ExplodedGraph.cpp revision 4d9e497a2b1eab3b1214848216050c64fc3acfd6
1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the template classes ExplodedNode and ExplodedGraph, 11// which represent a path-sensitive, intra-procedural "exploded graph." 12// 13//===----------------------------------------------------------------------===// 14 15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18#include "clang/AST/Stmt.h" 19#include "clang/AST/ParentMap.h" 20#include "llvm/ADT/DenseSet.h" 21#include "llvm/ADT/DenseMap.h" 22#include "llvm/ADT/SmallVector.h" 23#include "llvm/ADT/Statistic.h" 24#include <vector> 25 26using namespace clang; 27using namespace ento; 28 29//===----------------------------------------------------------------------===// 30// Node auditing. 31//===----------------------------------------------------------------------===// 32 33// An out of line virtual method to provide a home for the class vtable. 34ExplodedNode::Auditor::~Auditor() {} 35 36#ifndef NDEBUG 37static ExplodedNode::Auditor* NodeAuditor = 0; 38#endif 39 40void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { 41#ifndef NDEBUG 42 NodeAuditor = A; 43#endif 44} 45 46//===----------------------------------------------------------------------===// 47// Cleanup. 48//===----------------------------------------------------------------------===// 49 50ExplodedGraph::ExplodedGraph() 51 : NumNodes(0), ReclaimNodeInterval(0) {} 52 53ExplodedGraph::~ExplodedGraph() {} 54 55//===----------------------------------------------------------------------===// 56// Node reclamation. 57//===----------------------------------------------------------------------===// 58 59bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { 60 // Reclaim all nodes that match *all* the following criteria: 61 // 62 // (1) 1 predecessor (that has one successor) 63 // (2) 1 successor (that has one predecessor) 64 // (3) The ProgramPoint is for a PostStmt. 65 // (4) There is no 'tag' for the ProgramPoint. 66 // (5) The 'store' is the same as the predecessor. 67 // (6) The 'GDM' is the same as the predecessor. 68 // (7) The LocationContext is the same as the predecessor. 69 // (8) The PostStmt isn't for a non-consumed Stmt or Expr. 70 // (9) The successor is not a CallExpr StmtPoint (so that we would be able to 71 // find it when retrying a call with no inlining). 72 // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. 73 74 // Conditions 1 and 2. 75 if (node->pred_size() != 1 || node->succ_size() != 1) 76 return false; 77 78 const ExplodedNode *pred = *(node->pred_begin()); 79 if (pred->succ_size() != 1) 80 return false; 81 82 const ExplodedNode *succ = *(node->succ_begin()); 83 if (succ->pred_size() != 1) 84 return false; 85 86 // Condition 3. 87 ProgramPoint progPoint = node->getLocation(); 88 if (!isa<PostStmt>(progPoint)) 89 return false; 90 91 // Condition 4. 92 PostStmt ps = cast<PostStmt>(progPoint); 93 if (ps.getTag()) 94 return false; 95 96 // Conditions 5, 6, and 7. 97 ProgramStateRef state = node->getState(); 98 ProgramStateRef pred_state = pred->getState(); 99 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 100 progPoint.getLocationContext() != pred->getLocationContext()) 101 return false; 102 103 // Condition 8. 104 // Do not collect nodes for non-consumed Stmt or Expr to ensure precise 105 // diagnostic generation; specifically, so that we could anchor arrows 106 // pointing to the beginning of statements (as written in code). 107 if (!isa<Expr>(ps.getStmt())) 108 return false; 109 110 if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) { 111 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 112 if (!PM.isConsumedExpr(Ex)) 113 return false; 114 } 115 116 // Condition 9. 117 const ProgramPoint SuccLoc = succ->getLocation(); 118 if (const StmtPoint *SP = dyn_cast<StmtPoint>(&SuccLoc)) 119 if (CallEvent::isCallStmt(SP->getStmt())) 120 return false; 121 122 return true; 123} 124 125void ExplodedGraph::collectNode(ExplodedNode *node) { 126 // Removing a node means: 127 // (a) changing the predecessors successor to the successor of this node 128 // (b) changing the successors predecessor to the predecessor of this node 129 // (c) Putting 'node' onto freeNodes. 130 assert(node->pred_size() == 1 || node->succ_size() == 1); 131 ExplodedNode *pred = *(node->pred_begin()); 132 ExplodedNode *succ = *(node->succ_begin()); 133 pred->replaceSuccessor(succ); 134 succ->replacePredecessor(pred); 135 FreeNodes.push_back(node); 136 Nodes.RemoveNode(node); 137 --NumNodes; 138 node->~ExplodedNode(); 139} 140 141void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 142 if (ChangedNodes.empty()) 143 return; 144 145 // Only periodically reclaim nodes so that we can build up a set of 146 // nodes that meet the reclamation criteria. Freshly created nodes 147 // by definition have no successor, and thus cannot be reclaimed (see below). 148 assert(ReclaimCounter > 0); 149 if (--ReclaimCounter != 0) 150 return; 151 ReclaimCounter = ReclaimNodeInterval; 152 153 for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end(); 154 it != et; ++it) { 155 ExplodedNode *node = *it; 156 if (shouldCollect(node)) 157 collectNode(node); 158 } 159 ChangedNodes.clear(); 160} 161 162//===----------------------------------------------------------------------===// 163// ExplodedNode. 164//===----------------------------------------------------------------------===// 165 166// An NodeGroup's storage type is actually very much like a TinyPtrVector: 167// it can be either a pointer to a single ExplodedNode, or a pointer to a 168// BumpVector allocated with the ExplodedGraph's allocator. This allows the 169// common case of single-node NodeGroups to be implemented with no extra memory. 170// 171// Consequently, each of the NodeGroup methods have up to four cases to handle: 172// 1. The flag is set and this group does not actually contain any nodes. 173// 2. The group is empty, in which case the storage value is null. 174// 3. The group contains a single node. 175// 4. The group contains more than one node. 176typedef BumpVector<ExplodedNode *> ExplodedNodeVector; 177typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage; 178 179void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 180 assert (!V->isSink()); 181 Preds.addNode(V, G); 182 V->Succs.addNode(this, G); 183#ifndef NDEBUG 184 if (NodeAuditor) NodeAuditor->AddEdge(V, this); 185#endif 186} 187 188void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 189 assert(!getFlag()); 190 191 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 192 assert(Storage.is<ExplodedNode *>()); 193 Storage = node; 194 assert(Storage.is<ExplodedNode *>()); 195} 196 197void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 198 assert(!getFlag()); 199 200 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 201 if (Storage.isNull()) { 202 Storage = N; 203 assert(Storage.is<ExplodedNode *>()); 204 return; 205 } 206 207 ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>(); 208 209 if (!V) { 210 // Switch from single-node to multi-node representation. 211 ExplodedNode *Old = Storage.get<ExplodedNode *>(); 212 213 BumpVectorContext &Ctx = G.getNodeAllocator(); 214 V = G.getAllocator().Allocate<ExplodedNodeVector>(); 215 new (V) ExplodedNodeVector(Ctx, 4); 216 V->push_back(Old, Ctx); 217 218 Storage = V; 219 assert(!getFlag()); 220 assert(Storage.is<ExplodedNodeVector *>()); 221 } 222 223 V->push_back(N, G.getNodeAllocator()); 224} 225 226unsigned ExplodedNode::NodeGroup::size() const { 227 if (getFlag()) 228 return 0; 229 230 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 231 if (Storage.isNull()) 232 return 0; 233 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 234 return V->size(); 235 return 1; 236} 237 238ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { 239 if (getFlag()) 240 return 0; 241 242 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 243 if (Storage.isNull()) 244 return 0; 245 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 246 return V->begin(); 247 return Storage.getAddrOfPtr1(); 248} 249 250ExplodedNode * const *ExplodedNode::NodeGroup::end() const { 251 if (getFlag()) 252 return 0; 253 254 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 255 if (Storage.isNull()) 256 return 0; 257 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 258 return V->end(); 259 return Storage.getAddrOfPtr1() + 1; 260} 261 262ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 263 ProgramStateRef State, 264 bool IsSink, 265 bool* IsNew) { 266 // Profile 'State' to determine if we already have an existing node. 267 llvm::FoldingSetNodeID profile; 268 void *InsertPos = 0; 269 270 NodeTy::Profile(profile, L, State, IsSink); 271 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 272 273 if (!V) { 274 if (!FreeNodes.empty()) { 275 V = FreeNodes.back(); 276 FreeNodes.pop_back(); 277 } 278 else { 279 // Allocate a new node. 280 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 281 } 282 283 new (V) NodeTy(L, State, IsSink); 284 285 if (ReclaimNodeInterval) 286 ChangedNodes.push_back(V); 287 288 // Insert the node into the node set and return it. 289 Nodes.InsertNode(V, InsertPos); 290 ++NumNodes; 291 292 if (IsNew) *IsNew = true; 293 } 294 else 295 if (IsNew) *IsNew = false; 296 297 return V; 298} 299 300std::pair<ExplodedGraph*, InterExplodedGraphMap*> 301ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, 302 llvm::DenseMap<const void*, const void*> *InverseMap) const { 303 304 if (NBeg == NEnd) 305 return std::make_pair((ExplodedGraph*) 0, 306 (InterExplodedGraphMap*) 0); 307 308 assert (NBeg < NEnd); 309 310 OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); 311 312 ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); 313 314 return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); 315} 316 317ExplodedGraph* 318ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, 319 const ExplodedNode* const* EndSources, 320 InterExplodedGraphMap* M, 321 llvm::DenseMap<const void*, const void*> *InverseMap) const { 322 323 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; 324 Pass1Ty Pass1; 325 326 typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; 327 Pass2Ty& Pass2 = M->M; 328 329 SmallVector<const ExplodedNode*, 10> WL1, WL2; 330 331 // ===- Pass 1 (reverse DFS) -=== 332 for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { 333 if (*I) 334 WL1.push_back(*I); 335 } 336 337 // Process the first worklist until it is empty. Because it is a std::list 338 // it acts like a FIFO queue. 339 while (!WL1.empty()) { 340 const ExplodedNode *N = WL1.back(); 341 WL1.pop_back(); 342 343 // Have we already visited this node? If so, continue to the next one. 344 if (Pass1.count(N)) 345 continue; 346 347 // Otherwise, mark this node as visited. 348 Pass1.insert(N); 349 350 // If this is a root enqueue it to the second worklist. 351 if (N->Preds.empty()) { 352 WL2.push_back(N); 353 continue; 354 } 355 356 // Visit our predecessors and enqueue them. 357 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); 358 I != E; ++I) 359 WL1.push_back(*I); 360 } 361 362 // We didn't hit a root? Return with a null pointer for the new graph. 363 if (WL2.empty()) 364 return 0; 365 366 // Create an empty graph. 367 ExplodedGraph* G = MakeEmptyGraph(); 368 369 // ===- Pass 2 (forward DFS to construct the new graph) -=== 370 while (!WL2.empty()) { 371 const ExplodedNode *N = WL2.back(); 372 WL2.pop_back(); 373 374 // Skip this node if we have already processed it. 375 if (Pass2.find(N) != Pass2.end()) 376 continue; 377 378 // Create the corresponding node in the new graph and record the mapping 379 // from the old node to the new node. 380 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0); 381 Pass2[N] = NewN; 382 383 // Also record the reverse mapping from the new node to the old node. 384 if (InverseMap) (*InverseMap)[NewN] = N; 385 386 // If this node is a root, designate it as such in the graph. 387 if (N->Preds.empty()) 388 G->addRoot(NewN); 389 390 // In the case that some of the intended predecessors of NewN have already 391 // been created, we should hook them up as predecessors. 392 393 // Walk through the predecessors of 'N' and hook up their corresponding 394 // nodes in the new graph (if any) to the freshly created node. 395 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); 396 I != E; ++I) { 397 Pass2Ty::iterator PI = Pass2.find(*I); 398 if (PI == Pass2.end()) 399 continue; 400 401 NewN->addPredecessor(PI->second, *G); 402 } 403 404 // In the case that some of the intended successors of NewN have already 405 // been created, we should hook them up as successors. Otherwise, enqueue 406 // the new nodes from the original graph that should have nodes created 407 // in the new graph. 408 for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end(); 409 I != E; ++I) { 410 Pass2Ty::iterator PI = Pass2.find(*I); 411 if (PI != Pass2.end()) { 412 PI->second->addPredecessor(NewN, *G); 413 continue; 414 } 415 416 // Enqueue nodes to the worklist that were marked during pass 1. 417 if (Pass1.count(*I)) 418 WL2.push_back(*I); 419 } 420 } 421 422 return G; 423} 424 425void InterExplodedGraphMap::anchor() { } 426 427ExplodedNode* 428InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const { 429 llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = 430 M.find(N); 431 432 return I == M.end() ? 0 : I->second; 433} 434 435