ExplodedGraph.cpp revision 9d0064e802e81d0833e8ccab8978b17c0bac3625
1//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the template classes ExplodedNode and ExplodedGraph, 11// which represent a path-sensitive, intra-procedural "exploded graph." 12// 13//===----------------------------------------------------------------------===// 14 15#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17#include "clang/AST/Stmt.h" 18#include "clang/AST/ParentMap.h" 19#include "llvm/ADT/DenseSet.h" 20#include "llvm/ADT/DenseMap.h" 21#include "llvm/ADT/SmallVector.h" 22#include <vector> 23 24using namespace clang; 25using namespace ento; 26 27//===----------------------------------------------------------------------===// 28// Node auditing. 29//===----------------------------------------------------------------------===// 30 31// An out of line virtual method to provide a home for the class vtable. 32ExplodedNode::Auditor::~Auditor() {} 33 34#ifndef NDEBUG 35static ExplodedNode::Auditor* NodeAuditor = 0; 36#endif 37 38void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { 39#ifndef NDEBUG 40 NodeAuditor = A; 41#endif 42} 43 44//===----------------------------------------------------------------------===// 45// Cleanup. 46//===----------------------------------------------------------------------===// 47 48typedef std::vector<ExplodedNode*> NodeList; 49static inline NodeList*& getNodeList(void *&p) { return (NodeList*&) p; } 50 51static const unsigned CounterTop = 1000; 52 53ExplodedGraph::ExplodedGraph() 54 : NumNodes(0), recentlyAllocatedNodes(0), 55 freeNodes(0), reclaimNodes(false), 56 reclaimCounter(CounterTop) {} 57 58ExplodedGraph::~ExplodedGraph() { 59 if (reclaimNodes) { 60 delete getNodeList(recentlyAllocatedNodes); 61 delete getNodeList(freeNodes); 62 } 63} 64 65//===----------------------------------------------------------------------===// 66// Node reclamation. 67//===----------------------------------------------------------------------===// 68 69void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 70 if (!recentlyAllocatedNodes) 71 return; 72 73 // Only periodically relcaim nodes so that we can build up a set of 74 // nodes that meet the reclamation criteria. Freshly created nodes 75 // by definition have no successor, and thus cannot be reclaimed (see below). 76 assert(reclaimCounter > 0); 77 if (--reclaimCounter != 0) 78 return; 79 reclaimCounter = CounterTop; 80 81 NodeList &nl = *getNodeList(recentlyAllocatedNodes); 82 83 // Reclaimn all nodes that match *all* the following criteria: 84 // 85 // (1) 1 predecessor (that has one successor) 86 // (2) 1 successor (that has one predecessor) 87 // (3) The ProgramPoint is for a PostStmt. 88 // (4) There is no 'tag' for the ProgramPoint. 89 // (5) The 'store' is the same as the predecessor. 90 // (6) The 'GDM' is the same as the predecessor. 91 // (7) The LocationContext is the same as the predecessor. 92 // (8) The PostStmt is for a non-consumed Stmt or Expr. 93 94 for (NodeList::iterator i = nl.begin(), e = nl.end() ; i != e; ++i) { 95 ExplodedNode *node = *i; 96 97 // Conditions 1 and 2. 98 if (node->pred_size() != 1 || node->succ_size() != 1) 99 continue; 100 101 ExplodedNode *pred = *(node->pred_begin()); 102 if (pred->succ_size() != 1) 103 continue; 104 105 ExplodedNode *succ = *(node->succ_begin()); 106 if (succ->pred_size() != 1) 107 continue; 108 109 // Condition 3. 110 ProgramPoint progPoint = node->getLocation(); 111 if (!isa<PostStmt>(progPoint) || 112 (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint))) 113 continue; 114 // Condition 4. 115 PostStmt ps = cast<PostStmt>(progPoint); 116 if (ps.getTag()) 117 continue; 118 119 if (isa<BinaryOperator>(ps.getStmt())) 120 continue; 121 122 // Conditions 5, 6, and 7. 123 const ProgramState *state = node->getState(); 124 const ProgramState *pred_state = pred->getState(); 125 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 126 progPoint.getLocationContext() != pred->getLocationContext()) 127 continue; 128 129 // Condition 8. 130 if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) { 131 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 132 if (!PM.isConsumedExpr(Ex)) 133 continue; 134 } 135 136 // If we reach here, we can remove the node. This means: 137 // (a) changing the predecessors successor to the successor of this node 138 // (b) changing the successors predecessor to the predecessor of this node 139 // (c) Putting 'node' onto freeNodes. 140 pred->replaceSuccessor(succ); 141 succ->replacePredecessor(pred); 142 if (!freeNodes) 143 freeNodes = new NodeList(); 144 getNodeList(freeNodes)->push_back(node); 145 Nodes.RemoveNode(node); 146 --NumNodes; 147 node->~ExplodedNode(); 148 } 149 150 nl.clear(); 151} 152 153//===----------------------------------------------------------------------===// 154// ExplodedNode. 155//===----------------------------------------------------------------------===// 156 157static inline BumpVector<ExplodedNode*>& getVector(void *P) { 158 return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P); 159} 160 161void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 162 assert (!V->isSink()); 163 Preds.addNode(V, G); 164 V->Succs.addNode(this, G); 165#ifndef NDEBUG 166 if (NodeAuditor) NodeAuditor->AddEdge(V, this); 167#endif 168} 169 170void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 171 assert(getKind() == Size1); 172 P = reinterpret_cast<uintptr_t>(node); 173 assert(getKind() == Size1); 174} 175 176void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 177 assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0); 178 assert(!getFlag()); 179 180 if (getKind() == Size1) { 181 if (ExplodedNode *NOld = getNode()) { 182 BumpVectorContext &Ctx = G.getNodeAllocator(); 183 BumpVector<ExplodedNode*> *V = 184 G.getAllocator().Allocate<BumpVector<ExplodedNode*> >(); 185 new (V) BumpVector<ExplodedNode*>(Ctx, 4); 186 187 assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0); 188 V->push_back(NOld, Ctx); 189 V->push_back(N, Ctx); 190 P = reinterpret_cast<uintptr_t>(V) | SizeOther; 191 assert(getPtr() == (void*) V); 192 assert(getKind() == SizeOther); 193 } 194 else { 195 P = reinterpret_cast<uintptr_t>(N); 196 assert(getKind() == Size1); 197 } 198 } 199 else { 200 assert(getKind() == SizeOther); 201 getVector(getPtr()).push_back(N, G.getNodeAllocator()); 202 } 203} 204 205unsigned ExplodedNode::NodeGroup::size() const { 206 if (getFlag()) 207 return 0; 208 209 if (getKind() == Size1) 210 return getNode() ? 1 : 0; 211 else 212 return getVector(getPtr()).size(); 213} 214 215ExplodedNode **ExplodedNode::NodeGroup::begin() const { 216 if (getFlag()) 217 return NULL; 218 219 if (getKind() == Size1) 220 return (ExplodedNode**) (getPtr() ? &P : NULL); 221 else 222 return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin())); 223} 224 225ExplodedNode** ExplodedNode::NodeGroup::end() const { 226 if (getFlag()) 227 return NULL; 228 229 if (getKind() == Size1) 230 return (ExplodedNode**) (getPtr() ? &P+1 : NULL); 231 else { 232 // Dereferencing end() is undefined behaviour. The vector is not empty, so 233 // we can dereference the last elem and then add 1 to the result. 234 return const_cast<ExplodedNode**>(getVector(getPtr()).end()); 235 } 236} 237 238ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 239 const ProgramState *State, 240 bool IsSink, 241 bool* IsNew) { 242 // Profile 'State' to determine if we already have an existing node. 243 llvm::FoldingSetNodeID profile; 244 void *InsertPos = 0; 245 246 NodeTy::Profile(profile, L, State, IsSink); 247 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 248 249 if (!V) { 250 if (freeNodes && !getNodeList(freeNodes)->empty()) { 251 NodeList *nl = getNodeList(freeNodes); 252 V = nl->back(); 253 nl->pop_back(); 254 } 255 else { 256 // Allocate a new node. 257 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 258 } 259 260 new (V) NodeTy(L, State, IsSink); 261 262 if (reclaimNodes) { 263 if (!recentlyAllocatedNodes) 264 recentlyAllocatedNodes = new NodeList(); 265 getNodeList(recentlyAllocatedNodes)->push_back(V); 266 } 267 268 // Insert the node into the node set and return it. 269 Nodes.InsertNode(V, InsertPos); 270 271 ++NumNodes; 272 273 if (IsNew) *IsNew = true; 274 } 275 else 276 if (IsNew) *IsNew = false; 277 278 return V; 279} 280 281std::pair<ExplodedGraph*, InterExplodedGraphMap*> 282ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, 283 llvm::DenseMap<const void*, const void*> *InverseMap) const { 284 285 if (NBeg == NEnd) 286 return std::make_pair((ExplodedGraph*) 0, 287 (InterExplodedGraphMap*) 0); 288 289 assert (NBeg < NEnd); 290 291 llvm::OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); 292 293 ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); 294 295 return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); 296} 297 298ExplodedGraph* 299ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, 300 const ExplodedNode* const* EndSources, 301 InterExplodedGraphMap* M, 302 llvm::DenseMap<const void*, const void*> *InverseMap) const { 303 304 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; 305 Pass1Ty Pass1; 306 307 typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; 308 Pass2Ty& Pass2 = M->M; 309 310 SmallVector<const ExplodedNode*, 10> WL1, WL2; 311 312 // ===- Pass 1 (reverse DFS) -=== 313 for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { 314 assert(*I); 315 WL1.push_back(*I); 316 } 317 318 // Process the first worklist until it is empty. Because it is a std::list 319 // it acts like a FIFO queue. 320 while (!WL1.empty()) { 321 const ExplodedNode *N = WL1.back(); 322 WL1.pop_back(); 323 324 // Have we already visited this node? If so, continue to the next one. 325 if (Pass1.count(N)) 326 continue; 327 328 // Otherwise, mark this node as visited. 329 Pass1.insert(N); 330 331 // If this is a root enqueue it to the second worklist. 332 if (N->Preds.empty()) { 333 WL2.push_back(N); 334 continue; 335 } 336 337 // Visit our predecessors and enqueue them. 338 for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) 339 WL1.push_back(*I); 340 } 341 342 // We didn't hit a root? Return with a null pointer for the new graph. 343 if (WL2.empty()) 344 return 0; 345 346 // Create an empty graph. 347 ExplodedGraph* G = MakeEmptyGraph(); 348 349 // ===- Pass 2 (forward DFS to construct the new graph) -=== 350 while (!WL2.empty()) { 351 const ExplodedNode *N = WL2.back(); 352 WL2.pop_back(); 353 354 // Skip this node if we have already processed it. 355 if (Pass2.find(N) != Pass2.end()) 356 continue; 357 358 // Create the corresponding node in the new graph and record the mapping 359 // from the old node to the new node. 360 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0); 361 Pass2[N] = NewN; 362 363 // Also record the reverse mapping from the new node to the old node. 364 if (InverseMap) (*InverseMap)[NewN] = N; 365 366 // If this node is a root, designate it as such in the graph. 367 if (N->Preds.empty()) 368 G->addRoot(NewN); 369 370 // In the case that some of the intended predecessors of NewN have already 371 // been created, we should hook them up as predecessors. 372 373 // Walk through the predecessors of 'N' and hook up their corresponding 374 // nodes in the new graph (if any) to the freshly created node. 375 for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { 376 Pass2Ty::iterator PI = Pass2.find(*I); 377 if (PI == Pass2.end()) 378 continue; 379 380 NewN->addPredecessor(PI->second, *G); 381 } 382 383 // In the case that some of the intended successors of NewN have already 384 // been created, we should hook them up as successors. Otherwise, enqueue 385 // the new nodes from the original graph that should have nodes created 386 // in the new graph. 387 for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { 388 Pass2Ty::iterator PI = Pass2.find(*I); 389 if (PI != Pass2.end()) { 390 PI->second->addPredecessor(NewN, *G); 391 continue; 392 } 393 394 // Enqueue nodes to the worklist that were marked during pass 1. 395 if (Pass1.count(*I)) 396 WL2.push_back(*I); 397 } 398 } 399 400 return G; 401} 402 403void InterExplodedGraphMap::anchor() { } 404 405ExplodedNode* 406InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const { 407 llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = 408 M.find(N); 409 410 return I == M.end() ? 0 : I->second; 411} 412 413