1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
11#define EIGEN_SPARSE_SELFADJOINTVIEW_H
12
13namespace Eigen {
14
15/** \ingroup SparseCore_Module
16  * \class SparseSelfAdjointView
17  *
18  * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
19  *
20  * \param MatrixType the type of the dense matrix storing the coefficients
21  * \param UpLo can be either \c #Lower or \c #Upper
22  *
23  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
24  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
25  * and most of the time this is the only way that it is used.
26  *
27  * \sa SparseMatrixBase::selfadjointView()
28  */
29template<typename Lhs, typename Rhs, int UpLo>
30class SparseSelfAdjointTimeDenseProduct;
31
32template<typename Lhs, typename Rhs, int UpLo>
33class DenseTimeSparseSelfAdjointProduct;
34
35namespace internal {
36
37template<typename MatrixType, unsigned int UpLo>
38struct traits<SparseSelfAdjointView<MatrixType,UpLo> > : traits<MatrixType> {
39};
40
41template<int SrcUpLo,int DstUpLo,typename MatrixType,int DestOrder>
42void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
43
44template<int UpLo,typename MatrixType,int DestOrder>
45void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
46
47}
48
49template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
50  : public EigenBase<SparseSelfAdjointView<MatrixType,UpLo> >
51{
52  public:
53
54    typedef typename MatrixType::Scalar Scalar;
55    typedef typename MatrixType::Index Index;
56    typedef Matrix<Index,Dynamic,1> VectorI;
57    typedef typename MatrixType::Nested MatrixTypeNested;
58    typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
59
60    inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
61    {
62      eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
63    }
64
65    inline Index rows() const { return m_matrix.rows(); }
66    inline Index cols() const { return m_matrix.cols(); }
67
68    /** \internal \returns a reference to the nested matrix */
69    const _MatrixTypeNested& matrix() const { return m_matrix; }
70    _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); }
71
72    /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
73    template<typename OtherDerived>
74    SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>
75    operator*(const MatrixBase<OtherDerived>& rhs) const
76    {
77      return SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>(m_matrix, rhs.derived());
78    }
79
80    /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
81    template<typename OtherDerived> friend
82    DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo>
83    operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
84    {
85      return DenseTimeSparseSelfAdjointProduct<OtherDerived,_MatrixTypeNested,UpLo>(lhs.derived(), rhs.m_matrix);
86    }
87
88    /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
89      * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
90      *
91      * \returns a reference to \c *this
92      *
93      * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
94      * call this function with u.adjoint().
95      */
96    template<typename DerivedU>
97    SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));
98
99    /** \internal triggered by sparse_matrix = SparseSelfadjointView; */
100    template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,Index>& _dest) const
101    {
102      internal::permute_symm_to_fullsymm<UpLo>(m_matrix, _dest);
103    }
104
105    template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,Index>& _dest) const
106    {
107      // TODO directly evaluate into _dest;
108      SparseMatrix<DestScalar,ColMajor,Index> tmp(_dest.rows(),_dest.cols());
109      internal::permute_symm_to_fullsymm<UpLo>(m_matrix, tmp);
110      _dest = tmp;
111    }
112
113    /** \returns an expression of P H P^-1 */
114    SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
115    {
116      return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm);
117    }
118
119    template<typename SrcMatrixType,int SrcUpLo>
120    SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcUpLo>& permutedMatrix)
121    {
122      permutedMatrix.evalTo(*this);
123      return *this;
124    }
125
126
127    SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
128    {
129      PermutationMatrix<Dynamic> pnull;
130      return *this = src.twistedBy(pnull);
131    }
132
133    template<typename SrcMatrixType,unsigned int SrcUpLo>
134    SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcUpLo>& src)
135    {
136      PermutationMatrix<Dynamic> pnull;
137      return *this = src.twistedBy(pnull);
138    }
139
140
141    // const SparseLLT<PlainObject, UpLo> llt() const;
142    // const SparseLDLT<PlainObject, UpLo> ldlt() const;
143
144  protected:
145
146    typename MatrixType::Nested m_matrix;
147    mutable VectorI m_countPerRow;
148    mutable VectorI m_countPerCol;
149};
150
151/***************************************************************************
152* Implementation of SparseMatrixBase methods
153***************************************************************************/
154
155template<typename Derived>
156template<unsigned int UpLo>
157const SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() const
158{
159  return derived();
160}
161
162template<typename Derived>
163template<unsigned int UpLo>
164SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView()
165{
166  return derived();
167}
168
169/***************************************************************************
170* Implementation of SparseSelfAdjointView methods
171***************************************************************************/
172
173template<typename MatrixType, unsigned int UpLo>
174template<typename DerivedU>
175SparseSelfAdjointView<MatrixType,UpLo>&
176SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<DerivedU>& u, Scalar alpha)
177{
178  SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint();
179  if(alpha==Scalar(0))
180    m_matrix.const_cast_derived() = tmp.template triangularView<UpLo>();
181  else
182    m_matrix.const_cast_derived() += alpha * tmp.template triangularView<UpLo>();
183
184  return *this;
185}
186
187/***************************************************************************
188* Implementation of sparse self-adjoint time dense matrix
189***************************************************************************/
190
191namespace internal {
192template<typename Lhs, typename Rhs, int UpLo>
193struct traits<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo> >
194 : traits<ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
195{
196  typedef Dense StorageKind;
197};
198}
199
200template<typename Lhs, typename Rhs, int UpLo>
201class SparseSelfAdjointTimeDenseProduct
202  : public ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
203{
204  public:
205    EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct)
206
207    SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
208    {}
209
210    template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
211    {
212      // TODO use alpha
213      eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry");
214      typedef typename internal::remove_all<Lhs>::type _Lhs;
215      typedef typename internal::remove_all<Rhs>::type _Rhs;
216      typedef typename _Lhs::InnerIterator LhsInnerIterator;
217      enum {
218        LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit,
219        ProcessFirstHalf =
220                 ((UpLo&(Upper|Lower))==(Upper|Lower))
221              || ( (UpLo&Upper) && !LhsIsRowMajor)
222              || ( (UpLo&Lower) && LhsIsRowMajor),
223        ProcessSecondHalf = !ProcessFirstHalf
224      };
225      for (Index j=0; j<m_lhs.outerSize(); ++j)
226      {
227        LhsInnerIterator i(m_lhs,j);
228        if (ProcessSecondHalf)
229        {
230          while (i && i.index()<j) ++i;
231          if(i && i.index()==j)
232          {
233            dest.row(j) += i.value() * m_rhs.row(j);
234            ++i;
235          }
236        }
237        for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
238        {
239          Index a = LhsIsRowMajor ? j : i.index();
240          Index b = LhsIsRowMajor ? i.index() : j;
241          typename Lhs::Scalar v = i.value();
242          dest.row(a) += (v) * m_rhs.row(b);
243          dest.row(b) += internal::conj(v) * m_rhs.row(a);
244        }
245        if (ProcessFirstHalf && i && (i.index()==j))
246          dest.row(j) += i.value() * m_rhs.row(j);
247      }
248    }
249
250  private:
251    SparseSelfAdjointTimeDenseProduct& operator=(const SparseSelfAdjointTimeDenseProduct&);
252};
253
254namespace internal {
255template<typename Lhs, typename Rhs, int UpLo>
256struct traits<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo> >
257 : traits<ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
258{};
259}
260
261template<typename Lhs, typename Rhs, int UpLo>
262class DenseTimeSparseSelfAdjointProduct
263  : public ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
264{
265  public:
266    EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct)
267
268    DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
269    {}
270
271    template<typename Dest> void scaleAndAddTo(Dest& /*dest*/, Scalar /*alpha*/) const
272    {
273      // TODO
274    }
275
276  private:
277    DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&);
278};
279
280/***************************************************************************
281* Implementation of symmetric copies and permutations
282***************************************************************************/
283namespace internal {
284
285template<typename MatrixType, int UpLo>
286struct traits<SparseSymmetricPermutationProduct<MatrixType,UpLo> > : traits<MatrixType> {
287};
288
289template<int UpLo,typename MatrixType,int DestOrder>
290void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
291{
292  typedef typename MatrixType::Index Index;
293  typedef typename MatrixType::Scalar Scalar;
294  typedef SparseMatrix<Scalar,DestOrder,Index> Dest;
295  typedef Matrix<Index,Dynamic,1> VectorI;
296
297  Dest& dest(_dest.derived());
298  enum {
299    StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
300  };
301
302  Index size = mat.rows();
303  VectorI count;
304  count.resize(size);
305  count.setZero();
306  dest.resize(size,size);
307  for(Index j = 0; j<size; ++j)
308  {
309    Index jp = perm ? perm[j] : j;
310    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
311    {
312      Index i = it.index();
313      Index r = it.row();
314      Index c = it.col();
315      Index ip = perm ? perm[i] : i;
316      if(UpLo==(Upper|Lower))
317        count[StorageOrderMatch ? jp : ip]++;
318      else if(r==c)
319        count[ip]++;
320      else if(( UpLo==Lower && r>c) || ( UpLo==Upper && r<c))
321      {
322        count[ip]++;
323        count[jp]++;
324      }
325    }
326  }
327  Index nnz = count.sum();
328
329  // reserve space
330  dest.resizeNonZeros(nnz);
331  dest.outerIndexPtr()[0] = 0;
332  for(Index j=0; j<size; ++j)
333    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
334  for(Index j=0; j<size; ++j)
335    count[j] = dest.outerIndexPtr()[j];
336
337  // copy data
338  for(Index j = 0; j<size; ++j)
339  {
340    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
341    {
342      Index i = it.index();
343      Index r = it.row();
344      Index c = it.col();
345
346      Index jp = perm ? perm[j] : j;
347      Index ip = perm ? perm[i] : i;
348
349      if(UpLo==(Upper|Lower))
350      {
351        Index k = count[StorageOrderMatch ? jp : ip]++;
352        dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
353        dest.valuePtr()[k] = it.value();
354      }
355      else if(r==c)
356      {
357        Index k = count[ip]++;
358        dest.innerIndexPtr()[k] = ip;
359        dest.valuePtr()[k] = it.value();
360      }
361      else if(( (UpLo&Lower)==Lower && r>c) || ( (UpLo&Upper)==Upper && r<c))
362      {
363        if(!StorageOrderMatch)
364          std::swap(ip,jp);
365        Index k = count[jp]++;
366        dest.innerIndexPtr()[k] = ip;
367        dest.valuePtr()[k] = it.value();
368        k = count[ip]++;
369        dest.innerIndexPtr()[k] = jp;
370        dest.valuePtr()[k] = internal::conj(it.value());
371      }
372    }
373  }
374}
375
376template<int _SrcUpLo,int _DstUpLo,typename MatrixType,int DstOrder>
377void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
378{
379  typedef typename MatrixType::Index Index;
380  typedef typename MatrixType::Scalar Scalar;
381  SparseMatrix<Scalar,DstOrder,Index>& dest(_dest.derived());
382  typedef Matrix<Index,Dynamic,1> VectorI;
383  enum {
384    SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
385    StorageOrderMatch = int(SrcOrder) == int(DstOrder),
386    DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo,
387    SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo
388  };
389
390  Index size = mat.rows();
391  VectorI count(size);
392  count.setZero();
393  dest.resize(size,size);
394  for(Index j = 0; j<size; ++j)
395  {
396    Index jp = perm ? perm[j] : j;
397    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
398    {
399      Index i = it.index();
400      if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
401        continue;
402
403      Index ip = perm ? perm[i] : i;
404      count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
405    }
406  }
407  dest.outerIndexPtr()[0] = 0;
408  for(Index j=0; j<size; ++j)
409    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
410  dest.resizeNonZeros(dest.outerIndexPtr()[size]);
411  for(Index j=0; j<size; ++j)
412    count[j] = dest.outerIndexPtr()[j];
413
414  for(Index j = 0; j<size; ++j)
415  {
416
417    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
418    {
419      Index i = it.index();
420      if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
421        continue;
422
423      Index jp = perm ? perm[j] : j;
424      Index ip = perm? perm[i] : i;
425
426      Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
427      dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
428
429      if(!StorageOrderMatch) std::swap(ip,jp);
430      if( ((int(DstUpLo)==int(Lower) && ip<jp) || (int(DstUpLo)==int(Upper) && ip>jp)))
431        dest.valuePtr()[k] = conj(it.value());
432      else
433        dest.valuePtr()[k] = it.value();
434    }
435  }
436}
437
438}
439
440template<typename MatrixType,int UpLo>
441class SparseSymmetricPermutationProduct
442  : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,UpLo> >
443{
444  public:
445    typedef typename MatrixType::Scalar Scalar;
446    typedef typename MatrixType::Index Index;
447  protected:
448    typedef PermutationMatrix<Dynamic,Dynamic,Index> Perm;
449  public:
450    typedef Matrix<Index,Dynamic,1> VectorI;
451    typedef typename MatrixType::Nested MatrixTypeNested;
452    typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
453
454    SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
455      : m_matrix(mat), m_perm(perm)
456    {}
457
458    inline Index rows() const { return m_matrix.rows(); }
459    inline Index cols() const { return m_matrix.cols(); }
460
461    template<typename DestScalar, int Options, typename DstIndex>
462    void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const
463    {
464      internal::permute_symm_to_fullsymm<UpLo>(m_matrix,_dest,m_perm.indices().data());
465    }
466
467    template<typename DestType,unsigned int DestUpLo> void evalTo(SparseSelfAdjointView<DestType,DestUpLo>& dest) const
468    {
469      internal::permute_symm_to_symm<UpLo,DestUpLo>(m_matrix,dest.matrix(),m_perm.indices().data());
470    }
471
472  protected:
473    MatrixTypeNested m_matrix;
474    const Perm& m_perm;
475
476};
477
478} // end namespace Eigen
479
480#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
481