1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library 2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra. Eigen itself is part of the KDE project. 3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// 4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> 5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> 6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// 7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla 8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed 9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway 12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace Eigen { 14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \geometry_module \ingroup Geometry_Module 16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \class Hyperplane 18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \brief A hyperplane 20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. 22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. 23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \param _Scalar the scalar type, i.e., the type of the coefficients 25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. 26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * Notice that the dimension of the hyperplane is _AmbientDim-1. 27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * This class represents an hyperplane as the zero set of the implicit equation 29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) 30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * and \f$ d \f$ is the distance (offset) to the origin. 31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename _Scalar, int _AmbientDim> 33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathclass Hyperplane 34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{ 35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathpublic: 36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) 37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath enum { AmbientDimAtCompileTime = _AmbientDim }; 38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef _Scalar Scalar; 39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef typename NumTraits<Scalar>::Real RealScalar; 40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; 41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic 42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath ? Dynamic 43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath : int(AmbientDimAtCompileTime)+1,1> Coefficients; 44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; 45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Default constructor without initialization */ 47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline explicit Hyperplane() {} 48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Constructs a dynamic-size hyperplane with \a _dim the dimension 50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * of the ambient space */ 51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {} 52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Construct a plane from its normal \a n and a point \a e onto the plane. 54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \warning the vector normal is assumed to be normalized. 55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Hyperplane(const VectorType& n, const VectorType& e) 57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath : m_coeffs(n.size()+1) 58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath normal() = n; 60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath offset() = -e.eigen2_dot(n); 61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Constructs a plane from its normal \a n and distance to the origin \a d 64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. 65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \warning the vector normal is assumed to be normalized. 66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Hyperplane(const VectorType& n, Scalar d) 68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath : m_coeffs(n.size()+1) 69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath normal() = n; 71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath offset() = d; 72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space 75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. 76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) 78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Hyperplane result(p0.size()); 80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath result.normal() = (p1 - p0).unitOrthogonal(); 81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath result.offset() = -result.normal().eigen2_dot(p0); 82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return result; 83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Constructs a hyperplane passing through the three points. The dimension of the ambient space 86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * is required to be exactly 3. 87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) 89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) 91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Hyperplane result(p0.size()); 92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath result.normal() = (p2 - p0).cross(p1 - p0).normalized(); 93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath result.offset() = -result.normal().eigen2_dot(p0); 94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return result; 95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Constructs a hyperplane passing through the parametrized line \a parametrized. 98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, 99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * so an arbitrary choice is made. 100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // FIXME to be consitent with the rest this could be implemented as a static Through function ?? 102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) 103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath normal() = parametrized.direction().unitOrthogonal(); 105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath offset() = -normal().eigen2_dot(parametrized.origin()); 106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath ~Hyperplane() {} 109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns the dimension in which the plane holds */ 111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); } 112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** normalizes \c *this */ 114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath void normalize(void) 115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath m_coeffs /= normal().norm(); 117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns the signed distance between the plane \c *this and a point \a p. 120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \sa absDistance() 121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); } 123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns the absolute distance between the plane \c *this and a point \a p. 125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \sa signedDistance() 126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); } 128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns the projection of a point \a p onto the plane \c *this. 130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } 132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns a constant reference to the unit normal vector of the plane, which corresponds 134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * to the linear part of the implicit equation. 135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); } 137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds 139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * to the linear part of the implicit equation. 140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } 142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns the distance to the origin, which is also the "constant term" of the implicit equation 144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \warning the vector normal is assumed to be normalized. 145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } 147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns a non-constant reference to the distance to the origin, which is also the constant part 149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * of the implicit equation */ 150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Scalar& offset() { return m_coeffs(dim()); } 151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns a constant reference to the coefficients c_i of the plane equation: 153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ 154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline const Coefficients& coeffs() const { return m_coeffs; } 156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns a non-constant reference to the coefficients c_i of the plane equation: 158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ 159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Coefficients& coeffs() { return m_coeffs; } 161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns the intersection of *this with \a other. 163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. 165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \note If \a other is approximately parallel to *this, this method will return any point on *this. 167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath VectorType intersection(const Hyperplane& other) 169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) 171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); 172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests 173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath // whether the two lines are approximately parallel. 174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath if(ei_isMuchSmallerThan(det, Scalar(1))) 175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { // special case where the two lines are approximately parallel. Pick any point on the first line. 176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0))) 177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); 178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath else 179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); 180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath else 182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { // general case 183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Scalar invdet = Scalar(1) / det; 184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), 185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); 186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. 190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \param mat the Dim x Dim transformation matrix 192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \param traits specifies whether the matrix \a mat represents an Isometry 193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * or a more generic Affine transformation. The default is Affine. 194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath template<typename XprType> 196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) 197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath if (traits==Affine) 199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath normal() = mat.inverse().transpose() * normal(); 200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath else if (traits==Isometry) 201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath normal() = mat * normal(); 202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath else 203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath ei_assert("invalid traits value in Hyperplane::transform()"); 205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return *this; 207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Applies the transformation \a t to \c *this and returns a reference to \c *this. 210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \param t the transformation of dimension Dim 212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \param traits specifies whether the transformation \a t represents an Isometry 213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * or a more generic Affine transformation. The default is Affine. 214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * Other kind of transformations are not supported. 215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t, 217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath TransformTraits traits = Affine) 218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath transform(t.linear(), traits); 220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath offset() -= t.translation().eigen2_dot(normal()); 221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return *this; 222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns \c *this with scalar type casted to \a NewScalarType 225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * Note that if \a NewScalarType is equal to the current scalar type of \c *this 227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * then this function smartly returns a const reference to \c *this. 228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath */ 229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath template<typename NewScalarType> 230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline typename internal::cast_return_type<Hyperplane, 231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const 232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { 233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath return typename internal::cast_return_type<Hyperplane, 234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this); 235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath } 236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** Copy constructor with scalar type conversion */ 238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath template<typename OtherScalarType> 239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other) 240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { m_coeffs = other.coeffs().template cast<Scalar>(); } 241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath /** \returns \c true if \c *this is approximately equal to \a other, within the precision 243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * determined by \a prec. 244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * 245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath * \sa MatrixBase::isApprox() */ 246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const 247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath { return m_coeffs.isApprox(other.m_coeffs, prec); } 248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathprotected: 250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath Coefficients m_coeffs; 252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}; 253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath 254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace Eigen 255