ExplodedGraph.cpp revision 2ac58b7c09938bb28c51c7cd2deada609b75f94c
17a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// 27a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// 37a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// The LLVM Compiler Infrastructure 47a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// 57a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// This file is distributed under the University of Illinois Open Source 67a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// License. See LICENSE.TXT for details. 77a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// 87a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown//===----------------------------------------------------------------------===// 97a33c86eb98056ef0570c99e713214f8dc56b6efJeff Brown// 10// This file defines the template classes ExplodedNode and ExplodedGraph, 11// which represent a path-sensitive, intra-procedural "exploded graph." 12// 13//===----------------------------------------------------------------------===// 14 15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17#include "clang/AST/Stmt.h" 18#include "clang/AST/ParentMap.h" 19#include "llvm/ADT/DenseSet.h" 20#include "llvm/ADT/DenseMap.h" 21#include "llvm/ADT/SmallVector.h" 22#include <vector> 23 24using namespace clang; 25using namespace ento; 26 27//===----------------------------------------------------------------------===// 28// Node auditing. 29//===----------------------------------------------------------------------===// 30 31// An out of line virtual method to provide a home for the class vtable. 32ExplodedNode::Auditor::~Auditor() {} 33 34#ifndef NDEBUG 35static ExplodedNode::Auditor* NodeAuditor = 0; 36#endif 37 38void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { 39#ifndef NDEBUG 40 NodeAuditor = A; 41#endif 42} 43 44//===----------------------------------------------------------------------===// 45// Cleanup. 46//===----------------------------------------------------------------------===// 47 48static const unsigned CounterTop = 1000; 49 50ExplodedGraph::ExplodedGraph() 51 : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {} 52 53ExplodedGraph::~ExplodedGraph() {} 54 55//===----------------------------------------------------------------------===// 56// Node reclamation. 57//===----------------------------------------------------------------------===// 58 59bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { 60 // Reclaimn all nodes that match *all* the following criteria: 61 // 62 // (1) 1 predecessor (that has one successor) 63 // (2) 1 successor (that has one predecessor) 64 // (3) The ProgramPoint is for a PostStmt. 65 // (4) There is no 'tag' for the ProgramPoint. 66 // (5) The 'store' is the same as the predecessor. 67 // (6) The 'GDM' is the same as the predecessor. 68 // (7) The LocationContext is the same as the predecessor. 69 // (8) The PostStmt is for a non-consumed Stmt or Expr. 70 71 // Conditions 1 and 2. 72 if (node->pred_size() != 1 || node->succ_size() != 1) 73 return false; 74 75 const ExplodedNode *pred = *(node->pred_begin()); 76 if (pred->succ_size() != 1) 77 return false; 78 79 const ExplodedNode *succ = *(node->succ_begin()); 80 if (succ->pred_size() != 1) 81 return false; 82 83 // Condition 3. 84 ProgramPoint progPoint = node->getLocation(); 85 if (!isa<PostStmt>(progPoint) || 86 (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint))) 87 return false; 88 89 // Condition 4. 90 PostStmt ps = cast<PostStmt>(progPoint); 91 if (ps.getTag()) 92 return false; 93 94 if (isa<BinaryOperator>(ps.getStmt())) 95 return false; 96 97 // Conditions 5, 6, and 7. 98 ProgramStateRef state = node->getState(); 99 ProgramStateRef pred_state = pred->getState(); 100 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 101 progPoint.getLocationContext() != pred->getLocationContext()) 102 return false; 103 104 // Condition 8. 105 if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) { 106 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 107 if (!PM.isConsumedExpr(Ex)) 108 return false; 109 } 110 111 return true; 112} 113 114void ExplodedGraph::collectNode(ExplodedNode *node) { 115 // Removing a node means: 116 // (a) changing the predecessors successor to the successor of this node 117 // (b) changing the successors predecessor to the predecessor of this node 118 // (c) Putting 'node' onto freeNodes. 119 assert(node->pred_size() == 1 || node->succ_size() == 1); 120 ExplodedNode *pred = *(node->pred_begin()); 121 ExplodedNode *succ = *(node->succ_begin()); 122 pred->replaceSuccessor(succ); 123 succ->replacePredecessor(pred); 124 FreeNodes.push_back(node); 125 Nodes.RemoveNode(node); 126 --NumNodes; 127 node->~ExplodedNode(); 128} 129 130void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 131 if (ChangedNodes.empty()) 132 return; 133 134 // Only periodically relcaim nodes so that we can build up a set of 135 // nodes that meet the reclamation criteria. Freshly created nodes 136 // by definition have no successor, and thus cannot be reclaimed (see below). 137 assert(reclaimCounter > 0); 138 if (--reclaimCounter != 0) 139 return; 140 reclaimCounter = CounterTop; 141 142 for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end(); 143 it != et; ++it) { 144 ExplodedNode *node = *it; 145 if (shouldCollect(node)) 146 collectNode(node); 147 } 148 ChangedNodes.clear(); 149} 150 151//===----------------------------------------------------------------------===// 152// ExplodedNode. 153//===----------------------------------------------------------------------===// 154 155static inline BumpVector<ExplodedNode*>& getVector(void *P) { 156 return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P); 157} 158 159void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 160 assert (!V->isSink()); 161 Preds.addNode(V, G); 162 V->Succs.addNode(this, G); 163#ifndef NDEBUG 164 if (NodeAuditor) NodeAuditor->AddEdge(V, this); 165#endif 166} 167 168void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 169 assert(getKind() == Size1); 170 P = reinterpret_cast<uintptr_t>(node); 171 assert(getKind() == Size1); 172} 173 174void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 175 assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0); 176 assert(!getFlag()); 177 178 if (getKind() == Size1) { 179 if (ExplodedNode *NOld = getNode()) { 180 BumpVectorContext &Ctx = G.getNodeAllocator(); 181 BumpVector<ExplodedNode*> *V = 182 G.getAllocator().Allocate<BumpVector<ExplodedNode*> >(); 183 new (V) BumpVector<ExplodedNode*>(Ctx, 4); 184 185 assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0); 186 V->push_back(NOld, Ctx); 187 V->push_back(N, Ctx); 188 P = reinterpret_cast<uintptr_t>(V) | SizeOther; 189 assert(getPtr() == (void*) V); 190 assert(getKind() == SizeOther); 191 } 192 else { 193 P = reinterpret_cast<uintptr_t>(N); 194 assert(getKind() == Size1); 195 } 196 } 197 else { 198 assert(getKind() == SizeOther); 199 getVector(getPtr()).push_back(N, G.getNodeAllocator()); 200 } 201} 202 203unsigned ExplodedNode::NodeGroup::size() const { 204 if (getFlag()) 205 return 0; 206 207 if (getKind() == Size1) 208 return getNode() ? 1 : 0; 209 else 210 return getVector(getPtr()).size(); 211} 212 213ExplodedNode **ExplodedNode::NodeGroup::begin() const { 214 if (getFlag()) 215 return NULL; 216 217 if (getKind() == Size1) 218 return (ExplodedNode**) (getPtr() ? &P : NULL); 219 else 220 return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin())); 221} 222 223ExplodedNode** ExplodedNode::NodeGroup::end() const { 224 if (getFlag()) 225 return NULL; 226 227 if (getKind() == Size1) 228 return (ExplodedNode**) (getPtr() ? &P+1 : NULL); 229 else { 230 // Dereferencing end() is undefined behaviour. The vector is not empty, so 231 // we can dereference the last elem and then add 1 to the result. 232 return const_cast<ExplodedNode**>(getVector(getPtr()).end()); 233 } 234} 235 236ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 237 ProgramStateRef State, 238 bool IsSink, 239 bool* IsNew) { 240 // Profile 'State' to determine if we already have an existing node. 241 llvm::FoldingSetNodeID profile; 242 void *InsertPos = 0; 243 244 NodeTy::Profile(profile, L, State, IsSink); 245 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 246 247 if (!V) { 248 if (!FreeNodes.empty()) { 249 V = FreeNodes.back(); 250 FreeNodes.pop_back(); 251 } 252 else { 253 // Allocate a new node. 254 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 255 } 256 257 new (V) NodeTy(L, State, IsSink); 258 259 if (reclaimNodes) 260 ChangedNodes.push_back(V); 261 262 // Insert the node into the node set and return it. 263 Nodes.InsertNode(V, InsertPos); 264 ++NumNodes; 265 266 if (IsNew) *IsNew = true; 267 } 268 else 269 if (IsNew) *IsNew = false; 270 271 return V; 272} 273 274std::pair<ExplodedGraph*, InterExplodedGraphMap*> 275ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, 276 llvm::DenseMap<const void*, const void*> *InverseMap) const { 277 278 if (NBeg == NEnd) 279 return std::make_pair((ExplodedGraph*) 0, 280 (InterExplodedGraphMap*) 0); 281 282 assert (NBeg < NEnd); 283 284 OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); 285 286 ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); 287 288 return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); 289} 290 291ExplodedGraph* 292ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, 293 const ExplodedNode* const* EndSources, 294 InterExplodedGraphMap* M, 295 llvm::DenseMap<const void*, const void*> *InverseMap) const { 296 297 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; 298 Pass1Ty Pass1; 299 300 typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; 301 Pass2Ty& Pass2 = M->M; 302 303 SmallVector<const ExplodedNode*, 10> WL1, WL2; 304 305 // ===- Pass 1 (reverse DFS) -=== 306 for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { 307 assert(*I); 308 WL1.push_back(*I); 309 } 310 311 // Process the first worklist until it is empty. Because it is a std::list 312 // it acts like a FIFO queue. 313 while (!WL1.empty()) { 314 const ExplodedNode *N = WL1.back(); 315 WL1.pop_back(); 316 317 // Have we already visited this node? If so, continue to the next one. 318 if (Pass1.count(N)) 319 continue; 320 321 // Otherwise, mark this node as visited. 322 Pass1.insert(N); 323 324 // If this is a root enqueue it to the second worklist. 325 if (N->Preds.empty()) { 326 WL2.push_back(N); 327 continue; 328 } 329 330 // Visit our predecessors and enqueue them. 331 for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) 332 WL1.push_back(*I); 333 } 334 335 // We didn't hit a root? Return with a null pointer for the new graph. 336 if (WL2.empty()) 337 return 0; 338 339 // Create an empty graph. 340 ExplodedGraph* G = MakeEmptyGraph(); 341 342 // ===- Pass 2 (forward DFS to construct the new graph) -=== 343 while (!WL2.empty()) { 344 const ExplodedNode *N = WL2.back(); 345 WL2.pop_back(); 346 347 // Skip this node if we have already processed it. 348 if (Pass2.find(N) != Pass2.end()) 349 continue; 350 351 // Create the corresponding node in the new graph and record the mapping 352 // from the old node to the new node. 353 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0); 354 Pass2[N] = NewN; 355 356 // Also record the reverse mapping from the new node to the old node. 357 if (InverseMap) (*InverseMap)[NewN] = N; 358 359 // If this node is a root, designate it as such in the graph. 360 if (N->Preds.empty()) 361 G->addRoot(NewN); 362 363 // In the case that some of the intended predecessors of NewN have already 364 // been created, we should hook them up as predecessors. 365 366 // Walk through the predecessors of 'N' and hook up their corresponding 367 // nodes in the new graph (if any) to the freshly created node. 368 for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { 369 Pass2Ty::iterator PI = Pass2.find(*I); 370 if (PI == Pass2.end()) 371 continue; 372 373 NewN->addPredecessor(PI->second, *G); 374 } 375 376 // In the case that some of the intended successors of NewN have already 377 // been created, we should hook them up as successors. Otherwise, enqueue 378 // the new nodes from the original graph that should have nodes created 379 // in the new graph. 380 for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { 381 Pass2Ty::iterator PI = Pass2.find(*I); 382 if (PI != Pass2.end()) { 383 PI->second->addPredecessor(NewN, *G); 384 continue; 385 } 386 387 // Enqueue nodes to the worklist that were marked during pass 1. 388 if (Pass1.count(*I)) 389 WL2.push_back(*I); 390 } 391 } 392 393 return G; 394} 395 396void InterExplodedGraphMap::anchor() { } 397 398ExplodedNode* 399InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const { 400 llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = 401 M.find(N); 402 403 return I == M.end() ? 0 : I->second; 404} 405 406