ExplodedGraph.cpp revision 2ac58b7c09938bb28c51c7cd2deada609b75f94c
17a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
27a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//
37a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//                     The LLVM Compiler Infrastructure
47a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//
57a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// This file is distributed under the University of Illinois Open Source
67a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// License. See LICENSE.TXT for details.
77a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//
87a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//===----------------------------------------------------------------------===//
97a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//
10//  This file defines the template classes ExplodedNode and ExplodedGraph,
11//  which represent a path-sensitive, intra-procedural "exploded graph."
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17#include "clang/AST/Stmt.h"
18#include "clang/AST/ParentMap.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/SmallVector.h"
22#include <vector>
23
24using namespace clang;
25using namespace ento;
26
27//===----------------------------------------------------------------------===//
28// Node auditing.
29//===----------------------------------------------------------------------===//
30
31// An out of line virtual method to provide a home for the class vtable.
32ExplodedNode::Auditor::~Auditor() {}
33
34#ifndef NDEBUG
35static ExplodedNode::Auditor* NodeAuditor = 0;
36#endif
37
38void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
39#ifndef NDEBUG
40  NodeAuditor = A;
41#endif
42}
43
44//===----------------------------------------------------------------------===//
45// Cleanup.
46//===----------------------------------------------------------------------===//
47
48static const unsigned CounterTop = 1000;
49
50ExplodedGraph::ExplodedGraph()
51  : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
52
53ExplodedGraph::~ExplodedGraph() {}
54
55//===----------------------------------------------------------------------===//
56// Node reclamation.
57//===----------------------------------------------------------------------===//
58
59bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
60  // Reclaimn all nodes that match *all* the following criteria:
61  //
62  // (1) 1 predecessor (that has one successor)
63  // (2) 1 successor (that has one predecessor)
64  // (3) The ProgramPoint is for a PostStmt.
65  // (4) There is no 'tag' for the ProgramPoint.
66  // (5) The 'store' is the same as the predecessor.
67  // (6) The 'GDM' is the same as the predecessor.
68  // (7) The LocationContext is the same as the predecessor.
69  // (8) The PostStmt is for a non-consumed Stmt or Expr.
70
71  // Conditions 1 and 2.
72  if (node->pred_size() != 1 || node->succ_size() != 1)
73    return false;
74
75  const ExplodedNode *pred = *(node->pred_begin());
76  if (pred->succ_size() != 1)
77    return false;
78
79  const ExplodedNode *succ = *(node->succ_begin());
80  if (succ->pred_size() != 1)
81    return false;
82
83  // Condition 3.
84  ProgramPoint progPoint = node->getLocation();
85  if (!isa<PostStmt>(progPoint) ||
86      (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint)))
87    return false;
88
89  // Condition 4.
90  PostStmt ps = cast<PostStmt>(progPoint);
91  if (ps.getTag())
92    return false;
93
94  if (isa<BinaryOperator>(ps.getStmt()))
95    return false;
96
97  // Conditions 5, 6, and 7.
98  ProgramStateRef state = node->getState();
99  ProgramStateRef pred_state = pred->getState();
100  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
101      progPoint.getLocationContext() != pred->getLocationContext())
102    return false;
103
104  // Condition 8.
105  if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
106    ParentMap &PM = progPoint.getLocationContext()->getParentMap();
107    if (!PM.isConsumedExpr(Ex))
108      return false;
109  }
110
111  return true;
112}
113
114void ExplodedGraph::collectNode(ExplodedNode *node) {
115  // Removing a node means:
116  // (a) changing the predecessors successor to the successor of this node
117  // (b) changing the successors predecessor to the predecessor of this node
118  // (c) Putting 'node' onto freeNodes.
119  assert(node->pred_size() == 1 || node->succ_size() == 1);
120  ExplodedNode *pred = *(node->pred_begin());
121  ExplodedNode *succ = *(node->succ_begin());
122  pred->replaceSuccessor(succ);
123  succ->replacePredecessor(pred);
124  FreeNodes.push_back(node);
125  Nodes.RemoveNode(node);
126  --NumNodes;
127  node->~ExplodedNode();
128}
129
130void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
131  if (ChangedNodes.empty())
132    return;
133
134  // Only periodically relcaim nodes so that we can build up a set of
135  // nodes that meet the reclamation criteria.  Freshly created nodes
136  // by definition have no successor, and thus cannot be reclaimed (see below).
137  assert(reclaimCounter > 0);
138  if (--reclaimCounter != 0)
139    return;
140  reclaimCounter = CounterTop;
141
142  for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
143       it != et; ++it) {
144    ExplodedNode *node = *it;
145    if (shouldCollect(node))
146      collectNode(node);
147  }
148  ChangedNodes.clear();
149}
150
151//===----------------------------------------------------------------------===//
152// ExplodedNode.
153//===----------------------------------------------------------------------===//
154
155static inline BumpVector<ExplodedNode*>& getVector(void *P) {
156  return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
157}
158
159void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
160  assert (!V->isSink());
161  Preds.addNode(V, G);
162  V->Succs.addNode(this, G);
163#ifndef NDEBUG
164  if (NodeAuditor) NodeAuditor->AddEdge(V, this);
165#endif
166}
167
168void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
169  assert(getKind() == Size1);
170  P = reinterpret_cast<uintptr_t>(node);
171  assert(getKind() == Size1);
172}
173
174void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
175  assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
176  assert(!getFlag());
177
178  if (getKind() == Size1) {
179    if (ExplodedNode *NOld = getNode()) {
180      BumpVectorContext &Ctx = G.getNodeAllocator();
181      BumpVector<ExplodedNode*> *V =
182        G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
183      new (V) BumpVector<ExplodedNode*>(Ctx, 4);
184
185      assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
186      V->push_back(NOld, Ctx);
187      V->push_back(N, Ctx);
188      P = reinterpret_cast<uintptr_t>(V) | SizeOther;
189      assert(getPtr() == (void*) V);
190      assert(getKind() == SizeOther);
191    }
192    else {
193      P = reinterpret_cast<uintptr_t>(N);
194      assert(getKind() == Size1);
195    }
196  }
197  else {
198    assert(getKind() == SizeOther);
199    getVector(getPtr()).push_back(N, G.getNodeAllocator());
200  }
201}
202
203unsigned ExplodedNode::NodeGroup::size() const {
204  if (getFlag())
205    return 0;
206
207  if (getKind() == Size1)
208    return getNode() ? 1 : 0;
209  else
210    return getVector(getPtr()).size();
211}
212
213ExplodedNode **ExplodedNode::NodeGroup::begin() const {
214  if (getFlag())
215    return NULL;
216
217  if (getKind() == Size1)
218    return (ExplodedNode**) (getPtr() ? &P : NULL);
219  else
220    return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
221}
222
223ExplodedNode** ExplodedNode::NodeGroup::end() const {
224  if (getFlag())
225    return NULL;
226
227  if (getKind() == Size1)
228    return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
229  else {
230    // Dereferencing end() is undefined behaviour. The vector is not empty, so
231    // we can dereference the last elem and then add 1 to the result.
232    return const_cast<ExplodedNode**>(getVector(getPtr()).end());
233  }
234}
235
236ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
237                                     ProgramStateRef State,
238                                     bool IsSink,
239                                     bool* IsNew) {
240  // Profile 'State' to determine if we already have an existing node.
241  llvm::FoldingSetNodeID profile;
242  void *InsertPos = 0;
243
244  NodeTy::Profile(profile, L, State, IsSink);
245  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
246
247  if (!V) {
248    if (!FreeNodes.empty()) {
249      V = FreeNodes.back();
250      FreeNodes.pop_back();
251    }
252    else {
253      // Allocate a new node.
254      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
255    }
256
257    new (V) NodeTy(L, State, IsSink);
258
259    if (reclaimNodes)
260      ChangedNodes.push_back(V);
261
262    // Insert the node into the node set and return it.
263    Nodes.InsertNode(V, InsertPos);
264    ++NumNodes;
265
266    if (IsNew) *IsNew = true;
267  }
268  else
269    if (IsNew) *IsNew = false;
270
271  return V;
272}
273
274std::pair<ExplodedGraph*, InterExplodedGraphMap*>
275ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
276               llvm::DenseMap<const void*, const void*> *InverseMap) const {
277
278  if (NBeg == NEnd)
279    return std::make_pair((ExplodedGraph*) 0,
280                          (InterExplodedGraphMap*) 0);
281
282  assert (NBeg < NEnd);
283
284  OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
285
286  ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
287
288  return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
289}
290
291ExplodedGraph*
292ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
293                            const ExplodedNode* const* EndSources,
294                            InterExplodedGraphMap* M,
295                   llvm::DenseMap<const void*, const void*> *InverseMap) const {
296
297  typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
298  Pass1Ty Pass1;
299
300  typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
301  Pass2Ty& Pass2 = M->M;
302
303  SmallVector<const ExplodedNode*, 10> WL1, WL2;
304
305  // ===- Pass 1 (reverse DFS) -===
306  for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
307    assert(*I);
308    WL1.push_back(*I);
309  }
310
311  // Process the first worklist until it is empty.  Because it is a std::list
312  // it acts like a FIFO queue.
313  while (!WL1.empty()) {
314    const ExplodedNode *N = WL1.back();
315    WL1.pop_back();
316
317    // Have we already visited this node?  If so, continue to the next one.
318    if (Pass1.count(N))
319      continue;
320
321    // Otherwise, mark this node as visited.
322    Pass1.insert(N);
323
324    // If this is a root enqueue it to the second worklist.
325    if (N->Preds.empty()) {
326      WL2.push_back(N);
327      continue;
328    }
329
330    // Visit our predecessors and enqueue them.
331    for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
332      WL1.push_back(*I);
333  }
334
335  // We didn't hit a root? Return with a null pointer for the new graph.
336  if (WL2.empty())
337    return 0;
338
339  // Create an empty graph.
340  ExplodedGraph* G = MakeEmptyGraph();
341
342  // ===- Pass 2 (forward DFS to construct the new graph) -===
343  while (!WL2.empty()) {
344    const ExplodedNode *N = WL2.back();
345    WL2.pop_back();
346
347    // Skip this node if we have already processed it.
348    if (Pass2.find(N) != Pass2.end())
349      continue;
350
351    // Create the corresponding node in the new graph and record the mapping
352    // from the old node to the new node.
353    ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
354    Pass2[N] = NewN;
355
356    // Also record the reverse mapping from the new node to the old node.
357    if (InverseMap) (*InverseMap)[NewN] = N;
358
359    // If this node is a root, designate it as such in the graph.
360    if (N->Preds.empty())
361      G->addRoot(NewN);
362
363    // In the case that some of the intended predecessors of NewN have already
364    // been created, we should hook them up as predecessors.
365
366    // Walk through the predecessors of 'N' and hook up their corresponding
367    // nodes in the new graph (if any) to the freshly created node.
368    for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
369      Pass2Ty::iterator PI = Pass2.find(*I);
370      if (PI == Pass2.end())
371        continue;
372
373      NewN->addPredecessor(PI->second, *G);
374    }
375
376    // In the case that some of the intended successors of NewN have already
377    // been created, we should hook them up as successors.  Otherwise, enqueue
378    // the new nodes from the original graph that should have nodes created
379    // in the new graph.
380    for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
381      Pass2Ty::iterator PI = Pass2.find(*I);
382      if (PI != Pass2.end()) {
383        PI->second->addPredecessor(NewN, *G);
384        continue;
385      }
386
387      // Enqueue nodes to the worklist that were marked during pass 1.
388      if (Pass1.count(*I))
389        WL2.push_back(*I);
390    }
391  }
392
393  return G;
394}
395
396void InterExplodedGraphMap::anchor() { }
397
398ExplodedNode*
399InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
400  llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
401    M.find(N);
402
403  return I == M.end() ? 0 : I->second;
404}
405
406