1ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/************************************************************************
254dcd9b6a06071f647dac967e9e267abb9410720Craig Cornelius * Copyright (C) 1996-2012, International Business Machines Corporation
3103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius * and others. All Rights Reserved.
4ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru ************************************************************************
5ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *  2003-nov-07   srl       Port from Java
6ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
7ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
8ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "astro.h"
9ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
10ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#if !UCONFIG_NO_FORMATTING
11ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
12ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "unicode/calendar.h"
13ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include <math.h>
14ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include <float.h>
15ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "unicode/putil.h"
16ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "uhash.h"
17ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "umutex.h"
18ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "ucln_in.h"
19ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "putilimp.h"
20ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include <stdio.h>  // for toString()
21ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
2285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho#if defined (PI)
2385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho#undef PI
2485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho#endif
2585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
26ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#ifdef U_DEBUG_ASTRO
27ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru# include "uresimp.h" // for debugging
28ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
29ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querustatic void debug_astro_loc(const char *f, int32_t l)
30ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
31ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fprintf(stderr, "%s:%d: ", f, l);
32ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
33ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
34ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querustatic void debug_astro_msg(const char *pat, ...)
35ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
36ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  va_list ap;
37ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  va_start(ap, pat);
38ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  vfprintf(stderr, pat, ap);
39ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fflush(stderr);
40ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
41ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "unicode/datefmt.h"
42ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#include "unicode/ustring.h"
43ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querustatic const char * debug_astro_date(UDate d) {
44ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  static char gStrBuf[1024];
45ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  static DateFormat *df = NULL;
46ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  if(df == NULL) {
47ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
48ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    df->adoptTimeZone(TimeZone::getGMT()->clone());
49ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  }
50ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  UnicodeString str;
51ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  df->format(d,str);
52ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
53ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return gStrBuf;
54ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
55ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
56ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
57ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
58ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#else
59ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define U_DEBUG_ASTRO_MSG(x)
60ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#endif
61ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
62ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querustatic inline UBool isINVALID(double d) {
63ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return(uprv_isNaN(d));
64ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
65ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
6654dcd9b6a06071f647dac967e9e267abb9410720Craig Corneliusstatic UMutex ccLock = U_MUTEX_INITIALIZER;
67ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
68ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruU_CDECL_BEGIN
69ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querustatic UBool calendar_astro_cleanup(void) {
70ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return TRUE;
71ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
72ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruU_CDECL_END
73ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
74ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruU_NAMESPACE_BEGIN
75ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
76ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
77ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The number of standard hours in one sidereal day.
78ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Approximately 24.93.
79ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
80ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
81ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
82ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SIDEREAL_DAY (23.93446960027)
83ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
84ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
85ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The number of sidereal hours in one mean solar day.
86ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Approximately 24.07.
87ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
88ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
89ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
90ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SOLAR_DAY  (24.065709816)
91ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
92ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
93ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The average number of solar days from one new moon to the next.  This is the time
94ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * it takes for the moon to return the same ecliptic longitude as the sun.
95ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * It is longer than the sidereal month because the sun's longitude increases
96ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * during the year due to the revolution of the earth around the sun.
97ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Approximately 29.53.
98ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
99ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #SIDEREAL_MONTH
100ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
101ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
102ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
103ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruconst double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
104ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
105ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
106ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The average number of days it takes
107ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * for the moon to return to the same ecliptic longitude relative to the
108ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * stellar background.  This is referred to as the sidereal month.
109ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * It is shorter than the synodic month due to
110ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the revolution of the earth around the sun.
111ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Approximately 27.32.
112ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
113ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #SYNODIC_MONTH
114ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
115ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
116ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
117ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SIDEREAL_MONTH  27.32166
118ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
119ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
120ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The average number number of days between successive vernal equinoxes.
121ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Due to the precession of the earth's
122ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * axis, this is not precisely the same as the sidereal year.
123ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Approximately 365.24
124ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
125ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #SIDEREAL_YEAR
126ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
127ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
128ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
129ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define TROPICAL_YEAR  365.242191
130ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
131ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
132ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The average number of days it takes
133ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * for the sun to return to the same position against the fixed stellar
134ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * background.  This is the duration of one orbit of the earth about the sun
135ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * as it would appear to an outside observer.
136ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Due to the precession of the earth's
137ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * axis, this is not precisely the same as the tropical year.
138ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Approximately 365.25.
139ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
140ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #TROPICAL_YEAR
141ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
142ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
143ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
144ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SIDEREAL_YEAR  365.25636
145ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
146ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
147ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Time-related constants
148ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
149ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
150ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
151ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The number of milliseconds in one second.
152ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
153ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
154ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
155ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SECOND_MS  U_MILLIS_PER_SECOND
156ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
157ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
158ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The number of milliseconds in one minute.
159ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
160ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
161ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
162ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define MINUTE_MS  U_MILLIS_PER_MINUTE
163ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
164ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
165ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The number of milliseconds in one hour.
166ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
167ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
168ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
169ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define HOUR_MS   U_MILLIS_PER_HOUR
170ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
171ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
172ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The number of milliseconds in one day.
173ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
174ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
175ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
176ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define DAY_MS U_MILLIS_PER_DAY
177ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
178ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
179ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The start of the julian day numbering scheme used by astronomers, which
180ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
181ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * since 1/1/1970 AD (Gregorian), a negative number.
182ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Note that julian day numbers and
183ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the Julian calendar are <em>not</em> the same thing.  Also note that
184ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * julian days start at <em>noon</em>, not midnight.
185ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
186ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
187ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
188ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define JULIAN_EPOCH_MS  -210866760000000.0
189ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
190ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
191ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
192ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Milliseconds value for 0.0 January 2000 AD.
193ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
194ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define EPOCH_2000_MS  946598400000.0
195ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
196ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
197ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Assorted private data used for conversions
198ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
199ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
200ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// My own copies of these so compilers are more likely to optimize them away
201ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruconst double CalendarAstronomer::PI = 3.14159265358979323846;
202ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
203ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
204ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
205ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
206ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
207ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
20885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho/***
20985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
21085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * The modulus operator.
21185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho */
21285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Hoinline static double normalize(double value, double range)  {
21385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return value - range * ClockMath::floorDivide(value, range);
21485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho}
21585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
21685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho/**
21785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * Normalize an angle so that it's in the range 0 - 2pi.
21885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * For positive angles this is just (angle % 2pi), but the Java
21985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * mod operator doesn't work that way for negative numbers....
22085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho */
22185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Hoinline static double norm2PI(double angle)  {
22285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return normalize(angle, CalendarAstronomer::PI * 2.0);
22385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho}
22485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
22585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho/**
22685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * Normalize an angle into the range -PI - PI
22785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho */
22885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Hoinline static  double normPI(double angle)  {
22985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
23085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho}
23185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
232ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
233ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Constructors
234ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
235ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
236ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
237ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Construct a new <code>CalendarAstronomer</code> object that is initialized to
238ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the current date and time.
239ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
240ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
241ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
242ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::CalendarAstronomer():
243ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
244ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  clearCache();
245ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
246ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
247ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
248ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Construct a new <code>CalendarAstronomer</code> object that is initialized to
249ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the specified date and time.
250ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
251ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
252ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
253ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
254ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  clearCache();
255ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
256ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
257ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
258ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Construct a new <code>CalendarAstronomer</code> object with the given
259ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * latitude and longitude.  The object's time is set to the current
260ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * date and time.
261ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <p>
262ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param longitude The desired longitude, in <em>degrees</em> east of
263ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *                  the Greenwich meridian.
264ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
265ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
266ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *                  values signify North, negative South.
267ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
268ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see java.util.Date#getTime()
269ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
270ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
271ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
272ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
273ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
274ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fLongitude = normPI(longitude * (double)DEG_RAD);
275ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fLatitude  = normPI(latitude  * (double)DEG_RAD);
276ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
277ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  clearCache();
278ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
279ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
280ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::~CalendarAstronomer()
281ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
282ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
283ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
284ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
285ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Time and date getters and setters
286ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
287ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
288ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
289ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
290ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * astronomical calculations are performed based on this time setting.
291ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
292ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param aTime the date and time, expressed as the number of milliseconds since
293ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              1/1/1970 0:00 GMT (Gregorian).
294ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
295ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #setDate
296ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #getTime
297ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
298ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
299ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
300ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruvoid CalendarAstronomer::setTime(UDate aTime) {
30185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    fTime = aTime;
30285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
30385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    clearCache();
304ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
305ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
306ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
307ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
308ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * astronomical calculations are performed based on this time setting.
309ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
310ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param jdn   the desired time, expressed as a "julian day number",
311ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              which is the number of elapsed days since
312ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
313ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              numbers start at <em>noon</em>.  To get the jdn for
314ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              the corresponding midnight, subtract 0.5.
315ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
316ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #getJulianDay
317ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #JULIAN_EPOCH_MS
318ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
319ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
320ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
321ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruvoid CalendarAstronomer::setJulianDay(double jdn) {
32285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
32385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    clearCache();
32485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    julianDay = jdn;
325ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
326ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
327ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
328ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Get the current time of this <code>CalendarAstronomer</code> object,
329ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * represented as the number of milliseconds since
330ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * 1/1/1970 AD 0:00 GMT (Gregorian).
331ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
332ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #setTime
333ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #getDate
334ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
335ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
336ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
337ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::getTime() {
33885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return fTime;
339ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
340ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
341ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
342ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Get the current time of this <code>CalendarAstronomer</code> object,
343ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * expressed as a "julian day number", which is the number of elapsed
344ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * days since 1/1/4713 BC (Julian), 12:00 GMT.
345ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
346ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #setJulianDay
347ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #JULIAN_EPOCH_MS
348ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
349ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
350ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
351ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getJulianDay() {
35285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (isINVALID(julianDay)) {
35385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
35485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
35585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return julianDay;
356ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
357ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
358ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
359ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Return this object's time expressed in julian centuries:
360ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the number of centuries after 1/1/1900 AD, 12:00 GMT
361ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
362ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #getJulianDay
363ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
364ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
365ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
366ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getJulianCentury() {
36785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (isINVALID(julianCentury)) {
36885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
36985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
37085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return julianCentury;
371ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
372ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
373ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
374ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Returns the current Greenwich sidereal time, measured in hours
375ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
376ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
377ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
378ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getGreenwichSidereal() {
37985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (isINVALID(siderealTime)) {
38085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // See page 86 of "Practial Astronomy with your Calculator",
38185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // by Peter Duffet-Smith, for details on the algorithm.
382ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
38385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double UT = normalize(fTime/(double)HOUR_MS, 24.);
384ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
38585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
38685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
38785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return siderealTime;
388ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
389ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
390ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getSiderealOffset() {
39185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (isINVALID(siderealT0)) {
39285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
39385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double S   = JD - 2451545.0;
39485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double T   = S / 36525.0;
39585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
39685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
39785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return siderealT0;
398ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
399ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
400ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
401ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Returns the current local sidereal time, measured in hours
402ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
403ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
404ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
405ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getLocalSidereal() {
40685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
407ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
408ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
409ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
410ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Converts local sidereal time to Universal Time.
411ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
412ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param lst   The Local Sidereal Time, in hours since sidereal midnight
413ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              on this object's current date.
414ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
415ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @return      The corresponding Universal Time, in milliseconds since
416ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *              1 Jan 1970, GMT.
417ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
418ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::lstToUT(double lst) {
41985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Convert to local mean time
42085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
421ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
42285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Then find local midnight on this day
42385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
424ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
42585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    //out("    lt  =" + lt + " hours");
42685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    //out("    base=" + new Date(base));
427ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
42885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return base + (long)(lt * HOUR_MS);
429ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
430ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
431ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
432ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
433ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Coordinate transformations, all based on the current time of this object
434ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
435ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
436ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
437ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Convert from ecliptic to equatorial coordinates.
438ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
439ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param ecliptic  A point in the sky in ecliptic coordinates.
440ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @return          The corresponding point in equatorial coordinates.
441ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
442ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
443ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
444ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
445ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
44685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
447ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
448ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
449ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
450ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Convert from ecliptic to equatorial coordinates.
451ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
452ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param eclipLong     The ecliptic longitude
453ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param eclipLat      The ecliptic latitude
454ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
455ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @return              The corresponding point in equatorial coordinates.
456ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
457ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
458ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
459ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
460ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
46185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // See page 42 of "Practial Astronomy with your Calculator",
46285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by Peter Duffet-Smith, for details on the algorithm.
463ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
46485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double obliq = eclipticObliquity();
46585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double sinE = ::sin(obliq);
46685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosE = cos(obliq);
467ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
46885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double sinL = ::sin(eclipLong);
46985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosL = cos(eclipLong);
470ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
47185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double sinB = ::sin(eclipLat);
47285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosB = cos(eclipLat);
47385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double tanB = tan(eclipLat);
474ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
47585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    result.set(atan2(sinL*cosE - tanB*sinE, cosL),
47685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        asin(sinB*cosE + cosB*sinE*sinL) );
47785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return result;
478ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
479ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
480ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
481ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Convert from ecliptic longitude to equatorial coordinates.
482ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
483ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param eclipLong     The ecliptic longitude
484ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
485ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @return              The corresponding point in equatorial coordinates.
486ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
487ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
488ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
489ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
490ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
49185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
492ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
493ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
494ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
495ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
496ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
497ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
498ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
499ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
50085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    Equatorial equatorial;
50185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    eclipticToEquatorial(equatorial, eclipLong);
502ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
50385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
504ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
50585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double sinH = ::sin(H);
50685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosH = cos(H);
50785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double sinD = ::sin(equatorial.declination);
50885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosD = cos(equatorial.declination);
50985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double sinL = ::sin(fLatitude);
51085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosL = cos(fLatitude);
511ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
51285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double altitude = asin(sinD*sinL + cosD*cosL*cosH);
51385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
514ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
51585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    result.set(azimuth, altitude);
51685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return result;
517ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
518ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
519ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
520ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
521ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// The Sun
522ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
523ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
524ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
525ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
526ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
527ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
528ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define JD_EPOCH  2447891.5 // Julian day of epoch
529ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
530ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
531ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
532ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define SUN_E         0.016713          // Eccentricity of orbit
533ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//double sunR0        1.495585e8        // Semi-major axis in KM
534ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
535ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
536ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// The following three methods, which compute the sun parameters
537ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// given above for an arbitrary epoch (whatever time the object is
538ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// set to), make only a small difference as compared to using the
539ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// above constants.  E.g., Sunset times might differ by ~12
540ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// seconds.  Furthermore, the eta-g computation is befuddled by
541ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Duffet-Smith's incorrect coefficients (p.86).  I've corrected
542ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// the first-order coefficient but the others may be off too - no
543ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// way of knowing without consulting another source.
544ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
545ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  /**
546ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * Return the sun's ecliptic longitude at perigee for the current time.
547ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * See Duffett-Smith, p. 86.
548ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * @return radians
549ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   */
550ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  private double getSunOmegaG() {
551ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      double T = getJulianCentury();
552ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
553ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  }
554ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
555ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  /**
556ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * Return the sun's ecliptic longitude for the current time.
557ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * See Duffett-Smith, p. 86.
558ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * @return radians
559ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   */
560ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  private double getSunEtaG() {
561ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      double T = getJulianCentury();
562ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
563ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      //
564ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      // The above line is from Duffett-Smith, and yields manifestly wrong
565ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      // results.  The below constant is derived empirically to match the
566ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      // constant he gives for the 1990 EPOCH.
567ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      //
568ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
569ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  }
570ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
571ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  /**
572ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * Return the sun's eccentricity of orbit for the current time.
573ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * See Duffett-Smith, p. 86.
574ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   * @return double
575ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//   */
576ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  private double getSunE() {
577ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      double T = getJulianCentury();
578ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
579ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  }
580ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
581ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
58285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * Find the "true anomaly" (longitude) of an object from
58385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * its mean anomaly and the eccentricity of its orbit.  This uses
58485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * an iterative solution to Kepler's equation.
58585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho *
58685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * @param meanAnomaly   The object's longitude calculated as if it were in
58785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho *                      a regular, circular orbit, measured in radians
58885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho *                      from the point of perigee.
58985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho *
59085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * @param eccentricity  The eccentricity of the orbit
59185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho *
59285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho * @return The true anomaly (longitude) measured in radians
59385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho */
59485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Hostatic double trueAnomaly(double meanAnomaly, double eccentricity)
59585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho{
59685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // First, solve Kepler's equation iteratively
59785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Duffett-Smith, p.90
59885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double delta;
59985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double E = meanAnomaly;
60085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    do {
60185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        delta = E - eccentricity * ::sin(E) - meanAnomaly;
60285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        E = E - delta / (1 - eccentricity * ::cos(E));
60385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
60485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
60585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
60685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
60785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                                             /(1-eccentricity) ) );
60885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho}
60985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
61085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho/**
611ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The longitude of the sun at the time specified by this object.
612ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The longitude is measured in radians along the ecliptic
613ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * from the "first point of Aries," the point at which the ecliptic
614ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * crosses the earth's equatorial plane at the vernal equinox.
615ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <p>
616ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Currently, this method uses an approximation of the two-body Kepler's
617ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * equation for the earth and the sun.  It does not take into account the
618ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * perturbations caused by the other planets, the moon, etc.
619ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
620ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
621ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
622ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getSunLongitude()
623ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
62485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // See page 86 of "Practial Astronomy with your Calculator",
62585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by Peter Duffet-Smith, for details on the algorithm.
626ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
62785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (isINVALID(sunLongitude)) {
62885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
62985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
63085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return sunLongitude;
631ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
632ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
633ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
634ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * TODO Make this public when the entire class is package-private.
635ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
636ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
637ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
63885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // See page 86 of "Practial Astronomy with your Calculator",
63985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by Peter Duffet-Smith, for details on the algorithm.
640ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
64185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double day = jDay - JD_EPOCH;       // Days since epoch
642ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
64385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Find the angular distance the sun in a fictitious
64485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // circular orbit has travelled since the epoch.
64585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
646ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
64785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // The epoch wasn't at the sun's perigee; find the angular distance
64885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // since perigee, which is called the "mean anomaly"
64985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
650ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
65185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Now find the "true anomaly", e.g. the real solar longitude
65285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by solving Kepler's equation for an elliptical orbit
65385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
65485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // equations; omega_g is to be correct.
65585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
656ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
657ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
658ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
659ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The position of the sun at this object's current date and time,
660ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * in equatorial coordinates.
661ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
662ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
663ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
664ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
66585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return eclipticToEquatorial(result, getSunLongitude(), 0);
666ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
667ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
668ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
669ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
670ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing the vernal equinox.
671ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getSunTime getSunTime}.
672ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
673ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
674ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
675ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
676ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/*double CalendarAstronomer::VERNAL_EQUINOX() {
677ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return 0;
678ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}*/
679ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
680ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
681ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing the summer solstice.
682ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getSunTime getSunTime}.
683ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Note: In this case, "summer" refers to the northern hemisphere's seasons.
684ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
685ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
686ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
687ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::SUMMER_SOLSTICE() {
68885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return  (CalendarAstronomer::PI/2);
689ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
690ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
691ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
692ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing the autumnal equinox.
693ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getSunTime getSunTime}.
694ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
695ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
696ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
697ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
698ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/*double CalendarAstronomer::AUTUMN_EQUINOX() {
699ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return  (CalendarAstronomer::PI);
700ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}*/
701ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
702ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
703ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing the winter solstice.
704ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getSunTime getSunTime}.
705ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Note: In this case, "winter" refers to the northern hemisphere's seasons.
706ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
707ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
708ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
70985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Hodouble CalendarAstronomer::WINTER_SOLSTICE() {
71085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return  ((CalendarAstronomer::PI*3)/2);
71185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho}
712ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
713ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::AngleFunc::~AngleFunc() {}
714ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
715ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
716ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Find the next time at which the sun's ecliptic longitude will have
717ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the desired value.
718ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
719ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
720ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
721ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruclass SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
722ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querupublic:
723103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius    virtual ~SunTimeAngleFunc();
72485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
725ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru};
726ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
727103e9ffba2cba345d0078eb8b8db33249f81840aCraig CorneliusSunTimeAngleFunc::~SunTimeAngleFunc() {}
728103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius
729ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::getSunTime(double desired, UBool next)
730ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
73185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    SunTimeAngleFunc func;
73285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return timeOfAngle( func,
73385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        desired,
73485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        TROPICAL_YEAR,
73585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        MINUTE_MS,
73685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        next);
737ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
738ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
739ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarAstronomer::CoordFunc::~CoordFunc() {}
740ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
741ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruclass RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
742ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querupublic:
743103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius    virtual ~RiseSetCoordFunc();
74485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
745ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru};
746ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
747103e9ffba2cba345d0078eb8b8db33249f81840aCraig CorneliusRiseSetCoordFunc::~RiseSetCoordFunc() {}
748103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius
749ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::getSunRiseSet(UBool rise)
750ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
75185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    UDate t0 = fTime;
752ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
75385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Make a rough guess: 6am or 6pm local time on the current day
75485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
755ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
75685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
75785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
75885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
759ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
76085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    RiseSetCoordFunc func;
76185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double t = riseOrSet(func,
76285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                         rise,
76385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                         .533 * DEG_RAD,        // Angular Diameter
76485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                         34. /60.0 * DEG_RAD,    // Refraction correction
76585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                         MINUTE_MS / 12.);       // Desired accuracy
766ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
76785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    setTime(t0);
76885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return t;
769ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
770ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
771ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Commented out - currently unused. ICU 2.6, Alan
772ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    //-------------------------------------------------------------------------
773ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // Alternate Sun Rise/Set
774ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // See Duffett-Smith p.93
775ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    //-------------------------------------------------------------------------
776ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
777ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // This yields worse results (as compared to USNO data) than getSunRiseSet().
778ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /**
779ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * TODO Make this when the entire class is package-private.
780ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     */
781ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /*public*/ long getSunRiseSet2(boolean rise) {
782ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 1. Calculate coordinates of the sun's center for midnight
783ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
784ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
785ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
786ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
787ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 2. Add ... to lambda to get position 24 hours later
788ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double lambda2 = lambda1 + 0.985647*DEG_RAD;
789ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
790ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
791ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 3. Calculate LSTs of rising and setting for these two positions
792ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double tanL = ::tan(fLatitude);
793ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double H = ::acos(-tanL * ::tan(pos1.declination));
794ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
795ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
796ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//               H = ::acos(-tanL * ::tan(pos2.declination));
797ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
798ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
799ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (lst1r > 24) lst1r -= 24;
800ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (lst1s > 24) lst1s -= 24;
801ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (lst2r > 24) lst2r -= 24;
802ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (lst2s > 24) lst2s -= 24;
803ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
804ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
805ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double gst1r = lstToGst(lst1r);
806ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double gst1s = lstToGst(lst1s);
807ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double gst2r = lstToGst(lst2r);
808ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double gst2s = lstToGst(lst2s);
809ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (gst1r > gst2r) gst2r += 24;
810ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (gst1s > gst2s) gst2s += 24;
811ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
812ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 5. Calculate GST at 0h UT of this date
813ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double t00 = utToGst(0);
814ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
815ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 6. Calculate GST at 0h on the observer's longitude
816ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
817ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double t00p = t00 - offset*1.002737909;
818ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (t00p < 0) t00p += 24; // do NOT normalize
819ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
820ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 7. Adjust
821ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (gst1r < t00p) {
822ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//            gst1r += 24;
823ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//            gst2r += 24;
824ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        }
825ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        if (gst1s < t00p) {
826ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//            gst1s += 24;
827ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//            gst2s += 24;
828ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        }
829ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
830ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 8.
831ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
832ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
833ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
834ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 9. Correct for parallax, refraction, and sun's diameter
835ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double dec = (pos1.declination + pos2.declination) / 2;
836ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double psi = ::acos(sin(fLatitude) / cos(dec));
837ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
838ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
839ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double delta_t = 240 * y / cos(dec) / 3600; // hours
840ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
841ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 10. Add correction to GSTs, subtract from GSTr
842ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        gstr -= delta_t;
843ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        gsts += delta_t;
844ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
845ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // 11. Convert GST to UT and then to local civil time
846ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double ut = gstToUt(rise ? gstr : gsts);
847ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
848ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
849ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        return midnight + (long) (ut * 3600000);
850ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    }
851ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
852ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Commented out - currently unused. ICU 2.6, Alan
853ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /**
854ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * Convert local sidereal time to Greenwich sidereal time.
855ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * Section 15.  Duffett-Smith p.21
856ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * @param lst in hours (0..24)
857ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * @return GST in hours (0..24)
858ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     */
859ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    double lstToGst(double lst) {
860ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
861ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        return normalize(lst - delta, 24);
862ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    }
863ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
864ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Commented out - currently unused. ICU 2.6, Alan
865ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /**
866ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * Convert UT to GST on this date.
867ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * Section 12.  Duffett-Smith p.17
868ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * @param ut in hours
869ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * @return GST in hours
870ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     */
871ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    double utToGst(double ut) {
872ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        return normalize(getT0() + ut*1.002737909, 24);
873ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    }
874ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
875ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Commented out - currently unused. ICU 2.6, Alan
876ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /**
877ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * Convert GST to UT on this date.
878ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * Section 13.  Duffett-Smith p.18
879ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * @param gst in hours
880ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * @return UT in hours
881ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     */
882ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    double gstToUt(double gst) {
883ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        return normalize(gst - getT0(), 24) * 0.9972695663;
884ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    }
885ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
886ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Commented out - currently unused. ICU 2.6, Alan
887ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    double getT0() {
888ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Common computation for UT <=> GST
889ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
890ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Find JD for 0h UT
891ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
892ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
893ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double s = jd - 2451545.0;
894ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double t = s / 36525.0;
895ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
896ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        return t0;
897ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    }
898ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
899ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Commented out - currently unused. ICU 2.6, Alan
900ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    //-------------------------------------------------------------------------
901ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // Alternate Sun Rise/Set
902ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // See sci.astro FAQ
903ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
904ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    //-------------------------------------------------------------------------
905ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
906ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // Note: This method appears to produce inferior accuracy as
907ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    // compared to getSunRiseSet().
908ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
909ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /**
910ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     * TODO Make this when the entire class is package-private.
911ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//     */
912ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    /*public*/ long getSunRiseSet3(boolean rise) {
913ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
914ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Compute day number for 0.0 Jan 2000 epoch
915ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
916ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
917ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Now compute the Local Sidereal Time, LST:
918ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
919ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
920ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//            fLongitude*RAD_DEG;
921ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
922ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // (east long. positive).  Note that LST is here expressed in degrees,
923ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
924ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // it's convenient to use one unit---degrees---throughout.
925ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
926ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    COMPUTING THE SUN'S POSITION
927ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    ----------------------------
928ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
929ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // To be able to compute the Sun's rise/set times, you need to be able to
930ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // compute the Sun's position at any time.  First compute the "day
931ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // number" d as outlined above, for the desired moment.  Next compute:
932ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
933ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double oblecl = 23.4393 - 3.563E-7 * d;
934ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
935ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double w  =  282.9404  +  4.70935E-5   * d;
936ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double M  =  356.0470  +  0.9856002585 * d;
937ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double e  =  0.016709  -  1.151E-9     * d;
938ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
939ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // This is the obliquity of the ecliptic, plus some of the elements of
940ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
941ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // argument of perihelion, M = mean anomaly, e = eccentricity.
942ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
943ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // true, this is still an accurate approximation).  Next compute E, the
944ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // eccentric anomaly:
945ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
946ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
947ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
948ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // where E and M are in degrees.  This is it---no further iterations are
949ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // needed because we know e has a sufficiently small value.  Next compute
950ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // the true anomaly, v, and the distance, r:
951ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
952ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
953ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
954ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
955ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // and
956ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
957ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //      r  =  sqrt( A*A + B*B )
958ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double v  =  ::atan2( B, A )*RAD_DEG;
959ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
960ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // The Sun's true longitude, slon, can now be computed:
961ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
962ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double slon  =  v + w;
963ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
964ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Since the Sun is always at the ecliptic (or at least very very close to
965ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
966ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // longitude) to sRA and sDec (the Sun's RA and Dec):
967ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
968ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //                   ::sin(slon) * cos(oblecl)
969ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //     tan(sRA)  =  -------------------------
970ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //            cos(slon)
971ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
972ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
973ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
974ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // As was the case when computing az, the Azimuth, if possible use an
975ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // atan2() function to compute sRA.
976ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
977ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
978ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
979ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
980ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double sDec = ::asin(sin_sDec)*RAD_DEG;
981ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
982ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    COMPUTING RISE AND SET TIMES
983ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    ----------------------------
984ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
985ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // To compute when an object rises or sets, you must compute when it
986ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // passes the meridian and the HA of rise/set.  Then the rise time is
987ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // the meridian time minus HA for rise/set, and the set time is the
988ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // meridian time plus the HA for rise/set.
989ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
990ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // To find the meridian time, compute the Local Sidereal Time at 0h local
991ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // time (or 0h UT if you prefer to work in UT) as outlined above---name
992ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // that quantity LST0.  The Meridian Time, MT, will now be:
993ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
994ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //     MT  =  RA - LST0
995ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double MT = normalize(sRA - LST, 360);
996ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
997ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
998ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
999ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
1000ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // sidereal to solar time.  Now, compute HA for rise/set, name that
1001ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // quantity HA0:
1002ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1003ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
1004ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // cos(HA0)  =  ---------------------------------
1005ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //                      cos(lat) * cos(Dec)
1006ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1007ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // where h0 is the altitude selected to represent rise/set.  For a purely
1008ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // mathematical horizon, set h0 = 0 and simplify to:
1009ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1010ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    cos(HA0)  =  - tan(lat) * tan(Dec)
1011ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1012ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // If you want to account for refraction on the atmosphere, set h0 = -35/60
1013ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // degrees (-35 arc minutes), and if you want to compute the rise/set times
1014ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
1015ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1016ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double h0 = -50/60 * DEG_RAD;
1017ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
1018ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double HA0 = ::acos(
1019ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
1020ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
1021ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
1022ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // When HA0 has been computed, leave it as it is for the Sun but multiply
1023ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
1024ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // solar time.  Finally compute:
1025ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1026ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    Rise time  =  MT - HA0
1027ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //    Set  time  =  MT + HA0
1028ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1029ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // convert the times from degrees to hours by dividing by 15.
1030ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        //
1031ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // If you'd like to check that your calculations are accurate or just
1032ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
1033ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
1034ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
1035ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        double result = MT + (rise ? -HA0 : HA0); // in degrees
1036ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
1037ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        // Find UT midnight on this day
1038ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        long midnight = DAY_MS * (time / DAY_MS);
1039ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//
1040ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//        return midnight + (long) (result * 3600000 / 15);
1041ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    }
1042ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1043ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
1044ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// The Moon
1045ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
1046ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1047ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
1048ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
1049ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
1050ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
1051ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonE  (   0.054900 )            // Eccentricity of orbit
1052ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1053ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// These aren't used right now
1054ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonA  (   3.84401e5 )           // semi-major axis (km)
1055ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
1056ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
1057ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1058ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1059ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The position of the moon at the time set on this
1060ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * object, in equatorial coordinates.
1061ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1062ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1063ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1064ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruconst CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
1065ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
1066ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    //
106785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // See page 142 of "Practial Astronomy with your Calculator",
106885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by Peter Duffet-Smith, for details on the algorithm.
1069ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    //
107085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (moonPositionSet == FALSE) {
107185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Calculate the solar longitude.  Has the side effect of
107285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // filling in "meanAnomalySun" as well.
107385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        getSunLongitude();
107485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
107585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
107685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Find the # of days since the epoch of our orbital parameters.
107785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // TODO: Convert the time of day portion into ephemeris time
107885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
107985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double day = getJulianDay() - JD_EPOCH;       // Days since epoch
108085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
108185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Calculate the mean longitude and anomaly of the moon, based on
108285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // a circular orbit.  Similar to the corresponding solar calculation.
108385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
108485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
108585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
108685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
108785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Calculate the following corrections:
108885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //  Evection:   the sun's gravity affects the moon's eccentricity
108985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //  Annual Eqn: variation in the effect due to earth-sun distance
109085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //  A3:         correction factor (for ???)
109185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
109285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
109385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            - meanAnomalyMoon);
109485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
109585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
109685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
109785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        meanAnomalyMoon += evection - annual - a3;
109885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
109985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
110085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // More correction factors:
110185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //  center  equation of the center correction
110285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //  a4      yet another error correction (???)
110385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
110485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // TODO: Skip the equation of the center correction and solve Kepler's eqn?
110585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
110685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
110785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
110885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
110985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Now find the moon's corrected longitude
111085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        moonLongitude = meanLongitude + evection + center - annual + a4;
111185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
111285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
111385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // And finally, find the variation, caused by the fact that the sun's
111485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // gravitational pull on the moon varies depending on which side of
111585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // the earth the moon is on
111685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
111785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
111885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
111985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        moonLongitude += variation;
112085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
112185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
112285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // What we've calculated so far is the moon's longitude in the plane
112385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // of its own orbit.  Now map to the ecliptic to get the latitude
112485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // and longitude.  First we need to find the longitude of the ascending
112585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // node, the position on the ecliptic where it is crossed by the moon's
112685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // orbit as it crosses from the southern to the northern hemisphere.
112785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
112885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
112985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
113085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
113185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
113285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double y = ::sin(moonLongitude - nodeLongitude);
113385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double x = cos(moonLongitude - nodeLongitude);
113485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
113585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
113685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double moonEclipLat = ::asin(y * ::sin(moonI));
113785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
113885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
113985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        moonPositionSet = TRUE;
114085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
114185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return moonPosition;
1142ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1143ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1144ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1145ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The "age" of the moon at the time specified in this object.
1146ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * This is really the angle between the
1147ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * current ecliptic longitudes of the sun and the moon,
1148ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * measured in radians.
1149ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
1150ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #getMoonPhase
1151ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1152ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1153ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1154ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getMoonAge() {
115585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // See page 147 of "Practial Astronomy with your Calculator",
115685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by Peter Duffet-Smith, for details on the algorithm.
115785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    //
115885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Force the moon's position to be calculated.  We're going to use
115985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // some the intermediate results cached during that calculation.
116085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    //
116185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    getMoonPosition();
116285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
116385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return norm2PI(moonEclipLong - sunLongitude);
1164ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1165ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1166ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1167ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Calculate the phase of the moon at the time set in this object.
1168ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * The returned phase is a <code>double</code> in the range
1169ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <code>0 <= phase < 1</code>, interpreted as follows:
1170ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <ul>
1171ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <li>0.00: New moon
1172ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <li>0.25: First quarter
1173ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <li>0.50: Full moon
1174ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <li>0.75: Last quarter
1175ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * </ul>
1176ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
1177ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @see #getMoonAge
1178ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1179ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1180ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1181ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::getMoonPhase() {
118285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // See page 147 of "Practial Astronomy with your Calculator",
118385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // by Peter Duffet-Smith, for details on the algorithm.
118485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return 0.5 * (1 - cos(getMoonAge()));
1185ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1186ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1187ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1188ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing a new moon.
1189ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getMoonTime getMoonTime}
1190ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1191ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1192ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
119385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Hoconst CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
119485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return  CalendarAstronomer::MoonAge(0);
119585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho}
1196ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1197ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1198ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing the moon's first quarter.
1199ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getMoonTime getMoonTime}
1200ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1201ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1202ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1203ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1204ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1205ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}*/
1206ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1207ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1208ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing a full moon.
1209ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getMoonTime getMoonTime}
1210ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1211ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1212ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1213ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruconst CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
121485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
1215ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1216ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1217ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Constant representing the moon's last quarter.
1218ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * For use with {@link #getMoonTime getMoonTime}
1219ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1220ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1221ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1222ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1223ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruclass MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
1224ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querupublic:
1225103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius    virtual ~MoonTimeAngleFunc();
122685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
1227ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru};
1228ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1229103e9ffba2cba345d0078eb8b8db33249f81840aCraig CorneliusMoonTimeAngleFunc::~MoonTimeAngleFunc() {}
1230103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius
1231ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1232ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1233ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}*/
1234ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1235ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1236ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Find the next or previous time at which the Moon's ecliptic
1237ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * longitude will have the desired value.
1238ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <p>
1239ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param desired   The desired longitude.
1240ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param next      <tt>true</tt> if the next occurrance of the phase
1241ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *                  is desired, <tt>false</tt> for the previous occurrance.
1242ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1243ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1244ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1245ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::getMoonTime(double desired, UBool next)
1246ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
124785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    MoonTimeAngleFunc func;
124885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return timeOfAngle( func,
124985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        desired,
125085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        SYNODIC_MONTH,
125185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        MINUTE_MS,
125285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                        next);
1253ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1254ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1255ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1256ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Find the next or previous time at which the moon will be in the
1257ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * desired phase.
1258ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * <p>
1259ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param desired   The desired phase of the moon.
1260ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @param next      <tt>true</tt> if the next occurrance of the phase
1261ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *                  is desired, <tt>false</tt> for the previous occurrance.
1262ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1263ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1264ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1265ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
126685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return getMoonTime(desired.value, next);
1267ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1268ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1269ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruclass MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
1270ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querupublic:
1271103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius    virtual ~MoonRiseSetCoordFunc();
127285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
1273ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru};
1274ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1275103e9ffba2cba345d0078eb8b8db33249f81840aCraig CorneliusMoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
1276103e9ffba2cba345d0078eb8b8db33249f81840aCraig Cornelius
1277ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1278ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Returns the time (GMT) of sunrise or sunset on the local date to which
1279ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * this calendar is currently set.
1280ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1281ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1282ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1283ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::getMoonRiseSet(UBool rise)
1284ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
128585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    MoonRiseSetCoordFunc func;
128685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return riseOrSet(func,
128785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                     rise,
128885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                     .533 * DEG_RAD,        // Angular Diameter
128985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                     34 /60.0 * DEG_RAD,    // Refraction correction
129085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho                     MINUTE_MS);            // Desired accuracy
1291ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1292ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1293ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
1294ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Interpolation methods for finding the time at which a given event occurs
1295ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
1296ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1297ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
1298ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru                                      double periodDays, double epsilon, UBool next)
1299ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
130085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Find the value of the function at the current time
130185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double lastAngle = func.eval(*this);
1302ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
130385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Find out how far we are from the desired angle
130485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double deltaAngle = norm2PI(desired - lastAngle) ;
1305ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
130685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Using the average period, estimate the next (or previous) time at
130785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // which the desired angle occurs.
130885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
1309ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
131085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double lastDeltaT = deltaT; // Liu
131185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    UDate startTime = fTime; // Liu
1312ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
131385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    setTime(fTime + uprv_ceil(deltaT));
1314ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
131585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Now iterate until we get the error below epsilon.  Throughout
131685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // this loop we use normPI to get values in the range -Pi to Pi,
131785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // since we're using them as correction factors rather than absolute angles.
131885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    do {
131985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Evaluate the function at the time we've estimated
132085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double angle = func.eval(*this);
132185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
132285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Find the # of milliseconds per radian at this point on the curve
132385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
132485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
132585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Correct the time estimate based on how far off the angle is
132685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        deltaT = normPI(desired - angle) * factor;
132785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
132885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // HACK:
132985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
133085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // If abs(deltaT) begins to diverge we need to quit this loop.
133185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // This only appears to happen when attempting to locate, for
133285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // example, a new moon on the day of the new moon.  E.g.:
133385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
133485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // This result is correct:
133585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
133685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //   Sun Jul 22 10:57:41 CST 1990
133785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
133885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // But attempting to make the same call a day earlier causes deltaT
133985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // to diverge:
134085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
134185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //   1.3649828540224032E9
134285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
134385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //   Sun Jul 08 13:56:15 CST 1990
134485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        //
134585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // As a temporary solution, we catch this specific condition and
134685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // adjust our start time by one eighth period days (either forward
134785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // or backward) and try again.
134885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Liu 11/9/00
134985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
135085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
135185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            setTime(startTime + (next ? delta : -delta));
135285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            return timeOfAngle(func, desired, periodDays, epsilon, next);
135385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        }
135485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
135585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        lastDeltaT = deltaT;
135685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        lastAngle = angle;
135785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
135885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        setTime(fTime + uprv_ceil(deltaT));
1359ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    }
136085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    while (uprv_fabs(deltaT) > epsilon);
1361ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
136285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return fTime;
1363ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1364ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1365ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
1366ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru                                    double diameter, double refraction,
1367ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru                                    double epsilon)
1368ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
136985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    Equatorial pos;
137085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double      tanL   = ::tan(fLatitude);
137185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double     deltaT = 0;
137285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    int32_t         count = 0;
1373ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
137485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    //
137585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Calculate the object's position at the current time, then use that
137685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // position to calculate the time of rising or setting.  The position
137785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // will be different at that time, so iterate until the error is allowable.
137885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    //
137985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
138085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        rise?"T":"F", diameter, refraction, epsilon));
138185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    do {
138285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // See "Practical Astronomy With Your Calculator, section 33.
138385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        func.eval(pos, *this);
138485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double angle = ::acos(-tanL * ::tan(pos.declination));
138585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
138685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
138785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        // Convert from LST to Universal Time.
138885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        UDate newTime = lstToUT( lst );
138985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
139085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        deltaT = newTime - fTime;
139185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        setTime(newTime);
139285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
139385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            count, deltaT, angle, lst, pos.ascension, pos.declination));
139485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
139585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
1396ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
139785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    // Calculate the correction due to refraction and the object's angular diameter
139885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double cosD  = ::cos(pos.declination);
139985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double psi   = ::acos(sin(fLatitude) / cosD);
140085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double x     = diameter / 2 + refraction;
140185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    double y     = ::asin(sin(x) / ::sin(psi));
140285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
1403ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
140485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return fTime + (rise ? -delta : delta);
1405ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
140685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho											   /**
1407ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * Return the obliquity of the ecliptic (the angle between the ecliptic
1408ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * and the earth's equator) at the current time.  This varies due to
1409ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * the precession of the earth's axis.
1410ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *
1411ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @return  the obliquity of the ecliptic relative to the equator,
1412ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru *          measured in radians.
1413ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1414ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Querudouble CalendarAstronomer::eclipticObliquity() {
141585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if (isINVALID(eclipObliquity)) {
141685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        const double epoch = 2451545.0;     // 2000 AD, January 1.5
1417ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
141885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        double T = (getJulianDay() - epoch) / 36525;
1419ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
142085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        eclipObliquity = 23.439292
142185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            - 46.815/3600 * T
142285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            - 0.0006/3600 * T*T
142385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            + 0.00181/3600 * T*T*T;
1424ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
142585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        eclipObliquity *= DEG_RAD;
142685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
142785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return eclipObliquity;
1428ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1429ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1430ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1431ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
1432ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Private data
1433ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//-------------------------------------------------------------------------
1434ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruvoid CalendarAstronomer::clearCache() {
143585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    const double INVALID = uprv_getNaN();
143685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
143785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    julianDay       = INVALID;
143885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    julianCentury   = INVALID;
143985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    sunLongitude    = INVALID;
144085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    meanAnomalySun  = INVALID;
144185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    moonLongitude   = INVALID;
144285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    moonEclipLong   = INVALID;
144385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    meanAnomalyMoon = INVALID;
144485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    eclipObliquity  = INVALID;
144585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    siderealTime    = INVALID;
144685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    siderealT0      = INVALID;
144785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    moonPositionSet = FALSE;
1448ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1449ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1450ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//private static void out(String s) {
1451ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    System.out.println(s);
1452ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//}
1453ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1454ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//private static String deg(double rad) {
1455ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    return Double.toString(rad * RAD_DEG);
1456ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//}
1457ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1458ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//private static String hours(long ms) {
1459ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    return Double.toString((double)ms / HOUR_MS) + " hours";
1460ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//}
1461ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1462ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/**
1463ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @internal
1464ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru * @deprecated ICU 2.4. This class may be removed or modified.
1465ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru */
1466ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru/*UDate CalendarAstronomer::local(UDate localMillis) {
1467ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  // TODO - srl ?
1468ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  TimeZone *tz = TimeZone::createDefault();
1469ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  int32_t rawOffset;
1470ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  int32_t dstOffset;
1471ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  UErrorCode status = U_ZERO_ERROR;
1472ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1473ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  delete tz;
1474ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru  return localMillis - rawOffset;
1475ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}*/
1476ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1477ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// Debugging functions
1478ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUnicodeString CalendarAstronomer::Ecliptic::toString() const
1479ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
1480ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#ifdef U_DEBUG_ASTRO
148185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    char tmp[800];
148285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
148385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return UnicodeString(tmp, "");
1484ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#else
148585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return UnicodeString();
1486ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#endif
1487ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1488ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1489ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUnicodeString CalendarAstronomer::Equatorial::toString() const
1490ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
1491ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#ifdef U_DEBUG_ASTRO
149285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    char tmp[400];
149385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    sprintf(tmp, "%f,%f",
149485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        (ascension*RAD_DEG), (declination*RAD_DEG));
149585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return UnicodeString(tmp, "");
1496ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#else
149785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return UnicodeString();
1498ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#endif
1499ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1500ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1501ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruUnicodeString CalendarAstronomer::Horizon::toString() const
1502ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru{
1503ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#ifdef U_DEBUG_ASTRO
150485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    char tmp[800];
150585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
150685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return UnicodeString(tmp, "");
1507ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#else
150885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return UnicodeString();
1509ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#endif
1510ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1511ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1512ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1513ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  static private String radToHms(double angle) {
1514ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    int hrs = (int) (angle*RAD_HOUR);
1515ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    int min = (int)((angle*RAD_HOUR - hrs) * 60);
1516ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1517ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1518ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1519ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  }
1520ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1521ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  static private String radToDms(double angle) {
1522ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    int deg = (int) (angle*RAD_DEG);
1523ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    int min = (int)((angle*RAD_DEG - deg) * 60);
1524ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1525ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1526ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1527ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru//  }
1528ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1529ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru// =============== Calendar Cache ================
1530ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1531ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruvoid CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
153285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
153385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if(cache == NULL) {
153485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        status = U_MEMORY_ALLOCATION_ERROR;
153585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    } else {
153685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        *cache = new CalendarCache(32, status);
153785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        if(U_FAILURE(status)) {
153885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            delete *cache;
153985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            *cache = NULL;
154085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        }
1541ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    }
1542ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1543ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1544ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruint32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
154585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    int32_t res;
1546ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1547ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    if(U_FAILURE(status)) {
154885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        return 0;
154985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
155085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    umtx_lock(&ccLock);
155185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
155285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if(*cache == NULL) {
155385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        createCache(cache, status);
155485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        if(U_FAILURE(status)) {
155585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            umtx_unlock(&ccLock);
155685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            return 0;
155785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        }
1558ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    }
1559ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
156085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    res = uhash_igeti((*cache)->fTable, key);
156185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
1562ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
156385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    umtx_unlock(&ccLock);
156485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    return res;
1565ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1566ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1567ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queruvoid CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
1568ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    if(U_FAILURE(status)) {
156985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        return;
157085bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
157185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    umtx_lock(&ccLock);
157285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho
157385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if(*cache == NULL) {
157485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        createCache(cache, status);
157585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        if(U_FAILURE(status)) {
157685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            umtx_unlock(&ccLock);
157785bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho            return;
157885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        }
1579ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru    }
1580ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
158185bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    uhash_iputi((*cache)->fTable, key, value, &status);
158285bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
1583ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
158485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    umtx_unlock(&ccLock);
1585ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1586ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1587ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
158885bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
158985bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
1590ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1591ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1592ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruCalendarCache::~CalendarCache() {
159385bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    if(fTable != NULL) {
159485bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
159585bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho        uhash_close(fTable);
159685bf2e2fbc60a9f938064abc8127d61da7d19882Claire Ho    }
1597ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru}
1598ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1599ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste QueruU_NAMESPACE_END
1600ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru
1601ac04d0bbe12b3ef54518635711412f178cb4d16Jean-Baptiste Queru#endif //  !UCONFIG_NO_FORMATTING
1602