1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if V8_TARGET_ARCH_MIPS
31
32#include "unicode.h"
33#include "log.h"
34#include "code-stubs.h"
35#include "regexp-stack.h"
36#include "macro-assembler.h"
37#include "regexp-macro-assembler.h"
38#include "mips/regexp-macro-assembler-mips.h"
39
40namespace v8 {
41namespace internal {
42
43#ifndef V8_INTERPRETED_REGEXP
44/*
45 * This assembler uses the following register assignment convention
46 * - t7 : Temporarily stores the index of capture start after a matching pass
47 *        for a global regexp.
48 * - t1 : Pointer to current code object (Code*) including heap object tag.
49 * - t2 : Current position in input, as negative offset from end of string.
50 *        Please notice that this is the byte offset, not the character offset!
51 * - t3 : Currently loaded character. Must be loaded using
52 *        LoadCurrentCharacter before using any of the dispatch methods.
53 * - t4 : Points to tip of backtrack stack
54 * - t5 : Unused.
55 * - t6 : End of input (points to byte after last character in input).
56 * - fp : Frame pointer. Used to access arguments, local variables and
57 *         RegExp registers.
58 * - sp : Points to tip of C stack.
59 *
60 * The remaining registers are free for computations.
61 * Each call to a public method should retain this convention.
62 *
63 * The stack will have the following structure:
64 *
65 *  - fp[64]  Isolate* isolate   (address of the current isolate)
66 *  - fp[60]  direct_call  (if 1, direct call from JavaScript code,
67 *                          if 0, call through the runtime system).
68 *  - fp[56]  stack_area_base (High end of the memory area to use as
69 *                             backtracking stack).
70 *  - fp[52]  capture array size (may fit multiple sets of matches)
71 *  - fp[48]  int* capture_array (int[num_saved_registers_], for output).
72 *  - fp[44]  secondary link/return address used by native call.
73 *  --- sp when called ---
74 *  - fp[40]  return address      (lr).
75 *  - fp[36]  old frame pointer   (r11).
76 *  - fp[0..32]  backup of registers s0..s7.
77 *  --- frame pointer ----
78 *  - fp[-4]  end of input       (address of end of string).
79 *  - fp[-8]  start of input     (address of first character in string).
80 *  - fp[-12] start index        (character index of start).
81 *  - fp[-16] void* input_string (location of a handle containing the string).
82 *  - fp[-20] success counter    (only for global regexps to count matches).
83 *  - fp[-24] Offset of location before start of input (effectively character
84 *            position -1). Used to initialize capture registers to a
85 *            non-position.
86 *  - fp[-28] At start (if 1, we are starting at the start of the
87 *    string, otherwise 0)
88 *  - fp[-32] register 0         (Only positions must be stored in the first
89 *  -         register 1          num_saved_registers_ registers)
90 *  -         ...
91 *  -         register num_registers-1
92 *  --- sp ---
93 *
94 * The first num_saved_registers_ registers are initialized to point to
95 * "character -1" in the string (i.e., char_size() bytes before the first
96 * character of the string). The remaining registers start out as garbage.
97 *
98 * The data up to the return address must be placed there by the calling
99 * code and the remaining arguments are passed in registers, e.g. by calling the
100 * code entry as cast to a function with the signature:
101 * int (*match)(String* input_string,
102 *              int start_index,
103 *              Address start,
104 *              Address end,
105 *              Address secondary_return_address,  // Only used by native call.
106 *              int* capture_output_array,
107 *              byte* stack_area_base,
108 *              bool direct_call = false)
109 * The call is performed by NativeRegExpMacroAssembler::Execute()
110 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
111 * in mips/simulator-mips.h.
112 * When calling as a non-direct call (i.e., from C++ code), the return address
113 * area is overwritten with the ra register by the RegExp code. When doing a
114 * direct call from generated code, the return address is placed there by
115 * the calling code, as in a normal exit frame.
116 */
117
118#define __ ACCESS_MASM(masm_)
119
120RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(
121    Mode mode,
122    int registers_to_save,
123    Zone* zone)
124    : NativeRegExpMacroAssembler(zone),
125      masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
126      mode_(mode),
127      num_registers_(registers_to_save),
128      num_saved_registers_(registers_to_save),
129      entry_label_(),
130      start_label_(),
131      success_label_(),
132      backtrack_label_(),
133      exit_label_(),
134      internal_failure_label_() {
135  ASSERT_EQ(0, registers_to_save % 2);
136  __ jmp(&entry_label_);   // We'll write the entry code later.
137  // If the code gets too big or corrupted, an internal exception will be
138  // raised, and we will exit right away.
139  __ bind(&internal_failure_label_);
140  __ li(v0, Operand(FAILURE));
141  __ Ret();
142  __ bind(&start_label_);  // And then continue from here.
143}
144
145
146RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
147  delete masm_;
148  // Unuse labels in case we throw away the assembler without calling GetCode.
149  entry_label_.Unuse();
150  start_label_.Unuse();
151  success_label_.Unuse();
152  backtrack_label_.Unuse();
153  exit_label_.Unuse();
154  check_preempt_label_.Unuse();
155  stack_overflow_label_.Unuse();
156  internal_failure_label_.Unuse();
157}
158
159
160int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
161  return RegExpStack::kStackLimitSlack;
162}
163
164
165void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
166  if (by != 0) {
167    __ Addu(current_input_offset(),
168            current_input_offset(), Operand(by * char_size()));
169  }
170}
171
172
173void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
174  ASSERT(reg >= 0);
175  ASSERT(reg < num_registers_);
176  if (by != 0) {
177    __ lw(a0, register_location(reg));
178    __ Addu(a0, a0, Operand(by));
179    __ sw(a0, register_location(reg));
180  }
181}
182
183
184void RegExpMacroAssemblerMIPS::Backtrack() {
185  CheckPreemption();
186  // Pop Code* offset from backtrack stack, add Code* and jump to location.
187  Pop(a0);
188  __ Addu(a0, a0, code_pointer());
189  __ Jump(a0);
190}
191
192
193void RegExpMacroAssemblerMIPS::Bind(Label* label) {
194  __ bind(label);
195}
196
197
198void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
199  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
200}
201
202
203void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
204  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
205}
206
207
208void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
209  Label not_at_start;
210  // Did we start the match at the start of the string at all?
211  __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
212  BranchOrBacktrack(&not_at_start, ne, a0, Operand(zero_reg));
213
214  // If we did, are we still at the start of the input?
215  __ lw(a1, MemOperand(frame_pointer(), kInputStart));
216  __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
217  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
218  __ bind(&not_at_start);
219}
220
221
222void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
223  // Did we start the match at the start of the string at all?
224  __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
225  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
226  // If we did, are we still at the start of the input?
227  __ lw(a1, MemOperand(frame_pointer(), kInputStart));
228  __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
229  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
230}
231
232
233void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
234  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
235}
236
237
238void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
239  Label backtrack_non_equal;
240  __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
241  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
242  __ Addu(backtrack_stackpointer(),
243          backtrack_stackpointer(),
244          Operand(kPointerSize));
245  __ bind(&backtrack_non_equal);
246  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
247}
248
249
250void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
251    int start_reg,
252    Label* on_no_match) {
253  Label fallthrough;
254  __ lw(a0, register_location(start_reg));  // Index of start of capture.
255  __ lw(a1, register_location(start_reg + 1));  // Index of end of capture.
256  __ Subu(a1, a1, a0);  // Length of capture.
257
258  // If length is zero, either the capture is empty or it is not participating.
259  // In either case succeed immediately.
260  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
261
262  __ Addu(t5, a1, current_input_offset());
263  // Check that there are enough characters left in the input.
264  BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
265
266  if (mode_ == ASCII) {
267    Label success;
268    Label fail;
269    Label loop_check;
270
271    // a0 - offset of start of capture.
272    // a1 - length of capture.
273    __ Addu(a0, a0, Operand(end_of_input_address()));
274    __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
275    __ Addu(a1, a0, Operand(a1));
276
277    // a0 - Address of start of capture.
278    // a1 - Address of end of capture.
279    // a2 - Address of current input position.
280
281    Label loop;
282    __ bind(&loop);
283    __ lbu(a3, MemOperand(a0, 0));
284    __ addiu(a0, a0, char_size());
285    __ lbu(t0, MemOperand(a2, 0));
286    __ addiu(a2, a2, char_size());
287
288    __ Branch(&loop_check, eq, t0, Operand(a3));
289
290    // Mismatch, try case-insensitive match (converting letters to lower-case).
291    __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
292    __ Or(t0, t0, Operand(0x20));  // Also convert input character.
293    __ Branch(&fail, ne, t0, Operand(a3));
294    __ Subu(a3, a3, Operand('a'));
295    __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
296    // Latin-1: Check for values in range [224,254] but not 247.
297    __ Subu(a3, a3, Operand(224 - 'a'));
298    // Weren't Latin-1 letters.
299    __ Branch(&fail, hi, a3, Operand(254 - 224));
300    // Check for 247.
301    __ Branch(&fail, eq, a3, Operand(247 - 224));
302
303    __ bind(&loop_check);
304    __ Branch(&loop, lt, a0, Operand(a1));
305    __ jmp(&success);
306
307    __ bind(&fail);
308    GoTo(on_no_match);
309
310    __ bind(&success);
311    // Compute new value of character position after the matched part.
312    __ Subu(current_input_offset(), a2, end_of_input_address());
313  } else {
314    ASSERT(mode_ == UC16);
315    // Put regexp engine registers on stack.
316    RegList regexp_registers_to_retain = current_input_offset().bit() |
317        current_character().bit() | backtrack_stackpointer().bit();
318    __ MultiPush(regexp_registers_to_retain);
319
320    int argument_count = 4;
321    __ PrepareCallCFunction(argument_count, a2);
322
323    // a0 - offset of start of capture.
324    // a1 - length of capture.
325
326    // Put arguments into arguments registers.
327    // Parameters are
328    //   a0: Address byte_offset1 - Address captured substring's start.
329    //   a1: Address byte_offset2 - Address of current character position.
330    //   a2: size_t byte_length - length of capture in bytes(!).
331    //   a3: Isolate* isolate.
332
333    // Address of start of capture.
334    __ Addu(a0, a0, Operand(end_of_input_address()));
335    // Length of capture.
336    __ mov(a2, a1);
337    // Save length in callee-save register for use on return.
338    __ mov(s3, a1);
339    // Address of current input position.
340    __ Addu(a1, current_input_offset(), Operand(end_of_input_address()));
341    // Isolate.
342    __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
343
344    {
345      AllowExternalCallThatCantCauseGC scope(masm_);
346      ExternalReference function =
347          ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
348      __ CallCFunction(function, argument_count);
349    }
350
351    // Restore regexp engine registers.
352    __ MultiPop(regexp_registers_to_retain);
353    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
354    __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
355
356    // Check if function returned non-zero for success or zero for failure.
357    BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
358    // On success, increment position by length of capture.
359    __ Addu(current_input_offset(), current_input_offset(), Operand(s3));
360  }
361
362  __ bind(&fallthrough);
363}
364
365
366void RegExpMacroAssemblerMIPS::CheckNotBackReference(
367    int start_reg,
368    Label* on_no_match) {
369  Label fallthrough;
370  Label success;
371
372  // Find length of back-referenced capture.
373  __ lw(a0, register_location(start_reg));
374  __ lw(a1, register_location(start_reg + 1));
375  __ Subu(a1, a1, a0);  // Length to check.
376  // Succeed on empty capture (including no capture).
377  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
378
379  __ Addu(t5, a1, current_input_offset());
380  // Check that there are enough characters left in the input.
381  BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
382
383  // Compute pointers to match string and capture string.
384  __ Addu(a0, a0, Operand(end_of_input_address()));
385  __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
386  __ Addu(a1, a1, Operand(a0));
387
388  Label loop;
389  __ bind(&loop);
390  if (mode_ == ASCII) {
391    __ lbu(a3, MemOperand(a0, 0));
392    __ addiu(a0, a0, char_size());
393    __ lbu(t0, MemOperand(a2, 0));
394    __ addiu(a2, a2, char_size());
395  } else {
396    ASSERT(mode_ == UC16);
397    __ lhu(a3, MemOperand(a0, 0));
398    __ addiu(a0, a0, char_size());
399    __ lhu(t0, MemOperand(a2, 0));
400    __ addiu(a2, a2, char_size());
401  }
402  BranchOrBacktrack(on_no_match, ne, a3, Operand(t0));
403  __ Branch(&loop, lt, a0, Operand(a1));
404
405  // Move current character position to position after match.
406  __ Subu(current_input_offset(), a2, end_of_input_address());
407  __ bind(&fallthrough);
408}
409
410
411void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
412                                                 Label* on_not_equal) {
413  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
414}
415
416
417void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
418                                                      uint32_t mask,
419                                                      Label* on_equal) {
420  __ And(a0, current_character(), Operand(mask));
421  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
422  BranchOrBacktrack(on_equal, eq, a0, rhs);
423}
424
425
426void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
427                                                         uint32_t mask,
428                                                         Label* on_not_equal) {
429  __ And(a0, current_character(), Operand(mask));
430  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
431  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
432}
433
434
435void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
436    uc16 c,
437    uc16 minus,
438    uc16 mask,
439    Label* on_not_equal) {
440  ASSERT(minus < String::kMaxUtf16CodeUnit);
441  __ Subu(a0, current_character(), Operand(minus));
442  __ And(a0, a0, Operand(mask));
443  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
444}
445
446
447void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
448    uc16 from,
449    uc16 to,
450    Label* on_in_range) {
451  __ Subu(a0, current_character(), Operand(from));
452  // Unsigned lower-or-same condition.
453  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
454}
455
456
457void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
458    uc16 from,
459    uc16 to,
460    Label* on_not_in_range) {
461  __ Subu(a0, current_character(), Operand(from));
462  // Unsigned higher condition.
463  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
464}
465
466
467void RegExpMacroAssemblerMIPS::CheckBitInTable(
468    Handle<ByteArray> table,
469    Label* on_bit_set) {
470  __ li(a0, Operand(table));
471  if (mode_ != ASCII || kTableMask != String::kMaxOneByteCharCode) {
472    __ And(a1, current_character(), Operand(kTableSize - 1));
473    __ Addu(a0, a0, a1);
474  } else {
475    __ Addu(a0, a0, current_character());
476  }
477
478  __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
479  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
480}
481
482
483bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
484                                                          Label* on_no_match) {
485  // Range checks (c in min..max) are generally implemented by an unsigned
486  // (c - min) <= (max - min) check.
487  switch (type) {
488  case 's':
489    // Match space-characters.
490    if (mode_ == ASCII) {
491      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
492      Label success;
493      __ Branch(&success, eq, current_character(), Operand(' '));
494      // Check range 0x09..0x0d.
495      __ Subu(a0, current_character(), Operand('\t'));
496      __ Branch(&success, ls, a0, Operand('\r' - '\t'));
497      // \u00a0 (NBSP).
498      BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
499      __ bind(&success);
500      return true;
501    }
502    return false;
503  case 'S':
504    // The emitted code for generic character classes is good enough.
505    return false;
506  case 'd':
507    // Match ASCII digits ('0'..'9').
508    __ Subu(a0, current_character(), Operand('0'));
509    BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
510    return true;
511  case 'D':
512    // Match non ASCII-digits.
513    __ Subu(a0, current_character(), Operand('0'));
514    BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
515    return true;
516  case '.': {
517    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
518    __ Xor(a0, current_character(), Operand(0x01));
519    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
520    __ Subu(a0, a0, Operand(0x0b));
521    BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
522    if (mode_ == UC16) {
523      // Compare original value to 0x2028 and 0x2029, using the already
524      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
525      // 0x201d (0x2028 - 0x0b) or 0x201e.
526      __ Subu(a0, a0, Operand(0x2028 - 0x0b));
527      BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
528    }
529    return true;
530  }
531  case 'n': {
532    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
533    __ Xor(a0, current_character(), Operand(0x01));
534    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
535    __ Subu(a0, a0, Operand(0x0b));
536    if (mode_ == ASCII) {
537      BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
538    } else {
539      Label done;
540      BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
541      // Compare original value to 0x2028 and 0x2029, using the already
542      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
543      // 0x201d (0x2028 - 0x0b) or 0x201e.
544      __ Subu(a0, a0, Operand(0x2028 - 0x0b));
545      BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
546      __ bind(&done);
547    }
548    return true;
549  }
550  case 'w': {
551    if (mode_ != ASCII) {
552      // Table is 128 entries, so all ASCII characters can be tested.
553      BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
554    }
555    ExternalReference map = ExternalReference::re_word_character_map();
556    __ li(a0, Operand(map));
557    __ Addu(a0, a0, current_character());
558    __ lbu(a0, MemOperand(a0, 0));
559    BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
560    return true;
561  }
562  case 'W': {
563    Label done;
564    if (mode_ != ASCII) {
565      // Table is 128 entries, so all ASCII characters can be tested.
566      __ Branch(&done, hi, current_character(), Operand('z'));
567    }
568    ExternalReference map = ExternalReference::re_word_character_map();
569    __ li(a0, Operand(map));
570    __ Addu(a0, a0, current_character());
571    __ lbu(a0, MemOperand(a0, 0));
572    BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
573    if (mode_ != ASCII) {
574      __ bind(&done);
575    }
576    return true;
577  }
578  case '*':
579    // Match any character.
580    return true;
581  // No custom implementation (yet): s(UC16), S(UC16).
582  default:
583    return false;
584  }
585}
586
587
588void RegExpMacroAssemblerMIPS::Fail() {
589  __ li(v0, Operand(FAILURE));
590  __ jmp(&exit_label_);
591}
592
593
594Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
595  Label return_v0;
596  if (masm_->has_exception()) {
597    // If the code gets corrupted due to long regular expressions and lack of
598    // space on trampolines, an internal exception flag is set. If this case
599    // is detected, we will jump into exit sequence right away.
600    __ bind_to(&entry_label_, internal_failure_label_.pos());
601  } else {
602    // Finalize code - write the entry point code now we know how many
603    // registers we need.
604
605    // Entry code:
606    __ bind(&entry_label_);
607
608    // Tell the system that we have a stack frame.  Because the type is MANUAL,
609    // no is generated.
610    FrameScope scope(masm_, StackFrame::MANUAL);
611
612    // Actually emit code to start a new stack frame.
613    // Push arguments
614    // Save callee-save registers.
615    // Start new stack frame.
616    // Store link register in existing stack-cell.
617    // Order here should correspond to order of offset constants in header file.
618    RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
619        s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
620    RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
621    __ MultiPush(argument_registers | registers_to_retain | ra.bit());
622    // Set frame pointer in space for it if this is not a direct call
623    // from generated code.
624    __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize));
625    __ mov(a0, zero_reg);
626    __ push(a0);  // Make room for success counter and initialize it to 0.
627    __ push(a0);  // Make room for "position - 1" constant (value irrelevant).
628
629    // Check if we have space on the stack for registers.
630    Label stack_limit_hit;
631    Label stack_ok;
632
633    ExternalReference stack_limit =
634        ExternalReference::address_of_stack_limit(masm_->isolate());
635    __ li(a0, Operand(stack_limit));
636    __ lw(a0, MemOperand(a0));
637    __ Subu(a0, sp, a0);
638    // Handle it if the stack pointer is already below the stack limit.
639    __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
640    // Check if there is room for the variable number of registers above
641    // the stack limit.
642    __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
643    // Exit with OutOfMemory exception. There is not enough space on the stack
644    // for our working registers.
645    __ li(v0, Operand(EXCEPTION));
646    __ jmp(&return_v0);
647
648    __ bind(&stack_limit_hit);
649    CallCheckStackGuardState(a0);
650    // If returned value is non-zero, we exit with the returned value as result.
651    __ Branch(&return_v0, ne, v0, Operand(zero_reg));
652
653    __ bind(&stack_ok);
654    // Allocate space on stack for registers.
655    __ Subu(sp, sp, Operand(num_registers_ * kPointerSize));
656    // Load string end.
657    __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
658    // Load input start.
659    __ lw(a0, MemOperand(frame_pointer(), kInputStart));
660    // Find negative length (offset of start relative to end).
661    __ Subu(current_input_offset(), a0, end_of_input_address());
662    // Set a0 to address of char before start of the input string
663    // (effectively string position -1).
664    __ lw(a1, MemOperand(frame_pointer(), kStartIndex));
665    __ Subu(a0, current_input_offset(), Operand(char_size()));
666    __ sll(t5, a1, (mode_ == UC16) ? 1 : 0);
667    __ Subu(a0, a0, t5);
668    // Store this value in a local variable, for use when clearing
669    // position registers.
670    __ sw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
671
672    // Initialize code pointer register
673    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
674
675    Label load_char_start_regexp, start_regexp;
676    // Load newline if index is at start, previous character otherwise.
677    __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
678    __ li(current_character(), Operand('\n'));
679    __ jmp(&start_regexp);
680
681    // Global regexp restarts matching here.
682    __ bind(&load_char_start_regexp);
683    // Load previous char as initial value of current character register.
684    LoadCurrentCharacterUnchecked(-1, 1);
685    __ bind(&start_regexp);
686
687    // Initialize on-stack registers.
688    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
689      // Fill saved registers with initial value = start offset - 1.
690      if (num_saved_registers_ > 8) {
691        // Address of register 0.
692        __ Addu(a1, frame_pointer(), Operand(kRegisterZero));
693        __ li(a2, Operand(num_saved_registers_));
694        Label init_loop;
695        __ bind(&init_loop);
696        __ sw(a0, MemOperand(a1));
697        __ Addu(a1, a1, Operand(-kPointerSize));
698        __ Subu(a2, a2, Operand(1));
699        __ Branch(&init_loop, ne, a2, Operand(zero_reg));
700      } else {
701        for (int i = 0; i < num_saved_registers_; i++) {
702          __ sw(a0, register_location(i));
703        }
704      }
705    }
706
707    // Initialize backtrack stack pointer.
708    __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
709
710    __ jmp(&start_label_);
711
712
713    // Exit code:
714    if (success_label_.is_linked()) {
715      // Save captures when successful.
716      __ bind(&success_label_);
717      if (num_saved_registers_ > 0) {
718        // Copy captures to output.
719        __ lw(a1, MemOperand(frame_pointer(), kInputStart));
720        __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput));
721        __ lw(a2, MemOperand(frame_pointer(), kStartIndex));
722        __ Subu(a1, end_of_input_address(), a1);
723        // a1 is length of input in bytes.
724        if (mode_ == UC16) {
725          __ srl(a1, a1, 1);
726        }
727        // a1 is length of input in characters.
728        __ Addu(a1, a1, Operand(a2));
729        // a1 is length of string in characters.
730
731        ASSERT_EQ(0, num_saved_registers_ % 2);
732        // Always an even number of capture registers. This allows us to
733        // unroll the loop once to add an operation between a load of a register
734        // and the following use of that register.
735        for (int i = 0; i < num_saved_registers_; i += 2) {
736          __ lw(a2, register_location(i));
737          __ lw(a3, register_location(i + 1));
738          if (i == 0 && global_with_zero_length_check()) {
739            // Keep capture start in a4 for the zero-length check later.
740            __ mov(t7, a2);
741          }
742          if (mode_ == UC16) {
743            __ sra(a2, a2, 1);
744            __ Addu(a2, a2, a1);
745            __ sra(a3, a3, 1);
746            __ Addu(a3, a3, a1);
747          } else {
748            __ Addu(a2, a1, Operand(a2));
749            __ Addu(a3, a1, Operand(a3));
750          }
751          __ sw(a2, MemOperand(a0));
752          __ Addu(a0, a0, kPointerSize);
753          __ sw(a3, MemOperand(a0));
754          __ Addu(a0, a0, kPointerSize);
755        }
756      }
757
758      if (global()) {
759        // Restart matching if the regular expression is flagged as global.
760        __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
761        __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
762        __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput));
763        // Increment success counter.
764        __ Addu(a0, a0, 1);
765        __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
766        // Capture results have been stored, so the number of remaining global
767        // output registers is reduced by the number of stored captures.
768        __ Subu(a1, a1, num_saved_registers_);
769        // Check whether we have enough room for another set of capture results.
770        __ mov(v0, a0);
771        __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
772
773        __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
774        // Advance the location for output.
775        __ Addu(a2, a2, num_saved_registers_ * kPointerSize);
776        __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput));
777
778        // Prepare a0 to initialize registers with its value in the next run.
779        __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
780
781        if (global_with_zero_length_check()) {
782          // Special case for zero-length matches.
783          // t7: capture start index
784          // Not a zero-length match, restart.
785          __ Branch(
786              &load_char_start_regexp, ne, current_input_offset(), Operand(t7));
787          // Offset from the end is zero if we already reached the end.
788          __ Branch(&exit_label_, eq, current_input_offset(),
789                    Operand(zero_reg));
790          // Advance current position after a zero-length match.
791          __ Addu(current_input_offset(),
792                  current_input_offset(),
793                  Operand((mode_ == UC16) ? 2 : 1));
794        }
795
796        __ Branch(&load_char_start_regexp);
797      } else {
798        __ li(v0, Operand(SUCCESS));
799      }
800    }
801    // Exit and return v0.
802    __ bind(&exit_label_);
803    if (global()) {
804      __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
805    }
806
807    __ bind(&return_v0);
808    // Skip sp past regexp registers and local variables..
809    __ mov(sp, frame_pointer());
810    // Restore registers s0..s7 and return (restoring ra to pc).
811    __ MultiPop(registers_to_retain | ra.bit());
812    __ Ret();
813
814    // Backtrack code (branch target for conditional backtracks).
815    if (backtrack_label_.is_linked()) {
816      __ bind(&backtrack_label_);
817      Backtrack();
818    }
819
820    Label exit_with_exception;
821
822    // Preempt-code.
823    if (check_preempt_label_.is_linked()) {
824      SafeCallTarget(&check_preempt_label_);
825      // Put regexp engine registers on stack.
826      RegList regexp_registers_to_retain = current_input_offset().bit() |
827          current_character().bit() | backtrack_stackpointer().bit();
828      __ MultiPush(regexp_registers_to_retain);
829      CallCheckStackGuardState(a0);
830      __ MultiPop(regexp_registers_to_retain);
831      // If returning non-zero, we should end execution with the given
832      // result as return value.
833      __ Branch(&return_v0, ne, v0, Operand(zero_reg));
834
835      // String might have moved: Reload end of string from frame.
836      __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
837      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
838      SafeReturn();
839    }
840
841    // Backtrack stack overflow code.
842    if (stack_overflow_label_.is_linked()) {
843      SafeCallTarget(&stack_overflow_label_);
844      // Reached if the backtrack-stack limit has been hit.
845      // Put regexp engine registers on stack first.
846      RegList regexp_registers = current_input_offset().bit() |
847          current_character().bit();
848      __ MultiPush(regexp_registers);
849      Label grow_failed;
850      // Call GrowStack(backtrack_stackpointer(), &stack_base)
851      static const int num_arguments = 3;
852      __ PrepareCallCFunction(num_arguments, a0);
853      __ mov(a0, backtrack_stackpointer());
854      __ Addu(a1, frame_pointer(), Operand(kStackHighEnd));
855      __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
856      ExternalReference grow_stack =
857          ExternalReference::re_grow_stack(masm_->isolate());
858      __ CallCFunction(grow_stack, num_arguments);
859      // Restore regexp registers.
860      __ MultiPop(regexp_registers);
861      // If return NULL, we have failed to grow the stack, and
862      // must exit with a stack-overflow exception.
863      __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
864      // Otherwise use return value as new stack pointer.
865      __ mov(backtrack_stackpointer(), v0);
866      // Restore saved registers and continue.
867      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
868      __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
869      SafeReturn();
870    }
871
872    if (exit_with_exception.is_linked()) {
873      // If any of the code above needed to exit with an exception.
874      __ bind(&exit_with_exception);
875      // Exit with Result EXCEPTION(-1) to signal thrown exception.
876      __ li(v0, Operand(EXCEPTION));
877      __ jmp(&return_v0);
878    }
879  }
880
881  CodeDesc code_desc;
882  masm_->GetCode(&code_desc);
883  Handle<Code> code = isolate()->factory()->NewCode(
884      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
885  LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
886  return Handle<HeapObject>::cast(code);
887}
888
889
890void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
891  if (to == NULL) {
892    Backtrack();
893    return;
894  }
895  __ jmp(to);
896  return;
897}
898
899
900void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
901                                            int comparand,
902                                            Label* if_ge) {
903  __ lw(a0, register_location(reg));
904    BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
905}
906
907
908void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
909                                            int comparand,
910                                            Label* if_lt) {
911  __ lw(a0, register_location(reg));
912  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
913}
914
915
916void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
917                                               Label* if_eq) {
918  __ lw(a0, register_location(reg));
919  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
920}
921
922
923RegExpMacroAssembler::IrregexpImplementation
924    RegExpMacroAssemblerMIPS::Implementation() {
925  return kMIPSImplementation;
926}
927
928
929void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
930                                                    Label* on_end_of_input,
931                                                    bool check_bounds,
932                                                    int characters) {
933  ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
934  ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
935  if (check_bounds) {
936    CheckPosition(cp_offset + characters - 1, on_end_of_input);
937  }
938  LoadCurrentCharacterUnchecked(cp_offset, characters);
939}
940
941
942void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
943  Pop(current_input_offset());
944}
945
946
947void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
948  Pop(a0);
949  __ sw(a0, register_location(register_index));
950}
951
952
953void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
954  if (label->is_bound()) {
955    int target = label->pos();
956    __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
957  } else {
958    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
959    Label after_constant;
960    __ Branch(&after_constant);
961    int offset = masm_->pc_offset();
962    int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
963    __ emit(0);
964    masm_->label_at_put(label, offset);
965    __ bind(&after_constant);
966    if (is_int16(cp_offset)) {
967      __ lw(a0, MemOperand(code_pointer(), cp_offset));
968    } else {
969      __ Addu(a0, code_pointer(), cp_offset);
970      __ lw(a0, MemOperand(a0, 0));
971    }
972  }
973  Push(a0);
974  CheckStackLimit();
975}
976
977
978void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
979  Push(current_input_offset());
980}
981
982
983void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
984                                            StackCheckFlag check_stack_limit) {
985  __ lw(a0, register_location(register_index));
986  Push(a0);
987  if (check_stack_limit) CheckStackLimit();
988}
989
990
991void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
992  __ lw(current_input_offset(), register_location(reg));
993}
994
995
996void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
997  __ lw(backtrack_stackpointer(), register_location(reg));
998  __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd));
999  __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1000}
1001
1002
1003void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1004  Label after_position;
1005  __ Branch(&after_position,
1006            ge,
1007            current_input_offset(),
1008            Operand(-by * char_size()));
1009  __ li(current_input_offset(), -by * char_size());
1010  // On RegExp code entry (where this operation is used), the character before
1011  // the current position is expected to be already loaded.
1012  // We have advanced the position, so it's safe to read backwards.
1013  LoadCurrentCharacterUnchecked(-1, 1);
1014  __ bind(&after_position);
1015}
1016
1017
1018void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1019  ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
1020  __ li(a0, Operand(to));
1021  __ sw(a0, register_location(register_index));
1022}
1023
1024
1025bool RegExpMacroAssemblerMIPS::Succeed() {
1026  __ jmp(&success_label_);
1027  return global();
1028}
1029
1030
1031void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1032                                                              int cp_offset) {
1033  if (cp_offset == 0) {
1034    __ sw(current_input_offset(), register_location(reg));
1035  } else {
1036    __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1037    __ sw(a0, register_location(reg));
1038  }
1039}
1040
1041
1042void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1043  ASSERT(reg_from <= reg_to);
1044  __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
1045  for (int reg = reg_from; reg <= reg_to; reg++) {
1046    __ sw(a0, register_location(reg));
1047  }
1048}
1049
1050
1051void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1052  __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd));
1053  __ Subu(a0, backtrack_stackpointer(), a1);
1054  __ sw(a0, register_location(reg));
1055}
1056
1057
1058bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1059  return false;
1060}
1061
1062
1063// Private methods:
1064
1065void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1066  int stack_alignment = OS::ActivationFrameAlignment();
1067
1068  // Align the stack pointer and save the original sp value on the stack.
1069  __ mov(scratch, sp);
1070  __ Subu(sp, sp, Operand(kPointerSize));
1071  ASSERT(IsPowerOf2(stack_alignment));
1072  __ And(sp, sp, Operand(-stack_alignment));
1073  __ sw(scratch, MemOperand(sp));
1074
1075  __ mov(a2, frame_pointer());
1076  // Code* of self.
1077  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1078
1079  // We need to make room for the return address on the stack.
1080  ASSERT(IsAligned(stack_alignment, kPointerSize));
1081  __ Subu(sp, sp, Operand(stack_alignment));
1082
1083  // Stack pointer now points to cell where return address is to be written.
1084  // Arguments are in registers, meaning we teat the return address as
1085  // argument 5. Since DirectCEntryStub will handleallocating space for the C
1086  // argument slots, we don't need to care about that here. This is how the
1087  // stack will look (sp meaning the value of sp at this moment):
1088  // [sp + 3] - empty slot if needed for alignment.
1089  // [sp + 2] - saved sp.
1090  // [sp + 1] - second word reserved for return value.
1091  // [sp + 0] - first word reserved for return value.
1092
1093  // a0 will point to the return address, placed by DirectCEntry.
1094  __ mov(a0, sp);
1095
1096  ExternalReference stack_guard_check =
1097      ExternalReference::re_check_stack_guard_state(masm_->isolate());
1098  __ li(t9, Operand(stack_guard_check));
1099  DirectCEntryStub stub;
1100  stub.GenerateCall(masm_, t9);
1101
1102  // DirectCEntryStub allocated space for the C argument slots so we have to
1103  // drop them with the return address from the stack with loading saved sp.
1104  // At this point stack must look:
1105  // [sp + 7] - empty slot if needed for alignment.
1106  // [sp + 6] - saved sp.
1107  // [sp + 5] - second word reserved for return value.
1108  // [sp + 4] - first word reserved for return value.
1109  // [sp + 3] - C argument slot.
1110  // [sp + 2] - C argument slot.
1111  // [sp + 1] - C argument slot.
1112  // [sp + 0] - C argument slot.
1113  __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1114
1115  __ li(code_pointer(), Operand(masm_->CodeObject()));
1116}
1117
1118
1119// Helper function for reading a value out of a stack frame.
1120template <typename T>
1121static T& frame_entry(Address re_frame, int frame_offset) {
1122  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1123}
1124
1125
1126int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1127                                                   Code* re_code,
1128                                                   Address re_frame) {
1129  Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1130  if (isolate->stack_guard()->IsStackOverflow()) {
1131    isolate->StackOverflow();
1132    return EXCEPTION;
1133  }
1134
1135  // If not real stack overflow the stack guard was used to interrupt
1136  // execution for another purpose.
1137
1138  // If this is a direct call from JavaScript retry the RegExp forcing the call
1139  // through the runtime system. Currently the direct call cannot handle a GC.
1140  if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1141    return RETRY;
1142  }
1143
1144  // Prepare for possible GC.
1145  HandleScope handles(isolate);
1146  Handle<Code> code_handle(re_code);
1147
1148  Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1149  // Current string.
1150  bool is_ascii = subject->IsOneByteRepresentationUnderneath();
1151
1152  ASSERT(re_code->instruction_start() <= *return_address);
1153  ASSERT(*return_address <=
1154      re_code->instruction_start() + re_code->instruction_size());
1155
1156  MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate);
1157
1158  if (*code_handle != re_code) {  // Return address no longer valid.
1159    int delta = code_handle->address() - re_code->address();
1160    // Overwrite the return address on the stack.
1161    *return_address += delta;
1162  }
1163
1164  if (result->IsException()) {
1165    return EXCEPTION;
1166  }
1167
1168  Handle<String> subject_tmp = subject;
1169  int slice_offset = 0;
1170
1171  // Extract the underlying string and the slice offset.
1172  if (StringShape(*subject_tmp).IsCons()) {
1173    subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1174  } else if (StringShape(*subject_tmp).IsSliced()) {
1175    SlicedString* slice = SlicedString::cast(*subject_tmp);
1176    subject_tmp = Handle<String>(slice->parent());
1177    slice_offset = slice->offset();
1178  }
1179
1180  // String might have changed.
1181  if (subject_tmp->IsOneByteRepresentation() != is_ascii) {
1182    // If we changed between an ASCII and an UC16 string, the specialized
1183    // code cannot be used, and we need to restart regexp matching from
1184    // scratch (including, potentially, compiling a new version of the code).
1185    return RETRY;
1186  }
1187
1188  // Otherwise, the content of the string might have moved. It must still
1189  // be a sequential or external string with the same content.
1190  // Update the start and end pointers in the stack frame to the current
1191  // location (whether it has actually moved or not).
1192  ASSERT(StringShape(*subject_tmp).IsSequential() ||
1193      StringShape(*subject_tmp).IsExternal());
1194
1195  // The original start address of the characters to match.
1196  const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1197
1198  // Find the current start address of the same character at the current string
1199  // position.
1200  int start_index = frame_entry<int>(re_frame, kStartIndex);
1201  const byte* new_address = StringCharacterPosition(*subject_tmp,
1202                                                    start_index + slice_offset);
1203
1204  if (start_address != new_address) {
1205    // If there is a difference, update the object pointer and start and end
1206    // addresses in the RegExp stack frame to match the new value.
1207    const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1208    int byte_length = static_cast<int>(end_address - start_address);
1209    frame_entry<const String*>(re_frame, kInputString) = *subject;
1210    frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1211    frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1212  } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1213    // Subject string might have been a ConsString that underwent
1214    // short-circuiting during GC. That will not change start_address but
1215    // will change pointer inside the subject handle.
1216    frame_entry<const String*>(re_frame, kInputString) = *subject;
1217  }
1218
1219  return 0;
1220}
1221
1222
1223MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1224  ASSERT(register_index < (1<<30));
1225  if (num_registers_ <= register_index) {
1226    num_registers_ = register_index + 1;
1227  }
1228  return MemOperand(frame_pointer(),
1229                    kRegisterZero - register_index * kPointerSize);
1230}
1231
1232
1233void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1234                                             Label* on_outside_input) {
1235  BranchOrBacktrack(on_outside_input,
1236                    ge,
1237                    current_input_offset(),
1238                    Operand(-cp_offset * char_size()));
1239}
1240
1241
1242void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1243                                                 Condition condition,
1244                                                 Register rs,
1245                                                 const Operand& rt) {
1246  if (condition == al) {  // Unconditional.
1247    if (to == NULL) {
1248      Backtrack();
1249      return;
1250    }
1251    __ jmp(to);
1252    return;
1253  }
1254  if (to == NULL) {
1255    __ Branch(&backtrack_label_, condition, rs, rt);
1256    return;
1257  }
1258  __ Branch(to, condition, rs, rt);
1259}
1260
1261
1262void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1263                                        Condition cond,
1264                                        Register rs,
1265                                        const Operand& rt) {
1266  __ BranchAndLink(to, cond, rs, rt);
1267}
1268
1269
1270void RegExpMacroAssemblerMIPS::SafeReturn() {
1271  __ pop(ra);
1272  __ Addu(t5, ra, Operand(masm_->CodeObject()));
1273  __ Jump(t5);
1274}
1275
1276
1277void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1278  __ bind(name);
1279  __ Subu(ra, ra, Operand(masm_->CodeObject()));
1280  __ push(ra);
1281}
1282
1283
1284void RegExpMacroAssemblerMIPS::Push(Register source) {
1285  ASSERT(!source.is(backtrack_stackpointer()));
1286  __ Addu(backtrack_stackpointer(),
1287          backtrack_stackpointer(),
1288          Operand(-kPointerSize));
1289  __ sw(source, MemOperand(backtrack_stackpointer()));
1290}
1291
1292
1293void RegExpMacroAssemblerMIPS::Pop(Register target) {
1294  ASSERT(!target.is(backtrack_stackpointer()));
1295  __ lw(target, MemOperand(backtrack_stackpointer()));
1296  __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize);
1297}
1298
1299
1300void RegExpMacroAssemblerMIPS::CheckPreemption() {
1301  // Check for preemption.
1302  ExternalReference stack_limit =
1303      ExternalReference::address_of_stack_limit(masm_->isolate());
1304  __ li(a0, Operand(stack_limit));
1305  __ lw(a0, MemOperand(a0));
1306  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1307}
1308
1309
1310void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1311  ExternalReference stack_limit =
1312      ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1313
1314  __ li(a0, Operand(stack_limit));
1315  __ lw(a0, MemOperand(a0));
1316  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1317}
1318
1319
1320void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1321                                                             int characters) {
1322  Register offset = current_input_offset();
1323  if (cp_offset != 0) {
1324    // t7 is not being used to store the capture start index at this point.
1325    __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size()));
1326    offset = t7;
1327  }
1328  // We assume that we cannot do unaligned loads on MIPS, so this function
1329  // must only be used to load a single character at a time.
1330  ASSERT(characters == 1);
1331  __ Addu(t5, end_of_input_address(), Operand(offset));
1332  if (mode_ == ASCII) {
1333    __ lbu(current_character(), MemOperand(t5, 0));
1334  } else {
1335    ASSERT(mode_ == UC16);
1336    __ lhu(current_character(), MemOperand(t5, 0));
1337  }
1338}
1339
1340
1341#undef __
1342
1343#endif  // V8_INTERPRETED_REGEXP
1344
1345}}  // namespace v8::internal
1346
1347#endif  // V8_TARGET_ARCH_MIPS
1348