1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/Passes.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/CaptureTracking.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/Analysis/MemoryBuiltins.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetLibraryInfo.h"
38#include <algorithm>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Useful predicates
43//===----------------------------------------------------------------------===//
44
45/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46/// object that never escapes from the function.
47static bool isNonEscapingLocalObject(const Value *V) {
48  // If this is a local allocation, check to see if it escapes.
49  if (isa<AllocaInst>(V) || isNoAliasCall(V))
50    // Set StoreCaptures to True so that we can assume in our callers that the
51    // pointer is not the result of a load instruction. Currently
52    // PointerMayBeCaptured doesn't have any special analysis for the
53    // StoreCaptures=false case; if it did, our callers could be refined to be
54    // more precise.
55    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
56
57  // If this is an argument that corresponds to a byval or noalias argument,
58  // then it has not escaped before entering the function.  Check if it escapes
59  // inside the function.
60  if (const Argument *A = dyn_cast<Argument>(V))
61    if (A->hasByValAttr() || A->hasNoAliasAttr())
62      // Note even if the argument is marked nocapture we still need to check
63      // for copies made inside the function. The nocapture attribute only
64      // specifies that there are no copies made that outlive the function.
65      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
66
67  return false;
68}
69
70/// isEscapeSource - Return true if the pointer is one which would have
71/// been considered an escape by isNonEscapingLocalObject.
72static bool isEscapeSource(const Value *V) {
73  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
74    return true;
75
76  // The load case works because isNonEscapingLocalObject considers all
77  // stores to be escapes (it passes true for the StoreCaptures argument
78  // to PointerMayBeCaptured).
79  if (isa<LoadInst>(V))
80    return true;
81
82  return false;
83}
84
85/// getObjectSize - Return the size of the object specified by V, or
86/// UnknownSize if unknown.
87static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
88                              const TargetLibraryInfo &TLI,
89                              bool RoundToAlign = false) {
90  uint64_t Size;
91  if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
92    return Size;
93  return AliasAnalysis::UnknownSize;
94}
95
96/// isObjectSmallerThan - Return true if we can prove that the object specified
97/// by V is smaller than Size.
98static bool isObjectSmallerThan(const Value *V, uint64_t Size,
99                                const DataLayout &TD,
100                                const TargetLibraryInfo &TLI) {
101  // Note that the meanings of the "object" are slightly different in the
102  // following contexts:
103  //    c1: llvm::getObjectSize()
104  //    c2: llvm.objectsize() intrinsic
105  //    c3: isObjectSmallerThan()
106  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
107  // refers to the "entire object".
108  //
109  //  Consider this example:
110  //     char *p = (char*)malloc(100)
111  //     char *q = p+80;
112  //
113  //  In the context of c1 and c2, the "object" pointed by q refers to the
114  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
115  //
116  //  However, in the context of c3, the "object" refers to the chunk of memory
117  // being allocated. So, the "object" has 100 bytes, and q points to the middle
118  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
119  // parameter, before the llvm::getObjectSize() is called to get the size of
120  // entire object, we should:
121  //    - either rewind the pointer q to the base-address of the object in
122  //      question (in this case rewind to p), or
123  //    - just give up. It is up to caller to make sure the pointer is pointing
124  //      to the base address the object.
125  //
126  // We go for 2nd option for simplicity.
127  if (!isIdentifiedObject(V))
128    return false;
129
130  // This function needs to use the aligned object size because we allow
131  // reads a bit past the end given sufficient alignment.
132  uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
133
134  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
135}
136
137/// isObjectSize - Return true if we can prove that the object specified
138/// by V has size Size.
139static bool isObjectSize(const Value *V, uint64_t Size,
140                         const DataLayout &TD, const TargetLibraryInfo &TLI) {
141  uint64_t ObjectSize = getObjectSize(V, TD, TLI);
142  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
143}
144
145/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
146/// at the function-level. Different IdentifiedFunctionLocals can't alias.
147/// Further, an IdentifiedFunctionLocal can not alias with any function
148/// arguments other than itself, which is not neccessarily true for
149/// IdentifiedObjects.
150static bool isIdentifiedFunctionLocal(const Value *V)
151{
152  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
153}
154
155
156//===----------------------------------------------------------------------===//
157// GetElementPtr Instruction Decomposition and Analysis
158//===----------------------------------------------------------------------===//
159
160namespace {
161  enum ExtensionKind {
162    EK_NotExtended,
163    EK_SignExt,
164    EK_ZeroExt
165  };
166
167  struct VariableGEPIndex {
168    const Value *V;
169    ExtensionKind Extension;
170    int64_t Scale;
171
172    bool operator==(const VariableGEPIndex &Other) const {
173      return V == Other.V && Extension == Other.Extension &&
174        Scale == Other.Scale;
175    }
176
177    bool operator!=(const VariableGEPIndex &Other) const {
178      return !operator==(Other);
179    }
180  };
181}
182
183
184/// GetLinearExpression - Analyze the specified value as a linear expression:
185/// "A*V + B", where A and B are constant integers.  Return the scale and offset
186/// values as APInts and return V as a Value*, and return whether we looked
187/// through any sign or zero extends.  The incoming Value is known to have
188/// IntegerType and it may already be sign or zero extended.
189///
190/// Note that this looks through extends, so the high bits may not be
191/// represented in the result.
192static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
193                                  ExtensionKind &Extension,
194                                  const DataLayout &TD, unsigned Depth) {
195  assert(V->getType()->isIntegerTy() && "Not an integer value");
196
197  // Limit our recursion depth.
198  if (Depth == 6) {
199    Scale = 1;
200    Offset = 0;
201    return V;
202  }
203
204  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
205    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
206      switch (BOp->getOpcode()) {
207      default: break;
208      case Instruction::Or:
209        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
210        // analyze it.
211        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
212          break;
213        // FALL THROUGH.
214      case Instruction::Add:
215        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
216                                TD, Depth+1);
217        Offset += RHSC->getValue();
218        return V;
219      case Instruction::Mul:
220        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
221                                TD, Depth+1);
222        Offset *= RHSC->getValue();
223        Scale *= RHSC->getValue();
224        return V;
225      case Instruction::Shl:
226        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
227                                TD, Depth+1);
228        Offset <<= RHSC->getValue().getLimitedValue();
229        Scale <<= RHSC->getValue().getLimitedValue();
230        return V;
231      }
232    }
233  }
234
235  // Since GEP indices are sign extended anyway, we don't care about the high
236  // bits of a sign or zero extended value - just scales and offsets.  The
237  // extensions have to be consistent though.
238  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
239      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
240    Value *CastOp = cast<CastInst>(V)->getOperand(0);
241    unsigned OldWidth = Scale.getBitWidth();
242    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
243    Scale = Scale.trunc(SmallWidth);
244    Offset = Offset.trunc(SmallWidth);
245    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
246
247    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
248                                        TD, Depth+1);
249    Scale = Scale.zext(OldWidth);
250    Offset = Offset.zext(OldWidth);
251
252    return Result;
253  }
254
255  Scale = 1;
256  Offset = 0;
257  return V;
258}
259
260/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
261/// into a base pointer with a constant offset and a number of scaled symbolic
262/// offsets.
263///
264/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
265/// the VarIndices vector) are Value*'s that are known to be scaled by the
266/// specified amount, but which may have other unrepresented high bits. As such,
267/// the gep cannot necessarily be reconstructed from its decomposed form.
268///
269/// When DataLayout is around, this function is capable of analyzing everything
270/// that GetUnderlyingObject can look through.  When not, it just looks
271/// through pointer casts.
272///
273static const Value *
274DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
275                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
276                       const DataLayout *TD) {
277  // Limit recursion depth to limit compile time in crazy cases.
278  unsigned MaxLookup = 6;
279
280  BaseOffs = 0;
281  do {
282    // See if this is a bitcast or GEP.
283    const Operator *Op = dyn_cast<Operator>(V);
284    if (Op == 0) {
285      // The only non-operator case we can handle are GlobalAliases.
286      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
287        if (!GA->mayBeOverridden()) {
288          V = GA->getAliasee();
289          continue;
290        }
291      }
292      return V;
293    }
294
295    if (Op->getOpcode() == Instruction::BitCast) {
296      V = Op->getOperand(0);
297      continue;
298    }
299
300    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
301    if (GEPOp == 0) {
302      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
303      // can come up with something. This matches what GetUnderlyingObject does.
304      if (const Instruction *I = dyn_cast<Instruction>(V))
305        // TODO: Get a DominatorTree and use it here.
306        if (const Value *Simplified =
307              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
308          V = Simplified;
309          continue;
310        }
311
312      return V;
313    }
314
315    // Don't attempt to analyze GEPs over unsized objects.
316    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
317        ->getElementType()->isSized())
318      return V;
319
320    // If we are lacking DataLayout information, we can't compute the offets of
321    // elements computed by GEPs.  However, we can handle bitcast equivalent
322    // GEPs.
323    if (TD == 0) {
324      if (!GEPOp->hasAllZeroIndices())
325        return V;
326      V = GEPOp->getOperand(0);
327      continue;
328    }
329
330    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
331    gep_type_iterator GTI = gep_type_begin(GEPOp);
332    for (User::const_op_iterator I = GEPOp->op_begin()+1,
333         E = GEPOp->op_end(); I != E; ++I) {
334      Value *Index = *I;
335      // Compute the (potentially symbolic) offset in bytes for this index.
336      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
337        // For a struct, add the member offset.
338        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
339        if (FieldNo == 0) continue;
340
341        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
342        continue;
343      }
344
345      // For an array/pointer, add the element offset, explicitly scaled.
346      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
347        if (CIdx->isZero()) continue;
348        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
349        continue;
350      }
351
352      uint64_t Scale = TD->getTypeAllocSize(*GTI);
353      ExtensionKind Extension = EK_NotExtended;
354
355      // If the integer type is smaller than the pointer size, it is implicitly
356      // sign extended to pointer size.
357      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
358      if (TD->getPointerSizeInBits() > Width)
359        Extension = EK_SignExt;
360
361      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
362      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
363      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
364                                  *TD, 0);
365
366      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
367      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
368      BaseOffs += IndexOffset.getSExtValue()*Scale;
369      Scale *= IndexScale.getSExtValue();
370
371
372      // If we already had an occurrence of this index variable, merge this
373      // scale into it.  For example, we want to handle:
374      //   A[x][x] -> x*16 + x*4 -> x*20
375      // This also ensures that 'x' only appears in the index list once.
376      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
377        if (VarIndices[i].V == Index &&
378            VarIndices[i].Extension == Extension) {
379          Scale += VarIndices[i].Scale;
380          VarIndices.erase(VarIndices.begin()+i);
381          break;
382        }
383      }
384
385      // Make sure that we have a scale that makes sense for this target's
386      // pointer size.
387      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
388        Scale <<= ShiftBits;
389        Scale = (int64_t)Scale >> ShiftBits;
390      }
391
392      if (Scale) {
393        VariableGEPIndex Entry = {Index, Extension,
394                                  static_cast<int64_t>(Scale)};
395        VarIndices.push_back(Entry);
396      }
397    }
398
399    // Analyze the base pointer next.
400    V = GEPOp->getOperand(0);
401  } while (--MaxLookup);
402
403  // If the chain of expressions is too deep, just return early.
404  return V;
405}
406
407/// GetIndexDifference - Dest and Src are the variable indices from two
408/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
409/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
410/// difference between the two pointers.
411static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
412                               const SmallVectorImpl<VariableGEPIndex> &Src) {
413  if (Src.empty()) return;
414
415  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
416    const Value *V = Src[i].V;
417    ExtensionKind Extension = Src[i].Extension;
418    int64_t Scale = Src[i].Scale;
419
420    // Find V in Dest.  This is N^2, but pointer indices almost never have more
421    // than a few variable indexes.
422    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
423      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
424
425      // If we found it, subtract off Scale V's from the entry in Dest.  If it
426      // goes to zero, remove the entry.
427      if (Dest[j].Scale != Scale)
428        Dest[j].Scale -= Scale;
429      else
430        Dest.erase(Dest.begin()+j);
431      Scale = 0;
432      break;
433    }
434
435    // If we didn't consume this entry, add it to the end of the Dest list.
436    if (Scale) {
437      VariableGEPIndex Entry = { V, Extension, -Scale };
438      Dest.push_back(Entry);
439    }
440  }
441}
442
443//===----------------------------------------------------------------------===//
444// BasicAliasAnalysis Pass
445//===----------------------------------------------------------------------===//
446
447#ifndef NDEBUG
448static const Function *getParent(const Value *V) {
449  if (const Instruction *inst = dyn_cast<Instruction>(V))
450    return inst->getParent()->getParent();
451
452  if (const Argument *arg = dyn_cast<Argument>(V))
453    return arg->getParent();
454
455  return NULL;
456}
457
458static bool notDifferentParent(const Value *O1, const Value *O2) {
459
460  const Function *F1 = getParent(O1);
461  const Function *F2 = getParent(O2);
462
463  return !F1 || !F2 || F1 == F2;
464}
465#endif
466
467namespace {
468  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
469  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
470    static char ID; // Class identification, replacement for typeinfo
471    BasicAliasAnalysis() : ImmutablePass(ID) {
472      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
473    }
474
475    virtual void initializePass() {
476      InitializeAliasAnalysis(this);
477    }
478
479    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
480      AU.addRequired<AliasAnalysis>();
481      AU.addRequired<TargetLibraryInfo>();
482    }
483
484    virtual AliasResult alias(const Location &LocA,
485                              const Location &LocB) {
486      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
487      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
488             "BasicAliasAnalysis doesn't support interprocedural queries.");
489      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
490                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
491      // AliasCache rarely has more than 1 or 2 elements, always use
492      // shrink_and_clear so it quickly returns to the inline capacity of the
493      // SmallDenseMap if it ever grows larger.
494      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
495      AliasCache.shrink_and_clear();
496      return Alias;
497    }
498
499    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
500                                       const Location &Loc);
501
502    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
503                                       ImmutableCallSite CS2) {
504      // The AliasAnalysis base class has some smarts, lets use them.
505      return AliasAnalysis::getModRefInfo(CS1, CS2);
506    }
507
508    /// pointsToConstantMemory - Chase pointers until we find a (constant
509    /// global) or not.
510    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
511
512    /// getModRefBehavior - Return the behavior when calling the given
513    /// call site.
514    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
515
516    /// getModRefBehavior - Return the behavior when calling the given function.
517    /// For use when the call site is not known.
518    virtual ModRefBehavior getModRefBehavior(const Function *F);
519
520    /// getAdjustedAnalysisPointer - This method is used when a pass implements
521    /// an analysis interface through multiple inheritance.  If needed, it
522    /// should override this to adjust the this pointer as needed for the
523    /// specified pass info.
524    virtual void *getAdjustedAnalysisPointer(const void *ID) {
525      if (ID == &AliasAnalysis::ID)
526        return (AliasAnalysis*)this;
527      return this;
528    }
529
530  private:
531    // AliasCache - Track alias queries to guard against recursion.
532    typedef std::pair<Location, Location> LocPair;
533    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
534    AliasCacheTy AliasCache;
535
536    // Visited - Track instructions visited by pointsToConstantMemory.
537    SmallPtrSet<const Value*, 16> Visited;
538
539    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
540    // instruction against another.
541    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
542                         const MDNode *V1TBAAInfo,
543                         const Value *V2, uint64_t V2Size,
544                         const MDNode *V2TBAAInfo,
545                         const Value *UnderlyingV1, const Value *UnderlyingV2);
546
547    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
548    // instruction against another.
549    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
550                         const MDNode *PNTBAAInfo,
551                         const Value *V2, uint64_t V2Size,
552                         const MDNode *V2TBAAInfo);
553
554    /// aliasSelect - Disambiguate a Select instruction against another value.
555    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
556                            const MDNode *SITBAAInfo,
557                            const Value *V2, uint64_t V2Size,
558                            const MDNode *V2TBAAInfo);
559
560    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
561                           const MDNode *V1TBAATag,
562                           const Value *V2, uint64_t V2Size,
563                           const MDNode *V2TBAATag);
564  };
565}  // End of anonymous namespace
566
567// Register this pass...
568char BasicAliasAnalysis::ID = 0;
569INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
570                   "Basic Alias Analysis (stateless AA impl)",
571                   false, true, false)
572INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
573INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
574                   "Basic Alias Analysis (stateless AA impl)",
575                   false, true, false)
576
577
578ImmutablePass *llvm::createBasicAliasAnalysisPass() {
579  return new BasicAliasAnalysis();
580}
581
582/// pointsToConstantMemory - Returns whether the given pointer value
583/// points to memory that is local to the function, with global constants being
584/// considered local to all functions.
585bool
586BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
587  assert(Visited.empty() && "Visited must be cleared after use!");
588
589  unsigned MaxLookup = 8;
590  SmallVector<const Value *, 16> Worklist;
591  Worklist.push_back(Loc.Ptr);
592  do {
593    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
594    if (!Visited.insert(V)) {
595      Visited.clear();
596      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
597    }
598
599    // An alloca instruction defines local memory.
600    if (OrLocal && isa<AllocaInst>(V))
601      continue;
602
603    // A global constant counts as local memory for our purposes.
604    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
605      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
606      // global to be marked constant in some modules and non-constant in
607      // others.  GV may even be a declaration, not a definition.
608      if (!GV->isConstant()) {
609        Visited.clear();
610        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
611      }
612      continue;
613    }
614
615    // If both select values point to local memory, then so does the select.
616    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
617      Worklist.push_back(SI->getTrueValue());
618      Worklist.push_back(SI->getFalseValue());
619      continue;
620    }
621
622    // If all values incoming to a phi node point to local memory, then so does
623    // the phi.
624    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
625      // Don't bother inspecting phi nodes with many operands.
626      if (PN->getNumIncomingValues() > MaxLookup) {
627        Visited.clear();
628        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
629      }
630      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
631        Worklist.push_back(PN->getIncomingValue(i));
632      continue;
633    }
634
635    // Otherwise be conservative.
636    Visited.clear();
637    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
638
639  } while (!Worklist.empty() && --MaxLookup);
640
641  Visited.clear();
642  return Worklist.empty();
643}
644
645/// getModRefBehavior - Return the behavior when calling the given call site.
646AliasAnalysis::ModRefBehavior
647BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
648  if (CS.doesNotAccessMemory())
649    // Can't do better than this.
650    return DoesNotAccessMemory;
651
652  ModRefBehavior Min = UnknownModRefBehavior;
653
654  // If the callsite knows it only reads memory, don't return worse
655  // than that.
656  if (CS.onlyReadsMemory())
657    Min = OnlyReadsMemory;
658
659  // The AliasAnalysis base class has some smarts, lets use them.
660  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
661}
662
663/// getModRefBehavior - Return the behavior when calling the given function.
664/// For use when the call site is not known.
665AliasAnalysis::ModRefBehavior
666BasicAliasAnalysis::getModRefBehavior(const Function *F) {
667  // If the function declares it doesn't access memory, we can't do better.
668  if (F->doesNotAccessMemory())
669    return DoesNotAccessMemory;
670
671  // For intrinsics, we can check the table.
672  if (unsigned iid = F->getIntrinsicID()) {
673#define GET_INTRINSIC_MODREF_BEHAVIOR
674#include "llvm/IR/Intrinsics.gen"
675#undef GET_INTRINSIC_MODREF_BEHAVIOR
676  }
677
678  ModRefBehavior Min = UnknownModRefBehavior;
679
680  // If the function declares it only reads memory, go with that.
681  if (F->onlyReadsMemory())
682    Min = OnlyReadsMemory;
683
684  // Otherwise be conservative.
685  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
686}
687
688/// getModRefInfo - Check to see if the specified callsite can clobber the
689/// specified memory object.  Since we only look at local properties of this
690/// function, we really can't say much about this query.  We do, however, use
691/// simple "address taken" analysis on local objects.
692AliasAnalysis::ModRefResult
693BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
694                                  const Location &Loc) {
695  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
696         "AliasAnalysis query involving multiple functions!");
697
698  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
699
700  // If this is a tail call and Loc.Ptr points to a stack location, we know that
701  // the tail call cannot access or modify the local stack.
702  // We cannot exclude byval arguments here; these belong to the caller of
703  // the current function not to the current function, and a tail callee
704  // may reference them.
705  if (isa<AllocaInst>(Object))
706    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
707      if (CI->isTailCall())
708        return NoModRef;
709
710  // If the pointer is to a locally allocated object that does not escape,
711  // then the call can not mod/ref the pointer unless the call takes the pointer
712  // as an argument, and itself doesn't capture it.
713  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
714      isNonEscapingLocalObject(Object)) {
715    bool PassedAsArg = false;
716    unsigned ArgNo = 0;
717    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
718         CI != CE; ++CI, ++ArgNo) {
719      // Only look at the no-capture or byval pointer arguments.  If this
720      // pointer were passed to arguments that were neither of these, then it
721      // couldn't be no-capture.
722      if (!(*CI)->getType()->isPointerTy() ||
723          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
724        continue;
725
726      // If this is a no-capture pointer argument, see if we can tell that it
727      // is impossible to alias the pointer we're checking.  If not, we have to
728      // assume that the call could touch the pointer, even though it doesn't
729      // escape.
730      if (!isNoAlias(Location(*CI), Location(Object))) {
731        PassedAsArg = true;
732        break;
733      }
734    }
735
736    if (!PassedAsArg)
737      return NoModRef;
738  }
739
740  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
741  ModRefResult Min = ModRef;
742
743  // Finally, handle specific knowledge of intrinsics.
744  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
745  if (II != 0)
746    switch (II->getIntrinsicID()) {
747    default: break;
748    case Intrinsic::memcpy:
749    case Intrinsic::memmove: {
750      uint64_t Len = UnknownSize;
751      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
752        Len = LenCI->getZExtValue();
753      Value *Dest = II->getArgOperand(0);
754      Value *Src = II->getArgOperand(1);
755      // If it can't overlap the source dest, then it doesn't modref the loc.
756      if (isNoAlias(Location(Dest, Len), Loc)) {
757        if (isNoAlias(Location(Src, Len), Loc))
758          return NoModRef;
759        // If it can't overlap the dest, then worst case it reads the loc.
760        Min = Ref;
761      } else if (isNoAlias(Location(Src, Len), Loc)) {
762        // If it can't overlap the source, then worst case it mutates the loc.
763        Min = Mod;
764      }
765      break;
766    }
767    case Intrinsic::memset:
768      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
769      // will handle it for the variable length case.
770      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
771        uint64_t Len = LenCI->getZExtValue();
772        Value *Dest = II->getArgOperand(0);
773        if (isNoAlias(Location(Dest, Len), Loc))
774          return NoModRef;
775      }
776      // We know that memset doesn't load anything.
777      Min = Mod;
778      break;
779    case Intrinsic::lifetime_start:
780    case Intrinsic::lifetime_end:
781    case Intrinsic::invariant_start: {
782      uint64_t PtrSize =
783        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
784      if (isNoAlias(Location(II->getArgOperand(1),
785                             PtrSize,
786                             II->getMetadata(LLVMContext::MD_tbaa)),
787                    Loc))
788        return NoModRef;
789      break;
790    }
791    case Intrinsic::invariant_end: {
792      uint64_t PtrSize =
793        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
794      if (isNoAlias(Location(II->getArgOperand(2),
795                             PtrSize,
796                             II->getMetadata(LLVMContext::MD_tbaa)),
797                    Loc))
798        return NoModRef;
799      break;
800    }
801    case Intrinsic::arm_neon_vld1: {
802      // LLVM's vld1 and vst1 intrinsics currently only support a single
803      // vector register.
804      uint64_t Size =
805        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
806      if (isNoAlias(Location(II->getArgOperand(0), Size,
807                             II->getMetadata(LLVMContext::MD_tbaa)),
808                    Loc))
809        return NoModRef;
810      break;
811    }
812    case Intrinsic::arm_neon_vst1: {
813      uint64_t Size =
814        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
815      if (isNoAlias(Location(II->getArgOperand(0), Size,
816                             II->getMetadata(LLVMContext::MD_tbaa)),
817                    Loc))
818        return NoModRef;
819      break;
820    }
821    }
822
823  // We can bound the aliasing properties of memset_pattern16 just as we can
824  // for memcpy/memset.  This is particularly important because the
825  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
826  // whenever possible.
827  else if (TLI.has(LibFunc::memset_pattern16) &&
828           CS.getCalledFunction() &&
829           CS.getCalledFunction()->getName() == "memset_pattern16") {
830    const Function *MS = CS.getCalledFunction();
831    FunctionType *MemsetType = MS->getFunctionType();
832    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
833        isa<PointerType>(MemsetType->getParamType(0)) &&
834        isa<PointerType>(MemsetType->getParamType(1)) &&
835        isa<IntegerType>(MemsetType->getParamType(2))) {
836      uint64_t Len = UnknownSize;
837      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
838        Len = LenCI->getZExtValue();
839      const Value *Dest = CS.getArgument(0);
840      const Value *Src = CS.getArgument(1);
841      // If it can't overlap the source dest, then it doesn't modref the loc.
842      if (isNoAlias(Location(Dest, Len), Loc)) {
843        // Always reads 16 bytes of the source.
844        if (isNoAlias(Location(Src, 16), Loc))
845          return NoModRef;
846        // If it can't overlap the dest, then worst case it reads the loc.
847        Min = Ref;
848      // Always reads 16 bytes of the source.
849      } else if (isNoAlias(Location(Src, 16), Loc)) {
850        // If it can't overlap the source, then worst case it mutates the loc.
851        Min = Mod;
852      }
853    }
854  }
855
856  // The AliasAnalysis base class has some smarts, lets use them.
857  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
858}
859
860static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1,
861                               SmallVectorImpl<VariableGEPIndex> &Indices2) {
862  unsigned Size1 = Indices1.size();
863  unsigned Size2 = Indices2.size();
864
865  if (Size1 != Size2)
866    return false;
867
868  for (unsigned I = 0; I != Size1; ++I)
869    if (Indices1[I] != Indices2[I])
870      return false;
871
872  return true;
873}
874
875/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
876/// against another pointer.  We know that V1 is a GEP, but we don't know
877/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
878/// UnderlyingV2 is the same for V2.
879///
880AliasAnalysis::AliasResult
881BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
882                             const MDNode *V1TBAAInfo,
883                             const Value *V2, uint64_t V2Size,
884                             const MDNode *V2TBAAInfo,
885                             const Value *UnderlyingV1,
886                             const Value *UnderlyingV2) {
887  int64_t GEP1BaseOffset;
888  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
889
890  // If we have two gep instructions with must-alias or not-alias'ing base
891  // pointers, figure out if the indexes to the GEP tell us anything about the
892  // derived pointer.
893  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
894    // Do the base pointers alias?
895    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
896                                       UnderlyingV2, UnknownSize, 0);
897
898    // Check for geps of non-aliasing underlying pointers where the offsets are
899    // identical.
900    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
901      // Do the base pointers alias assuming type and size.
902      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
903                                                V1TBAAInfo, UnderlyingV2,
904                                                V2Size, V2TBAAInfo);
905      if (PreciseBaseAlias == NoAlias) {
906        // See if the computed offset from the common pointer tells us about the
907        // relation of the resulting pointer.
908        int64_t GEP2BaseOffset;
909        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
910        const Value *GEP2BasePtr =
911          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
912        const Value *GEP1BasePtr =
913          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
914        // DecomposeGEPExpression and GetUnderlyingObject should return the
915        // same result except when DecomposeGEPExpression has no DataLayout.
916        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
917          assert(TD == 0 &&
918             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
919          return MayAlias;
920        }
921        // Same offsets.
922        if (GEP1BaseOffset == GEP2BaseOffset &&
923            areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
924          return NoAlias;
925        GEP1VariableIndices.clear();
926      }
927    }
928
929    // If we get a No or May, then return it immediately, no amount of analysis
930    // will improve this situation.
931    if (BaseAlias != MustAlias) return BaseAlias;
932
933    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
934    // exactly, see if the computed offset from the common pointer tells us
935    // about the relation of the resulting pointer.
936    const Value *GEP1BasePtr =
937      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
938
939    int64_t GEP2BaseOffset;
940    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
941    const Value *GEP2BasePtr =
942      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
943
944    // DecomposeGEPExpression and GetUnderlyingObject should return the
945    // same result except when DecomposeGEPExpression has no DataLayout.
946    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
947      assert(TD == 0 &&
948             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
949      return MayAlias;
950    }
951
952    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
953    // symbolic difference.
954    GEP1BaseOffset -= GEP2BaseOffset;
955    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
956
957  } else {
958    // Check to see if these two pointers are related by the getelementptr
959    // instruction.  If one pointer is a GEP with a non-zero index of the other
960    // pointer, we know they cannot alias.
961
962    // If both accesses are unknown size, we can't do anything useful here.
963    if (V1Size == UnknownSize && V2Size == UnknownSize)
964      return MayAlias;
965
966    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
967                               V2, V2Size, V2TBAAInfo);
968    if (R != MustAlias)
969      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
970      // If V2 is known not to alias GEP base pointer, then the two values
971      // cannot alias per GEP semantics: "A pointer value formed from a
972      // getelementptr instruction is associated with the addresses associated
973      // with the first operand of the getelementptr".
974      return R;
975
976    const Value *GEP1BasePtr =
977      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
978
979    // DecomposeGEPExpression and GetUnderlyingObject should return the
980    // same result except when DecomposeGEPExpression has no DataLayout.
981    if (GEP1BasePtr != UnderlyingV1) {
982      assert(TD == 0 &&
983             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
984      return MayAlias;
985    }
986  }
987
988  // In the two GEP Case, if there is no difference in the offsets of the
989  // computed pointers, the resultant pointers are a must alias.  This
990  // hapens when we have two lexically identical GEP's (for example).
991  //
992  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
993  // must aliases the GEP, the end result is a must alias also.
994  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
995    return MustAlias;
996
997  // If there is a constant difference between the pointers, but the difference
998  // is less than the size of the associated memory object, then we know
999  // that the objects are partially overlapping.  If the difference is
1000  // greater, we know they do not overlap.
1001  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1002    if (GEP1BaseOffset >= 0) {
1003      if (V2Size != UnknownSize) {
1004        if ((uint64_t)GEP1BaseOffset < V2Size)
1005          return PartialAlias;
1006        return NoAlias;
1007      }
1008    } else {
1009      if (V1Size != UnknownSize) {
1010        if (-(uint64_t)GEP1BaseOffset < V1Size)
1011          return PartialAlias;
1012        return NoAlias;
1013      }
1014    }
1015  }
1016
1017  // Try to distinguish something like &A[i][1] against &A[42][0].
1018  // Grab the least significant bit set in any of the scales.
1019  if (!GEP1VariableIndices.empty()) {
1020    uint64_t Modulo = 0;
1021    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
1022      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1023    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1024
1025    // We can compute the difference between the two addresses
1026    // mod Modulo. Check whether that difference guarantees that the
1027    // two locations do not alias.
1028    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1029    if (V1Size != UnknownSize && V2Size != UnknownSize &&
1030        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1031      return NoAlias;
1032  }
1033
1034  // Statically, we can see that the base objects are the same, but the
1035  // pointers have dynamic offsets which we can't resolve. And none of our
1036  // little tricks above worked.
1037  //
1038  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1039  // practical effect of this is protecting TBAA in the case of dynamic
1040  // indices into arrays of unions or malloc'd memory.
1041  return PartialAlias;
1042}
1043
1044static AliasAnalysis::AliasResult
1045MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1046  // If the results agree, take it.
1047  if (A == B)
1048    return A;
1049  // A mix of PartialAlias and MustAlias is PartialAlias.
1050  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1051      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1052    return AliasAnalysis::PartialAlias;
1053  // Otherwise, we don't know anything.
1054  return AliasAnalysis::MayAlias;
1055}
1056
1057/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1058/// instruction against another.
1059AliasAnalysis::AliasResult
1060BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1061                                const MDNode *SITBAAInfo,
1062                                const Value *V2, uint64_t V2Size,
1063                                const MDNode *V2TBAAInfo) {
1064  // If the values are Selects with the same condition, we can do a more precise
1065  // check: just check for aliases between the values on corresponding arms.
1066  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1067    if (SI->getCondition() == SI2->getCondition()) {
1068      AliasResult Alias =
1069        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1070                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1071      if (Alias == MayAlias)
1072        return MayAlias;
1073      AliasResult ThisAlias =
1074        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1075                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1076      return MergeAliasResults(ThisAlias, Alias);
1077    }
1078
1079  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1080  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1081  AliasResult Alias =
1082    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1083  if (Alias == MayAlias)
1084    return MayAlias;
1085
1086  AliasResult ThisAlias =
1087    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1088  return MergeAliasResults(ThisAlias, Alias);
1089}
1090
1091// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1092// against another.
1093AliasAnalysis::AliasResult
1094BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1095                             const MDNode *PNTBAAInfo,
1096                             const Value *V2, uint64_t V2Size,
1097                             const MDNode *V2TBAAInfo) {
1098  // If the values are PHIs in the same block, we can do a more precise
1099  // as well as efficient check: just check for aliases between the values
1100  // on corresponding edges.
1101  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1102    if (PN2->getParent() == PN->getParent()) {
1103      LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
1104                   Location(V2, V2Size, V2TBAAInfo));
1105      if (PN > V2)
1106        std::swap(Locs.first, Locs.second);
1107      // Analyse the PHIs' inputs under the assumption that the PHIs are
1108      // NoAlias.
1109      // If the PHIs are May/MustAlias there must be (recursively) an input
1110      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1111      // there must be an operation on the PHIs within the PHIs' value cycle
1112      // that causes a MayAlias.
1113      // Pretend the phis do not alias.
1114      AliasResult Alias = NoAlias;
1115      assert(AliasCache.count(Locs) &&
1116             "There must exist an entry for the phi node");
1117      AliasResult OrigAliasResult = AliasCache[Locs];
1118      AliasCache[Locs] = NoAlias;
1119
1120      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1121        AliasResult ThisAlias =
1122          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1123                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1124                     V2Size, V2TBAAInfo);
1125        Alias = MergeAliasResults(ThisAlias, Alias);
1126        if (Alias == MayAlias)
1127          break;
1128      }
1129
1130      // Reset if speculation failed.
1131      if (Alias != NoAlias)
1132        AliasCache[Locs] = OrigAliasResult;
1133
1134      return Alias;
1135    }
1136
1137  SmallPtrSet<Value*, 4> UniqueSrc;
1138  SmallVector<Value*, 4> V1Srcs;
1139  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1140    Value *PV1 = PN->getIncomingValue(i);
1141    if (isa<PHINode>(PV1))
1142      // If any of the source itself is a PHI, return MayAlias conservatively
1143      // to avoid compile time explosion. The worst possible case is if both
1144      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1145      // and 'n' are the number of PHI sources.
1146      return MayAlias;
1147    if (UniqueSrc.insert(PV1))
1148      V1Srcs.push_back(PV1);
1149  }
1150
1151  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1152                                 V1Srcs[0], PNSize, PNTBAAInfo);
1153  // Early exit if the check of the first PHI source against V2 is MayAlias.
1154  // Other results are not possible.
1155  if (Alias == MayAlias)
1156    return MayAlias;
1157
1158  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1159  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1160  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1161    Value *V = V1Srcs[i];
1162
1163    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1164                                       V, PNSize, PNTBAAInfo);
1165    Alias = MergeAliasResults(ThisAlias, Alias);
1166    if (Alias == MayAlias)
1167      break;
1168  }
1169
1170  return Alias;
1171}
1172
1173// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1174// such as array references.
1175//
1176AliasAnalysis::AliasResult
1177BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1178                               const MDNode *V1TBAAInfo,
1179                               const Value *V2, uint64_t V2Size,
1180                               const MDNode *V2TBAAInfo) {
1181  // If either of the memory references is empty, it doesn't matter what the
1182  // pointer values are.
1183  if (V1Size == 0 || V2Size == 0)
1184    return NoAlias;
1185
1186  // Strip off any casts if they exist.
1187  V1 = V1->stripPointerCasts();
1188  V2 = V2->stripPointerCasts();
1189
1190  // Are we checking for alias of the same value?
1191  if (V1 == V2) return MustAlias;
1192
1193  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1194    return NoAlias;  // Scalars cannot alias each other
1195
1196  // Figure out what objects these things are pointing to if we can.
1197  const Value *O1 = GetUnderlyingObject(V1, TD);
1198  const Value *O2 = GetUnderlyingObject(V2, TD);
1199
1200  // Null values in the default address space don't point to any object, so they
1201  // don't alias any other pointer.
1202  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1203    if (CPN->getType()->getAddressSpace() == 0)
1204      return NoAlias;
1205  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1206    if (CPN->getType()->getAddressSpace() == 0)
1207      return NoAlias;
1208
1209  if (O1 != O2) {
1210    // If V1/V2 point to two different objects we know that we have no alias.
1211    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1212      return NoAlias;
1213
1214    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1215    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1216        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1217      return NoAlias;
1218
1219    // Function arguments can't alias with things that are known to be
1220    // unambigously identified at the function level.
1221    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1222        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1223      return NoAlias;
1224
1225    // Most objects can't alias null.
1226    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1227        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1228      return NoAlias;
1229
1230    // If one pointer is the result of a call/invoke or load and the other is a
1231    // non-escaping local object within the same function, then we know the
1232    // object couldn't escape to a point where the call could return it.
1233    //
1234    // Note that if the pointers are in different functions, there are a
1235    // variety of complications. A call with a nocapture argument may still
1236    // temporary store the nocapture argument's value in a temporary memory
1237    // location if that memory location doesn't escape. Or it may pass a
1238    // nocapture value to other functions as long as they don't capture it.
1239    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1240      return NoAlias;
1241    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1242      return NoAlias;
1243  }
1244
1245  // If the size of one access is larger than the entire object on the other
1246  // side, then we know such behavior is undefined and can assume no alias.
1247  if (TD)
1248    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
1249        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
1250      return NoAlias;
1251
1252  // Check the cache before climbing up use-def chains. This also terminates
1253  // otherwise infinitely recursive queries.
1254  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1255               Location(V2, V2Size, V2TBAAInfo));
1256  if (V1 > V2)
1257    std::swap(Locs.first, Locs.second);
1258  std::pair<AliasCacheTy::iterator, bool> Pair =
1259    AliasCache.insert(std::make_pair(Locs, MayAlias));
1260  if (!Pair.second)
1261    return Pair.first->second;
1262
1263  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1264  // GEP can't simplify, we don't even look at the PHI cases.
1265  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1266    std::swap(V1, V2);
1267    std::swap(V1Size, V2Size);
1268    std::swap(O1, O2);
1269    std::swap(V1TBAAInfo, V2TBAAInfo);
1270  }
1271  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1272    AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
1273    if (Result != MayAlias) return AliasCache[Locs] = Result;
1274  }
1275
1276  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1277    std::swap(V1, V2);
1278    std::swap(V1Size, V2Size);
1279    std::swap(V1TBAAInfo, V2TBAAInfo);
1280  }
1281  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1282    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1283                                  V2, V2Size, V2TBAAInfo);
1284    if (Result != MayAlias) return AliasCache[Locs] = Result;
1285  }
1286
1287  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1288    std::swap(V1, V2);
1289    std::swap(V1Size, V2Size);
1290    std::swap(V1TBAAInfo, V2TBAAInfo);
1291  }
1292  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1293    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1294                                     V2, V2Size, V2TBAAInfo);
1295    if (Result != MayAlias) return AliasCache[Locs] = Result;
1296  }
1297
1298  // If both pointers are pointing into the same object and one of them
1299  // accesses is accessing the entire object, then the accesses must
1300  // overlap in some way.
1301  if (TD && O1 == O2)
1302    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
1303        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
1304      return AliasCache[Locs] = PartialAlias;
1305
1306  AliasResult Result =
1307    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1308                         Location(V2, V2Size, V2TBAAInfo));
1309  return AliasCache[Locs] = Result;
1310}
1311