ScalarEvolutionExpander.cpp revision 5b04cfb78514cf4dbed4b989a3b07310a91df7f7
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/ADT/STLExtras.h"
24
25using namespace llvm;
26
27/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
28/// reusing an existing cast if a suitable one exists, moving an existing
29/// cast if a suitable one exists but isn't in the right place, or
30/// creating a new one.
31Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
32                                       Instruction::CastOps Op,
33                                       BasicBlock::iterator IP) {
34  // This function must be called with the builder having a valid insertion
35  // point. It doesn't need to be the actual IP where the uses of the returned
36  // cast will be added, but it must dominate such IP.
37  // We use this precondition to assert that we can produce a cast that will
38  // dominate all its uses. In particular, this is crucial for the case
39  // where the builder's insertion point *is* the point where we were asked
40  // to put the cast.
41  // Since we don't know the the builder's insertion point is actually
42  // where the uses will be added (only that it dominates it), we are
43  // not allowed to move it.
44  BasicBlock::iterator BIP = Builder.GetInsertPoint();
45
46  // FIXME: enable once our implementation of dominates is fixed.
47  assert(BIP == IP || SE.DT->dominates(IP, BIP));
48
49  // Check to see if there is already a cast!
50  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
51       UI != E; ++UI) {
52    User *U = *UI;
53    if (U->getType() == Ty)
54      if (CastInst *CI = dyn_cast<CastInst>(U))
55        if (CI->getOpcode() == Op) {
56          // If the cast isn't where we want it, create a new cast at IP.
57          // Likewise, do not reuse a cast at BIP because it must dominate
58          // instructions that might be inserted before BIP.
59          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
60            // Create a new cast, and leave the old cast in place in case
61            // it is being used as an insert point. Clear its operand
62            // so that it doesn't hold anything live.
63            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
64            NewCI->takeName(CI);
65            CI->replaceAllUsesWith(NewCI);
66            CI->setOperand(0, UndefValue::get(V->getType()));
67            rememberInstruction(NewCI);
68            return NewCI;
69          }
70          rememberInstruction(CI);
71          return CI;
72        }
73  }
74
75  // Create a new cast.
76  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
77  rememberInstruction(I);
78  return I;
79}
80
81/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
82/// which must be possible with a noop cast, doing what we can to share
83/// the casts.
84Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
85  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
86  assert((Op == Instruction::BitCast ||
87          Op == Instruction::PtrToInt ||
88          Op == Instruction::IntToPtr) &&
89         "InsertNoopCastOfTo cannot perform non-noop casts!");
90  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
91         "InsertNoopCastOfTo cannot change sizes!");
92
93  // Short-circuit unnecessary bitcasts.
94  if (Op == Instruction::BitCast) {
95    if (V->getType() == Ty)
96      return V;
97    if (CastInst *CI = dyn_cast<CastInst>(V)) {
98      if (CI->getOperand(0)->getType() == Ty)
99        return CI->getOperand(0);
100    }
101  }
102  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
103  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
104      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
105    if (CastInst *CI = dyn_cast<CastInst>(V))
106      if ((CI->getOpcode() == Instruction::PtrToInt ||
107           CI->getOpcode() == Instruction::IntToPtr) &&
108          SE.getTypeSizeInBits(CI->getType()) ==
109          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
110        return CI->getOperand(0);
111    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
112      if ((CE->getOpcode() == Instruction::PtrToInt ||
113           CE->getOpcode() == Instruction::IntToPtr) &&
114          SE.getTypeSizeInBits(CE->getType()) ==
115          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
116        return CE->getOperand(0);
117  }
118
119  // Fold a cast of a constant.
120  if (Constant *C = dyn_cast<Constant>(V))
121    return ConstantExpr::getCast(Op, C, Ty);
122
123  // Cast the argument at the beginning of the entry block, after
124  // any bitcasts of other arguments.
125  if (Argument *A = dyn_cast<Argument>(V)) {
126    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
127    while ((isa<BitCastInst>(IP) &&
128            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
129            cast<BitCastInst>(IP)->getOperand(0) != A) ||
130           isa<DbgInfoIntrinsic>(IP) ||
131           isa<LandingPadInst>(IP))
132      ++IP;
133    return ReuseOrCreateCast(A, Ty, Op, IP);
134  }
135
136  // Cast the instruction immediately after the instruction.
137  Instruction *I = cast<Instruction>(V);
138  BasicBlock::iterator IP = I; ++IP;
139  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
140    IP = II->getNormalDest()->begin();
141  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
142    ++IP;
143  return ReuseOrCreateCast(I, Ty, Op, IP);
144}
145
146/// InsertBinop - Insert the specified binary operator, doing a small amount
147/// of work to avoid inserting an obviously redundant operation.
148Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
149                                 Value *LHS, Value *RHS) {
150  // Fold a binop with constant operands.
151  if (Constant *CLHS = dyn_cast<Constant>(LHS))
152    if (Constant *CRHS = dyn_cast<Constant>(RHS))
153      return ConstantExpr::get(Opcode, CLHS, CRHS);
154
155  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
156  unsigned ScanLimit = 6;
157  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
158  // Scanning starts from the last instruction before the insertion point.
159  BasicBlock::iterator IP = Builder.GetInsertPoint();
160  if (IP != BlockBegin) {
161    --IP;
162    for (; ScanLimit; --IP, --ScanLimit) {
163      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
164      // generated code.
165      if (isa<DbgInfoIntrinsic>(IP))
166        ScanLimit++;
167      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
168          IP->getOperand(1) == RHS)
169        return IP;
170      if (IP == BlockBegin) break;
171    }
172  }
173
174  // Save the original insertion point so we can restore it when we're done.
175  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
176  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
177
178  // Move the insertion point out of as many loops as we can.
179  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
180    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
181    BasicBlock *Preheader = L->getLoopPreheader();
182    if (!Preheader) break;
183
184    // Ok, move up a level.
185    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
186  }
187
188  // If we haven't found this binop, insert it.
189  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
190  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
191  rememberInstruction(BO);
192
193  // Restore the original insert point.
194  if (SaveInsertBB)
195    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
196
197  return BO;
198}
199
200/// FactorOutConstant - Test if S is divisible by Factor, using signed
201/// division. If so, update S with Factor divided out and return true.
202/// S need not be evenly divisible if a reasonable remainder can be
203/// computed.
204/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
205/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
206/// check to see if the divide was folded.
207static bool FactorOutConstant(const SCEV *&S,
208                              const SCEV *&Remainder,
209                              const SCEV *Factor,
210                              ScalarEvolution &SE,
211                              const TargetData *TD) {
212  // Everything is divisible by one.
213  if (Factor->isOne())
214    return true;
215
216  // x/x == 1.
217  if (S == Factor) {
218    S = SE.getConstant(S->getType(), 1);
219    return true;
220  }
221
222  // For a Constant, check for a multiple of the given factor.
223  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
224    // 0/x == 0.
225    if (C->isZero())
226      return true;
227    // Check for divisibility.
228    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
229      ConstantInt *CI =
230        ConstantInt::get(SE.getContext(),
231                         C->getValue()->getValue().sdiv(
232                                                   FC->getValue()->getValue()));
233      // If the quotient is zero and the remainder is non-zero, reject
234      // the value at this scale. It will be considered for subsequent
235      // smaller scales.
236      if (!CI->isZero()) {
237        const SCEV *Div = SE.getConstant(CI);
238        S = Div;
239        Remainder =
240          SE.getAddExpr(Remainder,
241                        SE.getConstant(C->getValue()->getValue().srem(
242                                                  FC->getValue()->getValue())));
243        return true;
244      }
245    }
246  }
247
248  // In a Mul, check if there is a constant operand which is a multiple
249  // of the given factor.
250  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
251    if (TD) {
252      // With TargetData, the size is known. Check if there is a constant
253      // operand which is a multiple of the given factor. If so, we can
254      // factor it.
255      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
256      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
257        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
258          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
259          NewMulOps[0] =
260            SE.getConstant(C->getValue()->getValue().sdiv(
261                                                   FC->getValue()->getValue()));
262          S = SE.getMulExpr(NewMulOps);
263          return true;
264        }
265    } else {
266      // Without TargetData, check if Factor can be factored out of any of the
267      // Mul's operands. If so, we can just remove it.
268      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
269        const SCEV *SOp = M->getOperand(i);
270        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
271        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
272            Remainder->isZero()) {
273          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
274          NewMulOps[i] = SOp;
275          S = SE.getMulExpr(NewMulOps);
276          return true;
277        }
278      }
279    }
280  }
281
282  // In an AddRec, check if both start and step are divisible.
283  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
284    const SCEV *Step = A->getStepRecurrence(SE);
285    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
286    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
287      return false;
288    if (!StepRem->isZero())
289      return false;
290    const SCEV *Start = A->getStart();
291    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
292      return false;
293    // FIXME: can use A->getNoWrapFlags(FlagNW)
294    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
295    return true;
296  }
297
298  return false;
299}
300
301/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
302/// is the number of SCEVAddRecExprs present, which are kept at the end of
303/// the list.
304///
305static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
306                                Type *Ty,
307                                ScalarEvolution &SE) {
308  unsigned NumAddRecs = 0;
309  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
310    ++NumAddRecs;
311  // Group Ops into non-addrecs and addrecs.
312  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
313  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
314  // Let ScalarEvolution sort and simplify the non-addrecs list.
315  const SCEV *Sum = NoAddRecs.empty() ?
316                    SE.getConstant(Ty, 0) :
317                    SE.getAddExpr(NoAddRecs);
318  // If it returned an add, use the operands. Otherwise it simplified
319  // the sum into a single value, so just use that.
320  Ops.clear();
321  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
322    Ops.append(Add->op_begin(), Add->op_end());
323  else if (!Sum->isZero())
324    Ops.push_back(Sum);
325  // Then append the addrecs.
326  Ops.append(AddRecs.begin(), AddRecs.end());
327}
328
329/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
330/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
331/// This helps expose more opportunities for folding parts of the expressions
332/// into GEP indices.
333///
334static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
335                         Type *Ty,
336                         ScalarEvolution &SE) {
337  // Find the addrecs.
338  SmallVector<const SCEV *, 8> AddRecs;
339  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
340    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
341      const SCEV *Start = A->getStart();
342      if (Start->isZero()) break;
343      const SCEV *Zero = SE.getConstant(Ty, 0);
344      AddRecs.push_back(SE.getAddRecExpr(Zero,
345                                         A->getStepRecurrence(SE),
346                                         A->getLoop(),
347                                         // FIXME: A->getNoWrapFlags(FlagNW)
348                                         SCEV::FlagAnyWrap));
349      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
350        Ops[i] = Zero;
351        Ops.append(Add->op_begin(), Add->op_end());
352        e += Add->getNumOperands();
353      } else {
354        Ops[i] = Start;
355      }
356    }
357  if (!AddRecs.empty()) {
358    // Add the addrecs onto the end of the list.
359    Ops.append(AddRecs.begin(), AddRecs.end());
360    // Resort the operand list, moving any constants to the front.
361    SimplifyAddOperands(Ops, Ty, SE);
362  }
363}
364
365/// expandAddToGEP - Expand an addition expression with a pointer type into
366/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
367/// BasicAliasAnalysis and other passes analyze the result. See the rules
368/// for getelementptr vs. inttoptr in
369/// http://llvm.org/docs/LangRef.html#pointeraliasing
370/// for details.
371///
372/// Design note: The correctness of using getelementptr here depends on
373/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
374/// they may introduce pointer arithmetic which may not be safely converted
375/// into getelementptr.
376///
377/// Design note: It might seem desirable for this function to be more
378/// loop-aware. If some of the indices are loop-invariant while others
379/// aren't, it might seem desirable to emit multiple GEPs, keeping the
380/// loop-invariant portions of the overall computation outside the loop.
381/// However, there are a few reasons this is not done here. Hoisting simple
382/// arithmetic is a low-level optimization that often isn't very
383/// important until late in the optimization process. In fact, passes
384/// like InstructionCombining will combine GEPs, even if it means
385/// pushing loop-invariant computation down into loops, so even if the
386/// GEPs were split here, the work would quickly be undone. The
387/// LoopStrengthReduction pass, which is usually run quite late (and
388/// after the last InstructionCombining pass), takes care of hoisting
389/// loop-invariant portions of expressions, after considering what
390/// can be folded using target addressing modes.
391///
392Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
393                                    const SCEV *const *op_end,
394                                    PointerType *PTy,
395                                    Type *Ty,
396                                    Value *V) {
397  Type *ElTy = PTy->getElementType();
398  SmallVector<Value *, 4> GepIndices;
399  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
400  bool AnyNonZeroIndices = false;
401
402  // Split AddRecs up into parts as either of the parts may be usable
403  // without the other.
404  SplitAddRecs(Ops, Ty, SE);
405
406  // Descend down the pointer's type and attempt to convert the other
407  // operands into GEP indices, at each level. The first index in a GEP
408  // indexes into the array implied by the pointer operand; the rest of
409  // the indices index into the element or field type selected by the
410  // preceding index.
411  for (;;) {
412    // If the scale size is not 0, attempt to factor out a scale for
413    // array indexing.
414    SmallVector<const SCEV *, 8> ScaledOps;
415    if (ElTy->isSized()) {
416      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
417      if (!ElSize->isZero()) {
418        SmallVector<const SCEV *, 8> NewOps;
419        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
420          const SCEV *Op = Ops[i];
421          const SCEV *Remainder = SE.getConstant(Ty, 0);
422          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
423            // Op now has ElSize factored out.
424            ScaledOps.push_back(Op);
425            if (!Remainder->isZero())
426              NewOps.push_back(Remainder);
427            AnyNonZeroIndices = true;
428          } else {
429            // The operand was not divisible, so add it to the list of operands
430            // we'll scan next iteration.
431            NewOps.push_back(Ops[i]);
432          }
433        }
434        // If we made any changes, update Ops.
435        if (!ScaledOps.empty()) {
436          Ops = NewOps;
437          SimplifyAddOperands(Ops, Ty, SE);
438        }
439      }
440    }
441
442    // Record the scaled array index for this level of the type. If
443    // we didn't find any operands that could be factored, tentatively
444    // assume that element zero was selected (since the zero offset
445    // would obviously be folded away).
446    Value *Scaled = ScaledOps.empty() ?
447                    Constant::getNullValue(Ty) :
448                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
449    GepIndices.push_back(Scaled);
450
451    // Collect struct field index operands.
452    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
453      bool FoundFieldNo = false;
454      // An empty struct has no fields.
455      if (STy->getNumElements() == 0) break;
456      if (SE.TD) {
457        // With TargetData, field offsets are known. See if a constant offset
458        // falls within any of the struct fields.
459        if (Ops.empty()) break;
460        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
461          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
462            const StructLayout &SL = *SE.TD->getStructLayout(STy);
463            uint64_t FullOffset = C->getValue()->getZExtValue();
464            if (FullOffset < SL.getSizeInBytes()) {
465              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
466              GepIndices.push_back(
467                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
468              ElTy = STy->getTypeAtIndex(ElIdx);
469              Ops[0] =
470                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
471              AnyNonZeroIndices = true;
472              FoundFieldNo = true;
473            }
474          }
475      } else {
476        // Without TargetData, just check for an offsetof expression of the
477        // appropriate struct type.
478        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
479          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
480            Type *CTy;
481            Constant *FieldNo;
482            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
483              GepIndices.push_back(FieldNo);
484              ElTy =
485                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
486              Ops[i] = SE.getConstant(Ty, 0);
487              AnyNonZeroIndices = true;
488              FoundFieldNo = true;
489              break;
490            }
491          }
492      }
493      // If no struct field offsets were found, tentatively assume that
494      // field zero was selected (since the zero offset would obviously
495      // be folded away).
496      if (!FoundFieldNo) {
497        ElTy = STy->getTypeAtIndex(0u);
498        GepIndices.push_back(
499          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
500      }
501    }
502
503    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
504      ElTy = ATy->getElementType();
505    else
506      break;
507  }
508
509  // If none of the operands were convertible to proper GEP indices, cast
510  // the base to i8* and do an ugly getelementptr with that. It's still
511  // better than ptrtoint+arithmetic+inttoptr at least.
512  if (!AnyNonZeroIndices) {
513    // Cast the base to i8*.
514    V = InsertNoopCastOfTo(V,
515       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
516
517    assert(!isa<Instruction>(V) ||
518           SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
519
520    // Expand the operands for a plain byte offset.
521    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
522
523    // Fold a GEP with constant operands.
524    if (Constant *CLHS = dyn_cast<Constant>(V))
525      if (Constant *CRHS = dyn_cast<Constant>(Idx))
526        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
527
528    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
529    unsigned ScanLimit = 6;
530    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
531    // Scanning starts from the last instruction before the insertion point.
532    BasicBlock::iterator IP = Builder.GetInsertPoint();
533    if (IP != BlockBegin) {
534      --IP;
535      for (; ScanLimit; --IP, --ScanLimit) {
536        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
537        // generated code.
538        if (isa<DbgInfoIntrinsic>(IP))
539          ScanLimit++;
540        if (IP->getOpcode() == Instruction::GetElementPtr &&
541            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
542          return IP;
543        if (IP == BlockBegin) break;
544      }
545    }
546
547    // Save the original insertion point so we can restore it when we're done.
548    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
549    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
550
551    // Move the insertion point out of as many loops as we can.
552    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
553      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
554      BasicBlock *Preheader = L->getLoopPreheader();
555      if (!Preheader) break;
556
557      // Ok, move up a level.
558      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
559    }
560
561    // Emit a GEP.
562    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
563    rememberInstruction(GEP);
564
565    // Restore the original insert point.
566    if (SaveInsertBB)
567      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
568
569    return GEP;
570  }
571
572  // Save the original insertion point so we can restore it when we're done.
573  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
574  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
575
576  // Move the insertion point out of as many loops as we can.
577  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
578    if (!L->isLoopInvariant(V)) break;
579
580    bool AnyIndexNotLoopInvariant = false;
581    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
582         E = GepIndices.end(); I != E; ++I)
583      if (!L->isLoopInvariant(*I)) {
584        AnyIndexNotLoopInvariant = true;
585        break;
586      }
587    if (AnyIndexNotLoopInvariant)
588      break;
589
590    BasicBlock *Preheader = L->getLoopPreheader();
591    if (!Preheader) break;
592
593    // Ok, move up a level.
594    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
595  }
596
597  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
598  // because ScalarEvolution may have changed the address arithmetic to
599  // compute a value which is beyond the end of the allocated object.
600  Value *Casted = V;
601  if (V->getType() != PTy)
602    Casted = InsertNoopCastOfTo(Casted, PTy);
603  Value *GEP = Builder.CreateGEP(Casted,
604                                 GepIndices,
605                                 "scevgep");
606  Ops.push_back(SE.getUnknown(GEP));
607  rememberInstruction(GEP);
608
609  // Restore the original insert point.
610  if (SaveInsertBB)
611    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
612
613  return expand(SE.getAddExpr(Ops));
614}
615
616/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
617/// SCEV expansion. If they are nested, this is the most nested. If they are
618/// neighboring, pick the later.
619static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
620                                        DominatorTree &DT) {
621  if (!A) return B;
622  if (!B) return A;
623  if (A->contains(B)) return B;
624  if (B->contains(A)) return A;
625  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
626  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
627  return A; // Arbitrarily break the tie.
628}
629
630/// getRelevantLoop - Get the most relevant loop associated with the given
631/// expression, according to PickMostRelevantLoop.
632const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
633  // Test whether we've already computed the most relevant loop for this SCEV.
634  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
635    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
636  if (!Pair.second)
637    return Pair.first->second;
638
639  if (isa<SCEVConstant>(S))
640    // A constant has no relevant loops.
641    return 0;
642  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
643    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
644      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
645    // A non-instruction has no relevant loops.
646    return 0;
647  }
648  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
649    const Loop *L = 0;
650    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
651      L = AR->getLoop();
652    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
653         I != E; ++I)
654      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
655    return RelevantLoops[N] = L;
656  }
657  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
658    const Loop *Result = getRelevantLoop(C->getOperand());
659    return RelevantLoops[C] = Result;
660  }
661  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
662    const Loop *Result =
663      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
664                           getRelevantLoop(D->getRHS()),
665                           *SE.DT);
666    return RelevantLoops[D] = Result;
667  }
668  llvm_unreachable("Unexpected SCEV type!");
669}
670
671namespace {
672
673/// LoopCompare - Compare loops by PickMostRelevantLoop.
674class LoopCompare {
675  DominatorTree &DT;
676public:
677  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
678
679  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
680                  std::pair<const Loop *, const SCEV *> RHS) const {
681    // Keep pointer operands sorted at the end.
682    if (LHS.second->getType()->isPointerTy() !=
683        RHS.second->getType()->isPointerTy())
684      return LHS.second->getType()->isPointerTy();
685
686    // Compare loops with PickMostRelevantLoop.
687    if (LHS.first != RHS.first)
688      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
689
690    // If one operand is a non-constant negative and the other is not,
691    // put the non-constant negative on the right so that a sub can
692    // be used instead of a negate and add.
693    if (LHS.second->isNonConstantNegative()) {
694      if (!RHS.second->isNonConstantNegative())
695        return false;
696    } else if (RHS.second->isNonConstantNegative())
697      return true;
698
699    // Otherwise they are equivalent according to this comparison.
700    return false;
701  }
702};
703
704}
705
706Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
707  Type *Ty = SE.getEffectiveSCEVType(S->getType());
708
709  // Collect all the add operands in a loop, along with their associated loops.
710  // Iterate in reverse so that constants are emitted last, all else equal, and
711  // so that pointer operands are inserted first, which the code below relies on
712  // to form more involved GEPs.
713  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
714  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
715       E(S->op_begin()); I != E; ++I)
716    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
717
718  // Sort by loop. Use a stable sort so that constants follow non-constants and
719  // pointer operands precede non-pointer operands.
720  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
721
722  // Emit instructions to add all the operands. Hoist as much as possible
723  // out of loops, and form meaningful getelementptrs where possible.
724  Value *Sum = 0;
725  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
726       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
727    const Loop *CurLoop = I->first;
728    const SCEV *Op = I->second;
729    if (!Sum) {
730      // This is the first operand. Just expand it.
731      Sum = expand(Op);
732      ++I;
733    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
734      // The running sum expression is a pointer. Try to form a getelementptr
735      // at this level with that as the base.
736      SmallVector<const SCEV *, 4> NewOps;
737      for (; I != E && I->first == CurLoop; ++I) {
738        // If the operand is SCEVUnknown and not instructions, peek through
739        // it, to enable more of it to be folded into the GEP.
740        const SCEV *X = I->second;
741        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
742          if (!isa<Instruction>(U->getValue()))
743            X = SE.getSCEV(U->getValue());
744        NewOps.push_back(X);
745      }
746      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
747    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
748      // The running sum is an integer, and there's a pointer at this level.
749      // Try to form a getelementptr. If the running sum is instructions,
750      // use a SCEVUnknown to avoid re-analyzing them.
751      SmallVector<const SCEV *, 4> NewOps;
752      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
753                                               SE.getSCEV(Sum));
754      for (++I; I != E && I->first == CurLoop; ++I)
755        NewOps.push_back(I->second);
756      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
757    } else if (Op->isNonConstantNegative()) {
758      // Instead of doing a negate and add, just do a subtract.
759      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
760      Sum = InsertNoopCastOfTo(Sum, Ty);
761      Sum = InsertBinop(Instruction::Sub, Sum, W);
762      ++I;
763    } else {
764      // A simple add.
765      Value *W = expandCodeFor(Op, Ty);
766      Sum = InsertNoopCastOfTo(Sum, Ty);
767      // Canonicalize a constant to the RHS.
768      if (isa<Constant>(Sum)) std::swap(Sum, W);
769      Sum = InsertBinop(Instruction::Add, Sum, W);
770      ++I;
771    }
772  }
773
774  return Sum;
775}
776
777Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
778  Type *Ty = SE.getEffectiveSCEVType(S->getType());
779
780  // Collect all the mul operands in a loop, along with their associated loops.
781  // Iterate in reverse so that constants are emitted last, all else equal.
782  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
783  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
784       E(S->op_begin()); I != E; ++I)
785    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
786
787  // Sort by loop. Use a stable sort so that constants follow non-constants.
788  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
789
790  // Emit instructions to mul all the operands. Hoist as much as possible
791  // out of loops.
792  Value *Prod = 0;
793  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
794       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
795    const SCEV *Op = I->second;
796    if (!Prod) {
797      // This is the first operand. Just expand it.
798      Prod = expand(Op);
799      ++I;
800    } else if (Op->isAllOnesValue()) {
801      // Instead of doing a multiply by negative one, just do a negate.
802      Prod = InsertNoopCastOfTo(Prod, Ty);
803      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
804      ++I;
805    } else {
806      // A simple mul.
807      Value *W = expandCodeFor(Op, Ty);
808      Prod = InsertNoopCastOfTo(Prod, Ty);
809      // Canonicalize a constant to the RHS.
810      if (isa<Constant>(Prod)) std::swap(Prod, W);
811      Prod = InsertBinop(Instruction::Mul, Prod, W);
812      ++I;
813    }
814  }
815
816  return Prod;
817}
818
819Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
820  Type *Ty = SE.getEffectiveSCEVType(S->getType());
821
822  Value *LHS = expandCodeFor(S->getLHS(), Ty);
823  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
824    const APInt &RHS = SC->getValue()->getValue();
825    if (RHS.isPowerOf2())
826      return InsertBinop(Instruction::LShr, LHS,
827                         ConstantInt::get(Ty, RHS.logBase2()));
828  }
829
830  Value *RHS = expandCodeFor(S->getRHS(), Ty);
831  return InsertBinop(Instruction::UDiv, LHS, RHS);
832}
833
834/// Move parts of Base into Rest to leave Base with the minimal
835/// expression that provides a pointer operand suitable for a
836/// GEP expansion.
837static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
838                              ScalarEvolution &SE) {
839  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
840    Base = A->getStart();
841    Rest = SE.getAddExpr(Rest,
842                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
843                                          A->getStepRecurrence(SE),
844                                          A->getLoop(),
845                                          // FIXME: A->getNoWrapFlags(FlagNW)
846                                          SCEV::FlagAnyWrap));
847  }
848  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
849    Base = A->getOperand(A->getNumOperands()-1);
850    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
851    NewAddOps.back() = Rest;
852    Rest = SE.getAddExpr(NewAddOps);
853    ExposePointerBase(Base, Rest, SE);
854  }
855}
856
857/// Determine if this is a well-behaved chain of instructions leading back to
858/// the PHI. If so, it may be reused by expanded expressions.
859bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
860                                         const Loop *L) {
861  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
862      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
863    return false;
864  // If any of the operands don't dominate the insert position, bail.
865  // Addrec operands are always loop-invariant, so this can only happen
866  // if there are instructions which haven't been hoisted.
867  if (L == IVIncInsertLoop) {
868    for (User::op_iterator OI = IncV->op_begin()+1,
869           OE = IncV->op_end(); OI != OE; ++OI)
870      if (Instruction *OInst = dyn_cast<Instruction>(OI))
871        if (!SE.DT->dominates(OInst, IVIncInsertPos))
872          return false;
873  }
874  // Advance to the next instruction.
875  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
876  if (!IncV)
877    return false;
878
879  if (IncV->mayHaveSideEffects())
880    return false;
881
882  if (IncV != PN)
883    return true;
884
885  return isNormalAddRecExprPHI(PN, IncV, L);
886}
887
888/// getIVIncOperand returns an induction variable increment's induction
889/// variable operand.
890///
891/// If allowScale is set, any type of GEP is allowed as long as the nonIV
892/// operands dominate InsertPos.
893///
894/// If allowScale is not set, ensure that a GEP increment conforms to one of the
895/// simple patterns generated by getAddRecExprPHILiterally and
896/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
897Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
898                                           Instruction *InsertPos,
899                                           bool allowScale) {
900  if (IncV == InsertPos)
901    return NULL;
902
903  switch (IncV->getOpcode()) {
904  default:
905    return NULL;
906  // Check for a simple Add/Sub or GEP of a loop invariant step.
907  case Instruction::Add:
908  case Instruction::Sub: {
909    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
910    if (!OInst || SE.DT->dominates(OInst, InsertPos))
911      return dyn_cast<Instruction>(IncV->getOperand(0));
912    return NULL;
913  }
914  case Instruction::BitCast:
915    return dyn_cast<Instruction>(IncV->getOperand(0));
916  case Instruction::GetElementPtr:
917    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
918         I != E; ++I) {
919      if (isa<Constant>(*I))
920        continue;
921      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
922        if (!SE.DT->dominates(OInst, InsertPos))
923          return NULL;
924      }
925      if (allowScale) {
926        // allow any kind of GEP as long as it can be hoisted.
927        continue;
928      }
929      // This must be a pointer addition of constants (pretty), which is already
930      // handled, or some number of address-size elements (ugly). Ugly geps
931      // have 2 operands. i1* is used by the expander to represent an
932      // address-size element.
933      if (IncV->getNumOperands() != 2)
934        return NULL;
935      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
936      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
937          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
938        return NULL;
939      break;
940    }
941    return dyn_cast<Instruction>(IncV->getOperand(0));
942  }
943}
944
945/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
946/// it available to other uses in this loop. Recursively hoist any operands,
947/// until we reach a value that dominates InsertPos.
948bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
949  if (SE.DT->dominates(IncV, InsertPos))
950      return true;
951
952  // InsertPos must itself dominate IncV so that IncV's new position satisfies
953  // its existing users.
954  if (!SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
955    return false;
956
957  // Check that the chain of IV operands leading back to Phi can be hoisted.
958  SmallVector<Instruction*, 4> IVIncs;
959  for(;;) {
960    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
961    if (!Oper)
962      return false;
963    // IncV is safe to hoist.
964    IVIncs.push_back(IncV);
965    IncV = Oper;
966    if (SE.DT->dominates(IncV, InsertPos))
967      break;
968  }
969  for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
970         E = IVIncs.rend(); I != E; ++I) {
971    (*I)->moveBefore(InsertPos);
972  }
973  return true;
974}
975
976/// Determine if this cyclic phi is in a form that would have been generated by
977/// LSR. We don't care if the phi was actually expanded in this pass, as long
978/// as it is in a low-cost form, for example, no implied multiplication. This
979/// should match any patterns generated by getAddRecExprPHILiterally and
980/// expandAddtoGEP.
981bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
982                                           const Loop *L) {
983  for(Instruction *IVOper = IncV;
984      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
985                                /*allowScale=*/false));) {
986    if (IVOper == PN)
987      return true;
988  }
989  return false;
990}
991
992/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
993/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
994/// need to materialize IV increments elsewhere to handle difficult situations.
995Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
996                                 Type *ExpandTy, Type *IntTy,
997                                 bool useSubtract) {
998  Value *IncV;
999  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1000  if (ExpandTy->isPointerTy()) {
1001    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1002    // If the step isn't constant, don't use an implicitly scaled GEP, because
1003    // that would require a multiply inside the loop.
1004    if (!isa<ConstantInt>(StepV))
1005      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1006                                  GEPPtrTy->getAddressSpace());
1007    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1008    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1009    if (IncV->getType() != PN->getType()) {
1010      IncV = Builder.CreateBitCast(IncV, PN->getType());
1011      rememberInstruction(IncV);
1012    }
1013  } else {
1014    IncV = useSubtract ?
1015      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1016      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1017    rememberInstruction(IncV);
1018  }
1019  return IncV;
1020}
1021
1022/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1023/// the base addrec, which is the addrec without any non-loop-dominating
1024/// values, and return the PHI.
1025PHINode *
1026SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1027                                        const Loop *L,
1028                                        Type *ExpandTy,
1029                                        Type *IntTy) {
1030  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1031
1032  // Reuse a previously-inserted PHI, if present.
1033  BasicBlock *LatchBlock = L->getLoopLatch();
1034  if (LatchBlock) {
1035    for (BasicBlock::iterator I = L->getHeader()->begin();
1036         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1037      if (!SE.isSCEVable(PN->getType()) ||
1038          (SE.getEffectiveSCEVType(PN->getType()) !=
1039           SE.getEffectiveSCEVType(Normalized->getType())) ||
1040          SE.getSCEV(PN) != Normalized)
1041        continue;
1042
1043      Instruction *IncV =
1044        cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1045
1046      if (LSRMode) {
1047        if (!isExpandedAddRecExprPHI(PN, IncV, L))
1048          continue;
1049        if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
1050          continue;
1051      }
1052      else {
1053        if (!isNormalAddRecExprPHI(PN, IncV, L))
1054          continue;
1055        if (L == IVIncInsertLoop)
1056          do {
1057            if (SE.DT->dominates(IncV, IVIncInsertPos))
1058              break;
1059            // Make sure the increment is where we want it. But don't move it
1060            // down past a potential existing post-inc user.
1061            IncV->moveBefore(IVIncInsertPos);
1062            IVIncInsertPos = IncV;
1063            IncV = cast<Instruction>(IncV->getOperand(0));
1064          } while (IncV != PN);
1065      }
1066      // Ok, the add recurrence looks usable.
1067      // Remember this PHI, even in post-inc mode.
1068      InsertedValues.insert(PN);
1069      // Remember the increment.
1070      rememberInstruction(IncV);
1071      return PN;
1072    }
1073  }
1074
1075  // Save the original insertion point so we can restore it when we're done.
1076  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1077  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1078
1079  // Another AddRec may need to be recursively expanded below. For example, if
1080  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1081  // loop. Remove this loop from the PostIncLoops set before expanding such
1082  // AddRecs. Otherwise, we cannot find a valid position for the step
1083  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1084  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1085  // so it's not worth implementing SmallPtrSet::swap.
1086  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1087  PostIncLoops.clear();
1088
1089  // Expand code for the start value.
1090  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1091                                L->getHeader()->begin());
1092
1093  // StartV must be hoisted into L's preheader to dominate the new phi.
1094  assert(!isa<Instruction>(StartV) ||
1095         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1096                                  L->getHeader()));
1097
1098  // Expand code for the step value. Do this before creating the PHI so that PHI
1099  // reuse code doesn't see an incomplete PHI.
1100  const SCEV *Step = Normalized->getStepRecurrence(SE);
1101  // If the stride is negative, insert a sub instead of an add for the increment
1102  // (unless it's a constant, because subtracts of constants are canonicalized
1103  // to adds).
1104  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1105  if (useSubtract)
1106    Step = SE.getNegativeSCEV(Step);
1107  // Expand the step somewhere that dominates the loop header.
1108  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1109
1110  // Create the PHI.
1111  BasicBlock *Header = L->getHeader();
1112  Builder.SetInsertPoint(Header, Header->begin());
1113  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1114  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1115                                  Twine(IVName) + ".iv");
1116  rememberInstruction(PN);
1117
1118  // Create the step instructions and populate the PHI.
1119  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1120    BasicBlock *Pred = *HPI;
1121
1122    // Add a start value.
1123    if (!L->contains(Pred)) {
1124      PN->addIncoming(StartV, Pred);
1125      continue;
1126    }
1127
1128    // Create a step value and add it to the PHI.
1129    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1130    // instructions at IVIncInsertPos.
1131    Instruction *InsertPos = L == IVIncInsertLoop ?
1132      IVIncInsertPos : Pred->getTerminator();
1133    Builder.SetInsertPoint(InsertPos);
1134    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1135
1136    PN->addIncoming(IncV, Pred);
1137  }
1138
1139  // Restore the original insert point.
1140  if (SaveInsertBB)
1141    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1142
1143  // After expanding subexpressions, restore the PostIncLoops set so the caller
1144  // can ensure that IVIncrement dominates the current uses.
1145  PostIncLoops = SavedPostIncLoops;
1146
1147  // Remember this PHI, even in post-inc mode.
1148  InsertedValues.insert(PN);
1149
1150  return PN;
1151}
1152
1153Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1154  Type *STy = S->getType();
1155  Type *IntTy = SE.getEffectiveSCEVType(STy);
1156  const Loop *L = S->getLoop();
1157
1158  // Determine a normalized form of this expression, which is the expression
1159  // before any post-inc adjustment is made.
1160  const SCEVAddRecExpr *Normalized = S;
1161  if (PostIncLoops.count(L)) {
1162    PostIncLoopSet Loops;
1163    Loops.insert(L);
1164    Normalized =
1165      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1166                                                  Loops, SE, *SE.DT));
1167  }
1168
1169  // Strip off any non-loop-dominating component from the addrec start.
1170  const SCEV *Start = Normalized->getStart();
1171  const SCEV *PostLoopOffset = 0;
1172  if (!SE.properlyDominates(Start, L->getHeader())) {
1173    PostLoopOffset = Start;
1174    Start = SE.getConstant(Normalized->getType(), 0);
1175    Normalized = cast<SCEVAddRecExpr>(
1176      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1177                       Normalized->getLoop(),
1178                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1179                       SCEV::FlagAnyWrap));
1180  }
1181
1182  // Strip off any non-loop-dominating component from the addrec step.
1183  const SCEV *Step = Normalized->getStepRecurrence(SE);
1184  const SCEV *PostLoopScale = 0;
1185  if (!SE.dominates(Step, L->getHeader())) {
1186    PostLoopScale = Step;
1187    Step = SE.getConstant(Normalized->getType(), 1);
1188    Normalized =
1189      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1190                                            Normalized->getLoop(),
1191                                            // FIXME: Normalized
1192                                            // ->getNoWrapFlags(FlagNW)
1193                                            SCEV::FlagAnyWrap));
1194  }
1195
1196  // Expand the core addrec. If we need post-loop scaling, force it to
1197  // expand to an integer type to avoid the need for additional casting.
1198  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1199  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1200
1201  // Accommodate post-inc mode, if necessary.
1202  Value *Result;
1203  if (!PostIncLoops.count(L))
1204    Result = PN;
1205  else {
1206    // In PostInc mode, use the post-incremented value.
1207    BasicBlock *LatchBlock = L->getLoopLatch();
1208    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1209    Result = PN->getIncomingValueForBlock(LatchBlock);
1210
1211    // For an expansion to use the postinc form, the client must call
1212    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1213    // or dominated by IVIncInsertPos.
1214    if (isa<Instruction>(Result)
1215        && !SE.DT->dominates(cast<Instruction>(Result),
1216                             Builder.GetInsertPoint())) {
1217      // The induction variable's postinc expansion does not dominate this use.
1218      // IVUsers tries to prevent this case, so it is rare. However, it can
1219      // happen when an IVUser outside the loop is not dominated by the latch
1220      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1221      // all cases. Consider a phi outide whose operand is replaced during
1222      // expansion with the value of the postinc user. Without fundamentally
1223      // changing the way postinc users are tracked, the only remedy is
1224      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1225      // but hopefully expandCodeFor handles that.
1226      bool useSubtract =
1227        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1228      if (useSubtract)
1229        Step = SE.getNegativeSCEV(Step);
1230      // Expand the step somewhere that dominates the loop header.
1231      BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1232      BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1233      Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1234      // Restore the insertion point to the place where the caller has
1235      // determined dominates all uses.
1236      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1237      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1238    }
1239  }
1240
1241  // Re-apply any non-loop-dominating scale.
1242  if (PostLoopScale) {
1243    Result = InsertNoopCastOfTo(Result, IntTy);
1244    Result = Builder.CreateMul(Result,
1245                               expandCodeFor(PostLoopScale, IntTy));
1246    rememberInstruction(Result);
1247  }
1248
1249  // Re-apply any non-loop-dominating offset.
1250  if (PostLoopOffset) {
1251    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1252      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1253      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1254    } else {
1255      Result = InsertNoopCastOfTo(Result, IntTy);
1256      Result = Builder.CreateAdd(Result,
1257                                 expandCodeFor(PostLoopOffset, IntTy));
1258      rememberInstruction(Result);
1259    }
1260  }
1261
1262  return Result;
1263}
1264
1265Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1266  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1267
1268  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1269  const Loop *L = S->getLoop();
1270
1271  // First check for an existing canonical IV in a suitable type.
1272  PHINode *CanonicalIV = 0;
1273  if (PHINode *PN = L->getCanonicalInductionVariable())
1274    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1275      CanonicalIV = PN;
1276
1277  // Rewrite an AddRec in terms of the canonical induction variable, if
1278  // its type is more narrow.
1279  if (CanonicalIV &&
1280      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1281      SE.getTypeSizeInBits(Ty)) {
1282    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1283    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1284      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1285    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1286                                       // FIXME: S->getNoWrapFlags(FlagNW)
1287                                       SCEV::FlagAnyWrap));
1288    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1289    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1290    BasicBlock::iterator NewInsertPt =
1291      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1292    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1293           isa<LandingPadInst>(NewInsertPt))
1294      ++NewInsertPt;
1295    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1296                      NewInsertPt);
1297    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1298    return V;
1299  }
1300
1301  // {X,+,F} --> X + {0,+,F}
1302  if (!S->getStart()->isZero()) {
1303    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1304    NewOps[0] = SE.getConstant(Ty, 0);
1305    // FIXME: can use S->getNoWrapFlags()
1306    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1307
1308    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1309    // comments on expandAddToGEP for details.
1310    const SCEV *Base = S->getStart();
1311    const SCEV *RestArray[1] = { Rest };
1312    // Dig into the expression to find the pointer base for a GEP.
1313    ExposePointerBase(Base, RestArray[0], SE);
1314    // If we found a pointer, expand the AddRec with a GEP.
1315    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1316      // Make sure the Base isn't something exotic, such as a multiplied
1317      // or divided pointer value. In those cases, the result type isn't
1318      // actually a pointer type.
1319      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1320        Value *StartV = expand(Base);
1321        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1322        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1323      }
1324    }
1325
1326    // Just do a normal add. Pre-expand the operands to suppress folding.
1327    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1328                                SE.getUnknown(expand(Rest))));
1329  }
1330
1331  // If we don't yet have a canonical IV, create one.
1332  if (!CanonicalIV) {
1333    // Create and insert the PHI node for the induction variable in the
1334    // specified loop.
1335    BasicBlock *Header = L->getHeader();
1336    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1337    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1338                                  Header->begin());
1339    rememberInstruction(CanonicalIV);
1340
1341    Constant *One = ConstantInt::get(Ty, 1);
1342    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1343      BasicBlock *HP = *HPI;
1344      if (L->contains(HP)) {
1345        // Insert a unit add instruction right before the terminator
1346        // corresponding to the back-edge.
1347        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1348                                                     "indvar.next",
1349                                                     HP->getTerminator());
1350        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1351        rememberInstruction(Add);
1352        CanonicalIV->addIncoming(Add, HP);
1353      } else {
1354        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1355      }
1356    }
1357  }
1358
1359  // {0,+,1} --> Insert a canonical induction variable into the loop!
1360  if (S->isAffine() && S->getOperand(1)->isOne()) {
1361    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1362           "IVs with types different from the canonical IV should "
1363           "already have been handled!");
1364    return CanonicalIV;
1365  }
1366
1367  // {0,+,F} --> {0,+,1} * F
1368
1369  // If this is a simple linear addrec, emit it now as a special case.
1370  if (S->isAffine())    // {0,+,F} --> i*F
1371    return
1372      expand(SE.getTruncateOrNoop(
1373        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1374                      SE.getNoopOrAnyExtend(S->getOperand(1),
1375                                            CanonicalIV->getType())),
1376        Ty));
1377
1378  // If this is a chain of recurrences, turn it into a closed form, using the
1379  // folders, then expandCodeFor the closed form.  This allows the folders to
1380  // simplify the expression without having to build a bunch of special code
1381  // into this folder.
1382  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1383
1384  // Promote S up to the canonical IV type, if the cast is foldable.
1385  const SCEV *NewS = S;
1386  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1387  if (isa<SCEVAddRecExpr>(Ext))
1388    NewS = Ext;
1389
1390  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1391  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1392
1393  // Truncate the result down to the original type, if needed.
1394  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1395  return expand(T);
1396}
1397
1398Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1399  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1400  Value *V = expandCodeFor(S->getOperand(),
1401                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1402  Value *I = Builder.CreateTrunc(V, Ty);
1403  rememberInstruction(I);
1404  return I;
1405}
1406
1407Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1408  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1409  Value *V = expandCodeFor(S->getOperand(),
1410                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1411  Value *I = Builder.CreateZExt(V, Ty);
1412  rememberInstruction(I);
1413  return I;
1414}
1415
1416Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1417  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1418  Value *V = expandCodeFor(S->getOperand(),
1419                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1420  Value *I = Builder.CreateSExt(V, Ty);
1421  rememberInstruction(I);
1422  return I;
1423}
1424
1425Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1426  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1427  Type *Ty = LHS->getType();
1428  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1429    // In the case of mixed integer and pointer types, do the
1430    // rest of the comparisons as integer.
1431    if (S->getOperand(i)->getType() != Ty) {
1432      Ty = SE.getEffectiveSCEVType(Ty);
1433      LHS = InsertNoopCastOfTo(LHS, Ty);
1434    }
1435    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1436    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1437    rememberInstruction(ICmp);
1438    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1439    rememberInstruction(Sel);
1440    LHS = Sel;
1441  }
1442  // In the case of mixed integer and pointer types, cast the
1443  // final result back to the pointer type.
1444  if (LHS->getType() != S->getType())
1445    LHS = InsertNoopCastOfTo(LHS, S->getType());
1446  return LHS;
1447}
1448
1449Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1450  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1451  Type *Ty = LHS->getType();
1452  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1453    // In the case of mixed integer and pointer types, do the
1454    // rest of the comparisons as integer.
1455    if (S->getOperand(i)->getType() != Ty) {
1456      Ty = SE.getEffectiveSCEVType(Ty);
1457      LHS = InsertNoopCastOfTo(LHS, Ty);
1458    }
1459    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1460    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1461    rememberInstruction(ICmp);
1462    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1463    rememberInstruction(Sel);
1464    LHS = Sel;
1465  }
1466  // In the case of mixed integer and pointer types, cast the
1467  // final result back to the pointer type.
1468  if (LHS->getType() != S->getType())
1469    LHS = InsertNoopCastOfTo(LHS, S->getType());
1470  return LHS;
1471}
1472
1473Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1474                                   Instruction *IP) {
1475  Builder.SetInsertPoint(IP->getParent(), IP);
1476  return expandCodeFor(SH, Ty);
1477}
1478
1479Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1480  // Expand the code for this SCEV.
1481  Value *V = expand(SH);
1482  if (Ty) {
1483    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1484           "non-trivial casts should be done with the SCEVs directly!");
1485    V = InsertNoopCastOfTo(V, Ty);
1486  }
1487  return V;
1488}
1489
1490Value *SCEVExpander::expand(const SCEV *S) {
1491  // Compute an insertion point for this SCEV object. Hoist the instructions
1492  // as far out in the loop nest as possible.
1493  Instruction *InsertPt = Builder.GetInsertPoint();
1494  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1495       L = L->getParentLoop())
1496    if (SE.isLoopInvariant(S, L)) {
1497      if (!L) break;
1498      if (BasicBlock *Preheader = L->getLoopPreheader())
1499        InsertPt = Preheader->getTerminator();
1500      else {
1501        // LSR sets the insertion point for AddRec start/step values to the
1502        // block start to simplify value reuse, even though it's an invalid
1503        // position. SCEVExpander must correct for this in all cases.
1504        InsertPt = L->getHeader()->getFirstInsertionPt();
1505      }
1506    } else {
1507      // If the SCEV is computable at this level, insert it into the header
1508      // after the PHIs (and after any other instructions that we've inserted
1509      // there) so that it is guaranteed to dominate any user inside the loop.
1510      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1511        InsertPt = L->getHeader()->getFirstInsertionPt();
1512      while (InsertPt != Builder.GetInsertPoint()
1513             && (isInsertedInstruction(InsertPt)
1514                 || isa<DbgInfoIntrinsic>(InsertPt))) {
1515        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1516      }
1517      break;
1518    }
1519
1520  // Check to see if we already expanded this here.
1521  std::map<std::pair<const SCEV *, Instruction *>,
1522           AssertingVH<Value> >::iterator I =
1523    InsertedExpressions.find(std::make_pair(S, InsertPt));
1524  if (I != InsertedExpressions.end())
1525    return I->second;
1526
1527  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1528  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1529  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1530
1531  // Expand the expression into instructions.
1532  Value *V = visit(S);
1533
1534  // Remember the expanded value for this SCEV at this location.
1535  //
1536  // This is independent of PostIncLoops. The mapped value simply materializes
1537  // the expression at this insertion point. If the mapped value happened to be
1538  // a postinc expansion, it could be reused by a non postinc user, but only if
1539  // its insertion point was already at the head of the loop.
1540  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1541
1542  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1543  return V;
1544}
1545
1546void SCEVExpander::rememberInstruction(Value *I) {
1547  if (!PostIncLoops.empty())
1548    InsertedPostIncValues.insert(I);
1549  else
1550    InsertedValues.insert(I);
1551}
1552
1553void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1554  Builder.SetInsertPoint(BB, I);
1555}
1556
1557/// getOrInsertCanonicalInductionVariable - This method returns the
1558/// canonical induction variable of the specified type for the specified
1559/// loop (inserting one if there is none).  A canonical induction variable
1560/// starts at zero and steps by one on each iteration.
1561PHINode *
1562SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1563                                                    Type *Ty) {
1564  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1565
1566  // Build a SCEV for {0,+,1}<L>.
1567  // Conservatively use FlagAnyWrap for now.
1568  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1569                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1570
1571  // Emit code for it.
1572  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1573  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1574  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1575  if (SaveInsertBB)
1576    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1577
1578  return V;
1579}
1580
1581/// Sort values by integer width for replaceCongruentIVs.
1582static bool width_descending(Value *lhs, Value *rhs) {
1583  // Put pointers at the back and make sure pointer < pointer = false.
1584  if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
1585    return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
1586  return rhs->getType()->getPrimitiveSizeInBits()
1587    < lhs->getType()->getPrimitiveSizeInBits();
1588}
1589
1590/// replaceCongruentIVs - Check for congruent phis in this loop header and
1591/// replace them with their most canonical representative. Return the number of
1592/// phis eliminated.
1593///
1594/// This does not depend on any SCEVExpander state but should be used in
1595/// the same context that SCEVExpander is used.
1596unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1597                                           SmallVectorImpl<WeakVH> &DeadInsts,
1598                                           const TargetLowering *TLI) {
1599  // Find integer phis in order of increasing width.
1600  SmallVector<PHINode*, 8> Phis;
1601  for (BasicBlock::iterator I = L->getHeader()->begin();
1602       PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
1603    Phis.push_back(Phi);
1604  }
1605  if (TLI)
1606    std::sort(Phis.begin(), Phis.end(), width_descending);
1607
1608  unsigned NumElim = 0;
1609  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1610  // Process phis from wide to narrow. Mapping wide phis to the their truncation
1611  // so narrow phis can reuse them.
1612  for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
1613         PEnd = Phis.end(); PIter != PEnd; ++PIter) {
1614    PHINode *Phi = *PIter;
1615
1616    if (!SE.isSCEVable(Phi->getType()))
1617      continue;
1618
1619    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1620    if (!OrigPhiRef) {
1621      OrigPhiRef = Phi;
1622      if (Phi->getType()->isIntegerTy() && TLI
1623          && TLI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1624        // This phi can be freely truncated to the narrowest phi type. Map the
1625        // truncated expression to it so it will be reused for narrow types.
1626        const SCEV *TruncExpr =
1627          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1628        ExprToIVMap[TruncExpr] = Phi;
1629      }
1630      continue;
1631    }
1632
1633    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1634    // sense.
1635    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1636      continue;
1637
1638    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1639      Instruction *OrigInc =
1640        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1641      Instruction *IsomorphicInc =
1642        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1643
1644      // If this phi has the same width but is more canonical, replace the
1645      // original with it. As part of the "more canonical" determination,
1646      // respect a prior decision to use an IV chain.
1647      if (OrigPhiRef->getType() == Phi->getType()
1648          && !(ChainedPhis.count(Phi)
1649               || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1650          && (ChainedPhis.count(Phi)
1651              || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1652        std::swap(OrigPhiRef, Phi);
1653        std::swap(OrigInc, IsomorphicInc);
1654      }
1655      // Replacing the congruent phi is sufficient because acyclic redundancy
1656      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1657      // that a phi is congruent, it's often the head of an IV user cycle that
1658      // is isomorphic with the original phi. It's worth eagerly cleaning up the
1659      // common case of a single IV increment so that DeleteDeadPHIs can remove
1660      // cycles that had postinc uses.
1661      const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1662                                                   IsomorphicInc->getType());
1663      if (OrigInc != IsomorphicInc
1664          && TruncExpr == SE.getSCEV(IsomorphicInc)
1665          && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1666              || hoistIVInc(OrigInc, IsomorphicInc))) {
1667        DEBUG_WITH_TYPE(DebugType, dbgs()
1668                        << "INDVARS: Eliminated congruent iv.inc: "
1669                        << *IsomorphicInc << '\n');
1670        Value *NewInc = OrigInc;
1671        if (OrigInc->getType() != IsomorphicInc->getType()) {
1672          Instruction *IP = isa<PHINode>(OrigInc)
1673            ? (Instruction*)L->getHeader()->getFirstInsertionPt()
1674            : OrigInc->getNextNode();
1675          IRBuilder<> Builder(IP);
1676          Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1677          NewInc = Builder.
1678            CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1679        }
1680        IsomorphicInc->replaceAllUsesWith(NewInc);
1681        DeadInsts.push_back(IsomorphicInc);
1682      }
1683    }
1684    DEBUG_WITH_TYPE(DebugType, dbgs()
1685                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1686    ++NumElim;
1687    Value *NewIV = OrigPhiRef;
1688    if (OrigPhiRef->getType() != Phi->getType()) {
1689      IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
1690      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1691      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1692    }
1693    Phi->replaceAllUsesWith(NewIV);
1694    DeadInsts.push_back(Phi);
1695  }
1696  return NumElim;
1697}
1698