient to manage this memory externally to this
94    // object.
95  };
96
97  typedef std::vector<BufferBlock> Blocks;
98
99  ~BalsaBuffer() {
100    CleanupBlocksStartingFrom(0);
101  }
102
103  // Returns the total amount of memory used by the buffer blocks.
104  size_t GetTotalBufferBlockSize() const {
105    size_t buffer_size = 0;
106    for (Blocks::const_iterator iter = blocks_.begin();
107         iter != blocks_.end();
108         ++iter) {
109      buffer_size += iter->buffer_size;
110    }
111    return buffer_size;
112  }
113
114  const char* GetPtr(Blocks::size_type block_idx) const {
115    DCHECK_LT(block_idx, blocks_.size())
116      << block_idx << ", " << blocks_.size();
117    return blocks_[block_idx].buffer;
118  }
119
120  char* GetPtr(Blocks::size_type block_idx) {
121    DCHECK_LT(block_idx, blocks_.size())
122      << block_idx << ", " << blocks_.size();
123    return blocks_[block_idx].buffer;
124  }
125
126  // This function is different from Write(), as it ensures that the data
127  // stored via subsequent calls to this function are all contiguous (and in
128  // the order in which these writes happened). This is essentially the same
129  // as a string append.
130  //
131  // You may call this function at any time between object
132  // construction/Clear(), and the calling of the
133  // NoMoreWriteToContiguousBuffer() function.
134  //
135  // You must not call this function after the NoMoreWriteToContiguousBuffer()
136  // function is called, unless a Clear() has been called since.
137  // If you do, the program will abort().
138  //
139  // This condition is placed upon this code so that calls to Write() can
140  // append to the buffer in the first block safely, and without invaliding
141  // the StringPiece which it returns.
142  //
143  // This function's main intended user is the BalsaFrame class, which,
144  // for reasons of efficiency, requires that the buffer from which it parses
145  // the headers be contiguous.
146  //
147  void WriteToContiguousBuffer(const base::StringPiece& sp) {
148    if (sp.empty()) {
149      return;
150    }
151    CHECK(can_write_to_contiguous_buffer_);
152    DCHECK_GE(blocks_.size(), 1u);
153    if (blocks_[0].buffer == NULL && sp.size() <= blocksize_) {
154      blocks_[0] = AllocBlock();
155      memcpy(blocks_[0].start_of_unused_bytes(), sp.data(), sp.size());
156    } else if (blocks_[0].bytes_free < sp.size()) {
157      // the first block isn't big enough, resize it.
158      const size_t old_storage_size_used = blocks_[0].bytes_used();
159      const size_t new_storage_size = old_storage_size_used + sp.size();
160      char* new_storage = new char[new_storage_size];
161      char* old_storage = blocks_[0].buffer;
162      if (old_storage_size_used) {
163        memcpy(new_storage, old_storage, old_storage_size_used);
164      }
165      memcpy(new_storage + old_storage_size_used, sp.data(), sp.size());
166      blocks_[0].buffer = new_storage;
167      blocks_[0].bytes_free = sp.size();
168      blocks_[0].buffer_size = new_storage_size;
169      delete[] old_storage;
170    } else {
171      memcpy(blocks_[0].start_of_unused_bytes(), sp.data(), sp.size());
172    }
173    blocks_[0].bytes_free -= sp.size();
174  }
175
176  void NoMoreWriteToContiguousBuffer() {
177    can_write_to_contiguous_buffer_ = false;
178  }
179
180  // Takes a StringPiece and writes it to "permanent" storage, then returns a
181  // StringPiece which points to that data.  If block_idx != NULL, it will be
182  // assigned the index of the block into which the data was stored.
183  // Note that the 'permanent' storage in which it stores data may be in
184  // the first block IFF the NoMoreWriteToContiguousBuffer function has
185  // been called since the last Clear/Construction.
186  base::StringPiece Write(const base::StringPiece& sp,
187                    Blocks::size_type* block_buffer_idx) {
188    if (sp.empty()) {
189      return sp;
190    }
191    char* storage = Reserve(sp.size(), block_buffer_idx);
192    memcpy(storage, sp.data(), sp.size());
193    return base::StringPiece(storage, sp.size());
194  }
195
196  // Reserves "permanent" storage of the size indicated. Returns a pointer to
197  // the beginning of that storage, and assigns the index of the block used to
198  // block_buffer_idx. This function uses the first block IFF the
199  // NoMoreWriteToContiguousBuffer function has been called since the last
200  // Clear/Construction.
201  char* Reserve(size_t size,
202                Blocks::size_type* block_buffer_idx) {
203    // There should always be a 'first_block', even if it
204    // contains nothing.
205    DCHECK_GE(blocks_.size(), 1u);
206    BufferBlock* block = NULL;
207    Blocks::size_type block_idx = can_write_to_contiguous_buffer_ ? 1 : 0;
208    for (; block_idx < blocks_.size(); ++block_idx) {
209      if (blocks_[block_idx].bytes_free >= size) {
210        block = &blocks_[block_idx];
211        break;
212      }
213    }
214    if (block == NULL) {
215      if (blocksize_ < size) {
216        blocks_.push_back(AllocCustomBlock(size));
217      } else {
218        blocks_.push_back(AllocBlock());
219      }
220      block = &blocks_.back();
221    }
222
223    char* storage = block->start_of_unused_bytes();
224    block->bytes_free -= size;
225    if (block_buffer_idx) {
226      *block_buffer_idx = block_idx;
227    }
228    return storage;
229  }
230
231  void Clear() {
232    CHECK(!blocks_.empty());
233    if (blocksize_ == blocks_[0].buffer_size) {
234      CleanupBlocksStartingFrom(1);
235      blocks_[0].bytes_free = blocks_[0].buffer_size;
236    } else {
237      CleanupBlocksStartingFrom(0);
238      blocks_.push_back(AllocBlock());
239    }
240    DCHECK_GE(blocks_.size(), 1u);
241    can_write_to_contiguous_buffer_ = true;
242  }
243
244  void Swap(BalsaBuffer* b) {
245    blocks_.swap(b->blocks_);
246    std::swap(can_write_to_contiguous_buffer_,
247              b->can_write_to_contiguous_buffer_);
248    std::swap(blocksize_, b->blocksize_);
249  }
250
251  void CopyFrom(const BalsaBuffer& b) {
252    CleanupBlocksStartingFrom(0);
253    blocks_.resize(b.blocks_.size());
254    for (Blocks::size_type i = 0; i < blocks_.size(); ++i) {
255      blocks_[i] = CopyBlock(b.blocks_[i]);
256    }
257    blocksize_ = b.blocksize_;
258    can_write_to_contiguous_buffer_ = b.can_write_to_contiguous_buffer_;
259  }
260
261  const char* StartOfFirstBlock() const {
262    return blocks_[0].buffer;
263  }
264
265  const char* EndOfFirstBlock() const {
266    return blocks_[0].buffer + blocks_[0].bytes_used();
267  }
268
269  bool can_write_to_contiguous_buffer() const {
270    return can_write_to_contiguous_buffer_;
271  }
272  size_t blocksize() const { return blocksize_; }
273  Blocks::size_type num_blocks() const { return blocks_.size(); }
274  size_t buffer_size(size_t idx) const { return blocks_[idx].buffer_size; }
275  size_t bytes_used(size_t idx) const { return blocks_[idx].bytes_used(); }
276
277 protected:
278  BalsaBuffer() :
279      blocksize_(kDefaultBlocksize), can_write_to_contiguous_buffer_(true) {
280    blocks_.push_back(AllocBlock());
281  }
282
283  explicit BalsaBuffer(size_t blocksize) :
284      blocksize_(blocksize), can_write_to_contiguous_buffer_(true) {
285    blocks_.push_back(AllocBlock());
286  }
287
288  BufferBlock AllocBlock() {
289    return AllocCustomBlock(blocksize_);
290  }
291
292  BufferBlock AllocCustomBlock(size_t blocksize) {
293    return BufferBlock(new char[blocksize], blocksize, blocksize);
294  }
295
296  BufferBlock CopyBlock(const BufferBlock& b) {
297    BufferBlock block = b;
298    if (b.buffer == NULL) {
299      return block;
300    }
301
302    block.buffer = new char[b.buffer_size];
303    memcpy(block.buffer, b.buffer, b.bytes_used());
304    return block;
305  }
306
307  // Cleans up the object.
308  // The block at start_idx, and all subsequent blocks
309  // will be cleared and have associated memory deleted.
310  void CleanupBlocksStartingFrom(Blocks::size_type start_idx) {
311    for (Blocks::size_type i = start_idx; i < blocks_.size(); ++i) {
312      delete[] blocks_[i].buffer;
313    }
314    blocks_.resize(start_idx);
315  }
316
317  // A container of BufferBlocks
318  Blocks blocks_;
319
320  // The default allocation size for a block.
321  // In general, blocksize_ bytes will be allocated for
322  // each buffer.
323  size_t blocksize_;
324
325  // If set to true, then the first block cannot be used for Write() calls as
326  // the WriteToContiguous... function will modify the base pointer for this
327  // block, and the Write() calls need to be sure that the base pointer will
328  // not be changing in order to provide the user with StringPieces which
329  // continue to be valid.
330  bool can_write_to_contiguous_buffer_;
331};
332
333////////////////////////////////////////////////////////////////////////////////
334
335// All of the functions in the BalsaHeaders class use string pieces, by either
336// using the StringPiece class, or giving an explicit size and char* (as these
337// are the native representation for these string pieces).
338// This is done for several reasons.
339//  1) This minimizes copying/allocation/deallocation as compared to using
340//  string parameters
341//  2) This reduces the number of strlen() calls done (as the length of any
342//  string passed in is relatively likely to be known at compile time, and for
343//  those strings passed back we obviate the need for a strlen() to determine
344//  the size of new storage allocations if a new allocation is required.
345//  3) This class attempts to store all of its data in two linear buffers in
346//  order to enhance the speed of parsing and writing out to a buffer. As a
347//  result, many string pieces are -not- terminated by '\0', and are not
348//  c-strings.  Since this is the case, we must delineate the length of the
349//  string explicitly via a length.
350//
351//  WARNING:  The side effect of using StringPiece is that if the underlying
352//  buffer changes (due to modifying the headers) the StringPieces which point
353//  to the data which was modified, may now contain "garbage", and should not
354//  be dereferenced.
355//  For example, If you fetch some component of the first-line, (request or
356//  response), and then you modify the first line, the StringPieces you
357//  originally received from the original first-line may no longer be valid).
358//
359//  StringPieces pointing to pieces of header lines which have not been
360//  erased() or modified should be valid until the object is cleared or
361//  destroyed.
362
363class BalsaHeaders {
364 public:
365  struct HeaderLineDescription {
366    HeaderLineDescription(size_t first_character_index,
367                          size_t key_end_index,
368                          size_t value_begin_index,
369                          size_t last_character_index,
370                          size_t buffer_base_index) :
371        first_char_idx(first_character_index),
372        key_end_idx(key_end_index),
373        value_begin_idx(value_begin_index),
374        last_char_idx(last_character_index),
375        buffer_base_idx(buffer_base_index),
376        skip(false) {}
377
378    HeaderLineDescription() :
379        first_char_idx(0),
380        key_end_idx(0),
381        value_begin_idx(0),
382        last_char_idx(0),
383        buffer_base_idx(0),
384        skip(false) {}
385
386    size_t first_char_idx;
387    size_t key_end_idx;
388    size_t value_begin_idx;
389    size_t last_char_idx;
390    BalsaBuffer::Blocks::size_type buffer_base_idx;
391    bool skip;
392  };
393
394  typedef std::vector<base::StringPiece> HeaderTokenList;
395  friend bool net::ParseHTTPFirstLine(const char* begin,
396                                       const char* end,
397                                       bool is_request,
398                                       size_t max_request_uri_length,
399                                       BalsaHeaders* headers,
400                                       BalsaFrameEnums::ErrorCode* error_code);
401
402 protected:
403  typedef std::vector<HeaderLineDescription> HeaderLines;
404
405  // Why these base classes (iterator_base, reverse_iterator_base)?  Well, if
406  // we do want to export both iterator and const_iterator types (currently we
407  // only have const_iterator), then this is useful to avoid code duplication.
408  // Additionally, having this base class makes comparisons of iterators of
409  // different types (they're different types to ensure that operator= and
410  // constructors do not work in the places where they're expected to not work)
411  // work properly. There could be as many as 4 iterator types, all based on
412  // the same data as iterator_base... so it makes sense to simply have some
413  // base classes.
414
415  class iterator_base {
416   public:
417    friend class BalsaHeaders;
418    friend class reverse_iterator_base;
419    typedef std::pair<base::StringPiece, base::StringPiece> StringPiecePair;
420    typedef StringPiecePair value_type;
421    typedef value_type& reference;
422    typedef value_type* pointer;
423
424    typedef std::forward_iterator_tag iterator_category;
425    typedef ptrdiff_t difference_type;
426
427    typedef iterator_base self;
428
429    // default constructor.
430    iterator_base() : headers_(NULL), idx_(0) { }
431
432    // copy constructor.
433    iterator_base(const iterator_base& it)
434      : headers_(it.headers_),
435        idx_(it.idx_) {}
436
437    reference operator*() const {
438      return Lookup(idx_);
439    }
440
441    pointer operator->() const {
442      return &(this->operator*());
443    }
444
445    bool operator==(const self& it) const {
446      return idx_ == it.idx_;
447    }
448
449    bool operator<(const self& it) const {
450      return idx_ < it.idx_;
451    }
452
453    bool operator<=(const self& it) const {
454      return idx_ <= it.idx_;
455    }
456
457    bool operator!=(const self& it) const {
458      return !(*this == it);
459    }
460
461    bool operator>(const self& it) const {
462      return it < *this;
463    }
464
465    bool operator>=(const self& it) const {
466      return it <= *this;
467    }
468
469    // This mainly exists so that we can have interesting output for
470    // unittesting. The EXPECT_EQ, EXPECT_NE functions require that
471    // operator<< work for the classes it sees.  It would be better if there
472    // was an additional traits-like system for the gUnit output... but oh
473    // well.
474    std::ostream& operator<<(std::ostream& os) const;
475
476   protected:
477    iterator_base(const BalsaHeaders* headers, HeaderLines::size_type index) :
478        headers_(headers),
479        idx_(index) {}
480
481    void increment() {
482      const HeaderLines& header_lines = headers_->header_lines_;
483      const HeaderLines::size_type header_lines_size = header_lines.size();
484      const HeaderLines::size_type original_idx = idx_;
485      do {
486        ++idx_;
487      } while (idx_ < header_lines_size && header_lines[idx_].skip == true);
488      // The condition below exists so that ++(end() - 1) == end(), even
489      // if there are only 'skip == true' elements between the end() iterator
490      // and the end of the vector of HeaderLineDescriptions.
491      // TODO(fenix): refactor this list so that we don't have to do
492      // linear scanning through skipped headers (and this condition is
493      // then unnecessary)
494      if (idx_ == header_lines_size) {
495        idx_ = original_idx + 1;
496      }
497    }
498
499    void decrement() {
500      const HeaderLines& header_lines = headers_->header_lines_;
501      const HeaderLines::size_type header_lines_size = header_lines.size();
502      const HeaderLines::size_type original_idx = idx_;
503      do {
504        --idx_;
505      } while (idx_ >= 0 &&
506              idx_ < header_lines_size &&
507              header_lines[idx_].skip == true);
508      // The condition below exists so that --(rbegin() + 1) == rbegin(), even
509      // if there are only 'skip == true' elements between the rbegin() iterator
510      // and the beginning of the vector of HeaderLineDescriptions.
511      // TODO(fenix): refactor this list so that we don't have to do
512      // linear scanning through skipped headers (and this condition is
513      // then unnecessary)
514      if (idx_ < 0 || idx_ > header_lines_size) {
515        idx_ = original_idx - 1;
516      }
517    }
518
519    reference Lookup(HeaderLines::size_type index) const {
520      DCHECK_LT(index, headers_->header_lines_.size());
521      const HeaderLineDescription& line = headers_->header_lines_[index];
522      const char* stream_begin = headers_->GetPtr(line.buffer_base_idx);
523      value_ = value_type(
524          base::StringPiece(stream_begin + line.first_char_idx,
525                      line.key_end_idx - line.first_char_idx),
526          base::StringPiece(stream_begin + line.value_begin_idx,
527                      line.last_char_idx - line.value_begin_idx));
528      DCHECK_GE(line.key_end_idx, line.first_char_idx);
529      DCHECK_GE(line.last_char_idx, line.value_begin_idx);
530      return value_;
531    }
532
533    const BalsaHeaders* headers_;
534    HeaderLines::size_type idx_;
535    mutable StringPiecePair value_;
536  };
537
538  class reverse_iterator_base : public iterator_base {
539   public:
540    typedef reverse_iterator_base self;
541    typedef iterator_base::reference reference;
542    typedef iterator_base::pointer pointer;
543    using iterator_base::headers_;
544    using iterator_base::idx_;
545
546    reverse_iterator_base() : iterator_base() {}
547
548    // This constructor is no explicit purposely.
549    reverse_iterator_base(const iterator_base& it) :  // NOLINT
550        iterator_base(it) {
551    }
552
553    self& operator=(const iterator_base& it) {
554      idx_ = it.idx_;
555      headers_ = it.headers_;
556      return *this;
557    }
558
559    self& operator=(const reverse_iterator_base& it) {
560      idx_ = it.idx_;
561      headers_ = it.headers_;
562      return *this;
563    }
564
565    reference operator*() const {
566      return Lookup(idx_ - 1);
567    }
568
569    pointer operator->() const {
570      return &(this->operator*());
571    }
572
573    reverse_iterator_base(const reverse_iterator_base& it) :
574        iterator_base(it) { }
575
576   protected:
577    void increment() {
578      --idx_;
579      iterator_base::decrement();
580      ++idx_;
581    }
582
583    void decrement() {
584      ++idx_;
585      iterator_base::increment();
586      --idx_;
587    }
588
589    reverse_iterator_base(const BalsaHeaders* headers,
590                          HeaderLines::size_type index) :
591        iterator_base(headers, index) {}
592  };
593
594 public:
595  class const_header_lines_iterator : public iterator_base {
596    friend class BalsaHeaders;
597   public:
598    typedef const_header_lines_iterator self;
599    const_header_lines_iterator() : iterator_base() {}
600
601    const_header_lines_iterator(const const_header_lines_iterator& it) :
602        iterator_base(it.headers_, it.idx_) {}
603
604    self& operator++() {
605      iterator_base::increment();
606      return *this;
607    }
608
609    self& operator--() {
610      iterator_base::decrement();
611      return *this;
612    }
613   protected:
614    const_header_lines_iterator(const BalsaHeaders* headers,
615                                HeaderLines::size_type index) :
616        iterator_base(headers, index) {}
617  };
618
619  class const_reverse_header_lines_iterator : public reverse_iterator_base {
620   public:
621    typedef const_reverse_header_lines_iterator self;
622    const_reverse_header_lines_iterator() : reverse_iterator_base() {}
623
624    const_reverse_header_lines_iterator(
625      const const_header_lines_iterator& it) :
626        reverse_iterator_base(it.headers_, it.idx_) {}
627
628    const_reverse_header_lines_iterator(
629      const const_reverse_header_lines_iterator& it) :
630        reverse_iterator_base(it.headers_, it.idx_) {}
631
632    const_header_lines_iterator base() {
633      return const_header_lines_iterator(headers_, idx_);
634    }
635
636    self& operator++() {
637      reverse_iterator_base::increment();
638      return *this;
639    }
640
641    self& operator--() {
642      reverse_iterator_base::decrement();
643      return *this;
644    }
645   protected:
646    const_reverse_header_lines_iterator(const BalsaHeaders* headers,
647                                        HeaderLines::size_type index) :
648        reverse_iterator_base(headers, index) {}
649
650    friend class BalsaHeaders;
651  };
652
653  // An iterator that only stops at lines with a particular key.
654  // See also GetIteratorForKey.
655  //
656  // Check against header_lines_key_end() to determine when iteration is
657  // finished. header_lines_end() will also work.
658  class const_header_lines_key_iterator : public iterator_base {
659    friend class BalsaHeaders;
660   public:
661    typedef const_header_lines_key_iterator self;
662
663    self& operator++() {
664      do {
665        iterator_base::increment();
666      } while (!AtEnd() &&
667               !StringPieceUtils::EqualIgnoreCase(key_, (**this).first));
668      return *this;
669    }
670
671    void operator++(int ignore) {
672      ++(*this);
673    }
674
675    // Only forward-iteration makes sense, so no operator-- defined.
676
677   private:
678    const_header_lines_key_iterator(const BalsaHeaders* headers,
679                                    HeaderLines::size_type index,
680                                    const base::StringPiece& key)
681        : iterator_base(headers, index),
682          key_(key) {
683    }
684
685    // Should only be used for creating an end iterator.
686    const_header_lines_key_iterator(const BalsaHeaders* headers,
687                                    HeaderLines::size_type index)
688        : iterator_base(headers, index) {
689    }
690
691    bool AtEnd() const {
692      return *this >= headers_->header_lines_end();
693    }
694
695    base::StringPiece key_;
696  };
697
698  // TODO(fenix): Revisit the amount of bytes initially allocated to the second
699  // block of the balsa_buffer_. It may make sense to pre-allocate some amount
700  // (roughly the amount we'd append in new headers such as X-User-Ip, etc.)
701  BalsaHeaders() :
702      balsa_buffer_(4096),
703      content_length_(0),
704      content_length_status_(BalsaHeadersEnums::NO_CONTENT_LENGTH),
705      parsed_response_code_(0),
706      firstline_buffer_base_idx_(0),
707      whitespace_1_idx_(0),
708      non_whitespace_1_idx_(0),
709      whitespace_2_idx_(0),
710      non_whitespace_2_idx_(0),
711      whitespace_3_idx_(0),
712      non_whitespace_3_idx_(0),
713      whitespace_4_idx_(0),
714      end_of_firstline_idx_(0),
715      transfer_encoding_is_chunked_(false) { }
716
717  const_header_lines_iterator header_lines_begin() {
718    return HeaderLinesBeginHelper<const_header_lines_iterator>();
719  }
720
721  const_header_lines_iterator header_lines_begin() const {
722    return HeaderLinesBeginHelper<const_header_lines_iterator>();
723  }
724
725  const_header_lines_iterator header_lines_end() {
726    return HeaderLinesEndHelper<const_header_lines_iterator>();
727  }
728
729  const_header_lines_iterator header_lines_end() const {
730    return HeaderLinesEndHelper<const_header_lines_iterator>();
731  }
732
733  const_reverse_header_lines_iterator header_lines_rbegin() {
734    return const_reverse_header_lines_iterator(header_lines_end());
735  }
736
737  const_reverse_header_lines_iterator header_lines_rbegin() const {
738    return const_reverse_header_lines_iterator(header_lines_end());
739  }
740
741  const_reverse_header_lines_iterator header_lines_rend() {
742    return const_reverse_header_lines_iterator(header_lines_begin());
743  }
744
745  const_reverse_header_lines_iterator header_lines_rend() const {
746    return const_reverse_header_lines_iterator(header_lines_begin());
747  }
748
749  const_header_lines_key_iterator header_lines_key_end() const {
750    return HeaderLinesEndHelper<const_header_lines_key_iterator>();
751  }
752
753  void erase(const const_header_lines_iterator& it) {
754    DCHECK_EQ(it.headers_, this);
755    DCHECK_LT(it.idx_, header_lines_.size());
756    DCHECK_GE(it.idx_, 0u);
757    header_lines_[it.idx_].skip = true;
758  }
759
760  void Clear();
761
762  void Swap(BalsaHeaders* other);
763
764  void CopyFrom(const BalsaHeaders& other);
765
766  void HackHeader(const base::StringPiece& key, const base::StringPiece& value);
767
768  // Same as AppendToHeader, except that it will attempt to preserve
769  // header ordering.
770  // Note that this will always append to an existing header, if available,
771  // without moving the header around, or collapsing multiple header lines
772  // with the same key together. For this reason, it only 'attempts' to
773  // preserve header ordering.
774  // TODO(fenix): remove this function and rename all occurances
775  // of it in the code to AppendToHeader when the condition above
776  // has been satisified.
777  void HackAppendToHeader(const base::StringPiece& key,
778                          const base::StringPiece& value);
779
780  // Replaces header entries with key 'key' if they exist, or appends
781  // a new header if none exist.  See 'AppendHeader' below for additional
782  // comments about ContentLength and TransferEncoding headers. Note that this
783  // will allocate new storage every time that it is called.
784  // TODO(fenix): modify this function to reuse existing storage
785  // if it is available.
786  void ReplaceOrAppendHeader(const base::StringPiece& key,
787                             const base::StringPiece& value);
788
789  // Append a new header entry to the header object. Clients who wish to append
790  // Content-Length header should use SetContentLength() method instead of
791  // adding the content length header using AppendHeader (manually adding the
792  // content length header will not update the content_length_ and
793  // content_length_status_ values).
794  // Similarly, clients who wish to add or remove the transfer encoding header
795  // in order to apply or remove chunked encoding should use SetChunkEncoding()
796  // instead.
797  void AppendHeader(const base::StringPiece& key,
798                    const base::StringPiece& value);
799
800  // Appends ',value' to an existing header named 'key'.  If no header with the
801  // correct key exists, it will call AppendHeader(key, value).  Calling this
802  // function on a key which exists several times in the headers will produce
803  // unpredictable results.
804  void AppendToHeader(const base::StringPiece& key,
805                      const base::StringPiece& value);
806
807  // Prepends 'value,' to an existing header named 'key'.  If no header with the
808  // correct key exists, it will call AppendHeader(key, value).  Calling this
809  // function on a key which exists several times in the headers will produce
810  // unpredictable results.
811  void PrependToHeader(const base::StringPiece& key,
812                       const base::StringPiece& value);
813
814  const base::StringPiece GetHeader(const base::StringPiece& key) const;
815
816  // Iterates over all currently valid header lines, appending their
817  // values into the vector 'out', in top-to-bottom order.
818  // Header-lines which have been erased are not currently valid, and
819  // will not have their values appended. Empty values will be
820  // represented as empty string. If 'key' doesn't exist in the headers at
821  // all, out will not be changed. We do not clear the vector out
822  // before adding new entries. If there are header lines with matching
823  // key but empty value then they are also added to the vector out.
824  // (Basically empty values are not treated in any special manner).
825  //
826  // Example:
827  // Input header:
828  // "GET / HTTP/1.0\r\n"
829  //    "key1: v1\r\n"
830  //    "key1: \r\n"
831  //    "key1:\r\n"
832  //    "key1:  v1\r\n"
833  //    "key1:v2\r\n"
834  //
835  //  vector out is initially: ["foo"]
836  //  vector out after GetAllOfHeader("key1", &out) is:
837  // ["foo", "v1", "", "", "v2", "v1", "v2"]
838
839  void GetAllOfHeader(const base::StringPiece& key,
840                      std::vector<base::StringPiece>* out) const;
841
842  // Joins all values for key into a comma-separated string in out.
843  // More efficient than calling JoinStrings on result of GetAllOfHeader if
844  // you don't need the intermediate vector<StringPiece>.
845  void GetAllOfHeaderAsString(const base::StringPiece& key,
846                              std::string* out) const;
847
848  // Returns true if RFC 2616 Section 14 indicates that header can
849  // have multiple values.
850  static bool IsMultivaluedHeader(const base::StringPiece& header);
851
852  // Determine if a given header is present.
853  inline bool HasHeader(const base::StringPiece& key) const {
854    return (GetConstHeaderLinesIterator(key, header_lines_.begin()) !=
855            header_lines_.end());
856  }
857
858  // Returns true iff any header 'key' exists with non-empty value.
859  bool HasNonEmptyHeader(const base::StringPiece& key) const;
860
861  const_header_lines_iterator GetHeaderPosition(
862      const base::StringPiece& key) const;
863
864  // Returns a forward-only iterator that only stops at lines matching key.
865  // String backing 'key' must remain valid for lifetime of iterator.
866  //
867  // Check returned iterator against header_lines_key_end() to determine when
868  // iteration is finished.
869  const_header_lines_key_iterator GetIteratorForKey(
870      const base::StringPiece& key) const;
871
872  void RemoveAllOfHeader(const base::StringPiece& key);
873
874  // Removes all headers starting with 'key' [case insensitive]
875  void RemoveAllHeadersWithPrefix(const base::StringPiece& key);
876
877  // Returns the lower bound of memory  used by this header object, including
878  // all internal buffers and data structure. Some of the memory used cannot be
879  // directly measure. For example, memory used for bookkeeping by standard
880  // containers.
881  size_t GetMemoryUsedLowerBound() const;
882
883  // Returns the upper bound on the required buffer space to fully write out
884  // the header object (this include the first line, all header lines, and the
885  // final CRLF that marks the ending of the header).
886  size_t GetSizeForWriteBuffer() const;
887
888  // The following WriteHeader* methods are template member functions that
889  // place one requirement on the Buffer class: it must implement a Write
890  // method that takes a pointer and a length. The buffer passed in is not
891  // required to be stretchable. For non-stretchable buffers, the user must
892  // call GetSizeForWriteBuffer() to find out the upper bound on the output
893  // buffer space required to make sure that the entire header is serialized.
894  // BalsaHeaders will not check that there is adequate space in the buffer
895  // object during the write.
896
897  // Writes the entire header and the final CRLF that marks the end of the HTTP
898  // header section to the buffer. After this method returns, no more header
899  // data should be written to the buffer.
900  template <typename Buffer>
901  void WriteHeaderAndEndingToBuffer(Buffer* buffer) const {
902    WriteToBuffer(buffer);
903    WriteHeaderEndingToBuffer(buffer);
904  }
905
906  // Writes the final CRLF to the buffer to terminate the HTTP header section.
907  // After this method returns, no more header data should be written to the
908  // buffer.
909  template <typename Buffer>
910  static void WriteHeaderEndingToBuffer(Buffer* buffer) {
911    buffer->Write("\r\n", 2);
912  }
913
914  // Writes the entire header to the buffer without the CRLF that terminates
915  // the HTTP header. This lets users append additional header lines using
916  // WriteHeaderLineToBuffer and then terminate the header with
917  // WriteHeaderEndingToBuffer as the header is serialized to the
918  // buffer, without having to first copy the header.
919  template <typename Buffer>
920  void WriteToBuffer(Buffer* buffer) const {
921    // write the first line.
922    const size_t firstline_len = whitespace_4_idx_ - non_whitespace_1_idx_;
923    const char* stream_begin = GetPtr(firstline_buffer_base_idx_);
924    buffer->Write(stream_begin + non_whitespace_1_idx_, firstline_len);
925    buffer->Write("\r\n", 2);
926    const HeaderLines::size_type end = header_lines_.size();
927    for (HeaderLines::size_type i = 0; i < end; ++i) {
928      const HeaderLineDescription& line = header_lines_[i];
929      if (line.skip) {
930        continue;
931      }
932      const char* line_ptr = GetPtr(line.buffer_base_idx);
933      WriteHeaderLineToBuffer(
934          buffer,
935          base::StringPiece(line_ptr + line.first_char_idx,
936                      line.key_end_idx - line.first_char_idx),
937          base::StringPiece(line_ptr + line.value_begin_idx,
938                      line.last_char_idx - line.value_begin_idx));
939    }
940  }
941
942  // Takes a header line in the form of a key/value pair and append it to the
943  // buffer. This function should be called after WriteToBuffer to
944  // append additional header lines to the header without copying the header.
945  // When the user is done with appending to the buffer,
946  // WriteHeaderEndingToBuffer must be used to terminate the HTTP
947  // header in the buffer. This method is a no-op if key is empty.
948  template <typename Buffer>
949  static void WriteHeaderLineToBuffer(Buffer* buffer,
950                                      const base::StringPiece& key,
951                                      const base::StringPiece& value) {
952    // if the key is empty, we don't want to write the rest because it
953    // will not be a well-formed header line.
954    if (key.size() > 0) {
955      buffer->Write(key.data(), key.size());
956      buffer->Write(": ", 2);
957      buffer->Write(value.data(), value.size());
958      buffer->Write("\r\n", 2);
959    }
960  }
961
962  // Dump the textural representation of the header object to a string, which
963  // is suitable for writing out to logs. All CRLF will be printed out as \n.
964  // This function can be called on a header object in any state. Raw header
965  // data will be printed out if the header object is not completely parsed,
966  // e.g., when there was an error in the middle of parsing.
967  // The header content is appended to the string; the original content is not
968  // cleared.
969  void DumpToString(std::string* str) const;
970
971  const base::StringPiece first_line() const {
972    DCHECK_GE(whitespace_4_idx_, non_whitespace_1_idx_);
973    return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_,
974                       whitespace_4_idx_ - non_whitespace_1_idx_);
975  }
976
977  // Returns the parsed value of the response code if it has been parsed.
978  // Guaranteed to return 0 when unparsed (though it is a much better idea to
979  // verify that the BalsaFrame had no errors while parsing).
980  // This may return response codes which are outside the normal bounds of
981  // HTTP response codes-- it is up to the user of this class to ensure that
982  // the response code is one which is interpretable.
983  size_t parsed_response_code() const { return parsed_response_code_; }
984
985  const base::StringPiece request_method() const {
986    DCHECK_GE(whitespace_2_idx_, non_whitespace_1_idx_);
987    return base::StringPiece(BeginningOfFirstLine() + non_whitespace_1_idx_,
988                       whitespace_2_idx_ - non_whitespace_1_idx_);
989  }
990
991  const base::StringPiece response_version() const {
992    // Note: There is no difference between request_method() and
993    // response_version(). They both could be called
994    // GetFirstTokenFromFirstline()... but that wouldn't be anywhere near as
995    // descriptive.
996    return request_method();
997  }
998
999  const base::StringPiece request_uri() const {
1000    DCHECK_GE(whitespace_3_idx_, non_whitespace_2_idx_);
1001    return base::StringPiece(BeginningOfFirstLine() + non_whitespace_2_idx_,
1002                       whitespace_3_idx_ - non_whitespace_2_idx_);
1003  }
1004
1005  const base::StringPiece response_code() const {
1006    // Note: There is no difference between request_uri() and response_code().
1007    // They both could be called GetSecondtTokenFromFirstline(), but, as noted
1008    // in an earlier comment, that wouldn't be as descriptive.
1009    return request_uri();
1010  }
1011
1012  const base::StringPiece request_version() const {
1013    DCHECK_GE(whitespace_4_idx_, non_whitespace_3_idx_);
1014    return base::StringPiece(BeginningOfFirstLine() + non_whitespace_3_idx_,
1015                       whitespace_4_idx_ - non_whitespace_3_idx_);
1016  }
1017
1018  const base::StringPiece response_reason_phrase() const {
1019    // Note: There is no difference between request_version() and
1020    // response_reason_phrase(). They both could be called
1021    // GetThirdTokenFromFirstline(), but, as noted in an earlier comment, that
1022    // wouldn't be as descriptive.
1023    return request_version();
1024  }
1025
1026  // Note that SetFirstLine will not update the internal indices for the
1027  // various bits of the first-line (and may set them all to zero).
1028  // If you'd like to use the accessors for the various bits of the firstline,
1029  // then you should use the Set* functions, or SetFirstlineFromStringPieces,
1030  // below, instead.
1031  //
1032  void SetFirstlineFromStringPieces(const base::StringPiece& firstline_a,
1033                                    const base::StringPiece& firstline_b,
1034                                    const base::StringPiece& firstline_c);
1035
1036  void SetRequestFirstlineFromStringPieces(const base::StringPiece& method,
1037                                           const base::StringPiece& uri,
1038                                           const base::StringPiece& version) {
1039    SetFirstlineFromStringPieces(method, uri, version);
1040  }
1041
1042  void SetResponseFirstlineFromStringPieces(
1043      const base::StringPiece& version,
1044      const base::StringPiece& code,
1045      const base::StringPiece& reason_phrase) {
1046    SetFirstlineFromStringPieces(version, code, reason_phrase);
1047  }
1048
1049  // These functions are exactly the same, except that their names are
1050  // different. This is done so that the code using this class is more
1051  // expressive.
1052  void SetRequestMethod(const base::StringPiece& method);
1053  void SetResponseVersion(const base::StringPiece& version);
1054
1055  void SetRequestUri(const base::StringPiece& uri);
1056  void SetResponseCode(const base::StringPiece& code);
1057  void set_parsed_response_code(size_t parsed_response_code) {
1058    parsed_response_code_ = parsed_response_code;
1059  }
1060  void SetParsedResponseCodeAndUpdateFirstline(size_t parsed_response_code);
1061
1062  // These functions are exactly the same, except that their names are
1063  // different. This is done so that the code using this class is more
1064  // expressive.
1065  void SetRequestVersion(const base::StringPiece& version);
1066  void SetResponseReasonPhrase(const base::StringPiece& reason_phrase);
1067
1068  // The biggest problem with SetFirstLine is that we don't want to use a
1069  // separate buffer for it.  The second biggest problem with it is that the
1070  // first biggest problem requires that we store offsets into a buffer instead
1071  // of pointers into a buffer. Cuteness aside, SetFirstLine doesn't parse
1072  // the individual fields of the firstline, and so accessors to those fields
1073  // will not work properly after calling SetFirstLine. If you want those
1074  // accessors to work, use the Set* functions above this one.
1075  // SetFirstLine is stuff useful, however, if all you care about is correct
1076  // serialization with the rest of the header object.
1077  void SetFirstLine(const base::StringPiece& line);
1078
1079  // Simple accessors to some of the internal state
1080  bool transfer_encoding_is_chunked() const {
1081    return transfer_encoding_is_chunked_;
1082  }
1083
1084  static bool ResponseCodeImpliesNoBody(int code) {
1085    // From HTTP spec section 6.1.1 all 1xx responses must not have a body,
1086    // as well as 204 No Content and 304 Not Modified.
1087    return ((code >= 100) && (code <= 199)) || (code == 204) || (code == 304);
1088  }
1089
1090  // Note: never check this for requests. Nothing bad will happen if you do,
1091  // but spec does not allow requests framed by connection close.
1092  // TODO(vitaliyl): refactor.
1093  bool is_framed_by_connection_close() const {
1094    // We declare that response is framed by connection close if it has no
1095    // content-length, no transfer encoding, and is allowed to have a body by
1096    // the HTTP spec.
1097    // parsed_response_code_ is 0 for requests, so ResponseCodeImpliesNoBody
1098    // will return false.
1099    return (content_length_status_ == BalsaHeadersEnums::NO_CONTENT_LENGTH) &&
1100        !transfer_encoding_is_chunked_ &&
1101        !ResponseCodeImpliesNoBody(parsed_response_code_);
1102  }
1103
1104  size_t content_length() const { return content_length_; }
1105  BalsaHeadersEnums::ContentLengthStatus content_length_status() const {
1106    return content_length_status_;
1107  }
1108
1109  // SetContentLength and SetChunkEncoding modifies the header object to use
1110  // content-length and transfer-encoding headers in a consistent manner. They
1111  // set all internal flags and status so client can get a consistent view from
1112  // various accessors.
1113  void SetContentLength(size_t length);
1114  void SetChunkEncoding(bool chunk_encode);
1115
1116 protected:
1117  friend class BalsaFrame;
1118  friend class SpdyFrame;
1119  friend class HTTPMessage;
1120  friend class BalsaHeadersTokenUtils;
1121
1122  const char* BeginningOfFirstLine() const {
1123    return GetPtr(firstline_buffer_base_idx_);
1124  }
1125
1126  char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) {
1127    return balsa_buffer_.GetPtr(block_idx);
1128  }
1129
1130  const char* GetPtr(BalsaBuffer::Blocks::size_type block_idx) const {
1131    return balsa_buffer_.GetPtr(block_idx);
1132  }
1133
1134  void WriteFromFramer(const char* ptr, size_t size) {
1135    balsa_buffer_.WriteToContiguousBuffer(base::StringPiece(ptr, size));
1136  }
1137
1138  void DoneWritingFromFramer() {
1139    balsa_buffer_.NoMoreWriteToContiguousBuffer();
1140  }
1141
1142  const char* OriginalHeaderStreamBegin() const {
1143    return balsa_buffer_.StartOfFirstBlock();
1144  }
1145
1146  const char* OriginalHeaderStreamEnd() const {
1147    return balsa_buffer_.EndOfFirstBlock();
1148  }
1149
1150  size_t GetReadableBytesFromHeaderStream() const {
1151    return OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin();
1152  }
1153
1154  void GetReadablePtrFromHeaderStream(const char** p, size_t* s) {
1155    *p = OriginalHeaderStreamBegin();
1156    *s = GetReadableBytesFromHeaderStream();
1157  }
1158
1159  base::StringPiece GetValueFromHeaderLineDescription(
1160      const HeaderLineDescription& line) const;
1161
1162  void AddAndMakeDescription(const base::StringPiece& key,
1163                             const base::StringPiece& value,
1164                             HeaderLineDescription* d);
1165
1166  void AppendOrPrependAndMakeDescription(const base::StringPiece& key,
1167                                         const base::StringPiece& value,
1168                                         bool append,
1169                                         HeaderLineDescription* d);
1170
1171  // Removes all header lines with the given key starting at start.
1172  void RemoveAllOfHeaderStartingAt(const base::StringPiece& key,
1173                                   HeaderLines::iterator start);
1174
1175  // If the 'key' does not exist in the headers, calls
1176  // AppendHeader(key, value).  Otherwise if append is true, appends ',value'
1177  // to the first existing header with key 'key'.  If append is false, prepends
1178  // 'value,' to the first existing header with key 'key'.
1179  void AppendOrPrependToHeader(const base::StringPiece& key,
1180                               const base::StringPiece& value,
1181                               bool append);
1182
1183  HeaderLines::const_iterator GetConstHeaderLinesIterator(
1184      const base::StringPiece& key,
1185      HeaderLines::const_iterator start) const;
1186
1187  HeaderLines::iterator GetHeaderLinesIteratorNoSkip(
1188      const base::StringPiece& key,
1189      HeaderLines::iterator start);
1190
1191  HeaderLines::iterator GetHeaderLinesIterator(
1192      const base::StringPiece& key,
1193      HeaderLines::iterator start);
1194
1195  template <typename IteratorType>
1196  const IteratorType HeaderLinesBeginHelper() const {
1197    if (header_lines_.empty()) {
1198      return IteratorType(this, 0);
1199    }
1200    const HeaderLines::size_type header_lines_size = header_lines_.size();
1201    for (HeaderLines::size_type i = 0; i < header_lines_size; ++i) {
1202      if (header_lines_[i].skip == false) {
1203        return IteratorType(this, i);
1204      }
1205    }
1206    return IteratorType(this, 0);
1207  }
1208
1209  template <typename IteratorType>
1210  const IteratorType HeaderLinesEndHelper() const {
1211    if (header_lines_.empty()) {
1212      return IteratorType(this, 0);
1213    }
1214    const HeaderLines::size_type header_lines_size = header_lines_.size();
1215    HeaderLines::size_type i = header_lines_size;
1216    do {
1217      --i;
1218      if (header_lines_[i].skip == false) {
1219        return IteratorType(this, i + 1);
1220      }
1221    } while (i != 0);
1222    return IteratorType(this, 0);
1223  }
1224
1225  // At the moment, this function will always return the original headers.
1226  // In the future, it may not do so after erasing header lines, modifying
1227  // header lines, or modifying the first line.
1228  // For this reason, it is strongly suggested that use of this function is
1229  // only acceptable for the purpose of debugging parse errors seen by the
1230  // BalsaFrame class.
1231  base::StringPiece OriginalHeadersForDebugging() const {
1232    return base::StringPiece(OriginalHeaderStreamBegin(),
1233                       OriginalHeaderStreamEnd() - OriginalHeaderStreamBegin());
1234  }
1235
1236  BalsaBuffer balsa_buffer_;
1237
1238  size_t content_length_;
1239  BalsaHeadersEnums::ContentLengthStatus content_length_status_;
1240  size_t parsed_response_code_;
1241  // HTTP firstlines all have the following structure:
1242  //  LWS         NONWS  LWS    NONWS   LWS    NONWS   NOTCRLF  CRLF
1243  //  [\t \r\n]+ [^\t ]+ [\t ]+ [^\t ]+ [\t ]+ [^\t ]+ [^\r\n]+ "\r\n"
1244  //  ws1        nws1    ws2    nws2    ws3    nws3             ws4
1245  //  |          [-------)      [-------)      [----------------)
1246  //    REQ:     method         request_uri    version
1247  //   RESP:     version        statuscode     reason
1248  //
1249  //   The first NONWS->LWS component we'll call firstline_a.
1250  //   The second firstline_b, and the third firstline_c.
1251  //
1252  //   firstline_a goes from nws1 to (but not including) ws2
1253  //   firstline_b goes from nws2 to (but not including) ws3
1254  //   firstline_c goes from nws3 to (but not including) ws4
1255  //
1256  // In the code:
1257  //    ws1 == whitespace_1_idx_
1258  //   nws1 == non_whitespace_1_idx_
1259  //    ws2 == whitespace_2_idx_
1260  //   nws2 == non_whitespace_2_idx_
1261  //    ws3 == whitespace_3_idx_
1262  //   nws3 == non_whitespace_3_idx_
1263  //    ws4 == whitespace_4_idx_
1264  BalsaBuffer::Blocks::size_type firstline_buffer_base_idx_;
1265  size_t whitespace_1_idx_;
1266  size_t non_whitespace_1_idx_;
1267  size_t whitespace_2_idx_;
1268  size_t non_whitespace_2_idx_;
1269  size_t whitespace_3_idx_;
1270  size_t non_whitespace_3_idx_;
1271  size_t whitespace_4_idx_;
1272  size_t end_of_firstline_idx_;
1273
1274  bool transfer_encoding_is_chunked_;
1275
1276  HeaderLines header_lines_;
1277};
1278
1279}  // namespace net
1280
1281#endif  // NET_TOOLS_FLIP_SERVER_BALSA_HEADERS_H_
1282
1283