GlobalsModRef.cpp revision 1abe60b9be1b7b33e1fa422add5296d392831850
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/InstIterator.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/SCCIterator.h"
31#include <set>
32using namespace llvm;
33
34STATISTIC(NumNonAddrTakenGlobalVars,
35          "Number of global vars without address taken");
36STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
40
41namespace {
42  /// FunctionRecord - One instance of this structure is stored for every
43  /// function in the program.  Later, the entries for these functions are
44  /// removed if the function is found to call an external function (in which
45  /// case we know nothing about it.
46  struct VISIBILITY_HIDDEN FunctionRecord {
47    /// GlobalInfo - Maintain mod/ref info for all of the globals without
48    /// addresses taken that are read or written (transitively) by this
49    /// function.
50    std::map<GlobalValue*, unsigned> GlobalInfo;
51
52    unsigned getInfoForGlobal(GlobalValue *GV) const {
53      std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
54      if (I != GlobalInfo.end())
55        return I->second;
56      return 0;
57    }
58
59    /// FunctionEffect - Capture whether or not this function reads or writes to
60    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
61    unsigned FunctionEffect;
62
63    FunctionRecord() : FunctionEffect(0) {}
64  };
65
66  /// GlobalsModRef - The actual analysis pass.
67  class VISIBILITY_HIDDEN GlobalsModRef
68      : public ModulePass, public AliasAnalysis {
69    /// NonAddressTakenGlobals - The globals that do not have their addresses
70    /// taken.
71    std::set<GlobalValue*> NonAddressTakenGlobals;
72
73    /// ReadGlobals - The globals without addresses taken that are read by
74    /// some function.
75    std::set<GlobalValue*> ReadGlobals;
76
77    /// IndirectGlobals - The memory pointed to by this global is known to be
78    /// 'owned' by the global.
79    std::set<GlobalValue*> IndirectGlobals;
80
81    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
82    /// indirect global, this map indicates which one.
83    std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
84
85    /// FunctionInfo - For each function, keep track of what globals are
86    /// modified or read.
87    std::map<Function*, FunctionRecord> FunctionInfo;
88
89  public:
90    static char ID;
91    GlobalsModRef() : ModulePass(&ID) {}
92
93    bool runOnModule(Module &M) {
94      InitializeAliasAnalysis(this);                 // set up super class
95      AnalyzeGlobals(M);                          // find non-addr taken globals
96      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
97      return false;
98    }
99
100    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101      AliasAnalysis::getAnalysisUsage(AU);
102      AU.addRequired<CallGraph>();
103      AU.setPreservesAll();                         // Does not transform code
104    }
105
106    //------------------------------------------------
107    // Implement the AliasAnalysis API
108    //
109    AliasResult alias(const Value *V1, unsigned V1Size,
110                      const Value *V2, unsigned V2Size);
111    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
112    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
113      return AliasAnalysis::getModRefInfo(CS1,CS2);
114    }
115    bool hasNoModRefInfoForCalls() const { return false; }
116
117    /// getModRefBehavior - Return the behavior of the specified function if
118    /// called from the specified call site.  The call site may be null in which
119    /// case the most generic behavior of this function should be returned.
120    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
121                                         std::vector<PointerAccessInfo> *Info) {
122      if (FunctionRecord *FR = getFunctionInfo(F)) {
123        if (FR->FunctionEffect == 0)
124          return DoesNotAccessMemory;
125        else if ((FR->FunctionEffect & Mod) == 0)
126          return OnlyReadsMemory;
127      }
128      return AliasAnalysis::getModRefBehavior(F, CS, Info);
129    }
130
131    virtual void deleteValue(Value *V);
132    virtual void copyValue(Value *From, Value *To);
133
134  private:
135    /// getFunctionInfo - Return the function info for the function, or null if
136    /// we don't have anything useful to say about it.
137    FunctionRecord *getFunctionInfo(Function *F) {
138      std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
139      if (I != FunctionInfo.end())
140        return &I->second;
141      return 0;
142    }
143
144    void AnalyzeGlobals(Module &M);
145    void AnalyzeCallGraph(CallGraph &CG, Module &M);
146    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
147                              std::vector<Function*> &Writers,
148                              GlobalValue *OkayStoreDest = 0);
149    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
150  };
151}
152
153char GlobalsModRef::ID = 0;
154static RegisterPass<GlobalsModRef>
155X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
156static RegisterAnalysisGroup<AliasAnalysis> Y(X);
157
158Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
159
160/// getUnderlyingObject - This traverses the use chain to figure out what object
161/// the specified value points to.  If the value points to, or is derived from,
162/// a global object, return it.
163static Value *getUnderlyingObject(Value *V) {
164  if (!isa<PointerType>(V->getType())) return V;
165
166  // If we are at some type of object... return it.
167  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
168
169  // Traverse through different addressing mechanisms.
170  if (Instruction *I = dyn_cast<Instruction>(V)) {
171    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
172      return getUnderlyingObject(I->getOperand(0));
173  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
174    if (CE->getOpcode() == Instruction::BitCast ||
175        CE->getOpcode() == Instruction::GetElementPtr)
176      return getUnderlyingObject(CE->getOperand(0));
177  }
178
179  // Otherwise, we don't know what this is, return it as the base pointer.
180  return V;
181}
182
183/// AnalyzeGlobals - Scan through the users of all of the internal
184/// GlobalValue's in the program.  If none of them have their "address taken"
185/// (really, their address passed to something nontrivial), record this fact,
186/// and record the functions that they are used directly in.
187void GlobalsModRef::AnalyzeGlobals(Module &M) {
188  std::vector<Function*> Readers, Writers;
189  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
190    if (I->hasInternalLinkage()) {
191      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
192        // Remember that we are tracking this global.
193        NonAddressTakenGlobals.insert(I);
194        ++NumNonAddrTakenFunctions;
195      }
196      Readers.clear(); Writers.clear();
197    }
198
199  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
200       I != E; ++I)
201    if (I->hasInternalLinkage()) {
202      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
203        // Remember that we are tracking this global, and the mod/ref fns
204        NonAddressTakenGlobals.insert(I);
205
206        if (!Readers.empty())
207          // Some function read this global - remember that.
208          ReadGlobals.insert(I);
209
210        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
211          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
212
213        if (!I->isConstant())  // No need to keep track of writers to constants
214          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
215            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
216        ++NumNonAddrTakenGlobalVars;
217
218        // If this global holds a pointer type, see if it is an indirect global.
219        if (isa<PointerType>(I->getType()->getElementType()) &&
220            AnalyzeIndirectGlobalMemory(I))
221          ++NumIndirectGlobalVars;
222      }
223      Readers.clear(); Writers.clear();
224    }
225}
226
227/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
228/// If this is used by anything complex (i.e., the address escapes), return
229/// true.  Also, while we are at it, keep track of those functions that read and
230/// write to the value.
231///
232/// If OkayStoreDest is non-null, stores into this global are allowed.
233bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
234                                         std::vector<Function*> &Readers,
235                                         std::vector<Function*> &Writers,
236                                         GlobalValue *OkayStoreDest) {
237  if (!isa<PointerType>(V->getType())) return true;
238
239  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
240    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
241      Readers.push_back(LI->getParent()->getParent());
242    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
243      if (V == SI->getOperand(1)) {
244        Writers.push_back(SI->getParent()->getParent());
245      } else if (SI->getOperand(1) != OkayStoreDest) {
246        return true;  // Storing the pointer
247      }
248    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
249      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
250    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
251      // Make sure that this is just the function being called, not that it is
252      // passing into the function.
253      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
254        if (CI->getOperand(i) == V) return true;
255    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
256      // Make sure that this is just the function being called, not that it is
257      // passing into the function.
258      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
259        if (II->getOperand(i) == V) return true;
260    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
261      if (CE->getOpcode() == Instruction::GetElementPtr ||
262          CE->getOpcode() == Instruction::BitCast) {
263        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
264          return true;
265      } else {
266        return true;
267      }
268    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
269      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
270        return true;  // Allow comparison against null.
271    } else if (FreeInst *F = dyn_cast<FreeInst>(*UI)) {
272      Writers.push_back(F->getParent()->getParent());
273    } else {
274      return true;
275    }
276  return false;
277}
278
279/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
280/// which holds a pointer type.  See if the global always points to non-aliased
281/// heap memory: that is, all initializers of the globals are allocations, and
282/// those allocations have no use other than initialization of the global.
283/// Further, all loads out of GV must directly use the memory, not store the
284/// pointer somewhere.  If this is true, we consider the memory pointed to by
285/// GV to be owned by GV and can disambiguate other pointers from it.
286bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
287  // Keep track of values related to the allocation of the memory, f.e. the
288  // value produced by the malloc call and any casts.
289  std::vector<Value*> AllocRelatedValues;
290
291  // Walk the user list of the global.  If we find anything other than a direct
292  // load or store, bail out.
293  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
294    if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
295      // The pointer loaded from the global can only be used in simple ways:
296      // we allow addressing of it and loading storing to it.  We do *not* allow
297      // storing the loaded pointer somewhere else or passing to a function.
298      std::vector<Function*> ReadersWriters;
299      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
300        return false;  // Loaded pointer escapes.
301      // TODO: Could try some IP mod/ref of the loaded pointer.
302    } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
303      // Storing the global itself.
304      if (SI->getOperand(0) == GV) return false;
305
306      // If storing the null pointer, ignore it.
307      if (isa<ConstantPointerNull>(SI->getOperand(0)))
308        continue;
309
310      // Check the value being stored.
311      Value *Ptr = getUnderlyingObject(SI->getOperand(0));
312
313      if (isa<MallocInst>(Ptr)) {
314        // Okay, easy case.
315      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
316        Function *F = CI->getCalledFunction();
317        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
318        if (F->getName() != "calloc") return false;   // Not calloc.
319      } else {
320        return false;  // Too hard to analyze.
321      }
322
323      // Analyze all uses of the allocation.  If any of them are used in a
324      // non-simple way (e.g. stored to another global) bail out.
325      std::vector<Function*> ReadersWriters;
326      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
327        return false;  // Loaded pointer escapes.
328
329      // Remember that this allocation is related to the indirect global.
330      AllocRelatedValues.push_back(Ptr);
331    } else {
332      // Something complex, bail out.
333      return false;
334    }
335  }
336
337  // Okay, this is an indirect global.  Remember all of the allocations for
338  // this global in AllocsForIndirectGlobals.
339  while (!AllocRelatedValues.empty()) {
340    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
341    AllocRelatedValues.pop_back();
342  }
343  IndirectGlobals.insert(GV);
344  return true;
345}
346
347/// AnalyzeCallGraph - At this point, we know the functions where globals are
348/// immediately stored to and read from.  Propagate this information up the call
349/// graph to all callers and compute the mod/ref info for all memory for each
350/// function.
351void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
352  // We do a bottom-up SCC traversal of the call graph.  In other words, we
353  // visit all callees before callers (leaf-first).
354  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
355       ++I) {
356    std::vector<CallGraphNode *> &SCC = *I;
357    assert(!SCC.empty() && "SCC with no functions?");
358
359    if (!SCC[0]->getFunction()) {
360      // Calls externally - can't say anything useful.  Remove any existing
361      // function records (may have been created when scanning globals).
362      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
363        FunctionInfo.erase(SCC[i]->getFunction());
364      continue;
365    }
366
367    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
368
369    bool KnowNothing = false;
370    unsigned FunctionEffect = 0;
371
372    // Collect the mod/ref properties due to called functions.  We only compute
373    // one mod-ref set.
374    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
375      Function *F = SCC[i]->getFunction();
376      if (!F) {
377        KnowNothing = true;
378        break;
379      }
380
381      if (F->isDeclaration()) {
382        // Try to get mod/ref behaviour from function attributes.
383        if (F->doesNotAccessMemory()) {
384          // Can't do better than that!
385        } else if (F->onlyReadsMemory()) {
386          FunctionEffect |= Ref;
387          if (!F->isIntrinsic()) {
388            // This function might call back into the module and read a global -
389            // mark all globals read somewhere as being read by this function.
390            for (std::set<GlobalValue*>::iterator GI = ReadGlobals.begin(),
391                 E = ReadGlobals.end(); GI != E; ++GI)
392              FR.GlobalInfo[*GI] |= Ref;
393          }
394        } else {
395          // Can't say anything useful.
396          KnowNothing = true;
397        }
398        continue;
399      }
400
401      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
402           CI != E && !KnowNothing; ++CI)
403        if (Function *Callee = CI->second->getFunction()) {
404          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
405            // Propagate function effect up.
406            FunctionEffect |= CalleeFR->FunctionEffect;
407
408            // Incorporate callee's effects on globals into our info.
409            for (std::map<GlobalValue*, unsigned>::iterator GI =
410                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
411                 GI != E; ++GI)
412              FR.GlobalInfo[GI->first] |= GI->second;
413          } else {
414            // Can't say anything about it.  However, if it is inside our SCC,
415            // then nothing needs to be done.
416            CallGraphNode *CalleeNode = CG[Callee];
417            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
418              KnowNothing = true;
419          }
420        } else {
421          KnowNothing = true;
422        }
423    }
424
425    // If we can't say anything useful about this SCC, remove all SCC functions
426    // from the FunctionInfo map.
427    if (KnowNothing) {
428      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
429        FunctionInfo.erase(SCC[i]->getFunction());
430      continue;
431    }
432
433    // Scan the function bodies for explicit loads or stores.
434    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
435      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
436             E = inst_end(SCC[i]->getFunction());
437           II != E && FunctionEffect != ModRef; ++II)
438        if (isa<LoadInst>(*II))
439          FunctionEffect |= Ref;
440        else if (isa<StoreInst>(*II))
441          FunctionEffect |= Mod;
442        else if (isa<MallocInst>(*II) || isa<FreeInst>(*II))
443          FunctionEffect |= ModRef;
444
445    if ((FunctionEffect & Mod) == 0)
446      ++NumReadMemFunctions;
447    if (FunctionEffect == 0)
448      ++NumNoMemFunctions;
449    FR.FunctionEffect = FunctionEffect;
450
451    // Finally, now that we know the full effect on this SCC, clone the
452    // information to each function in the SCC.
453    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
454      FunctionInfo[SCC[i]->getFunction()] = FR;
455  }
456}
457
458
459
460/// alias - If one of the pointers is to a global that we are tracking, and the
461/// other is some random pointer, we know there cannot be an alias, because the
462/// address of the global isn't taken.
463AliasAnalysis::AliasResult
464GlobalsModRef::alias(const Value *V1, unsigned V1Size,
465                     const Value *V2, unsigned V2Size) {
466  // Get the base object these pointers point to.
467  Value *UV1 = getUnderlyingObject(const_cast<Value*>(V1));
468  Value *UV2 = getUnderlyingObject(const_cast<Value*>(V2));
469
470  // If either of the underlying values is a global, they may be non-addr-taken
471  // globals, which we can answer queries about.
472  GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
473  GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
474  if (GV1 || GV2) {
475    // If the global's address is taken, pretend we don't know it's a pointer to
476    // the global.
477    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
478    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
479
480    // If the the two pointers are derived from two different non-addr-taken
481    // globals, or if one is and the other isn't, we know these can't alias.
482    if ((GV1 || GV2) && GV1 != GV2)
483      return NoAlias;
484
485    // Otherwise if they are both derived from the same addr-taken global, we
486    // can't know the two accesses don't overlap.
487  }
488
489  // These pointers may be based on the memory owned by an indirect global.  If
490  // so, we may be able to handle this.  First check to see if the base pointer
491  // is a direct load from an indirect global.
492  GV1 = GV2 = 0;
493  if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
494    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
495      if (IndirectGlobals.count(GV))
496        GV1 = GV;
497  if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
498    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
499      if (IndirectGlobals.count(GV))
500        GV2 = GV;
501
502  // These pointers may also be from an allocation for the indirect global.  If
503  // so, also handle them.
504  if (AllocsForIndirectGlobals.count(UV1))
505    GV1 = AllocsForIndirectGlobals[UV1];
506  if (AllocsForIndirectGlobals.count(UV2))
507    GV2 = AllocsForIndirectGlobals[UV2];
508
509  // Now that we know whether the two pointers are related to indirect globals,
510  // use this to disambiguate the pointers.  If either pointer is based on an
511  // indirect global and if they are not both based on the same indirect global,
512  // they cannot alias.
513  if ((GV1 || GV2) && GV1 != GV2)
514    return NoAlias;
515
516  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
517}
518
519AliasAnalysis::ModRefResult
520GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
521  unsigned Known = ModRef;
522
523  // If we are asking for mod/ref info of a direct call with a pointer to a
524  // global we are tracking, return information if we have it.
525  if (GlobalValue *GV = dyn_cast<GlobalValue>(getUnderlyingObject(P)))
526    if (GV->hasInternalLinkage())
527      if (Function *F = CS.getCalledFunction())
528        if (NonAddressTakenGlobals.count(GV))
529          if (FunctionRecord *FR = getFunctionInfo(F))
530            Known = FR->getInfoForGlobal(GV);
531
532  if (Known == NoModRef)
533    return NoModRef; // No need to query other mod/ref analyses
534  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
535}
536
537
538//===----------------------------------------------------------------------===//
539// Methods to update the analysis as a result of the client transformation.
540//
541void GlobalsModRef::deleteValue(Value *V) {
542  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
543    if (NonAddressTakenGlobals.erase(GV)) {
544      // This global might be an indirect global.  If so, remove it and remove
545      // any AllocRelatedValues for it.
546      if (IndirectGlobals.erase(GV)) {
547        // Remove any entries in AllocsForIndirectGlobals for this global.
548        for (std::map<Value*, GlobalValue*>::iterator
549             I = AllocsForIndirectGlobals.begin(),
550             E = AllocsForIndirectGlobals.end(); I != E; ) {
551          if (I->second == GV) {
552            AllocsForIndirectGlobals.erase(I++);
553          } else {
554            ++I;
555          }
556        }
557      }
558    }
559  }
560
561  // Otherwise, if this is an allocation related to an indirect global, remove
562  // it.
563  AllocsForIndirectGlobals.erase(V);
564
565  AliasAnalysis::deleteValue(V);
566}
567
568void GlobalsModRef::copyValue(Value *From, Value *To) {
569  AliasAnalysis::copyValue(From, To);
570}
571