ExplodedGraph.cpp revision 256ef642f8feef22fd53be7efa868e8e34752eed
1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the template classes ExplodedNode and ExplodedGraph,
11//  which represent a path-sensitive, intra-procedural "exploded graph."
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17#include "clang/AST/Stmt.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/SmallVector.h"
21#include <vector>
22
23using namespace clang;
24using namespace ento;
25
26//===----------------------------------------------------------------------===//
27// Node auditing.
28//===----------------------------------------------------------------------===//
29
30// An out of line virtual method to provide a home for the class vtable.
31ExplodedNode::Auditor::~Auditor() {}
32
33#ifndef NDEBUG
34static ExplodedNode::Auditor* NodeAuditor = 0;
35#endif
36
37void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
38#ifndef NDEBUG
39  NodeAuditor = A;
40#endif
41}
42
43//===----------------------------------------------------------------------===//
44// Cleanup.
45//===----------------------------------------------------------------------===//
46
47typedef std::vector<ExplodedNode*> NodeList;
48static inline NodeList*& getNodeList(void *&p) { return (NodeList*&) p; }
49
50ExplodedGraph::~ExplodedGraph() {
51  if (reclaimNodes) {
52    delete getNodeList(recentlyAllocatedNodes);
53    delete getNodeList(freeNodes);
54  }
55}
56
57//===----------------------------------------------------------------------===//
58// Node reclamation.
59//===----------------------------------------------------------------------===//
60
61void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
62  if (!recentlyAllocatedNodes)
63    return;
64  NodeList &nl = *getNodeList(recentlyAllocatedNodes);
65
66  // Reclaimn all nodes that match *all* the following criteria:
67  //
68  // (1) 1 predecessor (that has one successor)
69  // (2) 1 successor (that has one predecessor)
70  // (3) The ProgramPoint is for a PostStmt.
71  // (4) There is no 'tag' for the ProgramPoint.
72  // (5) The 'store' is the same as the predecessor.
73  // (6) The 'GDM' is the same as the predecessor.
74  // (7) The LocationContext is the same as the predecessor.
75  // (8) The PostStmt is for a non-CFGElement expression.
76
77  for (NodeList::iterator i = nl.begin(), e = nl.end() ; i != e; ++i) {
78    ExplodedNode *node = *i;
79
80    // Conditions 1 and 2.
81    if (node->pred_size() != 1 || node->succ_size() != 1)
82      continue;
83
84    ExplodedNode *pred = *(node->pred_begin());
85    if (pred->succ_size() != 1)
86      continue;
87
88    ExplodedNode *succ = *(node->succ_begin());
89    if (succ->pred_size() != 1)
90      continue;
91
92    // Condition 3.
93    ProgramPoint progPoint = node->getLocation();
94    if (!isa<PostStmt>(progPoint) ||
95        (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint)))
96      continue;
97    // Condition 4.
98    PostStmt ps = cast<PostStmt>(progPoint);
99    if (ps.getTag())
100      continue;
101
102    if (isa<BinaryOperator>(ps.getStmt()))
103      continue;
104
105    // Conditions 5, 6, and 7.
106    const ProgramState *state = node->getState();
107    const ProgramState *pred_state = pred->getState();
108    if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
109        progPoint.getLocationContext() != pred->getLocationContext())
110      continue;
111
112    // Condition 8.
113    if (node->getCFG().isBlkExpr(ps.getStmt()))
114      continue;
115
116    // If we reach here, we can remove the node.  This means:
117    // (a) changing the predecessors successor to the successor of this node
118    // (b) changing the successors predecessor to the predecessor of this node
119    // (c) Putting 'node' onto freeNodes.
120    pred->replaceSuccessor(succ);
121    succ->replacePredecessor(pred);
122    if (!freeNodes)
123      freeNodes = new NodeList();
124    getNodeList(freeNodes)->push_back(node);
125    Nodes.RemoveNode(node);
126    --NumNodes;
127    node->~ExplodedNode();
128  }
129
130  nl.clear();
131}
132
133//===----------------------------------------------------------------------===//
134// ExplodedNode.
135//===----------------------------------------------------------------------===//
136
137static inline BumpVector<ExplodedNode*>& getVector(void *P) {
138  return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
139}
140
141void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
142  assert (!V->isSink());
143  Preds.addNode(V, G);
144  V->Succs.addNode(this, G);
145#ifndef NDEBUG
146  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
147#endif
148}
149
150void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
151  assert(getKind() == Size1);
152  P = reinterpret_cast<uintptr_t>(node);
153  assert(getKind() == Size1);
154}
155
156void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
157  assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
158  assert(!getFlag());
159
160  if (getKind() == Size1) {
161    if (ExplodedNode *NOld = getNode()) {
162      BumpVectorContext &Ctx = G.getNodeAllocator();
163      BumpVector<ExplodedNode*> *V =
164        G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
165      new (V) BumpVector<ExplodedNode*>(Ctx, 4);
166
167      assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
168      V->push_back(NOld, Ctx);
169      V->push_back(N, Ctx);
170      P = reinterpret_cast<uintptr_t>(V) | SizeOther;
171      assert(getPtr() == (void*) V);
172      assert(getKind() == SizeOther);
173    }
174    else {
175      P = reinterpret_cast<uintptr_t>(N);
176      assert(getKind() == Size1);
177    }
178  }
179  else {
180    assert(getKind() == SizeOther);
181    getVector(getPtr()).push_back(N, G.getNodeAllocator());
182  }
183}
184
185unsigned ExplodedNode::NodeGroup::size() const {
186  if (getFlag())
187    return 0;
188
189  if (getKind() == Size1)
190    return getNode() ? 1 : 0;
191  else
192    return getVector(getPtr()).size();
193}
194
195ExplodedNode **ExplodedNode::NodeGroup::begin() const {
196  if (getFlag())
197    return NULL;
198
199  if (getKind() == Size1)
200    return (ExplodedNode**) (getPtr() ? &P : NULL);
201  else
202    return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
203}
204
205ExplodedNode** ExplodedNode::NodeGroup::end() const {
206  if (getFlag())
207    return NULL;
208
209  if (getKind() == Size1)
210    return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
211  else {
212    // Dereferencing end() is undefined behaviour. The vector is not empty, so
213    // we can dereference the last elem and then add 1 to the result.
214    return const_cast<ExplodedNode**>(getVector(getPtr()).end());
215  }
216}
217
218ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
219                                     const ProgramState *State,
220                                     bool IsSink,
221                                     bool* IsNew) {
222  // Profile 'State' to determine if we already have an existing node.
223  llvm::FoldingSetNodeID profile;
224  void *InsertPos = 0;
225
226  NodeTy::Profile(profile, L, State, IsSink);
227  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
228
229  if (!V) {
230    if (freeNodes && !getNodeList(freeNodes)->empty()) {
231      NodeList *nl = getNodeList(freeNodes);
232      V = nl->back();
233      nl->pop_back();
234    }
235    else {
236      // Allocate a new node.
237      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
238    }
239
240    new (V) NodeTy(L, State, IsSink);
241
242    if (reclaimNodes) {
243      if (!recentlyAllocatedNodes)
244        recentlyAllocatedNodes = new NodeList();
245      getNodeList(recentlyAllocatedNodes)->push_back(V);
246    }
247
248    // Insert the node into the node set and return it.
249    Nodes.InsertNode(V, InsertPos);
250
251    ++NumNodes;
252
253    if (IsNew) *IsNew = true;
254  }
255  else
256    if (IsNew) *IsNew = false;
257
258  return V;
259}
260
261std::pair<ExplodedGraph*, InterExplodedGraphMap*>
262ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
263               llvm::DenseMap<const void*, const void*> *InverseMap) const {
264
265  if (NBeg == NEnd)
266    return std::make_pair((ExplodedGraph*) 0,
267                          (InterExplodedGraphMap*) 0);
268
269  assert (NBeg < NEnd);
270
271  llvm::OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
272
273  ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
274
275  return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
276}
277
278ExplodedGraph*
279ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
280                            const ExplodedNode* const* EndSources,
281                            InterExplodedGraphMap* M,
282                   llvm::DenseMap<const void*, const void*> *InverseMap) const {
283
284  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
285  Pass1Ty Pass1;
286
287  typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
288  Pass2Ty& Pass2 = M->M;
289
290  SmallVector<const ExplodedNode*, 10> WL1, WL2;
291
292  // ===- Pass 1 (reverse DFS) -===
293  for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
294    assert(*I);
295    WL1.push_back(*I);
296  }
297
298  // Process the first worklist until it is empty.  Because it is a std::list
299  // it acts like a FIFO queue.
300  while (!WL1.empty()) {
301    const ExplodedNode *N = WL1.back();
302    WL1.pop_back();
303
304    // Have we already visited this node?  If so, continue to the next one.
305    if (Pass1.count(N))
306      continue;
307
308    // Otherwise, mark this node as visited.
309    Pass1.insert(N);
310
311    // If this is a root enqueue it to the second worklist.
312    if (N->Preds.empty()) {
313      WL2.push_back(N);
314      continue;
315    }
316
317    // Visit our predecessors and enqueue them.
318    for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
319      WL1.push_back(*I);
320  }
321
322  // We didn't hit a root? Return with a null pointer for the new graph.
323  if (WL2.empty())
324    return 0;
325
326  // Create an empty graph.
327  ExplodedGraph* G = MakeEmptyGraph();
328
329  // ===- Pass 2 (forward DFS to construct the new graph) -===
330  while (!WL2.empty()) {
331    const ExplodedNode *N = WL2.back();
332    WL2.pop_back();
333
334    // Skip this node if we have already processed it.
335    if (Pass2.find(N) != Pass2.end())
336      continue;
337
338    // Create the corresponding node in the new graph and record the mapping
339    // from the old node to the new node.
340    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
341    Pass2[N] = NewN;
342
343    // Also record the reverse mapping from the new node to the old node.
344    if (InverseMap) (*InverseMap)[NewN] = N;
345
346    // If this node is a root, designate it as such in the graph.
347    if (N->Preds.empty())
348      G->addRoot(NewN);
349
350    // In the case that some of the intended predecessors of NewN have already
351    // been created, we should hook them up as predecessors.
352
353    // Walk through the predecessors of 'N' and hook up their corresponding
354    // nodes in the new graph (if any) to the freshly created node.
355    for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
356      Pass2Ty::iterator PI = Pass2.find(*I);
357      if (PI == Pass2.end())
358        continue;
359
360      NewN->addPredecessor(PI->second, *G);
361    }
362
363    // In the case that some of the intended successors of NewN have already
364    // been created, we should hook them up as successors.  Otherwise, enqueue
365    // the new nodes from the original graph that should have nodes created
366    // in the new graph.
367    for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
368      Pass2Ty::iterator PI = Pass2.find(*I);
369      if (PI != Pass2.end()) {
370        PI->second->addPredecessor(NewN, *G);
371        continue;
372      }
373
374      // Enqueue nodes to the worklist that were marked during pass 1.
375      if (Pass1.count(*I))
376        WL2.push_back(*I);
377    }
378  }
379
380  return G;
381}
382
383void InterExplodedGraphMap::anchor() { }
384
385ExplodedNode*
386InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
387  llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
388    M.find(N);
389
390  return I == M.end() ? 0 : I->second;
391}
392
393