1// This file is part of Eigen, a lightweight C++ template library 2// for linear algebra. 3// 4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5// 6// This Source Code Form is subject to the terms of the Mozilla 7// Public License v. 2.0. If a copy of the MPL was not distributed 8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10#include "main.h" 11#include <Eigen/Geometry> 12#include <Eigen/LU> 13#include <Eigen/SVD> 14 15template<typename Scalar, int Mode, int Options> void non_projective_only() 16{ 17 /* this test covers the following files: 18 Cross.h Quaternion.h, Transform.cpp 19 */ 20 typedef Matrix<Scalar,2,2> Matrix2; 21 typedef Matrix<Scalar,3,3> Matrix3; 22 typedef Matrix<Scalar,4,4> Matrix4; 23 typedef Matrix<Scalar,2,1> Vector2; 24 typedef Matrix<Scalar,3,1> Vector3; 25 typedef Matrix<Scalar,4,1> Vector4; 26 typedef Quaternion<Scalar> Quaternionx; 27 typedef AngleAxis<Scalar> AngleAxisx; 28 typedef Transform<Scalar,2,Mode,Options> Transform2; 29 typedef Transform<Scalar,3,Mode,Options> Transform3; 30 typedef Transform<Scalar,2,Isometry,Options> Isometry2; 31 typedef Transform<Scalar,3,Isometry,Options> Isometry3; 32 typedef typename Transform3::MatrixType MatrixType; 33 typedef DiagonalMatrix<Scalar,2> AlignedScaling2; 34 typedef DiagonalMatrix<Scalar,3> AlignedScaling3; 35 typedef Translation<Scalar,2> Translation2; 36 typedef Translation<Scalar,3> Translation3; 37 38 Vector3 v0 = Vector3::Random(), 39 v1 = Vector3::Random(); 40 41 Transform3 t0, t1, t2; 42 43 Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); 44 45 Quaternionx q1, q2; 46 47 q1 = AngleAxisx(a, v0.normalized()); 48 49 t0 = Transform3::Identity(); 50 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); 51 52 t0.linear() = q1.toRotationMatrix(); 53 54 v0 << 50, 2, 1; 55 t0.scale(v0); 56 57 VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x()); 58 59 t0.setIdentity(); 60 t1.setIdentity(); 61 v1 << 1, 2, 3; 62 t0.linear() = q1.toRotationMatrix(); 63 t0.pretranslate(v0); 64 t0.scale(v1); 65 t1.linear() = q1.conjugate().toRotationMatrix(); 66 t1.prescale(v1.cwiseInverse()); 67 t1.translate(-v0); 68 69 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); 70 71 t1.fromPositionOrientationScale(v0, q1, v1); 72 VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); 73 VERIFY_IS_APPROX(t1*v1, t0*v1); 74 75 // translation * vector 76 t0.setIdentity(); 77 t0.translate(v0); 78 VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); 79 80 // AlignedScaling * vector 81 t0.setIdentity(); 82 t0.scale(v0); 83 VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); 84} 85 86template<typename Scalar, int Mode, int Options> void transformations() 87{ 88 /* this test covers the following files: 89 Cross.h Quaternion.h, Transform.cpp 90 */ 91 typedef Matrix<Scalar,2,2> Matrix2; 92 typedef Matrix<Scalar,3,3> Matrix3; 93 typedef Matrix<Scalar,4,4> Matrix4; 94 typedef Matrix<Scalar,2,1> Vector2; 95 typedef Matrix<Scalar,3,1> Vector3; 96 typedef Matrix<Scalar,4,1> Vector4; 97 typedef Quaternion<Scalar> Quaternionx; 98 typedef AngleAxis<Scalar> AngleAxisx; 99 typedef Transform<Scalar,2,Mode,Options> Transform2; 100 typedef Transform<Scalar,3,Mode,Options> Transform3; 101 typedef Transform<Scalar,2,Isometry,Options> Isometry2; 102 typedef Transform<Scalar,3,Isometry,Options> Isometry3; 103 typedef typename Transform3::MatrixType MatrixType; 104 typedef DiagonalMatrix<Scalar,2> AlignedScaling2; 105 typedef DiagonalMatrix<Scalar,3> AlignedScaling3; 106 typedef Translation<Scalar,2> Translation2; 107 typedef Translation<Scalar,3> Translation3; 108 109 Vector3 v0 = Vector3::Random(), 110 v1 = Vector3::Random(); 111 Matrix3 matrot1, m; 112 113 Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); 114 Scalar s0 = internal::random<Scalar>(); 115 116 VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); 117 VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); 118 VERIFY_IS_APPROX(internal::cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); 119 m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); 120 VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); 121 VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); 122 123 Quaternionx q1, q2; 124 q1 = AngleAxisx(a, v0.normalized()); 125 q2 = AngleAxisx(a, v1.normalized()); 126 127 // rotation matrix conversion 128 matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) 129 * AngleAxisx(Scalar(0.2), Vector3::UnitY()) 130 * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); 131 VERIFY_IS_APPROX(matrot1 * v1, 132 AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() 133 * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() 134 * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); 135 136 // angle-axis conversion 137 AngleAxisx aa = AngleAxisx(q1); 138 VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); 139 VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); 140 141 aa.fromRotationMatrix(aa.toRotationMatrix()); 142 VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); 143 VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); 144 145 // AngleAxis 146 VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), 147 Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); 148 149 AngleAxisx aa1; 150 m = q1.toRotationMatrix(); 151 aa1 = m; 152 VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), 153 Quaternionx(m).toRotationMatrix()); 154 155 // Transform 156 // TODO complete the tests ! 157 a = 0; 158 while (internal::abs(a)<Scalar(0.1)) 159 a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); 160 q1 = AngleAxisx(a, v0.normalized()); 161 Transform3 t0, t1, t2; 162 163 // first test setIdentity() and Identity() 164 t0.setIdentity(); 165 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); 166 t0.matrix().setZero(); 167 t0 = Transform3::Identity(); 168 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); 169 170 t0.setIdentity(); 171 t1.setIdentity(); 172 v1 << 1, 2, 3; 173 t0.linear() = q1.toRotationMatrix(); 174 t0.pretranslate(v0); 175 t0.scale(v1); 176 t1.linear() = q1.conjugate().toRotationMatrix(); 177 t1.prescale(v1.cwiseInverse()); 178 t1.translate(-v0); 179 180 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); 181 182 t1.fromPositionOrientationScale(v0, q1, v1); 183 VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); 184 185 t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); 186 t1.setIdentity(); t1.scale(v0).rotate(q1); 187 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 188 189 t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); 190 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 191 192 VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); 193 VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); 194 195 // More transform constructors, operator=, operator*= 196 197 Matrix3 mat3 = Matrix3::Random(); 198 Matrix4 mat4; 199 mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); 200 Transform3 tmat3(mat3), tmat4(mat4); 201 if(Mode!=int(AffineCompact)) 202 tmat4.matrix()(3,3) = Scalar(1); 203 VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); 204 205 Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); 206 Vector3 v3 = Vector3::Random().normalized(); 207 AngleAxisx aa3(a3, v3); 208 Transform3 t3(aa3); 209 Transform3 t4; 210 t4 = aa3; 211 VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); 212 t4.rotate(AngleAxisx(-a3,v3)); 213 VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); 214 t4 *= aa3; 215 VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); 216 217 v3 = Vector3::Random(); 218 Translation3 tv3(v3); 219 Transform3 t5(tv3); 220 t4 = tv3; 221 VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); 222 t4.translate(-v3); 223 VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); 224 t4 *= tv3; 225 VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); 226 227 AlignedScaling3 sv3(v3); 228 Transform3 t6(sv3); 229 t4 = sv3; 230 VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); 231 t4.scale(v3.cwiseInverse()); 232 VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); 233 t4 *= sv3; 234 VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); 235 236 // matrix * transform 237 VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix()); 238 239 // chained Transform product 240 VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); 241 242 // check that Transform product doesn't have aliasing problems 243 t5 = t4; 244 t5 = t5*t5; 245 VERIFY_IS_APPROX(t5, t4*t4); 246 247 // 2D transformation 248 Transform2 t20, t21; 249 Vector2 v20 = Vector2::Random(); 250 Vector2 v21 = Vector2::Random(); 251 for (int k=0; k<2; ++k) 252 if (internal::abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); 253 t21.setIdentity(); 254 t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); 255 VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), 256 t21.pretranslate(v20).scale(v21).matrix()); 257 258 t21.setIdentity(); 259 t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); 260 VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) 261 * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); 262 263 // Transform - new API 264 // 3D 265 t0.setIdentity(); 266 t0.rotate(q1).scale(v0).translate(v0); 267 // mat * aligned scaling and mat * translation 268 t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); 269 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 270 t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0); 271 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 272 t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0); 273 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 274 // mat * transformation and aligned scaling * translation 275 t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); 276 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 277 278 279 t0.setIdentity(); 280 t0.scale(s0).translate(v0); 281 t1 = Eigen::Scaling(s0) * Translation3(v0); 282 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 283 t0.prescale(s0); 284 t1 = Eigen::Scaling(s0) * t1; 285 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 286 287 t0 = t3; 288 t0.scale(s0); 289 t1 = t3 * Eigen::Scaling(s0,s0,s0); 290 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 291 t0.prescale(s0); 292 t1 = Eigen::Scaling(s0,s0,s0) * t1; 293 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 294 295 296 t0.setIdentity(); 297 t0.prerotate(q1).prescale(v0).pretranslate(v0); 298 // translation * aligned scaling and transformation * mat 299 t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1); 300 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 301 // scaling * mat and translation * mat 302 t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1)); 303 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 304 305 t0.setIdentity(); 306 t0.scale(v0).translate(v0).rotate(q1); 307 // translation * mat and aligned scaling * transformation 308 t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); 309 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 310 // transformation * aligned scaling 311 t0.scale(v0); 312 t1 *= AlignedScaling3(v0); 313 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 314 // transformation * translation 315 t0.translate(v0); 316 t1 = t1 * Translation3(v0); 317 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 318 // translation * transformation 319 t0.pretranslate(v0); 320 t1 = Translation3(v0) * t1; 321 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 322 323 // transform * quaternion 324 t0.rotate(q1); 325 t1 = t1 * q1; 326 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 327 328 // translation * quaternion 329 t0.translate(v1).rotate(q1); 330 t1 = t1 * (Translation3(v1) * q1); 331 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 332 333 // aligned scaling * quaternion 334 t0.scale(v1).rotate(q1); 335 t1 = t1 * (AlignedScaling3(v1) * q1); 336 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 337 338 // quaternion * transform 339 t0.prerotate(q1); 340 t1 = q1 * t1; 341 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 342 343 // quaternion * translation 344 t0.rotate(q1).translate(v1); 345 t1 = t1 * (q1 * Translation3(v1)); 346 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 347 348 // quaternion * aligned scaling 349 t0.rotate(q1).scale(v1); 350 t1 = t1 * (q1 * AlignedScaling3(v1)); 351 VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); 352 353 // test transform inversion 354 t0.setIdentity(); 355 t0.translate(v0); 356 t0.linear().setRandom(); 357 Matrix4 t044 = Matrix4::Zero(); 358 t044(3,3) = 1; 359 t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); 360 VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); 361 t0.setIdentity(); 362 t0.translate(v0).rotate(q1); 363 t044 = Matrix4::Zero(); 364 t044(3,3) = 1; 365 t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); 366 VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); 367 368 Matrix3 mat_rotation, mat_scaling; 369 t0.setIdentity(); 370 t0.translate(v0).rotate(q1).scale(v1); 371 t0.computeRotationScaling(&mat_rotation, &mat_scaling); 372 VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); 373 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); 374 VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); 375 t0.computeScalingRotation(&mat_scaling, &mat_rotation); 376 VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); 377 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); 378 VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); 379 380 // test casting 381 Transform<float,3,Mode> t1f = t1.template cast<float>(); 382 VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); 383 Transform<double,3,Mode> t1d = t1.template cast<double>(); 384 VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); 385 386 Translation3 tr1(v0); 387 Translation<float,3> tr1f = tr1.template cast<float>(); 388 VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); 389 Translation<double,3> tr1d = tr1.template cast<double>(); 390 VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); 391 392 AngleAxis<float> aa1f = aa1.template cast<float>(); 393 VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); 394 AngleAxis<double> aa1d = aa1.template cast<double>(); 395 VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); 396 397 Rotation2D<Scalar> r2d1(internal::random<Scalar>()); 398 Rotation2D<float> r2d1f = r2d1.template cast<float>(); 399 VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); 400 Rotation2D<double> r2d1d = r2d1.template cast<double>(); 401 VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); 402 403 t20 = Translation2(v20) * (Rotation2D<Scalar>(s0) * Scaling(s0)); 404 t21 = Translation2(v20) * Rotation2D<Scalar>(s0) * Scaling(s0); 405 VERIFY_IS_APPROX(t20,t21); 406} 407 408template<typename Scalar> void transform_alignment() 409{ 410 typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a; 411 typedef Transform<Scalar,3,Projective,DontAlign> Projective3u; 412 413 EIGEN_ALIGN16 Scalar array1[16]; 414 EIGEN_ALIGN16 Scalar array2[16]; 415 EIGEN_ALIGN16 Scalar array3[16+1]; 416 Scalar* array3u = array3+1; 417 418 Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a; 419 Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u; 420 Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u; 421 422 p1->matrix().setRandom(); 423 *p2 = *p1; 424 *p3 = *p1; 425 426 VERIFY_IS_APPROX(p1->matrix(), p2->matrix()); 427 VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); 428 429 VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3)); 430 431 #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY 432 if(internal::packet_traits<Scalar>::Vectorizable) 433 VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a)); 434 #endif 435} 436 437template<typename Scalar, int Dim, int Options> void transform_products() 438{ 439 typedef Matrix<Scalar,Dim+1,Dim+1> Mat; 440 typedef Transform<Scalar,Dim,Projective,Options> Proj; 441 typedef Transform<Scalar,Dim,Affine,Options> Aff; 442 typedef Transform<Scalar,Dim,AffineCompact,Options> AffC; 443 444 Proj p; p.matrix().setRandom(); 445 Aff a; a.linear().setRandom(); a.translation().setRandom(); 446 AffC ac = a; 447 448 Mat p_m(p.matrix()), a_m(a.matrix()); 449 450 VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m); 451 VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m); 452 VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m); 453 VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m); 454 VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m); 455 VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m); 456 VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m); 457 VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m); 458} 459 460void test_geo_transformations() 461{ 462 for(int i = 0; i < g_repeat; i++) { 463 CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() )); 464 CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() )); 465 466 CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() )); 467 CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() )); 468 CALL_SUBTEST_2(( transform_alignment<float>() )); 469 470 CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() )); 471 CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() )); 472 CALL_SUBTEST_3(( transform_alignment<double>() )); 473 474 CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() )); 475 CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() )); 476 477 CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() )); 478 CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() )); 479 480 CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() )); 481 CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() )); 482 483 484 CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() )); 485 CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() )); 486 } 487} 488