PPCISelLowering.cpp revision 0882fd6c4f90f1cbaa4bb6f6ceec289428cca734
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                       CCValAssign::LocInfo &LocInfo,
41                                       ISD::ArgFlagsTy &ArgFlags,
42                                       CCState &State);
43static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                              MVT &LocVT,
45                                              CCValAssign::LocInfo &LocInfo,
46                                              ISD::ArgFlagsTy &ArgFlags,
47                                              CCState &State);
48static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                                MVT &LocVT,
50                                                CCValAssign::LocInfo &LocInfo,
51                                                ISD::ArgFlagsTy &ArgFlags,
52                                                CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
61cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
62
63static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
64  if (TM.getSubtargetImpl()->isDarwin())
65    return new TargetLoweringObjectFileMachO();
66
67  return new TargetLoweringObjectFileELF();
68}
69
70PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
71  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
72  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
73  PPCRegInfo = TM.getRegisterInfo();
74
75  setPow2DivIsCheap();
76
77  // Use _setjmp/_longjmp instead of setjmp/longjmp.
78  setUseUnderscoreSetJmp(true);
79  setUseUnderscoreLongJmp(true);
80
81  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
82  // arguments are at least 4/8 bytes aligned.
83  bool isPPC64 = Subtarget->isPPC64();
84  setMinStackArgumentAlignment(isPPC64 ? 8:4);
85
86  // Set up the register classes.
87  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
88  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
89  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
90
91  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
92  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
93  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
94
95  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
96
97  // PowerPC has pre-inc load and store's.
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
99  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
100  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
101  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
102  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
104  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
105  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
106  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
107  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
108
109  // This is used in the ppcf128->int sequence.  Note it has different semantics
110  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
111  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
112
113  // We do not currently implement these libm ops for PowerPC.
114  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
115  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
116  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
117  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
118  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
119
120  // PowerPC has no SREM/UREM instructions
121  setOperationAction(ISD::SREM, MVT::i32, Expand);
122  setOperationAction(ISD::UREM, MVT::i32, Expand);
123  setOperationAction(ISD::SREM, MVT::i64, Expand);
124  setOperationAction(ISD::UREM, MVT::i64, Expand);
125
126  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
127  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
128  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
129  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
130  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
131  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
132  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
133  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
134  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
135
136  // We don't support sin/cos/sqrt/fmod/pow
137  setOperationAction(ISD::FSIN , MVT::f64, Expand);
138  setOperationAction(ISD::FCOS , MVT::f64, Expand);
139  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
140  setOperationAction(ISD::FREM , MVT::f64, Expand);
141  setOperationAction(ISD::FPOW , MVT::f64, Expand);
142  setOperationAction(ISD::FMA  , MVT::f64, Legal);
143  setOperationAction(ISD::FSIN , MVT::f32, Expand);
144  setOperationAction(ISD::FCOS , MVT::f32, Expand);
145  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
146  setOperationAction(ISD::FREM , MVT::f32, Expand);
147  setOperationAction(ISD::FPOW , MVT::f32, Expand);
148  setOperationAction(ISD::FMA  , MVT::f32, Legal);
149
150  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
151
152  // If we're enabling GP optimizations, use hardware square root
153  if (!Subtarget->hasFSQRT()) {
154    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
155    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
156  }
157
158  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
159  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
160
161  if (Subtarget->hasFPRND()) {
162    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
163    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
164    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
165
166    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
167    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
168    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
169
170    // frin does not implement "ties to even." Thus, this is safe only in
171    // fast-math mode.
172    if (TM.Options.UnsafeFPMath) {
173      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
174      setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
175
176      // These need to set FE_INEXACT, and use a custom inserter.
177      setOperationAction(ISD::FRINT, MVT::f64, Legal);
178      setOperationAction(ISD::FRINT, MVT::f32, Legal);
179    }
180  }
181
182  // PowerPC does not have BSWAP, CTPOP or CTTZ
183  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
184  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
185  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
186  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
187  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
188  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
189  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
190  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
191
192  if (Subtarget->hasPOPCNTD()) {
193    setOperationAction(ISD::CTPOP, MVT::i32  , Promote);
194    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
195  } else {
196    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
197    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
198  }
199
200  // PowerPC does not have ROTR
201  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
202  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
203
204  // PowerPC does not have Select
205  setOperationAction(ISD::SELECT, MVT::i32, Expand);
206  setOperationAction(ISD::SELECT, MVT::i64, Expand);
207  setOperationAction(ISD::SELECT, MVT::f32, Expand);
208  setOperationAction(ISD::SELECT, MVT::f64, Expand);
209
210  // PowerPC wants to turn select_cc of FP into fsel when possible.
211  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
212  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
213
214  // PowerPC wants to optimize integer setcc a bit
215  setOperationAction(ISD::SETCC, MVT::i32, Custom);
216
217  // PowerPC does not have BRCOND which requires SetCC
218  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
219
220  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
221
222  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
223  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
224
225  // PowerPC does not have [U|S]INT_TO_FP
226  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
227  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
228
229  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
230  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
231  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
232  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
233
234  // We cannot sextinreg(i1).  Expand to shifts.
235  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
236
237  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
238  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
239  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
240  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
241
242  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
243  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
244  // support continuation, user-level threading, and etc.. As a result, no
245  // other SjLj exception interfaces are implemented and please don't build
246  // your own exception handling based on them.
247  // LLVM/Clang supports zero-cost DWARF exception handling.
248  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
249  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
250
251  // We want to legalize GlobalAddress and ConstantPool nodes into the
252  // appropriate instructions to materialize the address.
253  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
254  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
255  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
256  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
257  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
258  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
259  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
260  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
261  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
262  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
263
264  // TRAP is legal.
265  setOperationAction(ISD::TRAP, MVT::Other, Legal);
266
267  // TRAMPOLINE is custom lowered.
268  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
269  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
270
271  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
272  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
273
274  if (Subtarget->isSVR4ABI()) {
275    if (isPPC64) {
276      // VAARG always uses double-word chunks, so promote anything smaller.
277      setOperationAction(ISD::VAARG, MVT::i1, Promote);
278      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
279      setOperationAction(ISD::VAARG, MVT::i8, Promote);
280      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
281      setOperationAction(ISD::VAARG, MVT::i16, Promote);
282      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
283      setOperationAction(ISD::VAARG, MVT::i32, Promote);
284      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
285      setOperationAction(ISD::VAARG, MVT::Other, Expand);
286    } else {
287      // VAARG is custom lowered with the 32-bit SVR4 ABI.
288      setOperationAction(ISD::VAARG, MVT::Other, Custom);
289      setOperationAction(ISD::VAARG, MVT::i64, Custom);
290    }
291  } else
292    setOperationAction(ISD::VAARG, MVT::Other, Expand);
293
294  // Use the default implementation.
295  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
296  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
297  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
298  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
299  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
300  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
301
302  // We want to custom lower some of our intrinsics.
303  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
304
305  // Comparisons that require checking two conditions.
306  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
307  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
308  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
309  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
310  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
311  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
312  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
313  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
314  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
315  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
316  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
317  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
318
319  if (Subtarget->has64BitSupport()) {
320    // They also have instructions for converting between i64 and fp.
321    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
322    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
323    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
324    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
325    // This is just the low 32 bits of a (signed) fp->i64 conversion.
326    // We cannot do this with Promote because i64 is not a legal type.
327    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
328
329    // FIXME: disable this lowered code.  This generates 64-bit register values,
330    // and we don't model the fact that the top part is clobbered by calls.  We
331    // need to flag these together so that the value isn't live across a call.
332    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
333  } else {
334    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
335    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
336  }
337
338  if (Subtarget->use64BitRegs()) {
339    // 64-bit PowerPC implementations can support i64 types directly
340    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
341    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
342    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
343    // 64-bit PowerPC wants to expand i128 shifts itself.
344    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
345    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
346    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
347  } else {
348    // 32-bit PowerPC wants to expand i64 shifts itself.
349    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
350    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
351    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
352  }
353
354  if (Subtarget->hasAltivec()) {
355    // First set operation action for all vector types to expand. Then we
356    // will selectively turn on ones that can be effectively codegen'd.
357    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
358         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
359      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
360
361      // add/sub are legal for all supported vector VT's.
362      setOperationAction(ISD::ADD , VT, Legal);
363      setOperationAction(ISD::SUB , VT, Legal);
364
365      // We promote all shuffles to v16i8.
366      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
367      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
368
369      // We promote all non-typed operations to v4i32.
370      setOperationAction(ISD::AND   , VT, Promote);
371      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
372      setOperationAction(ISD::OR    , VT, Promote);
373      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
374      setOperationAction(ISD::XOR   , VT, Promote);
375      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
376      setOperationAction(ISD::LOAD  , VT, Promote);
377      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
378      setOperationAction(ISD::SELECT, VT, Promote);
379      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
380      setOperationAction(ISD::STORE, VT, Promote);
381      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
382
383      // No other operations are legal.
384      setOperationAction(ISD::MUL , VT, Expand);
385      setOperationAction(ISD::SDIV, VT, Expand);
386      setOperationAction(ISD::SREM, VT, Expand);
387      setOperationAction(ISD::UDIV, VT, Expand);
388      setOperationAction(ISD::UREM, VT, Expand);
389      setOperationAction(ISD::FDIV, VT, Expand);
390      setOperationAction(ISD::FNEG, VT, Expand);
391      setOperationAction(ISD::FSQRT, VT, Expand);
392      setOperationAction(ISD::FLOG, VT, Expand);
393      setOperationAction(ISD::FLOG10, VT, Expand);
394      setOperationAction(ISD::FLOG2, VT, Expand);
395      setOperationAction(ISD::FEXP, VT, Expand);
396      setOperationAction(ISD::FEXP2, VT, Expand);
397      setOperationAction(ISD::FSIN, VT, Expand);
398      setOperationAction(ISD::FCOS, VT, Expand);
399      setOperationAction(ISD::FABS, VT, Expand);
400      setOperationAction(ISD::FPOWI, VT, Expand);
401      setOperationAction(ISD::FFLOOR, VT, Expand);
402      setOperationAction(ISD::FCEIL,  VT, Expand);
403      setOperationAction(ISD::FTRUNC, VT, Expand);
404      setOperationAction(ISD::FRINT,  VT, Expand);
405      setOperationAction(ISD::FNEARBYINT, VT, Expand);
406      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
407      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
408      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
409      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
410      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
411      setOperationAction(ISD::UDIVREM, VT, Expand);
412      setOperationAction(ISD::SDIVREM, VT, Expand);
413      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
414      setOperationAction(ISD::FPOW, VT, Expand);
415      setOperationAction(ISD::CTPOP, VT, Expand);
416      setOperationAction(ISD::CTLZ, VT, Expand);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
418      setOperationAction(ISD::CTTZ, VT, Expand);
419      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
420      setOperationAction(ISD::VSELECT, VT, Expand);
421      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
422
423      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
424           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
425        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
426        setTruncStoreAction(VT, InnerVT, Expand);
427      }
428      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
429      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
430      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
431    }
432
433    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
434    // with merges, splats, etc.
435    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
436
437    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
438    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
439    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
440    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
441    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
442    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
443    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
444    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
445    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
446    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
447    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
448    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
449    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
450    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
451
452    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
453    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
454    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
455    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
456
457    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
458    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
459    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
460    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
461    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
462
463    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
464    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
465
466    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
467    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
468    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
469    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
470
471    // Altivec does not contain unordered floating-point compare instructions
472    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
473    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
474    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
475    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
476    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
477    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
478  }
479
480  if (Subtarget->has64BitSupport()) {
481    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
482    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
483  }
484
485  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
486  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
487  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
488  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
489
490  setBooleanContents(ZeroOrOneBooleanContent);
491  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
492
493  if (isPPC64) {
494    setStackPointerRegisterToSaveRestore(PPC::X1);
495    setExceptionPointerRegister(PPC::X3);
496    setExceptionSelectorRegister(PPC::X4);
497  } else {
498    setStackPointerRegisterToSaveRestore(PPC::R1);
499    setExceptionPointerRegister(PPC::R3);
500    setExceptionSelectorRegister(PPC::R4);
501  }
502
503  // We have target-specific dag combine patterns for the following nodes:
504  setTargetDAGCombine(ISD::SINT_TO_FP);
505  setTargetDAGCombine(ISD::STORE);
506  setTargetDAGCombine(ISD::BR_CC);
507  setTargetDAGCombine(ISD::BSWAP);
508
509  // Darwin long double math library functions have $LDBL128 appended.
510  if (Subtarget->isDarwin()) {
511    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
512    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
513    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
514    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
515    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
516    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
517    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
518    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
519    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
520    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
521  }
522
523  setMinFunctionAlignment(2);
524  if (PPCSubTarget.isDarwin())
525    setPrefFunctionAlignment(4);
526
527  if (isPPC64 && Subtarget->isJITCodeModel())
528    // Temporary workaround for the inability of PPC64 JIT to handle jump
529    // tables.
530    setSupportJumpTables(false);
531
532  setInsertFencesForAtomic(true);
533
534  setSchedulingPreference(Sched::Hybrid);
535
536  computeRegisterProperties();
537
538  // The Freescale cores does better with aggressive inlining of memcpy and
539  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
540  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
541      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
542    MaxStoresPerMemset = 32;
543    MaxStoresPerMemsetOptSize = 16;
544    MaxStoresPerMemcpy = 32;
545    MaxStoresPerMemcpyOptSize = 8;
546    MaxStoresPerMemmove = 32;
547    MaxStoresPerMemmoveOptSize = 8;
548
549    setPrefFunctionAlignment(4);
550  }
551}
552
553/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
554/// function arguments in the caller parameter area.
555unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
556  const TargetMachine &TM = getTargetMachine();
557  // Darwin passes everything on 4 byte boundary.
558  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
559    return 4;
560
561  // 16byte and wider vectors are passed on 16byte boundary.
562  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
563    if (VTy->getBitWidth() >= 128)
564      return 16;
565
566  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
567   if (PPCSubTarget.isPPC64())
568     return 8;
569
570  return 4;
571}
572
573const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
574  switch (Opcode) {
575  default: return 0;
576  case PPCISD::FSEL:            return "PPCISD::FSEL";
577  case PPCISD::FCFID:           return "PPCISD::FCFID";
578  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
579  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
580  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
581  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
582  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
583  case PPCISD::VPERM:           return "PPCISD::VPERM";
584  case PPCISD::Hi:              return "PPCISD::Hi";
585  case PPCISD::Lo:              return "PPCISD::Lo";
586  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
587  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
588  case PPCISD::LOAD:            return "PPCISD::LOAD";
589  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
590  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
591  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
592  case PPCISD::SRL:             return "PPCISD::SRL";
593  case PPCISD::SRA:             return "PPCISD::SRA";
594  case PPCISD::SHL:             return "PPCISD::SHL";
595  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
596  case PPCISD::STD_32:          return "PPCISD::STD_32";
597  case PPCISD::CALL:            return "PPCISD::CALL";
598  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
599  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
600  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
601  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
602  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
603  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
604  case PPCISD::MFCR:            return "PPCISD::MFCR";
605  case PPCISD::VCMP:            return "PPCISD::VCMP";
606  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
607  case PPCISD::LBRX:            return "PPCISD::LBRX";
608  case PPCISD::STBRX:           return "PPCISD::STBRX";
609  case PPCISD::LARX:            return "PPCISD::LARX";
610  case PPCISD::STCX:            return "PPCISD::STCX";
611  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
612  case PPCISD::MFFS:            return "PPCISD::MFFS";
613  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
614  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
615  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
616  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
617  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
618  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
619  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
620  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
621  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
622  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
623  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
624  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
625  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
626  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
627  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
628  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
629  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
630  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
631  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
632  }
633}
634
635EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
636  if (!VT.isVector())
637    return MVT::i32;
638  return VT.changeVectorElementTypeToInteger();
639}
640
641//===----------------------------------------------------------------------===//
642// Node matching predicates, for use by the tblgen matching code.
643//===----------------------------------------------------------------------===//
644
645/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
646static bool isFloatingPointZero(SDValue Op) {
647  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
648    return CFP->getValueAPF().isZero();
649  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
650    // Maybe this has already been legalized into the constant pool?
651    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
652      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
653        return CFP->getValueAPF().isZero();
654  }
655  return false;
656}
657
658/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
659/// true if Op is undef or if it matches the specified value.
660static bool isConstantOrUndef(int Op, int Val) {
661  return Op < 0 || Op == Val;
662}
663
664/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
665/// VPKUHUM instruction.
666bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
667  if (!isUnary) {
668    for (unsigned i = 0; i != 16; ++i)
669      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
670        return false;
671  } else {
672    for (unsigned i = 0; i != 8; ++i)
673      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
674          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
675        return false;
676  }
677  return true;
678}
679
680/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
681/// VPKUWUM instruction.
682bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
683  if (!isUnary) {
684    for (unsigned i = 0; i != 16; i += 2)
685      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
686          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
687        return false;
688  } else {
689    for (unsigned i = 0; i != 8; i += 2)
690      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
691          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
692          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
693          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
694        return false;
695  }
696  return true;
697}
698
699/// isVMerge - Common function, used to match vmrg* shuffles.
700///
701static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
702                     unsigned LHSStart, unsigned RHSStart) {
703  assert(N->getValueType(0) == MVT::v16i8 &&
704         "PPC only supports shuffles by bytes!");
705  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
706         "Unsupported merge size!");
707
708  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
709    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
710      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
711                             LHSStart+j+i*UnitSize) ||
712          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
713                             RHSStart+j+i*UnitSize))
714        return false;
715    }
716  return true;
717}
718
719/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
720/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
721bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
722                             bool isUnary) {
723  if (!isUnary)
724    return isVMerge(N, UnitSize, 8, 24);
725  return isVMerge(N, UnitSize, 8, 8);
726}
727
728/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
729/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
730bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
731                             bool isUnary) {
732  if (!isUnary)
733    return isVMerge(N, UnitSize, 0, 16);
734  return isVMerge(N, UnitSize, 0, 0);
735}
736
737
738/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
739/// amount, otherwise return -1.
740int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
741  assert(N->getValueType(0) == MVT::v16i8 &&
742         "PPC only supports shuffles by bytes!");
743
744  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
745
746  // Find the first non-undef value in the shuffle mask.
747  unsigned i;
748  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
749    /*search*/;
750
751  if (i == 16) return -1;  // all undef.
752
753  // Otherwise, check to see if the rest of the elements are consecutively
754  // numbered from this value.
755  unsigned ShiftAmt = SVOp->getMaskElt(i);
756  if (ShiftAmt < i) return -1;
757  ShiftAmt -= i;
758
759  if (!isUnary) {
760    // Check the rest of the elements to see if they are consecutive.
761    for (++i; i != 16; ++i)
762      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
763        return -1;
764  } else {
765    // Check the rest of the elements to see if they are consecutive.
766    for (++i; i != 16; ++i)
767      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
768        return -1;
769  }
770  return ShiftAmt;
771}
772
773/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
774/// specifies a splat of a single element that is suitable for input to
775/// VSPLTB/VSPLTH/VSPLTW.
776bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
777  assert(N->getValueType(0) == MVT::v16i8 &&
778         (EltSize == 1 || EltSize == 2 || EltSize == 4));
779
780  // This is a splat operation if each element of the permute is the same, and
781  // if the value doesn't reference the second vector.
782  unsigned ElementBase = N->getMaskElt(0);
783
784  // FIXME: Handle UNDEF elements too!
785  if (ElementBase >= 16)
786    return false;
787
788  // Check that the indices are consecutive, in the case of a multi-byte element
789  // splatted with a v16i8 mask.
790  for (unsigned i = 1; i != EltSize; ++i)
791    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
792      return false;
793
794  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
795    if (N->getMaskElt(i) < 0) continue;
796    for (unsigned j = 0; j != EltSize; ++j)
797      if (N->getMaskElt(i+j) != N->getMaskElt(j))
798        return false;
799  }
800  return true;
801}
802
803/// isAllNegativeZeroVector - Returns true if all elements of build_vector
804/// are -0.0.
805bool PPC::isAllNegativeZeroVector(SDNode *N) {
806  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
807
808  APInt APVal, APUndef;
809  unsigned BitSize;
810  bool HasAnyUndefs;
811
812  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
813    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
814      return CFP->getValueAPF().isNegZero();
815
816  return false;
817}
818
819/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
820/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
821unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
822  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
823  assert(isSplatShuffleMask(SVOp, EltSize));
824  return SVOp->getMaskElt(0) / EltSize;
825}
826
827/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
828/// by using a vspltis[bhw] instruction of the specified element size, return
829/// the constant being splatted.  The ByteSize field indicates the number of
830/// bytes of each element [124] -> [bhw].
831SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
832  SDValue OpVal(0, 0);
833
834  // If ByteSize of the splat is bigger than the element size of the
835  // build_vector, then we have a case where we are checking for a splat where
836  // multiple elements of the buildvector are folded together into a single
837  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
838  unsigned EltSize = 16/N->getNumOperands();
839  if (EltSize < ByteSize) {
840    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
841    SDValue UniquedVals[4];
842    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
843
844    // See if all of the elements in the buildvector agree across.
845    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
846      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
847      // If the element isn't a constant, bail fully out.
848      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
849
850
851      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
852        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
853      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
854        return SDValue();  // no match.
855    }
856
857    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
858    // either constant or undef values that are identical for each chunk.  See
859    // if these chunks can form into a larger vspltis*.
860
861    // Check to see if all of the leading entries are either 0 or -1.  If
862    // neither, then this won't fit into the immediate field.
863    bool LeadingZero = true;
864    bool LeadingOnes = true;
865    for (unsigned i = 0; i != Multiple-1; ++i) {
866      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
867
868      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
869      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
870    }
871    // Finally, check the least significant entry.
872    if (LeadingZero) {
873      if (UniquedVals[Multiple-1].getNode() == 0)
874        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
875      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
876      if (Val < 16)
877        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
878    }
879    if (LeadingOnes) {
880      if (UniquedVals[Multiple-1].getNode() == 0)
881        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
882      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
883      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
884        return DAG.getTargetConstant(Val, MVT::i32);
885    }
886
887    return SDValue();
888  }
889
890  // Check to see if this buildvec has a single non-undef value in its elements.
891  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
892    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
893    if (OpVal.getNode() == 0)
894      OpVal = N->getOperand(i);
895    else if (OpVal != N->getOperand(i))
896      return SDValue();
897  }
898
899  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
900
901  unsigned ValSizeInBytes = EltSize;
902  uint64_t Value = 0;
903  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
904    Value = CN->getZExtValue();
905  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
906    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
907    Value = FloatToBits(CN->getValueAPF().convertToFloat());
908  }
909
910  // If the splat value is larger than the element value, then we can never do
911  // this splat.  The only case that we could fit the replicated bits into our
912  // immediate field for would be zero, and we prefer to use vxor for it.
913  if (ValSizeInBytes < ByteSize) return SDValue();
914
915  // If the element value is larger than the splat value, cut it in half and
916  // check to see if the two halves are equal.  Continue doing this until we
917  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
918  while (ValSizeInBytes > ByteSize) {
919    ValSizeInBytes >>= 1;
920
921    // If the top half equals the bottom half, we're still ok.
922    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
923         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
924      return SDValue();
925  }
926
927  // Properly sign extend the value.
928  int MaskVal = SignExtend32(Value, ByteSize * 8);
929
930  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
931  if (MaskVal == 0) return SDValue();
932
933  // Finally, if this value fits in a 5 bit sext field, return it
934  if (SignExtend32<5>(MaskVal) == MaskVal)
935    return DAG.getTargetConstant(MaskVal, MVT::i32);
936  return SDValue();
937}
938
939//===----------------------------------------------------------------------===//
940//  Addressing Mode Selection
941//===----------------------------------------------------------------------===//
942
943/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
944/// or 64-bit immediate, and if the value can be accurately represented as a
945/// sign extension from a 16-bit value.  If so, this returns true and the
946/// immediate.
947static bool isIntS16Immediate(SDNode *N, short &Imm) {
948  if (N->getOpcode() != ISD::Constant)
949    return false;
950
951  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
952  if (N->getValueType(0) == MVT::i32)
953    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
954  else
955    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
956}
957static bool isIntS16Immediate(SDValue Op, short &Imm) {
958  return isIntS16Immediate(Op.getNode(), Imm);
959}
960
961
962/// SelectAddressRegReg - Given the specified addressed, check to see if it
963/// can be represented as an indexed [r+r] operation.  Returns false if it
964/// can be more efficiently represented with [r+imm].
965bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
966                                            SDValue &Index,
967                                            SelectionDAG &DAG) const {
968  short imm = 0;
969  if (N.getOpcode() == ISD::ADD) {
970    if (isIntS16Immediate(N.getOperand(1), imm))
971      return false;    // r+i
972    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
973      return false;    // r+i
974
975    Base = N.getOperand(0);
976    Index = N.getOperand(1);
977    return true;
978  } else if (N.getOpcode() == ISD::OR) {
979    if (isIntS16Immediate(N.getOperand(1), imm))
980      return false;    // r+i can fold it if we can.
981
982    // If this is an or of disjoint bitfields, we can codegen this as an add
983    // (for better address arithmetic) if the LHS and RHS of the OR are provably
984    // disjoint.
985    APInt LHSKnownZero, LHSKnownOne;
986    APInt RHSKnownZero, RHSKnownOne;
987    DAG.ComputeMaskedBits(N.getOperand(0),
988                          LHSKnownZero, LHSKnownOne);
989
990    if (LHSKnownZero.getBoolValue()) {
991      DAG.ComputeMaskedBits(N.getOperand(1),
992                            RHSKnownZero, RHSKnownOne);
993      // If all of the bits are known zero on the LHS or RHS, the add won't
994      // carry.
995      if (~(LHSKnownZero | RHSKnownZero) == 0) {
996        Base = N.getOperand(0);
997        Index = N.getOperand(1);
998        return true;
999      }
1000    }
1001  }
1002
1003  return false;
1004}
1005
1006/// Returns true if the address N can be represented by a base register plus
1007/// a signed 16-bit displacement [r+imm], and if it is not better
1008/// represented as reg+reg.
1009bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1010                                            SDValue &Base,
1011                                            SelectionDAG &DAG) const {
1012  // FIXME dl should come from parent load or store, not from address
1013  DebugLoc dl = N.getDebugLoc();
1014  // If this can be more profitably realized as r+r, fail.
1015  if (SelectAddressRegReg(N, Disp, Base, DAG))
1016    return false;
1017
1018  if (N.getOpcode() == ISD::ADD) {
1019    short imm = 0;
1020    if (isIntS16Immediate(N.getOperand(1), imm)) {
1021      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1022      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1023        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1024      } else {
1025        Base = N.getOperand(0);
1026      }
1027      return true; // [r+i]
1028    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1029      // Match LOAD (ADD (X, Lo(G))).
1030      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1031             && "Cannot handle constant offsets yet!");
1032      Disp = N.getOperand(1).getOperand(0);  // The global address.
1033      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1034             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1035             Disp.getOpcode() == ISD::TargetConstantPool ||
1036             Disp.getOpcode() == ISD::TargetJumpTable);
1037      Base = N.getOperand(0);
1038      return true;  // [&g+r]
1039    }
1040  } else if (N.getOpcode() == ISD::OR) {
1041    short imm = 0;
1042    if (isIntS16Immediate(N.getOperand(1), imm)) {
1043      // If this is an or of disjoint bitfields, we can codegen this as an add
1044      // (for better address arithmetic) if the LHS and RHS of the OR are
1045      // provably disjoint.
1046      APInt LHSKnownZero, LHSKnownOne;
1047      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1048
1049      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1050        // If all of the bits are known zero on the LHS or RHS, the add won't
1051        // carry.
1052        Base = N.getOperand(0);
1053        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1054        return true;
1055      }
1056    }
1057  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1058    // Loading from a constant address.
1059
1060    // If this address fits entirely in a 16-bit sext immediate field, codegen
1061    // this as "d, 0"
1062    short Imm;
1063    if (isIntS16Immediate(CN, Imm)) {
1064      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1065      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1066                             CN->getValueType(0));
1067      return true;
1068    }
1069
1070    // Handle 32-bit sext immediates with LIS + addr mode.
1071    if (CN->getValueType(0) == MVT::i32 ||
1072        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1073      int Addr = (int)CN->getZExtValue();
1074
1075      // Otherwise, break this down into an LIS + disp.
1076      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1077
1078      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1079      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1080      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1081      return true;
1082    }
1083  }
1084
1085  Disp = DAG.getTargetConstant(0, getPointerTy());
1086  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1087    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1088  else
1089    Base = N;
1090  return true;      // [r+0]
1091}
1092
1093/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1094/// represented as an indexed [r+r] operation.
1095bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1096                                                SDValue &Index,
1097                                                SelectionDAG &DAG) const {
1098  // Check to see if we can easily represent this as an [r+r] address.  This
1099  // will fail if it thinks that the address is more profitably represented as
1100  // reg+imm, e.g. where imm = 0.
1101  if (SelectAddressRegReg(N, Base, Index, DAG))
1102    return true;
1103
1104  // If the operand is an addition, always emit this as [r+r], since this is
1105  // better (for code size, and execution, as the memop does the add for free)
1106  // than emitting an explicit add.
1107  if (N.getOpcode() == ISD::ADD) {
1108    Base = N.getOperand(0);
1109    Index = N.getOperand(1);
1110    return true;
1111  }
1112
1113  // Otherwise, do it the hard way, using R0 as the base register.
1114  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1115                         N.getValueType());
1116  Index = N;
1117  return true;
1118}
1119
1120/// SelectAddressRegImmShift - Returns true if the address N can be
1121/// represented by a base register plus a signed 14-bit displacement
1122/// [r+imm*4].  Suitable for use by STD and friends.
1123bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1124                                                 SDValue &Base,
1125                                                 SelectionDAG &DAG) const {
1126  // FIXME dl should come from the parent load or store, not the address
1127  DebugLoc dl = N.getDebugLoc();
1128  // If this can be more profitably realized as r+r, fail.
1129  if (SelectAddressRegReg(N, Disp, Base, DAG))
1130    return false;
1131
1132  if (N.getOpcode() == ISD::ADD) {
1133    short imm = 0;
1134    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1135      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1136      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1137        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1138      } else {
1139        Base = N.getOperand(0);
1140      }
1141      return true; // [r+i]
1142    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1143      // Match LOAD (ADD (X, Lo(G))).
1144      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1145             && "Cannot handle constant offsets yet!");
1146      Disp = N.getOperand(1).getOperand(0);  // The global address.
1147      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1148             Disp.getOpcode() == ISD::TargetConstantPool ||
1149             Disp.getOpcode() == ISD::TargetJumpTable);
1150      Base = N.getOperand(0);
1151      return true;  // [&g+r]
1152    }
1153  } else if (N.getOpcode() == ISD::OR) {
1154    short imm = 0;
1155    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1156      // If this is an or of disjoint bitfields, we can codegen this as an add
1157      // (for better address arithmetic) if the LHS and RHS of the OR are
1158      // provably disjoint.
1159      APInt LHSKnownZero, LHSKnownOne;
1160      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1161      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1162        // If all of the bits are known zero on the LHS or RHS, the add won't
1163        // carry.
1164        Base = N.getOperand(0);
1165        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1166        return true;
1167      }
1168    }
1169  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1170    // Loading from a constant address.  Verify low two bits are clear.
1171    if ((CN->getZExtValue() & 3) == 0) {
1172      // If this address fits entirely in a 14-bit sext immediate field, codegen
1173      // this as "d, 0"
1174      short Imm;
1175      if (isIntS16Immediate(CN, Imm)) {
1176        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1177        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1178                               CN->getValueType(0));
1179        return true;
1180      }
1181
1182      // Fold the low-part of 32-bit absolute addresses into addr mode.
1183      if (CN->getValueType(0) == MVT::i32 ||
1184          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1185        int Addr = (int)CN->getZExtValue();
1186
1187        // Otherwise, break this down into an LIS + disp.
1188        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1189        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1190        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1191        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1192        return true;
1193      }
1194    }
1195  }
1196
1197  Disp = DAG.getTargetConstant(0, getPointerTy());
1198  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1199    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1200  else
1201    Base = N;
1202  return true;      // [r+0]
1203}
1204
1205
1206/// getPreIndexedAddressParts - returns true by value, base pointer and
1207/// offset pointer and addressing mode by reference if the node's address
1208/// can be legally represented as pre-indexed load / store address.
1209bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1210                                                  SDValue &Offset,
1211                                                  ISD::MemIndexedMode &AM,
1212                                                  SelectionDAG &DAG) const {
1213  if (DisablePPCPreinc) return false;
1214
1215  bool isLoad = true;
1216  SDValue Ptr;
1217  EVT VT;
1218  unsigned Alignment;
1219  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1220    Ptr = LD->getBasePtr();
1221    VT = LD->getMemoryVT();
1222    Alignment = LD->getAlignment();
1223  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1224    Ptr = ST->getBasePtr();
1225    VT  = ST->getMemoryVT();
1226    Alignment = ST->getAlignment();
1227    isLoad = false;
1228  } else
1229    return false;
1230
1231  // PowerPC doesn't have preinc load/store instructions for vectors.
1232  if (VT.isVector())
1233    return false;
1234
1235  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1236
1237    // Common code will reject creating a pre-inc form if the base pointer
1238    // is a frame index, or if N is a store and the base pointer is either
1239    // the same as or a predecessor of the value being stored.  Check for
1240    // those situations here, and try with swapped Base/Offset instead.
1241    bool Swap = false;
1242
1243    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1244      Swap = true;
1245    else if (!isLoad) {
1246      SDValue Val = cast<StoreSDNode>(N)->getValue();
1247      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1248        Swap = true;
1249    }
1250
1251    if (Swap)
1252      std::swap(Base, Offset);
1253
1254    AM = ISD::PRE_INC;
1255    return true;
1256  }
1257
1258  // LDU/STU use reg+imm*4, others use reg+imm.
1259  if (VT != MVT::i64) {
1260    // reg + imm
1261    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1262      return false;
1263  } else {
1264    // LDU/STU need an address with at least 4-byte alignment.
1265    if (Alignment < 4)
1266      return false;
1267
1268    // reg + imm * 4.
1269    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1270      return false;
1271  }
1272
1273  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1274    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1275    // sext i32 to i64 when addr mode is r+i.
1276    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1277        LD->getExtensionType() == ISD::SEXTLOAD &&
1278        isa<ConstantSDNode>(Offset))
1279      return false;
1280  }
1281
1282  AM = ISD::PRE_INC;
1283  return true;
1284}
1285
1286//===----------------------------------------------------------------------===//
1287//  LowerOperation implementation
1288//===----------------------------------------------------------------------===//
1289
1290/// GetLabelAccessInfo - Return true if we should reference labels using a
1291/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1292static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1293                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1294  HiOpFlags = PPCII::MO_HA16;
1295  LoOpFlags = PPCII::MO_LO16;
1296
1297  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1298  // non-darwin platform.  We don't support PIC on other platforms yet.
1299  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1300               TM.getSubtarget<PPCSubtarget>().isDarwin();
1301  if (isPIC) {
1302    HiOpFlags |= PPCII::MO_PIC_FLAG;
1303    LoOpFlags |= PPCII::MO_PIC_FLAG;
1304  }
1305
1306  // If this is a reference to a global value that requires a non-lazy-ptr, make
1307  // sure that instruction lowering adds it.
1308  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1309    HiOpFlags |= PPCII::MO_NLP_FLAG;
1310    LoOpFlags |= PPCII::MO_NLP_FLAG;
1311
1312    if (GV->hasHiddenVisibility()) {
1313      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1314      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1315    }
1316  }
1317
1318  return isPIC;
1319}
1320
1321static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1322                             SelectionDAG &DAG) {
1323  EVT PtrVT = HiPart.getValueType();
1324  SDValue Zero = DAG.getConstant(0, PtrVT);
1325  DebugLoc DL = HiPart.getDebugLoc();
1326
1327  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1328  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1329
1330  // With PIC, the first instruction is actually "GR+hi(&G)".
1331  if (isPIC)
1332    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1333                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1334
1335  // Generate non-pic code that has direct accesses to the constant pool.
1336  // The address of the global is just (hi(&g)+lo(&g)).
1337  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1338}
1339
1340SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1341                                             SelectionDAG &DAG) const {
1342  EVT PtrVT = Op.getValueType();
1343  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1344  const Constant *C = CP->getConstVal();
1345
1346  // 64-bit SVR4 ABI code is always position-independent.
1347  // The actual address of the GlobalValue is stored in the TOC.
1348  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1349    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1350    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1351                       DAG.getRegister(PPC::X2, MVT::i64));
1352  }
1353
1354  unsigned MOHiFlag, MOLoFlag;
1355  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1356  SDValue CPIHi =
1357    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1358  SDValue CPILo =
1359    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1360  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1361}
1362
1363SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1364  EVT PtrVT = Op.getValueType();
1365  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1366
1367  // 64-bit SVR4 ABI code is always position-independent.
1368  // The actual address of the GlobalValue is stored in the TOC.
1369  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1370    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1371    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1372                       DAG.getRegister(PPC::X2, MVT::i64));
1373  }
1374
1375  unsigned MOHiFlag, MOLoFlag;
1376  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1377  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1378  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1379  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1380}
1381
1382SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1383                                             SelectionDAG &DAG) const {
1384  EVT PtrVT = Op.getValueType();
1385
1386  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1387
1388  unsigned MOHiFlag, MOLoFlag;
1389  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1390  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1391  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1392  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1393}
1394
1395SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1396                                              SelectionDAG &DAG) const {
1397
1398  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1399  DebugLoc dl = GA->getDebugLoc();
1400  const GlobalValue *GV = GA->getGlobal();
1401  EVT PtrVT = getPointerTy();
1402  bool is64bit = PPCSubTarget.isPPC64();
1403
1404  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1405
1406  if (Model == TLSModel::LocalExec) {
1407    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1408                                               PPCII::MO_TPREL16_HA);
1409    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1410                                               PPCII::MO_TPREL16_LO);
1411    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1412                                     is64bit ? MVT::i64 : MVT::i32);
1413    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1414    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1415  }
1416
1417  if (!is64bit)
1418    llvm_unreachable("only local-exec is currently supported for ppc32");
1419
1420  if (Model == TLSModel::InitialExec) {
1421    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1422    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1423    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1424                                     PtrVT, GOTReg, TGA);
1425    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1426                                   PtrVT, TGA, TPOffsetHi);
1427    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1428  }
1429
1430  if (Model == TLSModel::GeneralDynamic) {
1431    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1432    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1433    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1434                                     GOTReg, TGA);
1435    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1436                                   GOTEntryHi, TGA);
1437
1438    // We need a chain node, and don't have one handy.  The underlying
1439    // call has no side effects, so using the function entry node
1440    // suffices.
1441    SDValue Chain = DAG.getEntryNode();
1442    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1443    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1444    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1445                                  PtrVT, ParmReg, TGA);
1446    // The return value from GET_TLS_ADDR really is in X3 already, but
1447    // some hacks are needed here to tie everything together.  The extra
1448    // copies dissolve during subsequent transforms.
1449    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1450    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1451  }
1452
1453  if (Model == TLSModel::LocalDynamic) {
1454    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1455    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1456    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1457                                     GOTReg, TGA);
1458    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1459                                   GOTEntryHi, TGA);
1460
1461    // We need a chain node, and don't have one handy.  The underlying
1462    // call has no side effects, so using the function entry node
1463    // suffices.
1464    SDValue Chain = DAG.getEntryNode();
1465    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1466    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1467    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1468                                  PtrVT, ParmReg, TGA);
1469    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1470    // some hacks are needed here to tie everything together.  The extra
1471    // copies dissolve during subsequent transforms.
1472    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1473    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1474                                      Chain, ParmReg, TGA);
1475    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1476  }
1477
1478  llvm_unreachable("Unknown TLS model!");
1479}
1480
1481SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1482                                              SelectionDAG &DAG) const {
1483  EVT PtrVT = Op.getValueType();
1484  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1485  DebugLoc DL = GSDN->getDebugLoc();
1486  const GlobalValue *GV = GSDN->getGlobal();
1487
1488  // 64-bit SVR4 ABI code is always position-independent.
1489  // The actual address of the GlobalValue is stored in the TOC.
1490  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1491    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1492    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1493                       DAG.getRegister(PPC::X2, MVT::i64));
1494  }
1495
1496  unsigned MOHiFlag, MOLoFlag;
1497  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1498
1499  SDValue GAHi =
1500    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1501  SDValue GALo =
1502    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1503
1504  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1505
1506  // If the global reference is actually to a non-lazy-pointer, we have to do an
1507  // extra load to get the address of the global.
1508  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1509    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1510                      false, false, false, 0);
1511  return Ptr;
1512}
1513
1514SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1515  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1516  DebugLoc dl = Op.getDebugLoc();
1517
1518  // If we're comparing for equality to zero, expose the fact that this is
1519  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1520  // fold the new nodes.
1521  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1522    if (C->isNullValue() && CC == ISD::SETEQ) {
1523      EVT VT = Op.getOperand(0).getValueType();
1524      SDValue Zext = Op.getOperand(0);
1525      if (VT.bitsLT(MVT::i32)) {
1526        VT = MVT::i32;
1527        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1528      }
1529      unsigned Log2b = Log2_32(VT.getSizeInBits());
1530      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1531      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1532                                DAG.getConstant(Log2b, MVT::i32));
1533      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1534    }
1535    // Leave comparisons against 0 and -1 alone for now, since they're usually
1536    // optimized.  FIXME: revisit this when we can custom lower all setcc
1537    // optimizations.
1538    if (C->isAllOnesValue() || C->isNullValue())
1539      return SDValue();
1540  }
1541
1542  // If we have an integer seteq/setne, turn it into a compare against zero
1543  // by xor'ing the rhs with the lhs, which is faster than setting a
1544  // condition register, reading it back out, and masking the correct bit.  The
1545  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1546  // the result to other bit-twiddling opportunities.
1547  EVT LHSVT = Op.getOperand(0).getValueType();
1548  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1549    EVT VT = Op.getValueType();
1550    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1551                                Op.getOperand(1));
1552    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1553  }
1554  return SDValue();
1555}
1556
1557SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1558                                      const PPCSubtarget &Subtarget) const {
1559  SDNode *Node = Op.getNode();
1560  EVT VT = Node->getValueType(0);
1561  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1562  SDValue InChain = Node->getOperand(0);
1563  SDValue VAListPtr = Node->getOperand(1);
1564  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1565  DebugLoc dl = Node->getDebugLoc();
1566
1567  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1568
1569  // gpr_index
1570  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1571                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1572                                    false, false, 0);
1573  InChain = GprIndex.getValue(1);
1574
1575  if (VT == MVT::i64) {
1576    // Check if GprIndex is even
1577    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1578                                 DAG.getConstant(1, MVT::i32));
1579    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1580                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1581    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1582                                          DAG.getConstant(1, MVT::i32));
1583    // Align GprIndex to be even if it isn't
1584    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1585                           GprIndex);
1586  }
1587
1588  // fpr index is 1 byte after gpr
1589  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1590                               DAG.getConstant(1, MVT::i32));
1591
1592  // fpr
1593  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1594                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1595                                    false, false, 0);
1596  InChain = FprIndex.getValue(1);
1597
1598  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1599                                       DAG.getConstant(8, MVT::i32));
1600
1601  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1602                                        DAG.getConstant(4, MVT::i32));
1603
1604  // areas
1605  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1606                                     MachinePointerInfo(), false, false,
1607                                     false, 0);
1608  InChain = OverflowArea.getValue(1);
1609
1610  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1611                                    MachinePointerInfo(), false, false,
1612                                    false, 0);
1613  InChain = RegSaveArea.getValue(1);
1614
1615  // select overflow_area if index > 8
1616  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1617                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1618
1619  // adjustment constant gpr_index * 4/8
1620  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1621                                    VT.isInteger() ? GprIndex : FprIndex,
1622                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1623                                                    MVT::i32));
1624
1625  // OurReg = RegSaveArea + RegConstant
1626  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1627                               RegConstant);
1628
1629  // Floating types are 32 bytes into RegSaveArea
1630  if (VT.isFloatingPoint())
1631    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1632                         DAG.getConstant(32, MVT::i32));
1633
1634  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1635  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1636                                   VT.isInteger() ? GprIndex : FprIndex,
1637                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1638                                                   MVT::i32));
1639
1640  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1641                              VT.isInteger() ? VAListPtr : FprPtr,
1642                              MachinePointerInfo(SV),
1643                              MVT::i8, false, false, 0);
1644
1645  // determine if we should load from reg_save_area or overflow_area
1646  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1647
1648  // increase overflow_area by 4/8 if gpr/fpr > 8
1649  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1650                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1651                                          MVT::i32));
1652
1653  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1654                             OverflowAreaPlusN);
1655
1656  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1657                              OverflowAreaPtr,
1658                              MachinePointerInfo(),
1659                              MVT::i32, false, false, 0);
1660
1661  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1662                     false, false, false, 0);
1663}
1664
1665SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1666                                                  SelectionDAG &DAG) const {
1667  return Op.getOperand(0);
1668}
1669
1670SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1671                                                SelectionDAG &DAG) const {
1672  SDValue Chain = Op.getOperand(0);
1673  SDValue Trmp = Op.getOperand(1); // trampoline
1674  SDValue FPtr = Op.getOperand(2); // nested function
1675  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1676  DebugLoc dl = Op.getDebugLoc();
1677
1678  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1679  bool isPPC64 = (PtrVT == MVT::i64);
1680  Type *IntPtrTy =
1681    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1682                                                             *DAG.getContext());
1683
1684  TargetLowering::ArgListTy Args;
1685  TargetLowering::ArgListEntry Entry;
1686
1687  Entry.Ty = IntPtrTy;
1688  Entry.Node = Trmp; Args.push_back(Entry);
1689
1690  // TrampSize == (isPPC64 ? 48 : 40);
1691  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1692                               isPPC64 ? MVT::i64 : MVT::i32);
1693  Args.push_back(Entry);
1694
1695  Entry.Node = FPtr; Args.push_back(Entry);
1696  Entry.Node = Nest; Args.push_back(Entry);
1697
1698  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1699  TargetLowering::CallLoweringInfo CLI(Chain,
1700                                       Type::getVoidTy(*DAG.getContext()),
1701                                       false, false, false, false, 0,
1702                                       CallingConv::C,
1703                /*isTailCall=*/false,
1704                                       /*doesNotRet=*/false,
1705                                       /*isReturnValueUsed=*/true,
1706                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1707                Args, DAG, dl);
1708  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1709
1710  return CallResult.second;
1711}
1712
1713SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1714                                        const PPCSubtarget &Subtarget) const {
1715  MachineFunction &MF = DAG.getMachineFunction();
1716  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1717
1718  DebugLoc dl = Op.getDebugLoc();
1719
1720  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1721    // vastart just stores the address of the VarArgsFrameIndex slot into the
1722    // memory location argument.
1723    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1724    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1725    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1726    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1727                        MachinePointerInfo(SV),
1728                        false, false, 0);
1729  }
1730
1731  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1732  // We suppose the given va_list is already allocated.
1733  //
1734  // typedef struct {
1735  //  char gpr;     /* index into the array of 8 GPRs
1736  //                 * stored in the register save area
1737  //                 * gpr=0 corresponds to r3,
1738  //                 * gpr=1 to r4, etc.
1739  //                 */
1740  //  char fpr;     /* index into the array of 8 FPRs
1741  //                 * stored in the register save area
1742  //                 * fpr=0 corresponds to f1,
1743  //                 * fpr=1 to f2, etc.
1744  //                 */
1745  //  char *overflow_arg_area;
1746  //                /* location on stack that holds
1747  //                 * the next overflow argument
1748  //                 */
1749  //  char *reg_save_area;
1750  //               /* where r3:r10 and f1:f8 (if saved)
1751  //                * are stored
1752  //                */
1753  // } va_list[1];
1754
1755
1756  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1757  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1758
1759
1760  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1761
1762  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1763                                            PtrVT);
1764  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1765                                 PtrVT);
1766
1767  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1768  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1769
1770  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1771  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1772
1773  uint64_t FPROffset = 1;
1774  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1775
1776  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1777
1778  // Store first byte : number of int regs
1779  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1780                                         Op.getOperand(1),
1781                                         MachinePointerInfo(SV),
1782                                         MVT::i8, false, false, 0);
1783  uint64_t nextOffset = FPROffset;
1784  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1785                                  ConstFPROffset);
1786
1787  // Store second byte : number of float regs
1788  SDValue secondStore =
1789    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1790                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1791                      false, false, 0);
1792  nextOffset += StackOffset;
1793  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1794
1795  // Store second word : arguments given on stack
1796  SDValue thirdStore =
1797    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1798                 MachinePointerInfo(SV, nextOffset),
1799                 false, false, 0);
1800  nextOffset += FrameOffset;
1801  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1802
1803  // Store third word : arguments given in registers
1804  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1805                      MachinePointerInfo(SV, nextOffset),
1806                      false, false, 0);
1807
1808}
1809
1810#include "PPCGenCallingConv.inc"
1811
1812static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1813                                       CCValAssign::LocInfo &LocInfo,
1814                                       ISD::ArgFlagsTy &ArgFlags,
1815                                       CCState &State) {
1816  return true;
1817}
1818
1819static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1820                                              MVT &LocVT,
1821                                              CCValAssign::LocInfo &LocInfo,
1822                                              ISD::ArgFlagsTy &ArgFlags,
1823                                              CCState &State) {
1824  static const uint16_t ArgRegs[] = {
1825    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1826    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1827  };
1828  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1829
1830  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1831
1832  // Skip one register if the first unallocated register has an even register
1833  // number and there are still argument registers available which have not been
1834  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1835  // need to skip a register if RegNum is odd.
1836  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1837    State.AllocateReg(ArgRegs[RegNum]);
1838  }
1839
1840  // Always return false here, as this function only makes sure that the first
1841  // unallocated register has an odd register number and does not actually
1842  // allocate a register for the current argument.
1843  return false;
1844}
1845
1846static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1847                                                MVT &LocVT,
1848                                                CCValAssign::LocInfo &LocInfo,
1849                                                ISD::ArgFlagsTy &ArgFlags,
1850                                                CCState &State) {
1851  static const uint16_t ArgRegs[] = {
1852    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1853    PPC::F8
1854  };
1855
1856  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1857
1858  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1859
1860  // If there is only one Floating-point register left we need to put both f64
1861  // values of a split ppc_fp128 value on the stack.
1862  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1863    State.AllocateReg(ArgRegs[RegNum]);
1864  }
1865
1866  // Always return false here, as this function only makes sure that the two f64
1867  // values a ppc_fp128 value is split into are both passed in registers or both
1868  // passed on the stack and does not actually allocate a register for the
1869  // current argument.
1870  return false;
1871}
1872
1873/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1874/// on Darwin.
1875static const uint16_t *GetFPR() {
1876  static const uint16_t FPR[] = {
1877    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1878    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1879  };
1880
1881  return FPR;
1882}
1883
1884/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1885/// the stack.
1886static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1887                                       unsigned PtrByteSize) {
1888  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1889  if (Flags.isByVal())
1890    ArgSize = Flags.getByValSize();
1891  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1892
1893  return ArgSize;
1894}
1895
1896SDValue
1897PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1898                                        CallingConv::ID CallConv, bool isVarArg,
1899                                        const SmallVectorImpl<ISD::InputArg>
1900                                          &Ins,
1901                                        DebugLoc dl, SelectionDAG &DAG,
1902                                        SmallVectorImpl<SDValue> &InVals)
1903                                          const {
1904  if (PPCSubTarget.isSVR4ABI()) {
1905    if (PPCSubTarget.isPPC64())
1906      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1907                                         dl, DAG, InVals);
1908    else
1909      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1910                                         dl, DAG, InVals);
1911  } else {
1912    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1913                                       dl, DAG, InVals);
1914  }
1915}
1916
1917SDValue
1918PPCTargetLowering::LowerFormalArguments_32SVR4(
1919                                      SDValue Chain,
1920                                      CallingConv::ID CallConv, bool isVarArg,
1921                                      const SmallVectorImpl<ISD::InputArg>
1922                                        &Ins,
1923                                      DebugLoc dl, SelectionDAG &DAG,
1924                                      SmallVectorImpl<SDValue> &InVals) const {
1925
1926  // 32-bit SVR4 ABI Stack Frame Layout:
1927  //              +-----------------------------------+
1928  //        +-->  |            Back chain             |
1929  //        |     +-----------------------------------+
1930  //        |     | Floating-point register save area |
1931  //        |     +-----------------------------------+
1932  //        |     |    General register save area     |
1933  //        |     +-----------------------------------+
1934  //        |     |          CR save word             |
1935  //        |     +-----------------------------------+
1936  //        |     |         VRSAVE save word          |
1937  //        |     +-----------------------------------+
1938  //        |     |         Alignment padding         |
1939  //        |     +-----------------------------------+
1940  //        |     |     Vector register save area     |
1941  //        |     +-----------------------------------+
1942  //        |     |       Local variable space        |
1943  //        |     +-----------------------------------+
1944  //        |     |        Parameter list area        |
1945  //        |     +-----------------------------------+
1946  //        |     |           LR save word            |
1947  //        |     +-----------------------------------+
1948  // SP-->  +---  |            Back chain             |
1949  //              +-----------------------------------+
1950  //
1951  // Specifications:
1952  //   System V Application Binary Interface PowerPC Processor Supplement
1953  //   AltiVec Technology Programming Interface Manual
1954
1955  MachineFunction &MF = DAG.getMachineFunction();
1956  MachineFrameInfo *MFI = MF.getFrameInfo();
1957  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1958
1959  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1960  // Potential tail calls could cause overwriting of argument stack slots.
1961  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1962                       (CallConv == CallingConv::Fast));
1963  unsigned PtrByteSize = 4;
1964
1965  // Assign locations to all of the incoming arguments.
1966  SmallVector<CCValAssign, 16> ArgLocs;
1967  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1968                 getTargetMachine(), ArgLocs, *DAG.getContext());
1969
1970  // Reserve space for the linkage area on the stack.
1971  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1972
1973  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1974
1975  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1976    CCValAssign &VA = ArgLocs[i];
1977
1978    // Arguments stored in registers.
1979    if (VA.isRegLoc()) {
1980      const TargetRegisterClass *RC;
1981      EVT ValVT = VA.getValVT();
1982
1983      switch (ValVT.getSimpleVT().SimpleTy) {
1984        default:
1985          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1986        case MVT::i32:
1987          RC = &PPC::GPRCRegClass;
1988          break;
1989        case MVT::f32:
1990          RC = &PPC::F4RCRegClass;
1991          break;
1992        case MVT::f64:
1993          RC = &PPC::F8RCRegClass;
1994          break;
1995        case MVT::v16i8:
1996        case MVT::v8i16:
1997        case MVT::v4i32:
1998        case MVT::v4f32:
1999          RC = &PPC::VRRCRegClass;
2000          break;
2001      }
2002
2003      // Transform the arguments stored in physical registers into virtual ones.
2004      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2005      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
2006
2007      InVals.push_back(ArgValue);
2008    } else {
2009      // Argument stored in memory.
2010      assert(VA.isMemLoc());
2011
2012      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
2013      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2014                                      isImmutable);
2015
2016      // Create load nodes to retrieve arguments from the stack.
2017      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2018      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2019                                   MachinePointerInfo(),
2020                                   false, false, false, 0));
2021    }
2022  }
2023
2024  // Assign locations to all of the incoming aggregate by value arguments.
2025  // Aggregates passed by value are stored in the local variable space of the
2026  // caller's stack frame, right above the parameter list area.
2027  SmallVector<CCValAssign, 16> ByValArgLocs;
2028  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2029                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2030
2031  // Reserve stack space for the allocations in CCInfo.
2032  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2033
2034  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2035
2036  // Area that is at least reserved in the caller of this function.
2037  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2038
2039  // Set the size that is at least reserved in caller of this function.  Tail
2040  // call optimized function's reserved stack space needs to be aligned so that
2041  // taking the difference between two stack areas will result in an aligned
2042  // stack.
2043  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2044
2045  MinReservedArea =
2046    std::max(MinReservedArea,
2047             PPCFrameLowering::getMinCallFrameSize(false, false));
2048
2049  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2050    getStackAlignment();
2051  unsigned AlignMask = TargetAlign-1;
2052  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2053
2054  FI->setMinReservedArea(MinReservedArea);
2055
2056  SmallVector<SDValue, 8> MemOps;
2057
2058  // If the function takes variable number of arguments, make a frame index for
2059  // the start of the first vararg value... for expansion of llvm.va_start.
2060  if (isVarArg) {
2061    static const uint16_t GPArgRegs[] = {
2062      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2063      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2064    };
2065    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2066
2067    static const uint16_t FPArgRegs[] = {
2068      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2069      PPC::F8
2070    };
2071    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2072
2073    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2074                                                          NumGPArgRegs));
2075    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2076                                                          NumFPArgRegs));
2077
2078    // Make room for NumGPArgRegs and NumFPArgRegs.
2079    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2080                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2081
2082    FuncInfo->setVarArgsStackOffset(
2083      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2084                             CCInfo.getNextStackOffset(), true));
2085
2086    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2087    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2088
2089    // The fixed integer arguments of a variadic function are stored to the
2090    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2091    // the result of va_next.
2092    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2093      // Get an existing live-in vreg, or add a new one.
2094      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2095      if (!VReg)
2096        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2097
2098      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2099      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2100                                   MachinePointerInfo(), false, false, 0);
2101      MemOps.push_back(Store);
2102      // Increment the address by four for the next argument to store
2103      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2104      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2105    }
2106
2107    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2108    // is set.
2109    // The double arguments are stored to the VarArgsFrameIndex
2110    // on the stack.
2111    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2112      // Get an existing live-in vreg, or add a new one.
2113      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2114      if (!VReg)
2115        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2116
2117      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2118      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2119                                   MachinePointerInfo(), false, false, 0);
2120      MemOps.push_back(Store);
2121      // Increment the address by eight for the next argument to store
2122      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2123                                         PtrVT);
2124      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2125    }
2126  }
2127
2128  if (!MemOps.empty())
2129    Chain = DAG.getNode(ISD::TokenFactor, dl,
2130                        MVT::Other, &MemOps[0], MemOps.size());
2131
2132  return Chain;
2133}
2134
2135// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2136// value to MVT::i64 and then truncate to the correct register size.
2137SDValue
2138PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2139                                     SelectionDAG &DAG, SDValue ArgVal,
2140                                     DebugLoc dl) const {
2141  if (Flags.isSExt())
2142    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2143                         DAG.getValueType(ObjectVT));
2144  else if (Flags.isZExt())
2145    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2146                         DAG.getValueType(ObjectVT));
2147
2148  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2149}
2150
2151// Set the size that is at least reserved in caller of this function.  Tail
2152// call optimized functions' reserved stack space needs to be aligned so that
2153// taking the difference between two stack areas will result in an aligned
2154// stack.
2155void
2156PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2157                                      unsigned nAltivecParamsAtEnd,
2158                                      unsigned MinReservedArea,
2159                                      bool isPPC64) const {
2160  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2161  // Add the Altivec parameters at the end, if needed.
2162  if (nAltivecParamsAtEnd) {
2163    MinReservedArea = ((MinReservedArea+15)/16)*16;
2164    MinReservedArea += 16*nAltivecParamsAtEnd;
2165  }
2166  MinReservedArea =
2167    std::max(MinReservedArea,
2168             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2169  unsigned TargetAlign
2170    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2171        getStackAlignment();
2172  unsigned AlignMask = TargetAlign-1;
2173  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2174  FI->setMinReservedArea(MinReservedArea);
2175}
2176
2177SDValue
2178PPCTargetLowering::LowerFormalArguments_64SVR4(
2179                                      SDValue Chain,
2180                                      CallingConv::ID CallConv, bool isVarArg,
2181                                      const SmallVectorImpl<ISD::InputArg>
2182                                        &Ins,
2183                                      DebugLoc dl, SelectionDAG &DAG,
2184                                      SmallVectorImpl<SDValue> &InVals) const {
2185  // TODO: add description of PPC stack frame format, or at least some docs.
2186  //
2187  MachineFunction &MF = DAG.getMachineFunction();
2188  MachineFrameInfo *MFI = MF.getFrameInfo();
2189  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2190
2191  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2192  // Potential tail calls could cause overwriting of argument stack slots.
2193  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2194                       (CallConv == CallingConv::Fast));
2195  unsigned PtrByteSize = 8;
2196
2197  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2198  // Area that is at least reserved in caller of this function.
2199  unsigned MinReservedArea = ArgOffset;
2200
2201  static const uint16_t GPR[] = {
2202    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2203    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2204  };
2205
2206  static const uint16_t *FPR = GetFPR();
2207
2208  static const uint16_t VR[] = {
2209    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2210    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2211  };
2212
2213  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2214  const unsigned Num_FPR_Regs = 13;
2215  const unsigned Num_VR_Regs  = array_lengthof(VR);
2216
2217  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2218
2219  // Add DAG nodes to load the arguments or copy them out of registers.  On
2220  // entry to a function on PPC, the arguments start after the linkage area,
2221  // although the first ones are often in registers.
2222
2223  SmallVector<SDValue, 8> MemOps;
2224  unsigned nAltivecParamsAtEnd = 0;
2225  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2226  unsigned CurArgIdx = 0;
2227  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2228    SDValue ArgVal;
2229    bool needsLoad = false;
2230    EVT ObjectVT = Ins[ArgNo].VT;
2231    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2232    unsigned ArgSize = ObjSize;
2233    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2234    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2235    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2236
2237    unsigned CurArgOffset = ArgOffset;
2238
2239    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2240    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2241        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2242      if (isVarArg) {
2243        MinReservedArea = ((MinReservedArea+15)/16)*16;
2244        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2245                                                  Flags,
2246                                                  PtrByteSize);
2247      } else
2248        nAltivecParamsAtEnd++;
2249    } else
2250      // Calculate min reserved area.
2251      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2252                                                Flags,
2253                                                PtrByteSize);
2254
2255    // FIXME the codegen can be much improved in some cases.
2256    // We do not have to keep everything in memory.
2257    if (Flags.isByVal()) {
2258      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2259      ObjSize = Flags.getByValSize();
2260      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2261      // Empty aggregate parameters do not take up registers.  Examples:
2262      //   struct { } a;
2263      //   union  { } b;
2264      //   int c[0];
2265      // etc.  However, we have to provide a place-holder in InVals, so
2266      // pretend we have an 8-byte item at the current address for that
2267      // purpose.
2268      if (!ObjSize) {
2269        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2270        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2271        InVals.push_back(FIN);
2272        continue;
2273      }
2274      // All aggregates smaller than 8 bytes must be passed right-justified.
2275      if (ObjSize < PtrByteSize)
2276        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2277      // The value of the object is its address.
2278      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2279      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2280      InVals.push_back(FIN);
2281
2282      if (ObjSize < 8) {
2283        if (GPR_idx != Num_GPR_Regs) {
2284          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2285          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2286          SDValue Store;
2287
2288          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2289            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2290                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2291            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2292                                      MachinePointerInfo(FuncArg, CurArgOffset),
2293                                      ObjType, false, false, 0);
2294          } else {
2295            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2296            // store the whole register as-is to the parameter save area
2297            // slot.  The address of the parameter was already calculated
2298            // above (InVals.push_back(FIN)) to be the right-justified
2299            // offset within the slot.  For this store, we need a new
2300            // frame index that points at the beginning of the slot.
2301            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2302            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2303            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2304                                 MachinePointerInfo(FuncArg, ArgOffset),
2305                                 false, false, 0);
2306          }
2307
2308          MemOps.push_back(Store);
2309          ++GPR_idx;
2310        }
2311        // Whether we copied from a register or not, advance the offset
2312        // into the parameter save area by a full doubleword.
2313        ArgOffset += PtrByteSize;
2314        continue;
2315      }
2316
2317      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2318        // Store whatever pieces of the object are in registers
2319        // to memory.  ArgOffset will be the address of the beginning
2320        // of the object.
2321        if (GPR_idx != Num_GPR_Regs) {
2322          unsigned VReg;
2323          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2324          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2325          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2326          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2327          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2328                                       MachinePointerInfo(FuncArg, ArgOffset),
2329                                       false, false, 0);
2330          MemOps.push_back(Store);
2331          ++GPR_idx;
2332          ArgOffset += PtrByteSize;
2333        } else {
2334          ArgOffset += ArgSize - j;
2335          break;
2336        }
2337      }
2338      continue;
2339    }
2340
2341    switch (ObjectVT.getSimpleVT().SimpleTy) {
2342    default: llvm_unreachable("Unhandled argument type!");
2343    case MVT::i32:
2344    case MVT::i64:
2345      if (GPR_idx != Num_GPR_Regs) {
2346        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2347        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2348
2349        if (ObjectVT == MVT::i32)
2350          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2351          // value to MVT::i64 and then truncate to the correct register size.
2352          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2353
2354        ++GPR_idx;
2355      } else {
2356        needsLoad = true;
2357        ArgSize = PtrByteSize;
2358      }
2359      ArgOffset += 8;
2360      break;
2361
2362    case MVT::f32:
2363    case MVT::f64:
2364      // Every 8 bytes of argument space consumes one of the GPRs available for
2365      // argument passing.
2366      if (GPR_idx != Num_GPR_Regs) {
2367        ++GPR_idx;
2368      }
2369      if (FPR_idx != Num_FPR_Regs) {
2370        unsigned VReg;
2371
2372        if (ObjectVT == MVT::f32)
2373          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2374        else
2375          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2376
2377        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2378        ++FPR_idx;
2379      } else {
2380        needsLoad = true;
2381        ArgSize = PtrByteSize;
2382      }
2383
2384      ArgOffset += 8;
2385      break;
2386    case MVT::v4f32:
2387    case MVT::v4i32:
2388    case MVT::v8i16:
2389    case MVT::v16i8:
2390      // Note that vector arguments in registers don't reserve stack space,
2391      // except in varargs functions.
2392      if (VR_idx != Num_VR_Regs) {
2393        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2394        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2395        if (isVarArg) {
2396          while ((ArgOffset % 16) != 0) {
2397            ArgOffset += PtrByteSize;
2398            if (GPR_idx != Num_GPR_Regs)
2399              GPR_idx++;
2400          }
2401          ArgOffset += 16;
2402          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2403        }
2404        ++VR_idx;
2405      } else {
2406        // Vectors are aligned.
2407        ArgOffset = ((ArgOffset+15)/16)*16;
2408        CurArgOffset = ArgOffset;
2409        ArgOffset += 16;
2410        needsLoad = true;
2411      }
2412      break;
2413    }
2414
2415    // We need to load the argument to a virtual register if we determined
2416    // above that we ran out of physical registers of the appropriate type.
2417    if (needsLoad) {
2418      int FI = MFI->CreateFixedObject(ObjSize,
2419                                      CurArgOffset + (ArgSize - ObjSize),
2420                                      isImmutable);
2421      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2422      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2423                           false, false, false, 0);
2424    }
2425
2426    InVals.push_back(ArgVal);
2427  }
2428
2429  // Set the size that is at least reserved in caller of this function.  Tail
2430  // call optimized functions' reserved stack space needs to be aligned so that
2431  // taking the difference between two stack areas will result in an aligned
2432  // stack.
2433  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2434
2435  // If the function takes variable number of arguments, make a frame index for
2436  // the start of the first vararg value... for expansion of llvm.va_start.
2437  if (isVarArg) {
2438    int Depth = ArgOffset;
2439
2440    FuncInfo->setVarArgsFrameIndex(
2441      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2442    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2443
2444    // If this function is vararg, store any remaining integer argument regs
2445    // to their spots on the stack so that they may be loaded by deferencing the
2446    // result of va_next.
2447    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2448      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2449      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2450      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2451                                   MachinePointerInfo(), false, false, 0);
2452      MemOps.push_back(Store);
2453      // Increment the address by four for the next argument to store
2454      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2455      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2456    }
2457  }
2458
2459  if (!MemOps.empty())
2460    Chain = DAG.getNode(ISD::TokenFactor, dl,
2461                        MVT::Other, &MemOps[0], MemOps.size());
2462
2463  return Chain;
2464}
2465
2466SDValue
2467PPCTargetLowering::LowerFormalArguments_Darwin(
2468                                      SDValue Chain,
2469                                      CallingConv::ID CallConv, bool isVarArg,
2470                                      const SmallVectorImpl<ISD::InputArg>
2471                                        &Ins,
2472                                      DebugLoc dl, SelectionDAG &DAG,
2473                                      SmallVectorImpl<SDValue> &InVals) const {
2474  // TODO: add description of PPC stack frame format, or at least some docs.
2475  //
2476  MachineFunction &MF = DAG.getMachineFunction();
2477  MachineFrameInfo *MFI = MF.getFrameInfo();
2478  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2479
2480  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2481  bool isPPC64 = PtrVT == MVT::i64;
2482  // Potential tail calls could cause overwriting of argument stack slots.
2483  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2484                       (CallConv == CallingConv::Fast));
2485  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2486
2487  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2488  // Area that is at least reserved in caller of this function.
2489  unsigned MinReservedArea = ArgOffset;
2490
2491  static const uint16_t GPR_32[] = {           // 32-bit registers.
2492    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2493    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2494  };
2495  static const uint16_t GPR_64[] = {           // 64-bit registers.
2496    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2497    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2498  };
2499
2500  static const uint16_t *FPR = GetFPR();
2501
2502  static const uint16_t VR[] = {
2503    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2504    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2505  };
2506
2507  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2508  const unsigned Num_FPR_Regs = 13;
2509  const unsigned Num_VR_Regs  = array_lengthof( VR);
2510
2511  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2512
2513  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2514
2515  // In 32-bit non-varargs functions, the stack space for vectors is after the
2516  // stack space for non-vectors.  We do not use this space unless we have
2517  // too many vectors to fit in registers, something that only occurs in
2518  // constructed examples:), but we have to walk the arglist to figure
2519  // that out...for the pathological case, compute VecArgOffset as the
2520  // start of the vector parameter area.  Computing VecArgOffset is the
2521  // entire point of the following loop.
2522  unsigned VecArgOffset = ArgOffset;
2523  if (!isVarArg && !isPPC64) {
2524    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2525         ++ArgNo) {
2526      EVT ObjectVT = Ins[ArgNo].VT;
2527      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2528
2529      if (Flags.isByVal()) {
2530        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2531        unsigned ObjSize = Flags.getByValSize();
2532        unsigned ArgSize =
2533                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2534        VecArgOffset += ArgSize;
2535        continue;
2536      }
2537
2538      switch(ObjectVT.getSimpleVT().SimpleTy) {
2539      default: llvm_unreachable("Unhandled argument type!");
2540      case MVT::i32:
2541      case MVT::f32:
2542        VecArgOffset += 4;
2543        break;
2544      case MVT::i64:  // PPC64
2545      case MVT::f64:
2546        // FIXME: We are guaranteed to be !isPPC64 at this point.
2547        // Does MVT::i64 apply?
2548        VecArgOffset += 8;
2549        break;
2550      case MVT::v4f32:
2551      case MVT::v4i32:
2552      case MVT::v8i16:
2553      case MVT::v16i8:
2554        // Nothing to do, we're only looking at Nonvector args here.
2555        break;
2556      }
2557    }
2558  }
2559  // We've found where the vector parameter area in memory is.  Skip the
2560  // first 12 parameters; these don't use that memory.
2561  VecArgOffset = ((VecArgOffset+15)/16)*16;
2562  VecArgOffset += 12*16;
2563
2564  // Add DAG nodes to load the arguments or copy them out of registers.  On
2565  // entry to a function on PPC, the arguments start after the linkage area,
2566  // although the first ones are often in registers.
2567
2568  SmallVector<SDValue, 8> MemOps;
2569  unsigned nAltivecParamsAtEnd = 0;
2570  // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
2571  // When passing anonymous aggregates, this is currently not true.
2572  // See LowerFormalArguments_64SVR4 for a fix.
2573  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2574  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2575    SDValue ArgVal;
2576    bool needsLoad = false;
2577    EVT ObjectVT = Ins[ArgNo].VT;
2578    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2579    unsigned ArgSize = ObjSize;
2580    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2581
2582    unsigned CurArgOffset = ArgOffset;
2583
2584    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2585    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2586        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2587      if (isVarArg || isPPC64) {
2588        MinReservedArea = ((MinReservedArea+15)/16)*16;
2589        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2590                                                  Flags,
2591                                                  PtrByteSize);
2592      } else  nAltivecParamsAtEnd++;
2593    } else
2594      // Calculate min reserved area.
2595      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2596                                                Flags,
2597                                                PtrByteSize);
2598
2599    // FIXME the codegen can be much improved in some cases.
2600    // We do not have to keep everything in memory.
2601    if (Flags.isByVal()) {
2602      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2603      ObjSize = Flags.getByValSize();
2604      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2605      // Objects of size 1 and 2 are right justified, everything else is
2606      // left justified.  This means the memory address is adjusted forwards.
2607      if (ObjSize==1 || ObjSize==2) {
2608        CurArgOffset = CurArgOffset + (4 - ObjSize);
2609      }
2610      // The value of the object is its address.
2611      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2612      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2613      InVals.push_back(FIN);
2614      if (ObjSize==1 || ObjSize==2) {
2615        if (GPR_idx != Num_GPR_Regs) {
2616          unsigned VReg;
2617          if (isPPC64)
2618            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2619          else
2620            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2621          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2622          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2623          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2624                                            MachinePointerInfo(FuncArg,
2625                                              CurArgOffset),
2626                                            ObjType, false, false, 0);
2627          MemOps.push_back(Store);
2628          ++GPR_idx;
2629        }
2630
2631        ArgOffset += PtrByteSize;
2632
2633        continue;
2634      }
2635      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2636        // Store whatever pieces of the object are in registers
2637        // to memory.  ArgOffset will be the address of the beginning
2638        // of the object.
2639        if (GPR_idx != Num_GPR_Regs) {
2640          unsigned VReg;
2641          if (isPPC64)
2642            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2643          else
2644            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2645          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2646          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2647          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2648          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2649                                       MachinePointerInfo(FuncArg, ArgOffset),
2650                                       false, false, 0);
2651          MemOps.push_back(Store);
2652          ++GPR_idx;
2653          ArgOffset += PtrByteSize;
2654        } else {
2655          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2656          break;
2657        }
2658      }
2659      continue;
2660    }
2661
2662    switch (ObjectVT.getSimpleVT().SimpleTy) {
2663    default: llvm_unreachable("Unhandled argument type!");
2664    case MVT::i32:
2665      if (!isPPC64) {
2666        if (GPR_idx != Num_GPR_Regs) {
2667          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2668          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2669          ++GPR_idx;
2670        } else {
2671          needsLoad = true;
2672          ArgSize = PtrByteSize;
2673        }
2674        // All int arguments reserve stack space in the Darwin ABI.
2675        ArgOffset += PtrByteSize;
2676        break;
2677      }
2678      // FALLTHROUGH
2679    case MVT::i64:  // PPC64
2680      if (GPR_idx != Num_GPR_Regs) {
2681        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2682        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2683
2684        if (ObjectVT == MVT::i32)
2685          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2686          // value to MVT::i64 and then truncate to the correct register size.
2687          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2688
2689        ++GPR_idx;
2690      } else {
2691        needsLoad = true;
2692        ArgSize = PtrByteSize;
2693      }
2694      // All int arguments reserve stack space in the Darwin ABI.
2695      ArgOffset += 8;
2696      break;
2697
2698    case MVT::f32:
2699    case MVT::f64:
2700      // Every 4 bytes of argument space consumes one of the GPRs available for
2701      // argument passing.
2702      if (GPR_idx != Num_GPR_Regs) {
2703        ++GPR_idx;
2704        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2705          ++GPR_idx;
2706      }
2707      if (FPR_idx != Num_FPR_Regs) {
2708        unsigned VReg;
2709
2710        if (ObjectVT == MVT::f32)
2711          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2712        else
2713          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2714
2715        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2716        ++FPR_idx;
2717      } else {
2718        needsLoad = true;
2719      }
2720
2721      // All FP arguments reserve stack space in the Darwin ABI.
2722      ArgOffset += isPPC64 ? 8 : ObjSize;
2723      break;
2724    case MVT::v4f32:
2725    case MVT::v4i32:
2726    case MVT::v8i16:
2727    case MVT::v16i8:
2728      // Note that vector arguments in registers don't reserve stack space,
2729      // except in varargs functions.
2730      if (VR_idx != Num_VR_Regs) {
2731        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2732        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2733        if (isVarArg) {
2734          while ((ArgOffset % 16) != 0) {
2735            ArgOffset += PtrByteSize;
2736            if (GPR_idx != Num_GPR_Regs)
2737              GPR_idx++;
2738          }
2739          ArgOffset += 16;
2740          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2741        }
2742        ++VR_idx;
2743      } else {
2744        if (!isVarArg && !isPPC64) {
2745          // Vectors go after all the nonvectors.
2746          CurArgOffset = VecArgOffset;
2747          VecArgOffset += 16;
2748        } else {
2749          // Vectors are aligned.
2750          ArgOffset = ((ArgOffset+15)/16)*16;
2751          CurArgOffset = ArgOffset;
2752          ArgOffset += 16;
2753        }
2754        needsLoad = true;
2755      }
2756      break;
2757    }
2758
2759    // We need to load the argument to a virtual register if we determined above
2760    // that we ran out of physical registers of the appropriate type.
2761    if (needsLoad) {
2762      int FI = MFI->CreateFixedObject(ObjSize,
2763                                      CurArgOffset + (ArgSize - ObjSize),
2764                                      isImmutable);
2765      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2766      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2767                           false, false, false, 0);
2768    }
2769
2770    InVals.push_back(ArgVal);
2771  }
2772
2773  // Set the size that is at least reserved in caller of this function.  Tail
2774  // call optimized functions' reserved stack space needs to be aligned so that
2775  // taking the difference between two stack areas will result in an aligned
2776  // stack.
2777  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2778
2779  // If the function takes variable number of arguments, make a frame index for
2780  // the start of the first vararg value... for expansion of llvm.va_start.
2781  if (isVarArg) {
2782    int Depth = ArgOffset;
2783
2784    FuncInfo->setVarArgsFrameIndex(
2785      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2786                             Depth, true));
2787    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2788
2789    // If this function is vararg, store any remaining integer argument regs
2790    // to their spots on the stack so that they may be loaded by deferencing the
2791    // result of va_next.
2792    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2793      unsigned VReg;
2794
2795      if (isPPC64)
2796        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2797      else
2798        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2799
2800      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2801      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2802                                   MachinePointerInfo(), false, false, 0);
2803      MemOps.push_back(Store);
2804      // Increment the address by four for the next argument to store
2805      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2806      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2807    }
2808  }
2809
2810  if (!MemOps.empty())
2811    Chain = DAG.getNode(ISD::TokenFactor, dl,
2812                        MVT::Other, &MemOps[0], MemOps.size());
2813
2814  return Chain;
2815}
2816
2817/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2818/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2819static unsigned
2820CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2821                                     bool isPPC64,
2822                                     bool isVarArg,
2823                                     unsigned CC,
2824                                     const SmallVectorImpl<ISD::OutputArg>
2825                                       &Outs,
2826                                     const SmallVectorImpl<SDValue> &OutVals,
2827                                     unsigned &nAltivecParamsAtEnd) {
2828  // Count how many bytes are to be pushed on the stack, including the linkage
2829  // area, and parameter passing area.  We start with 24/48 bytes, which is
2830  // prereserved space for [SP][CR][LR][3 x unused].
2831  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2832  unsigned NumOps = Outs.size();
2833  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2834
2835  // Add up all the space actually used.
2836  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2837  // they all go in registers, but we must reserve stack space for them for
2838  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2839  // assigned stack space in order, with padding so Altivec parameters are
2840  // 16-byte aligned.
2841  nAltivecParamsAtEnd = 0;
2842  for (unsigned i = 0; i != NumOps; ++i) {
2843    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2844    EVT ArgVT = Outs[i].VT;
2845    // Varargs Altivec parameters are padded to a 16 byte boundary.
2846    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2847        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2848      if (!isVarArg && !isPPC64) {
2849        // Non-varargs Altivec parameters go after all the non-Altivec
2850        // parameters; handle those later so we know how much padding we need.
2851        nAltivecParamsAtEnd++;
2852        continue;
2853      }
2854      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2855      NumBytes = ((NumBytes+15)/16)*16;
2856    }
2857    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2858  }
2859
2860   // Allow for Altivec parameters at the end, if needed.
2861  if (nAltivecParamsAtEnd) {
2862    NumBytes = ((NumBytes+15)/16)*16;
2863    NumBytes += 16*nAltivecParamsAtEnd;
2864  }
2865
2866  // The prolog code of the callee may store up to 8 GPR argument registers to
2867  // the stack, allowing va_start to index over them in memory if its varargs.
2868  // Because we cannot tell if this is needed on the caller side, we have to
2869  // conservatively assume that it is needed.  As such, make sure we have at
2870  // least enough stack space for the caller to store the 8 GPRs.
2871  NumBytes = std::max(NumBytes,
2872                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2873
2874  // Tail call needs the stack to be aligned.
2875  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2876    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2877      getFrameLowering()->getStackAlignment();
2878    unsigned AlignMask = TargetAlign-1;
2879    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2880  }
2881
2882  return NumBytes;
2883}
2884
2885/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2886/// adjusted to accommodate the arguments for the tailcall.
2887static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2888                                   unsigned ParamSize) {
2889
2890  if (!isTailCall) return 0;
2891
2892  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2893  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2894  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2895  // Remember only if the new adjustement is bigger.
2896  if (SPDiff < FI->getTailCallSPDelta())
2897    FI->setTailCallSPDelta(SPDiff);
2898
2899  return SPDiff;
2900}
2901
2902/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2903/// for tail call optimization. Targets which want to do tail call
2904/// optimization should implement this function.
2905bool
2906PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2907                                                     CallingConv::ID CalleeCC,
2908                                                     bool isVarArg,
2909                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2910                                                     SelectionDAG& DAG) const {
2911  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2912    return false;
2913
2914  // Variable argument functions are not supported.
2915  if (isVarArg)
2916    return false;
2917
2918  MachineFunction &MF = DAG.getMachineFunction();
2919  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2920  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2921    // Functions containing by val parameters are not supported.
2922    for (unsigned i = 0; i != Ins.size(); i++) {
2923       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2924       if (Flags.isByVal()) return false;
2925    }
2926
2927    // Non PIC/GOT  tail calls are supported.
2928    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2929      return true;
2930
2931    // At the moment we can only do local tail calls (in same module, hidden
2932    // or protected) if we are generating PIC.
2933    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2934      return G->getGlobal()->hasHiddenVisibility()
2935          || G->getGlobal()->hasProtectedVisibility();
2936  }
2937
2938  return false;
2939}
2940
2941/// isCallCompatibleAddress - Return the immediate to use if the specified
2942/// 32-bit value is representable in the immediate field of a BxA instruction.
2943static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2944  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2945  if (!C) return 0;
2946
2947  int Addr = C->getZExtValue();
2948  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2949      SignExtend32<26>(Addr) != Addr)
2950    return 0;  // Top 6 bits have to be sext of immediate.
2951
2952  return DAG.getConstant((int)C->getZExtValue() >> 2,
2953                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2954}
2955
2956namespace {
2957
2958struct TailCallArgumentInfo {
2959  SDValue Arg;
2960  SDValue FrameIdxOp;
2961  int       FrameIdx;
2962
2963  TailCallArgumentInfo() : FrameIdx(0) {}
2964};
2965
2966}
2967
2968/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2969static void
2970StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2971                                           SDValue Chain,
2972                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2973                   SmallVector<SDValue, 8> &MemOpChains,
2974                   DebugLoc dl) {
2975  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2976    SDValue Arg = TailCallArgs[i].Arg;
2977    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2978    int FI = TailCallArgs[i].FrameIdx;
2979    // Store relative to framepointer.
2980    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2981                                       MachinePointerInfo::getFixedStack(FI),
2982                                       false, false, 0));
2983  }
2984}
2985
2986/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2987/// the appropriate stack slot for the tail call optimized function call.
2988static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2989                                               MachineFunction &MF,
2990                                               SDValue Chain,
2991                                               SDValue OldRetAddr,
2992                                               SDValue OldFP,
2993                                               int SPDiff,
2994                                               bool isPPC64,
2995                                               bool isDarwinABI,
2996                                               DebugLoc dl) {
2997  if (SPDiff) {
2998    // Calculate the new stack slot for the return address.
2999    int SlotSize = isPPC64 ? 8 : 4;
3000    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3001                                                                   isDarwinABI);
3002    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3003                                                          NewRetAddrLoc, true);
3004    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3005    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3006    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3007                         MachinePointerInfo::getFixedStack(NewRetAddr),
3008                         false, false, 0);
3009
3010    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3011    // slot as the FP is never overwritten.
3012    if (isDarwinABI) {
3013      int NewFPLoc =
3014        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3015      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3016                                                          true);
3017      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3018      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3019                           MachinePointerInfo::getFixedStack(NewFPIdx),
3020                           false, false, 0);
3021    }
3022  }
3023  return Chain;
3024}
3025
3026/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3027/// the position of the argument.
3028static void
3029CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3030                         SDValue Arg, int SPDiff, unsigned ArgOffset,
3031                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
3032  int Offset = ArgOffset + SPDiff;
3033  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3034  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3035  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3036  SDValue FIN = DAG.getFrameIndex(FI, VT);
3037  TailCallArgumentInfo Info;
3038  Info.Arg = Arg;
3039  Info.FrameIdxOp = FIN;
3040  Info.FrameIdx = FI;
3041  TailCallArguments.push_back(Info);
3042}
3043
3044/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3045/// stack slot. Returns the chain as result and the loaded frame pointers in
3046/// LROpOut/FPOpout. Used when tail calling.
3047SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3048                                                        int SPDiff,
3049                                                        SDValue Chain,
3050                                                        SDValue &LROpOut,
3051                                                        SDValue &FPOpOut,
3052                                                        bool isDarwinABI,
3053                                                        DebugLoc dl) const {
3054  if (SPDiff) {
3055    // Load the LR and FP stack slot for later adjusting.
3056    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3057    LROpOut = getReturnAddrFrameIndex(DAG);
3058    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3059                          false, false, false, 0);
3060    Chain = SDValue(LROpOut.getNode(), 1);
3061
3062    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3063    // slot as the FP is never overwritten.
3064    if (isDarwinABI) {
3065      FPOpOut = getFramePointerFrameIndex(DAG);
3066      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3067                            false, false, false, 0);
3068      Chain = SDValue(FPOpOut.getNode(), 1);
3069    }
3070  }
3071  return Chain;
3072}
3073
3074/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3075/// by "Src" to address "Dst" of size "Size".  Alignment information is
3076/// specified by the specific parameter attribute. The copy will be passed as
3077/// a byval function parameter.
3078/// Sometimes what we are copying is the end of a larger object, the part that
3079/// does not fit in registers.
3080static SDValue
3081CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3082                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3083                          DebugLoc dl) {
3084  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3085  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3086                       false, false, MachinePointerInfo(0),
3087                       MachinePointerInfo(0));
3088}
3089
3090/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3091/// tail calls.
3092static void
3093LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3094                 SDValue Arg, SDValue PtrOff, int SPDiff,
3095                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3096                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3097                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3098                 DebugLoc dl) {
3099  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3100  if (!isTailCall) {
3101    if (isVector) {
3102      SDValue StackPtr;
3103      if (isPPC64)
3104        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3105      else
3106        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3107      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3108                           DAG.getConstant(ArgOffset, PtrVT));
3109    }
3110    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3111                                       MachinePointerInfo(), false, false, 0));
3112  // Calculate and remember argument location.
3113  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3114                                  TailCallArguments);
3115}
3116
3117static
3118void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3119                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3120                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3121                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3122  MachineFunction &MF = DAG.getMachineFunction();
3123
3124  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3125  // might overwrite each other in case of tail call optimization.
3126  SmallVector<SDValue, 8> MemOpChains2;
3127  // Do not flag preceding copytoreg stuff together with the following stuff.
3128  InFlag = SDValue();
3129  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3130                                    MemOpChains2, dl);
3131  if (!MemOpChains2.empty())
3132    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3133                        &MemOpChains2[0], MemOpChains2.size());
3134
3135  // Store the return address to the appropriate stack slot.
3136  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3137                                        isPPC64, isDarwinABI, dl);
3138
3139  // Emit callseq_end just before tailcall node.
3140  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3141                             DAG.getIntPtrConstant(0, true), InFlag);
3142  InFlag = Chain.getValue(1);
3143}
3144
3145static
3146unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3147                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3148                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3149                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3150                     const PPCSubtarget &PPCSubTarget) {
3151
3152  bool isPPC64 = PPCSubTarget.isPPC64();
3153  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3154
3155  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3156  NodeTys.push_back(MVT::Other);   // Returns a chain
3157  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3158
3159  unsigned CallOpc = PPCISD::CALL;
3160
3161  bool needIndirectCall = true;
3162  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3163    // If this is an absolute destination address, use the munged value.
3164    Callee = SDValue(Dest, 0);
3165    needIndirectCall = false;
3166  }
3167
3168  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3169    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3170    // Use indirect calls for ALL functions calls in JIT mode, since the
3171    // far-call stubs may be outside relocation limits for a BL instruction.
3172    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3173      unsigned OpFlags = 0;
3174      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3175          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3176           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3177          (G->getGlobal()->isDeclaration() ||
3178           G->getGlobal()->isWeakForLinker())) {
3179        // PC-relative references to external symbols should go through $stub,
3180        // unless we're building with the leopard linker or later, which
3181        // automatically synthesizes these stubs.
3182        OpFlags = PPCII::MO_DARWIN_STUB;
3183      }
3184
3185      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3186      // every direct call is) turn it into a TargetGlobalAddress /
3187      // TargetExternalSymbol node so that legalize doesn't hack it.
3188      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3189                                          Callee.getValueType(),
3190                                          0, OpFlags);
3191      needIndirectCall = false;
3192    }
3193  }
3194
3195  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3196    unsigned char OpFlags = 0;
3197
3198    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3199        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3200         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3201      // PC-relative references to external symbols should go through $stub,
3202      // unless we're building with the leopard linker or later, which
3203      // automatically synthesizes these stubs.
3204      OpFlags = PPCII::MO_DARWIN_STUB;
3205    }
3206
3207    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3208                                         OpFlags);
3209    needIndirectCall = false;
3210  }
3211
3212  if (needIndirectCall) {
3213    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3214    // to do the call, we can't use PPCISD::CALL.
3215    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3216
3217    if (isSVR4ABI && isPPC64) {
3218      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3219      // entry point, but to the function descriptor (the function entry point
3220      // address is part of the function descriptor though).
3221      // The function descriptor is a three doubleword structure with the
3222      // following fields: function entry point, TOC base address and
3223      // environment pointer.
3224      // Thus for a call through a function pointer, the following actions need
3225      // to be performed:
3226      //   1. Save the TOC of the caller in the TOC save area of its stack
3227      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3228      //   2. Load the address of the function entry point from the function
3229      //      descriptor.
3230      //   3. Load the TOC of the callee from the function descriptor into r2.
3231      //   4. Load the environment pointer from the function descriptor into
3232      //      r11.
3233      //   5. Branch to the function entry point address.
3234      //   6. On return of the callee, the TOC of the caller needs to be
3235      //      restored (this is done in FinishCall()).
3236      //
3237      // All those operations are flagged together to ensure that no other
3238      // operations can be scheduled in between. E.g. without flagging the
3239      // operations together, a TOC access in the caller could be scheduled
3240      // between the load of the callee TOC and the branch to the callee, which
3241      // results in the TOC access going through the TOC of the callee instead
3242      // of going through the TOC of the caller, which leads to incorrect code.
3243
3244      // Load the address of the function entry point from the function
3245      // descriptor.
3246      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3247      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3248                                        InFlag.getNode() ? 3 : 2);
3249      Chain = LoadFuncPtr.getValue(1);
3250      InFlag = LoadFuncPtr.getValue(2);
3251
3252      // Load environment pointer into r11.
3253      // Offset of the environment pointer within the function descriptor.
3254      SDValue PtrOff = DAG.getIntPtrConstant(16);
3255
3256      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3257      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3258                                       InFlag);
3259      Chain = LoadEnvPtr.getValue(1);
3260      InFlag = LoadEnvPtr.getValue(2);
3261
3262      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3263                                        InFlag);
3264      Chain = EnvVal.getValue(0);
3265      InFlag = EnvVal.getValue(1);
3266
3267      // Load TOC of the callee into r2. We are using a target-specific load
3268      // with r2 hard coded, because the result of a target-independent load
3269      // would never go directly into r2, since r2 is a reserved register (which
3270      // prevents the register allocator from allocating it), resulting in an
3271      // additional register being allocated and an unnecessary move instruction
3272      // being generated.
3273      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3274      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3275                                       Callee, InFlag);
3276      Chain = LoadTOCPtr.getValue(0);
3277      InFlag = LoadTOCPtr.getValue(1);
3278
3279      MTCTROps[0] = Chain;
3280      MTCTROps[1] = LoadFuncPtr;
3281      MTCTROps[2] = InFlag;
3282    }
3283
3284    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3285                        2 + (InFlag.getNode() != 0));
3286    InFlag = Chain.getValue(1);
3287
3288    NodeTys.clear();
3289    NodeTys.push_back(MVT::Other);
3290    NodeTys.push_back(MVT::Glue);
3291    Ops.push_back(Chain);
3292    CallOpc = PPCISD::BCTRL;
3293    Callee.setNode(0);
3294    // Add use of X11 (holding environment pointer)
3295    if (isSVR4ABI && isPPC64)
3296      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3297    // Add CTR register as callee so a bctr can be emitted later.
3298    if (isTailCall)
3299      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3300  }
3301
3302  // If this is a direct call, pass the chain and the callee.
3303  if (Callee.getNode()) {
3304    Ops.push_back(Chain);
3305    Ops.push_back(Callee);
3306  }
3307  // If this is a tail call add stack pointer delta.
3308  if (isTailCall)
3309    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3310
3311  // Add argument registers to the end of the list so that they are known live
3312  // into the call.
3313  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3314    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3315                                  RegsToPass[i].second.getValueType()));
3316
3317  return CallOpc;
3318}
3319
3320static
3321bool isLocalCall(const SDValue &Callee)
3322{
3323  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3324    return !G->getGlobal()->isDeclaration() &&
3325           !G->getGlobal()->isWeakForLinker();
3326  return false;
3327}
3328
3329SDValue
3330PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3331                                   CallingConv::ID CallConv, bool isVarArg,
3332                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3333                                   DebugLoc dl, SelectionDAG &DAG,
3334                                   SmallVectorImpl<SDValue> &InVals) const {
3335
3336  SmallVector<CCValAssign, 16> RVLocs;
3337  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3338                    getTargetMachine(), RVLocs, *DAG.getContext());
3339  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3340
3341  // Copy all of the result registers out of their specified physreg.
3342  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3343    CCValAssign &VA = RVLocs[i];
3344    assert(VA.isRegLoc() && "Can only return in registers!");
3345
3346    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3347                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3348    Chain = Val.getValue(1);
3349    InFlag = Val.getValue(2);
3350
3351    switch (VA.getLocInfo()) {
3352    default: llvm_unreachable("Unknown loc info!");
3353    case CCValAssign::Full: break;
3354    case CCValAssign::AExt:
3355      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3356      break;
3357    case CCValAssign::ZExt:
3358      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3359                        DAG.getValueType(VA.getValVT()));
3360      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3361      break;
3362    case CCValAssign::SExt:
3363      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3364                        DAG.getValueType(VA.getValVT()));
3365      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3366      break;
3367    }
3368
3369    InVals.push_back(Val);
3370  }
3371
3372  return Chain;
3373}
3374
3375SDValue
3376PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3377                              bool isTailCall, bool isVarArg,
3378                              SelectionDAG &DAG,
3379                              SmallVector<std::pair<unsigned, SDValue>, 8>
3380                                &RegsToPass,
3381                              SDValue InFlag, SDValue Chain,
3382                              SDValue &Callee,
3383                              int SPDiff, unsigned NumBytes,
3384                              const SmallVectorImpl<ISD::InputArg> &Ins,
3385                              SmallVectorImpl<SDValue> &InVals) const {
3386  std::vector<EVT> NodeTys;
3387  SmallVector<SDValue, 8> Ops;
3388  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3389                                 isTailCall, RegsToPass, Ops, NodeTys,
3390                                 PPCSubTarget);
3391
3392  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3393  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3394    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3395
3396  // When performing tail call optimization the callee pops its arguments off
3397  // the stack. Account for this here so these bytes can be pushed back on in
3398  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3399  int BytesCalleePops =
3400    (CallConv == CallingConv::Fast &&
3401     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3402
3403  // Add a register mask operand representing the call-preserved registers.
3404  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3405  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3406  assert(Mask && "Missing call preserved mask for calling convention");
3407  Ops.push_back(DAG.getRegisterMask(Mask));
3408
3409  if (InFlag.getNode())
3410    Ops.push_back(InFlag);
3411
3412  // Emit tail call.
3413  if (isTailCall) {
3414    assert(((Callee.getOpcode() == ISD::Register &&
3415             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3416            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3417            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3418            isa<ConstantSDNode>(Callee)) &&
3419    "Expecting an global address, external symbol, absolute value or register");
3420
3421    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3422  }
3423
3424  // Add a NOP immediately after the branch instruction when using the 64-bit
3425  // SVR4 ABI. At link time, if caller and callee are in a different module and
3426  // thus have a different TOC, the call will be replaced with a call to a stub
3427  // function which saves the current TOC, loads the TOC of the callee and
3428  // branches to the callee. The NOP will be replaced with a load instruction
3429  // which restores the TOC of the caller from the TOC save slot of the current
3430  // stack frame. If caller and callee belong to the same module (and have the
3431  // same TOC), the NOP will remain unchanged.
3432
3433  bool needsTOCRestore = false;
3434  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3435    if (CallOpc == PPCISD::BCTRL) {
3436      // This is a call through a function pointer.
3437      // Restore the caller TOC from the save area into R2.
3438      // See PrepareCall() for more information about calls through function
3439      // pointers in the 64-bit SVR4 ABI.
3440      // We are using a target-specific load with r2 hard coded, because the
3441      // result of a target-independent load would never go directly into r2,
3442      // since r2 is a reserved register (which prevents the register allocator
3443      // from allocating it), resulting in an additional register being
3444      // allocated and an unnecessary move instruction being generated.
3445      needsTOCRestore = true;
3446    } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3447      // Otherwise insert NOP for non-local calls.
3448      CallOpc = PPCISD::CALL_NOP;
3449    }
3450  }
3451
3452  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3453  InFlag = Chain.getValue(1);
3454
3455  if (needsTOCRestore) {
3456    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3457    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3458    InFlag = Chain.getValue(1);
3459  }
3460
3461  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3462                             DAG.getIntPtrConstant(BytesCalleePops, true),
3463                             InFlag);
3464  if (!Ins.empty())
3465    InFlag = Chain.getValue(1);
3466
3467  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3468                         Ins, dl, DAG, InVals);
3469}
3470
3471SDValue
3472PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3473                             SmallVectorImpl<SDValue> &InVals) const {
3474  SelectionDAG &DAG                     = CLI.DAG;
3475  DebugLoc &dl                          = CLI.DL;
3476  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3477  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3478  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3479  SDValue Chain                         = CLI.Chain;
3480  SDValue Callee                        = CLI.Callee;
3481  bool &isTailCall                      = CLI.IsTailCall;
3482  CallingConv::ID CallConv              = CLI.CallConv;
3483  bool isVarArg                         = CLI.IsVarArg;
3484
3485  if (isTailCall)
3486    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3487                                                   Ins, DAG);
3488
3489  if (PPCSubTarget.isSVR4ABI()) {
3490    if (PPCSubTarget.isPPC64())
3491      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3492                              isTailCall, Outs, OutVals, Ins,
3493                              dl, DAG, InVals);
3494    else
3495      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3496                              isTailCall, Outs, OutVals, Ins,
3497                              dl, DAG, InVals);
3498  }
3499
3500  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3501                          isTailCall, Outs, OutVals, Ins,
3502                          dl, DAG, InVals);
3503}
3504
3505SDValue
3506PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3507                                    CallingConv::ID CallConv, bool isVarArg,
3508                                    bool isTailCall,
3509                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3510                                    const SmallVectorImpl<SDValue> &OutVals,
3511                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3512                                    DebugLoc dl, SelectionDAG &DAG,
3513                                    SmallVectorImpl<SDValue> &InVals) const {
3514  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3515  // of the 32-bit SVR4 ABI stack frame layout.
3516
3517  assert((CallConv == CallingConv::C ||
3518          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3519
3520  unsigned PtrByteSize = 4;
3521
3522  MachineFunction &MF = DAG.getMachineFunction();
3523
3524  // Mark this function as potentially containing a function that contains a
3525  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3526  // and restoring the callers stack pointer in this functions epilog. This is
3527  // done because by tail calling the called function might overwrite the value
3528  // in this function's (MF) stack pointer stack slot 0(SP).
3529  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3530      CallConv == CallingConv::Fast)
3531    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3532
3533  // Count how many bytes are to be pushed on the stack, including the linkage
3534  // area, parameter list area and the part of the local variable space which
3535  // contains copies of aggregates which are passed by value.
3536
3537  // Assign locations to all of the outgoing arguments.
3538  SmallVector<CCValAssign, 16> ArgLocs;
3539  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3540                 getTargetMachine(), ArgLocs, *DAG.getContext());
3541
3542  // Reserve space for the linkage area on the stack.
3543  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3544
3545  if (isVarArg) {
3546    // Handle fixed and variable vector arguments differently.
3547    // Fixed vector arguments go into registers as long as registers are
3548    // available. Variable vector arguments always go into memory.
3549    unsigned NumArgs = Outs.size();
3550
3551    for (unsigned i = 0; i != NumArgs; ++i) {
3552      MVT ArgVT = Outs[i].VT;
3553      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3554      bool Result;
3555
3556      if (Outs[i].IsFixed) {
3557        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3558                               CCInfo);
3559      } else {
3560        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3561                                      ArgFlags, CCInfo);
3562      }
3563
3564      if (Result) {
3565#ifndef NDEBUG
3566        errs() << "Call operand #" << i << " has unhandled type "
3567             << EVT(ArgVT).getEVTString() << "\n";
3568#endif
3569        llvm_unreachable(0);
3570      }
3571    }
3572  } else {
3573    // All arguments are treated the same.
3574    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3575  }
3576
3577  // Assign locations to all of the outgoing aggregate by value arguments.
3578  SmallVector<CCValAssign, 16> ByValArgLocs;
3579  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3580                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3581
3582  // Reserve stack space for the allocations in CCInfo.
3583  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3584
3585  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3586
3587  // Size of the linkage area, parameter list area and the part of the local
3588  // space variable where copies of aggregates which are passed by value are
3589  // stored.
3590  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3591
3592  // Calculate by how many bytes the stack has to be adjusted in case of tail
3593  // call optimization.
3594  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3595
3596  // Adjust the stack pointer for the new arguments...
3597  // These operations are automatically eliminated by the prolog/epilog pass
3598  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3599  SDValue CallSeqStart = Chain;
3600
3601  // Load the return address and frame pointer so it can be moved somewhere else
3602  // later.
3603  SDValue LROp, FPOp;
3604  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3605                                       dl);
3606
3607  // Set up a copy of the stack pointer for use loading and storing any
3608  // arguments that may not fit in the registers available for argument
3609  // passing.
3610  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3611
3612  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3613  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3614  SmallVector<SDValue, 8> MemOpChains;
3615
3616  bool seenFloatArg = false;
3617  // Walk the register/memloc assignments, inserting copies/loads.
3618  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3619       i != e;
3620       ++i) {
3621    CCValAssign &VA = ArgLocs[i];
3622    SDValue Arg = OutVals[i];
3623    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3624
3625    if (Flags.isByVal()) {
3626      // Argument is an aggregate which is passed by value, thus we need to
3627      // create a copy of it in the local variable space of the current stack
3628      // frame (which is the stack frame of the caller) and pass the address of
3629      // this copy to the callee.
3630      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3631      CCValAssign &ByValVA = ByValArgLocs[j++];
3632      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3633
3634      // Memory reserved in the local variable space of the callers stack frame.
3635      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3636
3637      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3638      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3639
3640      // Create a copy of the argument in the local area of the current
3641      // stack frame.
3642      SDValue MemcpyCall =
3643        CreateCopyOfByValArgument(Arg, PtrOff,
3644                                  CallSeqStart.getNode()->getOperand(0),
3645                                  Flags, DAG, dl);
3646
3647      // This must go outside the CALLSEQ_START..END.
3648      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3649                           CallSeqStart.getNode()->getOperand(1));
3650      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3651                             NewCallSeqStart.getNode());
3652      Chain = CallSeqStart = NewCallSeqStart;
3653
3654      // Pass the address of the aggregate copy on the stack either in a
3655      // physical register or in the parameter list area of the current stack
3656      // frame to the callee.
3657      Arg = PtrOff;
3658    }
3659
3660    if (VA.isRegLoc()) {
3661      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3662      // Put argument in a physical register.
3663      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3664    } else {
3665      // Put argument in the parameter list area of the current stack frame.
3666      assert(VA.isMemLoc());
3667      unsigned LocMemOffset = VA.getLocMemOffset();
3668
3669      if (!isTailCall) {
3670        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3671        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3672
3673        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3674                                           MachinePointerInfo(),
3675                                           false, false, 0));
3676      } else {
3677        // Calculate and remember argument location.
3678        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3679                                 TailCallArguments);
3680      }
3681    }
3682  }
3683
3684  if (!MemOpChains.empty())
3685    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3686                        &MemOpChains[0], MemOpChains.size());
3687
3688  // Build a sequence of copy-to-reg nodes chained together with token chain
3689  // and flag operands which copy the outgoing args into the appropriate regs.
3690  SDValue InFlag;
3691  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3692    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3693                             RegsToPass[i].second, InFlag);
3694    InFlag = Chain.getValue(1);
3695  }
3696
3697  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3698  // registers.
3699  if (isVarArg) {
3700    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3701    SDValue Ops[] = { Chain, InFlag };
3702
3703    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3704                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3705
3706    InFlag = Chain.getValue(1);
3707  }
3708
3709  if (isTailCall)
3710    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3711                    false, TailCallArguments);
3712
3713  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3714                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3715                    Ins, InVals);
3716}
3717
3718// Copy an argument into memory, being careful to do this outside the
3719// call sequence for the call to which the argument belongs.
3720SDValue
3721PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3722                                              SDValue CallSeqStart,
3723                                              ISD::ArgFlagsTy Flags,
3724                                              SelectionDAG &DAG,
3725                                              DebugLoc dl) const {
3726  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3727                        CallSeqStart.getNode()->getOperand(0),
3728                        Flags, DAG, dl);
3729  // The MEMCPY must go outside the CALLSEQ_START..END.
3730  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3731                             CallSeqStart.getNode()->getOperand(1));
3732  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3733                         NewCallSeqStart.getNode());
3734  return NewCallSeqStart;
3735}
3736
3737SDValue
3738PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3739                                    CallingConv::ID CallConv, bool isVarArg,
3740                                    bool isTailCall,
3741                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3742                                    const SmallVectorImpl<SDValue> &OutVals,
3743                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3744                                    DebugLoc dl, SelectionDAG &DAG,
3745                                    SmallVectorImpl<SDValue> &InVals) const {
3746
3747  unsigned NumOps = Outs.size();
3748
3749  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3750  unsigned PtrByteSize = 8;
3751
3752  MachineFunction &MF = DAG.getMachineFunction();
3753
3754  // Mark this function as potentially containing a function that contains a
3755  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3756  // and restoring the callers stack pointer in this functions epilog. This is
3757  // done because by tail calling the called function might overwrite the value
3758  // in this function's (MF) stack pointer stack slot 0(SP).
3759  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3760      CallConv == CallingConv::Fast)
3761    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3762
3763  unsigned nAltivecParamsAtEnd = 0;
3764
3765  // Count how many bytes are to be pushed on the stack, including the linkage
3766  // area, and parameter passing area.  We start with at least 48 bytes, which
3767  // is reserved space for [SP][CR][LR][3 x unused].
3768  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3769  // of this call.
3770  unsigned NumBytes =
3771    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3772                                         Outs, OutVals, nAltivecParamsAtEnd);
3773
3774  // Calculate by how many bytes the stack has to be adjusted in case of tail
3775  // call optimization.
3776  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3777
3778  // To protect arguments on the stack from being clobbered in a tail call,
3779  // force all the loads to happen before doing any other lowering.
3780  if (isTailCall)
3781    Chain = DAG.getStackArgumentTokenFactor(Chain);
3782
3783  // Adjust the stack pointer for the new arguments...
3784  // These operations are automatically eliminated by the prolog/epilog pass
3785  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3786  SDValue CallSeqStart = Chain;
3787
3788  // Load the return address and frame pointer so it can be move somewhere else
3789  // later.
3790  SDValue LROp, FPOp;
3791  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3792                                       dl);
3793
3794  // Set up a copy of the stack pointer for use loading and storing any
3795  // arguments that may not fit in the registers available for argument
3796  // passing.
3797  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3798
3799  // Figure out which arguments are going to go in registers, and which in
3800  // memory.  Also, if this is a vararg function, floating point operations
3801  // must be stored to our stack, and loaded into integer regs as well, if
3802  // any integer regs are available for argument passing.
3803  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3804  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3805
3806  static const uint16_t GPR[] = {
3807    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3808    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3809  };
3810  static const uint16_t *FPR = GetFPR();
3811
3812  static const uint16_t VR[] = {
3813    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3814    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3815  };
3816  const unsigned NumGPRs = array_lengthof(GPR);
3817  const unsigned NumFPRs = 13;
3818  const unsigned NumVRs  = array_lengthof(VR);
3819
3820  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3821  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3822
3823  SmallVector<SDValue, 8> MemOpChains;
3824  for (unsigned i = 0; i != NumOps; ++i) {
3825    SDValue Arg = OutVals[i];
3826    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3827
3828    // PtrOff will be used to store the current argument to the stack if a
3829    // register cannot be found for it.
3830    SDValue PtrOff;
3831
3832    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3833
3834    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3835
3836    // Promote integers to 64-bit values.
3837    if (Arg.getValueType() == MVT::i32) {
3838      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3839      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3840      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3841    }
3842
3843    // FIXME memcpy is used way more than necessary.  Correctness first.
3844    // Note: "by value" is code for passing a structure by value, not
3845    // basic types.
3846    if (Flags.isByVal()) {
3847      // Note: Size includes alignment padding, so
3848      //   struct x { short a; char b; }
3849      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3850      // These are the proper values we need for right-justifying the
3851      // aggregate in a parameter register.
3852      unsigned Size = Flags.getByValSize();
3853
3854      // An empty aggregate parameter takes up no storage and no
3855      // registers.
3856      if (Size == 0)
3857        continue;
3858
3859      // All aggregates smaller than 8 bytes must be passed right-justified.
3860      if (Size==1 || Size==2 || Size==4) {
3861        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3862        if (GPR_idx != NumGPRs) {
3863          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3864                                        MachinePointerInfo(), VT,
3865                                        false, false, 0);
3866          MemOpChains.push_back(Load.getValue(1));
3867          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3868
3869          ArgOffset += PtrByteSize;
3870          continue;
3871        }
3872      }
3873
3874      if (GPR_idx == NumGPRs && Size < 8) {
3875        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3876                                        PtrOff.getValueType());
3877        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3878        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3879                                                          CallSeqStart,
3880                                                          Flags, DAG, dl);
3881        ArgOffset += PtrByteSize;
3882        continue;
3883      }
3884      // Copy entire object into memory.  There are cases where gcc-generated
3885      // code assumes it is there, even if it could be put entirely into
3886      // registers.  (This is not what the doc says.)
3887
3888      // FIXME: The above statement is likely due to a misunderstanding of the
3889      // documents.  All arguments must be copied into the parameter area BY
3890      // THE CALLEE in the event that the callee takes the address of any
3891      // formal argument.  That has not yet been implemented.  However, it is
3892      // reasonable to use the stack area as a staging area for the register
3893      // load.
3894
3895      // Skip this for small aggregates, as we will use the same slot for a
3896      // right-justified copy, below.
3897      if (Size >= 8)
3898        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3899                                                          CallSeqStart,
3900                                                          Flags, DAG, dl);
3901
3902      // When a register is available, pass a small aggregate right-justified.
3903      if (Size < 8 && GPR_idx != NumGPRs) {
3904        // The easiest way to get this right-justified in a register
3905        // is to copy the structure into the rightmost portion of a
3906        // local variable slot, then load the whole slot into the
3907        // register.
3908        // FIXME: The memcpy seems to produce pretty awful code for
3909        // small aggregates, particularly for packed ones.
3910        // FIXME: It would be preferable to use the slot in the
3911        // parameter save area instead of a new local variable.
3912        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3913        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3914        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3915                                                          CallSeqStart,
3916                                                          Flags, DAG, dl);
3917
3918        // Load the slot into the register.
3919        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3920                                   MachinePointerInfo(),
3921                                   false, false, false, 0);
3922        MemOpChains.push_back(Load.getValue(1));
3923        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3924
3925        // Done with this argument.
3926        ArgOffset += PtrByteSize;
3927        continue;
3928      }
3929
3930      // For aggregates larger than PtrByteSize, copy the pieces of the
3931      // object that fit into registers from the parameter save area.
3932      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3933        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3934        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3935        if (GPR_idx != NumGPRs) {
3936          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3937                                     MachinePointerInfo(),
3938                                     false, false, false, 0);
3939          MemOpChains.push_back(Load.getValue(1));
3940          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3941          ArgOffset += PtrByteSize;
3942        } else {
3943          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3944          break;
3945        }
3946      }
3947      continue;
3948    }
3949
3950    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3951    default: llvm_unreachable("Unexpected ValueType for argument!");
3952    case MVT::i32:
3953    case MVT::i64:
3954      if (GPR_idx != NumGPRs) {
3955        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3956      } else {
3957        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3958                         true, isTailCall, false, MemOpChains,
3959                         TailCallArguments, dl);
3960      }
3961      ArgOffset += PtrByteSize;
3962      break;
3963    case MVT::f32:
3964    case MVT::f64:
3965      if (FPR_idx != NumFPRs) {
3966        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3967
3968        if (isVarArg) {
3969          // A single float or an aggregate containing only a single float
3970          // must be passed right-justified in the stack doubleword, and
3971          // in the GPR, if one is available.
3972          SDValue StoreOff;
3973          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3974            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3975            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3976          } else
3977            StoreOff = PtrOff;
3978
3979          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3980                                       MachinePointerInfo(), false, false, 0);
3981          MemOpChains.push_back(Store);
3982
3983          // Float varargs are always shadowed in available integer registers
3984          if (GPR_idx != NumGPRs) {
3985            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3986                                       MachinePointerInfo(), false, false,
3987                                       false, 0);
3988            MemOpChains.push_back(Load.getValue(1));
3989            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3990          }
3991        } else if (GPR_idx != NumGPRs)
3992          // If we have any FPRs remaining, we may also have GPRs remaining.
3993          ++GPR_idx;
3994      } else {
3995        // Single-precision floating-point values are mapped to the
3996        // second (rightmost) word of the stack doubleword.
3997        if (Arg.getValueType() == MVT::f32) {
3998          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3999          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4000        }
4001
4002        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4003                         true, isTailCall, false, MemOpChains,
4004                         TailCallArguments, dl);
4005      }
4006      ArgOffset += 8;
4007      break;
4008    case MVT::v4f32:
4009    case MVT::v4i32:
4010    case MVT::v8i16:
4011    case MVT::v16i8:
4012      if (isVarArg) {
4013        // These go aligned on the stack, or in the corresponding R registers
4014        // when within range.  The Darwin PPC ABI doc claims they also go in
4015        // V registers; in fact gcc does this only for arguments that are
4016        // prototyped, not for those that match the ...  We do it for all
4017        // arguments, seems to work.
4018        while (ArgOffset % 16 !=0) {
4019          ArgOffset += PtrByteSize;
4020          if (GPR_idx != NumGPRs)
4021            GPR_idx++;
4022        }
4023        // We could elide this store in the case where the object fits
4024        // entirely in R registers.  Maybe later.
4025        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4026                            DAG.getConstant(ArgOffset, PtrVT));
4027        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4028                                     MachinePointerInfo(), false, false, 0);
4029        MemOpChains.push_back(Store);
4030        if (VR_idx != NumVRs) {
4031          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4032                                     MachinePointerInfo(),
4033                                     false, false, false, 0);
4034          MemOpChains.push_back(Load.getValue(1));
4035          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4036        }
4037        ArgOffset += 16;
4038        for (unsigned i=0; i<16; i+=PtrByteSize) {
4039          if (GPR_idx == NumGPRs)
4040            break;
4041          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4042                                  DAG.getConstant(i, PtrVT));
4043          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4044                                     false, false, false, 0);
4045          MemOpChains.push_back(Load.getValue(1));
4046          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4047        }
4048        break;
4049      }
4050
4051      // Non-varargs Altivec params generally go in registers, but have
4052      // stack space allocated at the end.
4053      if (VR_idx != NumVRs) {
4054        // Doesn't have GPR space allocated.
4055        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4056      } else {
4057        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4058                         true, isTailCall, true, MemOpChains,
4059                         TailCallArguments, dl);
4060        ArgOffset += 16;
4061      }
4062      break;
4063    }
4064  }
4065
4066  if (!MemOpChains.empty())
4067    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4068                        &MemOpChains[0], MemOpChains.size());
4069
4070  // Check if this is an indirect call (MTCTR/BCTRL).
4071  // See PrepareCall() for more information about calls through function
4072  // pointers in the 64-bit SVR4 ABI.
4073  if (!isTailCall &&
4074      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4075      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4076      !isBLACompatibleAddress(Callee, DAG)) {
4077    // Load r2 into a virtual register and store it to the TOC save area.
4078    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4079    // TOC save area offset.
4080    SDValue PtrOff = DAG.getIntPtrConstant(40);
4081    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4082    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4083                         false, false, 0);
4084    // R12 must contain the address of an indirect callee.  This does not
4085    // mean the MTCTR instruction must use R12; it's easier to model this
4086    // as an extra parameter, so do that.
4087    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4088  }
4089
4090  // Build a sequence of copy-to-reg nodes chained together with token chain
4091  // and flag operands which copy the outgoing args into the appropriate regs.
4092  SDValue InFlag;
4093  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4094    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4095                             RegsToPass[i].second, InFlag);
4096    InFlag = Chain.getValue(1);
4097  }
4098
4099  if (isTailCall)
4100    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4101                    FPOp, true, TailCallArguments);
4102
4103  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4104                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4105                    Ins, InVals);
4106}
4107
4108SDValue
4109PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4110                                    CallingConv::ID CallConv, bool isVarArg,
4111                                    bool isTailCall,
4112                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4113                                    const SmallVectorImpl<SDValue> &OutVals,
4114                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4115                                    DebugLoc dl, SelectionDAG &DAG,
4116                                    SmallVectorImpl<SDValue> &InVals) const {
4117
4118  unsigned NumOps = Outs.size();
4119
4120  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4121  bool isPPC64 = PtrVT == MVT::i64;
4122  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4123
4124  MachineFunction &MF = DAG.getMachineFunction();
4125
4126  // Mark this function as potentially containing a function that contains a
4127  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4128  // and restoring the callers stack pointer in this functions epilog. This is
4129  // done because by tail calling the called function might overwrite the value
4130  // in this function's (MF) stack pointer stack slot 0(SP).
4131  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4132      CallConv == CallingConv::Fast)
4133    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4134
4135  unsigned nAltivecParamsAtEnd = 0;
4136
4137  // Count how many bytes are to be pushed on the stack, including the linkage
4138  // area, and parameter passing area.  We start with 24/48 bytes, which is
4139  // prereserved space for [SP][CR][LR][3 x unused].
4140  unsigned NumBytes =
4141    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4142                                         Outs, OutVals,
4143                                         nAltivecParamsAtEnd);
4144
4145  // Calculate by how many bytes the stack has to be adjusted in case of tail
4146  // call optimization.
4147  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4148
4149  // To protect arguments on the stack from being clobbered in a tail call,
4150  // force all the loads to happen before doing any other lowering.
4151  if (isTailCall)
4152    Chain = DAG.getStackArgumentTokenFactor(Chain);
4153
4154  // Adjust the stack pointer for the new arguments...
4155  // These operations are automatically eliminated by the prolog/epilog pass
4156  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4157  SDValue CallSeqStart = Chain;
4158
4159  // Load the return address and frame pointer so it can be move somewhere else
4160  // later.
4161  SDValue LROp, FPOp;
4162  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4163                                       dl);
4164
4165  // Set up a copy of the stack pointer for use loading and storing any
4166  // arguments that may not fit in the registers available for argument
4167  // passing.
4168  SDValue StackPtr;
4169  if (isPPC64)
4170    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4171  else
4172    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4173
4174  // Figure out which arguments are going to go in registers, and which in
4175  // memory.  Also, if this is a vararg function, floating point operations
4176  // must be stored to our stack, and loaded into integer regs as well, if
4177  // any integer regs are available for argument passing.
4178  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4179  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4180
4181  static const uint16_t GPR_32[] = {           // 32-bit registers.
4182    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4183    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4184  };
4185  static const uint16_t GPR_64[] = {           // 64-bit registers.
4186    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4187    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4188  };
4189  static const uint16_t *FPR = GetFPR();
4190
4191  static const uint16_t VR[] = {
4192    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4193    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4194  };
4195  const unsigned NumGPRs = array_lengthof(GPR_32);
4196  const unsigned NumFPRs = 13;
4197  const unsigned NumVRs  = array_lengthof(VR);
4198
4199  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4200
4201  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4202  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4203
4204  SmallVector<SDValue, 8> MemOpChains;
4205  for (unsigned i = 0; i != NumOps; ++i) {
4206    SDValue Arg = OutVals[i];
4207    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4208
4209    // PtrOff will be used to store the current argument to the stack if a
4210    // register cannot be found for it.
4211    SDValue PtrOff;
4212
4213    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4214
4215    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4216
4217    // On PPC64, promote integers to 64-bit values.
4218    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4219      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4220      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4221      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4222    }
4223
4224    // FIXME memcpy is used way more than necessary.  Correctness first.
4225    // Note: "by value" is code for passing a structure by value, not
4226    // basic types.
4227    if (Flags.isByVal()) {
4228      unsigned Size = Flags.getByValSize();
4229      // Very small objects are passed right-justified.  Everything else is
4230      // passed left-justified.
4231      if (Size==1 || Size==2) {
4232        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4233        if (GPR_idx != NumGPRs) {
4234          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4235                                        MachinePointerInfo(), VT,
4236                                        false, false, 0);
4237          MemOpChains.push_back(Load.getValue(1));
4238          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4239
4240          ArgOffset += PtrByteSize;
4241        } else {
4242          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4243                                          PtrOff.getValueType());
4244          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4245          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4246                                                            CallSeqStart,
4247                                                            Flags, DAG, dl);
4248          ArgOffset += PtrByteSize;
4249        }
4250        continue;
4251      }
4252      // Copy entire object into memory.  There are cases where gcc-generated
4253      // code assumes it is there, even if it could be put entirely into
4254      // registers.  (This is not what the doc says.)
4255      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4256                                                        CallSeqStart,
4257                                                        Flags, DAG, dl);
4258
4259      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4260      // copy the pieces of the object that fit into registers from the
4261      // parameter save area.
4262      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4263        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4264        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4265        if (GPR_idx != NumGPRs) {
4266          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4267                                     MachinePointerInfo(),
4268                                     false, false, false, 0);
4269          MemOpChains.push_back(Load.getValue(1));
4270          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4271          ArgOffset += PtrByteSize;
4272        } else {
4273          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4274          break;
4275        }
4276      }
4277      continue;
4278    }
4279
4280    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4281    default: llvm_unreachable("Unexpected ValueType for argument!");
4282    case MVT::i32:
4283    case MVT::i64:
4284      if (GPR_idx != NumGPRs) {
4285        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4286      } else {
4287        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4288                         isPPC64, isTailCall, false, MemOpChains,
4289                         TailCallArguments, dl);
4290      }
4291      ArgOffset += PtrByteSize;
4292      break;
4293    case MVT::f32:
4294    case MVT::f64:
4295      if (FPR_idx != NumFPRs) {
4296        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4297
4298        if (isVarArg) {
4299          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4300                                       MachinePointerInfo(), false, false, 0);
4301          MemOpChains.push_back(Store);
4302
4303          // Float varargs are always shadowed in available integer registers
4304          if (GPR_idx != NumGPRs) {
4305            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4306                                       MachinePointerInfo(), false, false,
4307                                       false, 0);
4308            MemOpChains.push_back(Load.getValue(1));
4309            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4310          }
4311          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4312            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4313            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4314            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4315                                       MachinePointerInfo(),
4316                                       false, false, false, 0);
4317            MemOpChains.push_back(Load.getValue(1));
4318            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4319          }
4320        } else {
4321          // If we have any FPRs remaining, we may also have GPRs remaining.
4322          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4323          // GPRs.
4324          if (GPR_idx != NumGPRs)
4325            ++GPR_idx;
4326          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4327              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4328            ++GPR_idx;
4329        }
4330      } else
4331        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4332                         isPPC64, isTailCall, false, MemOpChains,
4333                         TailCallArguments, dl);
4334      if (isPPC64)
4335        ArgOffset += 8;
4336      else
4337        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4338      break;
4339    case MVT::v4f32:
4340    case MVT::v4i32:
4341    case MVT::v8i16:
4342    case MVT::v16i8:
4343      if (isVarArg) {
4344        // These go aligned on the stack, or in the corresponding R registers
4345        // when within range.  The Darwin PPC ABI doc claims they also go in
4346        // V registers; in fact gcc does this only for arguments that are
4347        // prototyped, not for those that match the ...  We do it for all
4348        // arguments, seems to work.
4349        while (ArgOffset % 16 !=0) {
4350          ArgOffset += PtrByteSize;
4351          if (GPR_idx != NumGPRs)
4352            GPR_idx++;
4353        }
4354        // We could elide this store in the case where the object fits
4355        // entirely in R registers.  Maybe later.
4356        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4357                            DAG.getConstant(ArgOffset, PtrVT));
4358        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4359                                     MachinePointerInfo(), false, false, 0);
4360        MemOpChains.push_back(Store);
4361        if (VR_idx != NumVRs) {
4362          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4363                                     MachinePointerInfo(),
4364                                     false, false, false, 0);
4365          MemOpChains.push_back(Load.getValue(1));
4366          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4367        }
4368        ArgOffset += 16;
4369        for (unsigned i=0; i<16; i+=PtrByteSize) {
4370          if (GPR_idx == NumGPRs)
4371            break;
4372          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4373                                  DAG.getConstant(i, PtrVT));
4374          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4375                                     false, false, false, 0);
4376          MemOpChains.push_back(Load.getValue(1));
4377          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4378        }
4379        break;
4380      }
4381
4382      // Non-varargs Altivec params generally go in registers, but have
4383      // stack space allocated at the end.
4384      if (VR_idx != NumVRs) {
4385        // Doesn't have GPR space allocated.
4386        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4387      } else if (nAltivecParamsAtEnd==0) {
4388        // We are emitting Altivec params in order.
4389        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4390                         isPPC64, isTailCall, true, MemOpChains,
4391                         TailCallArguments, dl);
4392        ArgOffset += 16;
4393      }
4394      break;
4395    }
4396  }
4397  // If all Altivec parameters fit in registers, as they usually do,
4398  // they get stack space following the non-Altivec parameters.  We
4399  // don't track this here because nobody below needs it.
4400  // If there are more Altivec parameters than fit in registers emit
4401  // the stores here.
4402  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4403    unsigned j = 0;
4404    // Offset is aligned; skip 1st 12 params which go in V registers.
4405    ArgOffset = ((ArgOffset+15)/16)*16;
4406    ArgOffset += 12*16;
4407    for (unsigned i = 0; i != NumOps; ++i) {
4408      SDValue Arg = OutVals[i];
4409      EVT ArgType = Outs[i].VT;
4410      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4411          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4412        if (++j > NumVRs) {
4413          SDValue PtrOff;
4414          // We are emitting Altivec params in order.
4415          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4416                           isPPC64, isTailCall, true, MemOpChains,
4417                           TailCallArguments, dl);
4418          ArgOffset += 16;
4419        }
4420      }
4421    }
4422  }
4423
4424  if (!MemOpChains.empty())
4425    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4426                        &MemOpChains[0], MemOpChains.size());
4427
4428  // On Darwin, R12 must contain the address of an indirect callee.  This does
4429  // not mean the MTCTR instruction must use R12; it's easier to model this as
4430  // an extra parameter, so do that.
4431  if (!isTailCall &&
4432      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4433      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4434      !isBLACompatibleAddress(Callee, DAG))
4435    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4436                                                   PPC::R12), Callee));
4437
4438  // Build a sequence of copy-to-reg nodes chained together with token chain
4439  // and flag operands which copy the outgoing args into the appropriate regs.
4440  SDValue InFlag;
4441  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4442    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4443                             RegsToPass[i].second, InFlag);
4444    InFlag = Chain.getValue(1);
4445  }
4446
4447  if (isTailCall)
4448    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4449                    FPOp, true, TailCallArguments);
4450
4451  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4452                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4453                    Ins, InVals);
4454}
4455
4456bool
4457PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4458                                  MachineFunction &MF, bool isVarArg,
4459                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4460                                  LLVMContext &Context) const {
4461  SmallVector<CCValAssign, 16> RVLocs;
4462  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4463                 RVLocs, Context);
4464  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4465}
4466
4467SDValue
4468PPCTargetLowering::LowerReturn(SDValue Chain,
4469                               CallingConv::ID CallConv, bool isVarArg,
4470                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4471                               const SmallVectorImpl<SDValue> &OutVals,
4472                               DebugLoc dl, SelectionDAG &DAG) const {
4473
4474  SmallVector<CCValAssign, 16> RVLocs;
4475  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4476                 getTargetMachine(), RVLocs, *DAG.getContext());
4477  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4478
4479  SDValue Flag;
4480  SmallVector<SDValue, 4> RetOps(1, Chain);
4481
4482  // Copy the result values into the output registers.
4483  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4484    CCValAssign &VA = RVLocs[i];
4485    assert(VA.isRegLoc() && "Can only return in registers!");
4486
4487    SDValue Arg = OutVals[i];
4488
4489    switch (VA.getLocInfo()) {
4490    default: llvm_unreachable("Unknown loc info!");
4491    case CCValAssign::Full: break;
4492    case CCValAssign::AExt:
4493      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4494      break;
4495    case CCValAssign::ZExt:
4496      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4497      break;
4498    case CCValAssign::SExt:
4499      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4500      break;
4501    }
4502
4503    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4504    Flag = Chain.getValue(1);
4505    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4506  }
4507
4508  RetOps[0] = Chain;  // Update chain.
4509
4510  // Add the flag if we have it.
4511  if (Flag.getNode())
4512    RetOps.push_back(Flag);
4513
4514  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4515                     &RetOps[0], RetOps.size());
4516}
4517
4518SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4519                                   const PPCSubtarget &Subtarget) const {
4520  // When we pop the dynamic allocation we need to restore the SP link.
4521  DebugLoc dl = Op.getDebugLoc();
4522
4523  // Get the corect type for pointers.
4524  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4525
4526  // Construct the stack pointer operand.
4527  bool isPPC64 = Subtarget.isPPC64();
4528  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4529  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4530
4531  // Get the operands for the STACKRESTORE.
4532  SDValue Chain = Op.getOperand(0);
4533  SDValue SaveSP = Op.getOperand(1);
4534
4535  // Load the old link SP.
4536  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4537                                   MachinePointerInfo(),
4538                                   false, false, false, 0);
4539
4540  // Restore the stack pointer.
4541  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4542
4543  // Store the old link SP.
4544  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4545                      false, false, 0);
4546}
4547
4548
4549
4550SDValue
4551PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4552  MachineFunction &MF = DAG.getMachineFunction();
4553  bool isPPC64 = PPCSubTarget.isPPC64();
4554  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4555  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4556
4557  // Get current frame pointer save index.  The users of this index will be
4558  // primarily DYNALLOC instructions.
4559  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4560  int RASI = FI->getReturnAddrSaveIndex();
4561
4562  // If the frame pointer save index hasn't been defined yet.
4563  if (!RASI) {
4564    // Find out what the fix offset of the frame pointer save area.
4565    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4566    // Allocate the frame index for frame pointer save area.
4567    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4568    // Save the result.
4569    FI->setReturnAddrSaveIndex(RASI);
4570  }
4571  return DAG.getFrameIndex(RASI, PtrVT);
4572}
4573
4574SDValue
4575PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4576  MachineFunction &MF = DAG.getMachineFunction();
4577  bool isPPC64 = PPCSubTarget.isPPC64();
4578  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4579  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4580
4581  // Get current frame pointer save index.  The users of this index will be
4582  // primarily DYNALLOC instructions.
4583  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4584  int FPSI = FI->getFramePointerSaveIndex();
4585
4586  // If the frame pointer save index hasn't been defined yet.
4587  if (!FPSI) {
4588    // Find out what the fix offset of the frame pointer save area.
4589    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4590                                                           isDarwinABI);
4591
4592    // Allocate the frame index for frame pointer save area.
4593    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4594    // Save the result.
4595    FI->setFramePointerSaveIndex(FPSI);
4596  }
4597  return DAG.getFrameIndex(FPSI, PtrVT);
4598}
4599
4600SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4601                                         SelectionDAG &DAG,
4602                                         const PPCSubtarget &Subtarget) const {
4603  // Get the inputs.
4604  SDValue Chain = Op.getOperand(0);
4605  SDValue Size  = Op.getOperand(1);
4606  DebugLoc dl = Op.getDebugLoc();
4607
4608  // Get the corect type for pointers.
4609  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4610  // Negate the size.
4611  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4612                                  DAG.getConstant(0, PtrVT), Size);
4613  // Construct a node for the frame pointer save index.
4614  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4615  // Build a DYNALLOC node.
4616  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4617  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4618  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4619}
4620
4621SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4622                                               SelectionDAG &DAG) const {
4623  DebugLoc DL = Op.getDebugLoc();
4624  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4625                     DAG.getVTList(MVT::i32, MVT::Other),
4626                     Op.getOperand(0), Op.getOperand(1));
4627}
4628
4629SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4630                                                SelectionDAG &DAG) const {
4631  DebugLoc DL = Op.getDebugLoc();
4632  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4633                     Op.getOperand(0), Op.getOperand(1));
4634}
4635
4636/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4637/// possible.
4638SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4639  // Not FP? Not a fsel.
4640  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4641      !Op.getOperand(2).getValueType().isFloatingPoint())
4642    return Op;
4643
4644  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4645
4646  // Cannot handle SETEQ/SETNE.
4647  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4648
4649  EVT ResVT = Op.getValueType();
4650  EVT CmpVT = Op.getOperand(0).getValueType();
4651  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4652  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4653  DebugLoc dl = Op.getDebugLoc();
4654
4655  // If the RHS of the comparison is a 0.0, we don't need to do the
4656  // subtraction at all.
4657  if (isFloatingPointZero(RHS))
4658    switch (CC) {
4659    default: break;       // SETUO etc aren't handled by fsel.
4660    case ISD::SETULT:
4661    case ISD::SETLT:
4662      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4663    case ISD::SETOGE:
4664    case ISD::SETGE:
4665      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4666        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4667      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4668    case ISD::SETUGT:
4669    case ISD::SETGT:
4670      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4671    case ISD::SETOLE:
4672    case ISD::SETLE:
4673      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4674        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4675      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4676                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4677    }
4678
4679  SDValue Cmp;
4680  switch (CC) {
4681  default: break;       // SETUO etc aren't handled by fsel.
4682  case ISD::SETULT:
4683  case ISD::SETLT:
4684    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4685    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4686      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4687      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4688  case ISD::SETOGE:
4689  case ISD::SETGE:
4690    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4691    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4692      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4693      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4694  case ISD::SETUGT:
4695  case ISD::SETGT:
4696    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4697    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4698      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4699      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4700  case ISD::SETOLE:
4701  case ISD::SETLE:
4702    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4703    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4704      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4705      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4706  }
4707  return Op;
4708}
4709
4710// FIXME: Split this code up when LegalizeDAGTypes lands.
4711SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4712                                           DebugLoc dl) const {
4713  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4714  SDValue Src = Op.getOperand(0);
4715  if (Src.getValueType() == MVT::f32)
4716    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4717
4718  SDValue Tmp;
4719  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4720  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4721  case MVT::i32:
4722    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4723                                                         PPCISD::FCTIDZ,
4724                      dl, MVT::f64, Src);
4725    break;
4726  case MVT::i64:
4727    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4728    break;
4729  }
4730
4731  // Convert the FP value to an int value through memory.
4732  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4733
4734  // Emit a store to the stack slot.
4735  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4736                               MachinePointerInfo(), false, false, 0);
4737
4738  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4739  // add in a bias.
4740  if (Op.getValueType() == MVT::i32)
4741    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4742                        DAG.getConstant(4, FIPtr.getValueType()));
4743  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4744                     false, false, false, 0);
4745}
4746
4747SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4748                                           SelectionDAG &DAG) const {
4749  DebugLoc dl = Op.getDebugLoc();
4750  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4751  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4752    return SDValue();
4753
4754  if (Op.getOperand(0).getValueType() == MVT::i64) {
4755    SDValue SINT = Op.getOperand(0);
4756    // When converting to single-precision, we actually need to convert
4757    // to double-precision first and then round to single-precision.
4758    // To avoid double-rounding effects during that operation, we have
4759    // to prepare the input operand.  Bits that might be truncated when
4760    // converting to double-precision are replaced by a bit that won't
4761    // be lost at this stage, but is below the single-precision rounding
4762    // position.
4763    //
4764    // However, if -enable-unsafe-fp-math is in effect, accept double
4765    // rounding to avoid the extra overhead.
4766    if (Op.getValueType() == MVT::f32 &&
4767        !DAG.getTarget().Options.UnsafeFPMath) {
4768
4769      // Twiddle input to make sure the low 11 bits are zero.  (If this
4770      // is the case, we are guaranteed the value will fit into the 53 bit
4771      // mantissa of an IEEE double-precision value without rounding.)
4772      // If any of those low 11 bits were not zero originally, make sure
4773      // bit 12 (value 2048) is set instead, so that the final rounding
4774      // to single-precision gets the correct result.
4775      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4776                                  SINT, DAG.getConstant(2047, MVT::i64));
4777      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4778                          Round, DAG.getConstant(2047, MVT::i64));
4779      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4780      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4781                          Round, DAG.getConstant(-2048, MVT::i64));
4782
4783      // However, we cannot use that value unconditionally: if the magnitude
4784      // of the input value is small, the bit-twiddling we did above might
4785      // end up visibly changing the output.  Fortunately, in that case, we
4786      // don't need to twiddle bits since the original input will convert
4787      // exactly to double-precision floating-point already.  Therefore,
4788      // construct a conditional to use the original value if the top 11
4789      // bits are all sign-bit copies, and use the rounded value computed
4790      // above otherwise.
4791      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4792                                 SINT, DAG.getConstant(53, MVT::i32));
4793      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4794                         Cond, DAG.getConstant(1, MVT::i64));
4795      Cond = DAG.getSetCC(dl, MVT::i32,
4796                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4797
4798      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4799    }
4800    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4801    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4802    if (Op.getValueType() == MVT::f32)
4803      FP = DAG.getNode(ISD::FP_ROUND, dl,
4804                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4805    return FP;
4806  }
4807
4808  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4809         "Unhandled SINT_TO_FP type in custom expander!");
4810  // Since we only generate this in 64-bit mode, we can take advantage of
4811  // 64-bit registers.  In particular, sign extend the input value into the
4812  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4813  // then lfd it and fcfid it.
4814  MachineFunction &MF = DAG.getMachineFunction();
4815  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4816  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4817  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4818  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4819
4820  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4821                                Op.getOperand(0));
4822
4823  // STD the extended value into the stack slot.
4824  MachineMemOperand *MMO =
4825    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4826                            MachineMemOperand::MOStore, 8, 8);
4827  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4828  SDValue Store =
4829    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4830                            Ops, 4, MVT::i64, MMO);
4831  // Load the value as a double.
4832  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4833                           false, false, false, 0);
4834
4835  // FCFID it and return it.
4836  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4837  if (Op.getValueType() == MVT::f32)
4838    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4839  return FP;
4840}
4841
4842SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4843                                            SelectionDAG &DAG) const {
4844  DebugLoc dl = Op.getDebugLoc();
4845  /*
4846   The rounding mode is in bits 30:31 of FPSR, and has the following
4847   settings:
4848     00 Round to nearest
4849     01 Round to 0
4850     10 Round to +inf
4851     11 Round to -inf
4852
4853  FLT_ROUNDS, on the other hand, expects the following:
4854    -1 Undefined
4855     0 Round to 0
4856     1 Round to nearest
4857     2 Round to +inf
4858     3 Round to -inf
4859
4860  To perform the conversion, we do:
4861    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4862  */
4863
4864  MachineFunction &MF = DAG.getMachineFunction();
4865  EVT VT = Op.getValueType();
4866  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4867  SDValue MFFSreg, InFlag;
4868
4869  // Save FP Control Word to register
4870  EVT NodeTys[] = {
4871    MVT::f64,    // return register
4872    MVT::Glue    // unused in this context
4873  };
4874  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4875
4876  // Save FP register to stack slot
4877  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4878  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4879  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4880                               StackSlot, MachinePointerInfo(), false, false,0);
4881
4882  // Load FP Control Word from low 32 bits of stack slot.
4883  SDValue Four = DAG.getConstant(4, PtrVT);
4884  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4885  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4886                            false, false, false, 0);
4887
4888  // Transform as necessary
4889  SDValue CWD1 =
4890    DAG.getNode(ISD::AND, dl, MVT::i32,
4891                CWD, DAG.getConstant(3, MVT::i32));
4892  SDValue CWD2 =
4893    DAG.getNode(ISD::SRL, dl, MVT::i32,
4894                DAG.getNode(ISD::AND, dl, MVT::i32,
4895                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4896                                        CWD, DAG.getConstant(3, MVT::i32)),
4897                            DAG.getConstant(3, MVT::i32)),
4898                DAG.getConstant(1, MVT::i32));
4899
4900  SDValue RetVal =
4901    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4902
4903  return DAG.getNode((VT.getSizeInBits() < 16 ?
4904                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4905}
4906
4907SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4908  EVT VT = Op.getValueType();
4909  unsigned BitWidth = VT.getSizeInBits();
4910  DebugLoc dl = Op.getDebugLoc();
4911  assert(Op.getNumOperands() == 3 &&
4912         VT == Op.getOperand(1).getValueType() &&
4913         "Unexpected SHL!");
4914
4915  // Expand into a bunch of logical ops.  Note that these ops
4916  // depend on the PPC behavior for oversized shift amounts.
4917  SDValue Lo = Op.getOperand(0);
4918  SDValue Hi = Op.getOperand(1);
4919  SDValue Amt = Op.getOperand(2);
4920  EVT AmtVT = Amt.getValueType();
4921
4922  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4923                             DAG.getConstant(BitWidth, AmtVT), Amt);
4924  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4925  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4926  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4927  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4928                             DAG.getConstant(-BitWidth, AmtVT));
4929  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4930  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4931  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4932  SDValue OutOps[] = { OutLo, OutHi };
4933  return DAG.getMergeValues(OutOps, 2, dl);
4934}
4935
4936SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4937  EVT VT = Op.getValueType();
4938  DebugLoc dl = Op.getDebugLoc();
4939  unsigned BitWidth = VT.getSizeInBits();
4940  assert(Op.getNumOperands() == 3 &&
4941         VT == Op.getOperand(1).getValueType() &&
4942         "Unexpected SRL!");
4943
4944  // Expand into a bunch of logical ops.  Note that these ops
4945  // depend on the PPC behavior for oversized shift amounts.
4946  SDValue Lo = Op.getOperand(0);
4947  SDValue Hi = Op.getOperand(1);
4948  SDValue Amt = Op.getOperand(2);
4949  EVT AmtVT = Amt.getValueType();
4950
4951  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4952                             DAG.getConstant(BitWidth, AmtVT), Amt);
4953  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4954  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4955  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4956  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4957                             DAG.getConstant(-BitWidth, AmtVT));
4958  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4959  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4960  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4961  SDValue OutOps[] = { OutLo, OutHi };
4962  return DAG.getMergeValues(OutOps, 2, dl);
4963}
4964
4965SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4966  DebugLoc dl = Op.getDebugLoc();
4967  EVT VT = Op.getValueType();
4968  unsigned BitWidth = VT.getSizeInBits();
4969  assert(Op.getNumOperands() == 3 &&
4970         VT == Op.getOperand(1).getValueType() &&
4971         "Unexpected SRA!");
4972
4973  // Expand into a bunch of logical ops, followed by a select_cc.
4974  SDValue Lo = Op.getOperand(0);
4975  SDValue Hi = Op.getOperand(1);
4976  SDValue Amt = Op.getOperand(2);
4977  EVT AmtVT = Amt.getValueType();
4978
4979  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4980                             DAG.getConstant(BitWidth, AmtVT), Amt);
4981  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4982  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4983  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4984  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4985                             DAG.getConstant(-BitWidth, AmtVT));
4986  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4987  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4988  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4989                                  Tmp4, Tmp6, ISD::SETLE);
4990  SDValue OutOps[] = { OutLo, OutHi };
4991  return DAG.getMergeValues(OutOps, 2, dl);
4992}
4993
4994//===----------------------------------------------------------------------===//
4995// Vector related lowering.
4996//
4997
4998/// BuildSplatI - Build a canonical splati of Val with an element size of
4999/// SplatSize.  Cast the result to VT.
5000static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5001                             SelectionDAG &DAG, DebugLoc dl) {
5002  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5003
5004  static const EVT VTys[] = { // canonical VT to use for each size.
5005    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5006  };
5007
5008  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5009
5010  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5011  if (Val == -1)
5012    SplatSize = 1;
5013
5014  EVT CanonicalVT = VTys[SplatSize-1];
5015
5016  // Build a canonical splat for this value.
5017  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5018  SmallVector<SDValue, 8> Ops;
5019  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5020  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5021                              &Ops[0], Ops.size());
5022  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5023}
5024
5025/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5026/// specified intrinsic ID.
5027static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5028                                SelectionDAG &DAG, DebugLoc dl,
5029                                EVT DestVT = MVT::Other) {
5030  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5031  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5032                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5033}
5034
5035/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5036/// specified intrinsic ID.
5037static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5038                                SDValue Op2, SelectionDAG &DAG,
5039                                DebugLoc dl, EVT DestVT = MVT::Other) {
5040  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5041  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5042                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5043}
5044
5045
5046/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5047/// amount.  The result has the specified value type.
5048static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5049                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
5050  // Force LHS/RHS to be the right type.
5051  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5052  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5053
5054  int Ops[16];
5055  for (unsigned i = 0; i != 16; ++i)
5056    Ops[i] = i + Amt;
5057  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5058  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5059}
5060
5061// If this is a case we can't handle, return null and let the default
5062// expansion code take care of it.  If we CAN select this case, and if it
5063// selects to a single instruction, return Op.  Otherwise, if we can codegen
5064// this case more efficiently than a constant pool load, lower it to the
5065// sequence of ops that should be used.
5066SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5067                                             SelectionDAG &DAG) const {
5068  DebugLoc dl = Op.getDebugLoc();
5069  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5070  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5071
5072  // Check if this is a splat of a constant value.
5073  APInt APSplatBits, APSplatUndef;
5074  unsigned SplatBitSize;
5075  bool HasAnyUndefs;
5076  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5077                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5078    return SDValue();
5079
5080  unsigned SplatBits = APSplatBits.getZExtValue();
5081  unsigned SplatUndef = APSplatUndef.getZExtValue();
5082  unsigned SplatSize = SplatBitSize / 8;
5083
5084  // First, handle single instruction cases.
5085
5086  // All zeros?
5087  if (SplatBits == 0) {
5088    // Canonicalize all zero vectors to be v4i32.
5089    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5090      SDValue Z = DAG.getConstant(0, MVT::i32);
5091      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5092      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5093    }
5094    return Op;
5095  }
5096
5097  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5098  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5099                    (32-SplatBitSize));
5100  if (SextVal >= -16 && SextVal <= 15)
5101    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5102
5103
5104  // Two instruction sequences.
5105
5106  // If this value is in the range [-32,30] and is even, use:
5107  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5108  // If this value is in the range [17,31] and is odd, use:
5109  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5110  // If this value is in the range [-31,-17] and is odd, use:
5111  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5112  // Note the last two are three-instruction sequences.
5113  if (SextVal >= -32 && SextVal <= 31) {
5114    // To avoid having these optimizations undone by constant folding,
5115    // we convert to a pseudo that will be expanded later into one of
5116    // the above forms.
5117    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5118    EVT VT = Op.getValueType();
5119    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5120    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5121    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5122  }
5123
5124  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5125  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5126  // for fneg/fabs.
5127  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5128    // Make -1 and vspltisw -1:
5129    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5130
5131    // Make the VSLW intrinsic, computing 0x8000_0000.
5132    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5133                                   OnesV, DAG, dl);
5134
5135    // xor by OnesV to invert it.
5136    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5137    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5138  }
5139
5140  // Check to see if this is a wide variety of vsplti*, binop self cases.
5141  static const signed char SplatCsts[] = {
5142    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5143    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5144  };
5145
5146  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5147    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5148    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5149    int i = SplatCsts[idx];
5150
5151    // Figure out what shift amount will be used by altivec if shifted by i in
5152    // this splat size.
5153    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5154
5155    // vsplti + shl self.
5156    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5157      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5158      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5159        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5160        Intrinsic::ppc_altivec_vslw
5161      };
5162      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5163      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5164    }
5165
5166    // vsplti + srl self.
5167    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5168      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5169      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5170        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5171        Intrinsic::ppc_altivec_vsrw
5172      };
5173      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5174      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5175    }
5176
5177    // vsplti + sra self.
5178    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5179      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5180      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5181        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5182        Intrinsic::ppc_altivec_vsraw
5183      };
5184      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5185      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5186    }
5187
5188    // vsplti + rol self.
5189    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5190                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5191      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5192      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5193        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5194        Intrinsic::ppc_altivec_vrlw
5195      };
5196      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5197      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5198    }
5199
5200    // t = vsplti c, result = vsldoi t, t, 1
5201    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5202      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5203      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5204    }
5205    // t = vsplti c, result = vsldoi t, t, 2
5206    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5207      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5208      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5209    }
5210    // t = vsplti c, result = vsldoi t, t, 3
5211    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5212      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5213      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5214    }
5215  }
5216
5217  return SDValue();
5218}
5219
5220/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5221/// the specified operations to build the shuffle.
5222static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5223                                      SDValue RHS, SelectionDAG &DAG,
5224                                      DebugLoc dl) {
5225  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5226  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5227  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5228
5229  enum {
5230    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5231    OP_VMRGHW,
5232    OP_VMRGLW,
5233    OP_VSPLTISW0,
5234    OP_VSPLTISW1,
5235    OP_VSPLTISW2,
5236    OP_VSPLTISW3,
5237    OP_VSLDOI4,
5238    OP_VSLDOI8,
5239    OP_VSLDOI12
5240  };
5241
5242  if (OpNum == OP_COPY) {
5243    if (LHSID == (1*9+2)*9+3) return LHS;
5244    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5245    return RHS;
5246  }
5247
5248  SDValue OpLHS, OpRHS;
5249  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5250  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5251
5252  int ShufIdxs[16];
5253  switch (OpNum) {
5254  default: llvm_unreachable("Unknown i32 permute!");
5255  case OP_VMRGHW:
5256    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5257    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5258    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5259    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5260    break;
5261  case OP_VMRGLW:
5262    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5263    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5264    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5265    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5266    break;
5267  case OP_VSPLTISW0:
5268    for (unsigned i = 0; i != 16; ++i)
5269      ShufIdxs[i] = (i&3)+0;
5270    break;
5271  case OP_VSPLTISW1:
5272    for (unsigned i = 0; i != 16; ++i)
5273      ShufIdxs[i] = (i&3)+4;
5274    break;
5275  case OP_VSPLTISW2:
5276    for (unsigned i = 0; i != 16; ++i)
5277      ShufIdxs[i] = (i&3)+8;
5278    break;
5279  case OP_VSPLTISW3:
5280    for (unsigned i = 0; i != 16; ++i)
5281      ShufIdxs[i] = (i&3)+12;
5282    break;
5283  case OP_VSLDOI4:
5284    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5285  case OP_VSLDOI8:
5286    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5287  case OP_VSLDOI12:
5288    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5289  }
5290  EVT VT = OpLHS.getValueType();
5291  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5292  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5293  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5294  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5295}
5296
5297/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5298/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5299/// return the code it can be lowered into.  Worst case, it can always be
5300/// lowered into a vperm.
5301SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5302                                               SelectionDAG &DAG) const {
5303  DebugLoc dl = Op.getDebugLoc();
5304  SDValue V1 = Op.getOperand(0);
5305  SDValue V2 = Op.getOperand(1);
5306  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5307  EVT VT = Op.getValueType();
5308
5309  // Cases that are handled by instructions that take permute immediates
5310  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5311  // selected by the instruction selector.
5312  if (V2.getOpcode() == ISD::UNDEF) {
5313    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5314        PPC::isSplatShuffleMask(SVOp, 2) ||
5315        PPC::isSplatShuffleMask(SVOp, 4) ||
5316        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5317        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5318        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5319        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5320        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5321        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5322        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5323        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5324        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5325      return Op;
5326    }
5327  }
5328
5329  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5330  // and produce a fixed permutation.  If any of these match, do not lower to
5331  // VPERM.
5332  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5333      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5334      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5335      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5336      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5337      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5338      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5339      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5340      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5341    return Op;
5342
5343  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5344  // perfect shuffle table to emit an optimal matching sequence.
5345  ArrayRef<int> PermMask = SVOp->getMask();
5346
5347  unsigned PFIndexes[4];
5348  bool isFourElementShuffle = true;
5349  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5350    unsigned EltNo = 8;   // Start out undef.
5351    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5352      if (PermMask[i*4+j] < 0)
5353        continue;   // Undef, ignore it.
5354
5355      unsigned ByteSource = PermMask[i*4+j];
5356      if ((ByteSource & 3) != j) {
5357        isFourElementShuffle = false;
5358        break;
5359      }
5360
5361      if (EltNo == 8) {
5362        EltNo = ByteSource/4;
5363      } else if (EltNo != ByteSource/4) {
5364        isFourElementShuffle = false;
5365        break;
5366      }
5367    }
5368    PFIndexes[i] = EltNo;
5369  }
5370
5371  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5372  // perfect shuffle vector to determine if it is cost effective to do this as
5373  // discrete instructions, or whether we should use a vperm.
5374  if (isFourElementShuffle) {
5375    // Compute the index in the perfect shuffle table.
5376    unsigned PFTableIndex =
5377      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5378
5379    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5380    unsigned Cost  = (PFEntry >> 30);
5381
5382    // Determining when to avoid vperm is tricky.  Many things affect the cost
5383    // of vperm, particularly how many times the perm mask needs to be computed.
5384    // For example, if the perm mask can be hoisted out of a loop or is already
5385    // used (perhaps because there are multiple permutes with the same shuffle
5386    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5387    // the loop requires an extra register.
5388    //
5389    // As a compromise, we only emit discrete instructions if the shuffle can be
5390    // generated in 3 or fewer operations.  When we have loop information
5391    // available, if this block is within a loop, we should avoid using vperm
5392    // for 3-operation perms and use a constant pool load instead.
5393    if (Cost < 3)
5394      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5395  }
5396
5397  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5398  // vector that will get spilled to the constant pool.
5399  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5400
5401  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5402  // that it is in input element units, not in bytes.  Convert now.
5403  EVT EltVT = V1.getValueType().getVectorElementType();
5404  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5405
5406  SmallVector<SDValue, 16> ResultMask;
5407  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5408    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5409
5410    for (unsigned j = 0; j != BytesPerElement; ++j)
5411      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5412                                           MVT::i32));
5413  }
5414
5415  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5416                                    &ResultMask[0], ResultMask.size());
5417  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5418}
5419
5420/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5421/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5422/// information about the intrinsic.
5423static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5424                                  bool &isDot) {
5425  unsigned IntrinsicID =
5426    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5427  CompareOpc = -1;
5428  isDot = false;
5429  switch (IntrinsicID) {
5430  default: return false;
5431    // Comparison predicates.
5432  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5433  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5434  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5435  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5436  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5437  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5438  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5439  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5440  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5441  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5442  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5443  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5444  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5445
5446    // Normal Comparisons.
5447  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5448  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5449  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5450  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5451  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5452  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5453  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5454  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5455  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5456  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5457  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5458  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5459  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5460  }
5461  return true;
5462}
5463
5464/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5465/// lower, do it, otherwise return null.
5466SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5467                                                   SelectionDAG &DAG) const {
5468  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5469  // opcode number of the comparison.
5470  DebugLoc dl = Op.getDebugLoc();
5471  int CompareOpc;
5472  bool isDot;
5473  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5474    return SDValue();    // Don't custom lower most intrinsics.
5475
5476  // If this is a non-dot comparison, make the VCMP node and we are done.
5477  if (!isDot) {
5478    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5479                              Op.getOperand(1), Op.getOperand(2),
5480                              DAG.getConstant(CompareOpc, MVT::i32));
5481    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5482  }
5483
5484  // Create the PPCISD altivec 'dot' comparison node.
5485  SDValue Ops[] = {
5486    Op.getOperand(2),  // LHS
5487    Op.getOperand(3),  // RHS
5488    DAG.getConstant(CompareOpc, MVT::i32)
5489  };
5490  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5491  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5492
5493  // Now that we have the comparison, emit a copy from the CR to a GPR.
5494  // This is flagged to the above dot comparison.
5495  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5496                                DAG.getRegister(PPC::CR6, MVT::i32),
5497                                CompNode.getValue(1));
5498
5499  // Unpack the result based on how the target uses it.
5500  unsigned BitNo;   // Bit # of CR6.
5501  bool InvertBit;   // Invert result?
5502  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5503  default:  // Can't happen, don't crash on invalid number though.
5504  case 0:   // Return the value of the EQ bit of CR6.
5505    BitNo = 0; InvertBit = false;
5506    break;
5507  case 1:   // Return the inverted value of the EQ bit of CR6.
5508    BitNo = 0; InvertBit = true;
5509    break;
5510  case 2:   // Return the value of the LT bit of CR6.
5511    BitNo = 2; InvertBit = false;
5512    break;
5513  case 3:   // Return the inverted value of the LT bit of CR6.
5514    BitNo = 2; InvertBit = true;
5515    break;
5516  }
5517
5518  // Shift the bit into the low position.
5519  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5520                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5521  // Isolate the bit.
5522  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5523                      DAG.getConstant(1, MVT::i32));
5524
5525  // If we are supposed to, toggle the bit.
5526  if (InvertBit)
5527    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5528                        DAG.getConstant(1, MVT::i32));
5529  return Flags;
5530}
5531
5532SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5533                                                   SelectionDAG &DAG) const {
5534  DebugLoc dl = Op.getDebugLoc();
5535  // Create a stack slot that is 16-byte aligned.
5536  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5537  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5538  EVT PtrVT = getPointerTy();
5539  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5540
5541  // Store the input value into Value#0 of the stack slot.
5542  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5543                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5544                               false, false, 0);
5545  // Load it out.
5546  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5547                     false, false, false, 0);
5548}
5549
5550SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5551  DebugLoc dl = Op.getDebugLoc();
5552  if (Op.getValueType() == MVT::v4i32) {
5553    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5554
5555    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5556    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5557
5558    SDValue RHSSwap =   // = vrlw RHS, 16
5559      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5560
5561    // Shrinkify inputs to v8i16.
5562    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5563    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5564    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5565
5566    // Low parts multiplied together, generating 32-bit results (we ignore the
5567    // top parts).
5568    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5569                                        LHS, RHS, DAG, dl, MVT::v4i32);
5570
5571    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5572                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5573    // Shift the high parts up 16 bits.
5574    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5575                              Neg16, DAG, dl);
5576    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5577  } else if (Op.getValueType() == MVT::v8i16) {
5578    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5579
5580    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5581
5582    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5583                            LHS, RHS, Zero, DAG, dl);
5584  } else if (Op.getValueType() == MVT::v16i8) {
5585    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5586
5587    // Multiply the even 8-bit parts, producing 16-bit sums.
5588    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5589                                           LHS, RHS, DAG, dl, MVT::v8i16);
5590    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5591
5592    // Multiply the odd 8-bit parts, producing 16-bit sums.
5593    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5594                                          LHS, RHS, DAG, dl, MVT::v8i16);
5595    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5596
5597    // Merge the results together.
5598    int Ops[16];
5599    for (unsigned i = 0; i != 8; ++i) {
5600      Ops[i*2  ] = 2*i+1;
5601      Ops[i*2+1] = 2*i+1+16;
5602    }
5603    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5604  } else {
5605    llvm_unreachable("Unknown mul to lower!");
5606  }
5607}
5608
5609/// LowerOperation - Provide custom lowering hooks for some operations.
5610///
5611SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5612  switch (Op.getOpcode()) {
5613  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5614  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5615  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5616  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5617  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5618  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5619  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5620  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5621  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5622  case ISD::VASTART:
5623    return LowerVASTART(Op, DAG, PPCSubTarget);
5624
5625  case ISD::VAARG:
5626    return LowerVAARG(Op, DAG, PPCSubTarget);
5627
5628  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5629  case ISD::DYNAMIC_STACKALLOC:
5630    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5631
5632  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5633  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5634
5635  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5636  case ISD::FP_TO_UINT:
5637  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5638                                                       Op.getDebugLoc());
5639  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5640  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5641
5642  // Lower 64-bit shifts.
5643  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5644  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5645  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5646
5647  // Vector-related lowering.
5648  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5649  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5650  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5651  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5652  case ISD::MUL:                return LowerMUL(Op, DAG);
5653
5654  // Frame & Return address.
5655  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5656  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5657  }
5658}
5659
5660void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5661                                           SmallVectorImpl<SDValue>&Results,
5662                                           SelectionDAG &DAG) const {
5663  const TargetMachine &TM = getTargetMachine();
5664  DebugLoc dl = N->getDebugLoc();
5665  switch (N->getOpcode()) {
5666  default:
5667    llvm_unreachable("Do not know how to custom type legalize this operation!");
5668  case ISD::VAARG: {
5669    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5670        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5671      return;
5672
5673    EVT VT = N->getValueType(0);
5674
5675    if (VT == MVT::i64) {
5676      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5677
5678      Results.push_back(NewNode);
5679      Results.push_back(NewNode.getValue(1));
5680    }
5681    return;
5682  }
5683  case ISD::FP_ROUND_INREG: {
5684    assert(N->getValueType(0) == MVT::ppcf128);
5685    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5686    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5687                             MVT::f64, N->getOperand(0),
5688                             DAG.getIntPtrConstant(0));
5689    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5690                             MVT::f64, N->getOperand(0),
5691                             DAG.getIntPtrConstant(1));
5692
5693    // Add the two halves of the long double in round-to-zero mode.
5694    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5695
5696    // We know the low half is about to be thrown away, so just use something
5697    // convenient.
5698    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5699                                FPreg, FPreg));
5700    return;
5701  }
5702  case ISD::FP_TO_SINT:
5703    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5704    return;
5705  }
5706}
5707
5708
5709//===----------------------------------------------------------------------===//
5710//  Other Lowering Code
5711//===----------------------------------------------------------------------===//
5712
5713MachineBasicBlock *
5714PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5715                                    bool is64bit, unsigned BinOpcode) const {
5716  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5717  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5718
5719  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5720  MachineFunction *F = BB->getParent();
5721  MachineFunction::iterator It = BB;
5722  ++It;
5723
5724  unsigned dest = MI->getOperand(0).getReg();
5725  unsigned ptrA = MI->getOperand(1).getReg();
5726  unsigned ptrB = MI->getOperand(2).getReg();
5727  unsigned incr = MI->getOperand(3).getReg();
5728  DebugLoc dl = MI->getDebugLoc();
5729
5730  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5731  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5732  F->insert(It, loopMBB);
5733  F->insert(It, exitMBB);
5734  exitMBB->splice(exitMBB->begin(), BB,
5735                  llvm::next(MachineBasicBlock::iterator(MI)),
5736                  BB->end());
5737  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5738
5739  MachineRegisterInfo &RegInfo = F->getRegInfo();
5740  unsigned TmpReg = (!BinOpcode) ? incr :
5741    RegInfo.createVirtualRegister(
5742       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5743                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5744
5745  //  thisMBB:
5746  //   ...
5747  //   fallthrough --> loopMBB
5748  BB->addSuccessor(loopMBB);
5749
5750  //  loopMBB:
5751  //   l[wd]arx dest, ptr
5752  //   add r0, dest, incr
5753  //   st[wd]cx. r0, ptr
5754  //   bne- loopMBB
5755  //   fallthrough --> exitMBB
5756  BB = loopMBB;
5757  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5758    .addReg(ptrA).addReg(ptrB);
5759  if (BinOpcode)
5760    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5761  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5762    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5763  BuildMI(BB, dl, TII->get(PPC::BCC))
5764    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5765  BB->addSuccessor(loopMBB);
5766  BB->addSuccessor(exitMBB);
5767
5768  //  exitMBB:
5769  //   ...
5770  BB = exitMBB;
5771  return BB;
5772}
5773
5774MachineBasicBlock *
5775PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5776                                            MachineBasicBlock *BB,
5777                                            bool is8bit,    // operation
5778                                            unsigned BinOpcode) const {
5779  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5780  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5781  // In 64 bit mode we have to use 64 bits for addresses, even though the
5782  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5783  // registers without caring whether they're 32 or 64, but here we're
5784  // doing actual arithmetic on the addresses.
5785  bool is64bit = PPCSubTarget.isPPC64();
5786  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5787
5788  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5789  MachineFunction *F = BB->getParent();
5790  MachineFunction::iterator It = BB;
5791  ++It;
5792
5793  unsigned dest = MI->getOperand(0).getReg();
5794  unsigned ptrA = MI->getOperand(1).getReg();
5795  unsigned ptrB = MI->getOperand(2).getReg();
5796  unsigned incr = MI->getOperand(3).getReg();
5797  DebugLoc dl = MI->getDebugLoc();
5798
5799  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5800  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5801  F->insert(It, loopMBB);
5802  F->insert(It, exitMBB);
5803  exitMBB->splice(exitMBB->begin(), BB,
5804                  llvm::next(MachineBasicBlock::iterator(MI)),
5805                  BB->end());
5806  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5807
5808  MachineRegisterInfo &RegInfo = F->getRegInfo();
5809  const TargetRegisterClass *RC =
5810    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5811              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5812  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5813  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5814  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5815  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5816  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5817  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5818  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5819  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5820  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5821  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5822  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5823  unsigned Ptr1Reg;
5824  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5825
5826  //  thisMBB:
5827  //   ...
5828  //   fallthrough --> loopMBB
5829  BB->addSuccessor(loopMBB);
5830
5831  // The 4-byte load must be aligned, while a char or short may be
5832  // anywhere in the word.  Hence all this nasty bookkeeping code.
5833  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5834  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5835  //   xori shift, shift1, 24 [16]
5836  //   rlwinm ptr, ptr1, 0, 0, 29
5837  //   slw incr2, incr, shift
5838  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5839  //   slw mask, mask2, shift
5840  //  loopMBB:
5841  //   lwarx tmpDest, ptr
5842  //   add tmp, tmpDest, incr2
5843  //   andc tmp2, tmpDest, mask
5844  //   and tmp3, tmp, mask
5845  //   or tmp4, tmp3, tmp2
5846  //   stwcx. tmp4, ptr
5847  //   bne- loopMBB
5848  //   fallthrough --> exitMBB
5849  //   srw dest, tmpDest, shift
5850  if (ptrA != ZeroReg) {
5851    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5852    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5853      .addReg(ptrA).addReg(ptrB);
5854  } else {
5855    Ptr1Reg = ptrB;
5856  }
5857  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5858      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5859  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5860      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5861  if (is64bit)
5862    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5863      .addReg(Ptr1Reg).addImm(0).addImm(61);
5864  else
5865    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5866      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5867  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5868      .addReg(incr).addReg(ShiftReg);
5869  if (is8bit)
5870    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5871  else {
5872    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5873    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5874  }
5875  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5876      .addReg(Mask2Reg).addReg(ShiftReg);
5877
5878  BB = loopMBB;
5879  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5880    .addReg(ZeroReg).addReg(PtrReg);
5881  if (BinOpcode)
5882    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5883      .addReg(Incr2Reg).addReg(TmpDestReg);
5884  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5885    .addReg(TmpDestReg).addReg(MaskReg);
5886  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5887    .addReg(TmpReg).addReg(MaskReg);
5888  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5889    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5890  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5891    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5892  BuildMI(BB, dl, TII->get(PPC::BCC))
5893    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5894  BB->addSuccessor(loopMBB);
5895  BB->addSuccessor(exitMBB);
5896
5897  //  exitMBB:
5898  //   ...
5899  BB = exitMBB;
5900  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5901    .addReg(ShiftReg);
5902  return BB;
5903}
5904
5905llvm::MachineBasicBlock*
5906PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
5907                                    MachineBasicBlock *MBB) const {
5908  DebugLoc DL = MI->getDebugLoc();
5909  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5910
5911  MachineFunction *MF = MBB->getParent();
5912  MachineRegisterInfo &MRI = MF->getRegInfo();
5913
5914  const BasicBlock *BB = MBB->getBasicBlock();
5915  MachineFunction::iterator I = MBB;
5916  ++I;
5917
5918  // Memory Reference
5919  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
5920  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
5921
5922  unsigned DstReg = MI->getOperand(0).getReg();
5923  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
5924  assert(RC->hasType(MVT::i32) && "Invalid destination!");
5925  unsigned mainDstReg = MRI.createVirtualRegister(RC);
5926  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
5927
5928  MVT PVT = getPointerTy();
5929  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
5930         "Invalid Pointer Size!");
5931  // For v = setjmp(buf), we generate
5932  //
5933  // thisMBB:
5934  //  SjLjSetup mainMBB
5935  //  bl mainMBB
5936  //  v_restore = 1
5937  //  b sinkMBB
5938  //
5939  // mainMBB:
5940  //  buf[LabelOffset] = LR
5941  //  v_main = 0
5942  //
5943  // sinkMBB:
5944  //  v = phi(main, restore)
5945  //
5946
5947  MachineBasicBlock *thisMBB = MBB;
5948  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
5949  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
5950  MF->insert(I, mainMBB);
5951  MF->insert(I, sinkMBB);
5952
5953  MachineInstrBuilder MIB;
5954
5955  // Transfer the remainder of BB and its successor edges to sinkMBB.
5956  sinkMBB->splice(sinkMBB->begin(), MBB,
5957                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
5958  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
5959
5960  // Note that the structure of the jmp_buf used here is not compatible
5961  // with that used by libc, and is not designed to be. Specifically, it
5962  // stores only those 'reserved' registers that LLVM does not otherwise
5963  // understand how to spill. Also, by convention, by the time this
5964  // intrinsic is called, Clang has already stored the frame address in the
5965  // first slot of the buffer and stack address in the third. Following the
5966  // X86 target code, we'll store the jump address in the second slot. We also
5967  // need to save the TOC pointer (R2) to handle jumps between shared
5968  // libraries, and that will be stored in the fourth slot. The thread
5969  // identifier (R13) is not affected.
5970
5971  // thisMBB:
5972  const int64_t LabelOffset = 1 * PVT.getStoreSize();
5973  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
5974
5975  // Prepare IP either in reg.
5976  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
5977  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
5978  unsigned BufReg = MI->getOperand(1).getReg();
5979
5980  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
5981    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
5982            .addReg(PPC::X2)
5983            .addImm(TOCOffset / 4)
5984            .addReg(BufReg);
5985
5986    MIB.setMemRefs(MMOBegin, MMOEnd);
5987  }
5988
5989  // Setup
5990  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCL)).addMBB(mainMBB);
5991  MIB.addRegMask(PPCRegInfo->getNoPreservedMask());
5992
5993  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
5994
5995  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
5996          .addMBB(mainMBB);
5997  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
5998
5999  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6000  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6001
6002  // mainMBB:
6003  //  mainDstReg = 0
6004  MIB = BuildMI(mainMBB, DL,
6005    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6006
6007  // Store IP
6008  if (PPCSubTarget.isPPC64()) {
6009    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6010            .addReg(LabelReg)
6011            .addImm(LabelOffset / 4)
6012            .addReg(BufReg);
6013  } else {
6014    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6015            .addReg(LabelReg)
6016            .addImm(LabelOffset)
6017            .addReg(BufReg);
6018  }
6019
6020  MIB.setMemRefs(MMOBegin, MMOEnd);
6021
6022  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6023  mainMBB->addSuccessor(sinkMBB);
6024
6025  // sinkMBB:
6026  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6027          TII->get(PPC::PHI), DstReg)
6028    .addReg(mainDstReg).addMBB(mainMBB)
6029    .addReg(restoreDstReg).addMBB(thisMBB);
6030
6031  MI->eraseFromParent();
6032  return sinkMBB;
6033}
6034
6035MachineBasicBlock *
6036PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6037                                     MachineBasicBlock *MBB) const {
6038  DebugLoc DL = MI->getDebugLoc();
6039  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6040
6041  MachineFunction *MF = MBB->getParent();
6042  MachineRegisterInfo &MRI = MF->getRegInfo();
6043
6044  // Memory Reference
6045  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6046  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6047
6048  MVT PVT = getPointerTy();
6049  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6050         "Invalid Pointer Size!");
6051
6052  const TargetRegisterClass *RC =
6053    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6054  unsigned Tmp = MRI.createVirtualRegister(RC);
6055  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6056  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6057  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6058
6059  MachineInstrBuilder MIB;
6060
6061  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6062  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6063  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6064
6065  unsigned BufReg = MI->getOperand(0).getReg();
6066
6067  // Reload FP (the jumped-to function may not have had a
6068  // frame pointer, and if so, then its r31 will be restored
6069  // as necessary).
6070  if (PVT == MVT::i64) {
6071    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6072            .addImm(0)
6073            .addReg(BufReg);
6074  } else {
6075    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6076            .addImm(0)
6077            .addReg(BufReg);
6078  }
6079  MIB.setMemRefs(MMOBegin, MMOEnd);
6080
6081  // Reload IP
6082  if (PVT == MVT::i64) {
6083    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6084            .addImm(LabelOffset / 4)
6085            .addReg(BufReg);
6086  } else {
6087    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6088            .addImm(LabelOffset)
6089            .addReg(BufReg);
6090  }
6091  MIB.setMemRefs(MMOBegin, MMOEnd);
6092
6093  // Reload SP
6094  if (PVT == MVT::i64) {
6095    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6096            .addImm(SPOffset / 4)
6097            .addReg(BufReg);
6098  } else {
6099    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6100            .addImm(SPOffset)
6101            .addReg(BufReg);
6102  }
6103  MIB.setMemRefs(MMOBegin, MMOEnd);
6104
6105  // FIXME: When we also support base pointers, that register must also be
6106  // restored here.
6107
6108  // Reload TOC
6109  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6110    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6111            .addImm(TOCOffset / 4)
6112            .addReg(BufReg);
6113
6114    MIB.setMemRefs(MMOBegin, MMOEnd);
6115  }
6116
6117  // Jump
6118  BuildMI(*MBB, MI, DL,
6119          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6120  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6121
6122  MI->eraseFromParent();
6123  return MBB;
6124}
6125
6126MachineBasicBlock *
6127PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6128                                               MachineBasicBlock *BB) const {
6129  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6130      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6131    return emitEHSjLjSetJmp(MI, BB);
6132  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6133             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6134    return emitEHSjLjLongJmp(MI, BB);
6135  }
6136
6137  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6138
6139  // To "insert" these instructions we actually have to insert their
6140  // control-flow patterns.
6141  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6142  MachineFunction::iterator It = BB;
6143  ++It;
6144
6145  MachineFunction *F = BB->getParent();
6146
6147  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6148                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6149    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
6150                                         PPC::ISEL8 : PPC::ISEL;
6151    unsigned SelectPred = MI->getOperand(4).getImm();
6152    DebugLoc dl = MI->getDebugLoc();
6153
6154    unsigned SubIdx;
6155    bool SwapOps;
6156    switch (SelectPred) {
6157    default: llvm_unreachable("invalid predicate for isel");
6158    case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
6159    case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
6160    case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
6161    case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
6162    case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
6163    case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
6164    case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
6165    case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
6166    }
6167
6168    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
6169      .addReg(MI->getOperand(SwapOps? 3 : 2).getReg())
6170      .addReg(MI->getOperand(SwapOps? 2 : 3).getReg())
6171      .addReg(MI->getOperand(1).getReg(), 0, SubIdx);
6172  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6173             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6174             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6175             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6176             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6177
6178
6179    // The incoming instruction knows the destination vreg to set, the
6180    // condition code register to branch on, the true/false values to
6181    // select between, and a branch opcode to use.
6182
6183    //  thisMBB:
6184    //  ...
6185    //   TrueVal = ...
6186    //   cmpTY ccX, r1, r2
6187    //   bCC copy1MBB
6188    //   fallthrough --> copy0MBB
6189    MachineBasicBlock *thisMBB = BB;
6190    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6191    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6192    unsigned SelectPred = MI->getOperand(4).getImm();
6193    DebugLoc dl = MI->getDebugLoc();
6194    F->insert(It, copy0MBB);
6195    F->insert(It, sinkMBB);
6196
6197    // Transfer the remainder of BB and its successor edges to sinkMBB.
6198    sinkMBB->splice(sinkMBB->begin(), BB,
6199                    llvm::next(MachineBasicBlock::iterator(MI)),
6200                    BB->end());
6201    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6202
6203    // Next, add the true and fallthrough blocks as its successors.
6204    BB->addSuccessor(copy0MBB);
6205    BB->addSuccessor(sinkMBB);
6206
6207    BuildMI(BB, dl, TII->get(PPC::BCC))
6208      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6209
6210    //  copy0MBB:
6211    //   %FalseValue = ...
6212    //   # fallthrough to sinkMBB
6213    BB = copy0MBB;
6214
6215    // Update machine-CFG edges
6216    BB->addSuccessor(sinkMBB);
6217
6218    //  sinkMBB:
6219    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6220    //  ...
6221    BB = sinkMBB;
6222    BuildMI(*BB, BB->begin(), dl,
6223            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6224      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6225      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6226  }
6227  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6228    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6229  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6230    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6231  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6232    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6233  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6234    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6235
6236  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6237    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6238  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6239    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6240  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6241    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6242  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6243    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6244
6245  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6246    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6247  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6248    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6249  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6250    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6251  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6252    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6253
6254  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6255    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6256  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6257    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6258  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6259    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6260  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6261    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6262
6263  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6264    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6265  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6266    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6267  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6268    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6269  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6270    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6271
6272  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6273    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6274  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6275    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6276  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6277    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6278  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6279    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6280
6281  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6282    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6283  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6284    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6285  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6286    BB = EmitAtomicBinary(MI, BB, false, 0);
6287  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6288    BB = EmitAtomicBinary(MI, BB, true, 0);
6289
6290  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6291           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6292    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6293
6294    unsigned dest   = MI->getOperand(0).getReg();
6295    unsigned ptrA   = MI->getOperand(1).getReg();
6296    unsigned ptrB   = MI->getOperand(2).getReg();
6297    unsigned oldval = MI->getOperand(3).getReg();
6298    unsigned newval = MI->getOperand(4).getReg();
6299    DebugLoc dl     = MI->getDebugLoc();
6300
6301    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6302    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6303    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6304    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6305    F->insert(It, loop1MBB);
6306    F->insert(It, loop2MBB);
6307    F->insert(It, midMBB);
6308    F->insert(It, exitMBB);
6309    exitMBB->splice(exitMBB->begin(), BB,
6310                    llvm::next(MachineBasicBlock::iterator(MI)),
6311                    BB->end());
6312    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6313
6314    //  thisMBB:
6315    //   ...
6316    //   fallthrough --> loopMBB
6317    BB->addSuccessor(loop1MBB);
6318
6319    // loop1MBB:
6320    //   l[wd]arx dest, ptr
6321    //   cmp[wd] dest, oldval
6322    //   bne- midMBB
6323    // loop2MBB:
6324    //   st[wd]cx. newval, ptr
6325    //   bne- loopMBB
6326    //   b exitBB
6327    // midMBB:
6328    //   st[wd]cx. dest, ptr
6329    // exitBB:
6330    BB = loop1MBB;
6331    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6332      .addReg(ptrA).addReg(ptrB);
6333    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6334      .addReg(oldval).addReg(dest);
6335    BuildMI(BB, dl, TII->get(PPC::BCC))
6336      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6337    BB->addSuccessor(loop2MBB);
6338    BB->addSuccessor(midMBB);
6339
6340    BB = loop2MBB;
6341    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6342      .addReg(newval).addReg(ptrA).addReg(ptrB);
6343    BuildMI(BB, dl, TII->get(PPC::BCC))
6344      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6345    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6346    BB->addSuccessor(loop1MBB);
6347    BB->addSuccessor(exitMBB);
6348
6349    BB = midMBB;
6350    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6351      .addReg(dest).addReg(ptrA).addReg(ptrB);
6352    BB->addSuccessor(exitMBB);
6353
6354    //  exitMBB:
6355    //   ...
6356    BB = exitMBB;
6357  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6358             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6359    // We must use 64-bit registers for addresses when targeting 64-bit,
6360    // since we're actually doing arithmetic on them.  Other registers
6361    // can be 32-bit.
6362    bool is64bit = PPCSubTarget.isPPC64();
6363    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6364
6365    unsigned dest   = MI->getOperand(0).getReg();
6366    unsigned ptrA   = MI->getOperand(1).getReg();
6367    unsigned ptrB   = MI->getOperand(2).getReg();
6368    unsigned oldval = MI->getOperand(3).getReg();
6369    unsigned newval = MI->getOperand(4).getReg();
6370    DebugLoc dl     = MI->getDebugLoc();
6371
6372    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6373    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6374    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6375    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6376    F->insert(It, loop1MBB);
6377    F->insert(It, loop2MBB);
6378    F->insert(It, midMBB);
6379    F->insert(It, exitMBB);
6380    exitMBB->splice(exitMBB->begin(), BB,
6381                    llvm::next(MachineBasicBlock::iterator(MI)),
6382                    BB->end());
6383    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6384
6385    MachineRegisterInfo &RegInfo = F->getRegInfo();
6386    const TargetRegisterClass *RC =
6387      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6388                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6389    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6390    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6391    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6392    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6393    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6394    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6395    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6396    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6397    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6398    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6399    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6400    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6401    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6402    unsigned Ptr1Reg;
6403    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6404    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6405    //  thisMBB:
6406    //   ...
6407    //   fallthrough --> loopMBB
6408    BB->addSuccessor(loop1MBB);
6409
6410    // The 4-byte load must be aligned, while a char or short may be
6411    // anywhere in the word.  Hence all this nasty bookkeeping code.
6412    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6413    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6414    //   xori shift, shift1, 24 [16]
6415    //   rlwinm ptr, ptr1, 0, 0, 29
6416    //   slw newval2, newval, shift
6417    //   slw oldval2, oldval,shift
6418    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6419    //   slw mask, mask2, shift
6420    //   and newval3, newval2, mask
6421    //   and oldval3, oldval2, mask
6422    // loop1MBB:
6423    //   lwarx tmpDest, ptr
6424    //   and tmp, tmpDest, mask
6425    //   cmpw tmp, oldval3
6426    //   bne- midMBB
6427    // loop2MBB:
6428    //   andc tmp2, tmpDest, mask
6429    //   or tmp4, tmp2, newval3
6430    //   stwcx. tmp4, ptr
6431    //   bne- loop1MBB
6432    //   b exitBB
6433    // midMBB:
6434    //   stwcx. tmpDest, ptr
6435    // exitBB:
6436    //   srw dest, tmpDest, shift
6437    if (ptrA != ZeroReg) {
6438      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6439      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6440        .addReg(ptrA).addReg(ptrB);
6441    } else {
6442      Ptr1Reg = ptrB;
6443    }
6444    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6445        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6446    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6447        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6448    if (is64bit)
6449      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6450        .addReg(Ptr1Reg).addImm(0).addImm(61);
6451    else
6452      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6453        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6454    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6455        .addReg(newval).addReg(ShiftReg);
6456    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6457        .addReg(oldval).addReg(ShiftReg);
6458    if (is8bit)
6459      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6460    else {
6461      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6462      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6463        .addReg(Mask3Reg).addImm(65535);
6464    }
6465    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6466        .addReg(Mask2Reg).addReg(ShiftReg);
6467    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6468        .addReg(NewVal2Reg).addReg(MaskReg);
6469    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6470        .addReg(OldVal2Reg).addReg(MaskReg);
6471
6472    BB = loop1MBB;
6473    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6474        .addReg(ZeroReg).addReg(PtrReg);
6475    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6476        .addReg(TmpDestReg).addReg(MaskReg);
6477    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6478        .addReg(TmpReg).addReg(OldVal3Reg);
6479    BuildMI(BB, dl, TII->get(PPC::BCC))
6480        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6481    BB->addSuccessor(loop2MBB);
6482    BB->addSuccessor(midMBB);
6483
6484    BB = loop2MBB;
6485    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6486        .addReg(TmpDestReg).addReg(MaskReg);
6487    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6488        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6489    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6490        .addReg(ZeroReg).addReg(PtrReg);
6491    BuildMI(BB, dl, TII->get(PPC::BCC))
6492      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6493    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6494    BB->addSuccessor(loop1MBB);
6495    BB->addSuccessor(exitMBB);
6496
6497    BB = midMBB;
6498    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6499      .addReg(ZeroReg).addReg(PtrReg);
6500    BB->addSuccessor(exitMBB);
6501
6502    //  exitMBB:
6503    //   ...
6504    BB = exitMBB;
6505    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6506      .addReg(ShiftReg);
6507  } else if (MI->getOpcode() == PPC::FADDrtz) {
6508    // This pseudo performs an FADD with rounding mode temporarily forced
6509    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6510    // is not modeled at the SelectionDAG level.
6511    unsigned Dest = MI->getOperand(0).getReg();
6512    unsigned Src1 = MI->getOperand(1).getReg();
6513    unsigned Src2 = MI->getOperand(2).getReg();
6514    DebugLoc dl   = MI->getDebugLoc();
6515
6516    MachineRegisterInfo &RegInfo = F->getRegInfo();
6517    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6518
6519    // Save FPSCR value.
6520    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6521
6522    // Set rounding mode to round-to-zero.
6523    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6524    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6525
6526    // Perform addition.
6527    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6528
6529    // Restore FPSCR value.
6530    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6531  } else if (MI->getOpcode() == PPC::FRINDrint ||
6532             MI->getOpcode() == PPC::FRINSrint) {
6533    bool isf32 = MI->getOpcode() == PPC::FRINSrint;
6534    unsigned Dest = MI->getOperand(0).getReg();
6535    unsigned Src = MI->getOperand(1).getReg();
6536    DebugLoc dl   = MI->getDebugLoc();
6537
6538    MachineRegisterInfo &RegInfo = F->getRegInfo();
6539    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
6540
6541    // Perform the rounding.
6542    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
6543      .addReg(Src);
6544
6545    // Compare the results.
6546    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
6547      .addReg(Dest).addReg(Src);
6548
6549    // If the results were not equal, then set the FPSCR XX bit.
6550    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6551    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6552    F->insert(It, midMBB);
6553    F->insert(It, exitMBB);
6554    exitMBB->splice(exitMBB->begin(), BB,
6555                    llvm::next(MachineBasicBlock::iterator(MI)),
6556                    BB->end());
6557    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6558
6559    BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
6560      .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
6561
6562    BB->addSuccessor(midMBB);
6563    BB->addSuccessor(exitMBB);
6564
6565    BB = midMBB;
6566
6567    // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
6568    // the FI bit here because that will not automatically set XX also,
6569    // and XX is what libm interprets as the FE_INEXACT flag.
6570    BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
6571    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6572
6573    BB->addSuccessor(exitMBB);
6574
6575    BB = exitMBB;
6576  } else {
6577    llvm_unreachable("Unexpected instr type to insert");
6578  }
6579
6580  MI->eraseFromParent();   // The pseudo instruction is gone now.
6581  return BB;
6582}
6583
6584//===----------------------------------------------------------------------===//
6585// Target Optimization Hooks
6586//===----------------------------------------------------------------------===//
6587
6588SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6589                                             DAGCombinerInfo &DCI) const {
6590  const TargetMachine &TM = getTargetMachine();
6591  SelectionDAG &DAG = DCI.DAG;
6592  DebugLoc dl = N->getDebugLoc();
6593  switch (N->getOpcode()) {
6594  default: break;
6595  case PPCISD::SHL:
6596    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6597      if (C->isNullValue())   // 0 << V -> 0.
6598        return N->getOperand(0);
6599    }
6600    break;
6601  case PPCISD::SRL:
6602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6603      if (C->isNullValue())   // 0 >>u V -> 0.
6604        return N->getOperand(0);
6605    }
6606    break;
6607  case PPCISD::SRA:
6608    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6609      if (C->isNullValue() ||   //  0 >>s V -> 0.
6610          C->isAllOnesValue())    // -1 >>s V -> -1.
6611        return N->getOperand(0);
6612    }
6613    break;
6614
6615  case ISD::SINT_TO_FP:
6616    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6617      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6618        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6619        // We allow the src/dst to be either f32/f64, but the intermediate
6620        // type must be i64.
6621        if (N->getOperand(0).getValueType() == MVT::i64 &&
6622            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6623          SDValue Val = N->getOperand(0).getOperand(0);
6624          if (Val.getValueType() == MVT::f32) {
6625            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6626            DCI.AddToWorklist(Val.getNode());
6627          }
6628
6629          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6630          DCI.AddToWorklist(Val.getNode());
6631          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6632          DCI.AddToWorklist(Val.getNode());
6633          if (N->getValueType(0) == MVT::f32) {
6634            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6635                              DAG.getIntPtrConstant(0));
6636            DCI.AddToWorklist(Val.getNode());
6637          }
6638          return Val;
6639        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6640          // If the intermediate type is i32, we can avoid the load/store here
6641          // too.
6642        }
6643      }
6644    }
6645    break;
6646  case ISD::STORE:
6647    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6648    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6649        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6650        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6651        N->getOperand(1).getValueType() == MVT::i32 &&
6652        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6653      SDValue Val = N->getOperand(1).getOperand(0);
6654      if (Val.getValueType() == MVT::f32) {
6655        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6656        DCI.AddToWorklist(Val.getNode());
6657      }
6658      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6659      DCI.AddToWorklist(Val.getNode());
6660
6661      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
6662                        N->getOperand(2), N->getOperand(3));
6663      DCI.AddToWorklist(Val.getNode());
6664      return Val;
6665    }
6666
6667    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6668    if (cast<StoreSDNode>(N)->isUnindexed() &&
6669        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6670        N->getOperand(1).getNode()->hasOneUse() &&
6671        (N->getOperand(1).getValueType() == MVT::i32 ||
6672         N->getOperand(1).getValueType() == MVT::i16 ||
6673         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6674          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6675          N->getOperand(1).getValueType() == MVT::i64))) {
6676      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6677      // Do an any-extend to 32-bits if this is a half-word input.
6678      if (BSwapOp.getValueType() == MVT::i16)
6679        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6680
6681      SDValue Ops[] = {
6682        N->getOperand(0), BSwapOp, N->getOperand(2),
6683        DAG.getValueType(N->getOperand(1).getValueType())
6684      };
6685      return
6686        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6687                                Ops, array_lengthof(Ops),
6688                                cast<StoreSDNode>(N)->getMemoryVT(),
6689                                cast<StoreSDNode>(N)->getMemOperand());
6690    }
6691    break;
6692  case ISD::BSWAP:
6693    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6694    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6695        N->getOperand(0).hasOneUse() &&
6696        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
6697         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6698          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6699          N->getValueType(0) == MVT::i64))) {
6700      SDValue Load = N->getOperand(0);
6701      LoadSDNode *LD = cast<LoadSDNode>(Load);
6702      // Create the byte-swapping load.
6703      SDValue Ops[] = {
6704        LD->getChain(),    // Chain
6705        LD->getBasePtr(),  // Ptr
6706        DAG.getValueType(N->getValueType(0)) // VT
6707      };
6708      SDValue BSLoad =
6709        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6710                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
6711                                              MVT::i64 : MVT::i32, MVT::Other),
6712                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
6713
6714      // If this is an i16 load, insert the truncate.
6715      SDValue ResVal = BSLoad;
6716      if (N->getValueType(0) == MVT::i16)
6717        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6718
6719      // First, combine the bswap away.  This makes the value produced by the
6720      // load dead.
6721      DCI.CombineTo(N, ResVal);
6722
6723      // Next, combine the load away, we give it a bogus result value but a real
6724      // chain result.  The result value is dead because the bswap is dead.
6725      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6726
6727      // Return N so it doesn't get rechecked!
6728      return SDValue(N, 0);
6729    }
6730
6731    break;
6732  case PPCISD::VCMP: {
6733    // If a VCMPo node already exists with exactly the same operands as this
6734    // node, use its result instead of this node (VCMPo computes both a CR6 and
6735    // a normal output).
6736    //
6737    if (!N->getOperand(0).hasOneUse() &&
6738        !N->getOperand(1).hasOneUse() &&
6739        !N->getOperand(2).hasOneUse()) {
6740
6741      // Scan all of the users of the LHS, looking for VCMPo's that match.
6742      SDNode *VCMPoNode = 0;
6743
6744      SDNode *LHSN = N->getOperand(0).getNode();
6745      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6746           UI != E; ++UI)
6747        if (UI->getOpcode() == PPCISD::VCMPo &&
6748            UI->getOperand(1) == N->getOperand(1) &&
6749            UI->getOperand(2) == N->getOperand(2) &&
6750            UI->getOperand(0) == N->getOperand(0)) {
6751          VCMPoNode = *UI;
6752          break;
6753        }
6754
6755      // If there is no VCMPo node, or if the flag value has a single use, don't
6756      // transform this.
6757      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6758        break;
6759
6760      // Look at the (necessarily single) use of the flag value.  If it has a
6761      // chain, this transformation is more complex.  Note that multiple things
6762      // could use the value result, which we should ignore.
6763      SDNode *FlagUser = 0;
6764      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6765           FlagUser == 0; ++UI) {
6766        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6767        SDNode *User = *UI;
6768        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6769          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6770            FlagUser = User;
6771            break;
6772          }
6773        }
6774      }
6775
6776      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
6777      // give up for right now.
6778      if (FlagUser->getOpcode() == PPCISD::MFCR)
6779        return SDValue(VCMPoNode, 0);
6780    }
6781    break;
6782  }
6783  case ISD::BR_CC: {
6784    // If this is a branch on an altivec predicate comparison, lower this so
6785    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
6786    // lowering is done pre-legalize, because the legalizer lowers the predicate
6787    // compare down to code that is difficult to reassemble.
6788    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6789    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6790    int CompareOpc;
6791    bool isDot;
6792
6793    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6794        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6795        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6796      assert(isDot && "Can't compare against a vector result!");
6797
6798      // If this is a comparison against something other than 0/1, then we know
6799      // that the condition is never/always true.
6800      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6801      if (Val != 0 && Val != 1) {
6802        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
6803          return N->getOperand(0);
6804        // Always !=, turn it into an unconditional branch.
6805        return DAG.getNode(ISD::BR, dl, MVT::Other,
6806                           N->getOperand(0), N->getOperand(4));
6807      }
6808
6809      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6810
6811      // Create the PPCISD altivec 'dot' comparison node.
6812      SDValue Ops[] = {
6813        LHS.getOperand(2),  // LHS of compare
6814        LHS.getOperand(3),  // RHS of compare
6815        DAG.getConstant(CompareOpc, MVT::i32)
6816      };
6817      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
6818      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6819
6820      // Unpack the result based on how the target uses it.
6821      PPC::Predicate CompOpc;
6822      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6823      default:  // Can't happen, don't crash on invalid number though.
6824      case 0:   // Branch on the value of the EQ bit of CR6.
6825        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6826        break;
6827      case 1:   // Branch on the inverted value of the EQ bit of CR6.
6828        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6829        break;
6830      case 2:   // Branch on the value of the LT bit of CR6.
6831        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6832        break;
6833      case 3:   // Branch on the inverted value of the LT bit of CR6.
6834        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6835        break;
6836      }
6837
6838      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6839                         DAG.getConstant(CompOpc, MVT::i32),
6840                         DAG.getRegister(PPC::CR6, MVT::i32),
6841                         N->getOperand(4), CompNode.getValue(1));
6842    }
6843    break;
6844  }
6845  }
6846
6847  return SDValue();
6848}
6849
6850//===----------------------------------------------------------------------===//
6851// Inline Assembly Support
6852//===----------------------------------------------------------------------===//
6853
6854void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6855                                                       APInt &KnownZero,
6856                                                       APInt &KnownOne,
6857                                                       const SelectionDAG &DAG,
6858                                                       unsigned Depth) const {
6859  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6860  switch (Op.getOpcode()) {
6861  default: break;
6862  case PPCISD::LBRX: {
6863    // lhbrx is known to have the top bits cleared out.
6864    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6865      KnownZero = 0xFFFF0000;
6866    break;
6867  }
6868  case ISD::INTRINSIC_WO_CHAIN: {
6869    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6870    default: break;
6871    case Intrinsic::ppc_altivec_vcmpbfp_p:
6872    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6873    case Intrinsic::ppc_altivec_vcmpequb_p:
6874    case Intrinsic::ppc_altivec_vcmpequh_p:
6875    case Intrinsic::ppc_altivec_vcmpequw_p:
6876    case Intrinsic::ppc_altivec_vcmpgefp_p:
6877    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6878    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6879    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6880    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6881    case Intrinsic::ppc_altivec_vcmpgtub_p:
6882    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6883    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6884      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6885      break;
6886    }
6887  }
6888  }
6889}
6890
6891
6892/// getConstraintType - Given a constraint, return the type of
6893/// constraint it is for this target.
6894PPCTargetLowering::ConstraintType
6895PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6896  if (Constraint.size() == 1) {
6897    switch (Constraint[0]) {
6898    default: break;
6899    case 'b':
6900    case 'r':
6901    case 'f':
6902    case 'v':
6903    case 'y':
6904      return C_RegisterClass;
6905    case 'Z':
6906      // FIXME: While Z does indicate a memory constraint, it specifically
6907      // indicates an r+r address (used in conjunction with the 'y' modifier
6908      // in the replacement string). Currently, we're forcing the base
6909      // register to be r0 in the asm printer (which is interpreted as zero)
6910      // and forming the complete address in the second register. This is
6911      // suboptimal.
6912      return C_Memory;
6913    }
6914  }
6915  return TargetLowering::getConstraintType(Constraint);
6916}
6917
6918/// Examine constraint type and operand type and determine a weight value.
6919/// This object must already have been set up with the operand type
6920/// and the current alternative constraint selected.
6921TargetLowering::ConstraintWeight
6922PPCTargetLowering::getSingleConstraintMatchWeight(
6923    AsmOperandInfo &info, const char *constraint) const {
6924  ConstraintWeight weight = CW_Invalid;
6925  Value *CallOperandVal = info.CallOperandVal;
6926    // If we don't have a value, we can't do a match,
6927    // but allow it at the lowest weight.
6928  if (CallOperandVal == NULL)
6929    return CW_Default;
6930  Type *type = CallOperandVal->getType();
6931  // Look at the constraint type.
6932  switch (*constraint) {
6933  default:
6934    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6935    break;
6936  case 'b':
6937    if (type->isIntegerTy())
6938      weight = CW_Register;
6939    break;
6940  case 'f':
6941    if (type->isFloatTy())
6942      weight = CW_Register;
6943    break;
6944  case 'd':
6945    if (type->isDoubleTy())
6946      weight = CW_Register;
6947    break;
6948  case 'v':
6949    if (type->isVectorTy())
6950      weight = CW_Register;
6951    break;
6952  case 'y':
6953    weight = CW_Register;
6954    break;
6955  case 'Z':
6956    weight = CW_Memory;
6957    break;
6958  }
6959  return weight;
6960}
6961
6962std::pair<unsigned, const TargetRegisterClass*>
6963PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6964                                                EVT VT) const {
6965  if (Constraint.size() == 1) {
6966    // GCC RS6000 Constraint Letters
6967    switch (Constraint[0]) {
6968    case 'b':   // R1-R31
6969      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6970        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
6971      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
6972    case 'r':   // R0-R31
6973      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6974        return std::make_pair(0U, &PPC::G8RCRegClass);
6975      return std::make_pair(0U, &PPC::GPRCRegClass);
6976    case 'f':
6977      if (VT == MVT::f32 || VT == MVT::i32)
6978        return std::make_pair(0U, &PPC::F4RCRegClass);
6979      if (VT == MVT::f64 || VT == MVT::i64)
6980        return std::make_pair(0U, &PPC::F8RCRegClass);
6981      break;
6982    case 'v':
6983      return std::make_pair(0U, &PPC::VRRCRegClass);
6984    case 'y':   // crrc
6985      return std::make_pair(0U, &PPC::CRRCRegClass);
6986    }
6987  }
6988
6989  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6990}
6991
6992
6993/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6994/// vector.  If it is invalid, don't add anything to Ops.
6995void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6996                                                     std::string &Constraint,
6997                                                     std::vector<SDValue>&Ops,
6998                                                     SelectionDAG &DAG) const {
6999  SDValue Result(0,0);
7000
7001  // Only support length 1 constraints.
7002  if (Constraint.length() > 1) return;
7003
7004  char Letter = Constraint[0];
7005  switch (Letter) {
7006  default: break;
7007  case 'I':
7008  case 'J':
7009  case 'K':
7010  case 'L':
7011  case 'M':
7012  case 'N':
7013  case 'O':
7014  case 'P': {
7015    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7016    if (!CST) return; // Must be an immediate to match.
7017    unsigned Value = CST->getZExtValue();
7018    switch (Letter) {
7019    default: llvm_unreachable("Unknown constraint letter!");
7020    case 'I':  // "I" is a signed 16-bit constant.
7021      if ((short)Value == (int)Value)
7022        Result = DAG.getTargetConstant(Value, Op.getValueType());
7023      break;
7024    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7025    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7026      if ((short)Value == 0)
7027        Result = DAG.getTargetConstant(Value, Op.getValueType());
7028      break;
7029    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7030      if ((Value >> 16) == 0)
7031        Result = DAG.getTargetConstant(Value, Op.getValueType());
7032      break;
7033    case 'M':  // "M" is a constant that is greater than 31.
7034      if (Value > 31)
7035        Result = DAG.getTargetConstant(Value, Op.getValueType());
7036      break;
7037    case 'N':  // "N" is a positive constant that is an exact power of two.
7038      if ((int)Value > 0 && isPowerOf2_32(Value))
7039        Result = DAG.getTargetConstant(Value, Op.getValueType());
7040      break;
7041    case 'O':  // "O" is the constant zero.
7042      if (Value == 0)
7043        Result = DAG.getTargetConstant(Value, Op.getValueType());
7044      break;
7045    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7046      if ((short)-Value == (int)-Value)
7047        Result = DAG.getTargetConstant(Value, Op.getValueType());
7048      break;
7049    }
7050    break;
7051  }
7052  }
7053
7054  if (Result.getNode()) {
7055    Ops.push_back(Result);
7056    return;
7057  }
7058
7059  // Handle standard constraint letters.
7060  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7061}
7062
7063// isLegalAddressingMode - Return true if the addressing mode represented
7064// by AM is legal for this target, for a load/store of the specified type.
7065bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7066                                              Type *Ty) const {
7067  // FIXME: PPC does not allow r+i addressing modes for vectors!
7068
7069  // PPC allows a sign-extended 16-bit immediate field.
7070  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7071    return false;
7072
7073  // No global is ever allowed as a base.
7074  if (AM.BaseGV)
7075    return false;
7076
7077  // PPC only support r+r,
7078  switch (AM.Scale) {
7079  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7080    break;
7081  case 1:
7082    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7083      return false;
7084    // Otherwise we have r+r or r+i.
7085    break;
7086  case 2:
7087    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7088      return false;
7089    // Allow 2*r as r+r.
7090    break;
7091  default:
7092    // No other scales are supported.
7093    return false;
7094  }
7095
7096  return true;
7097}
7098
7099/// isLegalAddressImmediate - Return true if the integer value can be used
7100/// as the offset of the target addressing mode for load / store of the
7101/// given type.
7102bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
7103  // PPC allows a sign-extended 16-bit immediate field.
7104  return (V > -(1 << 16) && V < (1 << 16)-1);
7105}
7106
7107bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
7108  return false;
7109}
7110
7111SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7112                                           SelectionDAG &DAG) const {
7113  MachineFunction &MF = DAG.getMachineFunction();
7114  MachineFrameInfo *MFI = MF.getFrameInfo();
7115  MFI->setReturnAddressIsTaken(true);
7116
7117  DebugLoc dl = Op.getDebugLoc();
7118  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7119
7120  // Make sure the function does not optimize away the store of the RA to
7121  // the stack.
7122  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7123  FuncInfo->setLRStoreRequired();
7124  bool isPPC64 = PPCSubTarget.isPPC64();
7125  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7126
7127  if (Depth > 0) {
7128    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7129    SDValue Offset =
7130
7131      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7132                      isPPC64? MVT::i64 : MVT::i32);
7133    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7134                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7135                                   FrameAddr, Offset),
7136                       MachinePointerInfo(), false, false, false, 0);
7137  }
7138
7139  // Just load the return address off the stack.
7140  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7141  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7142                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7143}
7144
7145SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7146                                          SelectionDAG &DAG) const {
7147  DebugLoc dl = Op.getDebugLoc();
7148  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7149
7150  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7151  bool isPPC64 = PtrVT == MVT::i64;
7152
7153  MachineFunction &MF = DAG.getMachineFunction();
7154  MachineFrameInfo *MFI = MF.getFrameInfo();
7155  MFI->setFrameAddressIsTaken(true);
7156
7157  // Naked functions never have a frame pointer, and so we use r1. For all
7158  // other functions, this decision must be delayed until during PEI.
7159  unsigned FrameReg;
7160  if (MF.getFunction()->getAttributes().hasAttribute(
7161        AttributeSet::FunctionIndex, Attribute::Naked))
7162    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7163  else
7164    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7165
7166  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7167                                         PtrVT);
7168  while (Depth--)
7169    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7170                            FrameAddr, MachinePointerInfo(), false, false,
7171                            false, 0);
7172  return FrameAddr;
7173}
7174
7175bool
7176PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7177  // The PowerPC target isn't yet aware of offsets.
7178  return false;
7179}
7180
7181/// getOptimalMemOpType - Returns the target specific optimal type for load
7182/// and store operations as a result of memset, memcpy, and memmove
7183/// lowering. If DstAlign is zero that means it's safe to destination
7184/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7185/// means there isn't a need to check it against alignment requirement,
7186/// probably because the source does not need to be loaded. If 'IsMemset' is
7187/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7188/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7189/// source is constant so it does not need to be loaded.
7190/// It returns EVT::Other if the type should be determined using generic
7191/// target-independent logic.
7192EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7193                                           unsigned DstAlign, unsigned SrcAlign,
7194                                           bool IsMemset, bool ZeroMemset,
7195                                           bool MemcpyStrSrc,
7196                                           MachineFunction &MF) const {
7197  if (this->PPCSubTarget.isPPC64()) {
7198    return MVT::i64;
7199  } else {
7200    return MVT::i32;
7201  }
7202}
7203
7204bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7205                                                      bool *Fast) const {
7206  if (DisablePPCUnaligned)
7207    return false;
7208
7209  // PowerPC supports unaligned memory access for simple non-vector types.
7210  // Although accessing unaligned addresses is not as efficient as accessing
7211  // aligned addresses, it is generally more efficient than manual expansion,
7212  // and generally only traps for software emulation when crossing page
7213  // boundaries.
7214
7215  if (!VT.isSimple())
7216    return false;
7217
7218  if (VT.getSimpleVT().isVector())
7219    return false;
7220
7221  if (VT == MVT::ppcf128)
7222    return false;
7223
7224  if (Fast)
7225    *Fast = true;
7226
7227  return true;
7228}
7229
7230/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7231/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7232/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7233/// is expanded to mul + add.
7234bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7235  if (!VT.isSimple())
7236    return false;
7237
7238  switch (VT.getSimpleVT().SimpleTy) {
7239  case MVT::f32:
7240  case MVT::f64:
7241  case MVT::v4f32:
7242    return true;
7243  default:
7244    break;
7245  }
7246
7247  return false;
7248}
7249
7250Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7251  if (DisableILPPref)
7252    return TargetLowering::getSchedulingPreference(N);
7253
7254  return Sched::ILP;
7255}
7256
7257