TargetInfo.cpp revision 3ed7903d27f0e7e0cd3a61c165d39eca70f3cff5
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " ByVal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90// If someone can figure out a general rule for this, that would be great.
91// It's probably just doomed to be platform-dependent, though.
92unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93  // Verified for:
94  //   x86-64     FreeBSD, Linux, Darwin
95  //   x86-32     FreeBSD, Linux, Darwin
96  //   PowerPC    Linux, Darwin
97  //   ARM        Darwin (*not* EABI)
98  return 32;
99}
100
101bool TargetCodeGenInfo::isNoProtoCallVariadic(
102                                       const CodeGen::CGFunctionInfo &) const {
103  // The following conventions are known to require this to be false:
104  //   x86_stdcall
105  //   MIPS
106  // For everything else, we just prefer false unless we opt out.
107  return false;
108}
109
110static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112/// isEmptyField - Return true iff a the field is "empty", that is it
113/// is an unnamed bit-field or an (array of) empty record(s).
114static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                         bool AllowArrays) {
116  if (FD->isUnnamedBitfield())
117    return true;
118
119  QualType FT = FD->getType();
120
121  // Constant arrays of empty records count as empty, strip them off.
122  // Constant arrays of zero length always count as empty.
123  if (AllowArrays)
124    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125      if (AT->getSize() == 0)
126        return true;
127      FT = AT->getElementType();
128    }
129
130  const RecordType *RT = FT->getAs<RecordType>();
131  if (!RT)
132    return false;
133
134  // C++ record fields are never empty, at least in the Itanium ABI.
135  //
136  // FIXME: We should use a predicate for whether this behavior is true in the
137  // current ABI.
138  if (isa<CXXRecordDecl>(RT->getDecl()))
139    return false;
140
141  return isEmptyRecord(Context, FT, AllowArrays);
142}
143
144/// isEmptyRecord - Return true iff a structure contains only empty
145/// fields. Note that a structure with a flexible array member is not
146/// considered empty.
147static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148  const RecordType *RT = T->getAs<RecordType>();
149  if (!RT)
150    return 0;
151  const RecordDecl *RD = RT->getDecl();
152  if (RD->hasFlexibleArrayMember())
153    return false;
154
155  // If this is a C++ record, check the bases first.
156  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158           e = CXXRD->bases_end(); i != e; ++i)
159      if (!isEmptyRecord(Context, i->getType(), true))
160        return false;
161
162  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163         i != e; ++i)
164    if (!isEmptyField(Context, *i, AllowArrays))
165      return false;
166  return true;
167}
168
169/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170/// a non-trivial destructor or a non-trivial copy constructor.
171static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173  if (!RD)
174    return false;
175
176  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177}
178
179/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180/// a record type with either a non-trivial destructor or a non-trivial copy
181/// constructor.
182static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183  const RecordType *RT = T->getAs<RecordType>();
184  if (!RT)
185    return false;
186
187  return hasNonTrivialDestructorOrCopyConstructor(RT);
188}
189
190/// isSingleElementStruct - Determine if a structure is a "single
191/// element struct", i.e. it has exactly one non-empty field or
192/// exactly one field which is itself a single element
193/// struct. Structures with flexible array members are never
194/// considered single element structs.
195///
196/// \return The field declaration for the single non-empty field, if
197/// it exists.
198static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199  const RecordType *RT = T->getAsStructureType();
200  if (!RT)
201    return 0;
202
203  const RecordDecl *RD = RT->getDecl();
204  if (RD->hasFlexibleArrayMember())
205    return 0;
206
207  const Type *Found = 0;
208
209  // If this is a C++ record, check the bases first.
210  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212           e = CXXRD->bases_end(); i != e; ++i) {
213      // Ignore empty records.
214      if (isEmptyRecord(Context, i->getType(), true))
215        continue;
216
217      // If we already found an element then this isn't a single-element struct.
218      if (Found)
219        return 0;
220
221      // If this is non-empty and not a single element struct, the composite
222      // cannot be a single element struct.
223      Found = isSingleElementStruct(i->getType(), Context);
224      if (!Found)
225        return 0;
226    }
227  }
228
229  // Check for single element.
230  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231         i != e; ++i) {
232    const FieldDecl *FD = *i;
233    QualType FT = FD->getType();
234
235    // Ignore empty fields.
236    if (isEmptyField(Context, FD, true))
237      continue;
238
239    // If we already found an element then this isn't a single-element
240    // struct.
241    if (Found)
242      return 0;
243
244    // Treat single element arrays as the element.
245    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246      if (AT->getSize().getZExtValue() != 1)
247        break;
248      FT = AT->getElementType();
249    }
250
251    if (!isAggregateTypeForABI(FT)) {
252      Found = FT.getTypePtr();
253    } else {
254      Found = isSingleElementStruct(FT, Context);
255      if (!Found)
256        return 0;
257    }
258  }
259
260  // We don't consider a struct a single-element struct if it has
261  // padding beyond the element type.
262  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263    return 0;
264
265  return Found;
266}
267
268static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271      !Ty->isBlockPointerType())
272    return false;
273
274  uint64_t Size = Context.getTypeSize(Ty);
275  return Size == 32 || Size == 64;
276}
277
278/// canExpandIndirectArgument - Test whether an argument type which is to be
279/// passed indirectly (on the stack) would have the equivalent layout if it was
280/// expanded into separate arguments. If so, we prefer to do the latter to avoid
281/// inhibiting optimizations.
282///
283// FIXME: This predicate is missing many cases, currently it just follows
284// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285// should probably make this smarter, or better yet make the LLVM backend
286// capable of handling it.
287static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288  // We can only expand structure types.
289  const RecordType *RT = Ty->getAs<RecordType>();
290  if (!RT)
291    return false;
292
293  // We can only expand (C) structures.
294  //
295  // FIXME: This needs to be generalized to handle classes as well.
296  const RecordDecl *RD = RT->getDecl();
297  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298    return false;
299
300  uint64_t Size = 0;
301
302  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303         i != e; ++i) {
304    const FieldDecl *FD = *i;
305
306    if (!is32Or64BitBasicType(FD->getType(), Context))
307      return false;
308
309    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310    // how to expand them yet, and the predicate for telling if a bitfield still
311    // counts as "basic" is more complicated than what we were doing previously.
312    if (FD->isBitField())
313      return false;
314
315    Size += Context.getTypeSize(FD->getType());
316  }
317
318  // Make sure there are not any holes in the struct.
319  if (Size != Context.getTypeSize(Ty))
320    return false;
321
322  return true;
323}
324
325namespace {
326/// DefaultABIInfo - The default implementation for ABI specific
327/// details. This implementation provides information which results in
328/// self-consistent and sensible LLVM IR generation, but does not
329/// conform to any particular ABI.
330class DefaultABIInfo : public ABIInfo {
331public:
332  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334  ABIArgInfo classifyReturnType(QualType RetTy) const;
335  ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
337  virtual void computeInfo(CGFunctionInfo &FI) const {
338    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340         it != ie; ++it)
341      it->info = classifyArgumentType(it->type);
342  }
343
344  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                 CodeGenFunction &CGF) const;
346};
347
348class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349public:
350  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352};
353
354llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                       CodeGenFunction &CGF) const {
356  return 0;
357}
358
359ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360  if (isAggregateTypeForABI(Ty)) {
361    // Records with non trivial destructors/constructors should not be passed
362    // by value.
363    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366    return ABIArgInfo::getIndirect(0);
367  }
368
369  // Treat an enum type as its underlying type.
370  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371    Ty = EnumTy->getDecl()->getIntegerType();
372
373  return (Ty->isPromotableIntegerType() ?
374          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375}
376
377ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378  if (RetTy->isVoidType())
379    return ABIArgInfo::getIgnore();
380
381  if (isAggregateTypeForABI(RetTy))
382    return ABIArgInfo::getIndirect(0);
383
384  // Treat an enum type as its underlying type.
385  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386    RetTy = EnumTy->getDecl()->getIntegerType();
387
388  return (RetTy->isPromotableIntegerType() ?
389          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390}
391
392/// UseX86_MMXType - Return true if this is an MMX type that should use the special
393/// x86_mmx type.
394bool UseX86_MMXType(llvm::Type *IRType) {
395  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396  // special x86_mmx type.
397  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399    IRType->getScalarSizeInBits() != 64;
400}
401
402static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                          StringRef Constraint,
404                                          llvm::Type* Ty) {
405  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407  return Ty;
408}
409
410//===----------------------------------------------------------------------===//
411// X86-32 ABI Implementation
412//===----------------------------------------------------------------------===//
413
414/// X86_32ABIInfo - The X86-32 ABI information.
415class X86_32ABIInfo : public ABIInfo {
416  static const unsigned MinABIStackAlignInBytes = 4;
417
418  bool IsDarwinVectorABI;
419  bool IsSmallStructInRegABI;
420  bool IsMMXDisabled;
421
422  static bool isRegisterSize(unsigned Size) {
423    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
424  }
425
426  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
427
428  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
429  /// such that the argument will be passed in memory.
430  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
431
432  /// \brief Return the alignment to use for the given type on the stack.
433  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
434
435public:
436
437  ABIArgInfo classifyReturnType(QualType RetTy) const;
438  ABIArgInfo classifyArgumentType(QualType RetTy) const;
439
440  virtual void computeInfo(CGFunctionInfo &FI) const {
441    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
442    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
443         it != ie; ++it)
444      it->info = classifyArgumentType(it->type);
445  }
446
447  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
448                                 CodeGenFunction &CGF) const;
449
450  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
451    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
452      IsMMXDisabled(m) {}
453};
454
455class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
456public:
457  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
458    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
459
460  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
461                           CodeGen::CodeGenModule &CGM) const;
462
463  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
464    // Darwin uses different dwarf register numbers for EH.
465    if (CGM.isTargetDarwin()) return 5;
466
467    return 4;
468  }
469
470  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
471                               llvm::Value *Address) const;
472
473  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
474                                  StringRef Constraint,
475                                  llvm::Type* Ty) const {
476    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
477  }
478
479};
480
481}
482
483/// shouldReturnTypeInRegister - Determine if the given type should be
484/// passed in a register (for the Darwin ABI).
485bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
486                                               ASTContext &Context) {
487  uint64_t Size = Context.getTypeSize(Ty);
488
489  // Type must be register sized.
490  if (!isRegisterSize(Size))
491    return false;
492
493  if (Ty->isVectorType()) {
494    // 64- and 128- bit vectors inside structures are not returned in
495    // registers.
496    if (Size == 64 || Size == 128)
497      return false;
498
499    return true;
500  }
501
502  // If this is a builtin, pointer, enum, complex type, member pointer, or
503  // member function pointer it is ok.
504  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
505      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
506      Ty->isBlockPointerType() || Ty->isMemberPointerType())
507    return true;
508
509  // Arrays are treated like records.
510  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
511    return shouldReturnTypeInRegister(AT->getElementType(), Context);
512
513  // Otherwise, it must be a record type.
514  const RecordType *RT = Ty->getAs<RecordType>();
515  if (!RT) return false;
516
517  // FIXME: Traverse bases here too.
518
519  // Structure types are passed in register if all fields would be
520  // passed in a register.
521  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
522         e = RT->getDecl()->field_end(); i != e; ++i) {
523    const FieldDecl *FD = *i;
524
525    // Empty fields are ignored.
526    if (isEmptyField(Context, FD, true))
527      continue;
528
529    // Check fields recursively.
530    if (!shouldReturnTypeInRegister(FD->getType(), Context))
531      return false;
532  }
533
534  return true;
535}
536
537ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
538  if (RetTy->isVoidType())
539    return ABIArgInfo::getIgnore();
540
541  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
542    // On Darwin, some vectors are returned in registers.
543    if (IsDarwinVectorABI) {
544      uint64_t Size = getContext().getTypeSize(RetTy);
545
546      // 128-bit vectors are a special case; they are returned in
547      // registers and we need to make sure to pick a type the LLVM
548      // backend will like.
549      if (Size == 128)
550        return ABIArgInfo::getDirect(llvm::VectorType::get(
551                  llvm::Type::getInt64Ty(getVMContext()), 2));
552
553      // Always return in register if it fits in a general purpose
554      // register, or if it is 64 bits and has a single element.
555      if ((Size == 8 || Size == 16 || Size == 32) ||
556          (Size == 64 && VT->getNumElements() == 1))
557        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
558                                                            Size));
559
560      return ABIArgInfo::getIndirect(0);
561    }
562
563    return ABIArgInfo::getDirect();
564  }
565
566  if (isAggregateTypeForABI(RetTy)) {
567    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
568      // Structures with either a non-trivial destructor or a non-trivial
569      // copy constructor are always indirect.
570      if (hasNonTrivialDestructorOrCopyConstructor(RT))
571        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
572
573      // Structures with flexible arrays are always indirect.
574      if (RT->getDecl()->hasFlexibleArrayMember())
575        return ABIArgInfo::getIndirect(0);
576    }
577
578    // If specified, structs and unions are always indirect.
579    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
580      return ABIArgInfo::getIndirect(0);
581
582    // Small structures which are register sized are generally returned
583    // in a register.
584    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
585      uint64_t Size = getContext().getTypeSize(RetTy);
586
587      // As a special-case, if the struct is a "single-element" struct, and
588      // the field is of type "float" or "double", return it in a
589      // floating-point register.  We apply a similar transformation for
590      // pointer types to improve the quality of the generated IR.
591      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
592        if (SeltTy->isRealFloatingType() || SeltTy->hasPointerRepresentation())
593          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
594
595      // FIXME: We should be able to narrow this integer in cases with dead
596      // padding.
597      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
598    }
599
600    return ABIArgInfo::getIndirect(0);
601  }
602
603  // Treat an enum type as its underlying type.
604  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
605    RetTy = EnumTy->getDecl()->getIntegerType();
606
607  return (RetTy->isPromotableIntegerType() ?
608          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
609}
610
611static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
612  const RecordType *RT = Ty->getAs<RecordType>();
613  if (!RT)
614    return 0;
615  const RecordDecl *RD = RT->getDecl();
616
617  // If this is a C++ record, check the bases first.
618  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
619    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
620           e = CXXRD->bases_end(); i != e; ++i)
621      if (!isRecordWithSSEVectorType(Context, i->getType()))
622        return false;
623
624  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
625       i != e; ++i) {
626    QualType FT = i->getType();
627
628    if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
629      return true;
630
631    if (isRecordWithSSEVectorType(Context, FT))
632      return true;
633  }
634
635  return false;
636}
637
638unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
639                                                 unsigned Align) const {
640  // Otherwise, if the alignment is less than or equal to the minimum ABI
641  // alignment, just use the default; the backend will handle this.
642  if (Align <= MinABIStackAlignInBytes)
643    return 0; // Use default alignment.
644
645  // On non-Darwin, the stack type alignment is always 4.
646  if (!IsDarwinVectorABI) {
647    // Set explicit alignment, since we may need to realign the top.
648    return MinABIStackAlignInBytes;
649  }
650
651  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
652  if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
653    return 16;
654
655  return MinABIStackAlignInBytes;
656}
657
658ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
659  if (!ByVal)
660    return ABIArgInfo::getIndirect(0, false);
661
662  // Compute the byval alignment.
663  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
664  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
665  if (StackAlign == 0)
666    return ABIArgInfo::getIndirect(4);
667
668  // If the stack alignment is less than the type alignment, realign the
669  // argument.
670  if (StackAlign < TypeAlign)
671    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
672                                   /*Realign=*/true);
673
674  return ABIArgInfo::getIndirect(StackAlign);
675}
676
677ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
678  // FIXME: Set alignment on indirect arguments.
679  if (isAggregateTypeForABI(Ty)) {
680    // Structures with flexible arrays are always indirect.
681    if (const RecordType *RT = Ty->getAs<RecordType>()) {
682      // Structures with either a non-trivial destructor or a non-trivial
683      // copy constructor are always indirect.
684      if (hasNonTrivialDestructorOrCopyConstructor(RT))
685        return getIndirectResult(Ty, /*ByVal=*/false);
686
687      if (RT->getDecl()->hasFlexibleArrayMember())
688        return getIndirectResult(Ty);
689    }
690
691    // Ignore empty structs/unions.
692    if (isEmptyRecord(getContext(), Ty, true))
693      return ABIArgInfo::getIgnore();
694
695    // Expand small (<= 128-bit) record types when we know that the stack layout
696    // of those arguments will match the struct. This is important because the
697    // LLVM backend isn't smart enough to remove byval, which inhibits many
698    // optimizations.
699    if (getContext().getTypeSize(Ty) <= 4*32 &&
700        canExpandIndirectArgument(Ty, getContext()))
701      return ABIArgInfo::getExpand();
702
703    return getIndirectResult(Ty);
704  }
705
706  if (const VectorType *VT = Ty->getAs<VectorType>()) {
707    // On Darwin, some vectors are passed in memory, we handle this by passing
708    // it as an i8/i16/i32/i64.
709    if (IsDarwinVectorABI) {
710      uint64_t Size = getContext().getTypeSize(Ty);
711      if ((Size == 8 || Size == 16 || Size == 32) ||
712          (Size == 64 && VT->getNumElements() == 1))
713        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
714                                                            Size));
715    }
716
717    llvm::Type *IRType = CGT.ConvertType(Ty);
718    if (UseX86_MMXType(IRType)) {
719      if (IsMMXDisabled)
720        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
721                                                            64));
722      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
723      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
724      return AAI;
725    }
726
727    return ABIArgInfo::getDirect();
728  }
729
730
731  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
732    Ty = EnumTy->getDecl()->getIntegerType();
733
734  return (Ty->isPromotableIntegerType() ?
735          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
736}
737
738llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
739                                      CodeGenFunction &CGF) const {
740  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
741  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
742
743  CGBuilderTy &Builder = CGF.Builder;
744  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
745                                                       "ap");
746  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
747
748  // Compute if the address needs to be aligned
749  unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
750  Align = getTypeStackAlignInBytes(Ty, Align);
751  Align = std::max(Align, 4U);
752  if (Align > 4) {
753    // addr = (addr + align - 1) & -align;
754    llvm::Value *Offset =
755      llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
756    Addr = CGF.Builder.CreateGEP(Addr, Offset);
757    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
758                                                    CGF.Int32Ty);
759    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
760    Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
761                                      Addr->getType(),
762                                      "ap.cur.aligned");
763  }
764
765  llvm::Type *PTy =
766    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
767  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
768
769  uint64_t Offset =
770    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
771  llvm::Value *NextAddr =
772    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
773                      "ap.next");
774  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
775
776  return AddrTyped;
777}
778
779void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
780                                                  llvm::GlobalValue *GV,
781                                            CodeGen::CodeGenModule &CGM) const {
782  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
783    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
784      // Get the LLVM function.
785      llvm::Function *Fn = cast<llvm::Function>(GV);
786
787      // Now add the 'alignstack' attribute with a value of 16.
788      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
789    }
790  }
791}
792
793bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
794                                               CodeGen::CodeGenFunction &CGF,
795                                               llvm::Value *Address) const {
796  CodeGen::CGBuilderTy &Builder = CGF.Builder;
797  llvm::LLVMContext &Context = CGF.getLLVMContext();
798
799  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
800  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
801
802  // 0-7 are the eight integer registers;  the order is different
803  //   on Darwin (for EH), but the range is the same.
804  // 8 is %eip.
805  AssignToArrayRange(Builder, Address, Four8, 0, 8);
806
807  if (CGF.CGM.isTargetDarwin()) {
808    // 12-16 are st(0..4).  Not sure why we stop at 4.
809    // These have size 16, which is sizeof(long double) on
810    // platforms with 8-byte alignment for that type.
811    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
812    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
813
814  } else {
815    // 9 is %eflags, which doesn't get a size on Darwin for some
816    // reason.
817    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
818
819    // 11-16 are st(0..5).  Not sure why we stop at 5.
820    // These have size 12, which is sizeof(long double) on
821    // platforms with 4-byte alignment for that type.
822    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
823    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
824  }
825
826  return false;
827}
828
829//===----------------------------------------------------------------------===//
830// X86-64 ABI Implementation
831//===----------------------------------------------------------------------===//
832
833
834namespace {
835/// X86_64ABIInfo - The X86_64 ABI information.
836class X86_64ABIInfo : public ABIInfo {
837  enum Class {
838    Integer = 0,
839    SSE,
840    SSEUp,
841    X87,
842    X87Up,
843    ComplexX87,
844    NoClass,
845    Memory
846  };
847
848  /// merge - Implement the X86_64 ABI merging algorithm.
849  ///
850  /// Merge an accumulating classification \arg Accum with a field
851  /// classification \arg Field.
852  ///
853  /// \param Accum - The accumulating classification. This should
854  /// always be either NoClass or the result of a previous merge
855  /// call. In addition, this should never be Memory (the caller
856  /// should just return Memory for the aggregate).
857  static Class merge(Class Accum, Class Field);
858
859  /// postMerge - Implement the X86_64 ABI post merging algorithm.
860  ///
861  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
862  /// final MEMORY or SSE classes when necessary.
863  ///
864  /// \param AggregateSize - The size of the current aggregate in
865  /// the classification process.
866  ///
867  /// \param Lo - The classification for the parts of the type
868  /// residing in the low word of the containing object.
869  ///
870  /// \param Hi - The classification for the parts of the type
871  /// residing in the higher words of the containing object.
872  ///
873  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
874
875  /// classify - Determine the x86_64 register classes in which the
876  /// given type T should be passed.
877  ///
878  /// \param Lo - The classification for the parts of the type
879  /// residing in the low word of the containing object.
880  ///
881  /// \param Hi - The classification for the parts of the type
882  /// residing in the high word of the containing object.
883  ///
884  /// \param OffsetBase - The bit offset of this type in the
885  /// containing object.  Some parameters are classified different
886  /// depending on whether they straddle an eightbyte boundary.
887  ///
888  /// If a word is unused its result will be NoClass; if a type should
889  /// be passed in Memory then at least the classification of \arg Lo
890  /// will be Memory.
891  ///
892  /// The \arg Lo class will be NoClass iff the argument is ignored.
893  ///
894  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
895  /// also be ComplexX87.
896  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
897
898  llvm::Type *GetByteVectorType(QualType Ty) const;
899  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
900                                 unsigned IROffset, QualType SourceTy,
901                                 unsigned SourceOffset) const;
902  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
903                                     unsigned IROffset, QualType SourceTy,
904                                     unsigned SourceOffset) const;
905
906  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
907  /// such that the argument will be returned in memory.
908  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
909
910  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
911  /// such that the argument will be passed in memory.
912  ABIArgInfo getIndirectResult(QualType Ty) const;
913
914  ABIArgInfo classifyReturnType(QualType RetTy) const;
915
916  ABIArgInfo classifyArgumentType(QualType Ty,
917                                  unsigned &neededInt,
918                                  unsigned &neededSSE) const;
919
920  /// The 0.98 ABI revision clarified a lot of ambiguities,
921  /// unfortunately in ways that were not always consistent with
922  /// certain previous compilers.  In particular, platforms which
923  /// required strict binary compatibility with older versions of GCC
924  /// may need to exempt themselves.
925  bool honorsRevision0_98() const {
926    return !getContext().getTargetInfo().getTriple().isOSDarwin();
927  }
928
929public:
930  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
931
932  virtual void computeInfo(CGFunctionInfo &FI) const;
933
934  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
935                                 CodeGenFunction &CGF) const;
936};
937
938/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
939class WinX86_64ABIInfo : public ABIInfo {
940
941  ABIArgInfo classify(QualType Ty) const;
942
943public:
944  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
945
946  virtual void computeInfo(CGFunctionInfo &FI) const;
947
948  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
949                                 CodeGenFunction &CGF) const;
950};
951
952class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
953public:
954  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
955    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
956
957  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
958    return 7;
959  }
960
961  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
962                               llvm::Value *Address) const {
963    CodeGen::CGBuilderTy &Builder = CGF.Builder;
964    llvm::LLVMContext &Context = CGF.getLLVMContext();
965
966    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
967    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
968
969    // 0-15 are the 16 integer registers.
970    // 16 is %rip.
971    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
972
973    return false;
974  }
975
976  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
977                                  StringRef Constraint,
978                                  llvm::Type* Ty) const {
979    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
980  }
981
982  bool isNoProtoCallVariadic(const CodeGen::CGFunctionInfo &FI) const {
983    // The default CC on x86-64 sets %al to the number of SSA
984    // registers used, and GCC sets this when calling an unprototyped
985    // function, so we override the default behavior.  However, don't do
986    // that when AVX types are involved.
987    if (FI.getCallingConvention() == llvm::CallingConv::C) {
988      bool HasAVXType = false;
989      for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
990                                              ie = FI.arg_end();
991           it != ie; ++it) {
992        if (it->info.isDirect()) {
993          llvm::Type *Ty = it->info.getCoerceToType();
994          if (llvm::VectorType *VTy = dyn_cast_or_null<llvm::VectorType>(Ty)) {
995            if (VTy->getBitWidth() > 128) {
996              HasAVXType = true;
997              break;
998            }
999          }
1000        }
1001      }
1002      if (!HasAVXType)
1003        return true;
1004    }
1005
1006    return TargetCodeGenInfo::isNoProtoCallVariadic(FI);
1007  }
1008
1009};
1010
1011class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1012public:
1013  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1014    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1015
1016  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1017    return 7;
1018  }
1019
1020  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1021                               llvm::Value *Address) const {
1022    CodeGen::CGBuilderTy &Builder = CGF.Builder;
1023    llvm::LLVMContext &Context = CGF.getLLVMContext();
1024
1025    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1026    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1027
1028    // 0-15 are the 16 integer registers.
1029    // 16 is %rip.
1030    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
1031
1032    return false;
1033  }
1034};
1035
1036}
1037
1038void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1039                              Class &Hi) const {
1040  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1041  //
1042  // (a) If one of the classes is Memory, the whole argument is passed in
1043  //     memory.
1044  //
1045  // (b) If X87UP is not preceded by X87, the whole argument is passed in
1046  //     memory.
1047  //
1048  // (c) If the size of the aggregate exceeds two eightbytes and the first
1049  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1050  //     argument is passed in memory. NOTE: This is necessary to keep the
1051  //     ABI working for processors that don't support the __m256 type.
1052  //
1053  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1054  //
1055  // Some of these are enforced by the merging logic.  Others can arise
1056  // only with unions; for example:
1057  //   union { _Complex double; unsigned; }
1058  //
1059  // Note that clauses (b) and (c) were added in 0.98.
1060  //
1061  if (Hi == Memory)
1062    Lo = Memory;
1063  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1064    Lo = Memory;
1065  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1066    Lo = Memory;
1067  if (Hi == SSEUp && Lo != SSE)
1068    Hi = SSE;
1069}
1070
1071X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1072  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1073  // classified recursively so that always two fields are
1074  // considered. The resulting class is calculated according to
1075  // the classes of the fields in the eightbyte:
1076  //
1077  // (a) If both classes are equal, this is the resulting class.
1078  //
1079  // (b) If one of the classes is NO_CLASS, the resulting class is
1080  // the other class.
1081  //
1082  // (c) If one of the classes is MEMORY, the result is the MEMORY
1083  // class.
1084  //
1085  // (d) If one of the classes is INTEGER, the result is the
1086  // INTEGER.
1087  //
1088  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1089  // MEMORY is used as class.
1090  //
1091  // (f) Otherwise class SSE is used.
1092
1093  // Accum should never be memory (we should have returned) or
1094  // ComplexX87 (because this cannot be passed in a structure).
1095  assert((Accum != Memory && Accum != ComplexX87) &&
1096         "Invalid accumulated classification during merge.");
1097  if (Accum == Field || Field == NoClass)
1098    return Accum;
1099  if (Field == Memory)
1100    return Memory;
1101  if (Accum == NoClass)
1102    return Field;
1103  if (Accum == Integer || Field == Integer)
1104    return Integer;
1105  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1106      Accum == X87 || Accum == X87Up)
1107    return Memory;
1108  return SSE;
1109}
1110
1111void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1112                             Class &Lo, Class &Hi) const {
1113  // FIXME: This code can be simplified by introducing a simple value class for
1114  // Class pairs with appropriate constructor methods for the various
1115  // situations.
1116
1117  // FIXME: Some of the split computations are wrong; unaligned vectors
1118  // shouldn't be passed in registers for example, so there is no chance they
1119  // can straddle an eightbyte. Verify & simplify.
1120
1121  Lo = Hi = NoClass;
1122
1123  Class &Current = OffsetBase < 64 ? Lo : Hi;
1124  Current = Memory;
1125
1126  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1127    BuiltinType::Kind k = BT->getKind();
1128
1129    if (k == BuiltinType::Void) {
1130      Current = NoClass;
1131    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1132      Lo = Integer;
1133      Hi = Integer;
1134    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1135      Current = Integer;
1136    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1137      Current = SSE;
1138    } else if (k == BuiltinType::LongDouble) {
1139      Lo = X87;
1140      Hi = X87Up;
1141    }
1142    // FIXME: _Decimal32 and _Decimal64 are SSE.
1143    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1144    return;
1145  }
1146
1147  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1148    // Classify the underlying integer type.
1149    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1150    return;
1151  }
1152
1153  if (Ty->hasPointerRepresentation()) {
1154    Current = Integer;
1155    return;
1156  }
1157
1158  if (Ty->isMemberPointerType()) {
1159    if (Ty->isMemberFunctionPointerType())
1160      Lo = Hi = Integer;
1161    else
1162      Current = Integer;
1163    return;
1164  }
1165
1166  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1167    uint64_t Size = getContext().getTypeSize(VT);
1168    if (Size == 32) {
1169      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1170      // float> as integer.
1171      Current = Integer;
1172
1173      // If this type crosses an eightbyte boundary, it should be
1174      // split.
1175      uint64_t EB_Real = (OffsetBase) / 64;
1176      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1177      if (EB_Real != EB_Imag)
1178        Hi = Lo;
1179    } else if (Size == 64) {
1180      // gcc passes <1 x double> in memory. :(
1181      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1182        return;
1183
1184      // gcc passes <1 x long long> as INTEGER.
1185      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1186          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1187          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1188          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1189        Current = Integer;
1190      else
1191        Current = SSE;
1192
1193      // If this type crosses an eightbyte boundary, it should be
1194      // split.
1195      if (OffsetBase && OffsetBase != 64)
1196        Hi = Lo;
1197    } else if (Size == 128 || Size == 256) {
1198      // Arguments of 256-bits are split into four eightbyte chunks. The
1199      // least significant one belongs to class SSE and all the others to class
1200      // SSEUP. The original Lo and Hi design considers that types can't be
1201      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1202      // This design isn't correct for 256-bits, but since there're no cases
1203      // where the upper parts would need to be inspected, avoid adding
1204      // complexity and just consider Hi to match the 64-256 part.
1205      Lo = SSE;
1206      Hi = SSEUp;
1207    }
1208    return;
1209  }
1210
1211  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1212    QualType ET = getContext().getCanonicalType(CT->getElementType());
1213
1214    uint64_t Size = getContext().getTypeSize(Ty);
1215    if (ET->isIntegralOrEnumerationType()) {
1216      if (Size <= 64)
1217        Current = Integer;
1218      else if (Size <= 128)
1219        Lo = Hi = Integer;
1220    } else if (ET == getContext().FloatTy)
1221      Current = SSE;
1222    else if (ET == getContext().DoubleTy)
1223      Lo = Hi = SSE;
1224    else if (ET == getContext().LongDoubleTy)
1225      Current = ComplexX87;
1226
1227    // If this complex type crosses an eightbyte boundary then it
1228    // should be split.
1229    uint64_t EB_Real = (OffsetBase) / 64;
1230    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1231    if (Hi == NoClass && EB_Real != EB_Imag)
1232      Hi = Lo;
1233
1234    return;
1235  }
1236
1237  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1238    // Arrays are treated like structures.
1239
1240    uint64_t Size = getContext().getTypeSize(Ty);
1241
1242    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1243    // than four eightbytes, ..., it has class MEMORY.
1244    if (Size > 256)
1245      return;
1246
1247    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1248    // fields, it has class MEMORY.
1249    //
1250    // Only need to check alignment of array base.
1251    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1252      return;
1253
1254    // Otherwise implement simplified merge. We could be smarter about
1255    // this, but it isn't worth it and would be harder to verify.
1256    Current = NoClass;
1257    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1258    uint64_t ArraySize = AT->getSize().getZExtValue();
1259
1260    // The only case a 256-bit wide vector could be used is when the array
1261    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1262    // to work for sizes wider than 128, early check and fallback to memory.
1263    if (Size > 128 && EltSize != 256)
1264      return;
1265
1266    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1267      Class FieldLo, FieldHi;
1268      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1269      Lo = merge(Lo, FieldLo);
1270      Hi = merge(Hi, FieldHi);
1271      if (Lo == Memory || Hi == Memory)
1272        break;
1273    }
1274
1275    postMerge(Size, Lo, Hi);
1276    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1277    return;
1278  }
1279
1280  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1281    uint64_t Size = getContext().getTypeSize(Ty);
1282
1283    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1284    // than four eightbytes, ..., it has class MEMORY.
1285    if (Size > 256)
1286      return;
1287
1288    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1289    // copy constructor or a non-trivial destructor, it is passed by invisible
1290    // reference.
1291    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1292      return;
1293
1294    const RecordDecl *RD = RT->getDecl();
1295
1296    // Assume variable sized types are passed in memory.
1297    if (RD->hasFlexibleArrayMember())
1298      return;
1299
1300    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1301
1302    // Reset Lo class, this will be recomputed.
1303    Current = NoClass;
1304
1305    // If this is a C++ record, classify the bases first.
1306    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1307      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1308             e = CXXRD->bases_end(); i != e; ++i) {
1309        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1310               "Unexpected base class!");
1311        const CXXRecordDecl *Base =
1312          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1313
1314        // Classify this field.
1315        //
1316        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1317        // single eightbyte, each is classified separately. Each eightbyte gets
1318        // initialized to class NO_CLASS.
1319        Class FieldLo, FieldHi;
1320        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1321        classify(i->getType(), Offset, FieldLo, FieldHi);
1322        Lo = merge(Lo, FieldLo);
1323        Hi = merge(Hi, FieldHi);
1324        if (Lo == Memory || Hi == Memory)
1325          break;
1326      }
1327    }
1328
1329    // Classify the fields one at a time, merging the results.
1330    unsigned idx = 0;
1331    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1332           i != e; ++i, ++idx) {
1333      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1334      bool BitField = i->isBitField();
1335
1336      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1337      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1338      //
1339      // The only case a 256-bit wide vector could be used is when the struct
1340      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1341      // to work for sizes wider than 128, early check and fallback to memory.
1342      //
1343      if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1344        Lo = Memory;
1345        return;
1346      }
1347      // Note, skip this test for bit-fields, see below.
1348      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1349        Lo = Memory;
1350        return;
1351      }
1352
1353      // Classify this field.
1354      //
1355      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1356      // exceeds a single eightbyte, each is classified
1357      // separately. Each eightbyte gets initialized to class
1358      // NO_CLASS.
1359      Class FieldLo, FieldHi;
1360
1361      // Bit-fields require special handling, they do not force the
1362      // structure to be passed in memory even if unaligned, and
1363      // therefore they can straddle an eightbyte.
1364      if (BitField) {
1365        // Ignore padding bit-fields.
1366        if (i->isUnnamedBitfield())
1367          continue;
1368
1369        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1370        uint64_t Size = i->getBitWidthValue(getContext());
1371
1372        uint64_t EB_Lo = Offset / 64;
1373        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1374        FieldLo = FieldHi = NoClass;
1375        if (EB_Lo) {
1376          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1377          FieldLo = NoClass;
1378          FieldHi = Integer;
1379        } else {
1380          FieldLo = Integer;
1381          FieldHi = EB_Hi ? Integer : NoClass;
1382        }
1383      } else
1384        classify(i->getType(), Offset, FieldLo, FieldHi);
1385      Lo = merge(Lo, FieldLo);
1386      Hi = merge(Hi, FieldHi);
1387      if (Lo == Memory || Hi == Memory)
1388        break;
1389    }
1390
1391    postMerge(Size, Lo, Hi);
1392  }
1393}
1394
1395ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1396  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1397  // place naturally.
1398  if (!isAggregateTypeForABI(Ty)) {
1399    // Treat an enum type as its underlying type.
1400    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1401      Ty = EnumTy->getDecl()->getIntegerType();
1402
1403    return (Ty->isPromotableIntegerType() ?
1404            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1405  }
1406
1407  return ABIArgInfo::getIndirect(0);
1408}
1409
1410ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1411  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1412  // place naturally.
1413  if (!isAggregateTypeForABI(Ty)) {
1414    // Treat an enum type as its underlying type.
1415    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1416      Ty = EnumTy->getDecl()->getIntegerType();
1417
1418    return (Ty->isPromotableIntegerType() ?
1419            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1420  }
1421
1422  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1423    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1424
1425  // Compute the byval alignment. We specify the alignment of the byval in all
1426  // cases so that the mid-level optimizer knows the alignment of the byval.
1427  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1428  return ABIArgInfo::getIndirect(Align);
1429}
1430
1431/// GetByteVectorType - The ABI specifies that a value should be passed in an
1432/// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1433/// vector register.
1434llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1435  llvm::Type *IRType = CGT.ConvertType(Ty);
1436
1437  // Wrapper structs that just contain vectors are passed just like vectors,
1438  // strip them off if present.
1439  llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1440  while (STy && STy->getNumElements() == 1) {
1441    IRType = STy->getElementType(0);
1442    STy = dyn_cast<llvm::StructType>(IRType);
1443  }
1444
1445  // If the preferred type is a 16-byte vector, prefer to pass it.
1446  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1447    llvm::Type *EltTy = VT->getElementType();
1448    unsigned BitWidth = VT->getBitWidth();
1449    if ((BitWidth >= 128 && BitWidth <= 256) &&
1450        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1451         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1452         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1453         EltTy->isIntegerTy(128)))
1454      return VT;
1455  }
1456
1457  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1458}
1459
1460/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1461/// is known to either be off the end of the specified type or being in
1462/// alignment padding.  The user type specified is known to be at most 128 bits
1463/// in size, and have passed through X86_64ABIInfo::classify with a successful
1464/// classification that put one of the two halves in the INTEGER class.
1465///
1466/// It is conservatively correct to return false.
1467static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1468                                  unsigned EndBit, ASTContext &Context) {
1469  // If the bytes being queried are off the end of the type, there is no user
1470  // data hiding here.  This handles analysis of builtins, vectors and other
1471  // types that don't contain interesting padding.
1472  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1473  if (TySize <= StartBit)
1474    return true;
1475
1476  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1477    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1478    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1479
1480    // Check each element to see if the element overlaps with the queried range.
1481    for (unsigned i = 0; i != NumElts; ++i) {
1482      // If the element is after the span we care about, then we're done..
1483      unsigned EltOffset = i*EltSize;
1484      if (EltOffset >= EndBit) break;
1485
1486      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1487      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1488                                 EndBit-EltOffset, Context))
1489        return false;
1490    }
1491    // If it overlaps no elements, then it is safe to process as padding.
1492    return true;
1493  }
1494
1495  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1496    const RecordDecl *RD = RT->getDecl();
1497    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1498
1499    // If this is a C++ record, check the bases first.
1500    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1501      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1502           e = CXXRD->bases_end(); i != e; ++i) {
1503        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1504               "Unexpected base class!");
1505        const CXXRecordDecl *Base =
1506          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1507
1508        // If the base is after the span we care about, ignore it.
1509        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1510        if (BaseOffset >= EndBit) continue;
1511
1512        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1513        if (!BitsContainNoUserData(i->getType(), BaseStart,
1514                                   EndBit-BaseOffset, Context))
1515          return false;
1516      }
1517    }
1518
1519    // Verify that no field has data that overlaps the region of interest.  Yes
1520    // this could be sped up a lot by being smarter about queried fields,
1521    // however we're only looking at structs up to 16 bytes, so we don't care
1522    // much.
1523    unsigned idx = 0;
1524    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1525         i != e; ++i, ++idx) {
1526      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1527
1528      // If we found a field after the region we care about, then we're done.
1529      if (FieldOffset >= EndBit) break;
1530
1531      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1532      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1533                                 Context))
1534        return false;
1535    }
1536
1537    // If nothing in this record overlapped the area of interest, then we're
1538    // clean.
1539    return true;
1540  }
1541
1542  return false;
1543}
1544
1545/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1546/// float member at the specified offset.  For example, {int,{float}} has a
1547/// float at offset 4.  It is conservatively correct for this routine to return
1548/// false.
1549static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1550                                  const llvm::TargetData &TD) {
1551  // Base case if we find a float.
1552  if (IROffset == 0 && IRType->isFloatTy())
1553    return true;
1554
1555  // If this is a struct, recurse into the field at the specified offset.
1556  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1557    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1558    unsigned Elt = SL->getElementContainingOffset(IROffset);
1559    IROffset -= SL->getElementOffset(Elt);
1560    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1561  }
1562
1563  // If this is an array, recurse into the field at the specified offset.
1564  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1565    llvm::Type *EltTy = ATy->getElementType();
1566    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1567    IROffset -= IROffset/EltSize*EltSize;
1568    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1569  }
1570
1571  return false;
1572}
1573
1574
1575/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1576/// low 8 bytes of an XMM register, corresponding to the SSE class.
1577llvm::Type *X86_64ABIInfo::
1578GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1579                   QualType SourceTy, unsigned SourceOffset) const {
1580  // The only three choices we have are either double, <2 x float>, or float. We
1581  // pass as float if the last 4 bytes is just padding.  This happens for
1582  // structs that contain 3 floats.
1583  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1584                            SourceOffset*8+64, getContext()))
1585    return llvm::Type::getFloatTy(getVMContext());
1586
1587  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1588  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1589  // case.
1590  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1591      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1592    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1593
1594  return llvm::Type::getDoubleTy(getVMContext());
1595}
1596
1597
1598/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1599/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1600/// about the high or low part of an up-to-16-byte struct.  This routine picks
1601/// the best LLVM IR type to represent this, which may be i64 or may be anything
1602/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1603/// etc).
1604///
1605/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1606/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1607/// the 8-byte value references.  PrefType may be null.
1608///
1609/// SourceTy is the source level type for the entire argument.  SourceOffset is
1610/// an offset into this that we're processing (which is always either 0 or 8).
1611///
1612llvm::Type *X86_64ABIInfo::
1613GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1614                       QualType SourceTy, unsigned SourceOffset) const {
1615  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1616  // returning an 8-byte unit starting with it.  See if we can safely use it.
1617  if (IROffset == 0) {
1618    // Pointers and int64's always fill the 8-byte unit.
1619    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1620      return IRType;
1621
1622    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1623    // goodness in the source type is just tail padding.  This is allowed to
1624    // kick in for struct {double,int} on the int, but not on
1625    // struct{double,int,int} because we wouldn't return the second int.  We
1626    // have to do this analysis on the source type because we can't depend on
1627    // unions being lowered a specific way etc.
1628    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1629        IRType->isIntegerTy(32)) {
1630      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1631
1632      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1633                                SourceOffset*8+64, getContext()))
1634        return IRType;
1635    }
1636  }
1637
1638  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1639    // If this is a struct, recurse into the field at the specified offset.
1640    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1641    if (IROffset < SL->getSizeInBytes()) {
1642      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1643      IROffset -= SL->getElementOffset(FieldIdx);
1644
1645      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1646                                    SourceTy, SourceOffset);
1647    }
1648  }
1649
1650  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1651    llvm::Type *EltTy = ATy->getElementType();
1652    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1653    unsigned EltOffset = IROffset/EltSize*EltSize;
1654    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1655                                  SourceOffset);
1656  }
1657
1658  // Okay, we don't have any better idea of what to pass, so we pass this in an
1659  // integer register that isn't too big to fit the rest of the struct.
1660  unsigned TySizeInBytes =
1661    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1662
1663  assert(TySizeInBytes != SourceOffset && "Empty field?");
1664
1665  // It is always safe to classify this as an integer type up to i64 that
1666  // isn't larger than the structure.
1667  return llvm::IntegerType::get(getVMContext(),
1668                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1669}
1670
1671
1672/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1673/// be used as elements of a two register pair to pass or return, return a
1674/// first class aggregate to represent them.  For example, if the low part of
1675/// a by-value argument should be passed as i32* and the high part as float,
1676/// return {i32*, float}.
1677static llvm::Type *
1678GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1679                           const llvm::TargetData &TD) {
1680  // In order to correctly satisfy the ABI, we need to the high part to start
1681  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1682  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1683  // the second element at offset 8.  Check for this:
1684  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1685  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1686  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1687  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1688
1689  // To handle this, we have to increase the size of the low part so that the
1690  // second element will start at an 8 byte offset.  We can't increase the size
1691  // of the second element because it might make us access off the end of the
1692  // struct.
1693  if (HiStart != 8) {
1694    // There are only two sorts of types the ABI generation code can produce for
1695    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1696    // Promote these to a larger type.
1697    if (Lo->isFloatTy())
1698      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1699    else {
1700      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1701      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1702    }
1703  }
1704
1705  llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1706
1707
1708  // Verify that the second element is at an 8-byte offset.
1709  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1710         "Invalid x86-64 argument pair!");
1711  return Result;
1712}
1713
1714ABIArgInfo X86_64ABIInfo::
1715classifyReturnType(QualType RetTy) const {
1716  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1717  // classification algorithm.
1718  X86_64ABIInfo::Class Lo, Hi;
1719  classify(RetTy, 0, Lo, Hi);
1720
1721  // Check some invariants.
1722  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1723  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1724
1725  llvm::Type *ResType = 0;
1726  switch (Lo) {
1727  case NoClass:
1728    if (Hi == NoClass)
1729      return ABIArgInfo::getIgnore();
1730    // If the low part is just padding, it takes no register, leave ResType
1731    // null.
1732    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1733           "Unknown missing lo part");
1734    break;
1735
1736  case SSEUp:
1737  case X87Up:
1738    llvm_unreachable("Invalid classification for lo word.");
1739
1740    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1741    // hidden argument.
1742  case Memory:
1743    return getIndirectReturnResult(RetTy);
1744
1745    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1746    // available register of the sequence %rax, %rdx is used.
1747  case Integer:
1748    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1749
1750    // If we have a sign or zero extended integer, make sure to return Extend
1751    // so that the parameter gets the right LLVM IR attributes.
1752    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1753      // Treat an enum type as its underlying type.
1754      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1755        RetTy = EnumTy->getDecl()->getIntegerType();
1756
1757      if (RetTy->isIntegralOrEnumerationType() &&
1758          RetTy->isPromotableIntegerType())
1759        return ABIArgInfo::getExtend();
1760    }
1761    break;
1762
1763    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1764    // available SSE register of the sequence %xmm0, %xmm1 is used.
1765  case SSE:
1766    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1767    break;
1768
1769    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1770    // returned on the X87 stack in %st0 as 80-bit x87 number.
1771  case X87:
1772    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1773    break;
1774
1775    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1776    // part of the value is returned in %st0 and the imaginary part in
1777    // %st1.
1778  case ComplexX87:
1779    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1780    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1781                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1782                                    NULL);
1783    break;
1784  }
1785
1786  llvm::Type *HighPart = 0;
1787  switch (Hi) {
1788    // Memory was handled previously and X87 should
1789    // never occur as a hi class.
1790  case Memory:
1791  case X87:
1792    llvm_unreachable("Invalid classification for hi word.");
1793
1794  case ComplexX87: // Previously handled.
1795  case NoClass:
1796    break;
1797
1798  case Integer:
1799    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1800    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1801      return ABIArgInfo::getDirect(HighPart, 8);
1802    break;
1803  case SSE:
1804    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1805    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1806      return ABIArgInfo::getDirect(HighPart, 8);
1807    break;
1808
1809    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1810    // is passed in the next available eightbyte chunk if the last used
1811    // vector register.
1812    //
1813    // SSEUP should always be preceded by SSE, just widen.
1814  case SSEUp:
1815    assert(Lo == SSE && "Unexpected SSEUp classification.");
1816    ResType = GetByteVectorType(RetTy);
1817    break;
1818
1819    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1820    // returned together with the previous X87 value in %st0.
1821  case X87Up:
1822    // If X87Up is preceded by X87, we don't need to do
1823    // anything. However, in some cases with unions it may not be
1824    // preceded by X87. In such situations we follow gcc and pass the
1825    // extra bits in an SSE reg.
1826    if (Lo != X87) {
1827      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1828      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1829        return ABIArgInfo::getDirect(HighPart, 8);
1830    }
1831    break;
1832  }
1833
1834  // If a high part was specified, merge it together with the low part.  It is
1835  // known to pass in the high eightbyte of the result.  We do this by forming a
1836  // first class struct aggregate with the high and low part: {low, high}
1837  if (HighPart)
1838    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1839
1840  return ABIArgInfo::getDirect(ResType);
1841}
1842
1843ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1844                                               unsigned &neededSSE) const {
1845  X86_64ABIInfo::Class Lo, Hi;
1846  classify(Ty, 0, Lo, Hi);
1847
1848  // Check some invariants.
1849  // FIXME: Enforce these by construction.
1850  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1851  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1852
1853  neededInt = 0;
1854  neededSSE = 0;
1855  llvm::Type *ResType = 0;
1856  switch (Lo) {
1857  case NoClass:
1858    if (Hi == NoClass)
1859      return ABIArgInfo::getIgnore();
1860    // If the low part is just padding, it takes no register, leave ResType
1861    // null.
1862    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1863           "Unknown missing lo part");
1864    break;
1865
1866    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1867    // on the stack.
1868  case Memory:
1869
1870    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1871    // COMPLEX_X87, it is passed in memory.
1872  case X87:
1873  case ComplexX87:
1874    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1875      ++neededInt;
1876    return getIndirectResult(Ty);
1877
1878  case SSEUp:
1879  case X87Up:
1880    llvm_unreachable("Invalid classification for lo word.");
1881
1882    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1883    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1884    // and %r9 is used.
1885  case Integer:
1886    ++neededInt;
1887
1888    // Pick an 8-byte type based on the preferred type.
1889    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1890
1891    // If we have a sign or zero extended integer, make sure to return Extend
1892    // so that the parameter gets the right LLVM IR attributes.
1893    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1894      // Treat an enum type as its underlying type.
1895      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1896        Ty = EnumTy->getDecl()->getIntegerType();
1897
1898      if (Ty->isIntegralOrEnumerationType() &&
1899          Ty->isPromotableIntegerType())
1900        return ABIArgInfo::getExtend();
1901    }
1902
1903    break;
1904
1905    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1906    // available SSE register is used, the registers are taken in the
1907    // order from %xmm0 to %xmm7.
1908  case SSE: {
1909    llvm::Type *IRType = CGT.ConvertType(Ty);
1910    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1911    ++neededSSE;
1912    break;
1913  }
1914  }
1915
1916  llvm::Type *HighPart = 0;
1917  switch (Hi) {
1918    // Memory was handled previously, ComplexX87 and X87 should
1919    // never occur as hi classes, and X87Up must be preceded by X87,
1920    // which is passed in memory.
1921  case Memory:
1922  case X87:
1923  case ComplexX87:
1924    llvm_unreachable("Invalid classification for hi word.");
1925
1926  case NoClass: break;
1927
1928  case Integer:
1929    ++neededInt;
1930    // Pick an 8-byte type based on the preferred type.
1931    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1932
1933    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1934      return ABIArgInfo::getDirect(HighPart, 8);
1935    break;
1936
1937    // X87Up generally doesn't occur here (long double is passed in
1938    // memory), except in situations involving unions.
1939  case X87Up:
1940  case SSE:
1941    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1942
1943    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1944      return ABIArgInfo::getDirect(HighPart, 8);
1945
1946    ++neededSSE;
1947    break;
1948
1949    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1950    // eightbyte is passed in the upper half of the last used SSE
1951    // register.  This only happens when 128-bit vectors are passed.
1952  case SSEUp:
1953    assert(Lo == SSE && "Unexpected SSEUp classification");
1954    ResType = GetByteVectorType(Ty);
1955    break;
1956  }
1957
1958  // If a high part was specified, merge it together with the low part.  It is
1959  // known to pass in the high eightbyte of the result.  We do this by forming a
1960  // first class struct aggregate with the high and low part: {low, high}
1961  if (HighPart)
1962    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1963
1964  return ABIArgInfo::getDirect(ResType);
1965}
1966
1967void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1968
1969  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1970
1971  // Keep track of the number of assigned registers.
1972  unsigned freeIntRegs = 6, freeSSERegs = 8;
1973
1974  // If the return value is indirect, then the hidden argument is consuming one
1975  // integer register.
1976  if (FI.getReturnInfo().isIndirect())
1977    --freeIntRegs;
1978
1979  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1980  // get assigned (in left-to-right order) for passing as follows...
1981  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1982       it != ie; ++it) {
1983    unsigned neededInt, neededSSE;
1984    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1985
1986    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1987    // eightbyte of an argument, the whole argument is passed on the
1988    // stack. If registers have already been assigned for some
1989    // eightbytes of such an argument, the assignments get reverted.
1990    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1991      freeIntRegs -= neededInt;
1992      freeSSERegs -= neededSSE;
1993    } else {
1994      it->info = getIndirectResult(it->type);
1995    }
1996  }
1997}
1998
1999static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2000                                        QualType Ty,
2001                                        CodeGenFunction &CGF) {
2002  llvm::Value *overflow_arg_area_p =
2003    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2004  llvm::Value *overflow_arg_area =
2005    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2006
2007  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2008  // byte boundary if alignment needed by type exceeds 8 byte boundary.
2009  // It isn't stated explicitly in the standard, but in practice we use
2010  // alignment greater than 16 where necessary.
2011  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2012  if (Align > 8) {
2013    // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2014    llvm::Value *Offset =
2015      llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2016    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2017    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2018                                                    CGF.Int64Ty);
2019    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2020    overflow_arg_area =
2021      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2022                                 overflow_arg_area->getType(),
2023                                 "overflow_arg_area.align");
2024  }
2025
2026  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2027  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2028  llvm::Value *Res =
2029    CGF.Builder.CreateBitCast(overflow_arg_area,
2030                              llvm::PointerType::getUnqual(LTy));
2031
2032  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2033  // l->overflow_arg_area + sizeof(type).
2034  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2035  // an 8 byte boundary.
2036
2037  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2038  llvm::Value *Offset =
2039      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2040  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2041                                            "overflow_arg_area.next");
2042  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2043
2044  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2045  return Res;
2046}
2047
2048llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2049                                      CodeGenFunction &CGF) const {
2050  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
2051
2052  // Assume that va_list type is correct; should be pointer to LLVM type:
2053  // struct {
2054  //   i32 gp_offset;
2055  //   i32 fp_offset;
2056  //   i8* overflow_arg_area;
2057  //   i8* reg_save_area;
2058  // };
2059  unsigned neededInt, neededSSE;
2060
2061  Ty = CGF.getContext().getCanonicalType(Ty);
2062  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2063
2064  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2065  // in the registers. If not go to step 7.
2066  if (!neededInt && !neededSSE)
2067    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2068
2069  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2070  // general purpose registers needed to pass type and num_fp to hold
2071  // the number of floating point registers needed.
2072
2073  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2074  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2075  // l->fp_offset > 304 - num_fp * 16 go to step 7.
2076  //
2077  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2078  // register save space).
2079
2080  llvm::Value *InRegs = 0;
2081  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2082  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2083  if (neededInt) {
2084    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2085    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2086    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2087    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2088  }
2089
2090  if (neededSSE) {
2091    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2092    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2093    llvm::Value *FitsInFP =
2094      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2095    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2096    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2097  }
2098
2099  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2100  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2101  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2102  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2103
2104  // Emit code to load the value if it was passed in registers.
2105
2106  CGF.EmitBlock(InRegBlock);
2107
2108  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2109  // an offset of l->gp_offset and/or l->fp_offset. This may require
2110  // copying to a temporary location in case the parameter is passed
2111  // in different register classes or requires an alignment greater
2112  // than 8 for general purpose registers and 16 for XMM registers.
2113  //
2114  // FIXME: This really results in shameful code when we end up needing to
2115  // collect arguments from different places; often what should result in a
2116  // simple assembling of a structure from scattered addresses has many more
2117  // loads than necessary. Can we clean this up?
2118  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2119  llvm::Value *RegAddr =
2120    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2121                           "reg_save_area");
2122  if (neededInt && neededSSE) {
2123    // FIXME: Cleanup.
2124    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2125    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2126    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2127    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2128    llvm::Type *TyLo = ST->getElementType(0);
2129    llvm::Type *TyHi = ST->getElementType(1);
2130    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2131           "Unexpected ABI info for mixed regs");
2132    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2133    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2134    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2135    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2136    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2137    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2138    llvm::Value *V =
2139      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2140    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2141    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2142    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2143
2144    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2145                                        llvm::PointerType::getUnqual(LTy));
2146  } else if (neededInt) {
2147    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2148    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2149                                        llvm::PointerType::getUnqual(LTy));
2150  } else if (neededSSE == 1) {
2151    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2152    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2153                                        llvm::PointerType::getUnqual(LTy));
2154  } else {
2155    assert(neededSSE == 2 && "Invalid number of needed registers!");
2156    // SSE registers are spaced 16 bytes apart in the register save
2157    // area, we need to collect the two eightbytes together.
2158    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2159    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2160    llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2161    llvm::Type *DblPtrTy =
2162      llvm::PointerType::getUnqual(DoubleTy);
2163    llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2164                                                       DoubleTy, NULL);
2165    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2166    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2167                                                         DblPtrTy));
2168    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2169    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2170                                                         DblPtrTy));
2171    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2172    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2173                                        llvm::PointerType::getUnqual(LTy));
2174  }
2175
2176  // AMD64-ABI 3.5.7p5: Step 5. Set:
2177  // l->gp_offset = l->gp_offset + num_gp * 8
2178  // l->fp_offset = l->fp_offset + num_fp * 16.
2179  if (neededInt) {
2180    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2181    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2182                            gp_offset_p);
2183  }
2184  if (neededSSE) {
2185    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2186    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2187                            fp_offset_p);
2188  }
2189  CGF.EmitBranch(ContBlock);
2190
2191  // Emit code to load the value if it was passed in memory.
2192
2193  CGF.EmitBlock(InMemBlock);
2194  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2195
2196  // Return the appropriate result.
2197
2198  CGF.EmitBlock(ContBlock);
2199  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2200                                                 "vaarg.addr");
2201  ResAddr->addIncoming(RegAddr, InRegBlock);
2202  ResAddr->addIncoming(MemAddr, InMemBlock);
2203  return ResAddr;
2204}
2205
2206ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2207
2208  if (Ty->isVoidType())
2209    return ABIArgInfo::getIgnore();
2210
2211  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2212    Ty = EnumTy->getDecl()->getIntegerType();
2213
2214  uint64_t Size = getContext().getTypeSize(Ty);
2215
2216  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2217    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2218        RT->getDecl()->hasFlexibleArrayMember())
2219      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2220
2221    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2222    if (Size == 128 &&
2223        getContext().getTargetInfo().getTriple().getOS() == llvm::Triple::MinGW32)
2224      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2225                                                          Size));
2226
2227    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2228    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2229    if (Size <= 64 &&
2230        (Size & (Size - 1)) == 0)
2231      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2232                                                          Size));
2233
2234    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2235  }
2236
2237  if (Ty->isPromotableIntegerType())
2238    return ABIArgInfo::getExtend();
2239
2240  return ABIArgInfo::getDirect();
2241}
2242
2243void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2244
2245  QualType RetTy = FI.getReturnType();
2246  FI.getReturnInfo() = classify(RetTy);
2247
2248  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2249       it != ie; ++it)
2250    it->info = classify(it->type);
2251}
2252
2253llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2254                                      CodeGenFunction &CGF) const {
2255  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2256  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2257
2258  CGBuilderTy &Builder = CGF.Builder;
2259  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2260                                                       "ap");
2261  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2262  llvm::Type *PTy =
2263    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2264  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2265
2266  uint64_t Offset =
2267    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2268  llvm::Value *NextAddr =
2269    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2270                      "ap.next");
2271  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2272
2273  return AddrTyped;
2274}
2275
2276// PowerPC-32
2277
2278namespace {
2279class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2280public:
2281  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2282
2283  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2284    // This is recovered from gcc output.
2285    return 1; // r1 is the dedicated stack pointer
2286  }
2287
2288  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2289                               llvm::Value *Address) const;
2290};
2291
2292}
2293
2294bool
2295PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2296                                                llvm::Value *Address) const {
2297  // This is calculated from the LLVM and GCC tables and verified
2298  // against gcc output.  AFAIK all ABIs use the same encoding.
2299
2300  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2301  llvm::LLVMContext &Context = CGF.getLLVMContext();
2302
2303  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2304  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2305  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2306  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2307
2308  // 0-31: r0-31, the 4-byte general-purpose registers
2309  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2310
2311  // 32-63: fp0-31, the 8-byte floating-point registers
2312  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2313
2314  // 64-76 are various 4-byte special-purpose registers:
2315  // 64: mq
2316  // 65: lr
2317  // 66: ctr
2318  // 67: ap
2319  // 68-75 cr0-7
2320  // 76: xer
2321  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2322
2323  // 77-108: v0-31, the 16-byte vector registers
2324  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2325
2326  // 109: vrsave
2327  // 110: vscr
2328  // 111: spe_acc
2329  // 112: spefscr
2330  // 113: sfp
2331  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2332
2333  return false;
2334}
2335
2336
2337//===----------------------------------------------------------------------===//
2338// ARM ABI Implementation
2339//===----------------------------------------------------------------------===//
2340
2341namespace {
2342
2343class ARMABIInfo : public ABIInfo {
2344public:
2345  enum ABIKind {
2346    APCS = 0,
2347    AAPCS = 1,
2348    AAPCS_VFP
2349  };
2350
2351private:
2352  ABIKind Kind;
2353
2354public:
2355  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2356
2357  bool isEABI() const {
2358    StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName();
2359    return (Env == "gnueabi" || Env == "eabi");
2360  }
2361
2362private:
2363  ABIKind getABIKind() const { return Kind; }
2364
2365  ABIArgInfo classifyReturnType(QualType RetTy) const;
2366  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2367
2368  virtual void computeInfo(CGFunctionInfo &FI) const;
2369
2370  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2371                                 CodeGenFunction &CGF) const;
2372};
2373
2374class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2375public:
2376  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2377    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2378
2379  const ARMABIInfo &getABIInfo() const {
2380    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2381  }
2382
2383  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2384    return 13;
2385  }
2386
2387  StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2388    return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2389  }
2390
2391  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2392                               llvm::Value *Address) const {
2393    CodeGen::CGBuilderTy &Builder = CGF.Builder;
2394    llvm::LLVMContext &Context = CGF.getLLVMContext();
2395
2396    llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2397    llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2398
2399    // 0-15 are the 16 integer registers.
2400    AssignToArrayRange(Builder, Address, Four8, 0, 15);
2401
2402    return false;
2403  }
2404
2405  unsigned getSizeOfUnwindException() const {
2406    if (getABIInfo().isEABI()) return 88;
2407    return TargetCodeGenInfo::getSizeOfUnwindException();
2408  }
2409};
2410
2411}
2412
2413void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2414  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2415  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2416       it != ie; ++it)
2417    it->info = classifyArgumentType(it->type);
2418
2419  // Always honor user-specified calling convention.
2420  if (FI.getCallingConvention() != llvm::CallingConv::C)
2421    return;
2422
2423  // Calling convention as default by an ABI.
2424  llvm::CallingConv::ID DefaultCC;
2425  if (isEABI())
2426    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2427  else
2428    DefaultCC = llvm::CallingConv::ARM_APCS;
2429
2430  // If user did not ask for specific calling convention explicitly (e.g. via
2431  // pcs attribute), set effective calling convention if it's different than ABI
2432  // default.
2433  switch (getABIKind()) {
2434  case APCS:
2435    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2436      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2437    break;
2438  case AAPCS:
2439    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2440      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2441    break;
2442  case AAPCS_VFP:
2443    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2444      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2445    break;
2446  }
2447}
2448
2449/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2450/// aggregate.  If HAMembers is non-null, the number of base elements
2451/// contained in the type is returned through it; this is used for the
2452/// recursive calls that check aggregate component types.
2453static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2454                                   ASTContext &Context,
2455                                   uint64_t *HAMembers = 0) {
2456  uint64_t Members;
2457  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2458    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2459      return false;
2460    Members *= AT->getSize().getZExtValue();
2461  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2462    const RecordDecl *RD = RT->getDecl();
2463    if (RD->isUnion() || RD->hasFlexibleArrayMember())
2464      return false;
2465    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2466      if (!CXXRD->isAggregate())
2467        return false;
2468    }
2469    Members = 0;
2470    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2471         i != e; ++i) {
2472      const FieldDecl *FD = *i;
2473      uint64_t FldMembers;
2474      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2475        return false;
2476      Members += FldMembers;
2477    }
2478  } else {
2479    Members = 1;
2480    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2481      Members = 2;
2482      Ty = CT->getElementType();
2483    }
2484
2485    // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2486    // double, or 64-bit or 128-bit vectors.
2487    if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2488      if (BT->getKind() != BuiltinType::Float &&
2489          BT->getKind() != BuiltinType::Double)
2490        return false;
2491    } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2492      unsigned VecSize = Context.getTypeSize(VT);
2493      if (VecSize != 64 && VecSize != 128)
2494        return false;
2495    } else {
2496      return false;
2497    }
2498
2499    // The base type must be the same for all members.  Vector types of the
2500    // same total size are treated as being equivalent here.
2501    const Type *TyPtr = Ty.getTypePtr();
2502    if (!Base)
2503      Base = TyPtr;
2504    if (Base != TyPtr &&
2505        (!Base->isVectorType() || !TyPtr->isVectorType() ||
2506         Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2507      return false;
2508  }
2509
2510  // Homogeneous Aggregates can have at most 4 members of the base type.
2511  if (HAMembers)
2512    *HAMembers = Members;
2513  return (Members <= 4);
2514}
2515
2516ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2517  if (!isAggregateTypeForABI(Ty)) {
2518    // Treat an enum type as its underlying type.
2519    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2520      Ty = EnumTy->getDecl()->getIntegerType();
2521
2522    return (Ty->isPromotableIntegerType() ?
2523            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2524  }
2525
2526  // Ignore empty records.
2527  if (isEmptyRecord(getContext(), Ty, true))
2528    return ABIArgInfo::getIgnore();
2529
2530  // Structures with either a non-trivial destructor or a non-trivial
2531  // copy constructor are always indirect.
2532  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2533    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2534
2535  if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2536    // Homogeneous Aggregates need to be expanded.
2537    const Type *Base = 0;
2538    if (isHomogeneousAggregate(Ty, Base, getContext()))
2539      return ABIArgInfo::getExpand();
2540  }
2541
2542  // Otherwise, pass by coercing to a structure of the appropriate size.
2543  //
2544  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2545  // backend doesn't support byval.
2546  // FIXME: This doesn't handle alignment > 64 bits.
2547  llvm::Type* ElemTy;
2548  unsigned SizeRegs;
2549  if (getContext().getTypeAlign(Ty) > 32) {
2550    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2551    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2552  } else {
2553    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2554    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2555  }
2556
2557  llvm::Type *STy =
2558    llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2559  return ABIArgInfo::getDirect(STy);
2560}
2561
2562static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2563                              llvm::LLVMContext &VMContext) {
2564  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2565  // is called integer-like if its size is less than or equal to one word, and
2566  // the offset of each of its addressable sub-fields is zero.
2567
2568  uint64_t Size = Context.getTypeSize(Ty);
2569
2570  // Check that the type fits in a word.
2571  if (Size > 32)
2572    return false;
2573
2574  // FIXME: Handle vector types!
2575  if (Ty->isVectorType())
2576    return false;
2577
2578  // Float types are never treated as "integer like".
2579  if (Ty->isRealFloatingType())
2580    return false;
2581
2582  // If this is a builtin or pointer type then it is ok.
2583  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2584    return true;
2585
2586  // Small complex integer types are "integer like".
2587  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2588    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2589
2590  // Single element and zero sized arrays should be allowed, by the definition
2591  // above, but they are not.
2592
2593  // Otherwise, it must be a record type.
2594  const RecordType *RT = Ty->getAs<RecordType>();
2595  if (!RT) return false;
2596
2597  // Ignore records with flexible arrays.
2598  const RecordDecl *RD = RT->getDecl();
2599  if (RD->hasFlexibleArrayMember())
2600    return false;
2601
2602  // Check that all sub-fields are at offset 0, and are themselves "integer
2603  // like".
2604  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2605
2606  bool HadField = false;
2607  unsigned idx = 0;
2608  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2609       i != e; ++i, ++idx) {
2610    const FieldDecl *FD = *i;
2611
2612    // Bit-fields are not addressable, we only need to verify they are "integer
2613    // like". We still have to disallow a subsequent non-bitfield, for example:
2614    //   struct { int : 0; int x }
2615    // is non-integer like according to gcc.
2616    if (FD->isBitField()) {
2617      if (!RD->isUnion())
2618        HadField = true;
2619
2620      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2621        return false;
2622
2623      continue;
2624    }
2625
2626    // Check if this field is at offset 0.
2627    if (Layout.getFieldOffset(idx) != 0)
2628      return false;
2629
2630    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2631      return false;
2632
2633    // Only allow at most one field in a structure. This doesn't match the
2634    // wording above, but follows gcc in situations with a field following an
2635    // empty structure.
2636    if (!RD->isUnion()) {
2637      if (HadField)
2638        return false;
2639
2640      HadField = true;
2641    }
2642  }
2643
2644  return true;
2645}
2646
2647ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2648  if (RetTy->isVoidType())
2649    return ABIArgInfo::getIgnore();
2650
2651  // Large vector types should be returned via memory.
2652  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2653    return ABIArgInfo::getIndirect(0);
2654
2655  if (!isAggregateTypeForABI(RetTy)) {
2656    // Treat an enum type as its underlying type.
2657    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2658      RetTy = EnumTy->getDecl()->getIntegerType();
2659
2660    return (RetTy->isPromotableIntegerType() ?
2661            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2662  }
2663
2664  // Structures with either a non-trivial destructor or a non-trivial
2665  // copy constructor are always indirect.
2666  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2667    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2668
2669  // Are we following APCS?
2670  if (getABIKind() == APCS) {
2671    if (isEmptyRecord(getContext(), RetTy, false))
2672      return ABIArgInfo::getIgnore();
2673
2674    // Complex types are all returned as packed integers.
2675    //
2676    // FIXME: Consider using 2 x vector types if the back end handles them
2677    // correctly.
2678    if (RetTy->isAnyComplexType())
2679      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2680                                              getContext().getTypeSize(RetTy)));
2681
2682    // Integer like structures are returned in r0.
2683    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2684      // Return in the smallest viable integer type.
2685      uint64_t Size = getContext().getTypeSize(RetTy);
2686      if (Size <= 8)
2687        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2688      if (Size <= 16)
2689        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2690      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2691    }
2692
2693    // Otherwise return in memory.
2694    return ABIArgInfo::getIndirect(0);
2695  }
2696
2697  // Otherwise this is an AAPCS variant.
2698
2699  if (isEmptyRecord(getContext(), RetTy, true))
2700    return ABIArgInfo::getIgnore();
2701
2702  // Check for homogeneous aggregates with AAPCS-VFP.
2703  if (getABIKind() == AAPCS_VFP) {
2704    const Type *Base = 0;
2705    if (isHomogeneousAggregate(RetTy, Base, getContext()))
2706      // Homogeneous Aggregates are returned directly.
2707      return ABIArgInfo::getDirect();
2708  }
2709
2710  // Aggregates <= 4 bytes are returned in r0; other aggregates
2711  // are returned indirectly.
2712  uint64_t Size = getContext().getTypeSize(RetTy);
2713  if (Size <= 32) {
2714    // Return in the smallest viable integer type.
2715    if (Size <= 8)
2716      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2717    if (Size <= 16)
2718      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2719    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2720  }
2721
2722  return ABIArgInfo::getIndirect(0);
2723}
2724
2725llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2726                                   CodeGenFunction &CGF) const {
2727  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2728  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2729
2730  CGBuilderTy &Builder = CGF.Builder;
2731  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2732                                                       "ap");
2733  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2734  // Handle address alignment for type alignment > 32 bits
2735  uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2736  if (TyAlign > 4) {
2737    assert((TyAlign & (TyAlign - 1)) == 0 &&
2738           "Alignment is not power of 2!");
2739    llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2740    AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2741    AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2742    Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2743  }
2744  llvm::Type *PTy =
2745    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2746  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2747
2748  uint64_t Offset =
2749    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2750  llvm::Value *NextAddr =
2751    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2752                      "ap.next");
2753  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2754
2755  return AddrTyped;
2756}
2757
2758//===----------------------------------------------------------------------===//
2759// PTX ABI Implementation
2760//===----------------------------------------------------------------------===//
2761
2762namespace {
2763
2764class PTXABIInfo : public ABIInfo {
2765public:
2766  PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2767
2768  ABIArgInfo classifyReturnType(QualType RetTy) const;
2769  ABIArgInfo classifyArgumentType(QualType Ty) const;
2770
2771  virtual void computeInfo(CGFunctionInfo &FI) const;
2772  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2773                                 CodeGenFunction &CFG) const;
2774};
2775
2776class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2777public:
2778  PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2779    : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2780
2781  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2782                                   CodeGen::CodeGenModule &M) const;
2783};
2784
2785ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2786  if (RetTy->isVoidType())
2787    return ABIArgInfo::getIgnore();
2788  if (isAggregateTypeForABI(RetTy))
2789    return ABIArgInfo::getIndirect(0);
2790  return ABIArgInfo::getDirect();
2791}
2792
2793ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2794  if (isAggregateTypeForABI(Ty))
2795    return ABIArgInfo::getIndirect(0);
2796
2797  return ABIArgInfo::getDirect();
2798}
2799
2800void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2801  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2802  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2803       it != ie; ++it)
2804    it->info = classifyArgumentType(it->type);
2805
2806  // Always honor user-specified calling convention.
2807  if (FI.getCallingConvention() != llvm::CallingConv::C)
2808    return;
2809
2810  // Calling convention as default by an ABI.
2811  llvm::CallingConv::ID DefaultCC;
2812  const LangOptions &LangOpts = getContext().getLangOptions();
2813  if (LangOpts.OpenCL || LangOpts.CUDA) {
2814    // If we are in OpenCL or CUDA mode, then default to device functions
2815    DefaultCC = llvm::CallingConv::PTX_Device;
2816  } else {
2817    // If we are in standard C/C++ mode, use the triple to decide on the default
2818    StringRef Env =
2819      getContext().getTargetInfo().getTriple().getEnvironmentName();
2820    if (Env == "device")
2821      DefaultCC = llvm::CallingConv::PTX_Device;
2822    else
2823      DefaultCC = llvm::CallingConv::PTX_Kernel;
2824  }
2825  FI.setEffectiveCallingConvention(DefaultCC);
2826
2827}
2828
2829llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2830                                   CodeGenFunction &CFG) const {
2831  llvm_unreachable("PTX does not support varargs");
2832  return 0;
2833}
2834
2835void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2836                                               llvm::GlobalValue *GV,
2837                                               CodeGen::CodeGenModule &M) const{
2838  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2839  if (!FD) return;
2840
2841  llvm::Function *F = cast<llvm::Function>(GV);
2842
2843  // Perform special handling in OpenCL mode
2844  if (M.getLangOptions().OpenCL) {
2845    // Use OpenCL function attributes to set proper calling conventions
2846    // By default, all functions are device functions
2847    if (FD->hasAttr<OpenCLKernelAttr>()) {
2848      // OpenCL __kernel functions get a kernel calling convention
2849      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2850      // And kernel functions are not subject to inlining
2851      F->addFnAttr(llvm::Attribute::NoInline);
2852    }
2853  }
2854
2855  // Perform special handling in CUDA mode.
2856  if (M.getLangOptions().CUDA) {
2857    // CUDA __global__ functions get a kernel calling convention.  Since
2858    // __global__ functions cannot be called from the device, we do not
2859    // need to set the noinline attribute.
2860    if (FD->getAttr<CUDAGlobalAttr>())
2861      F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2862  }
2863}
2864
2865}
2866
2867//===----------------------------------------------------------------------===//
2868// MBlaze ABI Implementation
2869//===----------------------------------------------------------------------===//
2870
2871namespace {
2872
2873class MBlazeABIInfo : public ABIInfo {
2874public:
2875  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2876
2877  bool isPromotableIntegerType(QualType Ty) const;
2878
2879  ABIArgInfo classifyReturnType(QualType RetTy) const;
2880  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2881
2882  virtual void computeInfo(CGFunctionInfo &FI) const {
2883    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2884    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2885         it != ie; ++it)
2886      it->info = classifyArgumentType(it->type);
2887  }
2888
2889  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2890                                 CodeGenFunction &CGF) const;
2891};
2892
2893class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2894public:
2895  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2896    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2897  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2898                           CodeGen::CodeGenModule &M) const;
2899};
2900
2901}
2902
2903bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2904  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2905  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2906    switch (BT->getKind()) {
2907    case BuiltinType::Bool:
2908    case BuiltinType::Char_S:
2909    case BuiltinType::Char_U:
2910    case BuiltinType::SChar:
2911    case BuiltinType::UChar:
2912    case BuiltinType::Short:
2913    case BuiltinType::UShort:
2914      return true;
2915    default:
2916      return false;
2917    }
2918  return false;
2919}
2920
2921llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2922                                      CodeGenFunction &CGF) const {
2923  // FIXME: Implement
2924  return 0;
2925}
2926
2927
2928ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2929  if (RetTy->isVoidType())
2930    return ABIArgInfo::getIgnore();
2931  if (isAggregateTypeForABI(RetTy))
2932    return ABIArgInfo::getIndirect(0);
2933
2934  return (isPromotableIntegerType(RetTy) ?
2935          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2936}
2937
2938ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2939  if (isAggregateTypeForABI(Ty))
2940    return ABIArgInfo::getIndirect(0);
2941
2942  return (isPromotableIntegerType(Ty) ?
2943          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2944}
2945
2946void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2947                                                  llvm::GlobalValue *GV,
2948                                                  CodeGen::CodeGenModule &M)
2949                                                  const {
2950  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2951  if (!FD) return;
2952
2953  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2954  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2955    CC = llvm::CallingConv::MBLAZE_INTR;
2956  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2957    CC = llvm::CallingConv::MBLAZE_SVOL;
2958
2959  if (CC != llvm::CallingConv::C) {
2960      // Handle 'interrupt_handler' attribute:
2961      llvm::Function *F = cast<llvm::Function>(GV);
2962
2963      // Step 1: Set ISR calling convention.
2964      F->setCallingConv(CC);
2965
2966      // Step 2: Add attributes goodness.
2967      F->addFnAttr(llvm::Attribute::NoInline);
2968  }
2969
2970  // Step 3: Emit _interrupt_handler alias.
2971  if (CC == llvm::CallingConv::MBLAZE_INTR)
2972    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2973                          "_interrupt_handler", GV, &M.getModule());
2974}
2975
2976
2977//===----------------------------------------------------------------------===//
2978// MSP430 ABI Implementation
2979//===----------------------------------------------------------------------===//
2980
2981namespace {
2982
2983class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2984public:
2985  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2986    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2987  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2988                           CodeGen::CodeGenModule &M) const;
2989};
2990
2991}
2992
2993void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2994                                                  llvm::GlobalValue *GV,
2995                                             CodeGen::CodeGenModule &M) const {
2996  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2997    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2998      // Handle 'interrupt' attribute:
2999      llvm::Function *F = cast<llvm::Function>(GV);
3000
3001      // Step 1: Set ISR calling convention.
3002      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3003
3004      // Step 2: Add attributes goodness.
3005      F->addFnAttr(llvm::Attribute::NoInline);
3006
3007      // Step 3: Emit ISR vector alias.
3008      unsigned Num = attr->getNumber() + 0xffe0;
3009      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3010                            "vector_" + Twine::utohexstr(Num),
3011                            GV, &M.getModule());
3012    }
3013  }
3014}
3015
3016//===----------------------------------------------------------------------===//
3017// MIPS ABI Implementation.  This works for both little-endian and
3018// big-endian variants.
3019//===----------------------------------------------------------------------===//
3020
3021namespace {
3022class MipsABIInfo : public ABIInfo {
3023  bool IsO32;
3024  unsigned MinABIStackAlignInBytes;
3025  llvm::Type* HandleStructTy(QualType Ty) const;
3026public:
3027  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3028    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3029
3030  ABIArgInfo classifyReturnType(QualType RetTy) const;
3031  ABIArgInfo classifyArgumentType(QualType RetTy) const;
3032  virtual void computeInfo(CGFunctionInfo &FI) const;
3033  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3034                                 CodeGenFunction &CGF) const;
3035};
3036
3037class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3038  unsigned SizeOfUnwindException;
3039public:
3040  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3041    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3042      SizeOfUnwindException(IsO32 ? 24 : 32) {}
3043
3044  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3045    return 29;
3046  }
3047
3048  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3049                               llvm::Value *Address) const;
3050
3051  unsigned getSizeOfUnwindException() const {
3052    return SizeOfUnwindException;
3053  }
3054};
3055}
3056
3057// In N32/64, an aligned double precision floating point field is passed in
3058// a register.
3059llvm::Type* MipsABIInfo::HandleStructTy(QualType Ty) const {
3060  if (IsO32)
3061    return 0;
3062
3063  const RecordType *RT = Ty->getAsStructureType();
3064
3065  if (!RT)
3066    return 0;
3067
3068  const RecordDecl *RD = RT->getDecl();
3069  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3070  uint64_t StructSize = getContext().getTypeSize(Ty);
3071  assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3072
3073  SmallVector<llvm::Type*, 8> ArgList;
3074  uint64_t LastOffset = 0;
3075  unsigned idx = 0;
3076  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3077
3078  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3079       i != e; ++i, ++idx) {
3080    const QualType Ty = (*i)->getType();
3081    const BuiltinType *BT = Ty->getAs<BuiltinType>();
3082
3083    if (!BT || BT->getKind() != BuiltinType::Double)
3084      continue;
3085
3086    uint64_t Offset = Layout.getFieldOffset(idx);
3087    if (Offset % 64) // Ignore doubles that are not aligned.
3088      continue;
3089
3090    // Add ((Offset - LastOffset) / 64) args of type i64.
3091    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3092      ArgList.push_back(I64);
3093
3094    // Add double type.
3095    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3096    LastOffset = Offset + 64;
3097  }
3098
3099  // This structure doesn't have an aligned double field.
3100  if (!LastOffset)
3101    return 0;
3102
3103  // Add ((StructSize - LastOffset) / 64) args of type i64.
3104  for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3105    ArgList.push_back(I64);
3106
3107  // If the size of the remainder is not zero, add one more integer type to
3108  // ArgList.
3109  unsigned R = (StructSize - LastOffset) % 64;
3110  if (R)
3111    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3112
3113  return llvm::StructType::get(getVMContext(), ArgList);
3114}
3115
3116ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
3117  if (isAggregateTypeForABI(Ty)) {
3118    // Ignore empty aggregates.
3119    if (getContext().getTypeSize(Ty) == 0)
3120      return ABIArgInfo::getIgnore();
3121
3122    // Records with non trivial destructors/constructors should not be passed
3123    // by value.
3124    if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3125      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3126
3127    llvm::Type *ResType;
3128    if ((ResType = HandleStructTy(Ty)))
3129      return ABIArgInfo::getDirect(ResType);
3130
3131    return ABIArgInfo::getIndirect(0);
3132  }
3133
3134  // Treat an enum type as its underlying type.
3135  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3136    Ty = EnumTy->getDecl()->getIntegerType();
3137
3138  return (Ty->isPromotableIntegerType() ?
3139          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3140}
3141
3142ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3143  if (RetTy->isVoidType())
3144    return ABIArgInfo::getIgnore();
3145
3146  if (isAggregateTypeForABI(RetTy)) {
3147    if ((IsO32 && RetTy->isAnyComplexType()) ||
3148        (!IsO32 && (getContext().getTypeSize(RetTy) <= 128)))
3149      return ABIArgInfo::getDirect();
3150
3151    return ABIArgInfo::getIndirect(0);
3152  }
3153
3154  // Treat an enum type as its underlying type.
3155  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3156    RetTy = EnumTy->getDecl()->getIntegerType();
3157
3158  return (RetTy->isPromotableIntegerType() ?
3159          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3160}
3161
3162void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3163  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3164  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3165       it != ie; ++it)
3166    it->info = classifyArgumentType(it->type);
3167}
3168
3169llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3170                                    CodeGenFunction &CGF) const {
3171  llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3172  llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3173
3174  CGBuilderTy &Builder = CGF.Builder;
3175  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3176  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3177  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
3178  llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3179  llvm::Value *AddrTyped;
3180
3181  if (TypeAlign > MinABIStackAlignInBytes) {
3182    llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3183    llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1);
3184    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign);
3185    llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc);
3186    llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3187    AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3188  }
3189  else
3190    AddrTyped = Builder.CreateBitCast(Addr, PTy);
3191
3192  llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3193  TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes);
3194  uint64_t Offset =
3195    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3196  llvm::Value *NextAddr =
3197    Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3198                      "ap.next");
3199  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3200
3201  return AddrTyped;
3202}
3203
3204bool
3205MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3206                                               llvm::Value *Address) const {
3207  // This information comes from gcc's implementation, which seems to
3208  // as canonical as it gets.
3209
3210  CodeGen::CGBuilderTy &Builder = CGF.Builder;
3211  llvm::LLVMContext &Context = CGF.getLLVMContext();
3212
3213  // Everything on MIPS is 4 bytes.  Double-precision FP registers
3214  // are aliased to pairs of single-precision FP registers.
3215  llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
3216  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3217
3218  // 0-31 are the general purpose registers, $0 - $31.
3219  // 32-63 are the floating-point registers, $f0 - $f31.
3220  // 64 and 65 are the multiply/divide registers, $hi and $lo.
3221  // 66 is the (notional, I think) register for signal-handler return.
3222  AssignToArrayRange(Builder, Address, Four8, 0, 65);
3223
3224  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3225  // They are one bit wide and ignored here.
3226
3227  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3228  // (coprocessor 1 is the FP unit)
3229  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3230  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3231  // 176-181 are the DSP accumulator registers.
3232  AssignToArrayRange(Builder, Address, Four8, 80, 181);
3233
3234  return false;
3235}
3236
3237//===----------------------------------------------------------------------===//
3238// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3239// Currently subclassed only to implement custom OpenCL C function attribute
3240// handling.
3241//===----------------------------------------------------------------------===//
3242
3243namespace {
3244
3245class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3246public:
3247  TCETargetCodeGenInfo(CodeGenTypes &CGT)
3248    : DefaultTargetCodeGenInfo(CGT) {}
3249
3250  virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3251                                   CodeGen::CodeGenModule &M) const;
3252};
3253
3254void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3255                                               llvm::GlobalValue *GV,
3256                                               CodeGen::CodeGenModule &M) const {
3257  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3258  if (!FD) return;
3259
3260  llvm::Function *F = cast<llvm::Function>(GV);
3261
3262  if (M.getLangOptions().OpenCL) {
3263    if (FD->hasAttr<OpenCLKernelAttr>()) {
3264      // OpenCL C Kernel functions are not subject to inlining
3265      F->addFnAttr(llvm::Attribute::NoInline);
3266
3267      if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3268
3269        // Convert the reqd_work_group_size() attributes to metadata.
3270        llvm::LLVMContext &Context = F->getContext();
3271        llvm::NamedMDNode *OpenCLMetadata =
3272            M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3273
3274        SmallVector<llvm::Value*, 5> Operands;
3275        Operands.push_back(F);
3276
3277        Operands.push_back(llvm::Constant::getIntegerValue(
3278                             llvm::Type::getInt32Ty(Context),
3279                             llvm::APInt(
3280                               32,
3281                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3282        Operands.push_back(llvm::Constant::getIntegerValue(
3283                             llvm::Type::getInt32Ty(Context),
3284                             llvm::APInt(
3285                               32,
3286                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3287        Operands.push_back(llvm::Constant::getIntegerValue(
3288                             llvm::Type::getInt32Ty(Context),
3289                             llvm::APInt(
3290                               32,
3291                               FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3292
3293        // Add a boolean constant operand for "required" (true) or "hint" (false)
3294        // for implementing the work_group_size_hint attr later. Currently
3295        // always true as the hint is not yet implemented.
3296        Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context)));
3297
3298        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3299      }
3300    }
3301  }
3302}
3303
3304}
3305
3306const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3307  if (TheTargetCodeGenInfo)
3308    return *TheTargetCodeGenInfo;
3309
3310  const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3311  switch (Triple.getArch()) {
3312  default:
3313    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3314
3315  case llvm::Triple::mips:
3316  case llvm::Triple::mipsel:
3317    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3318
3319  case llvm::Triple::mips64:
3320  case llvm::Triple::mips64el:
3321    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3322
3323  case llvm::Triple::arm:
3324  case llvm::Triple::thumb:
3325    {
3326      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3327
3328      if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3329        Kind = ARMABIInfo::APCS;
3330      else if (CodeGenOpts.FloatABI == "hard")
3331        Kind = ARMABIInfo::AAPCS_VFP;
3332
3333      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3334    }
3335
3336  case llvm::Triple::ppc:
3337    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3338
3339  case llvm::Triple::ptx32:
3340  case llvm::Triple::ptx64:
3341    return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3342
3343  case llvm::Triple::mblaze:
3344    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3345
3346  case llvm::Triple::msp430:
3347    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3348
3349  case llvm::Triple::tce:
3350    return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3351
3352  case llvm::Triple::x86: {
3353    bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3354
3355    if (Triple.isOSDarwin())
3356      return *(TheTargetCodeGenInfo =
3357               new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
3358
3359    switch (Triple.getOS()) {
3360    case llvm::Triple::Cygwin:
3361    case llvm::Triple::MinGW32:
3362    case llvm::Triple::AuroraUX:
3363    case llvm::Triple::DragonFly:
3364    case llvm::Triple::FreeBSD:
3365    case llvm::Triple::OpenBSD:
3366    case llvm::Triple::NetBSD:
3367      return *(TheTargetCodeGenInfo =
3368               new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
3369
3370    default:
3371      return *(TheTargetCodeGenInfo =
3372               new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
3373    }
3374  }
3375
3376  case llvm::Triple::x86_64:
3377    switch (Triple.getOS()) {
3378    case llvm::Triple::Win32:
3379    case llvm::Triple::MinGW32:
3380    case llvm::Triple::Cygwin:
3381      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3382    default:
3383      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
3384    }
3385  }
3386}
3387