PPCISelLowering.cpp revision 1a0248690aaa9f7baaf1247e5f65a1c0c9e3783c
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
76  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
79  // This is used in the ppcf128->int sequence.  Note it has different semantics
80  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
81  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
82
83  // PowerPC has no intrinsics for these particular operations
84  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
87
88  // PowerPC has no SREM/UREM instructions
89  setOperationAction(ISD::SREM, MVT::i32, Expand);
90  setOperationAction(ISD::UREM, MVT::i32, Expand);
91  setOperationAction(ISD::SREM, MVT::i64, Expand);
92  setOperationAction(ISD::UREM, MVT::i64, Expand);
93
94  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
103
104  // We don't support sin/cos/sqrt/fmod/pow
105  setOperationAction(ISD::FSIN , MVT::f64, Expand);
106  setOperationAction(ISD::FCOS , MVT::f64, Expand);
107  setOperationAction(ISD::FREM , MVT::f64, Expand);
108  setOperationAction(ISD::FPOW , MVT::f64, Expand);
109  setOperationAction(ISD::FSIN , MVT::f32, Expand);
110  setOperationAction(ISD::FCOS , MVT::f32, Expand);
111  setOperationAction(ISD::FREM , MVT::f32, Expand);
112  setOperationAction(ISD::FPOW , MVT::f32, Expand);
113
114  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
115
116  // If we're enabling GP optimizations, use hardware square root
117  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
118    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
119    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
120  }
121
122  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
123  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
124
125  // PowerPC does not have BSWAP, CTPOP or CTTZ
126  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
127  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
128  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
129  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
130  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
131  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
132
133  // PowerPC does not have ROTR
134  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
135
136  // PowerPC does not have Select
137  setOperationAction(ISD::SELECT, MVT::i32, Expand);
138  setOperationAction(ISD::SELECT, MVT::i64, Expand);
139  setOperationAction(ISD::SELECT, MVT::f32, Expand);
140  setOperationAction(ISD::SELECT, MVT::f64, Expand);
141
142  // PowerPC wants to turn select_cc of FP into fsel when possible.
143  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
144  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
145
146  // PowerPC wants to optimize integer setcc a bit
147  setOperationAction(ISD::SETCC, MVT::i32, Custom);
148
149  // PowerPC does not have BRCOND which requires SetCC
150  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
151
152  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
153
154  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
155  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
156
157  // PowerPC does not have [U|S]INT_TO_FP
158  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
159  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
160
161  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
162  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
163  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
164  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
165
166  // We cannot sextinreg(i1).  Expand to shifts.
167  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
168
169  // Support label based line numbers.
170  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
171  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
172
173  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
174  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
175  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
176  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
177
178
179  // We want to legalize GlobalAddress and ConstantPool nodes into the
180  // appropriate instructions to materialize the address.
181  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
182  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
183  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
184  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
185  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
186  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
187  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
188  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
189
190  // RET must be custom lowered, to meet ABI requirements
191  setOperationAction(ISD::RET               , MVT::Other, Custom);
192
193  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
194  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
195
196  // VAARG is custom lowered with ELF 32 ABI
197  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
198    setOperationAction(ISD::VAARG, MVT::Other, Custom);
199  else
200    setOperationAction(ISD::VAARG, MVT::Other, Expand);
201
202  // Use the default implementation.
203  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
204  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
205  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
206  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
208  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
209
210  // We want to custom lower some of our intrinsics.
211  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
212
213  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
214    // They also have instructions for converting between i64 and fp.
215    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
216    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
217    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
218    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
219    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
220
221    // FIXME: disable this lowered code.  This generates 64-bit register values,
222    // and we don't model the fact that the top part is clobbered by calls.  We
223    // need to flag these together so that the value isn't live across a call.
224    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
225
226    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
227    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
228  } else {
229    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
230    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
231  }
232
233  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
234    // 64-bit PowerPC implementations can support i64 types directly
235    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
236    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
237    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
238  } else {
239    // 32-bit PowerPC wants to expand i64 shifts itself.
240    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
241    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
242    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
243  }
244
245  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
246    // First set operation action for all vector types to expand. Then we
247    // will selectively turn on ones that can be effectively codegen'd.
248    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
249         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
250      // add/sub are legal for all supported vector VT's.
251      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
252      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
253
254      // We promote all shuffles to v16i8.
255      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
256      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
257
258      // We promote all non-typed operations to v4i32.
259      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
260      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
261      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
269      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
270      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
271
272      // No other operations are legal.
273      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
292    }
293
294    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
295    // with merges, splats, etc.
296    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
297
298    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
299    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
300    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
301    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
302    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
303    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
304
305    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
306    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
307    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
309
310    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
311    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
312    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
313    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
314
315    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
316    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
317
318    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
319    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
322  }
323
324  setSetCCResultType(MVT::i32);
325  setShiftAmountType(MVT::i32);
326  setSetCCResultContents(ZeroOrOneSetCCResult);
327
328  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
329    setStackPointerRegisterToSaveRestore(PPC::X1);
330    setExceptionPointerRegister(PPC::X3);
331    setExceptionSelectorRegister(PPC::X4);
332  } else {
333    setStackPointerRegisterToSaveRestore(PPC::R1);
334    setExceptionPointerRegister(PPC::R3);
335    setExceptionSelectorRegister(PPC::R4);
336  }
337
338  // We have target-specific dag combine patterns for the following nodes:
339  setTargetDAGCombine(ISD::SINT_TO_FP);
340  setTargetDAGCombine(ISD::STORE);
341  setTargetDAGCombine(ISD::BR_CC);
342  setTargetDAGCombine(ISD::BSWAP);
343
344  // Darwin long double math library functions have $LDBL128 appended.
345  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
346    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
347    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
348    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
349    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
350    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
351  }
352
353  computeRegisterProperties();
354}
355
356const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
357  switch (Opcode) {
358  default: return 0;
359  case PPCISD::FSEL:          return "PPCISD::FSEL";
360  case PPCISD::FCFID:         return "PPCISD::FCFID";
361  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
362  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
363  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
364  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
365  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
366  case PPCISD::VPERM:         return "PPCISD::VPERM";
367  case PPCISD::Hi:            return "PPCISD::Hi";
368  case PPCISD::Lo:            return "PPCISD::Lo";
369  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
370  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
371  case PPCISD::SRL:           return "PPCISD::SRL";
372  case PPCISD::SRA:           return "PPCISD::SRA";
373  case PPCISD::SHL:           return "PPCISD::SHL";
374  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
375  case PPCISD::STD_32:        return "PPCISD::STD_32";
376  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
377  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
378  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
379  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
380  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
381  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
382  case PPCISD::MFCR:          return "PPCISD::MFCR";
383  case PPCISD::VCMP:          return "PPCISD::VCMP";
384  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
385  case PPCISD::LBRX:          return "PPCISD::LBRX";
386  case PPCISD::STBRX:         return "PPCISD::STBRX";
387  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
388  case PPCISD::MFFS:          return "PPCISD::MFFS";
389  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
390  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
391  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
392  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
393  }
394}
395
396//===----------------------------------------------------------------------===//
397// Node matching predicates, for use by the tblgen matching code.
398//===----------------------------------------------------------------------===//
399
400/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
401static bool isFloatingPointZero(SDOperand Op) {
402  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
403    return CFP->getValueAPF().isZero();
404  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
405    // Maybe this has already been legalized into the constant pool?
406    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
407      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
408        return CFP->getValueAPF().isZero();
409  }
410  return false;
411}
412
413/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
414/// true if Op is undef or if it matches the specified value.
415static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
416  return Op.getOpcode() == ISD::UNDEF ||
417         cast<ConstantSDNode>(Op)->getValue() == Val;
418}
419
420/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
421/// VPKUHUM instruction.
422bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
423  if (!isUnary) {
424    for (unsigned i = 0; i != 16; ++i)
425      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
426        return false;
427  } else {
428    for (unsigned i = 0; i != 8; ++i)
429      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
430          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
431        return false;
432  }
433  return true;
434}
435
436/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
437/// VPKUWUM instruction.
438bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
439  if (!isUnary) {
440    for (unsigned i = 0; i != 16; i += 2)
441      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
442          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
443        return false;
444  } else {
445    for (unsigned i = 0; i != 8; i += 2)
446      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
447          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
448          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
449          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
450        return false;
451  }
452  return true;
453}
454
455/// isVMerge - Common function, used to match vmrg* shuffles.
456///
457static bool isVMerge(SDNode *N, unsigned UnitSize,
458                     unsigned LHSStart, unsigned RHSStart) {
459  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
460         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
461  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
462         "Unsupported merge size!");
463
464  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
465    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
466      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
467                             LHSStart+j+i*UnitSize) ||
468          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
469                             RHSStart+j+i*UnitSize))
470        return false;
471    }
472      return true;
473}
474
475/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
476/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
477bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
478  if (!isUnary)
479    return isVMerge(N, UnitSize, 8, 24);
480  return isVMerge(N, UnitSize, 8, 8);
481}
482
483/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
484/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
485bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
486  if (!isUnary)
487    return isVMerge(N, UnitSize, 0, 16);
488  return isVMerge(N, UnitSize, 0, 0);
489}
490
491
492/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
493/// amount, otherwise return -1.
494int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
495  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
496         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
497  // Find the first non-undef value in the shuffle mask.
498  unsigned i;
499  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
500    /*search*/;
501
502  if (i == 16) return -1;  // all undef.
503
504  // Otherwise, check to see if the rest of the elements are consequtively
505  // numbered from this value.
506  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
507  if (ShiftAmt < i) return -1;
508  ShiftAmt -= i;
509
510  if (!isUnary) {
511    // Check the rest of the elements to see if they are consequtive.
512    for (++i; i != 16; ++i)
513      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
514        return -1;
515  } else {
516    // Check the rest of the elements to see if they are consequtive.
517    for (++i; i != 16; ++i)
518      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
519        return -1;
520  }
521
522  return ShiftAmt;
523}
524
525/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
526/// specifies a splat of a single element that is suitable for input to
527/// VSPLTB/VSPLTH/VSPLTW.
528bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
529  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
530         N->getNumOperands() == 16 &&
531         (EltSize == 1 || EltSize == 2 || EltSize == 4));
532
533  // This is a splat operation if each element of the permute is the same, and
534  // if the value doesn't reference the second vector.
535  unsigned ElementBase = 0;
536  SDOperand Elt = N->getOperand(0);
537  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
538    ElementBase = EltV->getValue();
539  else
540    return false;   // FIXME: Handle UNDEF elements too!
541
542  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
543    return false;
544
545  // Check that they are consequtive.
546  for (unsigned i = 1; i != EltSize; ++i) {
547    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
548        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
549      return false;
550  }
551
552  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
553  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
554    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
555    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
556           "Invalid VECTOR_SHUFFLE mask!");
557    for (unsigned j = 0; j != EltSize; ++j)
558      if (N->getOperand(i+j) != N->getOperand(j))
559        return false;
560  }
561
562  return true;
563}
564
565/// isAllNegativeZeroVector - Returns true if all elements of build_vector
566/// are -0.0.
567bool PPC::isAllNegativeZeroVector(SDNode *N) {
568  assert(N->getOpcode() == ISD::BUILD_VECTOR);
569  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
570    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
571      return CFP->getValueAPF().isNegZero();
572  return false;
573}
574
575/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
576/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
577unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
578  assert(isSplatShuffleMask(N, EltSize));
579  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
580}
581
582/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
583/// by using a vspltis[bhw] instruction of the specified element size, return
584/// the constant being splatted.  The ByteSize field indicates the number of
585/// bytes of each element [124] -> [bhw].
586SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
587  SDOperand OpVal(0, 0);
588
589  // If ByteSize of the splat is bigger than the element size of the
590  // build_vector, then we have a case where we are checking for a splat where
591  // multiple elements of the buildvector are folded together into a single
592  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
593  unsigned EltSize = 16/N->getNumOperands();
594  if (EltSize < ByteSize) {
595    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
596    SDOperand UniquedVals[4];
597    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
598
599    // See if all of the elements in the buildvector agree across.
600    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
601      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
602      // If the element isn't a constant, bail fully out.
603      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
604
605
606      if (UniquedVals[i&(Multiple-1)].Val == 0)
607        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
608      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
609        return SDOperand();  // no match.
610    }
611
612    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
613    // either constant or undef values that are identical for each chunk.  See
614    // if these chunks can form into a larger vspltis*.
615
616    // Check to see if all of the leading entries are either 0 or -1.  If
617    // neither, then this won't fit into the immediate field.
618    bool LeadingZero = true;
619    bool LeadingOnes = true;
620    for (unsigned i = 0; i != Multiple-1; ++i) {
621      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
622
623      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
624      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
625    }
626    // Finally, check the least significant entry.
627    if (LeadingZero) {
628      if (UniquedVals[Multiple-1].Val == 0)
629        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
630      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
631      if (Val < 16)
632        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
633    }
634    if (LeadingOnes) {
635      if (UniquedVals[Multiple-1].Val == 0)
636        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
637      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
638      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
639        return DAG.getTargetConstant(Val, MVT::i32);
640    }
641
642    return SDOperand();
643  }
644
645  // Check to see if this buildvec has a single non-undef value in its elements.
646  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
647    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
648    if (OpVal.Val == 0)
649      OpVal = N->getOperand(i);
650    else if (OpVal != N->getOperand(i))
651      return SDOperand();
652  }
653
654  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
655
656  unsigned ValSizeInBytes = 0;
657  uint64_t Value = 0;
658  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
659    Value = CN->getValue();
660    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
661  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
662    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
663    Value = FloatToBits(CN->getValueAPF().convertToFloat());
664    ValSizeInBytes = 4;
665  }
666
667  // If the splat value is larger than the element value, then we can never do
668  // this splat.  The only case that we could fit the replicated bits into our
669  // immediate field for would be zero, and we prefer to use vxor for it.
670  if (ValSizeInBytes < ByteSize) return SDOperand();
671
672  // If the element value is larger than the splat value, cut it in half and
673  // check to see if the two halves are equal.  Continue doing this until we
674  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
675  while (ValSizeInBytes > ByteSize) {
676    ValSizeInBytes >>= 1;
677
678    // If the top half equals the bottom half, we're still ok.
679    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
680         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
681      return SDOperand();
682  }
683
684  // Properly sign extend the value.
685  int ShAmt = (4-ByteSize)*8;
686  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
687
688  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
689  if (MaskVal == 0) return SDOperand();
690
691  // Finally, if this value fits in a 5 bit sext field, return it
692  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
693    return DAG.getTargetConstant(MaskVal, MVT::i32);
694  return SDOperand();
695}
696
697//===----------------------------------------------------------------------===//
698//  Addressing Mode Selection
699//===----------------------------------------------------------------------===//
700
701/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
702/// or 64-bit immediate, and if the value can be accurately represented as a
703/// sign extension from a 16-bit value.  If so, this returns true and the
704/// immediate.
705static bool isIntS16Immediate(SDNode *N, short &Imm) {
706  if (N->getOpcode() != ISD::Constant)
707    return false;
708
709  Imm = (short)cast<ConstantSDNode>(N)->getValue();
710  if (N->getValueType(0) == MVT::i32)
711    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
712  else
713    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
714}
715static bool isIntS16Immediate(SDOperand Op, short &Imm) {
716  return isIntS16Immediate(Op.Val, Imm);
717}
718
719
720/// SelectAddressRegReg - Given the specified addressed, check to see if it
721/// can be represented as an indexed [r+r] operation.  Returns false if it
722/// can be more efficiently represented with [r+imm].
723bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
724                                            SDOperand &Index,
725                                            SelectionDAG &DAG) {
726  short imm = 0;
727  if (N.getOpcode() == ISD::ADD) {
728    if (isIntS16Immediate(N.getOperand(1), imm))
729      return false;    // r+i
730    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
731      return false;    // r+i
732
733    Base = N.getOperand(0);
734    Index = N.getOperand(1);
735    return true;
736  } else if (N.getOpcode() == ISD::OR) {
737    if (isIntS16Immediate(N.getOperand(1), imm))
738      return false;    // r+i can fold it if we can.
739
740    // If this is an or of disjoint bitfields, we can codegen this as an add
741    // (for better address arithmetic) if the LHS and RHS of the OR are provably
742    // disjoint.
743    uint64_t LHSKnownZero, LHSKnownOne;
744    uint64_t RHSKnownZero, RHSKnownOne;
745    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
746
747    if (LHSKnownZero) {
748      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
749      // If all of the bits are known zero on the LHS or RHS, the add won't
750      // carry.
751      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
752        Base = N.getOperand(0);
753        Index = N.getOperand(1);
754        return true;
755      }
756    }
757  }
758
759  return false;
760}
761
762/// Returns true if the address N can be represented by a base register plus
763/// a signed 16-bit displacement [r+imm], and if it is not better
764/// represented as reg+reg.
765bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
766                                            SDOperand &Base, SelectionDAG &DAG){
767  // If this can be more profitably realized as r+r, fail.
768  if (SelectAddressRegReg(N, Disp, Base, DAG))
769    return false;
770
771  if (N.getOpcode() == ISD::ADD) {
772    short imm = 0;
773    if (isIntS16Immediate(N.getOperand(1), imm)) {
774      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
775      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
776        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
777      } else {
778        Base = N.getOperand(0);
779      }
780      return true; // [r+i]
781    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
782      // Match LOAD (ADD (X, Lo(G))).
783      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
784             && "Cannot handle constant offsets yet!");
785      Disp = N.getOperand(1).getOperand(0);  // The global address.
786      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
787             Disp.getOpcode() == ISD::TargetConstantPool ||
788             Disp.getOpcode() == ISD::TargetJumpTable);
789      Base = N.getOperand(0);
790      return true;  // [&g+r]
791    }
792  } else if (N.getOpcode() == ISD::OR) {
793    short imm = 0;
794    if (isIntS16Immediate(N.getOperand(1), imm)) {
795      // If this is an or of disjoint bitfields, we can codegen this as an add
796      // (for better address arithmetic) if the LHS and RHS of the OR are
797      // provably disjoint.
798      uint64_t LHSKnownZero, LHSKnownOne;
799      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
800      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
801        // If all of the bits are known zero on the LHS or RHS, the add won't
802        // carry.
803        Base = N.getOperand(0);
804        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
805        return true;
806      }
807    }
808  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
809    // Loading from a constant address.
810
811    // If this address fits entirely in a 16-bit sext immediate field, codegen
812    // this as "d, 0"
813    short Imm;
814    if (isIntS16Immediate(CN, Imm)) {
815      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
816      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
817      return true;
818    }
819
820    // Handle 32-bit sext immediates with LIS + addr mode.
821    if (CN->getValueType(0) == MVT::i32 ||
822        (int64_t)CN->getValue() == (int)CN->getValue()) {
823      int Addr = (int)CN->getValue();
824
825      // Otherwise, break this down into an LIS + disp.
826      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
827
828      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
829      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
830      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
831      return true;
832    }
833  }
834
835  Disp = DAG.getTargetConstant(0, getPointerTy());
836  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
837    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
838  else
839    Base = N;
840  return true;      // [r+0]
841}
842
843/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
844/// represented as an indexed [r+r] operation.
845bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
846                                                SDOperand &Index,
847                                                SelectionDAG &DAG) {
848  // Check to see if we can easily represent this as an [r+r] address.  This
849  // will fail if it thinks that the address is more profitably represented as
850  // reg+imm, e.g. where imm = 0.
851  if (SelectAddressRegReg(N, Base, Index, DAG))
852    return true;
853
854  // If the operand is an addition, always emit this as [r+r], since this is
855  // better (for code size, and execution, as the memop does the add for free)
856  // than emitting an explicit add.
857  if (N.getOpcode() == ISD::ADD) {
858    Base = N.getOperand(0);
859    Index = N.getOperand(1);
860    return true;
861  }
862
863  // Otherwise, do it the hard way, using R0 as the base register.
864  Base = DAG.getRegister(PPC::R0, N.getValueType());
865  Index = N;
866  return true;
867}
868
869/// SelectAddressRegImmShift - Returns true if the address N can be
870/// represented by a base register plus a signed 14-bit displacement
871/// [r+imm*4].  Suitable for use by STD and friends.
872bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
873                                                 SDOperand &Base,
874                                                 SelectionDAG &DAG) {
875  // If this can be more profitably realized as r+r, fail.
876  if (SelectAddressRegReg(N, Disp, Base, DAG))
877    return false;
878
879  if (N.getOpcode() == ISD::ADD) {
880    short imm = 0;
881    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
882      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
883      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
884        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
885      } else {
886        Base = N.getOperand(0);
887      }
888      return true; // [r+i]
889    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
890      // Match LOAD (ADD (X, Lo(G))).
891      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
892             && "Cannot handle constant offsets yet!");
893      Disp = N.getOperand(1).getOperand(0);  // The global address.
894      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
895             Disp.getOpcode() == ISD::TargetConstantPool ||
896             Disp.getOpcode() == ISD::TargetJumpTable);
897      Base = N.getOperand(0);
898      return true;  // [&g+r]
899    }
900  } else if (N.getOpcode() == ISD::OR) {
901    short imm = 0;
902    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
903      // If this is an or of disjoint bitfields, we can codegen this as an add
904      // (for better address arithmetic) if the LHS and RHS of the OR are
905      // provably disjoint.
906      uint64_t LHSKnownZero, LHSKnownOne;
907      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
908      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
909        // If all of the bits are known zero on the LHS or RHS, the add won't
910        // carry.
911        Base = N.getOperand(0);
912        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
913        return true;
914      }
915    }
916  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
917    // Loading from a constant address.  Verify low two bits are clear.
918    if ((CN->getValue() & 3) == 0) {
919      // If this address fits entirely in a 14-bit sext immediate field, codegen
920      // this as "d, 0"
921      short Imm;
922      if (isIntS16Immediate(CN, Imm)) {
923        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
924        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
925        return true;
926      }
927
928      // Fold the low-part of 32-bit absolute addresses into addr mode.
929      if (CN->getValueType(0) == MVT::i32 ||
930          (int64_t)CN->getValue() == (int)CN->getValue()) {
931        int Addr = (int)CN->getValue();
932
933        // Otherwise, break this down into an LIS + disp.
934        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
935
936        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
937        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
938        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
939        return true;
940      }
941    }
942  }
943
944  Disp = DAG.getTargetConstant(0, getPointerTy());
945  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
946    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
947  else
948    Base = N;
949  return true;      // [r+0]
950}
951
952
953/// getPreIndexedAddressParts - returns true by value, base pointer and
954/// offset pointer and addressing mode by reference if the node's address
955/// can be legally represented as pre-indexed load / store address.
956bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
957                                                  SDOperand &Offset,
958                                                  ISD::MemIndexedMode &AM,
959                                                  SelectionDAG &DAG) {
960  // Disabled by default for now.
961  if (!EnablePPCPreinc) return false;
962
963  SDOperand Ptr;
964  MVT::ValueType VT;
965  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
966    Ptr = LD->getBasePtr();
967    VT = LD->getMemoryVT();
968
969  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
970    ST = ST;
971    Ptr = ST->getBasePtr();
972    VT  = ST->getMemoryVT();
973  } else
974    return false;
975
976  // PowerPC doesn't have preinc load/store instructions for vectors.
977  if (MVT::isVector(VT))
978    return false;
979
980  // TODO: Check reg+reg first.
981
982  // LDU/STU use reg+imm*4, others use reg+imm.
983  if (VT != MVT::i64) {
984    // reg + imm
985    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
986      return false;
987  } else {
988    // reg + imm * 4.
989    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
990      return false;
991  }
992
993  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
994    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
995    // sext i32 to i64 when addr mode is r+i.
996    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
997        LD->getExtensionType() == ISD::SEXTLOAD &&
998        isa<ConstantSDNode>(Offset))
999      return false;
1000  }
1001
1002  AM = ISD::PRE_INC;
1003  return true;
1004}
1005
1006//===----------------------------------------------------------------------===//
1007//  LowerOperation implementation
1008//===----------------------------------------------------------------------===//
1009
1010static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1011  MVT::ValueType PtrVT = Op.getValueType();
1012  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1013  Constant *C = CP->getConstVal();
1014  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1015  SDOperand Zero = DAG.getConstant(0, PtrVT);
1016
1017  const TargetMachine &TM = DAG.getTarget();
1018
1019  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1020  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1021
1022  // If this is a non-darwin platform, we don't support non-static relo models
1023  // yet.
1024  if (TM.getRelocationModel() == Reloc::Static ||
1025      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1026    // Generate non-pic code that has direct accesses to the constant pool.
1027    // The address of the global is just (hi(&g)+lo(&g)).
1028    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1029  }
1030
1031  if (TM.getRelocationModel() == Reloc::PIC_) {
1032    // With PIC, the first instruction is actually "GR+hi(&G)".
1033    Hi = DAG.getNode(ISD::ADD, PtrVT,
1034                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1035  }
1036
1037  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1038  return Lo;
1039}
1040
1041static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1042  MVT::ValueType PtrVT = Op.getValueType();
1043  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1044  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1045  SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047  const TargetMachine &TM = DAG.getTarget();
1048
1049  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1050  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1051
1052  // If this is a non-darwin platform, we don't support non-static relo models
1053  // yet.
1054  if (TM.getRelocationModel() == Reloc::Static ||
1055      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056    // Generate non-pic code that has direct accesses to the constant pool.
1057    // The address of the global is just (hi(&g)+lo(&g)).
1058    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  }
1060
1061  if (TM.getRelocationModel() == Reloc::PIC_) {
1062    // With PIC, the first instruction is actually "GR+hi(&G)".
1063    Hi = DAG.getNode(ISD::ADD, PtrVT,
1064                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065  }
1066
1067  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068  return Lo;
1069}
1070
1071static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1072  assert(0 && "TLS not implemented for PPC.");
1073}
1074
1075static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1076  MVT::ValueType PtrVT = Op.getValueType();
1077  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1078  GlobalValue *GV = GSDN->getGlobal();
1079  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1080  SDOperand Zero = DAG.getConstant(0, PtrVT);
1081
1082  const TargetMachine &TM = DAG.getTarget();
1083
1084  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1085  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1086
1087  // If this is a non-darwin platform, we don't support non-static relo models
1088  // yet.
1089  if (TM.getRelocationModel() == Reloc::Static ||
1090      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1091    // Generate non-pic code that has direct accesses to globals.
1092    // The address of the global is just (hi(&g)+lo(&g)).
1093    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1094  }
1095
1096  if (TM.getRelocationModel() == Reloc::PIC_) {
1097    // With PIC, the first instruction is actually "GR+hi(&G)".
1098    Hi = DAG.getNode(ISD::ADD, PtrVT,
1099                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1100  }
1101
1102  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1103
1104  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1105    return Lo;
1106
1107  // If the global is weak or external, we have to go through the lazy
1108  // resolution stub.
1109  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1110}
1111
1112static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1113  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1114
1115  // If we're comparing for equality to zero, expose the fact that this is
1116  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1117  // fold the new nodes.
1118  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1119    if (C->isNullValue() && CC == ISD::SETEQ) {
1120      MVT::ValueType VT = Op.getOperand(0).getValueType();
1121      SDOperand Zext = Op.getOperand(0);
1122      if (VT < MVT::i32) {
1123        VT = MVT::i32;
1124        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1125      }
1126      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1127      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1128      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1129                                  DAG.getConstant(Log2b, MVT::i32));
1130      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1131    }
1132    // Leave comparisons against 0 and -1 alone for now, since they're usually
1133    // optimized.  FIXME: revisit this when we can custom lower all setcc
1134    // optimizations.
1135    if (C->isAllOnesValue() || C->isNullValue())
1136      return SDOperand();
1137  }
1138
1139  // If we have an integer seteq/setne, turn it into a compare against zero
1140  // by xor'ing the rhs with the lhs, which is faster than setting a
1141  // condition register, reading it back out, and masking the correct bit.  The
1142  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1143  // the result to other bit-twiddling opportunities.
1144  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1145  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1146    MVT::ValueType VT = Op.getValueType();
1147    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1148                                Op.getOperand(1));
1149    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1150  }
1151  return SDOperand();
1152}
1153
1154static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1155                              int VarArgsFrameIndex,
1156                              int VarArgsStackOffset,
1157                              unsigned VarArgsNumGPR,
1158                              unsigned VarArgsNumFPR,
1159                              const PPCSubtarget &Subtarget) {
1160
1161  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1162}
1163
1164static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1165                              int VarArgsFrameIndex,
1166                              int VarArgsStackOffset,
1167                              unsigned VarArgsNumGPR,
1168                              unsigned VarArgsNumFPR,
1169                              const PPCSubtarget &Subtarget) {
1170
1171  if (Subtarget.isMachoABI()) {
1172    // vastart just stores the address of the VarArgsFrameIndex slot into the
1173    // memory location argument.
1174    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1175    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1176    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1177    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1178  }
1179
1180  // For ELF 32 ABI we follow the layout of the va_list struct.
1181  // We suppose the given va_list is already allocated.
1182  //
1183  // typedef struct {
1184  //  char gpr;     /* index into the array of 8 GPRs
1185  //                 * stored in the register save area
1186  //                 * gpr=0 corresponds to r3,
1187  //                 * gpr=1 to r4, etc.
1188  //                 */
1189  //  char fpr;     /* index into the array of 8 FPRs
1190  //                 * stored in the register save area
1191  //                 * fpr=0 corresponds to f1,
1192  //                 * fpr=1 to f2, etc.
1193  //                 */
1194  //  char *overflow_arg_area;
1195  //                /* location on stack that holds
1196  //                 * the next overflow argument
1197  //                 */
1198  //  char *reg_save_area;
1199  //               /* where r3:r10 and f1:f8 (if saved)
1200  //                * are stored
1201  //                */
1202  // } va_list[1];
1203
1204
1205  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1206  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1207
1208
1209  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1210
1211  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1212  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1213
1214  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1215  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1216
1217  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1218  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1219
1220  uint64_t FPROffset = 1;
1221  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1222
1223  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1224
1225  // Store first byte : number of int regs
1226  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1227                                      Op.getOperand(1), SV, 0);
1228  uint64_t nextOffset = FPROffset;
1229  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1230                                  ConstFPROffset);
1231
1232  // Store second byte : number of float regs
1233  SDOperand secondStore =
1234    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1235  nextOffset += StackOffset;
1236  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1237
1238  // Store second word : arguments given on stack
1239  SDOperand thirdStore =
1240    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1241  nextOffset += FrameOffset;
1242  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1243
1244  // Store third word : arguments given in registers
1245  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1246
1247}
1248
1249#include "PPCGenCallingConv.inc"
1250
1251/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1252/// depending on which subtarget is selected.
1253static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1254  if (Subtarget.isMachoABI()) {
1255    static const unsigned FPR[] = {
1256      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1257      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1258    };
1259    return FPR;
1260  }
1261
1262
1263  static const unsigned FPR[] = {
1264    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1265    PPC::F8
1266  };
1267  return FPR;
1268}
1269
1270static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1271                                       int &VarArgsFrameIndex,
1272                                       int &VarArgsStackOffset,
1273                                       unsigned &VarArgsNumGPR,
1274                                       unsigned &VarArgsNumFPR,
1275                                       const PPCSubtarget &Subtarget) {
1276  // TODO: add description of PPC stack frame format, or at least some docs.
1277  //
1278  MachineFunction &MF = DAG.getMachineFunction();
1279  MachineFrameInfo *MFI = MF.getFrameInfo();
1280  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1281  SmallVector<SDOperand, 8> ArgValues;
1282  SDOperand Root = Op.getOperand(0);
1283
1284  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1285  bool isPPC64 = PtrVT == MVT::i64;
1286  bool isMachoABI = Subtarget.isMachoABI();
1287  bool isELF32_ABI = Subtarget.isELF32_ABI();
1288  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1289
1290  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1291
1292  static const unsigned GPR_32[] = {           // 32-bit registers.
1293    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1294    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1295  };
1296  static const unsigned GPR_64[] = {           // 64-bit registers.
1297    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1298    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1299  };
1300
1301  static const unsigned *FPR = GetFPR(Subtarget);
1302
1303  static const unsigned VR[] = {
1304    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1305    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1306  };
1307
1308  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1309  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1310  const unsigned Num_VR_Regs  = array_lengthof( VR);
1311
1312  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1313
1314  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1315
1316  // Add DAG nodes to load the arguments or copy them out of registers.  On
1317  // entry to a function on PPC, the arguments start after the linkage area,
1318  // although the first ones are often in registers.
1319  //
1320  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1321  // represented with two words (long long or double) must be copied to an
1322  // even GPR_idx value or to an even ArgOffset value.
1323
1324  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1325    SDOperand ArgVal;
1326    bool needsLoad = false;
1327    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1328    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1329    unsigned ArgSize = ObjSize;
1330    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1331    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1332    // See if next argument requires stack alignment in ELF
1333    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1334      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1335      (!(Flags & AlignFlag)));
1336
1337    unsigned CurArgOffset = ArgOffset;
1338    switch (ObjectVT) {
1339    default: assert(0 && "Unhandled argument type!");
1340    case MVT::i32:
1341      // Double word align in ELF
1342      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1343      if (GPR_idx != Num_GPR_Regs) {
1344        unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1345        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1346        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1347        ++GPR_idx;
1348      } else {
1349        needsLoad = true;
1350        ArgSize = PtrByteSize;
1351      }
1352      // Stack align in ELF
1353      if (needsLoad && Expand && isELF32_ABI)
1354        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1355      // All int arguments reserve stack space in Macho ABI.
1356      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1357      break;
1358
1359    case MVT::i64:  // PPC64
1360      if (GPR_idx != Num_GPR_Regs) {
1361        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1362        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1363        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1364        ++GPR_idx;
1365      } else {
1366        needsLoad = true;
1367      }
1368      // All int arguments reserve stack space in Macho ABI.
1369      if (isMachoABI || needsLoad) ArgOffset += 8;
1370      break;
1371
1372    case MVT::f32:
1373    case MVT::f64:
1374      // Every 4 bytes of argument space consumes one of the GPRs available for
1375      // argument passing.
1376      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1377        ++GPR_idx;
1378        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1379          ++GPR_idx;
1380      }
1381      if (FPR_idx != Num_FPR_Regs) {
1382        unsigned VReg;
1383        if (ObjectVT == MVT::f32)
1384          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1385        else
1386          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1387        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1388        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1389        ++FPR_idx;
1390      } else {
1391        needsLoad = true;
1392      }
1393
1394      // Stack align in ELF
1395      if (needsLoad && Expand && isELF32_ABI)
1396        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1397      // All FP arguments reserve stack space in Macho ABI.
1398      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1399      break;
1400    case MVT::v4f32:
1401    case MVT::v4i32:
1402    case MVT::v8i16:
1403    case MVT::v16i8:
1404      // Note that vector arguments in registers don't reserve stack space.
1405      if (VR_idx != Num_VR_Regs) {
1406        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1407        RegInfo.addLiveIn(VR[VR_idx], VReg);
1408        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1409        ++VR_idx;
1410      } else {
1411        // This should be simple, but requires getting 16-byte aligned stack
1412        // values.
1413        assert(0 && "Loading VR argument not implemented yet!");
1414        needsLoad = true;
1415      }
1416      break;
1417    }
1418
1419    // We need to load the argument to a virtual register if we determined above
1420    // that we ran out of physical registers of the appropriate type
1421    if (needsLoad) {
1422      // If the argument is actually used, emit a load from the right stack
1423      // slot.
1424      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1425        int FI = MFI->CreateFixedObject(ObjSize,
1426                                        CurArgOffset + (ArgSize - ObjSize));
1427        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1428        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1429      } else {
1430        // Don't emit a dead load.
1431        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1432      }
1433    }
1434
1435    ArgValues.push_back(ArgVal);
1436  }
1437
1438  // If the function takes variable number of arguments, make a frame index for
1439  // the start of the first vararg value... for expansion of llvm.va_start.
1440  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1441  if (isVarArg) {
1442
1443    int depth;
1444    if (isELF32_ABI) {
1445      VarArgsNumGPR = GPR_idx;
1446      VarArgsNumFPR = FPR_idx;
1447
1448      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1449      // pointer.
1450      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1451                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1452                MVT::getSizeInBits(PtrVT)/8);
1453
1454      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1455                                                  ArgOffset);
1456
1457    }
1458    else
1459      depth = ArgOffset;
1460
1461    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1462                                               depth);
1463    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1464
1465    SmallVector<SDOperand, 8> MemOps;
1466
1467    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1468    // stored to the VarArgsFrameIndex on the stack.
1469    if (isELF32_ABI) {
1470      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1471        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1472        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1473        MemOps.push_back(Store);
1474        // Increment the address by four for the next argument to store
1475        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1476        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1477      }
1478    }
1479
1480    // If this function is vararg, store any remaining integer argument regs
1481    // to their spots on the stack so that they may be loaded by deferencing the
1482    // result of va_next.
1483    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1484      unsigned VReg;
1485      if (isPPC64)
1486        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1487      else
1488        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1489
1490      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1491      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1492      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1493      MemOps.push_back(Store);
1494      // Increment the address by four for the next argument to store
1495      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1496      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1497    }
1498
1499    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1500    // on the stack.
1501    if (isELF32_ABI) {
1502      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1503        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1504        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1505        MemOps.push_back(Store);
1506        // Increment the address by eight for the next argument to store
1507        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1508                                           PtrVT);
1509        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1510      }
1511
1512      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1513        unsigned VReg;
1514        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1515
1516        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1517        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1518        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1519        MemOps.push_back(Store);
1520        // Increment the address by eight for the next argument to store
1521        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1522                                           PtrVT);
1523        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1524      }
1525    }
1526
1527    if (!MemOps.empty())
1528      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1529  }
1530
1531  ArgValues.push_back(Root);
1532
1533  // Return the new list of results.
1534  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1535                                    Op.Val->value_end());
1536  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1537}
1538
1539/// isCallCompatibleAddress - Return the immediate to use if the specified
1540/// 32-bit value is representable in the immediate field of a BxA instruction.
1541static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1542  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1543  if (!C) return 0;
1544
1545  int Addr = C->getValue();
1546  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1547      (Addr << 6 >> 6) != Addr)
1548    return 0;  // Top 6 bits have to be sext of immediate.
1549
1550  return DAG.getConstant((int)C->getValue() >> 2,
1551                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1552}
1553
1554
1555static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1556                           const PPCSubtarget &Subtarget) {
1557  SDOperand Chain  = Op.getOperand(0);
1558  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1559  SDOperand Callee = Op.getOperand(4);
1560  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1561
1562  bool isMachoABI = Subtarget.isMachoABI();
1563  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1564
1565  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1566  bool isPPC64 = PtrVT == MVT::i64;
1567  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1568
1569  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1570  // SelectExpr to use to put the arguments in the appropriate registers.
1571  std::vector<SDOperand> args_to_use;
1572
1573  // Count how many bytes are to be pushed on the stack, including the linkage
1574  // area, and parameter passing area.  We start with 24/48 bytes, which is
1575  // prereserved space for [SP][CR][LR][3 x unused].
1576  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1577
1578  // Add up all the space actually used.
1579  for (unsigned i = 0; i != NumOps; ++i) {
1580    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1581    ArgSize = std::max(ArgSize, PtrByteSize);
1582    NumBytes += ArgSize;
1583  }
1584
1585  // The prolog code of the callee may store up to 8 GPR argument registers to
1586  // the stack, allowing va_start to index over them in memory if its varargs.
1587  // Because we cannot tell if this is needed on the caller side, we have to
1588  // conservatively assume that it is needed.  As such, make sure we have at
1589  // least enough stack space for the caller to store the 8 GPRs.
1590  NumBytes = std::max(NumBytes,
1591                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1592
1593  // Adjust the stack pointer for the new arguments...
1594  // These operations are automatically eliminated by the prolog/epilog pass
1595  Chain = DAG.getCALLSEQ_START(Chain,
1596                               DAG.getConstant(NumBytes, PtrVT));
1597
1598  // Set up a copy of the stack pointer for use loading and storing any
1599  // arguments that may not fit in the registers available for argument
1600  // passing.
1601  SDOperand StackPtr;
1602  if (isPPC64)
1603    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1604  else
1605    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1606
1607  // Figure out which arguments are going to go in registers, and which in
1608  // memory.  Also, if this is a vararg function, floating point operations
1609  // must be stored to our stack, and loaded into integer regs as well, if
1610  // any integer regs are available for argument passing.
1611  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1612  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1613
1614  static const unsigned GPR_32[] = {           // 32-bit registers.
1615    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1616    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1617  };
1618  static const unsigned GPR_64[] = {           // 64-bit registers.
1619    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1620    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1621  };
1622  static const unsigned *FPR = GetFPR(Subtarget);
1623
1624  static const unsigned VR[] = {
1625    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1626    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1627  };
1628  const unsigned NumGPRs = array_lengthof(GPR_32);
1629  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1630  const unsigned NumVRs  = array_lengthof( VR);
1631
1632  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1633
1634  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1635  SmallVector<SDOperand, 8> MemOpChains;
1636  for (unsigned i = 0; i != NumOps; ++i) {
1637    bool inMem = false;
1638    SDOperand Arg = Op.getOperand(5+2*i);
1639    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1640    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1641    // See if next argument requires stack alignment in ELF
1642    unsigned next = 5+2*(i+1)+1;
1643    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1644      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1645      (!(Flags & AlignFlag)));
1646
1647    // PtrOff will be used to store the current argument to the stack if a
1648    // register cannot be found for it.
1649    SDOperand PtrOff;
1650
1651    // Stack align in ELF 32
1652    if (isELF32_ABI && Expand)
1653      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1654                               StackPtr.getValueType());
1655    else
1656      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1657
1658    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1659
1660    // On PPC64, promote integers to 64-bit values.
1661    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1662      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1663
1664      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1665    }
1666
1667    switch (Arg.getValueType()) {
1668    default: assert(0 && "Unexpected ValueType for argument!");
1669    case MVT::i32:
1670    case MVT::i64:
1671      // Double word align in ELF
1672      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1673      if (GPR_idx != NumGPRs) {
1674        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1675      } else {
1676        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1677        inMem = true;
1678      }
1679      if (inMem || isMachoABI) {
1680        // Stack align in ELF
1681        if (isELF32_ABI && Expand)
1682          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1683
1684        ArgOffset += PtrByteSize;
1685      }
1686      break;
1687    case MVT::f32:
1688    case MVT::f64:
1689      if (isVarArg) {
1690        // Float varargs need to be promoted to double.
1691        if (Arg.getValueType() == MVT::f32)
1692          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1693      }
1694
1695      if (FPR_idx != NumFPRs) {
1696        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1697
1698        if (isVarArg) {
1699          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1700          MemOpChains.push_back(Store);
1701
1702          // Float varargs are always shadowed in available integer registers
1703          if (GPR_idx != NumGPRs) {
1704            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1705            MemOpChains.push_back(Load.getValue(1));
1706            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1707                                                                Load));
1708          }
1709          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1710            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1711            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1712            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1713            MemOpChains.push_back(Load.getValue(1));
1714            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1715                                                                Load));
1716          }
1717        } else {
1718          // If we have any FPRs remaining, we may also have GPRs remaining.
1719          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1720          // GPRs.
1721          if (isMachoABI) {
1722            if (GPR_idx != NumGPRs)
1723              ++GPR_idx;
1724            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1725                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1726              ++GPR_idx;
1727          }
1728        }
1729      } else {
1730        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1731        inMem = true;
1732      }
1733      if (inMem || isMachoABI) {
1734        // Stack align in ELF
1735        if (isELF32_ABI && Expand)
1736          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1737        if (isPPC64)
1738          ArgOffset += 8;
1739        else
1740          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1741      }
1742      break;
1743    case MVT::v4f32:
1744    case MVT::v4i32:
1745    case MVT::v8i16:
1746    case MVT::v16i8:
1747      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1748      assert(VR_idx != NumVRs &&
1749             "Don't support passing more than 12 vector args yet!");
1750      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1751      break;
1752    }
1753  }
1754  if (!MemOpChains.empty())
1755    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1756                        &MemOpChains[0], MemOpChains.size());
1757
1758  // Build a sequence of copy-to-reg nodes chained together with token chain
1759  // and flag operands which copy the outgoing args into the appropriate regs.
1760  SDOperand InFlag;
1761  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1762    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1763                             InFlag);
1764    InFlag = Chain.getValue(1);
1765  }
1766
1767  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1768  if (isVarArg && isELF32_ABI) {
1769    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1770    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1771    InFlag = Chain.getValue(1);
1772  }
1773
1774  std::vector<MVT::ValueType> NodeTys;
1775  NodeTys.push_back(MVT::Other);   // Returns a chain
1776  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1777
1778  SmallVector<SDOperand, 8> Ops;
1779  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1780
1781  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1782  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1783  // node so that legalize doesn't hack it.
1784  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1785    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1786  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1787    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1788  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1789    // If this is an absolute destination address, use the munged value.
1790    Callee = SDOperand(Dest, 0);
1791  else {
1792    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1793    // to do the call, we can't use PPCISD::CALL.
1794    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1795    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1796    InFlag = Chain.getValue(1);
1797
1798    // Copy the callee address into R12 on darwin.
1799    if (isMachoABI) {
1800      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1801      InFlag = Chain.getValue(1);
1802    }
1803
1804    NodeTys.clear();
1805    NodeTys.push_back(MVT::Other);
1806    NodeTys.push_back(MVT::Flag);
1807    Ops.push_back(Chain);
1808    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1809    Callee.Val = 0;
1810  }
1811
1812  // If this is a direct call, pass the chain and the callee.
1813  if (Callee.Val) {
1814    Ops.push_back(Chain);
1815    Ops.push_back(Callee);
1816  }
1817
1818  // Add argument registers to the end of the list so that they are known live
1819  // into the call.
1820  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1821    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1822                                  RegsToPass[i].second.getValueType()));
1823
1824  if (InFlag.Val)
1825    Ops.push_back(InFlag);
1826  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1827  InFlag = Chain.getValue(1);
1828
1829  Chain = DAG.getCALLSEQ_END(Chain,
1830                             DAG.getConstant(NumBytes, PtrVT),
1831                             DAG.getConstant(0, PtrVT),
1832                             InFlag);
1833  if (Op.Val->getValueType(0) != MVT::Other)
1834    InFlag = Chain.getValue(1);
1835
1836  SDOperand ResultVals[3];
1837  unsigned NumResults = 0;
1838  NodeTys.clear();
1839
1840  // If the call has results, copy the values out of the ret val registers.
1841  switch (Op.Val->getValueType(0)) {
1842  default: assert(0 && "Unexpected ret value!");
1843  case MVT::Other: break;
1844  case MVT::i32:
1845    if (Op.Val->getValueType(1) == MVT::i32) {
1846      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1847      ResultVals[0] = Chain.getValue(0);
1848      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1849                                 Chain.getValue(2)).getValue(1);
1850      ResultVals[1] = Chain.getValue(0);
1851      NumResults = 2;
1852      NodeTys.push_back(MVT::i32);
1853    } else {
1854      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1855      ResultVals[0] = Chain.getValue(0);
1856      NumResults = 1;
1857    }
1858    NodeTys.push_back(MVT::i32);
1859    break;
1860  case MVT::i64:
1861    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1862    ResultVals[0] = Chain.getValue(0);
1863    NumResults = 1;
1864    NodeTys.push_back(MVT::i64);
1865    break;
1866  case MVT::f64:
1867    if (Op.Val->getValueType(1) == MVT::f64) {
1868      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1869      ResultVals[0] = Chain.getValue(0);
1870      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1871                                 Chain.getValue(2)).getValue(1);
1872      ResultVals[1] = Chain.getValue(0);
1873      NumResults = 2;
1874      NodeTys.push_back(MVT::f64);
1875      NodeTys.push_back(MVT::f64);
1876      break;
1877    }
1878    // else fall through
1879  case MVT::f32:
1880    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1881                               InFlag).getValue(1);
1882    ResultVals[0] = Chain.getValue(0);
1883    NumResults = 1;
1884    NodeTys.push_back(Op.Val->getValueType(0));
1885    break;
1886  case MVT::v4f32:
1887  case MVT::v4i32:
1888  case MVT::v8i16:
1889  case MVT::v16i8:
1890    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1891                                   InFlag).getValue(1);
1892    ResultVals[0] = Chain.getValue(0);
1893    NumResults = 1;
1894    NodeTys.push_back(Op.Val->getValueType(0));
1895    break;
1896  }
1897
1898  NodeTys.push_back(MVT::Other);
1899
1900  // If the function returns void, just return the chain.
1901  if (NumResults == 0)
1902    return Chain;
1903
1904  // Otherwise, merge everything together with a MERGE_VALUES node.
1905  ResultVals[NumResults++] = Chain;
1906  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1907                              ResultVals, NumResults);
1908  return Res.getValue(Op.ResNo);
1909}
1910
1911static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1912  SmallVector<CCValAssign, 16> RVLocs;
1913  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1914  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1915  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1916  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1917
1918  // If this is the first return lowered for this function, add the regs to the
1919  // liveout set for the function.
1920  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1921    for (unsigned i = 0; i != RVLocs.size(); ++i)
1922      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1923  }
1924
1925  SDOperand Chain = Op.getOperand(0);
1926  SDOperand Flag;
1927
1928  // Copy the result values into the output registers.
1929  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1930    CCValAssign &VA = RVLocs[i];
1931    assert(VA.isRegLoc() && "Can only return in registers!");
1932    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1933    Flag = Chain.getValue(1);
1934  }
1935
1936  if (Flag.Val)
1937    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1938  else
1939    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1940}
1941
1942static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1943                                   const PPCSubtarget &Subtarget) {
1944  // When we pop the dynamic allocation we need to restore the SP link.
1945
1946  // Get the corect type for pointers.
1947  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1948
1949  // Construct the stack pointer operand.
1950  bool IsPPC64 = Subtarget.isPPC64();
1951  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1952  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1953
1954  // Get the operands for the STACKRESTORE.
1955  SDOperand Chain = Op.getOperand(0);
1956  SDOperand SaveSP = Op.getOperand(1);
1957
1958  // Load the old link SP.
1959  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1960
1961  // Restore the stack pointer.
1962  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1963
1964  // Store the old link SP.
1965  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1966}
1967
1968static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1969                                         const PPCSubtarget &Subtarget) {
1970  MachineFunction &MF = DAG.getMachineFunction();
1971  bool IsPPC64 = Subtarget.isPPC64();
1972  bool isMachoABI = Subtarget.isMachoABI();
1973
1974  // Get current frame pointer save index.  The users of this index will be
1975  // primarily DYNALLOC instructions.
1976  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1977  int FPSI = FI->getFramePointerSaveIndex();
1978
1979  // If the frame pointer save index hasn't been defined yet.
1980  if (!FPSI) {
1981    // Find out what the fix offset of the frame pointer save area.
1982    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1983
1984    // Allocate the frame index for frame pointer save area.
1985    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1986    // Save the result.
1987    FI->setFramePointerSaveIndex(FPSI);
1988  }
1989
1990  // Get the inputs.
1991  SDOperand Chain = Op.getOperand(0);
1992  SDOperand Size  = Op.getOperand(1);
1993
1994  // Get the corect type for pointers.
1995  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1996  // Negate the size.
1997  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1998                                  DAG.getConstant(0, PtrVT), Size);
1999  // Construct a node for the frame pointer save index.
2000  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2001  // Build a DYNALLOC node.
2002  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2003  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2004  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2005}
2006
2007
2008/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2009/// possible.
2010static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2011  // Not FP? Not a fsel.
2012  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2013      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2014    return SDOperand();
2015
2016  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2017
2018  // Cannot handle SETEQ/SETNE.
2019  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2020
2021  MVT::ValueType ResVT = Op.getValueType();
2022  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2023  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2024  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2025
2026  // If the RHS of the comparison is a 0.0, we don't need to do the
2027  // subtraction at all.
2028  if (isFloatingPointZero(RHS))
2029    switch (CC) {
2030    default: break;       // SETUO etc aren't handled by fsel.
2031    case ISD::SETULT:
2032    case ISD::SETOLT:
2033    case ISD::SETLT:
2034      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2035    case ISD::SETUGE:
2036    case ISD::SETOGE:
2037    case ISD::SETGE:
2038      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2039        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2040      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2041    case ISD::SETUGT:
2042    case ISD::SETOGT:
2043    case ISD::SETGT:
2044      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2045    case ISD::SETULE:
2046    case ISD::SETOLE:
2047    case ISD::SETLE:
2048      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2049        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2050      return DAG.getNode(PPCISD::FSEL, ResVT,
2051                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2052    }
2053
2054  SDOperand Cmp;
2055  switch (CC) {
2056  default: break;       // SETUO etc aren't handled by fsel.
2057  case ISD::SETULT:
2058  case ISD::SETOLT:
2059  case ISD::SETLT:
2060    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2061    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2062      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2063      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2064  case ISD::SETUGE:
2065  case ISD::SETOGE:
2066  case ISD::SETGE:
2067    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2068    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2069      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2070      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2071  case ISD::SETUGT:
2072  case ISD::SETOGT:
2073  case ISD::SETGT:
2074    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2075    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2076      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2077      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2078  case ISD::SETULE:
2079  case ISD::SETOLE:
2080  case ISD::SETLE:
2081    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2082    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2083      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2084      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2085  }
2086  return SDOperand();
2087}
2088
2089// FIXME: Split this code up when LegalizeDAGTypes lands.
2090static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2091  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2092  SDOperand Src = Op.getOperand(0);
2093  if (Src.getValueType() == MVT::f32)
2094    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2095
2096  SDOperand Tmp;
2097  switch (Op.getValueType()) {
2098  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2099  case MVT::i32:
2100    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2101    break;
2102  case MVT::i64:
2103    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2104    break;
2105  }
2106
2107  // Convert the FP value to an int value through memory.
2108  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2109
2110  // Emit a store to the stack slot.
2111  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2112
2113  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2114  // add in a bias.
2115  if (Op.getValueType() == MVT::i32)
2116    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2117                        DAG.getConstant(4, FIPtr.getValueType()));
2118  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2119}
2120
2121static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2122  assert(Op.getValueType() == MVT::ppcf128);
2123  SDNode *Node = Op.Val;
2124  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2125  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2126  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2127  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2128
2129  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2130  // of the long double, and puts FPSCR back the way it was.  We do not
2131  // actually model FPSCR.
2132  std::vector<MVT::ValueType> NodeTys;
2133  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2134
2135  NodeTys.push_back(MVT::f64);   // Return register
2136  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2137  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2138  MFFSreg = Result.getValue(0);
2139  InFlag = Result.getValue(1);
2140
2141  NodeTys.clear();
2142  NodeTys.push_back(MVT::Flag);   // Returns a flag
2143  Ops[0] = DAG.getConstant(31, MVT::i32);
2144  Ops[1] = InFlag;
2145  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2146  InFlag = Result.getValue(0);
2147
2148  NodeTys.clear();
2149  NodeTys.push_back(MVT::Flag);   // Returns a flag
2150  Ops[0] = DAG.getConstant(30, MVT::i32);
2151  Ops[1] = InFlag;
2152  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2153  InFlag = Result.getValue(0);
2154
2155  NodeTys.clear();
2156  NodeTys.push_back(MVT::f64);    // result of add
2157  NodeTys.push_back(MVT::Flag);   // Returns a flag
2158  Ops[0] = Lo;
2159  Ops[1] = Hi;
2160  Ops[2] = InFlag;
2161  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2162  FPreg = Result.getValue(0);
2163  InFlag = Result.getValue(1);
2164
2165  NodeTys.clear();
2166  NodeTys.push_back(MVT::f64);
2167  Ops[0] = DAG.getConstant(1, MVT::i32);
2168  Ops[1] = MFFSreg;
2169  Ops[2] = FPreg;
2170  Ops[3] = InFlag;
2171  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2172  FPreg = Result.getValue(0);
2173
2174  // We know the low half is about to be thrown away, so just use something
2175  // convenient.
2176  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2177}
2178
2179static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2180  if (Op.getOperand(0).getValueType() == MVT::i64) {
2181    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2182    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2183    if (Op.getValueType() == MVT::f32)
2184      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2185    return FP;
2186  }
2187
2188  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2189         "Unhandled SINT_TO_FP type in custom expander!");
2190  // Since we only generate this in 64-bit mode, we can take advantage of
2191  // 64-bit registers.  In particular, sign extend the input value into the
2192  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2193  // then lfd it and fcfid it.
2194  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2195  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2196  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2197  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2198
2199  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2200                                Op.getOperand(0));
2201
2202  // STD the extended value into the stack slot.
2203  MemOperand MO(&PseudoSourceValue::FPRel,
2204                MemOperand::MOStore, FrameIdx, 8, 8);
2205  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2206                                DAG.getEntryNode(), Ext64, FIdx,
2207                                DAG.getMemOperand(MO));
2208  // Load the value as a double.
2209  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2210
2211  // FCFID it and return it.
2212  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2213  if (Op.getValueType() == MVT::f32)
2214    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2215  return FP;
2216}
2217
2218static SDOperand LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2219  /*
2220   The rounding mode is in bits 30:31 of FPSR, and has the following
2221   settings:
2222     00 Round to nearest
2223     01 Round to 0
2224     10 Round to +inf
2225     11 Round to -inf
2226
2227  FLT_ROUNDS, on the other hand, expects the following:
2228    -1 Undefined
2229     0 Round to 0
2230     1 Round to nearest
2231     2 Round to +inf
2232     3 Round to -inf
2233
2234  To perform the conversion, we do:
2235    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2236  */
2237
2238  MachineFunction &MF = DAG.getMachineFunction();
2239  MVT::ValueType VT = Op.getValueType();
2240  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2241  std::vector<MVT::ValueType> NodeTys;
2242  SDOperand MFFSreg, InFlag;
2243
2244  // Save FP Control Word to register
2245  NodeTys.push_back(MVT::f64);    // return register
2246  NodeTys.push_back(MVT::Flag);   // unused in this context
2247  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2248
2249  // Save FP register to stack slot
2250  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2251  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2252  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2253                                 StackSlot, NULL, 0);
2254
2255  // Load FP Control Word from low 32 bits of stack slot.
2256  SDOperand Four = DAG.getConstant(4, PtrVT);
2257  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2258  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2259
2260  // Transform as necessary
2261  SDOperand CWD1 =
2262    DAG.getNode(ISD::AND, MVT::i32,
2263                CWD, DAG.getConstant(3, MVT::i32));
2264  SDOperand CWD2 =
2265    DAG.getNode(ISD::SRL, MVT::i32,
2266                DAG.getNode(ISD::AND, MVT::i32,
2267                            DAG.getNode(ISD::XOR, MVT::i32,
2268                                        CWD, DAG.getConstant(3, MVT::i32)),
2269                            DAG.getConstant(3, MVT::i32)),
2270                DAG.getConstant(1, MVT::i8));
2271
2272  SDOperand RetVal =
2273    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2274
2275  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2276                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2277}
2278
2279static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2280  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2281         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2282
2283  // Expand into a bunch of logical ops.  Note that these ops
2284  // depend on the PPC behavior for oversized shift amounts.
2285  SDOperand Lo = Op.getOperand(0);
2286  SDOperand Hi = Op.getOperand(1);
2287  SDOperand Amt = Op.getOperand(2);
2288
2289  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2290                               DAG.getConstant(32, MVT::i32), Amt);
2291  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2292  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2293  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2294  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2295                               DAG.getConstant(-32U, MVT::i32));
2296  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2297  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2298  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2299  SDOperand OutOps[] = { OutLo, OutHi };
2300  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2301                     OutOps, 2);
2302}
2303
2304static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2305  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2306         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2307
2308  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2309  // depend on the PPC behavior for oversized shift amounts.
2310  SDOperand Lo = Op.getOperand(0);
2311  SDOperand Hi = Op.getOperand(1);
2312  SDOperand Amt = Op.getOperand(2);
2313
2314  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2315                               DAG.getConstant(32, MVT::i32), Amt);
2316  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2317  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2318  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2319  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2320                               DAG.getConstant(-32U, MVT::i32));
2321  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2322  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2323  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2324  SDOperand OutOps[] = { OutLo, OutHi };
2325  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2326                     OutOps, 2);
2327}
2328
2329static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2330  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2331         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2332
2333  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2334  SDOperand Lo = Op.getOperand(0);
2335  SDOperand Hi = Op.getOperand(1);
2336  SDOperand Amt = Op.getOperand(2);
2337
2338  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2339                               DAG.getConstant(32, MVT::i32), Amt);
2340  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2341  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2342  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2343  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2344                               DAG.getConstant(-32U, MVT::i32));
2345  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2346  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2347  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2348                                    Tmp4, Tmp6, ISD::SETLE);
2349  SDOperand OutOps[] = { OutLo, OutHi };
2350  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2351                     OutOps, 2);
2352}
2353
2354//===----------------------------------------------------------------------===//
2355// Vector related lowering.
2356//
2357
2358// If this is a vector of constants or undefs, get the bits.  A bit in
2359// UndefBits is set if the corresponding element of the vector is an
2360// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2361// zero.   Return true if this is not an array of constants, false if it is.
2362//
2363static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2364                                       uint64_t UndefBits[2]) {
2365  // Start with zero'd results.
2366  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2367
2368  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2369  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2370    SDOperand OpVal = BV->getOperand(i);
2371
2372    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2373    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2374
2375    uint64_t EltBits = 0;
2376    if (OpVal.getOpcode() == ISD::UNDEF) {
2377      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2378      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2379      continue;
2380    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2381      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2382    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2383      assert(CN->getValueType(0) == MVT::f32 &&
2384             "Only one legal FP vector type!");
2385      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2386    } else {
2387      // Nonconstant element.
2388      return true;
2389    }
2390
2391    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2392  }
2393
2394  //printf("%llx %llx  %llx %llx\n",
2395  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2396  return false;
2397}
2398
2399// If this is a splat (repetition) of a value across the whole vector, return
2400// the smallest size that splats it.  For example, "0x01010101010101..." is a
2401// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2402// SplatSize = 1 byte.
2403static bool isConstantSplat(const uint64_t Bits128[2],
2404                            const uint64_t Undef128[2],
2405                            unsigned &SplatBits, unsigned &SplatUndef,
2406                            unsigned &SplatSize) {
2407
2408  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2409  // the same as the lower 64-bits, ignoring undefs.
2410  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2411    return false;  // Can't be a splat if two pieces don't match.
2412
2413  uint64_t Bits64  = Bits128[0] | Bits128[1];
2414  uint64_t Undef64 = Undef128[0] & Undef128[1];
2415
2416  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2417  // undefs.
2418  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2419    return false;  // Can't be a splat if two pieces don't match.
2420
2421  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2422  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2423
2424  // If the top 16-bits are different than the lower 16-bits, ignoring
2425  // undefs, we have an i32 splat.
2426  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2427    SplatBits = Bits32;
2428    SplatUndef = Undef32;
2429    SplatSize = 4;
2430    return true;
2431  }
2432
2433  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2434  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2435
2436  // If the top 8-bits are different than the lower 8-bits, ignoring
2437  // undefs, we have an i16 splat.
2438  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2439    SplatBits = Bits16;
2440    SplatUndef = Undef16;
2441    SplatSize = 2;
2442    return true;
2443  }
2444
2445  // Otherwise, we have an 8-bit splat.
2446  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2447  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2448  SplatSize = 1;
2449  return true;
2450}
2451
2452/// BuildSplatI - Build a canonical splati of Val with an element size of
2453/// SplatSize.  Cast the result to VT.
2454static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2455                             SelectionDAG &DAG) {
2456  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2457
2458  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2459    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2460  };
2461
2462  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2463
2464  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2465  if (Val == -1)
2466    SplatSize = 1;
2467
2468  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2469
2470  // Build a canonical splat for this value.
2471  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2472  SmallVector<SDOperand, 8> Ops;
2473  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2474  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2475                              &Ops[0], Ops.size());
2476  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2477}
2478
2479/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2480/// specified intrinsic ID.
2481static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2482                                  SelectionDAG &DAG,
2483                                  MVT::ValueType DestVT = MVT::Other) {
2484  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2485  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2486                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2487}
2488
2489/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2490/// specified intrinsic ID.
2491static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2492                                  SDOperand Op2, SelectionDAG &DAG,
2493                                  MVT::ValueType DestVT = MVT::Other) {
2494  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2495  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2496                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2497}
2498
2499
2500/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2501/// amount.  The result has the specified value type.
2502static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2503                             MVT::ValueType VT, SelectionDAG &DAG) {
2504  // Force LHS/RHS to be the right type.
2505  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2506  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2507
2508  SDOperand Ops[16];
2509  for (unsigned i = 0; i != 16; ++i)
2510    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2511  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2512                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2513  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2514}
2515
2516// If this is a case we can't handle, return null and let the default
2517// expansion code take care of it.  If we CAN select this case, and if it
2518// selects to a single instruction, return Op.  Otherwise, if we can codegen
2519// this case more efficiently than a constant pool load, lower it to the
2520// sequence of ops that should be used.
2521static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2522  // If this is a vector of constants or undefs, get the bits.  A bit in
2523  // UndefBits is set if the corresponding element of the vector is an
2524  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2525  // zero.
2526  uint64_t VectorBits[2];
2527  uint64_t UndefBits[2];
2528  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2529    return SDOperand();   // Not a constant vector.
2530
2531  // If this is a splat (repetition) of a value across the whole vector, return
2532  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2533  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2534  // SplatSize = 1 byte.
2535  unsigned SplatBits, SplatUndef, SplatSize;
2536  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2537    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2538
2539    // First, handle single instruction cases.
2540
2541    // All zeros?
2542    if (SplatBits == 0) {
2543      // Canonicalize all zero vectors to be v4i32.
2544      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2545        SDOperand Z = DAG.getConstant(0, MVT::i32);
2546        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2547        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2548      }
2549      return Op;
2550    }
2551
2552    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2553    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2554    if (SextVal >= -16 && SextVal <= 15)
2555      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2556
2557
2558    // Two instruction sequences.
2559
2560    // If this value is in the range [-32,30] and is even, use:
2561    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2562    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2563      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2564      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2565    }
2566
2567    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2568    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2569    // for fneg/fabs.
2570    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2571      // Make -1 and vspltisw -1:
2572      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2573
2574      // Make the VSLW intrinsic, computing 0x8000_0000.
2575      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2576                                       OnesV, DAG);
2577
2578      // xor by OnesV to invert it.
2579      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2580      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2581    }
2582
2583    // Check to see if this is a wide variety of vsplti*, binop self cases.
2584    unsigned SplatBitSize = SplatSize*8;
2585    static const signed char SplatCsts[] = {
2586      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2587      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2588    };
2589
2590    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2591      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2592      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2593      int i = SplatCsts[idx];
2594
2595      // Figure out what shift amount will be used by altivec if shifted by i in
2596      // this splat size.
2597      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2598
2599      // vsplti + shl self.
2600      if (SextVal == (i << (int)TypeShiftAmt)) {
2601        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2602        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2603          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2604          Intrinsic::ppc_altivec_vslw
2605        };
2606        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2607        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2608      }
2609
2610      // vsplti + srl self.
2611      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2612        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2613        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2614          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2615          Intrinsic::ppc_altivec_vsrw
2616        };
2617        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2618        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2619      }
2620
2621      // vsplti + sra self.
2622      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2623        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2624        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2625          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2626          Intrinsic::ppc_altivec_vsraw
2627        };
2628        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2629        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2630      }
2631
2632      // vsplti + rol self.
2633      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2634                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2635        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2636        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2637          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2638          Intrinsic::ppc_altivec_vrlw
2639        };
2640        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2641        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2642      }
2643
2644      // t = vsplti c, result = vsldoi t, t, 1
2645      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2646        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2647        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2648      }
2649      // t = vsplti c, result = vsldoi t, t, 2
2650      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2651        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2652        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2653      }
2654      // t = vsplti c, result = vsldoi t, t, 3
2655      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2656        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2657        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2658      }
2659    }
2660
2661    // Three instruction sequences.
2662
2663    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2664    if (SextVal >= 0 && SextVal <= 31) {
2665      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2666      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2667      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2668      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2669    }
2670    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2671    if (SextVal >= -31 && SextVal <= 0) {
2672      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2673      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2674      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2675      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2676    }
2677  }
2678
2679  return SDOperand();
2680}
2681
2682/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2683/// the specified operations to build the shuffle.
2684static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2685                                        SDOperand RHS, SelectionDAG &DAG) {
2686  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2687  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2688  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2689
2690  enum {
2691    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2692    OP_VMRGHW,
2693    OP_VMRGLW,
2694    OP_VSPLTISW0,
2695    OP_VSPLTISW1,
2696    OP_VSPLTISW2,
2697    OP_VSPLTISW3,
2698    OP_VSLDOI4,
2699    OP_VSLDOI8,
2700    OP_VSLDOI12
2701  };
2702
2703  if (OpNum == OP_COPY) {
2704    if (LHSID == (1*9+2)*9+3) return LHS;
2705    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2706    return RHS;
2707  }
2708
2709  SDOperand OpLHS, OpRHS;
2710  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2711  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2712
2713  unsigned ShufIdxs[16];
2714  switch (OpNum) {
2715  default: assert(0 && "Unknown i32 permute!");
2716  case OP_VMRGHW:
2717    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2718    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2719    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2720    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2721    break;
2722  case OP_VMRGLW:
2723    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2724    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2725    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2726    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2727    break;
2728  case OP_VSPLTISW0:
2729    for (unsigned i = 0; i != 16; ++i)
2730      ShufIdxs[i] = (i&3)+0;
2731    break;
2732  case OP_VSPLTISW1:
2733    for (unsigned i = 0; i != 16; ++i)
2734      ShufIdxs[i] = (i&3)+4;
2735    break;
2736  case OP_VSPLTISW2:
2737    for (unsigned i = 0; i != 16; ++i)
2738      ShufIdxs[i] = (i&3)+8;
2739    break;
2740  case OP_VSPLTISW3:
2741    for (unsigned i = 0; i != 16; ++i)
2742      ShufIdxs[i] = (i&3)+12;
2743    break;
2744  case OP_VSLDOI4:
2745    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2746  case OP_VSLDOI8:
2747    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2748  case OP_VSLDOI12:
2749    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2750  }
2751  SDOperand Ops[16];
2752  for (unsigned i = 0; i != 16; ++i)
2753    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2754
2755  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2756                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2757}
2758
2759/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2760/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2761/// return the code it can be lowered into.  Worst case, it can always be
2762/// lowered into a vperm.
2763static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2764  SDOperand V1 = Op.getOperand(0);
2765  SDOperand V2 = Op.getOperand(1);
2766  SDOperand PermMask = Op.getOperand(2);
2767
2768  // Cases that are handled by instructions that take permute immediates
2769  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2770  // selected by the instruction selector.
2771  if (V2.getOpcode() == ISD::UNDEF) {
2772    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2773        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2774        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2775        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2776        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2777        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2778        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2779        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2780        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2781        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2782        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2783        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2784      return Op;
2785    }
2786  }
2787
2788  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2789  // and produce a fixed permutation.  If any of these match, do not lower to
2790  // VPERM.
2791  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2792      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2793      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2794      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2795      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2796      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2797      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2798      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2799      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2800    return Op;
2801
2802  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2803  // perfect shuffle table to emit an optimal matching sequence.
2804  unsigned PFIndexes[4];
2805  bool isFourElementShuffle = true;
2806  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2807    unsigned EltNo = 8;   // Start out undef.
2808    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2809      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2810        continue;   // Undef, ignore it.
2811
2812      unsigned ByteSource =
2813        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2814      if ((ByteSource & 3) != j) {
2815        isFourElementShuffle = false;
2816        break;
2817      }
2818
2819      if (EltNo == 8) {
2820        EltNo = ByteSource/4;
2821      } else if (EltNo != ByteSource/4) {
2822        isFourElementShuffle = false;
2823        break;
2824      }
2825    }
2826    PFIndexes[i] = EltNo;
2827  }
2828
2829  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2830  // perfect shuffle vector to determine if it is cost effective to do this as
2831  // discrete instructions, or whether we should use a vperm.
2832  if (isFourElementShuffle) {
2833    // Compute the index in the perfect shuffle table.
2834    unsigned PFTableIndex =
2835      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2836
2837    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2838    unsigned Cost  = (PFEntry >> 30);
2839
2840    // Determining when to avoid vperm is tricky.  Many things affect the cost
2841    // of vperm, particularly how many times the perm mask needs to be computed.
2842    // For example, if the perm mask can be hoisted out of a loop or is already
2843    // used (perhaps because there are multiple permutes with the same shuffle
2844    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2845    // the loop requires an extra register.
2846    //
2847    // As a compromise, we only emit discrete instructions if the shuffle can be
2848    // generated in 3 or fewer operations.  When we have loop information
2849    // available, if this block is within a loop, we should avoid using vperm
2850    // for 3-operation perms and use a constant pool load instead.
2851    if (Cost < 3)
2852      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2853  }
2854
2855  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2856  // vector that will get spilled to the constant pool.
2857  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2858
2859  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2860  // that it is in input element units, not in bytes.  Convert now.
2861  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2862  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2863
2864  SmallVector<SDOperand, 16> ResultMask;
2865  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2866    unsigned SrcElt;
2867    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2868      SrcElt = 0;
2869    else
2870      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2871
2872    for (unsigned j = 0; j != BytesPerElement; ++j)
2873      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2874                                           MVT::i8));
2875  }
2876
2877  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2878                                    &ResultMask[0], ResultMask.size());
2879  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2880}
2881
2882/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2883/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2884/// information about the intrinsic.
2885static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2886                                  bool &isDot) {
2887  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2888  CompareOpc = -1;
2889  isDot = false;
2890  switch (IntrinsicID) {
2891  default: return false;
2892    // Comparison predicates.
2893  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2894  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2895  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2896  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2897  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2898  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2899  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2900  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2901  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2902  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2903  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2904  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2905  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2906
2907    // Normal Comparisons.
2908  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2909  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2910  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2911  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2912  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2913  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2914  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2915  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2916  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2917  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2918  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2919  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2920  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2921  }
2922  return true;
2923}
2924
2925/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2926/// lower, do it, otherwise return null.
2927static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2928  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2929  // opcode number of the comparison.
2930  int CompareOpc;
2931  bool isDot;
2932  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2933    return SDOperand();    // Don't custom lower most intrinsics.
2934
2935  // If this is a non-dot comparison, make the VCMP node and we are done.
2936  if (!isDot) {
2937    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2938                                Op.getOperand(1), Op.getOperand(2),
2939                                DAG.getConstant(CompareOpc, MVT::i32));
2940    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2941  }
2942
2943  // Create the PPCISD altivec 'dot' comparison node.
2944  SDOperand Ops[] = {
2945    Op.getOperand(2),  // LHS
2946    Op.getOperand(3),  // RHS
2947    DAG.getConstant(CompareOpc, MVT::i32)
2948  };
2949  std::vector<MVT::ValueType> VTs;
2950  VTs.push_back(Op.getOperand(2).getValueType());
2951  VTs.push_back(MVT::Flag);
2952  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2953
2954  // Now that we have the comparison, emit a copy from the CR to a GPR.
2955  // This is flagged to the above dot comparison.
2956  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2957                                DAG.getRegister(PPC::CR6, MVT::i32),
2958                                CompNode.getValue(1));
2959
2960  // Unpack the result based on how the target uses it.
2961  unsigned BitNo;   // Bit # of CR6.
2962  bool InvertBit;   // Invert result?
2963  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2964  default:  // Can't happen, don't crash on invalid number though.
2965  case 0:   // Return the value of the EQ bit of CR6.
2966    BitNo = 0; InvertBit = false;
2967    break;
2968  case 1:   // Return the inverted value of the EQ bit of CR6.
2969    BitNo = 0; InvertBit = true;
2970    break;
2971  case 2:   // Return the value of the LT bit of CR6.
2972    BitNo = 2; InvertBit = false;
2973    break;
2974  case 3:   // Return the inverted value of the LT bit of CR6.
2975    BitNo = 2; InvertBit = true;
2976    break;
2977  }
2978
2979  // Shift the bit into the low position.
2980  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2981                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2982  // Isolate the bit.
2983  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2984                      DAG.getConstant(1, MVT::i32));
2985
2986  // If we are supposed to, toggle the bit.
2987  if (InvertBit)
2988    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2989                        DAG.getConstant(1, MVT::i32));
2990  return Flags;
2991}
2992
2993static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2994  // Create a stack slot that is 16-byte aligned.
2995  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2996  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2997  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2998  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2999
3000  // Store the input value into Value#0 of the stack slot.
3001  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3002                                 Op.getOperand(0), FIdx, NULL, 0);
3003  // Load it out.
3004  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3005}
3006
3007static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3008  if (Op.getValueType() == MVT::v4i32) {
3009    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3010
3011    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3012    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3013
3014    SDOperand RHSSwap =   // = vrlw RHS, 16
3015      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3016
3017    // Shrinkify inputs to v8i16.
3018    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3019    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3020    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3021
3022    // Low parts multiplied together, generating 32-bit results (we ignore the
3023    // top parts).
3024    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3025                                        LHS, RHS, DAG, MVT::v4i32);
3026
3027    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3028                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3029    // Shift the high parts up 16 bits.
3030    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3031    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3032  } else if (Op.getValueType() == MVT::v8i16) {
3033    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3034
3035    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3036
3037    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3038                            LHS, RHS, Zero, DAG);
3039  } else if (Op.getValueType() == MVT::v16i8) {
3040    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3041
3042    // Multiply the even 8-bit parts, producing 16-bit sums.
3043    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3044                                           LHS, RHS, DAG, MVT::v8i16);
3045    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3046
3047    // Multiply the odd 8-bit parts, producing 16-bit sums.
3048    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3049                                          LHS, RHS, DAG, MVT::v8i16);
3050    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3051
3052    // Merge the results together.
3053    SDOperand Ops[16];
3054    for (unsigned i = 0; i != 8; ++i) {
3055      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3056      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3057    }
3058    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3059                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3060  } else {
3061    assert(0 && "Unknown mul to lower!");
3062    abort();
3063  }
3064}
3065
3066/// LowerOperation - Provide custom lowering hooks for some operations.
3067///
3068SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3069  switch (Op.getOpcode()) {
3070  default: assert(0 && "Wasn't expecting to be able to lower this!");
3071  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3072  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3073  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3074  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3075  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3076  case ISD::VASTART:
3077    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3078                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3079
3080  case ISD::VAARG:
3081    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3082                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3083
3084  case ISD::FORMAL_ARGUMENTS:
3085    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3086                                 VarArgsStackOffset, VarArgsNumGPR,
3087                                 VarArgsNumFPR, PPCSubTarget);
3088
3089  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3090  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3091  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3092  case ISD::DYNAMIC_STACKALLOC:
3093    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3094
3095  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3096  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3097  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3098  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3099  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3100
3101  // Lower 64-bit shifts.
3102  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3103  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3104  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3105
3106  // Vector-related lowering.
3107  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3108  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3109  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3110  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3111  case ISD::MUL:                return LowerMUL(Op, DAG);
3112
3113  // Frame & Return address.
3114  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3115  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3116  }
3117  return SDOperand();
3118}
3119
3120SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3121  switch (N->getOpcode()) {
3122  default: assert(0 && "Wasn't expecting to be able to lower this!");
3123  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3124  }
3125}
3126
3127
3128//===----------------------------------------------------------------------===//
3129//  Other Lowering Code
3130//===----------------------------------------------------------------------===//
3131
3132MachineBasicBlock *
3133PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3134                                               MachineBasicBlock *BB) {
3135  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3136  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3137          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3138          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3139          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3140          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3141         "Unexpected instr type to insert");
3142
3143  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3144  // control-flow pattern.  The incoming instruction knows the destination vreg
3145  // to set, the condition code register to branch on, the true/false values to
3146  // select between, and a branch opcode to use.
3147  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3148  ilist<MachineBasicBlock>::iterator It = BB;
3149  ++It;
3150
3151  //  thisMBB:
3152  //  ...
3153  //   TrueVal = ...
3154  //   cmpTY ccX, r1, r2
3155  //   bCC copy1MBB
3156  //   fallthrough --> copy0MBB
3157  MachineBasicBlock *thisMBB = BB;
3158  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3159  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3160  unsigned SelectPred = MI->getOperand(4).getImm();
3161  BuildMI(BB, TII->get(PPC::BCC))
3162    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3163  MachineFunction *F = BB->getParent();
3164  F->getBasicBlockList().insert(It, copy0MBB);
3165  F->getBasicBlockList().insert(It, sinkMBB);
3166  // Update machine-CFG edges by first adding all successors of the current
3167  // block to the new block which will contain the Phi node for the select.
3168  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3169      e = BB->succ_end(); i != e; ++i)
3170    sinkMBB->addSuccessor(*i);
3171  // Next, remove all successors of the current block, and add the true
3172  // and fallthrough blocks as its successors.
3173  while(!BB->succ_empty())
3174    BB->removeSuccessor(BB->succ_begin());
3175  BB->addSuccessor(copy0MBB);
3176  BB->addSuccessor(sinkMBB);
3177
3178  //  copy0MBB:
3179  //   %FalseValue = ...
3180  //   # fallthrough to sinkMBB
3181  BB = copy0MBB;
3182
3183  // Update machine-CFG edges
3184  BB->addSuccessor(sinkMBB);
3185
3186  //  sinkMBB:
3187  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3188  //  ...
3189  BB = sinkMBB;
3190  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3191    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3192    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3193
3194  delete MI;   // The pseudo instruction is gone now.
3195  return BB;
3196}
3197
3198//===----------------------------------------------------------------------===//
3199// Target Optimization Hooks
3200//===----------------------------------------------------------------------===//
3201
3202SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3203                                               DAGCombinerInfo &DCI) const {
3204  TargetMachine &TM = getTargetMachine();
3205  SelectionDAG &DAG = DCI.DAG;
3206  switch (N->getOpcode()) {
3207  default: break;
3208  case PPCISD::SHL:
3209    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3210      if (C->getValue() == 0)   // 0 << V -> 0.
3211        return N->getOperand(0);
3212    }
3213    break;
3214  case PPCISD::SRL:
3215    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3216      if (C->getValue() == 0)   // 0 >>u V -> 0.
3217        return N->getOperand(0);
3218    }
3219    break;
3220  case PPCISD::SRA:
3221    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3222      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3223          C->isAllOnesValue())    // -1 >>s V -> -1.
3224        return N->getOperand(0);
3225    }
3226    break;
3227
3228  case ISD::SINT_TO_FP:
3229    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3230      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3231        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3232        // We allow the src/dst to be either f32/f64, but the intermediate
3233        // type must be i64.
3234        if (N->getOperand(0).getValueType() == MVT::i64 &&
3235            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3236          SDOperand Val = N->getOperand(0).getOperand(0);
3237          if (Val.getValueType() == MVT::f32) {
3238            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3239            DCI.AddToWorklist(Val.Val);
3240          }
3241
3242          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3243          DCI.AddToWorklist(Val.Val);
3244          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3245          DCI.AddToWorklist(Val.Val);
3246          if (N->getValueType(0) == MVT::f32) {
3247            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3248                              DAG.getIntPtrConstant(0));
3249            DCI.AddToWorklist(Val.Val);
3250          }
3251          return Val;
3252        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3253          // If the intermediate type is i32, we can avoid the load/store here
3254          // too.
3255        }
3256      }
3257    }
3258    break;
3259  case ISD::STORE:
3260    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3261    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3262        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3263        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3264        N->getOperand(1).getValueType() == MVT::i32 &&
3265        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3266      SDOperand Val = N->getOperand(1).getOperand(0);
3267      if (Val.getValueType() == MVT::f32) {
3268        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3269        DCI.AddToWorklist(Val.Val);
3270      }
3271      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3272      DCI.AddToWorklist(Val.Val);
3273
3274      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3275                        N->getOperand(2), N->getOperand(3));
3276      DCI.AddToWorklist(Val.Val);
3277      return Val;
3278    }
3279
3280    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3281    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3282        N->getOperand(1).Val->hasOneUse() &&
3283        (N->getOperand(1).getValueType() == MVT::i32 ||
3284         N->getOperand(1).getValueType() == MVT::i16)) {
3285      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3286      // Do an any-extend to 32-bits if this is a half-word input.
3287      if (BSwapOp.getValueType() == MVT::i16)
3288        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3289
3290      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3291                         N->getOperand(2), N->getOperand(3),
3292                         DAG.getValueType(N->getOperand(1).getValueType()));
3293    }
3294    break;
3295  case ISD::BSWAP:
3296    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3297    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3298        N->getOperand(0).hasOneUse() &&
3299        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3300      SDOperand Load = N->getOperand(0);
3301      LoadSDNode *LD = cast<LoadSDNode>(Load);
3302      // Create the byte-swapping load.
3303      std::vector<MVT::ValueType> VTs;
3304      VTs.push_back(MVT::i32);
3305      VTs.push_back(MVT::Other);
3306      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3307      SDOperand Ops[] = {
3308        LD->getChain(),    // Chain
3309        LD->getBasePtr(),  // Ptr
3310        MO,                // MemOperand
3311        DAG.getValueType(N->getValueType(0)) // VT
3312      };
3313      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3314
3315      // If this is an i16 load, insert the truncate.
3316      SDOperand ResVal = BSLoad;
3317      if (N->getValueType(0) == MVT::i16)
3318        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3319
3320      // First, combine the bswap away.  This makes the value produced by the
3321      // load dead.
3322      DCI.CombineTo(N, ResVal);
3323
3324      // Next, combine the load away, we give it a bogus result value but a real
3325      // chain result.  The result value is dead because the bswap is dead.
3326      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3327
3328      // Return N so it doesn't get rechecked!
3329      return SDOperand(N, 0);
3330    }
3331
3332    break;
3333  case PPCISD::VCMP: {
3334    // If a VCMPo node already exists with exactly the same operands as this
3335    // node, use its result instead of this node (VCMPo computes both a CR6 and
3336    // a normal output).
3337    //
3338    if (!N->getOperand(0).hasOneUse() &&
3339        !N->getOperand(1).hasOneUse() &&
3340        !N->getOperand(2).hasOneUse()) {
3341
3342      // Scan all of the users of the LHS, looking for VCMPo's that match.
3343      SDNode *VCMPoNode = 0;
3344
3345      SDNode *LHSN = N->getOperand(0).Val;
3346      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3347           UI != E; ++UI)
3348        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3349            (*UI)->getOperand(1) == N->getOperand(1) &&
3350            (*UI)->getOperand(2) == N->getOperand(2) &&
3351            (*UI)->getOperand(0) == N->getOperand(0)) {
3352          VCMPoNode = *UI;
3353          break;
3354        }
3355
3356      // If there is no VCMPo node, or if the flag value has a single use, don't
3357      // transform this.
3358      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3359        break;
3360
3361      // Look at the (necessarily single) use of the flag value.  If it has a
3362      // chain, this transformation is more complex.  Note that multiple things
3363      // could use the value result, which we should ignore.
3364      SDNode *FlagUser = 0;
3365      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3366           FlagUser == 0; ++UI) {
3367        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3368        SDNode *User = *UI;
3369        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3370          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3371            FlagUser = User;
3372            break;
3373          }
3374        }
3375      }
3376
3377      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3378      // give up for right now.
3379      if (FlagUser->getOpcode() == PPCISD::MFCR)
3380        return SDOperand(VCMPoNode, 0);
3381    }
3382    break;
3383  }
3384  case ISD::BR_CC: {
3385    // If this is a branch on an altivec predicate comparison, lower this so
3386    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3387    // lowering is done pre-legalize, because the legalizer lowers the predicate
3388    // compare down to code that is difficult to reassemble.
3389    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3390    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3391    int CompareOpc;
3392    bool isDot;
3393
3394    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3395        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3396        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3397      assert(isDot && "Can't compare against a vector result!");
3398
3399      // If this is a comparison against something other than 0/1, then we know
3400      // that the condition is never/always true.
3401      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3402      if (Val != 0 && Val != 1) {
3403        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3404          return N->getOperand(0);
3405        // Always !=, turn it into an unconditional branch.
3406        return DAG.getNode(ISD::BR, MVT::Other,
3407                           N->getOperand(0), N->getOperand(4));
3408      }
3409
3410      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3411
3412      // Create the PPCISD altivec 'dot' comparison node.
3413      std::vector<MVT::ValueType> VTs;
3414      SDOperand Ops[] = {
3415        LHS.getOperand(2),  // LHS of compare
3416        LHS.getOperand(3),  // RHS of compare
3417        DAG.getConstant(CompareOpc, MVT::i32)
3418      };
3419      VTs.push_back(LHS.getOperand(2).getValueType());
3420      VTs.push_back(MVT::Flag);
3421      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3422
3423      // Unpack the result based on how the target uses it.
3424      PPC::Predicate CompOpc;
3425      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3426      default:  // Can't happen, don't crash on invalid number though.
3427      case 0:   // Branch on the value of the EQ bit of CR6.
3428        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3429        break;
3430      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3431        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3432        break;
3433      case 2:   // Branch on the value of the LT bit of CR6.
3434        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3435        break;
3436      case 3:   // Branch on the inverted value of the LT bit of CR6.
3437        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3438        break;
3439      }
3440
3441      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3442                         DAG.getConstant(CompOpc, MVT::i32),
3443                         DAG.getRegister(PPC::CR6, MVT::i32),
3444                         N->getOperand(4), CompNode.getValue(1));
3445    }
3446    break;
3447  }
3448  }
3449
3450  return SDOperand();
3451}
3452
3453//===----------------------------------------------------------------------===//
3454// Inline Assembly Support
3455//===----------------------------------------------------------------------===//
3456
3457void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3458                                                       uint64_t Mask,
3459                                                       uint64_t &KnownZero,
3460                                                       uint64_t &KnownOne,
3461                                                       const SelectionDAG &DAG,
3462                                                       unsigned Depth) const {
3463  KnownZero = 0;
3464  KnownOne = 0;
3465  switch (Op.getOpcode()) {
3466  default: break;
3467  case PPCISD::LBRX: {
3468    // lhbrx is known to have the top bits cleared out.
3469    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3470      KnownZero = 0xFFFF0000;
3471    break;
3472  }
3473  case ISD::INTRINSIC_WO_CHAIN: {
3474    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3475    default: break;
3476    case Intrinsic::ppc_altivec_vcmpbfp_p:
3477    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3478    case Intrinsic::ppc_altivec_vcmpequb_p:
3479    case Intrinsic::ppc_altivec_vcmpequh_p:
3480    case Intrinsic::ppc_altivec_vcmpequw_p:
3481    case Intrinsic::ppc_altivec_vcmpgefp_p:
3482    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3483    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3484    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3485    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3486    case Intrinsic::ppc_altivec_vcmpgtub_p:
3487    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3488    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3489      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3490      break;
3491    }
3492  }
3493  }
3494}
3495
3496
3497/// getConstraintType - Given a constraint, return the type of
3498/// constraint it is for this target.
3499PPCTargetLowering::ConstraintType
3500PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3501  if (Constraint.size() == 1) {
3502    switch (Constraint[0]) {
3503    default: break;
3504    case 'b':
3505    case 'r':
3506    case 'f':
3507    case 'v':
3508    case 'y':
3509      return C_RegisterClass;
3510    }
3511  }
3512  return TargetLowering::getConstraintType(Constraint);
3513}
3514
3515std::pair<unsigned, const TargetRegisterClass*>
3516PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3517                                                MVT::ValueType VT) const {
3518  if (Constraint.size() == 1) {
3519    // GCC RS6000 Constraint Letters
3520    switch (Constraint[0]) {
3521    case 'b':   // R1-R31
3522    case 'r':   // R0-R31
3523      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3524        return std::make_pair(0U, PPC::G8RCRegisterClass);
3525      return std::make_pair(0U, PPC::GPRCRegisterClass);
3526    case 'f':
3527      if (VT == MVT::f32)
3528        return std::make_pair(0U, PPC::F4RCRegisterClass);
3529      else if (VT == MVT::f64)
3530        return std::make_pair(0U, PPC::F8RCRegisterClass);
3531      break;
3532    case 'v':
3533      return std::make_pair(0U, PPC::VRRCRegisterClass);
3534    case 'y':   // crrc
3535      return std::make_pair(0U, PPC::CRRCRegisterClass);
3536    }
3537  }
3538
3539  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3540}
3541
3542
3543/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3544/// vector.  If it is invalid, don't add anything to Ops.
3545void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3546                                                     std::vector<SDOperand>&Ops,
3547                                                     SelectionDAG &DAG) {
3548  SDOperand Result(0,0);
3549  switch (Letter) {
3550  default: break;
3551  case 'I':
3552  case 'J':
3553  case 'K':
3554  case 'L':
3555  case 'M':
3556  case 'N':
3557  case 'O':
3558  case 'P': {
3559    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3560    if (!CST) return; // Must be an immediate to match.
3561    unsigned Value = CST->getValue();
3562    switch (Letter) {
3563    default: assert(0 && "Unknown constraint letter!");
3564    case 'I':  // "I" is a signed 16-bit constant.
3565      if ((short)Value == (int)Value)
3566        Result = DAG.getTargetConstant(Value, Op.getValueType());
3567      break;
3568    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3569    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3570      if ((short)Value == 0)
3571        Result = DAG.getTargetConstant(Value, Op.getValueType());
3572      break;
3573    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3574      if ((Value >> 16) == 0)
3575        Result = DAG.getTargetConstant(Value, Op.getValueType());
3576      break;
3577    case 'M':  // "M" is a constant that is greater than 31.
3578      if (Value > 31)
3579        Result = DAG.getTargetConstant(Value, Op.getValueType());
3580      break;
3581    case 'N':  // "N" is a positive constant that is an exact power of two.
3582      if ((int)Value > 0 && isPowerOf2_32(Value))
3583        Result = DAG.getTargetConstant(Value, Op.getValueType());
3584      break;
3585    case 'O':  // "O" is the constant zero.
3586      if (Value == 0)
3587        Result = DAG.getTargetConstant(Value, Op.getValueType());
3588      break;
3589    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3590      if ((short)-Value == (int)-Value)
3591        Result = DAG.getTargetConstant(Value, Op.getValueType());
3592      break;
3593    }
3594    break;
3595  }
3596  }
3597
3598  if (Result.Val) {
3599    Ops.push_back(Result);
3600    return;
3601  }
3602
3603  // Handle standard constraint letters.
3604  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3605}
3606
3607// isLegalAddressingMode - Return true if the addressing mode represented
3608// by AM is legal for this target, for a load/store of the specified type.
3609bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3610                                              const Type *Ty) const {
3611  // FIXME: PPC does not allow r+i addressing modes for vectors!
3612
3613  // PPC allows a sign-extended 16-bit immediate field.
3614  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3615    return false;
3616
3617  // No global is ever allowed as a base.
3618  if (AM.BaseGV)
3619    return false;
3620
3621  // PPC only support r+r,
3622  switch (AM.Scale) {
3623  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3624    break;
3625  case 1:
3626    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3627      return false;
3628    // Otherwise we have r+r or r+i.
3629    break;
3630  case 2:
3631    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3632      return false;
3633    // Allow 2*r as r+r.
3634    break;
3635  default:
3636    // No other scales are supported.
3637    return false;
3638  }
3639
3640  return true;
3641}
3642
3643/// isLegalAddressImmediate - Return true if the integer value can be used
3644/// as the offset of the target addressing mode for load / store of the
3645/// given type.
3646bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3647  // PPC allows a sign-extended 16-bit immediate field.
3648  return (V > -(1 << 16) && V < (1 << 16)-1);
3649}
3650
3651bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3652  return false;
3653}
3654
3655SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3656  // Depths > 0 not supported yet!
3657  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3658    return SDOperand();
3659
3660  MachineFunction &MF = DAG.getMachineFunction();
3661  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3662  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3663  if (RAIdx == 0) {
3664    bool isPPC64 = PPCSubTarget.isPPC64();
3665    int Offset =
3666      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3667
3668    // Set up a frame object for the return address.
3669    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3670
3671    // Remember it for next time.
3672    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3673
3674    // Make sure the function really does not optimize away the store of the RA
3675    // to the stack.
3676    FuncInfo->setLRStoreRequired();
3677  }
3678
3679  // Just load the return address off the stack.
3680  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3681  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3682}
3683
3684SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3685  // Depths > 0 not supported yet!
3686  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3687    return SDOperand();
3688
3689  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3690  bool isPPC64 = PtrVT == MVT::i64;
3691
3692  MachineFunction &MF = DAG.getMachineFunction();
3693  MachineFrameInfo *MFI = MF.getFrameInfo();
3694  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3695                  && MFI->getStackSize();
3696
3697  if (isPPC64)
3698    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3699      MVT::i64);
3700  else
3701    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3702      MVT::i32);
3703}
3704