MachineInstr.cpp revision 00195d828b934455da597dbba72f1aade4e53393
1//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Methods common to all machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/MachineInstr.h"
15#include "llvm/Constants.h"
16#include "llvm/Function.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Metadata.h"
20#include "llvm/Module.h"
21#include "llvm/Type.h"
22#include "llvm/Value.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInstrDesc.h"
31#include "llvm/MC/MCSymbol.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/DebugInfo.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/LeakDetector.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/FoldingSet.h"
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46// MachineOperand Implementation
47//===----------------------------------------------------------------------===//
48
49/// AddRegOperandToRegInfo - Add this register operand to the specified
50/// MachineRegisterInfo.  If it is null, then the next/prev fields should be
51/// explicitly nulled out.
52void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
53  assert(isReg() && "Can only add reg operand to use lists");
54
55  // If the reginfo pointer is null, just explicitly null out or next/prev
56  // pointers, to ensure they are not garbage.
57  if (RegInfo == 0) {
58    Contents.Reg.Prev = 0;
59    Contents.Reg.Next = 0;
60    return;
61  }
62
63  // Otherwise, add this operand to the head of the registers use/def list.
64  MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
65
66  // For SSA values, we prefer to keep the definition at the start of the list.
67  // we do this by skipping over the definition if it is at the head of the
68  // list.
69  if (*Head && (*Head)->isDef())
70    Head = &(*Head)->Contents.Reg.Next;
71
72  Contents.Reg.Next = *Head;
73  if (Contents.Reg.Next) {
74    assert(getReg() == Contents.Reg.Next->getReg() &&
75           "Different regs on the same list!");
76    Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
77  }
78
79  Contents.Reg.Prev = Head;
80  *Head = this;
81}
82
83/// RemoveRegOperandFromRegInfo - Remove this register operand from the
84/// MachineRegisterInfo it is linked with.
85void MachineOperand::RemoveRegOperandFromRegInfo() {
86  assert(isOnRegUseList() && "Reg operand is not on a use list");
87  // Unlink this from the doubly linked list of operands.
88  MachineOperand *NextOp = Contents.Reg.Next;
89  *Contents.Reg.Prev = NextOp;
90  if (NextOp) {
91    assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
92    NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
93  }
94  Contents.Reg.Prev = 0;
95  Contents.Reg.Next = 0;
96}
97
98void MachineOperand::setReg(unsigned Reg) {
99  if (getReg() == Reg) return; // No change.
100
101  // Otherwise, we have to change the register.  If this operand is embedded
102  // into a machine function, we need to update the old and new register's
103  // use/def lists.
104  if (MachineInstr *MI = getParent())
105    if (MachineBasicBlock *MBB = MI->getParent())
106      if (MachineFunction *MF = MBB->getParent()) {
107        RemoveRegOperandFromRegInfo();
108        SmallContents.RegNo = Reg;
109        AddRegOperandToRegInfo(&MF->getRegInfo());
110        return;
111      }
112
113  // Otherwise, just change the register, no problem.  :)
114  SmallContents.RegNo = Reg;
115}
116
117void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
118                                  const TargetRegisterInfo &TRI) {
119  assert(TargetRegisterInfo::isVirtualRegister(Reg));
120  if (SubIdx && getSubReg())
121    SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
122  setReg(Reg);
123  if (SubIdx)
124    setSubReg(SubIdx);
125}
126
127void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
128  assert(TargetRegisterInfo::isPhysicalRegister(Reg));
129  if (getSubReg()) {
130    Reg = TRI.getSubReg(Reg, getSubReg());
131    // Note that getSubReg() may return 0 if the sub-register doesn't exist.
132    // That won't happen in legal code.
133    setSubReg(0);
134  }
135  setReg(Reg);
136}
137
138/// ChangeToImmediate - Replace this operand with a new immediate operand of
139/// the specified value.  If an operand is known to be an immediate already,
140/// the setImm method should be used.
141void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
142  // If this operand is currently a register operand, and if this is in a
143  // function, deregister the operand from the register's use/def list.
144  if (isReg() && getParent() && getParent()->getParent() &&
145      getParent()->getParent()->getParent())
146    RemoveRegOperandFromRegInfo();
147
148  OpKind = MO_Immediate;
149  Contents.ImmVal = ImmVal;
150}
151
152/// ChangeToRegister - Replace this operand with a new register operand of
153/// the specified value.  If an operand is known to be an register already,
154/// the setReg method should be used.
155void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
156                                      bool isKill, bool isDead, bool isUndef,
157                                      bool isDebug) {
158  // If this operand is already a register operand, use setReg to update the
159  // register's use/def lists.
160  if (isReg()) {
161    assert(!isEarlyClobber());
162    setReg(Reg);
163  } else {
164    // Otherwise, change this to a register and set the reg#.
165    OpKind = MO_Register;
166    SmallContents.RegNo = Reg;
167
168    // If this operand is embedded in a function, add the operand to the
169    // register's use/def list.
170    if (MachineInstr *MI = getParent())
171      if (MachineBasicBlock *MBB = MI->getParent())
172        if (MachineFunction *MF = MBB->getParent())
173          AddRegOperandToRegInfo(&MF->getRegInfo());
174  }
175
176  IsDef = isDef;
177  IsImp = isImp;
178  IsKill = isKill;
179  IsDead = isDead;
180  IsUndef = isUndef;
181  IsInternalRead = false;
182  IsEarlyClobber = false;
183  IsDebug = isDebug;
184  SubReg = 0;
185}
186
187/// isIdenticalTo - Return true if this operand is identical to the specified
188/// operand.
189bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
190  if (getType() != Other.getType() ||
191      getTargetFlags() != Other.getTargetFlags())
192    return false;
193
194  switch (getType()) {
195  case MachineOperand::MO_Register:
196    return getReg() == Other.getReg() && isDef() == Other.isDef() &&
197           getSubReg() == Other.getSubReg();
198  case MachineOperand::MO_Immediate:
199    return getImm() == Other.getImm();
200  case MachineOperand::MO_CImmediate:
201    return getCImm() == Other.getCImm();
202  case MachineOperand::MO_FPImmediate:
203    return getFPImm() == Other.getFPImm();
204  case MachineOperand::MO_MachineBasicBlock:
205    return getMBB() == Other.getMBB();
206  case MachineOperand::MO_FrameIndex:
207    return getIndex() == Other.getIndex();
208  case MachineOperand::MO_ConstantPoolIndex:
209    return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210  case MachineOperand::MO_JumpTableIndex:
211    return getIndex() == Other.getIndex();
212  case MachineOperand::MO_GlobalAddress:
213    return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214  case MachineOperand::MO_ExternalSymbol:
215    return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216           getOffset() == Other.getOffset();
217  case MachineOperand::MO_BlockAddress:
218    return getBlockAddress() == Other.getBlockAddress();
219  case MO_RegisterMask:
220    return getRegMask() == Other.getRegMask();
221  case MachineOperand::MO_MCSymbol:
222    return getMCSymbol() == Other.getMCSymbol();
223  case MachineOperand::MO_Metadata:
224    return getMetadata() == Other.getMetadata();
225  }
226  llvm_unreachable("Invalid machine operand type");
227}
228
229/// print - Print the specified machine operand.
230///
231void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
232  // If the instruction is embedded into a basic block, we can find the
233  // target info for the instruction.
234  if (!TM)
235    if (const MachineInstr *MI = getParent())
236      if (const MachineBasicBlock *MBB = MI->getParent())
237        if (const MachineFunction *MF = MBB->getParent())
238          TM = &MF->getTarget();
239  const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
240
241  switch (getType()) {
242  case MachineOperand::MO_Register:
243    OS << PrintReg(getReg(), TRI, getSubReg());
244
245    if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
246        isInternalRead() || isEarlyClobber()) {
247      OS << '<';
248      bool NeedComma = false;
249      if (isDef()) {
250        if (NeedComma) OS << ',';
251        if (isEarlyClobber())
252          OS << "earlyclobber,";
253        if (isImplicit())
254          OS << "imp-";
255        OS << "def";
256        NeedComma = true;
257      } else if (isImplicit()) {
258          OS << "imp-use";
259          NeedComma = true;
260      }
261
262      if (isKill() || isDead() || isUndef() || isInternalRead()) {
263        if (NeedComma) OS << ',';
264        NeedComma = false;
265        if (isKill()) {
266          OS << "kill";
267          NeedComma = true;
268        }
269        if (isDead()) {
270          OS << "dead";
271          NeedComma = true;
272        }
273        if (isUndef()) {
274          if (NeedComma) OS << ',';
275          OS << "undef";
276          NeedComma = true;
277        }
278        if (isInternalRead()) {
279          if (NeedComma) OS << ',';
280          OS << "internal";
281          NeedComma = true;
282        }
283      }
284      OS << '>';
285    }
286    break;
287  case MachineOperand::MO_Immediate:
288    OS << getImm();
289    break;
290  case MachineOperand::MO_CImmediate:
291    getCImm()->getValue().print(OS, false);
292    break;
293  case MachineOperand::MO_FPImmediate:
294    if (getFPImm()->getType()->isFloatTy())
295      OS << getFPImm()->getValueAPF().convertToFloat();
296    else
297      OS << getFPImm()->getValueAPF().convertToDouble();
298    break;
299  case MachineOperand::MO_MachineBasicBlock:
300    OS << "<BB#" << getMBB()->getNumber() << ">";
301    break;
302  case MachineOperand::MO_FrameIndex:
303    OS << "<fi#" << getIndex() << '>';
304    break;
305  case MachineOperand::MO_ConstantPoolIndex:
306    OS << "<cp#" << getIndex();
307    if (getOffset()) OS << "+" << getOffset();
308    OS << '>';
309    break;
310  case MachineOperand::MO_JumpTableIndex:
311    OS << "<jt#" << getIndex() << '>';
312    break;
313  case MachineOperand::MO_GlobalAddress:
314    OS << "<ga:";
315    WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
316    if (getOffset()) OS << "+" << getOffset();
317    OS << '>';
318    break;
319  case MachineOperand::MO_ExternalSymbol:
320    OS << "<es:" << getSymbolName();
321    if (getOffset()) OS << "+" << getOffset();
322    OS << '>';
323    break;
324  case MachineOperand::MO_BlockAddress:
325    OS << '<';
326    WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
327    OS << '>';
328    break;
329  case MachineOperand::MO_RegisterMask:
330    OS << "<regmask>";
331    break;
332  case MachineOperand::MO_Metadata:
333    OS << '<';
334    WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
335    OS << '>';
336    break;
337  case MachineOperand::MO_MCSymbol:
338    OS << "<MCSym=" << *getMCSymbol() << '>';
339    break;
340  }
341
342  if (unsigned TF = getTargetFlags())
343    OS << "[TF=" << TF << ']';
344}
345
346//===----------------------------------------------------------------------===//
347// MachineMemOperand Implementation
348//===----------------------------------------------------------------------===//
349
350/// getAddrSpace - Return the LLVM IR address space number that this pointer
351/// points into.
352unsigned MachinePointerInfo::getAddrSpace() const {
353  if (V == 0) return 0;
354  return cast<PointerType>(V->getType())->getAddressSpace();
355}
356
357/// getConstantPool - Return a MachinePointerInfo record that refers to the
358/// constant pool.
359MachinePointerInfo MachinePointerInfo::getConstantPool() {
360  return MachinePointerInfo(PseudoSourceValue::getConstantPool());
361}
362
363/// getFixedStack - Return a MachinePointerInfo record that refers to the
364/// the specified FrameIndex.
365MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
366  return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
367}
368
369MachinePointerInfo MachinePointerInfo::getJumpTable() {
370  return MachinePointerInfo(PseudoSourceValue::getJumpTable());
371}
372
373MachinePointerInfo MachinePointerInfo::getGOT() {
374  return MachinePointerInfo(PseudoSourceValue::getGOT());
375}
376
377MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
378  return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
379}
380
381MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
382                                     uint64_t s, unsigned int a,
383                                     const MDNode *TBAAInfo)
384  : PtrInfo(ptrinfo), Size(s),
385    Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
386    TBAAInfo(TBAAInfo) {
387  assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
388         "invalid pointer value");
389  assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
390  assert((isLoad() || isStore()) && "Not a load/store!");
391}
392
393/// Profile - Gather unique data for the object.
394///
395void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
396  ID.AddInteger(getOffset());
397  ID.AddInteger(Size);
398  ID.AddPointer(getValue());
399  ID.AddInteger(Flags);
400}
401
402void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
403  // The Value and Offset may differ due to CSE. But the flags and size
404  // should be the same.
405  assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
406  assert(MMO->getSize() == getSize() && "Size mismatch!");
407
408  if (MMO->getBaseAlignment() >= getBaseAlignment()) {
409    // Update the alignment value.
410    Flags = (Flags & ((1 << MOMaxBits) - 1)) |
411      ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
412    // Also update the base and offset, because the new alignment may
413    // not be applicable with the old ones.
414    PtrInfo = MMO->PtrInfo;
415  }
416}
417
418/// getAlignment - Return the minimum known alignment in bytes of the
419/// actual memory reference.
420uint64_t MachineMemOperand::getAlignment() const {
421  return MinAlign(getBaseAlignment(), getOffset());
422}
423
424raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
425  assert((MMO.isLoad() || MMO.isStore()) &&
426         "SV has to be a load, store or both.");
427
428  if (MMO.isVolatile())
429    OS << "Volatile ";
430
431  if (MMO.isLoad())
432    OS << "LD";
433  if (MMO.isStore())
434    OS << "ST";
435  OS << MMO.getSize();
436
437  // Print the address information.
438  OS << "[";
439  if (!MMO.getValue())
440    OS << "<unknown>";
441  else
442    WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
443
444  // If the alignment of the memory reference itself differs from the alignment
445  // of the base pointer, print the base alignment explicitly, next to the base
446  // pointer.
447  if (MMO.getBaseAlignment() != MMO.getAlignment())
448    OS << "(align=" << MMO.getBaseAlignment() << ")";
449
450  if (MMO.getOffset() != 0)
451    OS << "+" << MMO.getOffset();
452  OS << "]";
453
454  // Print the alignment of the reference.
455  if (MMO.getBaseAlignment() != MMO.getAlignment() ||
456      MMO.getBaseAlignment() != MMO.getSize())
457    OS << "(align=" << MMO.getAlignment() << ")";
458
459  // Print TBAA info.
460  if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
461    OS << "(tbaa=";
462    if (TBAAInfo->getNumOperands() > 0)
463      WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
464    else
465      OS << "<unknown>";
466    OS << ")";
467  }
468
469  // Print nontemporal info.
470  if (MMO.isNonTemporal())
471    OS << "(nontemporal)";
472
473  return OS;
474}
475
476//===----------------------------------------------------------------------===//
477// MachineInstr Implementation
478//===----------------------------------------------------------------------===//
479
480/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
481/// MCID NULL and no operands.
482MachineInstr::MachineInstr()
483  : MCID(0), Flags(0), AsmPrinterFlags(0),
484    MemRefs(0), MemRefsEnd(0),
485    Parent(0) {
486  // Make sure that we get added to a machine basicblock
487  LeakDetector::addGarbageObject(this);
488}
489
490void MachineInstr::addImplicitDefUseOperands() {
491  if (MCID->ImplicitDefs)
492    for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
493      addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
494  if (MCID->ImplicitUses)
495    for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
496      addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
497}
498
499/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
500/// implicit operands. It reserves space for the number of operands specified by
501/// the MCInstrDesc.
502MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
503  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
504    MemRefs(0), MemRefsEnd(0), Parent(0) {
505  unsigned NumImplicitOps = 0;
506  if (!NoImp)
507    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
508  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
509  if (!NoImp)
510    addImplicitDefUseOperands();
511  // Make sure that we get added to a machine basicblock
512  LeakDetector::addGarbageObject(this);
513}
514
515/// MachineInstr ctor - As above, but with a DebugLoc.
516MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
517                           bool NoImp)
518  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
519    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
520  unsigned NumImplicitOps = 0;
521  if (!NoImp)
522    NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
523  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
524  if (!NoImp)
525    addImplicitDefUseOperands();
526  // Make sure that we get added to a machine basicblock
527  LeakDetector::addGarbageObject(this);
528}
529
530/// MachineInstr ctor - Work exactly the same as the ctor two above, except
531/// that the MachineInstr is created and added to the end of the specified
532/// basic block.
533MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
534  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
535    MemRefs(0), MemRefsEnd(0), Parent(0) {
536  assert(MBB && "Cannot use inserting ctor with null basic block!");
537  unsigned NumImplicitOps =
538    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
539  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
540  addImplicitDefUseOperands();
541  // Make sure that we get added to a machine basicblock
542  LeakDetector::addGarbageObject(this);
543  MBB->push_back(this);  // Add instruction to end of basic block!
544}
545
546/// MachineInstr ctor - As above, but with a DebugLoc.
547///
548MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
549                           const MCInstrDesc &tid)
550  : MCID(&tid), Flags(0), AsmPrinterFlags(0),
551    MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
552  assert(MBB && "Cannot use inserting ctor with null basic block!");
553  unsigned NumImplicitOps =
554    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
555  Operands.reserve(NumImplicitOps + MCID->getNumOperands());
556  addImplicitDefUseOperands();
557  // Make sure that we get added to a machine basicblock
558  LeakDetector::addGarbageObject(this);
559  MBB->push_back(this);  // Add instruction to end of basic block!
560}
561
562/// MachineInstr ctor - Copies MachineInstr arg exactly
563///
564MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
565  : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
566    MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
567    Parent(0), debugLoc(MI.getDebugLoc()) {
568  Operands.reserve(MI.getNumOperands());
569
570  // Add operands
571  for (unsigned i = 0; i != MI.getNumOperands(); ++i)
572    addOperand(MI.getOperand(i));
573
574  // Copy all the flags.
575  Flags = MI.Flags;
576
577  // Set parent to null.
578  Parent = 0;
579
580  LeakDetector::addGarbageObject(this);
581}
582
583MachineInstr::~MachineInstr() {
584  LeakDetector::removeGarbageObject(this);
585#ifndef NDEBUG
586  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
587    assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
588    assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
589           "Reg operand def/use list corrupted");
590  }
591#endif
592}
593
594/// getRegInfo - If this instruction is embedded into a MachineFunction,
595/// return the MachineRegisterInfo object for the current function, otherwise
596/// return null.
597MachineRegisterInfo *MachineInstr::getRegInfo() {
598  if (MachineBasicBlock *MBB = getParent())
599    return &MBB->getParent()->getRegInfo();
600  return 0;
601}
602
603/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
604/// this instruction from their respective use lists.  This requires that the
605/// operands already be on their use lists.
606void MachineInstr::RemoveRegOperandsFromUseLists() {
607  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
608    if (Operands[i].isReg())
609      Operands[i].RemoveRegOperandFromRegInfo();
610  }
611}
612
613/// AddRegOperandsToUseLists - Add all of the register operands in
614/// this instruction from their respective use lists.  This requires that the
615/// operands not be on their use lists yet.
616void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
617  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
618    if (Operands[i].isReg())
619      Operands[i].AddRegOperandToRegInfo(&RegInfo);
620  }
621}
622
623
624/// addOperand - Add the specified operand to the instruction.  If it is an
625/// implicit operand, it is added to the end of the operand list.  If it is
626/// an explicit operand it is added at the end of the explicit operand list
627/// (before the first implicit operand).
628void MachineInstr::addOperand(const MachineOperand &Op) {
629  assert(MCID && "Cannot add operands before providing an instr descriptor");
630  bool isImpReg = Op.isReg() && Op.isImplicit();
631  MachineRegisterInfo *RegInfo = getRegInfo();
632
633  // If the Operands backing store is reallocated, all register operands must
634  // be removed and re-added to RegInfo.  It is storing pointers to operands.
635  bool Reallocate = RegInfo &&
636    !Operands.empty() && Operands.size() == Operands.capacity();
637
638  // Find the insert location for the new operand.  Implicit registers go at
639  // the end, everything goes before the implicit regs.
640  unsigned OpNo = Operands.size();
641
642  // Remove all the implicit operands from RegInfo if they need to be shifted.
643  // FIXME: Allow mixed explicit and implicit operands on inline asm.
644  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
645  // implicit-defs, but they must not be moved around.  See the FIXME in
646  // InstrEmitter.cpp.
647  if (!isImpReg && !isInlineAsm()) {
648    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
649      --OpNo;
650      if (RegInfo)
651        Operands[OpNo].RemoveRegOperandFromRegInfo();
652    }
653  }
654
655  // OpNo now points as the desired insertion point.  Unless this is a variadic
656  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
657  assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
658         "Trying to add an operand to a machine instr that is already done!");
659
660  // All operands from OpNo have been removed from RegInfo.  If the Operands
661  // backing store needs to be reallocated, we also need to remove any other
662  // register operands.
663  if (Reallocate)
664    for (unsigned i = 0; i != OpNo; ++i)
665      if (Operands[i].isReg())
666        Operands[i].RemoveRegOperandFromRegInfo();
667
668  // Insert the new operand at OpNo.
669  Operands.insert(Operands.begin() + OpNo, Op);
670  Operands[OpNo].ParentMI = this;
671
672  // The Operands backing store has now been reallocated, so we can re-add the
673  // operands before OpNo.
674  if (Reallocate)
675    for (unsigned i = 0; i != OpNo; ++i)
676      if (Operands[i].isReg())
677        Operands[i].AddRegOperandToRegInfo(RegInfo);
678
679  // When adding a register operand, tell RegInfo about it.
680  if (Operands[OpNo].isReg()) {
681    // Add the new operand to RegInfo, even when RegInfo is NULL.
682    // This will initialize the linked list pointers.
683    Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
684    // If the register operand is flagged as early, mark the operand as such.
685    if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
686      Operands[OpNo].setIsEarlyClobber(true);
687  }
688
689  // Re-add all the implicit ops.
690  if (RegInfo) {
691    for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
692      assert(Operands[i].isReg() && "Should only be an implicit reg!");
693      Operands[i].AddRegOperandToRegInfo(RegInfo);
694    }
695  }
696}
697
698/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
699/// fewer operand than it started with.
700///
701void MachineInstr::RemoveOperand(unsigned OpNo) {
702  assert(OpNo < Operands.size() && "Invalid operand number");
703
704  // Special case removing the last one.
705  if (OpNo == Operands.size()-1) {
706    // If needed, remove from the reg def/use list.
707    if (Operands.back().isReg() && Operands.back().isOnRegUseList())
708      Operands.back().RemoveRegOperandFromRegInfo();
709
710    Operands.pop_back();
711    return;
712  }
713
714  // Otherwise, we are removing an interior operand.  If we have reginfo to
715  // update, remove all operands that will be shifted down from their reg lists,
716  // move everything down, then re-add them.
717  MachineRegisterInfo *RegInfo = getRegInfo();
718  if (RegInfo) {
719    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
720      if (Operands[i].isReg())
721        Operands[i].RemoveRegOperandFromRegInfo();
722    }
723  }
724
725  Operands.erase(Operands.begin()+OpNo);
726
727  if (RegInfo) {
728    for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
729      if (Operands[i].isReg())
730        Operands[i].AddRegOperandToRegInfo(RegInfo);
731    }
732  }
733}
734
735/// addMemOperand - Add a MachineMemOperand to the machine instruction.
736/// This function should be used only occasionally. The setMemRefs function
737/// is the primary method for setting up a MachineInstr's MemRefs list.
738void MachineInstr::addMemOperand(MachineFunction &MF,
739                                 MachineMemOperand *MO) {
740  mmo_iterator OldMemRefs = MemRefs;
741  mmo_iterator OldMemRefsEnd = MemRefsEnd;
742
743  size_t NewNum = (MemRefsEnd - MemRefs) + 1;
744  mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
745  mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
746
747  std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
748  NewMemRefs[NewNum - 1] = MO;
749
750  MemRefs = NewMemRefs;
751  MemRefsEnd = NewMemRefsEnd;
752}
753
754bool
755MachineInstr::hasProperty(unsigned MCFlag, QueryType Type) const {
756  if (Type == IgnoreBundle || !isBundle())
757    return getDesc().getFlags() & (1 << MCFlag);
758
759  const MachineBasicBlock *MBB = getParent();
760  MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
761  while (MII != MBB->end() && MII->isInsideBundle()) {
762    if (MII->getDesc().getFlags() & (1 << MCFlag)) {
763      if (Type == AnyInBundle)
764        return true;
765    } else {
766      if (Type == AllInBundle)
767        return false;
768    }
769    ++MII;
770  }
771
772  return Type == AllInBundle;
773}
774
775bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
776                                 MICheckType Check) const {
777  // If opcodes or number of operands are not the same then the two
778  // instructions are obviously not identical.
779  if (Other->getOpcode() != getOpcode() ||
780      Other->getNumOperands() != getNumOperands())
781    return false;
782
783  if (isBundle()) {
784    // Both instructions are bundles, compare MIs inside the bundle.
785    MachineBasicBlock::const_instr_iterator I1 = *this;
786    MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
787    MachineBasicBlock::const_instr_iterator I2 = *Other;
788    MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
789    while (++I1 != E1 && I1->isInsideBundle()) {
790      ++I2;
791      if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
792        return false;
793    }
794  }
795
796  // Check operands to make sure they match.
797  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
798    const MachineOperand &MO = getOperand(i);
799    const MachineOperand &OMO = Other->getOperand(i);
800    if (!MO.isReg()) {
801      if (!MO.isIdenticalTo(OMO))
802        return false;
803      continue;
804    }
805
806    // Clients may or may not want to ignore defs when testing for equality.
807    // For example, machine CSE pass only cares about finding common
808    // subexpressions, so it's safe to ignore virtual register defs.
809    if (MO.isDef()) {
810      if (Check == IgnoreDefs)
811        continue;
812      else if (Check == IgnoreVRegDefs) {
813        if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
814            TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
815          if (MO.getReg() != OMO.getReg())
816            return false;
817      } else {
818        if (!MO.isIdenticalTo(OMO))
819          return false;
820        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
821          return false;
822      }
823    } else {
824      if (!MO.isIdenticalTo(OMO))
825        return false;
826      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
827        return false;
828    }
829  }
830  // If DebugLoc does not match then two dbg.values are not identical.
831  if (isDebugValue())
832    if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
833        && getDebugLoc() != Other->getDebugLoc())
834      return false;
835  return true;
836}
837
838/// removeFromParent - This method unlinks 'this' from the containing basic
839/// block, and returns it, but does not delete it.
840MachineInstr *MachineInstr::removeFromParent() {
841  assert(getParent() && "Not embedded in a basic block!");
842
843  // If it's a bundle then remove the MIs inside the bundle as well.
844  if (isBundle()) {
845    MachineBasicBlock *MBB = getParent();
846    MachineBasicBlock::instr_iterator MII = *this; ++MII;
847    MachineBasicBlock::instr_iterator E = MBB->instr_end();
848    while (MII != E && MII->isInsideBundle()) {
849      MachineInstr *MI = &*MII;
850      ++MII;
851      MBB->remove(MI);
852    }
853  }
854  getParent()->remove(this);
855  return this;
856}
857
858
859/// eraseFromParent - This method unlinks 'this' from the containing basic
860/// block, and deletes it.
861void MachineInstr::eraseFromParent() {
862  assert(getParent() && "Not embedded in a basic block!");
863  // If it's a bundle then remove the MIs inside the bundle as well.
864  if (isBundle()) {
865    MachineBasicBlock *MBB = getParent();
866    MachineBasicBlock::instr_iterator MII = *this; ++MII;
867    MachineBasicBlock::instr_iterator E = MBB->instr_end();
868    while (MII != E && MII->isInsideBundle()) {
869      MachineInstr *MI = &*MII;
870      ++MII;
871      MBB->erase(MI);
872    }
873  }
874  getParent()->erase(this);
875}
876
877
878/// getNumExplicitOperands - Returns the number of non-implicit operands.
879///
880unsigned MachineInstr::getNumExplicitOperands() const {
881  unsigned NumOperands = MCID->getNumOperands();
882  if (!MCID->isVariadic())
883    return NumOperands;
884
885  for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
886    const MachineOperand &MO = getOperand(i);
887    if (!MO.isReg() || !MO.isImplicit())
888      NumOperands++;
889  }
890  return NumOperands;
891}
892
893/// isBundled - Return true if this instruction part of a bundle. This is true
894/// if either itself or its following instruction is marked "InsideBundle".
895bool MachineInstr::isBundled() const {
896  if (isInsideBundle())
897    return true;
898  MachineBasicBlock::const_instr_iterator nextMI = this;
899  ++nextMI;
900  return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
901}
902
903MachineInstr* MachineInstr::getBundleStart() {
904  if (!isInsideBundle())
905    return this;
906  MachineBasicBlock::reverse_instr_iterator MII(this);
907  ++MII;
908  while (MII->isInsideBundle())
909    ++MII;
910  return &*MII;
911}
912
913bool MachineInstr::isStackAligningInlineAsm() const {
914  if (isInlineAsm()) {
915    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
916    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
917      return true;
918  }
919  return false;
920}
921
922int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
923                                       unsigned *GroupNo) const {
924  assert(isInlineAsm() && "Expected an inline asm instruction");
925  assert(OpIdx < getNumOperands() && "OpIdx out of range");
926
927  // Ignore queries about the initial operands.
928  if (OpIdx < InlineAsm::MIOp_FirstOperand)
929    return -1;
930
931  unsigned Group = 0;
932  unsigned NumOps;
933  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
934       i += NumOps) {
935    const MachineOperand &FlagMO = getOperand(i);
936    // If we reach the implicit register operands, stop looking.
937    if (!FlagMO.isImm())
938      return -1;
939    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
940    if (i + NumOps > OpIdx) {
941      if (GroupNo)
942        *GroupNo = Group;
943      return i;
944    }
945    ++Group;
946  }
947  return -1;
948}
949
950const TargetRegisterClass*
951MachineInstr::getRegClassConstraint(unsigned OpIdx,
952                                    const TargetInstrInfo *TII,
953                                    const TargetRegisterInfo *TRI) const {
954  // Most opcodes have fixed constraints in their MCInstrDesc.
955  if (!isInlineAsm())
956    return TII->getRegClass(getDesc(), OpIdx, TRI);
957
958  if (!getOperand(OpIdx).isReg())
959    return NULL;
960
961  // For tied uses on inline asm, get the constraint from the def.
962  unsigned DefIdx;
963  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
964    OpIdx = DefIdx;
965
966  // Inline asm stores register class constraints in the flag word.
967  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
968  if (FlagIdx < 0)
969    return NULL;
970
971  unsigned Flag = getOperand(FlagIdx).getImm();
972  unsigned RCID;
973  if (InlineAsm::hasRegClassConstraint(Flag, RCID))
974    return TRI->getRegClass(RCID);
975
976  // Assume that all registers in a memory operand are pointers.
977  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
978    return TRI->getPointerRegClass();
979
980  return NULL;
981}
982
983/// getBundleSize - Return the number of instructions inside the MI bundle.
984unsigned MachineInstr::getBundleSize() const {
985  assert(isBundle() && "Expecting a bundle");
986
987  MachineBasicBlock::const_instr_iterator I = *this;
988  unsigned Size = 0;
989  while ((++I)->isInsideBundle()) {
990    ++Size;
991  }
992  assert(Size > 1 && "Malformed bundle");
993
994  return Size;
995}
996
997/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
998/// the specific register or -1 if it is not found. It further tightens
999/// the search criteria to a use that kills the register if isKill is true.
1000int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1001                                          const TargetRegisterInfo *TRI) const {
1002  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1003    const MachineOperand &MO = getOperand(i);
1004    if (!MO.isReg() || !MO.isUse())
1005      continue;
1006    unsigned MOReg = MO.getReg();
1007    if (!MOReg)
1008      continue;
1009    if (MOReg == Reg ||
1010        (TRI &&
1011         TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1012         TargetRegisterInfo::isPhysicalRegister(Reg) &&
1013         TRI->isSubRegister(MOReg, Reg)))
1014      if (!isKill || MO.isKill())
1015        return i;
1016  }
1017  return -1;
1018}
1019
1020/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1021/// indicating if this instruction reads or writes Reg. This also considers
1022/// partial defines.
1023std::pair<bool,bool>
1024MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1025                                         SmallVectorImpl<unsigned> *Ops) const {
1026  bool PartDef = false; // Partial redefine.
1027  bool FullDef = false; // Full define.
1028  bool Use = false;
1029
1030  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1031    const MachineOperand &MO = getOperand(i);
1032    if (!MO.isReg() || MO.getReg() != Reg)
1033      continue;
1034    if (Ops)
1035      Ops->push_back(i);
1036    if (MO.isUse())
1037      Use |= !MO.isUndef();
1038    else if (MO.getSubReg() && !MO.isUndef())
1039      // A partial <def,undef> doesn't count as reading the register.
1040      PartDef = true;
1041    else
1042      FullDef = true;
1043  }
1044  // A partial redefine uses Reg unless there is also a full define.
1045  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1046}
1047
1048/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1049/// the specified register or -1 if it is not found. If isDead is true, defs
1050/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1051/// also checks if there is a def of a super-register.
1052int
1053MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1054                                        const TargetRegisterInfo *TRI) const {
1055  bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1056  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1057    const MachineOperand &MO = getOperand(i);
1058    // Accept regmask operands when Overlap is set.
1059    // Ignore them when looking for a specific def operand (Overlap == false).
1060    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1061      return i;
1062    if (!MO.isReg() || !MO.isDef())
1063      continue;
1064    unsigned MOReg = MO.getReg();
1065    bool Found = (MOReg == Reg);
1066    if (!Found && TRI && isPhys &&
1067        TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1068      if (Overlap)
1069        Found = TRI->regsOverlap(MOReg, Reg);
1070      else
1071        Found = TRI->isSubRegister(MOReg, Reg);
1072    }
1073    if (Found && (!isDead || MO.isDead()))
1074      return i;
1075  }
1076  return -1;
1077}
1078
1079/// findFirstPredOperandIdx() - Find the index of the first operand in the
1080/// operand list that is used to represent the predicate. It returns -1 if
1081/// none is found.
1082int MachineInstr::findFirstPredOperandIdx() const {
1083  // Don't call MCID.findFirstPredOperandIdx() because this variant
1084  // is sometimes called on an instruction that's not yet complete, and
1085  // so the number of operands is less than the MCID indicates. In
1086  // particular, the PTX target does this.
1087  const MCInstrDesc &MCID = getDesc();
1088  if (MCID.isPredicable()) {
1089    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1090      if (MCID.OpInfo[i].isPredicate())
1091        return i;
1092  }
1093
1094  return -1;
1095}
1096
1097/// isRegTiedToUseOperand - Given the index of a register def operand,
1098/// check if the register def is tied to a source operand, due to either
1099/// two-address elimination or inline assembly constraints. Returns the
1100/// first tied use operand index by reference is UseOpIdx is not null.
1101bool MachineInstr::
1102isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
1103  if (isInlineAsm()) {
1104    assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
1105    const MachineOperand &MO = getOperand(DefOpIdx);
1106    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
1107      return false;
1108    // Determine the actual operand index that corresponds to this index.
1109    unsigned DefNo = 0;
1110    int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1111    if (FlagIdx < 0)
1112      return false;
1113
1114    // Which part of the group is DefOpIdx?
1115    unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1116
1117    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1118         i != e; ++i) {
1119      const MachineOperand &FMO = getOperand(i);
1120      if (!FMO.isImm())
1121        continue;
1122      if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1123        continue;
1124      unsigned Idx;
1125      if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1126          Idx == DefNo) {
1127        if (UseOpIdx)
1128          *UseOpIdx = (unsigned)i + 1 + DefPart;
1129        return true;
1130      }
1131    }
1132    return false;
1133  }
1134
1135  assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1136  const MCInstrDesc &MCID = getDesc();
1137  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1138    const MachineOperand &MO = getOperand(i);
1139    if (MO.isReg() && MO.isUse() &&
1140        MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1141      if (UseOpIdx)
1142        *UseOpIdx = (unsigned)i;
1143      return true;
1144    }
1145  }
1146  return false;
1147}
1148
1149/// isRegTiedToDefOperand - Return true if the operand of the specified index
1150/// is a register use and it is tied to an def operand. It also returns the def
1151/// operand index by reference.
1152bool MachineInstr::
1153isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1154  if (isInlineAsm()) {
1155    const MachineOperand &MO = getOperand(UseOpIdx);
1156    if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1157      return false;
1158
1159    // Find the flag operand corresponding to UseOpIdx
1160    int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1161    if (FlagIdx < 0)
1162      return false;
1163
1164    const MachineOperand &UFMO = getOperand(FlagIdx);
1165    unsigned DefNo;
1166    if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1167      if (!DefOpIdx)
1168        return true;
1169
1170      unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1171      // Remember to adjust the index. First operand is asm string, second is
1172      // the HasSideEffects and AlignStack bits, then there is a flag for each.
1173      while (DefNo) {
1174        const MachineOperand &FMO = getOperand(DefIdx);
1175        assert(FMO.isImm());
1176        // Skip over this def.
1177        DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1178        --DefNo;
1179      }
1180      *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1181      return true;
1182    }
1183    return false;
1184  }
1185
1186  const MCInstrDesc &MCID = getDesc();
1187  if (UseOpIdx >= MCID.getNumOperands())
1188    return false;
1189  const MachineOperand &MO = getOperand(UseOpIdx);
1190  if (!MO.isReg() || !MO.isUse())
1191    return false;
1192  int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1193  if (DefIdx == -1)
1194    return false;
1195  if (DefOpIdx)
1196    *DefOpIdx = (unsigned)DefIdx;
1197  return true;
1198}
1199
1200/// clearKillInfo - Clears kill flags on all operands.
1201///
1202void MachineInstr::clearKillInfo() {
1203  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1204    MachineOperand &MO = getOperand(i);
1205    if (MO.isReg() && MO.isUse())
1206      MO.setIsKill(false);
1207  }
1208}
1209
1210/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1211///
1212void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1213  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1214    const MachineOperand &MO = MI->getOperand(i);
1215    if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1216      continue;
1217    for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1218      MachineOperand &MOp = getOperand(j);
1219      if (!MOp.isIdenticalTo(MO))
1220        continue;
1221      if (MO.isKill())
1222        MOp.setIsKill();
1223      else
1224        MOp.setIsDead();
1225      break;
1226    }
1227  }
1228}
1229
1230/// copyPredicates - Copies predicate operand(s) from MI.
1231void MachineInstr::copyPredicates(const MachineInstr *MI) {
1232  assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1233
1234  const MCInstrDesc &MCID = MI->getDesc();
1235  if (!MCID.isPredicable())
1236    return;
1237  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1238    if (MCID.OpInfo[i].isPredicate()) {
1239      // Predicated operands must be last operands.
1240      addOperand(MI->getOperand(i));
1241    }
1242  }
1243}
1244
1245void MachineInstr::substituteRegister(unsigned FromReg,
1246                                      unsigned ToReg,
1247                                      unsigned SubIdx,
1248                                      const TargetRegisterInfo &RegInfo) {
1249  if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1250    if (SubIdx)
1251      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1252    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1253      MachineOperand &MO = getOperand(i);
1254      if (!MO.isReg() || MO.getReg() != FromReg)
1255        continue;
1256      MO.substPhysReg(ToReg, RegInfo);
1257    }
1258  } else {
1259    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1260      MachineOperand &MO = getOperand(i);
1261      if (!MO.isReg() || MO.getReg() != FromReg)
1262        continue;
1263      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1264    }
1265  }
1266}
1267
1268/// isSafeToMove - Return true if it is safe to move this instruction. If
1269/// SawStore is set to true, it means that there is a store (or call) between
1270/// the instruction's location and its intended destination.
1271bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1272                                AliasAnalysis *AA,
1273                                bool &SawStore) const {
1274  // Ignore stuff that we obviously can't move.
1275  if (mayStore() || isCall()) {
1276    SawStore = true;
1277    return false;
1278  }
1279
1280  if (isLabel() || isDebugValue() ||
1281      isTerminator() || hasUnmodeledSideEffects())
1282    return false;
1283
1284  // See if this instruction does a load.  If so, we have to guarantee that the
1285  // loaded value doesn't change between the load and the its intended
1286  // destination. The check for isInvariantLoad gives the targe the chance to
1287  // classify the load as always returning a constant, e.g. a constant pool
1288  // load.
1289  if (mayLoad() && !isInvariantLoad(AA))
1290    // Otherwise, this is a real load.  If there is a store between the load and
1291    // end of block, or if the load is volatile, we can't move it.
1292    return !SawStore && !hasVolatileMemoryRef();
1293
1294  return true;
1295}
1296
1297/// isSafeToReMat - Return true if it's safe to rematerialize the specified
1298/// instruction which defined the specified register instead of copying it.
1299bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1300                                 AliasAnalysis *AA,
1301                                 unsigned DstReg) const {
1302  bool SawStore = false;
1303  if (!TII->isTriviallyReMaterializable(this, AA) ||
1304      !isSafeToMove(TII, AA, SawStore))
1305    return false;
1306  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1307    const MachineOperand &MO = getOperand(i);
1308    if (!MO.isReg())
1309      continue;
1310    // FIXME: For now, do not remat any instruction with register operands.
1311    // Later on, we can loosen the restriction is the register operands have
1312    // not been modified between the def and use. Note, this is different from
1313    // MachineSink because the code is no longer in two-address form (at least
1314    // partially).
1315    if (MO.isUse())
1316      return false;
1317    else if (!MO.isDead() && MO.getReg() != DstReg)
1318      return false;
1319  }
1320  return true;
1321}
1322
1323/// hasVolatileMemoryRef - Return true if this instruction may have a
1324/// volatile memory reference, or if the information describing the
1325/// memory reference is not available. Return false if it is known to
1326/// have no volatile memory references.
1327bool MachineInstr::hasVolatileMemoryRef() const {
1328  // An instruction known never to access memory won't have a volatile access.
1329  if (!mayStore() &&
1330      !mayLoad() &&
1331      !isCall() &&
1332      !hasUnmodeledSideEffects())
1333    return false;
1334
1335  // Otherwise, if the instruction has no memory reference information,
1336  // conservatively assume it wasn't preserved.
1337  if (memoperands_empty())
1338    return true;
1339
1340  // Check the memory reference information for volatile references.
1341  for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1342    if ((*I)->isVolatile())
1343      return true;
1344
1345  return false;
1346}
1347
1348/// isInvariantLoad - Return true if this instruction is loading from a
1349/// location whose value is invariant across the function.  For example,
1350/// loading a value from the constant pool or from the argument area
1351/// of a function if it does not change.  This should only return true of
1352/// *all* loads the instruction does are invariant (if it does multiple loads).
1353bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1354  // If the instruction doesn't load at all, it isn't an invariant load.
1355  if (!mayLoad())
1356    return false;
1357
1358  // If the instruction has lost its memoperands, conservatively assume that
1359  // it may not be an invariant load.
1360  if (memoperands_empty())
1361    return false;
1362
1363  const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1364
1365  for (mmo_iterator I = memoperands_begin(),
1366       E = memoperands_end(); I != E; ++I) {
1367    if ((*I)->isVolatile()) return false;
1368    if ((*I)->isStore()) return false;
1369    if ((*I)->isInvariant()) return true;
1370
1371    if (const Value *V = (*I)->getValue()) {
1372      // A load from a constant PseudoSourceValue is invariant.
1373      if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1374        if (PSV->isConstant(MFI))
1375          continue;
1376      // If we have an AliasAnalysis, ask it whether the memory is constant.
1377      if (AA && AA->pointsToConstantMemory(
1378                      AliasAnalysis::Location(V, (*I)->getSize(),
1379                                              (*I)->getTBAAInfo())))
1380        continue;
1381    }
1382
1383    // Otherwise assume conservatively.
1384    return false;
1385  }
1386
1387  // Everything checks out.
1388  return true;
1389}
1390
1391/// isConstantValuePHI - If the specified instruction is a PHI that always
1392/// merges together the same virtual register, return the register, otherwise
1393/// return 0.
1394unsigned MachineInstr::isConstantValuePHI() const {
1395  if (!isPHI())
1396    return 0;
1397  assert(getNumOperands() >= 3 &&
1398         "It's illegal to have a PHI without source operands");
1399
1400  unsigned Reg = getOperand(1).getReg();
1401  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1402    if (getOperand(i).getReg() != Reg)
1403      return 0;
1404  return Reg;
1405}
1406
1407bool MachineInstr::hasUnmodeledSideEffects() const {
1408  if (hasProperty(MCID::UnmodeledSideEffects))
1409    return true;
1410  if (isInlineAsm()) {
1411    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1412    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1413      return true;
1414  }
1415
1416  return false;
1417}
1418
1419/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1420///
1421bool MachineInstr::allDefsAreDead() const {
1422  for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1423    const MachineOperand &MO = getOperand(i);
1424    if (!MO.isReg() || MO.isUse())
1425      continue;
1426    if (!MO.isDead())
1427      return false;
1428  }
1429  return true;
1430}
1431
1432/// copyImplicitOps - Copy implicit register operands from specified
1433/// instruction to this instruction.
1434void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1435  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1436       i != e; ++i) {
1437    const MachineOperand &MO = MI->getOperand(i);
1438    if (MO.isReg() && MO.isImplicit())
1439      addOperand(MO);
1440  }
1441}
1442
1443void MachineInstr::dump() const {
1444  dbgs() << "  " << *this;
1445}
1446
1447static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1448                         raw_ostream &CommentOS) {
1449  const LLVMContext &Ctx = MF->getFunction()->getContext();
1450  if (!DL.isUnknown()) {          // Print source line info.
1451    DIScope Scope(DL.getScope(Ctx));
1452    // Omit the directory, because it's likely to be long and uninteresting.
1453    if (Scope.Verify())
1454      CommentOS << Scope.getFilename();
1455    else
1456      CommentOS << "<unknown>";
1457    CommentOS << ':' << DL.getLine();
1458    if (DL.getCol() != 0)
1459      CommentOS << ':' << DL.getCol();
1460    DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1461    if (!InlinedAtDL.isUnknown()) {
1462      CommentOS << " @[ ";
1463      printDebugLoc(InlinedAtDL, MF, CommentOS);
1464      CommentOS << " ]";
1465    }
1466  }
1467}
1468
1469void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1470  // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1471  const MachineFunction *MF = 0;
1472  const MachineRegisterInfo *MRI = 0;
1473  if (const MachineBasicBlock *MBB = getParent()) {
1474    MF = MBB->getParent();
1475    if (!TM && MF)
1476      TM = &MF->getTarget();
1477    if (MF)
1478      MRI = &MF->getRegInfo();
1479  }
1480
1481  // Save a list of virtual registers.
1482  SmallVector<unsigned, 8> VirtRegs;
1483
1484  // Print explicitly defined operands on the left of an assignment syntax.
1485  unsigned StartOp = 0, e = getNumOperands();
1486  for (; StartOp < e && getOperand(StartOp).isReg() &&
1487         getOperand(StartOp).isDef() &&
1488         !getOperand(StartOp).isImplicit();
1489       ++StartOp) {
1490    if (StartOp != 0) OS << ", ";
1491    getOperand(StartOp).print(OS, TM);
1492    unsigned Reg = getOperand(StartOp).getReg();
1493    if (TargetRegisterInfo::isVirtualRegister(Reg))
1494      VirtRegs.push_back(Reg);
1495  }
1496
1497  if (StartOp != 0)
1498    OS << " = ";
1499
1500  // Print the opcode name.
1501  if (TM && TM->getInstrInfo())
1502    OS << TM->getInstrInfo()->getName(getOpcode());
1503  else
1504    OS << "UNKNOWN";
1505
1506  // Print the rest of the operands.
1507  bool OmittedAnyCallClobbers = false;
1508  bool FirstOp = true;
1509  unsigned AsmDescOp = ~0u;
1510  unsigned AsmOpCount = 0;
1511
1512  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1513    // Print asm string.
1514    OS << " ";
1515    getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1516
1517    // Print HasSideEffects, IsAlignStack
1518    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1519    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1520      OS << " [sideeffect]";
1521    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1522      OS << " [alignstack]";
1523
1524    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1525    FirstOp = false;
1526  }
1527
1528
1529  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1530    const MachineOperand &MO = getOperand(i);
1531
1532    if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1533      VirtRegs.push_back(MO.getReg());
1534
1535    // Omit call-clobbered registers which aren't used anywhere. This makes
1536    // call instructions much less noisy on targets where calls clobber lots
1537    // of registers. Don't rely on MO.isDead() because we may be called before
1538    // LiveVariables is run, or we may be looking at a non-allocatable reg.
1539    if (MF && isCall() &&
1540        MO.isReg() && MO.isImplicit() && MO.isDef()) {
1541      unsigned Reg = MO.getReg();
1542      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1543        const MachineRegisterInfo &MRI = MF->getRegInfo();
1544        if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1545          bool HasAliasLive = false;
1546          for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1547               unsigned AliasReg = *Alias; ++Alias)
1548            if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1549              HasAliasLive = true;
1550              break;
1551            }
1552          if (!HasAliasLive) {
1553            OmittedAnyCallClobbers = true;
1554            continue;
1555          }
1556        }
1557      }
1558    }
1559
1560    if (FirstOp) FirstOp = false; else OS << ",";
1561    OS << " ";
1562    if (i < getDesc().NumOperands) {
1563      const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1564      if (MCOI.isPredicate())
1565        OS << "pred:";
1566      if (MCOI.isOptionalDef())
1567        OS << "opt:";
1568    }
1569    if (isDebugValue() && MO.isMetadata()) {
1570      // Pretty print DBG_VALUE instructions.
1571      const MDNode *MD = MO.getMetadata();
1572      if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1573        OS << "!\"" << MDS->getString() << '\"';
1574      else
1575        MO.print(OS, TM);
1576    } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1577      OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1578    } else if (i == AsmDescOp && MO.isImm()) {
1579      // Pretty print the inline asm operand descriptor.
1580      OS << '$' << AsmOpCount++;
1581      unsigned Flag = MO.getImm();
1582      switch (InlineAsm::getKind(Flag)) {
1583      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1584      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1585      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1586      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1587      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1588      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1589      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1590      }
1591
1592      unsigned RCID = 0;
1593      if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1594        if (TM)
1595          OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1596        else
1597          OS << ":RC" << RCID;
1598      }
1599
1600      unsigned TiedTo = 0;
1601      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1602        OS << " tiedto:$" << TiedTo;
1603
1604      OS << ']';
1605
1606      // Compute the index of the next operand descriptor.
1607      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1608    } else
1609      MO.print(OS, TM);
1610  }
1611
1612  // Briefly indicate whether any call clobbers were omitted.
1613  if (OmittedAnyCallClobbers) {
1614    if (!FirstOp) OS << ",";
1615    OS << " ...";
1616  }
1617
1618  bool HaveSemi = false;
1619  if (Flags) {
1620    if (!HaveSemi) OS << ";"; HaveSemi = true;
1621    OS << " flags: ";
1622
1623    if (Flags & FrameSetup)
1624      OS << "FrameSetup";
1625  }
1626
1627  if (!memoperands_empty()) {
1628    if (!HaveSemi) OS << ";"; HaveSemi = true;
1629
1630    OS << " mem:";
1631    for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1632         i != e; ++i) {
1633      OS << **i;
1634      if (llvm::next(i) != e)
1635        OS << " ";
1636    }
1637  }
1638
1639  // Print the regclass of any virtual registers encountered.
1640  if (MRI && !VirtRegs.empty()) {
1641    if (!HaveSemi) OS << ";"; HaveSemi = true;
1642    for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1643      const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1644      OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1645      for (unsigned j = i+1; j != VirtRegs.size();) {
1646        if (MRI->getRegClass(VirtRegs[j]) != RC) {
1647          ++j;
1648          continue;
1649        }
1650        if (VirtRegs[i] != VirtRegs[j])
1651          OS << "," << PrintReg(VirtRegs[j]);
1652        VirtRegs.erase(VirtRegs.begin()+j);
1653      }
1654    }
1655  }
1656
1657  // Print debug location information.
1658  if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1659    if (!HaveSemi) OS << ";"; HaveSemi = true;
1660    DIVariable DV(getOperand(e - 1).getMetadata());
1661    OS << " line no:" <<  DV.getLineNumber();
1662    if (MDNode *InlinedAt = DV.getInlinedAt()) {
1663      DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1664      if (!InlinedAtDL.isUnknown()) {
1665        OS << " inlined @[ ";
1666        printDebugLoc(InlinedAtDL, MF, OS);
1667        OS << " ]";
1668      }
1669    }
1670  } else if (!debugLoc.isUnknown() && MF) {
1671    if (!HaveSemi) OS << ";"; HaveSemi = true;
1672    OS << " dbg:";
1673    printDebugLoc(debugLoc, MF, OS);
1674  }
1675
1676  OS << '\n';
1677}
1678
1679bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1680                                     const TargetRegisterInfo *RegInfo,
1681                                     bool AddIfNotFound) {
1682  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1683  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1684  bool Found = false;
1685  SmallVector<unsigned,4> DeadOps;
1686  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1687    MachineOperand &MO = getOperand(i);
1688    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1689      continue;
1690    unsigned Reg = MO.getReg();
1691    if (!Reg)
1692      continue;
1693
1694    if (Reg == IncomingReg) {
1695      if (!Found) {
1696        if (MO.isKill())
1697          // The register is already marked kill.
1698          return true;
1699        if (isPhysReg && isRegTiedToDefOperand(i))
1700          // Two-address uses of physregs must not be marked kill.
1701          return true;
1702        MO.setIsKill();
1703        Found = true;
1704      }
1705    } else if (hasAliases && MO.isKill() &&
1706               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1707      // A super-register kill already exists.
1708      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1709        return true;
1710      if (RegInfo->isSubRegister(IncomingReg, Reg))
1711        DeadOps.push_back(i);
1712    }
1713  }
1714
1715  // Trim unneeded kill operands.
1716  while (!DeadOps.empty()) {
1717    unsigned OpIdx = DeadOps.back();
1718    if (getOperand(OpIdx).isImplicit())
1719      RemoveOperand(OpIdx);
1720    else
1721      getOperand(OpIdx).setIsKill(false);
1722    DeadOps.pop_back();
1723  }
1724
1725  // If not found, this means an alias of one of the operands is killed. Add a
1726  // new implicit operand if required.
1727  if (!Found && AddIfNotFound) {
1728    addOperand(MachineOperand::CreateReg(IncomingReg,
1729                                         false /*IsDef*/,
1730                                         true  /*IsImp*/,
1731                                         true  /*IsKill*/));
1732    return true;
1733  }
1734  return Found;
1735}
1736
1737void MachineInstr::clearRegisterKills(unsigned Reg,
1738                                      const TargetRegisterInfo *RegInfo) {
1739  if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1740    RegInfo = 0;
1741  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1742    MachineOperand &MO = getOperand(i);
1743    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1744      continue;
1745    unsigned OpReg = MO.getReg();
1746    if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1747      MO.setIsKill(false);
1748  }
1749}
1750
1751bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1752                                   const TargetRegisterInfo *RegInfo,
1753                                   bool AddIfNotFound) {
1754  bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1755  bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1756  bool Found = false;
1757  SmallVector<unsigned,4> DeadOps;
1758  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1759    MachineOperand &MO = getOperand(i);
1760    if (!MO.isReg() || !MO.isDef())
1761      continue;
1762    unsigned Reg = MO.getReg();
1763    if (!Reg)
1764      continue;
1765
1766    if (Reg == IncomingReg) {
1767      MO.setIsDead();
1768      Found = true;
1769    } else if (hasAliases && MO.isDead() &&
1770               TargetRegisterInfo::isPhysicalRegister(Reg)) {
1771      // There exists a super-register that's marked dead.
1772      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1773        return true;
1774      if (RegInfo->getSubRegisters(IncomingReg) &&
1775          RegInfo->getSuperRegisters(Reg) &&
1776          RegInfo->isSubRegister(IncomingReg, Reg))
1777        DeadOps.push_back(i);
1778    }
1779  }
1780
1781  // Trim unneeded dead operands.
1782  while (!DeadOps.empty()) {
1783    unsigned OpIdx = DeadOps.back();
1784    if (getOperand(OpIdx).isImplicit())
1785      RemoveOperand(OpIdx);
1786    else
1787      getOperand(OpIdx).setIsDead(false);
1788    DeadOps.pop_back();
1789  }
1790
1791  // If not found, this means an alias of one of the operands is dead. Add a
1792  // new implicit operand if required.
1793  if (Found || !AddIfNotFound)
1794    return Found;
1795
1796  addOperand(MachineOperand::CreateReg(IncomingReg,
1797                                       true  /*IsDef*/,
1798                                       true  /*IsImp*/,
1799                                       false /*IsKill*/,
1800                                       true  /*IsDead*/));
1801  return true;
1802}
1803
1804void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1805                                      const TargetRegisterInfo *RegInfo) {
1806  if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1807    MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1808    if (MO)
1809      return;
1810  } else {
1811    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1812      const MachineOperand &MO = getOperand(i);
1813      if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1814          MO.getSubReg() == 0)
1815        return;
1816    }
1817  }
1818  addOperand(MachineOperand::CreateReg(IncomingReg,
1819                                       true  /*IsDef*/,
1820                                       true  /*IsImp*/));
1821}
1822
1823void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1824                                         const TargetRegisterInfo &TRI) {
1825  bool HasRegMask = false;
1826  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1827    MachineOperand &MO = getOperand(i);
1828    if (MO.isRegMask()) {
1829      HasRegMask = true;
1830      continue;
1831    }
1832    if (!MO.isReg() || !MO.isDef()) continue;
1833    unsigned Reg = MO.getReg();
1834    if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1835    bool Dead = true;
1836    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1837         I != E; ++I)
1838      if (TRI.regsOverlap(*I, Reg)) {
1839        Dead = false;
1840        break;
1841      }
1842    // If there are no uses, including partial uses, the def is dead.
1843    if (Dead) MO.setIsDead();
1844  }
1845
1846  // This is a call with a register mask operand.
1847  // Mask clobbers are always dead, so add defs for the non-dead defines.
1848  if (HasRegMask)
1849    for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1850         I != E; ++I)
1851      addRegisterDefined(*I, &TRI);
1852}
1853
1854unsigned
1855MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1856  unsigned Hash = MI->getOpcode() * 37;
1857  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1858    const MachineOperand &MO = MI->getOperand(i);
1859    uint64_t Key = (uint64_t)MO.getType() << 32;
1860    switch (MO.getType()) {
1861    default: break;
1862    case MachineOperand::MO_Register:
1863      if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1864        continue;  // Skip virtual register defs.
1865      Key |= MO.getReg();
1866      break;
1867    case MachineOperand::MO_Immediate:
1868      Key |= MO.getImm();
1869      break;
1870    case MachineOperand::MO_FrameIndex:
1871    case MachineOperand::MO_ConstantPoolIndex:
1872    case MachineOperand::MO_JumpTableIndex:
1873      Key |= MO.getIndex();
1874      break;
1875    case MachineOperand::MO_MachineBasicBlock:
1876      Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1877      break;
1878    case MachineOperand::MO_GlobalAddress:
1879      Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1880      break;
1881    case MachineOperand::MO_BlockAddress:
1882      Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1883      break;
1884    case MachineOperand::MO_MCSymbol:
1885      Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1886      break;
1887    }
1888    Key += ~(Key << 32);
1889    Key ^= (Key >> 22);
1890    Key += ~(Key << 13);
1891    Key ^= (Key >> 8);
1892    Key += (Key << 3);
1893    Key ^= (Key >> 15);
1894    Key += ~(Key << 27);
1895    Key ^= (Key >> 31);
1896    Hash = (unsigned)Key + Hash * 37;
1897  }
1898  return Hash;
1899}
1900
1901void MachineInstr::emitError(StringRef Msg) const {
1902  // Find the source location cookie.
1903  unsigned LocCookie = 0;
1904  const MDNode *LocMD = 0;
1905  for (unsigned i = getNumOperands(); i != 0; --i) {
1906    if (getOperand(i-1).isMetadata() &&
1907        (LocMD = getOperand(i-1).getMetadata()) &&
1908        LocMD->getNumOperands() != 0) {
1909      if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1910        LocCookie = CI->getZExtValue();
1911        break;
1912      }
1913    }
1914  }
1915
1916  if (const MachineBasicBlock *MBB = getParent())
1917    if (const MachineFunction *MF = MBB->getParent())
1918      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1919  report_fatal_error(Msg);
1920}
1921