histogram.c revision 2a99a7e74a7f215066514fe81d2bfa6639d9eddd
1// Copyright 2012 Google Inc. All Rights Reserved.
2//
3// This code is licensed under the same terms as WebM:
4//  Software License Agreement:  http://www.webmproject.org/license/software/
5//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6// -----------------------------------------------------------------------------
7//
8// Author: Jyrki Alakuijala (jyrki@google.com)
9//
10#ifdef HAVE_CONFIG_H
11#include "config.h"
12#endif
13
14#include <math.h>
15#include <stdio.h>
16
17#include "./backward_references.h"
18#include "./histogram.h"
19#include "../dsp/lossless.h"
20#include "../utils/utils.h"
21
22static void HistogramClear(VP8LHistogram* const p) {
23  memset(p->literal_, 0, sizeof(p->literal_));
24  memset(p->red_, 0, sizeof(p->red_));
25  memset(p->blue_, 0, sizeof(p->blue_));
26  memset(p->alpha_, 0, sizeof(p->alpha_));
27  memset(p->distance_, 0, sizeof(p->distance_));
28  p->bit_cost_ = 0;
29}
30
31void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
32                            VP8LHistogram* const histo) {
33  int i;
34  for (i = 0; i < refs->size; ++i) {
35    VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
36  }
37}
38
39void VP8LHistogramCreate(VP8LHistogram* const p,
40                         const VP8LBackwardRefs* const refs,
41                         int palette_code_bits) {
42  if (palette_code_bits >= 0) {
43    p->palette_code_bits_ = palette_code_bits;
44  }
45  HistogramClear(p);
46  VP8LHistogramStoreRefs(refs, p);
47}
48
49void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
50  p->palette_code_bits_ = palette_code_bits;
51  HistogramClear(p);
52}
53
54VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
55  int i;
56  VP8LHistogramSet* set;
57  VP8LHistogram* bulk;
58  const uint64_t total_size = sizeof(*set)
59                            + (uint64_t)size * sizeof(*set->histograms)
60                            + (uint64_t)size * sizeof(**set->histograms);
61  uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
62  if (memory == NULL) return NULL;
63
64  set = (VP8LHistogramSet*)memory;
65  memory += sizeof(*set);
66  set->histograms = (VP8LHistogram**)memory;
67  memory += size * sizeof(*set->histograms);
68  bulk = (VP8LHistogram*)memory;
69  set->max_size = size;
70  set->size = size;
71  for (i = 0; i < size; ++i) {
72    set->histograms[i] = bulk + i;
73    VP8LHistogramInit(set->histograms[i], cache_bits);
74  }
75  return set;
76}
77
78// -----------------------------------------------------------------------------
79
80void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
81                                     const PixOrCopy* const v) {
82  if (PixOrCopyIsLiteral(v)) {
83    ++histo->alpha_[PixOrCopyLiteral(v, 3)];
84    ++histo->red_[PixOrCopyLiteral(v, 2)];
85    ++histo->literal_[PixOrCopyLiteral(v, 1)];
86    ++histo->blue_[PixOrCopyLiteral(v, 0)];
87  } else if (PixOrCopyIsCacheIdx(v)) {
88    int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
89    ++histo->literal_[literal_ix];
90  } else {
91    int code, extra_bits_count, extra_bits_value;
92    PrefixEncode(PixOrCopyLength(v),
93                 &code, &extra_bits_count, &extra_bits_value);
94    ++histo->literal_[256 + code];
95    PrefixEncode(PixOrCopyDistance(v),
96                 &code, &extra_bits_count, &extra_bits_value);
97    ++histo->distance_[code];
98  }
99}
100
101static double BitsEntropy(const int* const array, int n) {
102  double retval = 0.;
103  int sum = 0;
104  int nonzeros = 0;
105  int max_val = 0;
106  int i;
107  double mix;
108  for (i = 0; i < n; ++i) {
109    if (array[i] != 0) {
110      sum += array[i];
111      ++nonzeros;
112      retval -= VP8LFastSLog2(array[i]);
113      if (max_val < array[i]) {
114        max_val = array[i];
115      }
116    }
117  }
118  retval += VP8LFastSLog2(sum);
119
120  if (nonzeros < 5) {
121    if (nonzeros <= 1) {
122      return 0;
123    }
124    // Two symbols, they will be 0 and 1 in a Huffman code.
125    // Let's mix in a bit of entropy to favor good clustering when
126    // distributions of these are combined.
127    if (nonzeros == 2) {
128      return 0.99 * sum + 0.01 * retval;
129    }
130    // No matter what the entropy says, we cannot be better than min_limit
131    // with Huffman coding. I am mixing a bit of entropy into the
132    // min_limit since it produces much better (~0.5 %) compression results
133    // perhaps because of better entropy clustering.
134    if (nonzeros == 3) {
135      mix = 0.95;
136    } else {
137      mix = 0.7;  // nonzeros == 4.
138    }
139  } else {
140    mix = 0.627;
141  }
142
143  {
144    double min_limit = 2 * sum - max_val;
145    min_limit = mix * min_limit + (1.0 - mix) * retval;
146    return (retval < min_limit) ? min_limit : retval;
147  }
148}
149
150// Returns the cost encode the rle-encoded entropy code.
151// The constants in this function are experimental.
152static double HuffmanCost(const int* const population, int length) {
153  // Small bias because Huffman code length is typically not stored in
154  // full length.
155  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
156  static const double kSmallBias = 9.1;
157  double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
158  int streak = 0;
159  int i = 0;
160  for (; i < length - 1; ++i) {
161    ++streak;
162    if (population[i] == population[i + 1]) {
163      continue;
164    }
165 last_streak_hack:
166    // population[i] points now to the symbol in the streak of same values.
167    if (streak > 3) {
168      if (population[i] == 0) {
169        retval += 1.5625 + 0.234375 * streak;
170      } else {
171        retval += 2.578125 + 0.703125 * streak;
172      }
173    } else {
174      if (population[i] == 0) {
175        retval += 1.796875 * streak;
176      } else {
177        retval += 3.28125 * streak;
178      }
179    }
180    streak = 0;
181  }
182  if (i == length - 1) {
183    ++streak;
184    goto last_streak_hack;
185  }
186  return retval;
187}
188
189static double PopulationCost(const int* const population, int length) {
190  return BitsEntropy(population, length) + HuffmanCost(population, length);
191}
192
193static double ExtraCost(const int* const population, int length) {
194  int i;
195  double cost = 0.;
196  for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
197  return cost;
198}
199
200// Estimates the Entropy + Huffman + other block overhead size cost.
201double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
202  return PopulationCost(p->literal_, VP8LHistogramNumCodes(p))
203       + PopulationCost(p->red_, 256)
204       + PopulationCost(p->blue_, 256)
205       + PopulationCost(p->alpha_, 256)
206       + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
207       + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
208       + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
209}
210
211double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
212  return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p))
213       + BitsEntropy(p->red_, 256)
214       + BitsEntropy(p->blue_, 256)
215       + BitsEntropy(p->alpha_, 256)
216       + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
217       + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
218       + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
219}
220
221// -----------------------------------------------------------------------------
222// Various histogram combine/cost-eval functions
223
224// Adds 'in' histogram to 'out'
225static void HistogramAdd(const VP8LHistogram* const in,
226                         VP8LHistogram* const out) {
227  int i;
228  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
229    out->literal_[i] += in->literal_[i];
230  }
231  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
232    out->distance_[i] += in->distance_[i];
233  }
234  for (i = 0; i < 256; ++i) {
235    out->red_[i] += in->red_[i];
236    out->blue_[i] += in->blue_[i];
237    out->alpha_[i] += in->alpha_[i];
238  }
239}
240
241// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
242// to the threshold value 'cost_threshold'. The score returned is
243//  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
244// Since the previous score passed is 'cost_threshold', we only need to compare
245// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
246// early.
247static double HistogramAddEval(const VP8LHistogram* const a,
248                               const VP8LHistogram* const b,
249                               VP8LHistogram* const out,
250                               double cost_threshold) {
251  double cost = 0;
252  const double sum_cost = a->bit_cost_ + b->bit_cost_;
253  int i;
254
255  cost_threshold += sum_cost;
256
257  // palette_code_bits_ is part of the cost evaluation for literal_.
258  // TODO(skal): remove/simplify this palette_code_bits_?
259  out->palette_code_bits_ =
260      (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
261                                                        b->palette_code_bits_;
262  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
263    out->literal_[i] = a->literal_[i] + b->literal_[i];
264  }
265  cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out));
266  cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES);
267  if (cost > cost_threshold) return cost;
268
269  for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i];
270  cost += PopulationCost(out->red_, 256);
271  if (cost > cost_threshold) return cost;
272
273  for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i];
274  cost += PopulationCost(out->blue_, 256);
275  if (cost > cost_threshold) return cost;
276
277  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
278    out->distance_[i] = a->distance_[i] + b->distance_[i];
279  }
280  cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES);
281  cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES);
282  if (cost > cost_threshold) return cost;
283
284  for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
285  cost += PopulationCost(out->alpha_, 256);
286
287  out->bit_cost_ = cost;
288  return cost - sum_cost;
289}
290
291// Same as HistogramAddEval(), except that the resulting histogram
292// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
293// the term C(b) which is constant over all the evaluations.
294static double HistogramAddThresh(const VP8LHistogram* const a,
295                                 const VP8LHistogram* const b,
296                                 double cost_threshold) {
297  int tmp[PIX_OR_COPY_CODES_MAX];  // <= max storage we'll need
298  int i;
299  double cost = -a->bit_cost_;
300
301  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
302    tmp[i] = a->literal_[i] + b->literal_[i];
303  }
304  // note that the tests are ordered so that the usually largest
305  // cost shares come first.
306  cost += PopulationCost(tmp, VP8LHistogramNumCodes(a));
307  cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES);
308  if (cost > cost_threshold) return cost;
309
310  for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i];
311  cost += PopulationCost(tmp, 256);
312  if (cost > cost_threshold) return cost;
313
314  for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i];
315  cost += PopulationCost(tmp, 256);
316  if (cost > cost_threshold) return cost;
317
318  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
319    tmp[i] = a->distance_[i] + b->distance_[i];
320  }
321  cost += PopulationCost(tmp, NUM_DISTANCE_CODES);
322  cost += ExtraCost(tmp, NUM_DISTANCE_CODES);
323  if (cost > cost_threshold) return cost;
324
325  for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i];
326  cost += PopulationCost(tmp, 256);
327
328  return cost;
329}
330
331// -----------------------------------------------------------------------------
332
333static void HistogramBuildImage(int xsize, int histo_bits,
334                                const VP8LBackwardRefs* const backward_refs,
335                                VP8LHistogramSet* const image) {
336  int i;
337  int x = 0, y = 0;
338  const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
339  VP8LHistogram** const histograms = image->histograms;
340  assert(histo_bits > 0);
341  for (i = 0; i < backward_refs->size; ++i) {
342    const PixOrCopy* const v = &backward_refs->refs[i];
343    const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
344    VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
345    x += PixOrCopyLength(v);
346    while (x >= xsize) {
347      x -= xsize;
348      ++y;
349    }
350  }
351}
352
353static uint32_t MyRand(uint32_t *seed) {
354  *seed *= 16807U;
355  if (*seed == 0) {
356    *seed = 1;
357  }
358  return *seed;
359}
360
361static int HistogramCombine(const VP8LHistogramSet* const in,
362                            VP8LHistogramSet* const out, int iter_mult,
363                            int num_pairs, int num_tries_no_success) {
364  int ok = 0;
365  int i, iter;
366  uint32_t seed = 0;
367  int tries_with_no_success = 0;
368  int out_size = in->size;
369  const int outer_iters = in->size * iter_mult;
370  const int min_cluster_size = 2;
371  VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
372  VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
373  VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
374  if (histos == NULL) goto End;
375
376  // Copy histograms from in[] to out[].
377  assert(in->size <= out->size);
378  for (i = 0; i < in->size; ++i) {
379    in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
380    *out->histograms[i] = *in->histograms[i];
381  }
382
383  // Collapse similar histograms in 'out'.
384  for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
385    double best_cost_diff = 0.;
386    int best_idx1 = -1, best_idx2 = 1;
387    int j;
388    const int num_tries = (num_pairs < out_size) ? num_pairs : out_size;
389    seed += iter;
390    for (j = 0; j < num_tries; ++j) {
391      double curr_cost_diff;
392      // Choose two histograms at random and try to combine them.
393      const uint32_t idx1 = MyRand(&seed) % out_size;
394      const uint32_t tmp = (j & 7) + 1;
395      const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
396      const uint32_t idx2 = (idx1 + diff + 1) % out_size;
397      if (idx1 == idx2) {
398        continue;
399      }
400      // Calculate cost reduction on combining.
401      curr_cost_diff = HistogramAddEval(out->histograms[idx1],
402                                        out->histograms[idx2],
403                                        cur_combo, best_cost_diff);
404      if (curr_cost_diff < best_cost_diff) {    // found a better pair?
405        {     // swap cur/best combo histograms
406          VP8LHistogram* const tmp_histo = cur_combo;
407          cur_combo = best_combo;
408          best_combo = tmp_histo;
409        }
410        best_cost_diff = curr_cost_diff;
411        best_idx1 = idx1;
412        best_idx2 = idx2;
413      }
414    }
415
416    if (best_idx1 >= 0) {
417      *out->histograms[best_idx1] = *best_combo;
418      // swap best_idx2 slot with last one (which is now unused)
419      --out_size;
420      if (best_idx2 != out_size) {
421        out->histograms[best_idx2] = out->histograms[out_size];
422        out->histograms[out_size] = NULL;   // just for sanity check.
423      }
424      tries_with_no_success = 0;
425    }
426    if (++tries_with_no_success >= num_tries_no_success) {
427      break;
428    }
429  }
430  out->size = out_size;
431  ok = 1;
432
433 End:
434  free(histos);
435  return ok;
436}
437
438// -----------------------------------------------------------------------------
439// Histogram refinement
440
441// What is the bit cost of moving square_histogram from cur_symbol to candidate.
442static double HistogramDistance(const VP8LHistogram* const square_histogram,
443                                const VP8LHistogram* const candidate,
444                                double cost_threshold) {
445  return HistogramAddThresh(candidate, square_histogram, cost_threshold);
446}
447
448// Find the best 'out' histogram for each of the 'in' histograms.
449// Note: we assume that out[]->bit_cost_ is already up-to-date.
450static void HistogramRemap(const VP8LHistogramSet* const in,
451                           const VP8LHistogramSet* const out,
452                           uint16_t* const symbols) {
453  int i;
454  for (i = 0; i < in->size; ++i) {
455    int best_out = 0;
456    double best_bits =
457        HistogramDistance(in->histograms[i], out->histograms[0], 1.e38);
458    int k;
459    for (k = 1; k < out->size; ++k) {
460      const double cur_bits =
461          HistogramDistance(in->histograms[i], out->histograms[k], best_bits);
462      if (cur_bits < best_bits) {
463        best_bits = cur_bits;
464        best_out = k;
465      }
466    }
467    symbols[i] = best_out;
468  }
469
470  // Recompute each out based on raw and symbols.
471  for (i = 0; i < out->size; ++i) {
472    HistogramClear(out->histograms[i]);
473  }
474  for (i = 0; i < in->size; ++i) {
475    HistogramAdd(in->histograms[i], out->histograms[symbols[i]]);
476  }
477}
478
479int VP8LGetHistoImageSymbols(int xsize, int ysize,
480                             const VP8LBackwardRefs* const refs,
481                             int quality, int histo_bits, int cache_bits,
482                             VP8LHistogramSet* const image_in,
483                             uint16_t* const histogram_symbols) {
484  int ok = 0;
485  const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
486  const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
487  const int histo_image_raw_size = histo_xsize * histo_ysize;
488
489  // Heuristic params for HistogramCombine().
490  const int num_tries_no_success = 8 + (quality >> 1);
491  const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
492  const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3;
493
494  VP8LHistogramSet* const image_out =
495      VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
496  if (image_out == NULL) return 0;
497
498  // Build histogram image.
499  HistogramBuildImage(xsize, histo_bits, refs, image_out);
500  // Collapse similar histograms.
501  if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs,
502                        num_tries_no_success)) {
503    goto Error;
504  }
505  // Find the optimal map from original histograms to the final ones.
506  HistogramRemap(image_out, image_in, histogram_symbols);
507  ok = 1;
508
509Error:
510  free(image_out);
511  return ok;
512}
513