1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "isel"
43#include "llvm/CodeGen/FastISel.h"
44#include "llvm/ADT/Optional.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Analysis/Loads.h"
47#include "llvm/CodeGen/Analysis.h"
48#include "llvm/CodeGen/FunctionLoweringInfo.h"
49#include "llvm/CodeGen/MachineInstrBuilder.h"
50#include "llvm/CodeGen/MachineModuleInfo.h"
51#include "llvm/CodeGen/MachineRegisterInfo.h"
52#include "llvm/DebugInfo.h"
53#include "llvm/IR/DataLayout.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/GlobalVariable.h"
56#include "llvm/IR/Instructions.h"
57#include "llvm/IR/IntrinsicInst.h"
58#include "llvm/IR/Operator.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Target/TargetInstrInfo.h"
62#include "llvm/Target/TargetLibraryInfo.h"
63#include "llvm/Target/TargetLowering.h"
64#include "llvm/Target/TargetMachine.h"
65using namespace llvm;
66
67STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
68          "target-independent selector");
69STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
70          "target-specific selector");
71STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
72
73/// startNewBlock - Set the current block to which generated machine
74/// instructions will be appended, and clear the local CSE map.
75///
76void FastISel::startNewBlock() {
77  LocalValueMap.clear();
78
79  // Instructions are appended to FuncInfo.MBB. If the basic block already
80  // contains labels or copies, use the last instruction as the last local
81  // value.
82  EmitStartPt = 0;
83  if (!FuncInfo.MBB->empty())
84    EmitStartPt = &FuncInfo.MBB->back();
85  LastLocalValue = EmitStartPt;
86}
87
88bool FastISel::LowerArguments() {
89  if (!FuncInfo.CanLowerReturn)
90    // Fallback to SDISel argument lowering code to deal with sret pointer
91    // parameter.
92    return false;
93
94  if (!FastLowerArguments())
95    return false;
96
97  // Enter arguments into ValueMap for uses in non-entry BBs.
98  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
99         E = FuncInfo.Fn->arg_end(); I != E; ++I) {
100    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
101    assert(VI != LocalValueMap.end() && "Missed an argument?");
102    FuncInfo.ValueMap[I] = VI->second;
103  }
104  return true;
105}
106
107void FastISel::flushLocalValueMap() {
108  LocalValueMap.clear();
109  LastLocalValue = EmitStartPt;
110  recomputeInsertPt();
111}
112
113bool FastISel::hasTrivialKill(const Value *V) const {
114  // Don't consider constants or arguments to have trivial kills.
115  const Instruction *I = dyn_cast<Instruction>(V);
116  if (!I)
117    return false;
118
119  // No-op casts are trivially coalesced by fast-isel.
120  if (const CastInst *Cast = dyn_cast<CastInst>(I))
121    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
122        !hasTrivialKill(Cast->getOperand(0)))
123      return false;
124
125  // GEPs with all zero indices are trivially coalesced by fast-isel.
126  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
127    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
128      return false;
129
130  // Only instructions with a single use in the same basic block are considered
131  // to have trivial kills.
132  return I->hasOneUse() &&
133         !(I->getOpcode() == Instruction::BitCast ||
134           I->getOpcode() == Instruction::PtrToInt ||
135           I->getOpcode() == Instruction::IntToPtr) &&
136         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
137}
138
139unsigned FastISel::getRegForValue(const Value *V) {
140  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
141  // Don't handle non-simple values in FastISel.
142  if (!RealVT.isSimple())
143    return 0;
144
145  // Ignore illegal types. We must do this before looking up the value
146  // in ValueMap because Arguments are given virtual registers regardless
147  // of whether FastISel can handle them.
148  MVT VT = RealVT.getSimpleVT();
149  if (!TLI.isTypeLegal(VT)) {
150    // Handle integer promotions, though, because they're common and easy.
151    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
152      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
153    else
154      return 0;
155  }
156
157  // Look up the value to see if we already have a register for it.
158  unsigned Reg = lookUpRegForValue(V);
159  if (Reg != 0)
160    return Reg;
161
162  // In bottom-up mode, just create the virtual register which will be used
163  // to hold the value. It will be materialized later.
164  if (isa<Instruction>(V) &&
165      (!isa<AllocaInst>(V) ||
166       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
167    return FuncInfo.InitializeRegForValue(V);
168
169  SavePoint SaveInsertPt = enterLocalValueArea();
170
171  // Materialize the value in a register. Emit any instructions in the
172  // local value area.
173  Reg = materializeRegForValue(V, VT);
174
175  leaveLocalValueArea(SaveInsertPt);
176
177  return Reg;
178}
179
180/// materializeRegForValue - Helper for getRegForValue. This function is
181/// called when the value isn't already available in a register and must
182/// be materialized with new instructions.
183unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
184  unsigned Reg = 0;
185
186  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
187    if (CI->getValue().getActiveBits() <= 64)
188      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
189  } else if (isa<AllocaInst>(V)) {
190    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
191  } else if (isa<ConstantPointerNull>(V)) {
192    // Translate this as an integer zero so that it can be
193    // local-CSE'd with actual integer zeros.
194    Reg =
195      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
196  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
197    if (CF->isNullValue()) {
198      Reg = TargetMaterializeFloatZero(CF);
199    } else {
200      // Try to emit the constant directly.
201      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
202    }
203
204    if (!Reg) {
205      // Try to emit the constant by using an integer constant with a cast.
206      const APFloat &Flt = CF->getValueAPF();
207      EVT IntVT = TLI.getPointerTy();
208
209      uint64_t x[2];
210      uint32_t IntBitWidth = IntVT.getSizeInBits();
211      bool isExact;
212      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
213                                  APFloat::rmTowardZero, &isExact);
214      if (isExact) {
215        APInt IntVal(IntBitWidth, x);
216
217        unsigned IntegerReg =
218          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
219        if (IntegerReg != 0)
220          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
221                           IntegerReg, /*Kill=*/false);
222      }
223    }
224  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
225    if (!SelectOperator(Op, Op->getOpcode()))
226      if (!isa<Instruction>(Op) ||
227          !TargetSelectInstruction(cast<Instruction>(Op)))
228        return 0;
229    Reg = lookUpRegForValue(Op);
230  } else if (isa<UndefValue>(V)) {
231    Reg = createResultReg(TLI.getRegClassFor(VT));
232    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
233            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
234  }
235
236  // If target-independent code couldn't handle the value, give target-specific
237  // code a try.
238  if (!Reg && isa<Constant>(V))
239    Reg = TargetMaterializeConstant(cast<Constant>(V));
240
241  // Don't cache constant materializations in the general ValueMap.
242  // To do so would require tracking what uses they dominate.
243  if (Reg != 0) {
244    LocalValueMap[V] = Reg;
245    LastLocalValue = MRI.getVRegDef(Reg);
246  }
247  return Reg;
248}
249
250unsigned FastISel::lookUpRegForValue(const Value *V) {
251  // Look up the value to see if we already have a register for it. We
252  // cache values defined by Instructions across blocks, and other values
253  // only locally. This is because Instructions already have the SSA
254  // def-dominates-use requirement enforced.
255  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
256  if (I != FuncInfo.ValueMap.end())
257    return I->second;
258  return LocalValueMap[V];
259}
260
261/// UpdateValueMap - Update the value map to include the new mapping for this
262/// instruction, or insert an extra copy to get the result in a previous
263/// determined register.
264/// NOTE: This is only necessary because we might select a block that uses
265/// a value before we select the block that defines the value.  It might be
266/// possible to fix this by selecting blocks in reverse postorder.
267void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
268  if (!isa<Instruction>(I)) {
269    LocalValueMap[I] = Reg;
270    return;
271  }
272
273  unsigned &AssignedReg = FuncInfo.ValueMap[I];
274  if (AssignedReg == 0)
275    // Use the new register.
276    AssignedReg = Reg;
277  else if (Reg != AssignedReg) {
278    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
279    for (unsigned i = 0; i < NumRegs; i++)
280      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
281
282    AssignedReg = Reg;
283  }
284}
285
286std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
287  unsigned IdxN = getRegForValue(Idx);
288  if (IdxN == 0)
289    // Unhandled operand. Halt "fast" selection and bail.
290    return std::pair<unsigned, bool>(0, false);
291
292  bool IdxNIsKill = hasTrivialKill(Idx);
293
294  // If the index is smaller or larger than intptr_t, truncate or extend it.
295  MVT PtrVT = TLI.getPointerTy();
296  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
297  if (IdxVT.bitsLT(PtrVT)) {
298    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
299                      IdxN, IdxNIsKill);
300    IdxNIsKill = true;
301  }
302  else if (IdxVT.bitsGT(PtrVT)) {
303    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
304                      IdxN, IdxNIsKill);
305    IdxNIsKill = true;
306  }
307  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
308}
309
310void FastISel::recomputeInsertPt() {
311  if (getLastLocalValue()) {
312    FuncInfo.InsertPt = getLastLocalValue();
313    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
314    ++FuncInfo.InsertPt;
315  } else
316    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
317
318  // Now skip past any EH_LABELs, which must remain at the beginning.
319  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
320         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
321    ++FuncInfo.InsertPt;
322}
323
324void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
325                              MachineBasicBlock::iterator E) {
326  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
327  while (I != E) {
328    MachineInstr *Dead = &*I;
329    ++I;
330    Dead->eraseFromParent();
331    ++NumFastIselDead;
332  }
333  recomputeInsertPt();
334}
335
336FastISel::SavePoint FastISel::enterLocalValueArea() {
337  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
338  DebugLoc OldDL = DL;
339  recomputeInsertPt();
340  DL = DebugLoc();
341  SavePoint SP = { OldInsertPt, OldDL };
342  return SP;
343}
344
345void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
346  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
347    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
348
349  // Restore the previous insert position.
350  FuncInfo.InsertPt = OldInsertPt.InsertPt;
351  DL = OldInsertPt.DL;
352}
353
354/// SelectBinaryOp - Select and emit code for a binary operator instruction,
355/// which has an opcode which directly corresponds to the given ISD opcode.
356///
357bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
358  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
359  if (VT == MVT::Other || !VT.isSimple())
360    // Unhandled type. Halt "fast" selection and bail.
361    return false;
362
363  // We only handle legal types. For example, on x86-32 the instruction
364  // selector contains all of the 64-bit instructions from x86-64,
365  // under the assumption that i64 won't be used if the target doesn't
366  // support it.
367  if (!TLI.isTypeLegal(VT)) {
368    // MVT::i1 is special. Allow AND, OR, or XOR because they
369    // don't require additional zeroing, which makes them easy.
370    if (VT == MVT::i1 &&
371        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
372         ISDOpcode == ISD::XOR))
373      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
374    else
375      return false;
376  }
377
378  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
379  // we don't have anything that canonicalizes operand order.
380  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
381    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
382      unsigned Op1 = getRegForValue(I->getOperand(1));
383      if (Op1 == 0) return false;
384
385      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
386
387      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
388                                        Op1IsKill, CI->getZExtValue(),
389                                        VT.getSimpleVT());
390      if (ResultReg == 0) return false;
391
392      // We successfully emitted code for the given LLVM Instruction.
393      UpdateValueMap(I, ResultReg);
394      return true;
395    }
396
397
398  unsigned Op0 = getRegForValue(I->getOperand(0));
399  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
400    return false;
401
402  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
403
404  // Check if the second operand is a constant and handle it appropriately.
405  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
406    uint64_t Imm = CI->getZExtValue();
407
408    // Transform "sdiv exact X, 8" -> "sra X, 3".
409    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
410        cast<BinaryOperator>(I)->isExact() &&
411        isPowerOf2_64(Imm)) {
412      Imm = Log2_64(Imm);
413      ISDOpcode = ISD::SRA;
414    }
415
416    // Transform "urem x, pow2" -> "and x, pow2-1".
417    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
418        isPowerOf2_64(Imm)) {
419      --Imm;
420      ISDOpcode = ISD::AND;
421    }
422
423    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
424                                      Op0IsKill, Imm, VT.getSimpleVT());
425    if (ResultReg == 0) return false;
426
427    // We successfully emitted code for the given LLVM Instruction.
428    UpdateValueMap(I, ResultReg);
429    return true;
430  }
431
432  // Check if the second operand is a constant float.
433  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
434    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
435                                     ISDOpcode, Op0, Op0IsKill, CF);
436    if (ResultReg != 0) {
437      // We successfully emitted code for the given LLVM Instruction.
438      UpdateValueMap(I, ResultReg);
439      return true;
440    }
441  }
442
443  unsigned Op1 = getRegForValue(I->getOperand(1));
444  if (Op1 == 0)
445    // Unhandled operand. Halt "fast" selection and bail.
446    return false;
447
448  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
449
450  // Now we have both operands in registers. Emit the instruction.
451  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
452                                   ISDOpcode,
453                                   Op0, Op0IsKill,
454                                   Op1, Op1IsKill);
455  if (ResultReg == 0)
456    // Target-specific code wasn't able to find a machine opcode for
457    // the given ISD opcode and type. Halt "fast" selection and bail.
458    return false;
459
460  // We successfully emitted code for the given LLVM Instruction.
461  UpdateValueMap(I, ResultReg);
462  return true;
463}
464
465bool FastISel::SelectGetElementPtr(const User *I) {
466  unsigned N = getRegForValue(I->getOperand(0));
467  if (N == 0)
468    // Unhandled operand. Halt "fast" selection and bail.
469    return false;
470
471  bool NIsKill = hasTrivialKill(I->getOperand(0));
472
473  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
474  // into a single N = N + TotalOffset.
475  uint64_t TotalOffs = 0;
476  // FIXME: What's a good SWAG number for MaxOffs?
477  uint64_t MaxOffs = 2048;
478  Type *Ty = I->getOperand(0)->getType();
479  MVT VT = TLI.getPointerTy();
480  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
481       E = I->op_end(); OI != E; ++OI) {
482    const Value *Idx = *OI;
483    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
484      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
485      if (Field) {
486        // N = N + Offset
487        TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
488        if (TotalOffs >= MaxOffs) {
489          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
490          if (N == 0)
491            // Unhandled operand. Halt "fast" selection and bail.
492            return false;
493          NIsKill = true;
494          TotalOffs = 0;
495        }
496      }
497      Ty = StTy->getElementType(Field);
498    } else {
499      Ty = cast<SequentialType>(Ty)->getElementType();
500
501      // If this is a constant subscript, handle it quickly.
502      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
503        if (CI->isZero()) continue;
504        // N = N + Offset
505        TotalOffs +=
506          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
507        if (TotalOffs >= MaxOffs) {
508          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
509          if (N == 0)
510            // Unhandled operand. Halt "fast" selection and bail.
511            return false;
512          NIsKill = true;
513          TotalOffs = 0;
514        }
515        continue;
516      }
517      if (TotalOffs) {
518        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
519        if (N == 0)
520          // Unhandled operand. Halt "fast" selection and bail.
521          return false;
522        NIsKill = true;
523        TotalOffs = 0;
524      }
525
526      // N = N + Idx * ElementSize;
527      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
528      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
529      unsigned IdxN = Pair.first;
530      bool IdxNIsKill = Pair.second;
531      if (IdxN == 0)
532        // Unhandled operand. Halt "fast" selection and bail.
533        return false;
534
535      if (ElementSize != 1) {
536        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
537        if (IdxN == 0)
538          // Unhandled operand. Halt "fast" selection and bail.
539          return false;
540        IdxNIsKill = true;
541      }
542      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
543      if (N == 0)
544        // Unhandled operand. Halt "fast" selection and bail.
545        return false;
546    }
547  }
548  if (TotalOffs) {
549    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
550    if (N == 0)
551      // Unhandled operand. Halt "fast" selection and bail.
552      return false;
553  }
554
555  // We successfully emitted code for the given LLVM Instruction.
556  UpdateValueMap(I, N);
557  return true;
558}
559
560bool FastISel::SelectCall(const User *I) {
561  const CallInst *Call = cast<CallInst>(I);
562
563  // Handle simple inline asms.
564  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
565    // Don't attempt to handle constraints.
566    if (!IA->getConstraintString().empty())
567      return false;
568
569    unsigned ExtraInfo = 0;
570    if (IA->hasSideEffects())
571      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
572    if (IA->isAlignStack())
573      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
574
575    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
576            TII.get(TargetOpcode::INLINEASM))
577      .addExternalSymbol(IA->getAsmString().c_str())
578      .addImm(ExtraInfo);
579    return true;
580  }
581
582  MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
583  ComputeUsesVAFloatArgument(*Call, &MMI);
584
585  const Function *F = Call->getCalledFunction();
586  if (!F) return false;
587
588  // Handle selected intrinsic function calls.
589  switch (F->getIntrinsicID()) {
590  default: break;
591    // At -O0 we don't care about the lifetime intrinsics.
592  case Intrinsic::lifetime_start:
593  case Intrinsic::lifetime_end:
594    // The donothing intrinsic does, well, nothing.
595  case Intrinsic::donothing:
596    return true;
597
598  case Intrinsic::dbg_declare: {
599    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
600    DIVariable DIVar(DI->getVariable());
601    assert((!DIVar || DIVar.isVariable()) &&
602      "Variable in DbgDeclareInst should be either null or a DIVariable.");
603    if (!DIVar ||
604        !FuncInfo.MF->getMMI().hasDebugInfo()) {
605      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
606      return true;
607    }
608
609    const Value *Address = DI->getAddress();
610    if (!Address || isa<UndefValue>(Address)) {
611      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
612      return true;
613    }
614
615    unsigned Offset = 0;
616    Optional<MachineOperand> Op;
617    if (const Argument *Arg = dyn_cast<Argument>(Address))
618      // Some arguments' frame index is recorded during argument lowering.
619      Offset = FuncInfo.getArgumentFrameIndex(Arg);
620    if (Offset)
621        Op = MachineOperand::CreateFI(Offset);
622    if (!Op)
623      if (unsigned Reg = lookUpRegForValue(Address))
624        Op = MachineOperand::CreateReg(Reg, false);
625
626    // If we have a VLA that has a "use" in a metadata node that's then used
627    // here but it has no other uses, then we have a problem. E.g.,
628    //
629    //   int foo (const int *x) {
630    //     char a[*x];
631    //     return 0;
632    //   }
633    //
634    // If we assign 'a' a vreg and fast isel later on has to use the selection
635    // DAG isel, it will want to copy the value to the vreg. However, there are
636    // no uses, which goes counter to what selection DAG isel expects.
637    if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
638        (!isa<AllocaInst>(Address) ||
639         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
640      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
641                                      false);
642
643    if (Op)
644      if (Op->isReg()) {
645        // Set the indirect flag if the type and the DIVariable's
646        // indirect field are in disagreement: Indirectly-addressed
647        // variables that are nonpointer types should be marked as
648        // indirect, and VLAs should be marked as indirect eventhough
649        // they are a pointer type.
650        bool IsIndirect = DI->getAddress()->getType()->isPointerTy()
651          ^ DIVar.isIndirect();
652        Op->setIsDebug(true);
653        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
654                TII.get(TargetOpcode::DBG_VALUE),
655                IsIndirect, Op->getReg(), Offset, DI->getVariable());
656      } else
657        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
658                TII.get(TargetOpcode::DBG_VALUE)).addOperand(*Op).addImm(0)
659          .addMetadata(DI->getVariable());
660    else
661      // We can't yet handle anything else here because it would require
662      // generating code, thus altering codegen because of debug info.
663      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
664    return true;
665  }
666  case Intrinsic::dbg_value: {
667    // This form of DBG_VALUE is target-independent.
668    const DbgValueInst *DI = cast<DbgValueInst>(Call);
669    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
670    const Value *V = DI->getValue();
671    if (!V) {
672      // Currently the optimizer can produce this; insert an undef to
673      // help debugging.  Probably the optimizer should not do this.
674      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
675        .addReg(0U).addImm(DI->getOffset())
676        .addMetadata(DI->getVariable());
677    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
678      if (CI->getBitWidth() > 64)
679        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
680          .addCImm(CI).addImm(DI->getOffset())
681          .addMetadata(DI->getVariable());
682      else
683        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
684          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
685          .addMetadata(DI->getVariable());
686    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
687      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
688        .addFPImm(CF).addImm(DI->getOffset())
689        .addMetadata(DI->getVariable());
690    } else if (unsigned Reg = lookUpRegForValue(V)) {
691      bool IsIndirect = DI->getOffset() != 0;
692      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect,
693              Reg, DI->getOffset(), DI->getVariable());
694    } else {
695      // We can't yet handle anything else here because it would require
696      // generating code, thus altering codegen because of debug info.
697      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
698    }
699    return true;
700  }
701  case Intrinsic::objectsize: {
702    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
703    unsigned long long Res = CI->isZero() ? -1ULL : 0;
704    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
705    unsigned ResultReg = getRegForValue(ResCI);
706    if (ResultReg == 0)
707      return false;
708    UpdateValueMap(Call, ResultReg);
709    return true;
710  }
711  case Intrinsic::expect: {
712    unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
713    if (ResultReg == 0)
714      return false;
715    UpdateValueMap(Call, ResultReg);
716    return true;
717  }
718  }
719
720  // Usually, it does not make sense to initialize a value,
721  // make an unrelated function call and use the value, because
722  // it tends to be spilled on the stack. So, we move the pointer
723  // to the last local value to the beginning of the block, so that
724  // all the values which have already been materialized,
725  // appear after the call. It also makes sense to skip intrinsics
726  // since they tend to be inlined.
727  if (!isa<IntrinsicInst>(Call))
728    flushLocalValueMap();
729
730  // An arbitrary call. Bail.
731  return false;
732}
733
734bool FastISel::SelectCast(const User *I, unsigned Opcode) {
735  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
736  EVT DstVT = TLI.getValueType(I->getType());
737
738  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
739      DstVT == MVT::Other || !DstVT.isSimple())
740    // Unhandled type. Halt "fast" selection and bail.
741    return false;
742
743  // Check if the destination type is legal.
744  if (!TLI.isTypeLegal(DstVT))
745    return false;
746
747  // Check if the source operand is legal.
748  if (!TLI.isTypeLegal(SrcVT))
749    return false;
750
751  unsigned InputReg = getRegForValue(I->getOperand(0));
752  if (!InputReg)
753    // Unhandled operand.  Halt "fast" selection and bail.
754    return false;
755
756  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
757
758  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
759                                  DstVT.getSimpleVT(),
760                                  Opcode,
761                                  InputReg, InputRegIsKill);
762  if (!ResultReg)
763    return false;
764
765  UpdateValueMap(I, ResultReg);
766  return true;
767}
768
769bool FastISel::SelectBitCast(const User *I) {
770  // If the bitcast doesn't change the type, just use the operand value.
771  if (I->getType() == I->getOperand(0)->getType()) {
772    unsigned Reg = getRegForValue(I->getOperand(0));
773    if (Reg == 0)
774      return false;
775    UpdateValueMap(I, Reg);
776    return true;
777  }
778
779  // Bitcasts of other values become reg-reg copies or BITCAST operators.
780  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
781  EVT DstEVT = TLI.getValueType(I->getType());
782  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
783      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
784    // Unhandled type. Halt "fast" selection and bail.
785    return false;
786
787  MVT SrcVT = SrcEVT.getSimpleVT();
788  MVT DstVT = DstEVT.getSimpleVT();
789  unsigned Op0 = getRegForValue(I->getOperand(0));
790  if (Op0 == 0)
791    // Unhandled operand. Halt "fast" selection and bail.
792    return false;
793
794  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
795
796  // First, try to perform the bitcast by inserting a reg-reg copy.
797  unsigned ResultReg = 0;
798  if (SrcVT == DstVT) {
799    const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
800    const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
801    // Don't attempt a cross-class copy. It will likely fail.
802    if (SrcClass == DstClass) {
803      ResultReg = createResultReg(DstClass);
804      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
805              ResultReg).addReg(Op0);
806    }
807  }
808
809  // If the reg-reg copy failed, select a BITCAST opcode.
810  if (!ResultReg)
811    ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
812
813  if (!ResultReg)
814    return false;
815
816  UpdateValueMap(I, ResultReg);
817  return true;
818}
819
820bool
821FastISel::SelectInstruction(const Instruction *I) {
822  // Just before the terminator instruction, insert instructions to
823  // feed PHI nodes in successor blocks.
824  if (isa<TerminatorInst>(I))
825    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
826      return false;
827
828  DL = I->getDebugLoc();
829
830  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
831
832  // As a special case, don't handle calls to builtin library functions that
833  // may be translated directly to target instructions.
834  if (const CallInst *Call = dyn_cast<CallInst>(I)) {
835    const Function *F = Call->getCalledFunction();
836    LibFunc::Func Func;
837    if (F && !F->hasLocalLinkage() && F->hasName() &&
838        LibInfo->getLibFunc(F->getName(), Func) &&
839        LibInfo->hasOptimizedCodeGen(Func))
840      return false;
841  }
842
843  // First, try doing target-independent selection.
844  if (SelectOperator(I, I->getOpcode())) {
845    ++NumFastIselSuccessIndependent;
846    DL = DebugLoc();
847    return true;
848  }
849  // Remove dead code.  However, ignore call instructions since we've flushed
850  // the local value map and recomputed the insert point.
851  if (!isa<CallInst>(I)) {
852    recomputeInsertPt();
853    if (SavedInsertPt != FuncInfo.InsertPt)
854      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
855  }
856
857  // Next, try calling the target to attempt to handle the instruction.
858  SavedInsertPt = FuncInfo.InsertPt;
859  if (TargetSelectInstruction(I)) {
860    ++NumFastIselSuccessTarget;
861    DL = DebugLoc();
862    return true;
863  }
864  // Check for dead code and remove as necessary.
865  recomputeInsertPt();
866  if (SavedInsertPt != FuncInfo.InsertPt)
867    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
868
869  DL = DebugLoc();
870  return false;
871}
872
873/// FastEmitBranch - Emit an unconditional branch to the given block,
874/// unless it is the immediate (fall-through) successor, and update
875/// the CFG.
876void
877FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
878
879  if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
880      FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
881    // For more accurate line information if this is the only instruction
882    // in the block then emit it, otherwise we have the unconditional
883    // fall-through case, which needs no instructions.
884  } else {
885    // The unconditional branch case.
886    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
887                     SmallVector<MachineOperand, 0>(), DL);
888  }
889  FuncInfo.MBB->addSuccessor(MSucc);
890}
891
892/// SelectFNeg - Emit an FNeg operation.
893///
894bool
895FastISel::SelectFNeg(const User *I) {
896  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
897  if (OpReg == 0) return false;
898
899  bool OpRegIsKill = hasTrivialKill(I);
900
901  // If the target has ISD::FNEG, use it.
902  EVT VT = TLI.getValueType(I->getType());
903  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
904                                  ISD::FNEG, OpReg, OpRegIsKill);
905  if (ResultReg != 0) {
906    UpdateValueMap(I, ResultReg);
907    return true;
908  }
909
910  // Bitcast the value to integer, twiddle the sign bit with xor,
911  // and then bitcast it back to floating-point.
912  if (VT.getSizeInBits() > 64) return false;
913  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
914  if (!TLI.isTypeLegal(IntVT))
915    return false;
916
917  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
918                               ISD::BITCAST, OpReg, OpRegIsKill);
919  if (IntReg == 0)
920    return false;
921
922  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
923                                       IntReg, /*Kill=*/true,
924                                       UINT64_C(1) << (VT.getSizeInBits()-1),
925                                       IntVT.getSimpleVT());
926  if (IntResultReg == 0)
927    return false;
928
929  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
930                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
931  if (ResultReg == 0)
932    return false;
933
934  UpdateValueMap(I, ResultReg);
935  return true;
936}
937
938bool
939FastISel::SelectExtractValue(const User *U) {
940  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
941  if (!EVI)
942    return false;
943
944  // Make sure we only try to handle extracts with a legal result.  But also
945  // allow i1 because it's easy.
946  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
947  if (!RealVT.isSimple())
948    return false;
949  MVT VT = RealVT.getSimpleVT();
950  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
951    return false;
952
953  const Value *Op0 = EVI->getOperand(0);
954  Type *AggTy = Op0->getType();
955
956  // Get the base result register.
957  unsigned ResultReg;
958  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
959  if (I != FuncInfo.ValueMap.end())
960    ResultReg = I->second;
961  else if (isa<Instruction>(Op0))
962    ResultReg = FuncInfo.InitializeRegForValue(Op0);
963  else
964    return false; // fast-isel can't handle aggregate constants at the moment
965
966  // Get the actual result register, which is an offset from the base register.
967  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
968
969  SmallVector<EVT, 4> AggValueVTs;
970  ComputeValueVTs(TLI, AggTy, AggValueVTs);
971
972  for (unsigned i = 0; i < VTIndex; i++)
973    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
974
975  UpdateValueMap(EVI, ResultReg);
976  return true;
977}
978
979bool
980FastISel::SelectOperator(const User *I, unsigned Opcode) {
981  switch (Opcode) {
982  case Instruction::Add:
983    return SelectBinaryOp(I, ISD::ADD);
984  case Instruction::FAdd:
985    return SelectBinaryOp(I, ISD::FADD);
986  case Instruction::Sub:
987    return SelectBinaryOp(I, ISD::SUB);
988  case Instruction::FSub:
989    // FNeg is currently represented in LLVM IR as a special case of FSub.
990    if (BinaryOperator::isFNeg(I))
991      return SelectFNeg(I);
992    return SelectBinaryOp(I, ISD::FSUB);
993  case Instruction::Mul:
994    return SelectBinaryOp(I, ISD::MUL);
995  case Instruction::FMul:
996    return SelectBinaryOp(I, ISD::FMUL);
997  case Instruction::SDiv:
998    return SelectBinaryOp(I, ISD::SDIV);
999  case Instruction::UDiv:
1000    return SelectBinaryOp(I, ISD::UDIV);
1001  case Instruction::FDiv:
1002    return SelectBinaryOp(I, ISD::FDIV);
1003  case Instruction::SRem:
1004    return SelectBinaryOp(I, ISD::SREM);
1005  case Instruction::URem:
1006    return SelectBinaryOp(I, ISD::UREM);
1007  case Instruction::FRem:
1008    return SelectBinaryOp(I, ISD::FREM);
1009  case Instruction::Shl:
1010    return SelectBinaryOp(I, ISD::SHL);
1011  case Instruction::LShr:
1012    return SelectBinaryOp(I, ISD::SRL);
1013  case Instruction::AShr:
1014    return SelectBinaryOp(I, ISD::SRA);
1015  case Instruction::And:
1016    return SelectBinaryOp(I, ISD::AND);
1017  case Instruction::Or:
1018    return SelectBinaryOp(I, ISD::OR);
1019  case Instruction::Xor:
1020    return SelectBinaryOp(I, ISD::XOR);
1021
1022  case Instruction::GetElementPtr:
1023    return SelectGetElementPtr(I);
1024
1025  case Instruction::Br: {
1026    const BranchInst *BI = cast<BranchInst>(I);
1027
1028    if (BI->isUnconditional()) {
1029      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1030      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1031      FastEmitBranch(MSucc, BI->getDebugLoc());
1032      return true;
1033    }
1034
1035    // Conditional branches are not handed yet.
1036    // Halt "fast" selection and bail.
1037    return false;
1038  }
1039
1040  case Instruction::Unreachable:
1041    // Nothing to emit.
1042    return true;
1043
1044  case Instruction::Alloca:
1045    // FunctionLowering has the static-sized case covered.
1046    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1047      return true;
1048
1049    // Dynamic-sized alloca is not handled yet.
1050    return false;
1051
1052  case Instruction::Call:
1053    return SelectCall(I);
1054
1055  case Instruction::BitCast:
1056    return SelectBitCast(I);
1057
1058  case Instruction::FPToSI:
1059    return SelectCast(I, ISD::FP_TO_SINT);
1060  case Instruction::ZExt:
1061    return SelectCast(I, ISD::ZERO_EXTEND);
1062  case Instruction::SExt:
1063    return SelectCast(I, ISD::SIGN_EXTEND);
1064  case Instruction::Trunc:
1065    return SelectCast(I, ISD::TRUNCATE);
1066  case Instruction::SIToFP:
1067    return SelectCast(I, ISD::SINT_TO_FP);
1068
1069  case Instruction::IntToPtr: // Deliberate fall-through.
1070  case Instruction::PtrToInt: {
1071    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1072    EVT DstVT = TLI.getValueType(I->getType());
1073    if (DstVT.bitsGT(SrcVT))
1074      return SelectCast(I, ISD::ZERO_EXTEND);
1075    if (DstVT.bitsLT(SrcVT))
1076      return SelectCast(I, ISD::TRUNCATE);
1077    unsigned Reg = getRegForValue(I->getOperand(0));
1078    if (Reg == 0) return false;
1079    UpdateValueMap(I, Reg);
1080    return true;
1081  }
1082
1083  case Instruction::ExtractValue:
1084    return SelectExtractValue(I);
1085
1086  case Instruction::PHI:
1087    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1088
1089  default:
1090    // Unhandled instruction. Halt "fast" selection and bail.
1091    return false;
1092  }
1093}
1094
1095FastISel::FastISel(FunctionLoweringInfo &funcInfo,
1096                   const TargetLibraryInfo *libInfo)
1097  : FuncInfo(funcInfo),
1098    MRI(FuncInfo.MF->getRegInfo()),
1099    MFI(*FuncInfo.MF->getFrameInfo()),
1100    MCP(*FuncInfo.MF->getConstantPool()),
1101    TM(FuncInfo.MF->getTarget()),
1102    TD(*TM.getDataLayout()),
1103    TII(*TM.getInstrInfo()),
1104    TLI(*TM.getTargetLowering()),
1105    TRI(*TM.getRegisterInfo()),
1106    LibInfo(libInfo) {
1107}
1108
1109FastISel::~FastISel() {}
1110
1111bool FastISel::FastLowerArguments() {
1112  return false;
1113}
1114
1115unsigned FastISel::FastEmit_(MVT, MVT,
1116                             unsigned) {
1117  return 0;
1118}
1119
1120unsigned FastISel::FastEmit_r(MVT, MVT,
1121                              unsigned,
1122                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1123  return 0;
1124}
1125
1126unsigned FastISel::FastEmit_rr(MVT, MVT,
1127                               unsigned,
1128                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1129                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1130  return 0;
1131}
1132
1133unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1134  return 0;
1135}
1136
1137unsigned FastISel::FastEmit_f(MVT, MVT,
1138                              unsigned, const ConstantFP * /*FPImm*/) {
1139  return 0;
1140}
1141
1142unsigned FastISel::FastEmit_ri(MVT, MVT,
1143                               unsigned,
1144                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1145                               uint64_t /*Imm*/) {
1146  return 0;
1147}
1148
1149unsigned FastISel::FastEmit_rf(MVT, MVT,
1150                               unsigned,
1151                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1152                               const ConstantFP * /*FPImm*/) {
1153  return 0;
1154}
1155
1156unsigned FastISel::FastEmit_rri(MVT, MVT,
1157                                unsigned,
1158                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1159                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1160                                uint64_t /*Imm*/) {
1161  return 0;
1162}
1163
1164/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1165/// to emit an instruction with an immediate operand using FastEmit_ri.
1166/// If that fails, it materializes the immediate into a register and try
1167/// FastEmit_rr instead.
1168unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1169                                unsigned Op0, bool Op0IsKill,
1170                                uint64_t Imm, MVT ImmType) {
1171  // If this is a multiply by a power of two, emit this as a shift left.
1172  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1173    Opcode = ISD::SHL;
1174    Imm = Log2_64(Imm);
1175  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1176    // div x, 8 -> srl x, 3
1177    Opcode = ISD::SRL;
1178    Imm = Log2_64(Imm);
1179  }
1180
1181  // Horrible hack (to be removed), check to make sure shift amounts are
1182  // in-range.
1183  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1184      Imm >= VT.getSizeInBits())
1185    return 0;
1186
1187  // First check if immediate type is legal. If not, we can't use the ri form.
1188  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1189  if (ResultReg != 0)
1190    return ResultReg;
1191  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1192  if (MaterialReg == 0) {
1193    // This is a bit ugly/slow, but failing here means falling out of
1194    // fast-isel, which would be very slow.
1195    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1196                                              VT.getSizeInBits());
1197    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1198    assert (MaterialReg != 0 && "Unable to materialize imm.");
1199    if (MaterialReg == 0) return 0;
1200  }
1201  return FastEmit_rr(VT, VT, Opcode,
1202                     Op0, Op0IsKill,
1203                     MaterialReg, /*Kill=*/true);
1204}
1205
1206unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1207  return MRI.createVirtualRegister(RC);
1208}
1209
1210unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1211                                 const TargetRegisterClass* RC) {
1212  unsigned ResultReg = createResultReg(RC);
1213  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1214
1215  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1216  return ResultReg;
1217}
1218
1219unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1220                                  const TargetRegisterClass *RC,
1221                                  unsigned Op0, bool Op0IsKill) {
1222  unsigned ResultReg = createResultReg(RC);
1223  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1224
1225  if (II.getNumDefs() >= 1)
1226    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1227      .addReg(Op0, Op0IsKill * RegState::Kill);
1228  else {
1229    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1230      .addReg(Op0, Op0IsKill * RegState::Kill);
1231    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1232            ResultReg).addReg(II.ImplicitDefs[0]);
1233  }
1234
1235  return ResultReg;
1236}
1237
1238unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1239                                   const TargetRegisterClass *RC,
1240                                   unsigned Op0, bool Op0IsKill,
1241                                   unsigned Op1, bool Op1IsKill) {
1242  unsigned ResultReg = createResultReg(RC);
1243  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1244
1245  if (II.getNumDefs() >= 1)
1246    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1247      .addReg(Op0, Op0IsKill * RegState::Kill)
1248      .addReg(Op1, Op1IsKill * RegState::Kill);
1249  else {
1250    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1251      .addReg(Op0, Op0IsKill * RegState::Kill)
1252      .addReg(Op1, Op1IsKill * RegState::Kill);
1253    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1254            ResultReg).addReg(II.ImplicitDefs[0]);
1255  }
1256  return ResultReg;
1257}
1258
1259unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1260                                   const TargetRegisterClass *RC,
1261                                   unsigned Op0, bool Op0IsKill,
1262                                   unsigned Op1, bool Op1IsKill,
1263                                   unsigned Op2, bool Op2IsKill) {
1264  unsigned ResultReg = createResultReg(RC);
1265  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1266
1267  if (II.getNumDefs() >= 1)
1268    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1269      .addReg(Op0, Op0IsKill * RegState::Kill)
1270      .addReg(Op1, Op1IsKill * RegState::Kill)
1271      .addReg(Op2, Op2IsKill * RegState::Kill);
1272  else {
1273    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1274      .addReg(Op0, Op0IsKill * RegState::Kill)
1275      .addReg(Op1, Op1IsKill * RegState::Kill)
1276      .addReg(Op2, Op2IsKill * RegState::Kill);
1277    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1278            ResultReg).addReg(II.ImplicitDefs[0]);
1279  }
1280  return ResultReg;
1281}
1282
1283unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1284                                   const TargetRegisterClass *RC,
1285                                   unsigned Op0, bool Op0IsKill,
1286                                   uint64_t Imm) {
1287  unsigned ResultReg = createResultReg(RC);
1288  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1289
1290  if (II.getNumDefs() >= 1)
1291    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1292      .addReg(Op0, Op0IsKill * RegState::Kill)
1293      .addImm(Imm);
1294  else {
1295    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1296      .addReg(Op0, Op0IsKill * RegState::Kill)
1297      .addImm(Imm);
1298    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1299            ResultReg).addReg(II.ImplicitDefs[0]);
1300  }
1301  return ResultReg;
1302}
1303
1304unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1305                                   const TargetRegisterClass *RC,
1306                                   unsigned Op0, bool Op0IsKill,
1307                                   uint64_t Imm1, uint64_t Imm2) {
1308  unsigned ResultReg = createResultReg(RC);
1309  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1310
1311  if (II.getNumDefs() >= 1)
1312    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1313      .addReg(Op0, Op0IsKill * RegState::Kill)
1314      .addImm(Imm1)
1315      .addImm(Imm2);
1316  else {
1317    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1318      .addReg(Op0, Op0IsKill * RegState::Kill)
1319      .addImm(Imm1)
1320      .addImm(Imm2);
1321    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1322            ResultReg).addReg(II.ImplicitDefs[0]);
1323  }
1324  return ResultReg;
1325}
1326
1327unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1328                                   const TargetRegisterClass *RC,
1329                                   unsigned Op0, bool Op0IsKill,
1330                                   const ConstantFP *FPImm) {
1331  unsigned ResultReg = createResultReg(RC);
1332  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1333
1334  if (II.getNumDefs() >= 1)
1335    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1336      .addReg(Op0, Op0IsKill * RegState::Kill)
1337      .addFPImm(FPImm);
1338  else {
1339    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1340      .addReg(Op0, Op0IsKill * RegState::Kill)
1341      .addFPImm(FPImm);
1342    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1343            ResultReg).addReg(II.ImplicitDefs[0]);
1344  }
1345  return ResultReg;
1346}
1347
1348unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1349                                    const TargetRegisterClass *RC,
1350                                    unsigned Op0, bool Op0IsKill,
1351                                    unsigned Op1, bool Op1IsKill,
1352                                    uint64_t Imm) {
1353  unsigned ResultReg = createResultReg(RC);
1354  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1355
1356  if (II.getNumDefs() >= 1)
1357    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1358      .addReg(Op0, Op0IsKill * RegState::Kill)
1359      .addReg(Op1, Op1IsKill * RegState::Kill)
1360      .addImm(Imm);
1361  else {
1362    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1363      .addReg(Op0, Op0IsKill * RegState::Kill)
1364      .addReg(Op1, Op1IsKill * RegState::Kill)
1365      .addImm(Imm);
1366    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1367            ResultReg).addReg(II.ImplicitDefs[0]);
1368  }
1369  return ResultReg;
1370}
1371
1372unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
1373                                     const TargetRegisterClass *RC,
1374                                     unsigned Op0, bool Op0IsKill,
1375                                     unsigned Op1, bool Op1IsKill,
1376                                     uint64_t Imm1, uint64_t Imm2) {
1377  unsigned ResultReg = createResultReg(RC);
1378  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1379
1380  if (II.getNumDefs() >= 1)
1381    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1382      .addReg(Op0, Op0IsKill * RegState::Kill)
1383      .addReg(Op1, Op1IsKill * RegState::Kill)
1384      .addImm(Imm1).addImm(Imm2);
1385  else {
1386    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1387      .addReg(Op0, Op0IsKill * RegState::Kill)
1388      .addReg(Op1, Op1IsKill * RegState::Kill)
1389      .addImm(Imm1).addImm(Imm2);
1390    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1391            ResultReg).addReg(II.ImplicitDefs[0]);
1392  }
1393  return ResultReg;
1394}
1395
1396unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1397                                  const TargetRegisterClass *RC,
1398                                  uint64_t Imm) {
1399  unsigned ResultReg = createResultReg(RC);
1400  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1401
1402  if (II.getNumDefs() >= 1)
1403    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1404  else {
1405    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1406    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1407            ResultReg).addReg(II.ImplicitDefs[0]);
1408  }
1409  return ResultReg;
1410}
1411
1412unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1413                                  const TargetRegisterClass *RC,
1414                                  uint64_t Imm1, uint64_t Imm2) {
1415  unsigned ResultReg = createResultReg(RC);
1416  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1417
1418  if (II.getNumDefs() >= 1)
1419    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1420      .addImm(Imm1).addImm(Imm2);
1421  else {
1422    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1423    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1424            ResultReg).addReg(II.ImplicitDefs[0]);
1425  }
1426  return ResultReg;
1427}
1428
1429unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1430                                              unsigned Op0, bool Op0IsKill,
1431                                              uint32_t Idx) {
1432  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1433  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1434         "Cannot yet extract from physregs");
1435  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1436  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1437  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1438          DL, TII.get(TargetOpcode::COPY), ResultReg)
1439    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1440  return ResultReg;
1441}
1442
1443/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1444/// with all but the least significant bit set to zero.
1445unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1446  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1447}
1448
1449/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1450/// Emit code to ensure constants are copied into registers when needed.
1451/// Remember the virtual registers that need to be added to the Machine PHI
1452/// nodes as input.  We cannot just directly add them, because expansion
1453/// might result in multiple MBB's for one BB.  As such, the start of the
1454/// BB might correspond to a different MBB than the end.
1455bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1456  const TerminatorInst *TI = LLVMBB->getTerminator();
1457
1458  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1459  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1460
1461  // Check successor nodes' PHI nodes that expect a constant to be available
1462  // from this block.
1463  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1464    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1465    if (!isa<PHINode>(SuccBB->begin())) continue;
1466    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1467
1468    // If this terminator has multiple identical successors (common for
1469    // switches), only handle each succ once.
1470    if (!SuccsHandled.insert(SuccMBB)) continue;
1471
1472    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1473
1474    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1475    // nodes and Machine PHI nodes, but the incoming operands have not been
1476    // emitted yet.
1477    for (BasicBlock::const_iterator I = SuccBB->begin();
1478         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1479
1480      // Ignore dead phi's.
1481      if (PN->use_empty()) continue;
1482
1483      // Only handle legal types. Two interesting things to note here. First,
1484      // by bailing out early, we may leave behind some dead instructions,
1485      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1486      // own moves. Second, this check is necessary because FastISel doesn't
1487      // use CreateRegs to create registers, so it always creates
1488      // exactly one register for each non-void instruction.
1489      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1490      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1491        // Handle integer promotions, though, because they're common and easy.
1492        if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1493          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1494        else {
1495          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1496          return false;
1497        }
1498      }
1499
1500      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1501
1502      // Set the DebugLoc for the copy. Prefer the location of the operand
1503      // if there is one; use the location of the PHI otherwise.
1504      DL = PN->getDebugLoc();
1505      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1506        DL = Inst->getDebugLoc();
1507
1508      unsigned Reg = getRegForValue(PHIOp);
1509      if (Reg == 0) {
1510        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1511        return false;
1512      }
1513      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1514      DL = DebugLoc();
1515    }
1516  }
1517
1518  return true;
1519}
1520
1521bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
1522  assert(LI->hasOneUse() &&
1523      "tryToFoldLoad expected a LoadInst with a single use");
1524  // We know that the load has a single use, but don't know what it is.  If it
1525  // isn't one of the folded instructions, then we can't succeed here.  Handle
1526  // this by scanning the single-use users of the load until we get to FoldInst.
1527  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
1528
1529  const Instruction *TheUser = LI->use_back();
1530  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
1531         // Stay in the right block.
1532         TheUser->getParent() == FoldInst->getParent() &&
1533         --MaxUsers) {  // Don't scan too far.
1534    // If there are multiple or no uses of this instruction, then bail out.
1535    if (!TheUser->hasOneUse())
1536      return false;
1537
1538    TheUser = TheUser->use_back();
1539  }
1540
1541  // If we didn't find the fold instruction, then we failed to collapse the
1542  // sequence.
1543  if (TheUser != FoldInst)
1544    return false;
1545
1546  // Don't try to fold volatile loads.  Target has to deal with alignment
1547  // constraints.
1548  if (LI->isVolatile())
1549    return false;
1550
1551  // Figure out which vreg this is going into.  If there is no assigned vreg yet
1552  // then there actually was no reference to it.  Perhaps the load is referenced
1553  // by a dead instruction.
1554  unsigned LoadReg = getRegForValue(LI);
1555  if (LoadReg == 0)
1556    return false;
1557
1558  // We can't fold if this vreg has no uses or more than one use.  Multiple uses
1559  // may mean that the instruction got lowered to multiple MIs, or the use of
1560  // the loaded value ended up being multiple operands of the result.
1561  if (!MRI.hasOneUse(LoadReg))
1562    return false;
1563
1564  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
1565  MachineInstr *User = &*RI;
1566
1567  // Set the insertion point properly.  Folding the load can cause generation of
1568  // other random instructions (like sign extends) for addressing modes; make
1569  // sure they get inserted in a logical place before the new instruction.
1570  FuncInfo.InsertPt = User;
1571  FuncInfo.MBB = User->getParent();
1572
1573  // Ask the target to try folding the load.
1574  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
1575}
1576
1577
1578