PostRASchedulerList.cpp revision 2a3868849438a0a0ad4f9a50f2b94eb1639b554e
1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This implements a top-down list scheduler, using standard algorithms. 11// The basic approach uses a priority queue of available nodes to schedule. 12// One at a time, nodes are taken from the priority queue (thus in priority 13// order), checked for legality to schedule, and emitted if legal. 14// 15// Nodes may not be legal to schedule either due to structural hazards (e.g. 16// pipeline or resource constraints) or because an input to the instruction has 17// not completed execution. 18// 19//===----------------------------------------------------------------------===// 20 21#define DEBUG_TYPE "post-RA-sched" 22#include "ScheduleDAGInstrs.h" 23#include "llvm/CodeGen/Passes.h" 24#include "llvm/CodeGen/LatencyPriorityQueue.h" 25#include "llvm/CodeGen/SchedulerRegistry.h" 26#include "llvm/CodeGen/MachineDominators.h" 27#include "llvm/CodeGen/MachineFunctionPass.h" 28#include "llvm/CodeGen/MachineLoopInfo.h" 29#include "llvm/CodeGen/MachineRegisterInfo.h" 30#include "llvm/CodeGen/ScheduleHazardRecognizer.h" 31#include "llvm/Target/TargetLowering.h" 32#include "llvm/Target/TargetMachine.h" 33#include "llvm/Target/TargetInstrInfo.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/Support/Compiler.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/ErrorHandling.h" 38#include "llvm/ADT/Statistic.h" 39#include <map> 40using namespace llvm; 41 42STATISTIC(NumNoops, "Number of noops inserted"); 43STATISTIC(NumStalls, "Number of pipeline stalls"); 44 45static cl::opt<bool> 46EnableAntiDepBreaking("break-anti-dependencies", 47 cl::desc("Break post-RA scheduling anti-dependencies"), 48 cl::init(true), cl::Hidden); 49 50static cl::opt<bool> 51EnablePostRAHazardAvoidance("avoid-hazards", 52 cl::desc("Enable simple hazard-avoidance"), 53 cl::init(true), cl::Hidden); 54 55namespace { 56 class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass { 57 public: 58 static char ID; 59 PostRAScheduler() : MachineFunctionPass(&ID) {} 60 61 void getAnalysisUsage(AnalysisUsage &AU) const { 62 AU.addRequired<MachineDominatorTree>(); 63 AU.addPreserved<MachineDominatorTree>(); 64 AU.addRequired<MachineLoopInfo>(); 65 AU.addPreserved<MachineLoopInfo>(); 66 MachineFunctionPass::getAnalysisUsage(AU); 67 } 68 69 const char *getPassName() const { 70 return "Post RA top-down list latency scheduler"; 71 } 72 73 bool runOnMachineFunction(MachineFunction &Fn); 74 }; 75 char PostRAScheduler::ID = 0; 76 77 class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs { 78 /// AvailableQueue - The priority queue to use for the available SUnits. 79 /// 80 LatencyPriorityQueue AvailableQueue; 81 82 /// PendingQueue - This contains all of the instructions whose operands have 83 /// been issued, but their results are not ready yet (due to the latency of 84 /// the operation). Once the operands becomes available, the instruction is 85 /// added to the AvailableQueue. 86 std::vector<SUnit*> PendingQueue; 87 88 /// Topo - A topological ordering for SUnits. 89 ScheduleDAGTopologicalSort Topo; 90 91 /// AllocatableSet - The set of allocatable registers. 92 /// We'll be ignoring anti-dependencies on non-allocatable registers, 93 /// because they may not be safe to break. 94 const BitVector AllocatableSet; 95 96 /// HazardRec - The hazard recognizer to use. 97 ScheduleHazardRecognizer *HazardRec; 98 99 /// Classes - For live regs that are only used in one register class in a 100 /// live range, the register class. If the register is not live, the 101 /// corresponding value is null. If the register is live but used in 102 /// multiple register classes, the corresponding value is -1 casted to a 103 /// pointer. 104 const TargetRegisterClass * 105 Classes[TargetRegisterInfo::FirstVirtualRegister]; 106 107 /// RegRegs - Map registers to all their references within a live range. 108 std::multimap<unsigned, MachineOperand *> RegRefs; 109 110 /// The index of the most recent kill (proceding bottom-up), or ~0u if 111 /// the register is not live. 112 unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister]; 113 114 /// The index of the most recent complete def (proceding bottom up), or ~0u 115 /// if the register is live. 116 unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister]; 117 118 public: 119 SchedulePostRATDList(MachineFunction &MF, 120 const MachineLoopInfo &MLI, 121 const MachineDominatorTree &MDT, 122 ScheduleHazardRecognizer *HR) 123 : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), 124 AllocatableSet(TRI->getAllocatableSet(MF)), 125 HazardRec(HR) {} 126 127 ~SchedulePostRATDList() { 128 delete HazardRec; 129 } 130 131 /// StartBlock - Initialize register live-range state for scheduling in 132 /// this block. 133 /// 134 void StartBlock(MachineBasicBlock *BB); 135 136 /// Schedule - Schedule the instruction range using list scheduling. 137 /// 138 void Schedule(); 139 140 /// Observe - Update liveness information to account for the current 141 /// instruction, which will not be scheduled. 142 /// 143 void Observe(MachineInstr *MI, unsigned Count); 144 145 /// FinishBlock - Clean up register live-range state. 146 /// 147 void FinishBlock(); 148 149 private: 150 void PrescanInstruction(MachineInstr *MI); 151 void ScanInstruction(MachineInstr *MI, unsigned Count); 152 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 153 void ReleaseSuccessors(SUnit *SU); 154 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 155 void ListScheduleTopDown(); 156 bool BreakAntiDependencies(); 157 }; 158 159 /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses 160 /// a coarse classification and attempts to avoid that instructions of 161 /// a given class aren't grouped too densely together. 162 class SimpleHazardRecognizer : public ScheduleHazardRecognizer { 163 /// Class - A simple classification for SUnits. 164 enum Class { 165 Other, Load, Store 166 }; 167 168 /// Window - The Class values of the most recently issued 169 /// instructions. 170 Class Window[8]; 171 172 /// getClass - Classify the given SUnit. 173 Class getClass(const SUnit *SU) { 174 const MachineInstr *MI = SU->getInstr(); 175 const TargetInstrDesc &TID = MI->getDesc(); 176 if (TID.mayLoad()) 177 return Load; 178 if (TID.mayStore()) 179 return Store; 180 return Other; 181 } 182 183 /// Step - Rotate the existing entries in Window and insert the 184 /// given class value in position as the most recent. 185 void Step(Class C) { 186 std::copy(Window+1, array_endof(Window), Window); 187 Window[array_lengthof(Window)-1] = C; 188 } 189 190 public: 191 SimpleHazardRecognizer() : Window() {} 192 193 virtual HazardType getHazardType(SUnit *SU) { 194 Class C = getClass(SU); 195 if (C == Other) 196 return NoHazard; 197 unsigned Score = 0; 198 for (unsigned i = 0; i != array_lengthof(Window); ++i) 199 if (Window[i] == C) 200 Score += i + 1; 201 if (Score > array_lengthof(Window) * 2) 202 return Hazard; 203 return NoHazard; 204 } 205 206 virtual void EmitInstruction(SUnit *SU) { 207 Step(getClass(SU)); 208 } 209 210 virtual void AdvanceCycle() { 211 Step(Other); 212 } 213 }; 214} 215 216/// isSchedulingBoundary - Test if the given instruction should be 217/// considered a scheduling boundary. This primarily includes labels 218/// and terminators. 219/// 220static bool isSchedulingBoundary(const MachineInstr *MI, 221 const MachineFunction &MF) { 222 // Terminators and labels can't be scheduled around. 223 if (MI->getDesc().isTerminator() || MI->isLabel()) 224 return true; 225 226 // Don't attempt to schedule around any instruction that modifies 227 // a stack-oriented pointer, as it's unlikely to be profitable. This 228 // saves compile time, because it doesn't require every single 229 // stack slot reference to depend on the instruction that does the 230 // modification. 231 const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); 232 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore())) 233 return true; 234 235 return false; 236} 237 238bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 239 DOUT << "PostRAScheduler\n"; 240 241 const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 242 const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 243 ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ? 244 new SimpleHazardRecognizer : 245 new ScheduleHazardRecognizer(); 246 247 SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR); 248 249 // Loop over all of the basic blocks 250 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); 251 MBB != MBBe; ++MBB) { 252 // Initialize register live-range state for scheduling in this block. 253 Scheduler.StartBlock(MBB); 254 255 // Schedule each sequence of instructions not interrupted by a label 256 // or anything else that effectively needs to shut down scheduling. 257 MachineBasicBlock::iterator Current = MBB->end(); 258 unsigned Count = MBB->size(), CurrentCount = Count; 259 for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) { 260 MachineInstr *MI = prior(I); 261 if (isSchedulingBoundary(MI, Fn)) { 262 Scheduler.Run(MBB, I, Current, CurrentCount); 263 Scheduler.EmitSchedule(); 264 Current = MI; 265 CurrentCount = Count - 1; 266 Scheduler.Observe(MI, CurrentCount); 267 } 268 I = MI; 269 --Count; 270 } 271 assert(Count == 0 && "Instruction count mismatch!"); 272 assert((MBB->begin() == Current || CurrentCount != 0) && 273 "Instruction count mismatch!"); 274 Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount); 275 Scheduler.EmitSchedule(); 276 277 // Clean up register live-range state. 278 Scheduler.FinishBlock(); 279 } 280 281 return true; 282} 283 284/// StartBlock - Initialize register live-range state for scheduling in 285/// this block. 286/// 287void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) { 288 // Call the superclass. 289 ScheduleDAGInstrs::StartBlock(BB); 290 291 // Clear out the register class data. 292 std::fill(Classes, array_endof(Classes), 293 static_cast<const TargetRegisterClass *>(0)); 294 295 // Initialize the indices to indicate that no registers are live. 296 std::fill(KillIndices, array_endof(KillIndices), ~0u); 297 std::fill(DefIndices, array_endof(DefIndices), BB->size()); 298 299 // Determine the live-out physregs for this block. 300 if (!BB->empty() && BB->back().getDesc().isReturn()) 301 // In a return block, examine the function live-out regs. 302 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), 303 E = MRI.liveout_end(); I != E; ++I) { 304 unsigned Reg = *I; 305 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 306 KillIndices[Reg] = BB->size(); 307 DefIndices[Reg] = ~0u; 308 // Repeat, for all aliases. 309 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 310 unsigned AliasReg = *Alias; 311 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 312 KillIndices[AliasReg] = BB->size(); 313 DefIndices[AliasReg] = ~0u; 314 } 315 } 316 else 317 // In a non-return block, examine the live-in regs of all successors. 318 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 319 SE = BB->succ_end(); SI != SE; ++SI) 320 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 321 E = (*SI)->livein_end(); I != E; ++I) { 322 unsigned Reg = *I; 323 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 324 KillIndices[Reg] = BB->size(); 325 DefIndices[Reg] = ~0u; 326 // Repeat, for all aliases. 327 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 328 unsigned AliasReg = *Alias; 329 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 330 KillIndices[AliasReg] = BB->size(); 331 DefIndices[AliasReg] = ~0u; 332 } 333 } 334 335 // Consider callee-saved registers as live-out, since we're running after 336 // prologue/epilogue insertion so there's no way to add additional 337 // saved registers. 338 // 339 // TODO: If the callee saves and restores these, then we can potentially 340 // use them between the save and the restore. To do that, we could scan 341 // the exit blocks to see which of these registers are defined. 342 // Alternatively, callee-saved registers that aren't saved and restored 343 // could be marked live-in in every block. 344 for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { 345 unsigned Reg = *I; 346 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 347 KillIndices[Reg] = BB->size(); 348 DefIndices[Reg] = ~0u; 349 // Repeat, for all aliases. 350 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 351 unsigned AliasReg = *Alias; 352 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 353 KillIndices[AliasReg] = BB->size(); 354 DefIndices[AliasReg] = ~0u; 355 } 356 } 357} 358 359/// Schedule - Schedule the instruction range using list scheduling. 360/// 361void SchedulePostRATDList::Schedule() { 362 DOUT << "********** List Scheduling **********\n"; 363 364 // Build the scheduling graph. 365 BuildSchedGraph(); 366 367 if (EnableAntiDepBreaking) { 368 if (BreakAntiDependencies()) { 369 // We made changes. Update the dependency graph. 370 // Theoretically we could update the graph in place: 371 // When a live range is changed to use a different register, remove 372 // the def's anti-dependence *and* output-dependence edges due to 373 // that register, and add new anti-dependence and output-dependence 374 // edges based on the next live range of the register. 375 SUnits.clear(); 376 EntrySU = SUnit(); 377 ExitSU = SUnit(); 378 BuildSchedGraph(); 379 } 380 } 381 382 AvailableQueue.initNodes(SUnits); 383 384 ListScheduleTopDown(); 385 386 AvailableQueue.releaseState(); 387} 388 389/// Observe - Update liveness information to account for the current 390/// instruction, which will not be scheduled. 391/// 392void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { 393 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 394 395 // Any register which was defined within the previous scheduling region 396 // may have been rescheduled and its lifetime may overlap with registers 397 // in ways not reflected in our current liveness state. For each such 398 // register, adjust the liveness state to be conservatively correct. 399 for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg) 400 if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 401 assert(KillIndices[Reg] == ~0u && "Clobbered register is live!"); 402 // Mark this register to be non-renamable. 403 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 404 // Move the def index to the end of the previous region, to reflect 405 // that the def could theoretically have been scheduled at the end. 406 DefIndices[Reg] = InsertPosIndex; 407 } 408 409 PrescanInstruction(MI); 410 ScanInstruction(MI, Count); 411} 412 413/// FinishBlock - Clean up register live-range state. 414/// 415void SchedulePostRATDList::FinishBlock() { 416 RegRefs.clear(); 417 418 // Call the superclass. 419 ScheduleDAGInstrs::FinishBlock(); 420} 421 422/// CriticalPathStep - Return the next SUnit after SU on the bottom-up 423/// critical path. 424static SDep *CriticalPathStep(SUnit *SU) { 425 SDep *Next = 0; 426 unsigned NextDepth = 0; 427 // Find the predecessor edge with the greatest depth. 428 for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 429 P != PE; ++P) { 430 SUnit *PredSU = P->getSUnit(); 431 unsigned PredLatency = P->getLatency(); 432 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 433 // In the case of a latency tie, prefer an anti-dependency edge over 434 // other types of edges. 435 if (NextDepth < PredTotalLatency || 436 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 437 NextDepth = PredTotalLatency; 438 Next = &*P; 439 } 440 } 441 return Next; 442} 443 444void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) { 445 // Scan the register operands for this instruction and update 446 // Classes and RegRefs. 447 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 448 MachineOperand &MO = MI->getOperand(i); 449 if (!MO.isReg()) continue; 450 unsigned Reg = MO.getReg(); 451 if (Reg == 0) continue; 452 const TargetRegisterClass *NewRC = 0; 453 454 if (i < MI->getDesc().getNumOperands()) 455 NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI); 456 457 // For now, only allow the register to be changed if its register 458 // class is consistent across all uses. 459 if (!Classes[Reg] && NewRC) 460 Classes[Reg] = NewRC; 461 else if (!NewRC || Classes[Reg] != NewRC) 462 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 463 464 // Now check for aliases. 465 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 466 // If an alias of the reg is used during the live range, give up. 467 // Note that this allows us to skip checking if AntiDepReg 468 // overlaps with any of the aliases, among other things. 469 unsigned AliasReg = *Alias; 470 if (Classes[AliasReg]) { 471 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 472 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 473 } 474 } 475 476 // If we're still willing to consider this register, note the reference. 477 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 478 RegRefs.insert(std::make_pair(Reg, &MO)); 479 } 480} 481 482void SchedulePostRATDList::ScanInstruction(MachineInstr *MI, 483 unsigned Count) { 484 // Update liveness. 485 // Proceding upwards, registers that are defed but not used in this 486 // instruction are now dead. 487 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 488 MachineOperand &MO = MI->getOperand(i); 489 if (!MO.isReg()) continue; 490 unsigned Reg = MO.getReg(); 491 if (Reg == 0) continue; 492 if (!MO.isDef()) continue; 493 // Ignore two-addr defs. 494 if (MI->isRegTiedToUseOperand(i)) continue; 495 496 DefIndices[Reg] = Count; 497 KillIndices[Reg] = ~0u; 498 assert(((KillIndices[Reg] == ~0u) != 499 (DefIndices[Reg] == ~0u)) && 500 "Kill and Def maps aren't consistent for Reg!"); 501 Classes[Reg] = 0; 502 RegRefs.erase(Reg); 503 // Repeat, for all subregs. 504 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 505 *Subreg; ++Subreg) { 506 unsigned SubregReg = *Subreg; 507 DefIndices[SubregReg] = Count; 508 KillIndices[SubregReg] = ~0u; 509 Classes[SubregReg] = 0; 510 RegRefs.erase(SubregReg); 511 } 512 // Conservatively mark super-registers as unusable. 513 for (const unsigned *Super = TRI->getSuperRegisters(Reg); 514 *Super; ++Super) { 515 unsigned SuperReg = *Super; 516 Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1); 517 } 518 } 519 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 520 MachineOperand &MO = MI->getOperand(i); 521 if (!MO.isReg()) continue; 522 unsigned Reg = MO.getReg(); 523 if (Reg == 0) continue; 524 if (!MO.isUse()) continue; 525 526 const TargetRegisterClass *NewRC = 0; 527 if (i < MI->getDesc().getNumOperands()) 528 NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI); 529 530 // For now, only allow the register to be changed if its register 531 // class is consistent across all uses. 532 if (!Classes[Reg] && NewRC) 533 Classes[Reg] = NewRC; 534 else if (!NewRC || Classes[Reg] != NewRC) 535 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 536 537 RegRefs.insert(std::make_pair(Reg, &MO)); 538 539 // It wasn't previously live but now it is, this is a kill. 540 if (KillIndices[Reg] == ~0u) { 541 KillIndices[Reg] = Count; 542 DefIndices[Reg] = ~0u; 543 assert(((KillIndices[Reg] == ~0u) != 544 (DefIndices[Reg] == ~0u)) && 545 "Kill and Def maps aren't consistent for Reg!"); 546 } 547 // Repeat, for all aliases. 548 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 549 unsigned AliasReg = *Alias; 550 if (KillIndices[AliasReg] == ~0u) { 551 KillIndices[AliasReg] = Count; 552 DefIndices[AliasReg] = ~0u; 553 } 554 } 555 } 556} 557 558/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path 559/// of the ScheduleDAG and break them by renaming registers. 560/// 561bool SchedulePostRATDList::BreakAntiDependencies() { 562 // The code below assumes that there is at least one instruction, 563 // so just duck out immediately if the block is empty. 564 if (SUnits.empty()) return false; 565 566 // Find the node at the bottom of the critical path. 567 SUnit *Max = 0; 568 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 569 SUnit *SU = &SUnits[i]; 570 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 571 Max = SU; 572 } 573 574 DOUT << "Critical path has total latency " 575 << (Max->getDepth() + Max->Latency) << "\n"; 576 577 // Track progress along the critical path through the SUnit graph as we walk 578 // the instructions. 579 SUnit *CriticalPathSU = Max; 580 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 581 582 // Consider this pattern: 583 // A = ... 584 // ... = A 585 // A = ... 586 // ... = A 587 // A = ... 588 // ... = A 589 // A = ... 590 // ... = A 591 // There are three anti-dependencies here, and without special care, 592 // we'd break all of them using the same register: 593 // A = ... 594 // ... = A 595 // B = ... 596 // ... = B 597 // B = ... 598 // ... = B 599 // B = ... 600 // ... = B 601 // because at each anti-dependence, B is the first register that 602 // isn't A which is free. This re-introduces anti-dependencies 603 // at all but one of the original anti-dependencies that we were 604 // trying to break. To avoid this, keep track of the most recent 605 // register that each register was replaced with, avoid avoid 606 // using it to repair an anti-dependence on the same register. 607 // This lets us produce this: 608 // A = ... 609 // ... = A 610 // B = ... 611 // ... = B 612 // C = ... 613 // ... = C 614 // B = ... 615 // ... = B 616 // This still has an anti-dependence on B, but at least it isn't on the 617 // original critical path. 618 // 619 // TODO: If we tracked more than one register here, we could potentially 620 // fix that remaining critical edge too. This is a little more involved, 621 // because unlike the most recent register, less recent registers should 622 // still be considered, though only if no other registers are available. 623 unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {}; 624 625 // Attempt to break anti-dependence edges on the critical path. Walk the 626 // instructions from the bottom up, tracking information about liveness 627 // as we go to help determine which registers are available. 628 bool Changed = false; 629 unsigned Count = InsertPosIndex - 1; 630 for (MachineBasicBlock::iterator I = InsertPos, E = Begin; 631 I != E; --Count) { 632 MachineInstr *MI = --I; 633 634 // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as 635 // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF 636 // is left behind appearing to clobber the super-register, while the 637 // subregister needs to remain live. So we just ignore them. 638 if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) 639 continue; 640 641 // Check if this instruction has a dependence on the critical path that 642 // is an anti-dependence that we may be able to break. If it is, set 643 // AntiDepReg to the non-zero register associated with the anti-dependence. 644 // 645 // We limit our attention to the critical path as a heuristic to avoid 646 // breaking anti-dependence edges that aren't going to significantly 647 // impact the overall schedule. There are a limited number of registers 648 // and we want to save them for the important edges. 649 // 650 // TODO: Instructions with multiple defs could have multiple 651 // anti-dependencies. The current code here only knows how to break one 652 // edge per instruction. Note that we'd have to be able to break all of 653 // the anti-dependencies in an instruction in order to be effective. 654 unsigned AntiDepReg = 0; 655 if (MI == CriticalPathMI) { 656 if (SDep *Edge = CriticalPathStep(CriticalPathSU)) { 657 SUnit *NextSU = Edge->getSUnit(); 658 659 // Only consider anti-dependence edges. 660 if (Edge->getKind() == SDep::Anti) { 661 AntiDepReg = Edge->getReg(); 662 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 663 // Don't break anti-dependencies on non-allocatable registers. 664 if (!AllocatableSet.test(AntiDepReg)) 665 AntiDepReg = 0; 666 else { 667 // If the SUnit has other dependencies on the SUnit that it 668 // anti-depends on, don't bother breaking the anti-dependency 669 // since those edges would prevent such units from being 670 // scheduled past each other regardless. 671 // 672 // Also, if there are dependencies on other SUnits with the 673 // same register as the anti-dependency, don't attempt to 674 // break it. 675 for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(), 676 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 677 if (P->getSUnit() == NextSU ? 678 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 679 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 680 AntiDepReg = 0; 681 break; 682 } 683 } 684 } 685 CriticalPathSU = NextSU; 686 CriticalPathMI = CriticalPathSU->getInstr(); 687 } else { 688 // We've reached the end of the critical path. 689 CriticalPathSU = 0; 690 CriticalPathMI = 0; 691 } 692 } 693 694 PrescanInstruction(MI); 695 696 // If this instruction has a use of AntiDepReg, breaking it 697 // is invalid. 698 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 699 MachineOperand &MO = MI->getOperand(i); 700 if (!MO.isReg()) continue; 701 unsigned Reg = MO.getReg(); 702 if (Reg == 0) continue; 703 if (MO.isUse() && AntiDepReg == Reg) { 704 AntiDepReg = 0; 705 break; 706 } 707 } 708 709 // Determine AntiDepReg's register class, if it is live and is 710 // consistently used within a single class. 711 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; 712 assert((AntiDepReg == 0 || RC != NULL) && 713 "Register should be live if it's causing an anti-dependence!"); 714 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 715 AntiDepReg = 0; 716 717 // Look for a suitable register to use to break the anti-depenence. 718 // 719 // TODO: Instead of picking the first free register, consider which might 720 // be the best. 721 if (AntiDepReg != 0) { 722 for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF), 723 RE = RC->allocation_order_end(MF); R != RE; ++R) { 724 unsigned NewReg = *R; 725 // Don't replace a register with itself. 726 if (NewReg == AntiDepReg) continue; 727 // Don't replace a register with one that was recently used to repair 728 // an anti-dependence with this AntiDepReg, because that would 729 // re-introduce that anti-dependence. 730 if (NewReg == LastNewReg[AntiDepReg]) continue; 731 // If NewReg is dead and NewReg's most recent def is not before 732 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 733 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) && 734 "Kill and Def maps aren't consistent for AntiDepReg!"); 735 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) && 736 "Kill and Def maps aren't consistent for NewReg!"); 737 if (KillIndices[NewReg] == ~0u && 738 Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) && 739 KillIndices[AntiDepReg] <= DefIndices[NewReg]) { 740 DOUT << "Breaking anti-dependence edge on " 741 << TRI->getName(AntiDepReg) 742 << " with " << RegRefs.count(AntiDepReg) << " references" 743 << " using " << TRI->getName(NewReg) << "!\n"; 744 745 // Update the references to the old register to refer to the new 746 // register. 747 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 748 std::multimap<unsigned, MachineOperand *>::iterator> 749 Range = RegRefs.equal_range(AntiDepReg); 750 for (std::multimap<unsigned, MachineOperand *>::iterator 751 Q = Range.first, QE = Range.second; Q != QE; ++Q) 752 Q->second->setReg(NewReg); 753 754 // We just went back in time and modified history; the 755 // liveness information for the anti-depenence reg is now 756 // inconsistent. Set the state as if it were dead. 757 Classes[NewReg] = Classes[AntiDepReg]; 758 DefIndices[NewReg] = DefIndices[AntiDepReg]; 759 KillIndices[NewReg] = KillIndices[AntiDepReg]; 760 assert(((KillIndices[NewReg] == ~0u) != 761 (DefIndices[NewReg] == ~0u)) && 762 "Kill and Def maps aren't consistent for NewReg!"); 763 764 Classes[AntiDepReg] = 0; 765 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 766 KillIndices[AntiDepReg] = ~0u; 767 assert(((KillIndices[AntiDepReg] == ~0u) != 768 (DefIndices[AntiDepReg] == ~0u)) && 769 "Kill and Def maps aren't consistent for AntiDepReg!"); 770 771 RegRefs.erase(AntiDepReg); 772 Changed = true; 773 LastNewReg[AntiDepReg] = NewReg; 774 break; 775 } 776 } 777 } 778 779 ScanInstruction(MI, Count); 780 } 781 782 return Changed; 783} 784 785//===----------------------------------------------------------------------===// 786// Top-Down Scheduling 787//===----------------------------------------------------------------------===// 788 789/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 790/// the PendingQueue if the count reaches zero. Also update its cycle bound. 791void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 792 SUnit *SuccSU = SuccEdge->getSUnit(); 793 --SuccSU->NumPredsLeft; 794 795#ifndef NDEBUG 796 if (SuccSU->NumPredsLeft < 0) { 797 cerr << "*** Scheduling failed! ***\n"; 798 SuccSU->dump(this); 799 cerr << " has been released too many times!\n"; 800 llvm_unreachable(0); 801 } 802#endif 803 804 // Compute how many cycles it will be before this actually becomes 805 // available. This is the max of the start time of all predecessors plus 806 // their latencies. 807 SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 808 809 // If all the node's predecessors are scheduled, this node is ready 810 // to be scheduled. Ignore the special ExitSU node. 811 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 812 PendingQueue.push_back(SuccSU); 813} 814 815/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 816void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 817 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 818 I != E; ++I) 819 ReleaseSucc(SU, &*I); 820} 821 822/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 823/// count of its successors. If a successor pending count is zero, add it to 824/// the Available queue. 825void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 826 DOUT << "*** Scheduling [" << CurCycle << "]: "; 827 DEBUG(SU->dump(this)); 828 829 Sequence.push_back(SU); 830 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); 831 SU->setDepthToAtLeast(CurCycle); 832 833 ReleaseSuccessors(SU); 834 SU->isScheduled = true; 835 AvailableQueue.ScheduledNode(SU); 836} 837 838/// ListScheduleTopDown - The main loop of list scheduling for top-down 839/// schedulers. 840void SchedulePostRATDList::ListScheduleTopDown() { 841 unsigned CurCycle = 0; 842 843 // Release any successors of the special Entry node. 844 ReleaseSuccessors(&EntrySU); 845 846 // All leaves to Available queue. 847 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 848 // It is available if it has no predecessors. 849 if (SUnits[i].Preds.empty()) { 850 AvailableQueue.push(&SUnits[i]); 851 SUnits[i].isAvailable = true; 852 } 853 } 854 855 // While Available queue is not empty, grab the node with the highest 856 // priority. If it is not ready put it back. Schedule the node. 857 std::vector<SUnit*> NotReady; 858 Sequence.reserve(SUnits.size()); 859 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 860 // Check to see if any of the pending instructions are ready to issue. If 861 // so, add them to the available queue. 862 unsigned MinDepth = ~0u; 863 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 864 if (PendingQueue[i]->getDepth() <= CurCycle) { 865 AvailableQueue.push(PendingQueue[i]); 866 PendingQueue[i]->isAvailable = true; 867 PendingQueue[i] = PendingQueue.back(); 868 PendingQueue.pop_back(); 869 --i; --e; 870 } else if (PendingQueue[i]->getDepth() < MinDepth) 871 MinDepth = PendingQueue[i]->getDepth(); 872 } 873 874 // If there are no instructions available, don't try to issue anything, and 875 // don't advance the hazard recognizer. 876 if (AvailableQueue.empty()) { 877 CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1; 878 continue; 879 } 880 881 SUnit *FoundSUnit = 0; 882 883 bool HasNoopHazards = false; 884 while (!AvailableQueue.empty()) { 885 SUnit *CurSUnit = AvailableQueue.pop(); 886 887 ScheduleHazardRecognizer::HazardType HT = 888 HazardRec->getHazardType(CurSUnit); 889 if (HT == ScheduleHazardRecognizer::NoHazard) { 890 FoundSUnit = CurSUnit; 891 break; 892 } 893 894 // Remember if this is a noop hazard. 895 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 896 897 NotReady.push_back(CurSUnit); 898 } 899 900 // Add the nodes that aren't ready back onto the available list. 901 if (!NotReady.empty()) { 902 AvailableQueue.push_all(NotReady); 903 NotReady.clear(); 904 } 905 906 // If we found a node to schedule, do it now. 907 if (FoundSUnit) { 908 ScheduleNodeTopDown(FoundSUnit, CurCycle); 909 HazardRec->EmitInstruction(FoundSUnit); 910 911 // If this is a pseudo-op node, we don't want to increment the current 912 // cycle. 913 if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! 914 ++CurCycle; 915 } else if (!HasNoopHazards) { 916 // Otherwise, we have a pipeline stall, but no other problem, just advance 917 // the current cycle and try again. 918 DOUT << "*** Advancing cycle, no work to do\n"; 919 HazardRec->AdvanceCycle(); 920 ++NumStalls; 921 ++CurCycle; 922 } else { 923 // Otherwise, we have no instructions to issue and we have instructions 924 // that will fault if we don't do this right. This is the case for 925 // processors without pipeline interlocks and other cases. 926 DOUT << "*** Emitting noop\n"; 927 HazardRec->EmitNoop(); 928 Sequence.push_back(0); // NULL here means noop 929 ++NumNoops; 930 ++CurCycle; 931 } 932 } 933 934#ifndef NDEBUG 935 VerifySchedule(/*isBottomUp=*/false); 936#endif 937} 938 939//===----------------------------------------------------------------------===// 940// Public Constructor Functions 941//===----------------------------------------------------------------------===// 942 943FunctionPass *llvm::createPostRAScheduler() { 944 return new PostRAScheduler(); 945} 946