PPCISelLowering.cpp revision 1d0be15f89cb5056e20e2d24faa8d6afb1573bca
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF(true);
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  // Support label based line numbers.
186  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
187  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
200  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
201  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
203  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
204  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
205
206  // TRAP is legal.
207  setOperationAction(ISD::TRAP, MVT::Other, Legal);
208
209  // TRAMPOLINE is custom lowered.
210  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
211
212  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
213  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
214
215  // VAARG is custom lowered with the SVR4 ABI
216  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI())
217    setOperationAction(ISD::VAARG, MVT::Other, Custom);
218  else
219    setOperationAction(ISD::VAARG, MVT::Other, Expand);
220
221  // Use the default implementation.
222  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
223  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
224  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
225  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
226  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
227  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
228
229  // We want to custom lower some of our intrinsics.
230  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
231
232  // Comparisons that require checking two conditions.
233  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
234  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
235  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
238  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
239  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
245
246  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
247    // They also have instructions for converting between i64 and fp.
248    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
249    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
250    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
251    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
252    // This is just the low 32 bits of a (signed) fp->i64 conversion.
253    // We cannot do this with Promote because i64 is not a legal type.
254    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
255
256    // FIXME: disable this lowered code.  This generates 64-bit register values,
257    // and we don't model the fact that the top part is clobbered by calls.  We
258    // need to flag these together so that the value isn't live across a call.
259    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
260  } else {
261    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
262    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
263  }
264
265  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
266    // 64-bit PowerPC implementations can support i64 types directly
267    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
268    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
269    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
270    // 64-bit PowerPC wants to expand i128 shifts itself.
271    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
272    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
273    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
274  } else {
275    // 32-bit PowerPC wants to expand i64 shifts itself.
276    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
277    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
278    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
279  }
280
281  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
282    // First set operation action for all vector types to expand. Then we
283    // will selectively turn on ones that can be effectively codegen'd.
284    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
285         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
286      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
287
288      // add/sub are legal for all supported vector VT's.
289      setOperationAction(ISD::ADD , VT, Legal);
290      setOperationAction(ISD::SUB , VT, Legal);
291
292      // We promote all shuffles to v16i8.
293      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
294      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
295
296      // We promote all non-typed operations to v4i32.
297      setOperationAction(ISD::AND   , VT, Promote);
298      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
299      setOperationAction(ISD::OR    , VT, Promote);
300      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
301      setOperationAction(ISD::XOR   , VT, Promote);
302      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
303      setOperationAction(ISD::LOAD  , VT, Promote);
304      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
305      setOperationAction(ISD::SELECT, VT, Promote);
306      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
307      setOperationAction(ISD::STORE, VT, Promote);
308      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
309
310      // No other operations are legal.
311      setOperationAction(ISD::MUL , VT, Expand);
312      setOperationAction(ISD::SDIV, VT, Expand);
313      setOperationAction(ISD::SREM, VT, Expand);
314      setOperationAction(ISD::UDIV, VT, Expand);
315      setOperationAction(ISD::UREM, VT, Expand);
316      setOperationAction(ISD::FDIV, VT, Expand);
317      setOperationAction(ISD::FNEG, VT, Expand);
318      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
319      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
320      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
321      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
322      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
323      setOperationAction(ISD::UDIVREM, VT, Expand);
324      setOperationAction(ISD::SDIVREM, VT, Expand);
325      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
326      setOperationAction(ISD::FPOW, VT, Expand);
327      setOperationAction(ISD::CTPOP, VT, Expand);
328      setOperationAction(ISD::CTLZ, VT, Expand);
329      setOperationAction(ISD::CTTZ, VT, Expand);
330    }
331
332    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
333    // with merges, splats, etc.
334    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
335
336    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
337    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
338    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
339    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
340    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
341    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
342
343    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
344    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
346    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
347
348    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
349    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
350    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
351    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
352
353    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
354    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
355
356    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
360  }
361
362  setShiftAmountType(MVT::i32);
363  setBooleanContents(ZeroOrOneBooleanContent);
364
365  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
366    setStackPointerRegisterToSaveRestore(PPC::X1);
367    setExceptionPointerRegister(PPC::X3);
368    setExceptionSelectorRegister(PPC::X4);
369  } else {
370    setStackPointerRegisterToSaveRestore(PPC::R1);
371    setExceptionPointerRegister(PPC::R3);
372    setExceptionSelectorRegister(PPC::R4);
373  }
374
375  // We have target-specific dag combine patterns for the following nodes:
376  setTargetDAGCombine(ISD::SINT_TO_FP);
377  setTargetDAGCombine(ISD::STORE);
378  setTargetDAGCombine(ISD::BR_CC);
379  setTargetDAGCombine(ISD::BSWAP);
380
381  // Darwin long double math library functions have $LDBL128 appended.
382  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
383    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
384    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
385    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
386    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
387    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
388    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
389    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
390    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
391    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
392    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
393  }
394
395  computeRegisterProperties();
396}
397
398/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
399/// function arguments in the caller parameter area.
400unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
401  TargetMachine &TM = getTargetMachine();
402  // Darwin passes everything on 4 byte boundary.
403  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
404    return 4;
405  // FIXME SVR4 TBD
406  return 4;
407}
408
409const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
410  switch (Opcode) {
411  default: return 0;
412  case PPCISD::FSEL:            return "PPCISD::FSEL";
413  case PPCISD::FCFID:           return "PPCISD::FCFID";
414  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
415  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
416  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
417  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
418  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
419  case PPCISD::VPERM:           return "PPCISD::VPERM";
420  case PPCISD::Hi:              return "PPCISD::Hi";
421  case PPCISD::Lo:              return "PPCISD::Lo";
422  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
423  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
424  case PPCISD::SRL:             return "PPCISD::SRL";
425  case PPCISD::SRA:             return "PPCISD::SRA";
426  case PPCISD::SHL:             return "PPCISD::SHL";
427  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
428  case PPCISD::STD_32:          return "PPCISD::STD_32";
429  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
430  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
431  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
432  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
433  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
434  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
435  case PPCISD::MFCR:            return "PPCISD::MFCR";
436  case PPCISD::VCMP:            return "PPCISD::VCMP";
437  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
438  case PPCISD::LBRX:            return "PPCISD::LBRX";
439  case PPCISD::STBRX:           return "PPCISD::STBRX";
440  case PPCISD::LARX:            return "PPCISD::LARX";
441  case PPCISD::STCX:            return "PPCISD::STCX";
442  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
443  case PPCISD::MFFS:            return "PPCISD::MFFS";
444  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
445  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
446  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
447  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
448  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
449  }
450}
451
452MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
453  return MVT::i32;
454}
455
456/// getFunctionAlignment - Return the Log2 alignment of this function.
457unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
458  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
459    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
460  else
461    return 2;
462}
463
464//===----------------------------------------------------------------------===//
465// Node matching predicates, for use by the tblgen matching code.
466//===----------------------------------------------------------------------===//
467
468/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
469static bool isFloatingPointZero(SDValue Op) {
470  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
471    return CFP->getValueAPF().isZero();
472  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
473    // Maybe this has already been legalized into the constant pool?
474    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
475      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
476        return CFP->getValueAPF().isZero();
477  }
478  return false;
479}
480
481/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
482/// true if Op is undef or if it matches the specified value.
483static bool isConstantOrUndef(int Op, int Val) {
484  return Op < 0 || Op == Val;
485}
486
487/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
488/// VPKUHUM instruction.
489bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
490  if (!isUnary) {
491    for (unsigned i = 0; i != 16; ++i)
492      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
493        return false;
494  } else {
495    for (unsigned i = 0; i != 8; ++i)
496      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
497          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
498        return false;
499  }
500  return true;
501}
502
503/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
504/// VPKUWUM instruction.
505bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
506  if (!isUnary) {
507    for (unsigned i = 0; i != 16; i += 2)
508      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
509          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
510        return false;
511  } else {
512    for (unsigned i = 0; i != 8; i += 2)
513      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
514          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
515          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
516          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
517        return false;
518  }
519  return true;
520}
521
522/// isVMerge - Common function, used to match vmrg* shuffles.
523///
524static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
525                     unsigned LHSStart, unsigned RHSStart) {
526  assert(N->getValueType(0) == MVT::v16i8 &&
527         "PPC only supports shuffles by bytes!");
528  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
529         "Unsupported merge size!");
530
531  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
532    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
533      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
534                             LHSStart+j+i*UnitSize) ||
535          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
536                             RHSStart+j+i*UnitSize))
537        return false;
538    }
539  return true;
540}
541
542/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
543/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
544bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
545                             bool isUnary) {
546  if (!isUnary)
547    return isVMerge(N, UnitSize, 8, 24);
548  return isVMerge(N, UnitSize, 8, 8);
549}
550
551/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
552/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
553bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
554                             bool isUnary) {
555  if (!isUnary)
556    return isVMerge(N, UnitSize, 0, 16);
557  return isVMerge(N, UnitSize, 0, 0);
558}
559
560
561/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
562/// amount, otherwise return -1.
563int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
564  assert(N->getValueType(0) == MVT::v16i8 &&
565         "PPC only supports shuffles by bytes!");
566
567  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
568
569  // Find the first non-undef value in the shuffle mask.
570  unsigned i;
571  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
572    /*search*/;
573
574  if (i == 16) return -1;  // all undef.
575
576  // Otherwise, check to see if the rest of the elements are consecutively
577  // numbered from this value.
578  unsigned ShiftAmt = SVOp->getMaskElt(i);
579  if (ShiftAmt < i) return -1;
580  ShiftAmt -= i;
581
582  if (!isUnary) {
583    // Check the rest of the elements to see if they are consecutive.
584    for (++i; i != 16; ++i)
585      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
586        return -1;
587  } else {
588    // Check the rest of the elements to see if they are consecutive.
589    for (++i; i != 16; ++i)
590      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
591        return -1;
592  }
593  return ShiftAmt;
594}
595
596/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
597/// specifies a splat of a single element that is suitable for input to
598/// VSPLTB/VSPLTH/VSPLTW.
599bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
600  assert(N->getValueType(0) == MVT::v16i8 &&
601         (EltSize == 1 || EltSize == 2 || EltSize == 4));
602
603  // This is a splat operation if each element of the permute is the same, and
604  // if the value doesn't reference the second vector.
605  unsigned ElementBase = N->getMaskElt(0);
606
607  // FIXME: Handle UNDEF elements too!
608  if (ElementBase >= 16)
609    return false;
610
611  // Check that the indices are consecutive, in the case of a multi-byte element
612  // splatted with a v16i8 mask.
613  for (unsigned i = 1; i != EltSize; ++i)
614    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
615      return false;
616
617  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
618    if (N->getMaskElt(i) < 0) continue;
619    for (unsigned j = 0; j != EltSize; ++j)
620      if (N->getMaskElt(i+j) != N->getMaskElt(j))
621        return false;
622  }
623  return true;
624}
625
626/// isAllNegativeZeroVector - Returns true if all elements of build_vector
627/// are -0.0.
628bool PPC::isAllNegativeZeroVector(SDNode *N) {
629  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
630
631  APInt APVal, APUndef;
632  unsigned BitSize;
633  bool HasAnyUndefs;
634
635  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
636    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
637      return CFP->getValueAPF().isNegZero();
638
639  return false;
640}
641
642/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
643/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
644unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
645  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
646  assert(isSplatShuffleMask(SVOp, EltSize));
647  return SVOp->getMaskElt(0) / EltSize;
648}
649
650/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
651/// by using a vspltis[bhw] instruction of the specified element size, return
652/// the constant being splatted.  The ByteSize field indicates the number of
653/// bytes of each element [124] -> [bhw].
654SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
655  SDValue OpVal(0, 0);
656
657  // If ByteSize of the splat is bigger than the element size of the
658  // build_vector, then we have a case where we are checking for a splat where
659  // multiple elements of the buildvector are folded together into a single
660  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
661  unsigned EltSize = 16/N->getNumOperands();
662  if (EltSize < ByteSize) {
663    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
664    SDValue UniquedVals[4];
665    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
666
667    // See if all of the elements in the buildvector agree across.
668    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
669      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
670      // If the element isn't a constant, bail fully out.
671      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
672
673
674      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
675        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
676      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
677        return SDValue();  // no match.
678    }
679
680    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
681    // either constant or undef values that are identical for each chunk.  See
682    // if these chunks can form into a larger vspltis*.
683
684    // Check to see if all of the leading entries are either 0 or -1.  If
685    // neither, then this won't fit into the immediate field.
686    bool LeadingZero = true;
687    bool LeadingOnes = true;
688    for (unsigned i = 0; i != Multiple-1; ++i) {
689      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
690
691      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
692      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
693    }
694    // Finally, check the least significant entry.
695    if (LeadingZero) {
696      if (UniquedVals[Multiple-1].getNode() == 0)
697        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
698      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
699      if (Val < 16)
700        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
701    }
702    if (LeadingOnes) {
703      if (UniquedVals[Multiple-1].getNode() == 0)
704        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
705      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
706      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
707        return DAG.getTargetConstant(Val, MVT::i32);
708    }
709
710    return SDValue();
711  }
712
713  // Check to see if this buildvec has a single non-undef value in its elements.
714  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
715    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
716    if (OpVal.getNode() == 0)
717      OpVal = N->getOperand(i);
718    else if (OpVal != N->getOperand(i))
719      return SDValue();
720  }
721
722  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
723
724  unsigned ValSizeInBytes = EltSize;
725  uint64_t Value = 0;
726  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
727    Value = CN->getZExtValue();
728  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
729    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
730    Value = FloatToBits(CN->getValueAPF().convertToFloat());
731  }
732
733  // If the splat value is larger than the element value, then we can never do
734  // this splat.  The only case that we could fit the replicated bits into our
735  // immediate field for would be zero, and we prefer to use vxor for it.
736  if (ValSizeInBytes < ByteSize) return SDValue();
737
738  // If the element value is larger than the splat value, cut it in half and
739  // check to see if the two halves are equal.  Continue doing this until we
740  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
741  while (ValSizeInBytes > ByteSize) {
742    ValSizeInBytes >>= 1;
743
744    // If the top half equals the bottom half, we're still ok.
745    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
746         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
747      return SDValue();
748  }
749
750  // Properly sign extend the value.
751  int ShAmt = (4-ByteSize)*8;
752  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
753
754  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
755  if (MaskVal == 0) return SDValue();
756
757  // Finally, if this value fits in a 5 bit sext field, return it
758  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
759    return DAG.getTargetConstant(MaskVal, MVT::i32);
760  return SDValue();
761}
762
763//===----------------------------------------------------------------------===//
764//  Addressing Mode Selection
765//===----------------------------------------------------------------------===//
766
767/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
768/// or 64-bit immediate, and if the value can be accurately represented as a
769/// sign extension from a 16-bit value.  If so, this returns true and the
770/// immediate.
771static bool isIntS16Immediate(SDNode *N, short &Imm) {
772  if (N->getOpcode() != ISD::Constant)
773    return false;
774
775  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
776  if (N->getValueType(0) == MVT::i32)
777    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
778  else
779    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
780}
781static bool isIntS16Immediate(SDValue Op, short &Imm) {
782  return isIntS16Immediate(Op.getNode(), Imm);
783}
784
785
786/// SelectAddressRegReg - Given the specified addressed, check to see if it
787/// can be represented as an indexed [r+r] operation.  Returns false if it
788/// can be more efficiently represented with [r+imm].
789bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
790                                            SDValue &Index,
791                                            SelectionDAG &DAG) const {
792  short imm = 0;
793  if (N.getOpcode() == ISD::ADD) {
794    if (isIntS16Immediate(N.getOperand(1), imm))
795      return false;    // r+i
796    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
797      return false;    // r+i
798
799    Base = N.getOperand(0);
800    Index = N.getOperand(1);
801    return true;
802  } else if (N.getOpcode() == ISD::OR) {
803    if (isIntS16Immediate(N.getOperand(1), imm))
804      return false;    // r+i can fold it if we can.
805
806    // If this is an or of disjoint bitfields, we can codegen this as an add
807    // (for better address arithmetic) if the LHS and RHS of the OR are provably
808    // disjoint.
809    APInt LHSKnownZero, LHSKnownOne;
810    APInt RHSKnownZero, RHSKnownOne;
811    DAG.ComputeMaskedBits(N.getOperand(0),
812                          APInt::getAllOnesValue(N.getOperand(0)
813                            .getValueSizeInBits()),
814                          LHSKnownZero, LHSKnownOne);
815
816    if (LHSKnownZero.getBoolValue()) {
817      DAG.ComputeMaskedBits(N.getOperand(1),
818                            APInt::getAllOnesValue(N.getOperand(1)
819                              .getValueSizeInBits()),
820                            RHSKnownZero, RHSKnownOne);
821      // If all of the bits are known zero on the LHS or RHS, the add won't
822      // carry.
823      if (~(LHSKnownZero | RHSKnownZero) == 0) {
824        Base = N.getOperand(0);
825        Index = N.getOperand(1);
826        return true;
827      }
828    }
829  }
830
831  return false;
832}
833
834/// Returns true if the address N can be represented by a base register plus
835/// a signed 16-bit displacement [r+imm], and if it is not better
836/// represented as reg+reg.
837bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
838                                            SDValue &Base,
839                                            SelectionDAG &DAG) const {
840  // FIXME dl should come from parent load or store, not from address
841  DebugLoc dl = N.getDebugLoc();
842  // If this can be more profitably realized as r+r, fail.
843  if (SelectAddressRegReg(N, Disp, Base, DAG))
844    return false;
845
846  if (N.getOpcode() == ISD::ADD) {
847    short imm = 0;
848    if (isIntS16Immediate(N.getOperand(1), imm)) {
849      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
850      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
851        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
852      } else {
853        Base = N.getOperand(0);
854      }
855      return true; // [r+i]
856    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
857      // Match LOAD (ADD (X, Lo(G))).
858     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
859             && "Cannot handle constant offsets yet!");
860      Disp = N.getOperand(1).getOperand(0);  // The global address.
861      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
862             Disp.getOpcode() == ISD::TargetConstantPool ||
863             Disp.getOpcode() == ISD::TargetJumpTable);
864      Base = N.getOperand(0);
865      return true;  // [&g+r]
866    }
867  } else if (N.getOpcode() == ISD::OR) {
868    short imm = 0;
869    if (isIntS16Immediate(N.getOperand(1), imm)) {
870      // If this is an or of disjoint bitfields, we can codegen this as an add
871      // (for better address arithmetic) if the LHS and RHS of the OR are
872      // provably disjoint.
873      APInt LHSKnownZero, LHSKnownOne;
874      DAG.ComputeMaskedBits(N.getOperand(0),
875                            APInt::getAllOnesValue(N.getOperand(0)
876                                                   .getValueSizeInBits()),
877                            LHSKnownZero, LHSKnownOne);
878
879      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
880        // If all of the bits are known zero on the LHS or RHS, the add won't
881        // carry.
882        Base = N.getOperand(0);
883        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
884        return true;
885      }
886    }
887  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
888    // Loading from a constant address.
889
890    // If this address fits entirely in a 16-bit sext immediate field, codegen
891    // this as "d, 0"
892    short Imm;
893    if (isIntS16Immediate(CN, Imm)) {
894      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
895      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
896      return true;
897    }
898
899    // Handle 32-bit sext immediates with LIS + addr mode.
900    if (CN->getValueType(0) == MVT::i32 ||
901        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
902      int Addr = (int)CN->getZExtValue();
903
904      // Otherwise, break this down into an LIS + disp.
905      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
906
907      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
908      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
909      Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
910      return true;
911    }
912  }
913
914  Disp = DAG.getTargetConstant(0, getPointerTy());
915  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
916    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
917  else
918    Base = N;
919  return true;      // [r+0]
920}
921
922/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
923/// represented as an indexed [r+r] operation.
924bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
925                                                SDValue &Index,
926                                                SelectionDAG &DAG) const {
927  // Check to see if we can easily represent this as an [r+r] address.  This
928  // will fail if it thinks that the address is more profitably represented as
929  // reg+imm, e.g. where imm = 0.
930  if (SelectAddressRegReg(N, Base, Index, DAG))
931    return true;
932
933  // If the operand is an addition, always emit this as [r+r], since this is
934  // better (for code size, and execution, as the memop does the add for free)
935  // than emitting an explicit add.
936  if (N.getOpcode() == ISD::ADD) {
937    Base = N.getOperand(0);
938    Index = N.getOperand(1);
939    return true;
940  }
941
942  // Otherwise, do it the hard way, using R0 as the base register.
943  Base = DAG.getRegister(PPC::R0, N.getValueType());
944  Index = N;
945  return true;
946}
947
948/// SelectAddressRegImmShift - Returns true if the address N can be
949/// represented by a base register plus a signed 14-bit displacement
950/// [r+imm*4].  Suitable for use by STD and friends.
951bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
952                                                 SDValue &Base,
953                                                 SelectionDAG &DAG) const {
954  // FIXME dl should come from the parent load or store, not the address
955  DebugLoc dl = N.getDebugLoc();
956  // If this can be more profitably realized as r+r, fail.
957  if (SelectAddressRegReg(N, Disp, Base, DAG))
958    return false;
959
960  if (N.getOpcode() == ISD::ADD) {
961    short imm = 0;
962    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
963      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
964      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
965        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
966      } else {
967        Base = N.getOperand(0);
968      }
969      return true; // [r+i]
970    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
971      // Match LOAD (ADD (X, Lo(G))).
972     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
973             && "Cannot handle constant offsets yet!");
974      Disp = N.getOperand(1).getOperand(0);  // The global address.
975      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
976             Disp.getOpcode() == ISD::TargetConstantPool ||
977             Disp.getOpcode() == ISD::TargetJumpTable);
978      Base = N.getOperand(0);
979      return true;  // [&g+r]
980    }
981  } else if (N.getOpcode() == ISD::OR) {
982    short imm = 0;
983    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
984      // If this is an or of disjoint bitfields, we can codegen this as an add
985      // (for better address arithmetic) if the LHS and RHS of the OR are
986      // provably disjoint.
987      APInt LHSKnownZero, LHSKnownOne;
988      DAG.ComputeMaskedBits(N.getOperand(0),
989                            APInt::getAllOnesValue(N.getOperand(0)
990                                                   .getValueSizeInBits()),
991                            LHSKnownZero, LHSKnownOne);
992      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
993        // If all of the bits are known zero on the LHS or RHS, the add won't
994        // carry.
995        Base = N.getOperand(0);
996        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
997        return true;
998      }
999    }
1000  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1001    // Loading from a constant address.  Verify low two bits are clear.
1002    if ((CN->getZExtValue() & 3) == 0) {
1003      // If this address fits entirely in a 14-bit sext immediate field, codegen
1004      // this as "d, 0"
1005      short Imm;
1006      if (isIntS16Immediate(CN, Imm)) {
1007        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1008        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1009        return true;
1010      }
1011
1012      // Fold the low-part of 32-bit absolute addresses into addr mode.
1013      if (CN->getValueType(0) == MVT::i32 ||
1014          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1015        int Addr = (int)CN->getZExtValue();
1016
1017        // Otherwise, break this down into an LIS + disp.
1018        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1019        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1020        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1021        Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1022        return true;
1023      }
1024    }
1025  }
1026
1027  Disp = DAG.getTargetConstant(0, getPointerTy());
1028  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1029    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1030  else
1031    Base = N;
1032  return true;      // [r+0]
1033}
1034
1035
1036/// getPreIndexedAddressParts - returns true by value, base pointer and
1037/// offset pointer and addressing mode by reference if the node's address
1038/// can be legally represented as pre-indexed load / store address.
1039bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1040                                                  SDValue &Offset,
1041                                                  ISD::MemIndexedMode &AM,
1042                                                  SelectionDAG &DAG) const {
1043  // Disabled by default for now.
1044  if (!EnablePPCPreinc) return false;
1045
1046  SDValue Ptr;
1047  EVT VT;
1048  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1049    Ptr = LD->getBasePtr();
1050    VT = LD->getMemoryVT();
1051
1052  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1053    ST = ST;
1054    Ptr = ST->getBasePtr();
1055    VT  = ST->getMemoryVT();
1056  } else
1057    return false;
1058
1059  // PowerPC doesn't have preinc load/store instructions for vectors.
1060  if (VT.isVector())
1061    return false;
1062
1063  // TODO: Check reg+reg first.
1064
1065  // LDU/STU use reg+imm*4, others use reg+imm.
1066  if (VT != MVT::i64) {
1067    // reg + imm
1068    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1069      return false;
1070  } else {
1071    // reg + imm * 4.
1072    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1073      return false;
1074  }
1075
1076  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1077    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1078    // sext i32 to i64 when addr mode is r+i.
1079    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1080        LD->getExtensionType() == ISD::SEXTLOAD &&
1081        isa<ConstantSDNode>(Offset))
1082      return false;
1083  }
1084
1085  AM = ISD::PRE_INC;
1086  return true;
1087}
1088
1089//===----------------------------------------------------------------------===//
1090//  LowerOperation implementation
1091//===----------------------------------------------------------------------===//
1092
1093SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1094                                             SelectionDAG &DAG) {
1095  EVT PtrVT = Op.getValueType();
1096  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1097  Constant *C = CP->getConstVal();
1098  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1099  SDValue Zero = DAG.getConstant(0, PtrVT);
1100  // FIXME there isn't really any debug info here
1101  DebugLoc dl = Op.getDebugLoc();
1102
1103  const TargetMachine &TM = DAG.getTarget();
1104
1105  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1106  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1107
1108  // If this is a non-darwin platform, we don't support non-static relo models
1109  // yet.
1110  if (TM.getRelocationModel() == Reloc::Static ||
1111      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1112    // Generate non-pic code that has direct accesses to the constant pool.
1113    // The address of the global is just (hi(&g)+lo(&g)).
1114    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1115  }
1116
1117  if (TM.getRelocationModel() == Reloc::PIC_) {
1118    // With PIC, the first instruction is actually "GR+hi(&G)".
1119    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1120                     DAG.getNode(PPCISD::GlobalBaseReg,
1121                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1122  }
1123
1124  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1125  return Lo;
1126}
1127
1128SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1129  EVT PtrVT = Op.getValueType();
1130  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1131  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1132  SDValue Zero = DAG.getConstant(0, PtrVT);
1133  // FIXME there isn't really any debug loc here
1134  DebugLoc dl = Op.getDebugLoc();
1135
1136  const TargetMachine &TM = DAG.getTarget();
1137
1138  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1139  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1140
1141  // If this is a non-darwin platform, we don't support non-static relo models
1142  // yet.
1143  if (TM.getRelocationModel() == Reloc::Static ||
1144      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1145    // Generate non-pic code that has direct accesses to the constant pool.
1146    // The address of the global is just (hi(&g)+lo(&g)).
1147    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1148  }
1149
1150  if (TM.getRelocationModel() == Reloc::PIC_) {
1151    // With PIC, the first instruction is actually "GR+hi(&G)".
1152    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1153                     DAG.getNode(PPCISD::GlobalBaseReg,
1154                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1155  }
1156
1157  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1158  return Lo;
1159}
1160
1161SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1162                                                   SelectionDAG &DAG) {
1163  llvm_unreachable("TLS not implemented for PPC.");
1164  return SDValue(); // Not reached
1165}
1166
1167SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1168                                              SelectionDAG &DAG) {
1169  EVT PtrVT = Op.getValueType();
1170  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1171  GlobalValue *GV = GSDN->getGlobal();
1172  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1173  SDValue Zero = DAG.getConstant(0, PtrVT);
1174  // FIXME there isn't really any debug info here
1175  DebugLoc dl = GSDN->getDebugLoc();
1176
1177  const TargetMachine &TM = DAG.getTarget();
1178
1179  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1180  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1181
1182  // If this is a non-darwin platform, we don't support non-static relo models
1183  // yet.
1184  if (TM.getRelocationModel() == Reloc::Static ||
1185      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1186    // Generate non-pic code that has direct accesses to globals.
1187    // The address of the global is just (hi(&g)+lo(&g)).
1188    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1189  }
1190
1191  if (TM.getRelocationModel() == Reloc::PIC_) {
1192    // With PIC, the first instruction is actually "GR+hi(&G)".
1193    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1194                     DAG.getNode(PPCISD::GlobalBaseReg,
1195                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1196  }
1197
1198  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1199
1200  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1201    return Lo;
1202
1203  // If the global is weak or external, we have to go through the lazy
1204  // resolution stub.
1205  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1206}
1207
1208SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1209  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1210  DebugLoc dl = Op.getDebugLoc();
1211
1212  // If we're comparing for equality to zero, expose the fact that this is
1213  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1214  // fold the new nodes.
1215  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1216    if (C->isNullValue() && CC == ISD::SETEQ) {
1217      EVT VT = Op.getOperand(0).getValueType();
1218      SDValue Zext = Op.getOperand(0);
1219      if (VT.bitsLT(MVT::i32)) {
1220        VT = MVT::i32;
1221        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1222      }
1223      unsigned Log2b = Log2_32(VT.getSizeInBits());
1224      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1225      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1226                                DAG.getConstant(Log2b, MVT::i32));
1227      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1228    }
1229    // Leave comparisons against 0 and -1 alone for now, since they're usually
1230    // optimized.  FIXME: revisit this when we can custom lower all setcc
1231    // optimizations.
1232    if (C->isAllOnesValue() || C->isNullValue())
1233      return SDValue();
1234  }
1235
1236  // If we have an integer seteq/setne, turn it into a compare against zero
1237  // by xor'ing the rhs with the lhs, which is faster than setting a
1238  // condition register, reading it back out, and masking the correct bit.  The
1239  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1240  // the result to other bit-twiddling opportunities.
1241  EVT LHSVT = Op.getOperand(0).getValueType();
1242  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1243    EVT VT = Op.getValueType();
1244    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1245                                Op.getOperand(1));
1246    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1247  }
1248  return SDValue();
1249}
1250
1251SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1252                              int VarArgsFrameIndex,
1253                              int VarArgsStackOffset,
1254                              unsigned VarArgsNumGPR,
1255                              unsigned VarArgsNumFPR,
1256                              const PPCSubtarget &Subtarget) {
1257
1258  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1259  return SDValue(); // Not reached
1260}
1261
1262SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1263  SDValue Chain = Op.getOperand(0);
1264  SDValue Trmp = Op.getOperand(1); // trampoline
1265  SDValue FPtr = Op.getOperand(2); // nested function
1266  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1267  DebugLoc dl = Op.getDebugLoc();
1268
1269  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1270  bool isPPC64 = (PtrVT == MVT::i64);
1271  const Type *IntPtrTy =
1272    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1273                                                             *DAG.getContext());
1274
1275  TargetLowering::ArgListTy Args;
1276  TargetLowering::ArgListEntry Entry;
1277
1278  Entry.Ty = IntPtrTy;
1279  Entry.Node = Trmp; Args.push_back(Entry);
1280
1281  // TrampSize == (isPPC64 ? 48 : 40);
1282  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1283                               isPPC64 ? MVT::i64 : MVT::i32);
1284  Args.push_back(Entry);
1285
1286  Entry.Node = FPtr; Args.push_back(Entry);
1287  Entry.Node = Nest; Args.push_back(Entry);
1288
1289  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1290  std::pair<SDValue, SDValue> CallResult =
1291    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1292                false, false, false, false, 0, CallingConv::C, false,
1293                /*isReturnValueUsed=*/true,
1294                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1295                Args, DAG, dl);
1296
1297  SDValue Ops[] =
1298    { CallResult.first, CallResult.second };
1299
1300  return DAG.getMergeValues(Ops, 2, dl);
1301}
1302
1303SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1304                                        int VarArgsFrameIndex,
1305                                        int VarArgsStackOffset,
1306                                        unsigned VarArgsNumGPR,
1307                                        unsigned VarArgsNumFPR,
1308                                        const PPCSubtarget &Subtarget) {
1309  DebugLoc dl = Op.getDebugLoc();
1310
1311  if (Subtarget.isDarwinABI()) {
1312    // vastart just stores the address of the VarArgsFrameIndex slot into the
1313    // memory location argument.
1314    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1315    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1316    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1317    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1318  }
1319
1320  // For the SVR4 ABI we follow the layout of the va_list struct.
1321  // We suppose the given va_list is already allocated.
1322  //
1323  // typedef struct {
1324  //  char gpr;     /* index into the array of 8 GPRs
1325  //                 * stored in the register save area
1326  //                 * gpr=0 corresponds to r3,
1327  //                 * gpr=1 to r4, etc.
1328  //                 */
1329  //  char fpr;     /* index into the array of 8 FPRs
1330  //                 * stored in the register save area
1331  //                 * fpr=0 corresponds to f1,
1332  //                 * fpr=1 to f2, etc.
1333  //                 */
1334  //  char *overflow_arg_area;
1335  //                /* location on stack that holds
1336  //                 * the next overflow argument
1337  //                 */
1338  //  char *reg_save_area;
1339  //               /* where r3:r10 and f1:f8 (if saved)
1340  //                * are stored
1341  //                */
1342  // } va_list[1];
1343
1344
1345  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1346  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1347
1348
1349  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1350
1351  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1352  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1353
1354  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1355  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1356
1357  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1358  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1359
1360  uint64_t FPROffset = 1;
1361  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1362
1363  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1364
1365  // Store first byte : number of int regs
1366  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1367                                         Op.getOperand(1), SV, 0, MVT::i8);
1368  uint64_t nextOffset = FPROffset;
1369  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1370                                  ConstFPROffset);
1371
1372  // Store second byte : number of float regs
1373  SDValue secondStore =
1374    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1375  nextOffset += StackOffset;
1376  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1377
1378  // Store second word : arguments given on stack
1379  SDValue thirdStore =
1380    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1381  nextOffset += FrameOffset;
1382  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1383
1384  // Store third word : arguments given in registers
1385  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1386
1387}
1388
1389#include "PPCGenCallingConv.inc"
1390
1391static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1392                                     CCValAssign::LocInfo &LocInfo,
1393                                     ISD::ArgFlagsTy &ArgFlags,
1394                                     CCState &State) {
1395  return true;
1396}
1397
1398static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1399                                            EVT &LocVT,
1400                                            CCValAssign::LocInfo &LocInfo,
1401                                            ISD::ArgFlagsTy &ArgFlags,
1402                                            CCState &State) {
1403  static const unsigned ArgRegs[] = {
1404    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1405    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1406  };
1407  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1408
1409  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1410
1411  // Skip one register if the first unallocated register has an even register
1412  // number and there are still argument registers available which have not been
1413  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1414  // need to skip a register if RegNum is odd.
1415  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1416    State.AllocateReg(ArgRegs[RegNum]);
1417  }
1418
1419  // Always return false here, as this function only makes sure that the first
1420  // unallocated register has an odd register number and does not actually
1421  // allocate a register for the current argument.
1422  return false;
1423}
1424
1425static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1426                                              EVT &LocVT,
1427                                              CCValAssign::LocInfo &LocInfo,
1428                                              ISD::ArgFlagsTy &ArgFlags,
1429                                              CCState &State) {
1430  static const unsigned ArgRegs[] = {
1431    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1432    PPC::F8
1433  };
1434
1435  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1436
1437  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1438
1439  // If there is only one Floating-point register left we need to put both f64
1440  // values of a split ppc_fp128 value on the stack.
1441  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1442    State.AllocateReg(ArgRegs[RegNum]);
1443  }
1444
1445  // Always return false here, as this function only makes sure that the two f64
1446  // values a ppc_fp128 value is split into are both passed in registers or both
1447  // passed on the stack and does not actually allocate a register for the
1448  // current argument.
1449  return false;
1450}
1451
1452/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1453/// depending on which subtarget is selected.
1454static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1455  if (Subtarget.isDarwinABI()) {
1456    static const unsigned FPR[] = {
1457      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1458      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1459    };
1460    return FPR;
1461  }
1462
1463
1464  static const unsigned FPR[] = {
1465    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1466    PPC::F8
1467  };
1468  return FPR;
1469}
1470
1471/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1472/// the stack.
1473static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1474                                       unsigned PtrByteSize) {
1475  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1476  if (Flags.isByVal())
1477    ArgSize = Flags.getByValSize();
1478  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1479
1480  return ArgSize;
1481}
1482
1483SDValue
1484PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1485                                        unsigned CallConv, bool isVarArg,
1486                                        const SmallVectorImpl<ISD::InputArg>
1487                                          &Ins,
1488                                        DebugLoc dl, SelectionDAG &DAG,
1489                                        SmallVectorImpl<SDValue> &InVals) {
1490  if (PPCSubTarget.isSVR4ABI()) {
1491    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1492                                     dl, DAG, InVals);
1493  } else {
1494    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1495                                       dl, DAG, InVals);
1496  }
1497}
1498
1499SDValue
1500PPCTargetLowering::LowerFormalArguments_SVR4(
1501                                      SDValue Chain,
1502                                      unsigned CallConv, bool isVarArg,
1503                                      const SmallVectorImpl<ISD::InputArg>
1504                                        &Ins,
1505                                      DebugLoc dl, SelectionDAG &DAG,
1506                                      SmallVectorImpl<SDValue> &InVals) {
1507
1508  // SVR4 ABI Stack Frame Layout:
1509  //              +-----------------------------------+
1510  //        +-->  |            Back chain             |
1511  //        |     +-----------------------------------+
1512  //        |     | Floating-point register save area |
1513  //        |     +-----------------------------------+
1514  //        |     |    General register save area     |
1515  //        |     +-----------------------------------+
1516  //        |     |          CR save word             |
1517  //        |     +-----------------------------------+
1518  //        |     |         VRSAVE save word          |
1519  //        |     +-----------------------------------+
1520  //        |     |         Alignment padding         |
1521  //        |     +-----------------------------------+
1522  //        |     |     Vector register save area     |
1523  //        |     +-----------------------------------+
1524  //        |     |       Local variable space        |
1525  //        |     +-----------------------------------+
1526  //        |     |        Parameter list area        |
1527  //        |     +-----------------------------------+
1528  //        |     |           LR save word            |
1529  //        |     +-----------------------------------+
1530  // SP-->  +---  |            Back chain             |
1531  //              +-----------------------------------+
1532  //
1533  // Specifications:
1534  //   System V Application Binary Interface PowerPC Processor Supplement
1535  //   AltiVec Technology Programming Interface Manual
1536
1537  MachineFunction &MF = DAG.getMachineFunction();
1538  MachineFrameInfo *MFI = MF.getFrameInfo();
1539
1540  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1541  // Potential tail calls could cause overwriting of argument stack slots.
1542  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1543  unsigned PtrByteSize = 4;
1544
1545  // Assign locations to all of the incoming arguments.
1546  SmallVector<CCValAssign, 16> ArgLocs;
1547  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1548                 *DAG.getContext());
1549
1550  // Reserve space for the linkage area on the stack.
1551  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1552
1553  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1554
1555  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1556    CCValAssign &VA = ArgLocs[i];
1557
1558    // Arguments stored in registers.
1559    if (VA.isRegLoc()) {
1560      TargetRegisterClass *RC;
1561      EVT ValVT = VA.getValVT();
1562
1563      switch (ValVT.getSimpleVT().SimpleTy) {
1564        default:
1565          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1566        case MVT::i32:
1567          RC = PPC::GPRCRegisterClass;
1568          break;
1569        case MVT::f32:
1570          RC = PPC::F4RCRegisterClass;
1571          break;
1572        case MVT::f64:
1573          RC = PPC::F8RCRegisterClass;
1574          break;
1575        case MVT::v16i8:
1576        case MVT::v8i16:
1577        case MVT::v4i32:
1578        case MVT::v4f32:
1579          RC = PPC::VRRCRegisterClass;
1580          break;
1581      }
1582
1583      // Transform the arguments stored in physical registers into virtual ones.
1584      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1585      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1586
1587      InVals.push_back(ArgValue);
1588    } else {
1589      // Argument stored in memory.
1590      assert(VA.isMemLoc());
1591
1592      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1593      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1594                                      isImmutable);
1595
1596      // Create load nodes to retrieve arguments from the stack.
1597      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1598      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1599    }
1600  }
1601
1602  // Assign locations to all of the incoming aggregate by value arguments.
1603  // Aggregates passed by value are stored in the local variable space of the
1604  // caller's stack frame, right above the parameter list area.
1605  SmallVector<CCValAssign, 16> ByValArgLocs;
1606  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1607                      ByValArgLocs, *DAG.getContext());
1608
1609  // Reserve stack space for the allocations in CCInfo.
1610  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1611
1612  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1613
1614  // Area that is at least reserved in the caller of this function.
1615  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1616
1617  // Set the size that is at least reserved in caller of this function.  Tail
1618  // call optimized function's reserved stack space needs to be aligned so that
1619  // taking the difference between two stack areas will result in an aligned
1620  // stack.
1621  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1622
1623  MinReservedArea =
1624    std::max(MinReservedArea,
1625             PPCFrameInfo::getMinCallFrameSize(false, false));
1626
1627  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1628    getStackAlignment();
1629  unsigned AlignMask = TargetAlign-1;
1630  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1631
1632  FI->setMinReservedArea(MinReservedArea);
1633
1634  SmallVector<SDValue, 8> MemOps;
1635
1636  // If the function takes variable number of arguments, make a frame index for
1637  // the start of the first vararg value... for expansion of llvm.va_start.
1638  if (isVarArg) {
1639    static const unsigned GPArgRegs[] = {
1640      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1641      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1642    };
1643    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1644
1645    static const unsigned FPArgRegs[] = {
1646      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1647      PPC::F8
1648    };
1649    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1650
1651    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1652    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1653
1654    // Make room for NumGPArgRegs and NumFPArgRegs.
1655    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1656                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1657
1658    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1659                                                CCInfo.getNextStackOffset());
1660
1661    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1662    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1663
1664    // The fixed integer arguments of a variadic function are
1665    // stored to the VarArgsFrameIndex on the stack.
1666    unsigned GPRIndex = 0;
1667    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1668      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1669      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1670      MemOps.push_back(Store);
1671      // Increment the address by four for the next argument to store
1672      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1673      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1674    }
1675
1676    // If this function is vararg, store any remaining integer argument regs
1677    // to their spots on the stack so that they may be loaded by deferencing the
1678    // result of va_next.
1679    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1680      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1681
1682      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1683      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1684      MemOps.push_back(Store);
1685      // Increment the address by four for the next argument to store
1686      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1687      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1688    }
1689
1690    // FIXME SVR4: We only need to save FP argument registers if CR bit 6 is
1691    // set.
1692
1693    // The double arguments are stored to the VarArgsFrameIndex
1694    // on the stack.
1695    unsigned FPRIndex = 0;
1696    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1697      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1698      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1699      MemOps.push_back(Store);
1700      // Increment the address by eight for the next argument to store
1701      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1702                                         PtrVT);
1703      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1704    }
1705
1706    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1707      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1708
1709      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1710      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1711      MemOps.push_back(Store);
1712      // Increment the address by eight for the next argument to store
1713      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1714                                         PtrVT);
1715      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1716    }
1717  }
1718
1719  if (!MemOps.empty())
1720    Chain = DAG.getNode(ISD::TokenFactor, dl,
1721                        MVT::Other, &MemOps[0], MemOps.size());
1722
1723  return Chain;
1724}
1725
1726SDValue
1727PPCTargetLowering::LowerFormalArguments_Darwin(
1728                                      SDValue Chain,
1729                                      unsigned CallConv, bool isVarArg,
1730                                      const SmallVectorImpl<ISD::InputArg>
1731                                        &Ins,
1732                                      DebugLoc dl, SelectionDAG &DAG,
1733                                      SmallVectorImpl<SDValue> &InVals) {
1734
1735  // TODO: add description of PPC stack frame format, or at least some docs.
1736  //
1737  MachineFunction &MF = DAG.getMachineFunction();
1738  MachineFrameInfo *MFI = MF.getFrameInfo();
1739
1740  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1741  bool isPPC64 = PtrVT == MVT::i64;
1742  // Potential tail calls could cause overwriting of argument stack slots.
1743  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1744  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1745
1746  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1747  // Area that is at least reserved in caller of this function.
1748  unsigned MinReservedArea = ArgOffset;
1749
1750  static const unsigned GPR_32[] = {           // 32-bit registers.
1751    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1752    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1753  };
1754  static const unsigned GPR_64[] = {           // 64-bit registers.
1755    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1756    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1757  };
1758
1759  static const unsigned *FPR = GetFPR(PPCSubTarget);
1760
1761  static const unsigned VR[] = {
1762    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1763    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1764  };
1765
1766  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1767  const unsigned Num_FPR_Regs = 13;
1768  const unsigned Num_VR_Regs  = array_lengthof( VR);
1769
1770  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1771
1772  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1773
1774  // In 32-bit non-varargs functions, the stack space for vectors is after the
1775  // stack space for non-vectors.  We do not use this space unless we have
1776  // too many vectors to fit in registers, something that only occurs in
1777  // constructed examples:), but we have to walk the arglist to figure
1778  // that out...for the pathological case, compute VecArgOffset as the
1779  // start of the vector parameter area.  Computing VecArgOffset is the
1780  // entire point of the following loop.
1781  unsigned VecArgOffset = ArgOffset;
1782  if (!isVarArg && !isPPC64) {
1783    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1784         ++ArgNo) {
1785      EVT ObjectVT = Ins[ArgNo].VT;
1786      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1787      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1788
1789      if (Flags.isByVal()) {
1790        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1791        ObjSize = Flags.getByValSize();
1792        unsigned ArgSize =
1793                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1794        VecArgOffset += ArgSize;
1795        continue;
1796      }
1797
1798      switch(ObjectVT.getSimpleVT().SimpleTy) {
1799      default: llvm_unreachable("Unhandled argument type!");
1800      case MVT::i32:
1801      case MVT::f32:
1802        VecArgOffset += isPPC64 ? 8 : 4;
1803        break;
1804      case MVT::i64:  // PPC64
1805      case MVT::f64:
1806        VecArgOffset += 8;
1807        break;
1808      case MVT::v4f32:
1809      case MVT::v4i32:
1810      case MVT::v8i16:
1811      case MVT::v16i8:
1812        // Nothing to do, we're only looking at Nonvector args here.
1813        break;
1814      }
1815    }
1816  }
1817  // We've found where the vector parameter area in memory is.  Skip the
1818  // first 12 parameters; these don't use that memory.
1819  VecArgOffset = ((VecArgOffset+15)/16)*16;
1820  VecArgOffset += 12*16;
1821
1822  // Add DAG nodes to load the arguments or copy them out of registers.  On
1823  // entry to a function on PPC, the arguments start after the linkage area,
1824  // although the first ones are often in registers.
1825
1826  SmallVector<SDValue, 8> MemOps;
1827  unsigned nAltivecParamsAtEnd = 0;
1828  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1829    SDValue ArgVal;
1830    bool needsLoad = false;
1831    EVT ObjectVT = Ins[ArgNo].VT;
1832    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1833    unsigned ArgSize = ObjSize;
1834    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1835
1836    unsigned CurArgOffset = ArgOffset;
1837
1838    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1839    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1840        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1841      if (isVarArg || isPPC64) {
1842        MinReservedArea = ((MinReservedArea+15)/16)*16;
1843        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1844                                                  Flags,
1845                                                  PtrByteSize);
1846      } else  nAltivecParamsAtEnd++;
1847    } else
1848      // Calculate min reserved area.
1849      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1850                                                Flags,
1851                                                PtrByteSize);
1852
1853    // FIXME the codegen can be much improved in some cases.
1854    // We do not have to keep everything in memory.
1855    if (Flags.isByVal()) {
1856      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1857      ObjSize = Flags.getByValSize();
1858      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1859      // Objects of size 1 and 2 are right justified, everything else is
1860      // left justified.  This means the memory address is adjusted forwards.
1861      if (ObjSize==1 || ObjSize==2) {
1862        CurArgOffset = CurArgOffset + (4 - ObjSize);
1863      }
1864      // The value of the object is its address.
1865      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1866      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1867      InVals.push_back(FIN);
1868      if (ObjSize==1 || ObjSize==2) {
1869        if (GPR_idx != Num_GPR_Regs) {
1870          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1871          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1872          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1873                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1874          MemOps.push_back(Store);
1875          ++GPR_idx;
1876        }
1877
1878        ArgOffset += PtrByteSize;
1879
1880        continue;
1881      }
1882      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1883        // Store whatever pieces of the object are in registers
1884        // to memory.  ArgVal will be address of the beginning of
1885        // the object.
1886        if (GPR_idx != Num_GPR_Regs) {
1887          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1888          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1889          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1890          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1891          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1892          MemOps.push_back(Store);
1893          ++GPR_idx;
1894          ArgOffset += PtrByteSize;
1895        } else {
1896          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1897          break;
1898        }
1899      }
1900      continue;
1901    }
1902
1903    switch (ObjectVT.getSimpleVT().SimpleTy) {
1904    default: llvm_unreachable("Unhandled argument type!");
1905    case MVT::i32:
1906      if (!isPPC64) {
1907        if (GPR_idx != Num_GPR_Regs) {
1908          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1909          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1910          ++GPR_idx;
1911        } else {
1912          needsLoad = true;
1913          ArgSize = PtrByteSize;
1914        }
1915        // All int arguments reserve stack space in the Darwin ABI.
1916        ArgOffset += PtrByteSize;
1917        break;
1918      }
1919      // FALLTHROUGH
1920    case MVT::i64:  // PPC64
1921      if (GPR_idx != Num_GPR_Regs) {
1922        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1923        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1924
1925        if (ObjectVT == MVT::i32) {
1926          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1927          // value to MVT::i64 and then truncate to the correct register size.
1928          if (Flags.isSExt())
1929            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1930                                 DAG.getValueType(ObjectVT));
1931          else if (Flags.isZExt())
1932            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1933                                 DAG.getValueType(ObjectVT));
1934
1935          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1936        }
1937
1938        ++GPR_idx;
1939      } else {
1940        needsLoad = true;
1941        ArgSize = PtrByteSize;
1942      }
1943      // All int arguments reserve stack space in the Darwin ABI.
1944      ArgOffset += 8;
1945      break;
1946
1947    case MVT::f32:
1948    case MVT::f64:
1949      // Every 4 bytes of argument space consumes one of the GPRs available for
1950      // argument passing.
1951      if (GPR_idx != Num_GPR_Regs) {
1952        ++GPR_idx;
1953        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1954          ++GPR_idx;
1955      }
1956      if (FPR_idx != Num_FPR_Regs) {
1957        unsigned VReg;
1958
1959        if (ObjectVT == MVT::f32)
1960          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1961        else
1962          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1963
1964        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1965        ++FPR_idx;
1966      } else {
1967        needsLoad = true;
1968      }
1969
1970      // All FP arguments reserve stack space in the Darwin ABI.
1971      ArgOffset += isPPC64 ? 8 : ObjSize;
1972      break;
1973    case MVT::v4f32:
1974    case MVT::v4i32:
1975    case MVT::v8i16:
1976    case MVT::v16i8:
1977      // Note that vector arguments in registers don't reserve stack space,
1978      // except in varargs functions.
1979      if (VR_idx != Num_VR_Regs) {
1980        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1981        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1982        if (isVarArg) {
1983          while ((ArgOffset % 16) != 0) {
1984            ArgOffset += PtrByteSize;
1985            if (GPR_idx != Num_GPR_Regs)
1986              GPR_idx++;
1987          }
1988          ArgOffset += 16;
1989          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1990        }
1991        ++VR_idx;
1992      } else {
1993        if (!isVarArg && !isPPC64) {
1994          // Vectors go after all the nonvectors.
1995          CurArgOffset = VecArgOffset;
1996          VecArgOffset += 16;
1997        } else {
1998          // Vectors are aligned.
1999          ArgOffset = ((ArgOffset+15)/16)*16;
2000          CurArgOffset = ArgOffset;
2001          ArgOffset += 16;
2002        }
2003        needsLoad = true;
2004      }
2005      break;
2006    }
2007
2008    // We need to load the argument to a virtual register if we determined above
2009    // that we ran out of physical registers of the appropriate type.
2010    if (needsLoad) {
2011      int FI = MFI->CreateFixedObject(ObjSize,
2012                                      CurArgOffset + (ArgSize - ObjSize),
2013                                      isImmutable);
2014      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2015      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2016    }
2017
2018    InVals.push_back(ArgVal);
2019  }
2020
2021  // Set the size that is at least reserved in caller of this function.  Tail
2022  // call optimized function's reserved stack space needs to be aligned so that
2023  // taking the difference between two stack areas will result in an aligned
2024  // stack.
2025  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2026  // Add the Altivec parameters at the end, if needed.
2027  if (nAltivecParamsAtEnd) {
2028    MinReservedArea = ((MinReservedArea+15)/16)*16;
2029    MinReservedArea += 16*nAltivecParamsAtEnd;
2030  }
2031  MinReservedArea =
2032    std::max(MinReservedArea,
2033             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2034  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2035    getStackAlignment();
2036  unsigned AlignMask = TargetAlign-1;
2037  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2038  FI->setMinReservedArea(MinReservedArea);
2039
2040  // If the function takes variable number of arguments, make a frame index for
2041  // the start of the first vararg value... for expansion of llvm.va_start.
2042  if (isVarArg) {
2043    int Depth = ArgOffset;
2044
2045    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2046                                               Depth);
2047    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2048
2049    // If this function is vararg, store any remaining integer argument regs
2050    // to their spots on the stack so that they may be loaded by deferencing the
2051    // result of va_next.
2052    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2053      unsigned VReg;
2054
2055      if (isPPC64)
2056        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2057      else
2058        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2059
2060      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2061      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2062      MemOps.push_back(Store);
2063      // Increment the address by four for the next argument to store
2064      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2065      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2066    }
2067  }
2068
2069  if (!MemOps.empty())
2070    Chain = DAG.getNode(ISD::TokenFactor, dl,
2071                        MVT::Other, &MemOps[0], MemOps.size());
2072
2073  return Chain;
2074}
2075
2076/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2077/// linkage area for the Darwin ABI.
2078static unsigned
2079CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2080                                     bool isPPC64,
2081                                     bool isVarArg,
2082                                     unsigned CC,
2083                                     const SmallVectorImpl<ISD::OutputArg>
2084                                       &Outs,
2085                                     unsigned &nAltivecParamsAtEnd) {
2086  // Count how many bytes are to be pushed on the stack, including the linkage
2087  // area, and parameter passing area.  We start with 24/48 bytes, which is
2088  // prereserved space for [SP][CR][LR][3 x unused].
2089  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2090  unsigned NumOps = Outs.size();
2091  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2092
2093  // Add up all the space actually used.
2094  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2095  // they all go in registers, but we must reserve stack space for them for
2096  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2097  // assigned stack space in order, with padding so Altivec parameters are
2098  // 16-byte aligned.
2099  nAltivecParamsAtEnd = 0;
2100  for (unsigned i = 0; i != NumOps; ++i) {
2101    SDValue Arg = Outs[i].Val;
2102    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2103    EVT ArgVT = Arg.getValueType();
2104    // Varargs Altivec parameters are padded to a 16 byte boundary.
2105    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2106        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2107      if (!isVarArg && !isPPC64) {
2108        // Non-varargs Altivec parameters go after all the non-Altivec
2109        // parameters; handle those later so we know how much padding we need.
2110        nAltivecParamsAtEnd++;
2111        continue;
2112      }
2113      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2114      NumBytes = ((NumBytes+15)/16)*16;
2115    }
2116    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2117  }
2118
2119   // Allow for Altivec parameters at the end, if needed.
2120  if (nAltivecParamsAtEnd) {
2121    NumBytes = ((NumBytes+15)/16)*16;
2122    NumBytes += 16*nAltivecParamsAtEnd;
2123  }
2124
2125  // The prolog code of the callee may store up to 8 GPR argument registers to
2126  // the stack, allowing va_start to index over them in memory if its varargs.
2127  // Because we cannot tell if this is needed on the caller side, we have to
2128  // conservatively assume that it is needed.  As such, make sure we have at
2129  // least enough stack space for the caller to store the 8 GPRs.
2130  NumBytes = std::max(NumBytes,
2131                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2132
2133  // Tail call needs the stack to be aligned.
2134  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2135    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2136      getStackAlignment();
2137    unsigned AlignMask = TargetAlign-1;
2138    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2139  }
2140
2141  return NumBytes;
2142}
2143
2144/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2145/// adjusted to accomodate the arguments for the tailcall.
2146static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2147                                   unsigned ParamSize) {
2148
2149  if (!IsTailCall) return 0;
2150
2151  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2152  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2153  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2154  // Remember only if the new adjustement is bigger.
2155  if (SPDiff < FI->getTailCallSPDelta())
2156    FI->setTailCallSPDelta(SPDiff);
2157
2158  return SPDiff;
2159}
2160
2161/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2162/// for tail call optimization. Targets which want to do tail call
2163/// optimization should implement this function.
2164bool
2165PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2166                                                     unsigned CalleeCC,
2167                                                     bool isVarArg,
2168                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2169                                                     SelectionDAG& DAG) const {
2170  // Variable argument functions are not supported.
2171  if (isVarArg)
2172    return false;
2173
2174  MachineFunction &MF = DAG.getMachineFunction();
2175  unsigned CallerCC = MF.getFunction()->getCallingConv();
2176  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2177    // Functions containing by val parameters are not supported.
2178    for (unsigned i = 0; i != Ins.size(); i++) {
2179       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2180       if (Flags.isByVal()) return false;
2181    }
2182
2183    // Non PIC/GOT  tail calls are supported.
2184    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2185      return true;
2186
2187    // At the moment we can only do local tail calls (in same module, hidden
2188    // or protected) if we are generating PIC.
2189    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2190      return G->getGlobal()->hasHiddenVisibility()
2191          || G->getGlobal()->hasProtectedVisibility();
2192  }
2193
2194  return false;
2195}
2196
2197/// isCallCompatibleAddress - Return the immediate to use if the specified
2198/// 32-bit value is representable in the immediate field of a BxA instruction.
2199static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2200  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2201  if (!C) return 0;
2202
2203  int Addr = C->getZExtValue();
2204  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2205      (Addr << 6 >> 6) != Addr)
2206    return 0;  // Top 6 bits have to be sext of immediate.
2207
2208  return DAG.getConstant((int)C->getZExtValue() >> 2,
2209                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2210}
2211
2212namespace {
2213
2214struct TailCallArgumentInfo {
2215  SDValue Arg;
2216  SDValue FrameIdxOp;
2217  int       FrameIdx;
2218
2219  TailCallArgumentInfo() : FrameIdx(0) {}
2220};
2221
2222}
2223
2224/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2225static void
2226StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2227                                           SDValue Chain,
2228                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2229                   SmallVector<SDValue, 8> &MemOpChains,
2230                   DebugLoc dl) {
2231  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2232    SDValue Arg = TailCallArgs[i].Arg;
2233    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2234    int FI = TailCallArgs[i].FrameIdx;
2235    // Store relative to framepointer.
2236    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2237                                       PseudoSourceValue::getFixedStack(FI),
2238                                       0));
2239  }
2240}
2241
2242/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2243/// the appropriate stack slot for the tail call optimized function call.
2244static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2245                                               MachineFunction &MF,
2246                                               SDValue Chain,
2247                                               SDValue OldRetAddr,
2248                                               SDValue OldFP,
2249                                               int SPDiff,
2250                                               bool isPPC64,
2251                                               bool isDarwinABI,
2252                                               DebugLoc dl) {
2253  if (SPDiff) {
2254    // Calculate the new stack slot for the return address.
2255    int SlotSize = isPPC64 ? 8 : 4;
2256    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2257                                                                   isDarwinABI);
2258    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2259                                                          NewRetAddrLoc);
2260    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2261    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2262    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2263                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2264
2265    // When using the SVR4 ABI there is no need to move the FP stack slot
2266    // as the FP is never overwritten.
2267    if (isDarwinABI) {
2268      int NewFPLoc =
2269        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2270      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2271      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2272      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2273                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2274    }
2275  }
2276  return Chain;
2277}
2278
2279/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2280/// the position of the argument.
2281static void
2282CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2283                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2284                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2285  int Offset = ArgOffset + SPDiff;
2286  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2287  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2288  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2289  SDValue FIN = DAG.getFrameIndex(FI, VT);
2290  TailCallArgumentInfo Info;
2291  Info.Arg = Arg;
2292  Info.FrameIdxOp = FIN;
2293  Info.FrameIdx = FI;
2294  TailCallArguments.push_back(Info);
2295}
2296
2297/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2298/// stack slot. Returns the chain as result and the loaded frame pointers in
2299/// LROpOut/FPOpout. Used when tail calling.
2300SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2301                                                        int SPDiff,
2302                                                        SDValue Chain,
2303                                                        SDValue &LROpOut,
2304                                                        SDValue &FPOpOut,
2305                                                        bool isDarwinABI,
2306                                                        DebugLoc dl) {
2307  if (SPDiff) {
2308    // Load the LR and FP stack slot for later adjusting.
2309    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2310    LROpOut = getReturnAddrFrameIndex(DAG);
2311    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2312    Chain = SDValue(LROpOut.getNode(), 1);
2313
2314    // When using the SVR4 ABI there is no need to load the FP stack slot
2315    // as the FP is never overwritten.
2316    if (isDarwinABI) {
2317      FPOpOut = getFramePointerFrameIndex(DAG);
2318      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2319      Chain = SDValue(FPOpOut.getNode(), 1);
2320    }
2321  }
2322  return Chain;
2323}
2324
2325/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2326/// by "Src" to address "Dst" of size "Size".  Alignment information is
2327/// specified by the specific parameter attribute. The copy will be passed as
2328/// a byval function parameter.
2329/// Sometimes what we are copying is the end of a larger object, the part that
2330/// does not fit in registers.
2331static SDValue
2332CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2333                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2334                          DebugLoc dl) {
2335  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2336  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2337                       false, NULL, 0, NULL, 0);
2338}
2339
2340/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2341/// tail calls.
2342static void
2343LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2344                 SDValue Arg, SDValue PtrOff, int SPDiff,
2345                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2346                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2347                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2348                 DebugLoc dl) {
2349  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2350  if (!isTailCall) {
2351    if (isVector) {
2352      SDValue StackPtr;
2353      if (isPPC64)
2354        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2355      else
2356        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2357      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2358                           DAG.getConstant(ArgOffset, PtrVT));
2359    }
2360    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2361  // Calculate and remember argument location.
2362  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2363                                  TailCallArguments);
2364}
2365
2366static
2367void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2368                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2369                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2370                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2371  MachineFunction &MF = DAG.getMachineFunction();
2372
2373  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2374  // might overwrite each other in case of tail call optimization.
2375  SmallVector<SDValue, 8> MemOpChains2;
2376  // Do not flag preceeding copytoreg stuff together with the following stuff.
2377  InFlag = SDValue();
2378  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2379                                    MemOpChains2, dl);
2380  if (!MemOpChains2.empty())
2381    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2382                        &MemOpChains2[0], MemOpChains2.size());
2383
2384  // Store the return address to the appropriate stack slot.
2385  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2386                                        isPPC64, isDarwinABI, dl);
2387
2388  // Emit callseq_end just before tailcall node.
2389  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2390                             DAG.getIntPtrConstant(0, true), InFlag);
2391  InFlag = Chain.getValue(1);
2392}
2393
2394static
2395unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2396                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2397                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2398                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2399                     bool isSVR4ABI) {
2400  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2401  NodeTys.push_back(MVT::Other);   // Returns a chain
2402  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2403
2404  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2405
2406  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2407  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2408  // node so that legalize doesn't hack it.
2409  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2410    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2411  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2412    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2413  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2414    // If this is an absolute destination address, use the munged value.
2415    Callee = SDValue(Dest, 0);
2416  else {
2417    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2418    // to do the call, we can't use PPCISD::CALL.
2419    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2420    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2421                        2 + (InFlag.getNode() != 0));
2422    InFlag = Chain.getValue(1);
2423
2424    NodeTys.clear();
2425    NodeTys.push_back(MVT::Other);
2426    NodeTys.push_back(MVT::Flag);
2427    Ops.push_back(Chain);
2428    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2429    Callee.setNode(0);
2430    // Add CTR register as callee so a bctr can be emitted later.
2431    if (isTailCall)
2432      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2433  }
2434
2435  // If this is a direct call, pass the chain and the callee.
2436  if (Callee.getNode()) {
2437    Ops.push_back(Chain);
2438    Ops.push_back(Callee);
2439  }
2440  // If this is a tail call add stack pointer delta.
2441  if (isTailCall)
2442    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2443
2444  // Add argument registers to the end of the list so that they are known live
2445  // into the call.
2446  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2447    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2448                                  RegsToPass[i].second.getValueType()));
2449
2450  return CallOpc;
2451}
2452
2453SDValue
2454PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2455                                   unsigned CallConv, bool isVarArg,
2456                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2457                                   DebugLoc dl, SelectionDAG &DAG,
2458                                   SmallVectorImpl<SDValue> &InVals) {
2459
2460  SmallVector<CCValAssign, 16> RVLocs;
2461  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2462                    RVLocs, *DAG.getContext());
2463  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2464
2465  // Copy all of the result registers out of their specified physreg.
2466  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2467    CCValAssign &VA = RVLocs[i];
2468    EVT VT = VA.getValVT();
2469    assert(VA.isRegLoc() && "Can only return in registers!");
2470    Chain = DAG.getCopyFromReg(Chain, dl,
2471                               VA.getLocReg(), VT, InFlag).getValue(1);
2472    InVals.push_back(Chain.getValue(0));
2473    InFlag = Chain.getValue(2);
2474  }
2475
2476  return Chain;
2477}
2478
2479SDValue
2480PPCTargetLowering::FinishCall(unsigned CallConv, DebugLoc dl, bool isTailCall,
2481                              bool isVarArg,
2482                              SelectionDAG &DAG,
2483                              SmallVector<std::pair<unsigned, SDValue>, 8>
2484                                &RegsToPass,
2485                              SDValue InFlag, SDValue Chain,
2486                              SDValue &Callee,
2487                              int SPDiff, unsigned NumBytes,
2488                              const SmallVectorImpl<ISD::InputArg> &Ins,
2489                              SmallVectorImpl<SDValue> &InVals) {
2490
2491  std::vector<EVT> NodeTys;
2492  SmallVector<SDValue, 8> Ops;
2493  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2494                                 isTailCall, RegsToPass, Ops, NodeTys,
2495                                 PPCSubTarget.isSVR4ABI());
2496
2497  // When performing tail call optimization the callee pops its arguments off
2498  // the stack. Account for this here so these bytes can be pushed back on in
2499  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2500  int BytesCalleePops =
2501    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2502
2503  if (InFlag.getNode())
2504    Ops.push_back(InFlag);
2505
2506  // Emit tail call.
2507  if (isTailCall) {
2508    // If this is the first return lowered for this function, add the regs
2509    // to the liveout set for the function.
2510    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2511      SmallVector<CCValAssign, 16> RVLocs;
2512      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2513                     *DAG.getContext());
2514      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2515      for (unsigned i = 0; i != RVLocs.size(); ++i)
2516        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2517    }
2518
2519    assert(((Callee.getOpcode() == ISD::Register &&
2520             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2521            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2522            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2523            isa<ConstantSDNode>(Callee)) &&
2524    "Expecting an global address, external symbol, absolute value or register");
2525
2526    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2527  }
2528
2529  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2530  InFlag = Chain.getValue(1);
2531
2532  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2533                             DAG.getIntPtrConstant(BytesCalleePops, true),
2534                             InFlag);
2535  if (!Ins.empty())
2536    InFlag = Chain.getValue(1);
2537
2538  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2539                         Ins, dl, DAG, InVals);
2540}
2541
2542SDValue
2543PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2544                             unsigned CallConv, bool isVarArg,
2545                             bool isTailCall,
2546                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2547                             const SmallVectorImpl<ISD::InputArg> &Ins,
2548                             DebugLoc dl, SelectionDAG &DAG,
2549                             SmallVectorImpl<SDValue> &InVals) {
2550  if (PPCSubTarget.isSVR4ABI()) {
2551    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2552                          isTailCall, Outs, Ins,
2553                          dl, DAG, InVals);
2554  } else {
2555    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2556                            isTailCall, Outs, Ins,
2557                            dl, DAG, InVals);
2558  }
2559}
2560
2561SDValue
2562PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2563                                  unsigned CallConv, bool isVarArg,
2564                                  bool isTailCall,
2565                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2566                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2567                                  DebugLoc dl, SelectionDAG &DAG,
2568                                  SmallVectorImpl<SDValue> &InVals) {
2569  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2570  // of the SVR4 ABI stack frame layout.
2571
2572  assert((!isTailCall ||
2573          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2574         "IsEligibleForTailCallOptimization missed a case!");
2575
2576  assert((CallConv == CallingConv::C ||
2577          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2578
2579  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2580  unsigned PtrByteSize = 4;
2581
2582  MachineFunction &MF = DAG.getMachineFunction();
2583
2584  // Mark this function as potentially containing a function that contains a
2585  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2586  // and restoring the callers stack pointer in this functions epilog. This is
2587  // done because by tail calling the called function might overwrite the value
2588  // in this function's (MF) stack pointer stack slot 0(SP).
2589  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2590    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2591
2592  // Count how many bytes are to be pushed on the stack, including the linkage
2593  // area, parameter list area and the part of the local variable space which
2594  // contains copies of aggregates which are passed by value.
2595
2596  // Assign locations to all of the outgoing arguments.
2597  SmallVector<CCValAssign, 16> ArgLocs;
2598  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2599                 ArgLocs, *DAG.getContext());
2600
2601  // Reserve space for the linkage area on the stack.
2602  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2603
2604  if (isVarArg) {
2605    // Handle fixed and variable vector arguments differently.
2606    // Fixed vector arguments go into registers as long as registers are
2607    // available. Variable vector arguments always go into memory.
2608    unsigned NumArgs = Outs.size();
2609
2610    for (unsigned i = 0; i != NumArgs; ++i) {
2611      EVT ArgVT = Outs[i].Val.getValueType();
2612      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2613      bool Result;
2614
2615      if (Outs[i].IsFixed) {
2616        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2617                             CCInfo);
2618      } else {
2619        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2620                                    ArgFlags, CCInfo);
2621      }
2622
2623      if (Result) {
2624#ifndef NDEBUG
2625        cerr << "Call operand #" << i << " has unhandled type "
2626             << ArgVT.getEVTString() << "\n";
2627#endif
2628        llvm_unreachable(0);
2629      }
2630    }
2631  } else {
2632    // All arguments are treated the same.
2633    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2634  }
2635
2636  // Assign locations to all of the outgoing aggregate by value arguments.
2637  SmallVector<CCValAssign, 16> ByValArgLocs;
2638  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2639                      *DAG.getContext());
2640
2641  // Reserve stack space for the allocations in CCInfo.
2642  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2643
2644  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2645
2646  // Size of the linkage area, parameter list area and the part of the local
2647  // space variable where copies of aggregates which are passed by value are
2648  // stored.
2649  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2650
2651  // Calculate by how many bytes the stack has to be adjusted in case of tail
2652  // call optimization.
2653  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2654
2655  // Adjust the stack pointer for the new arguments...
2656  // These operations are automatically eliminated by the prolog/epilog pass
2657  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2658  SDValue CallSeqStart = Chain;
2659
2660  // Load the return address and frame pointer so it can be moved somewhere else
2661  // later.
2662  SDValue LROp, FPOp;
2663  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2664                                       dl);
2665
2666  // Set up a copy of the stack pointer for use loading and storing any
2667  // arguments that may not fit in the registers available for argument
2668  // passing.
2669  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2670
2671  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2672  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2673  SmallVector<SDValue, 8> MemOpChains;
2674
2675  // Walk the register/memloc assignments, inserting copies/loads.
2676  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2677       i != e;
2678       ++i) {
2679    CCValAssign &VA = ArgLocs[i];
2680    SDValue Arg = Outs[i].Val;
2681    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2682
2683    if (Flags.isByVal()) {
2684      // Argument is an aggregate which is passed by value, thus we need to
2685      // create a copy of it in the local variable space of the current stack
2686      // frame (which is the stack frame of the caller) and pass the address of
2687      // this copy to the callee.
2688      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2689      CCValAssign &ByValVA = ByValArgLocs[j++];
2690      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2691
2692      // Memory reserved in the local variable space of the callers stack frame.
2693      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2694
2695      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2696      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2697
2698      // Create a copy of the argument in the local area of the current
2699      // stack frame.
2700      SDValue MemcpyCall =
2701        CreateCopyOfByValArgument(Arg, PtrOff,
2702                                  CallSeqStart.getNode()->getOperand(0),
2703                                  Flags, DAG, dl);
2704
2705      // This must go outside the CALLSEQ_START..END.
2706      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2707                           CallSeqStart.getNode()->getOperand(1));
2708      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2709                             NewCallSeqStart.getNode());
2710      Chain = CallSeqStart = NewCallSeqStart;
2711
2712      // Pass the address of the aggregate copy on the stack either in a
2713      // physical register or in the parameter list area of the current stack
2714      // frame to the callee.
2715      Arg = PtrOff;
2716    }
2717
2718    if (VA.isRegLoc()) {
2719      // Put argument in a physical register.
2720      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2721    } else {
2722      // Put argument in the parameter list area of the current stack frame.
2723      assert(VA.isMemLoc());
2724      unsigned LocMemOffset = VA.getLocMemOffset();
2725
2726      if (!isTailCall) {
2727        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2728        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2729
2730        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2731                              PseudoSourceValue::getStack(), LocMemOffset));
2732      } else {
2733        // Calculate and remember argument location.
2734        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2735                                 TailCallArguments);
2736      }
2737    }
2738  }
2739
2740  if (!MemOpChains.empty())
2741    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2742                        &MemOpChains[0], MemOpChains.size());
2743
2744  // Build a sequence of copy-to-reg nodes chained together with token chain
2745  // and flag operands which copy the outgoing args into the appropriate regs.
2746  SDValue InFlag;
2747  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2748    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2749                             RegsToPass[i].second, InFlag);
2750    InFlag = Chain.getValue(1);
2751  }
2752
2753  // Set CR6 to true if this is a vararg call.
2754  if (isVarArg) {
2755    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2756    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2757    InFlag = Chain.getValue(1);
2758  }
2759
2760  if (isTailCall) {
2761    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2762                    false, TailCallArguments);
2763  }
2764
2765  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2766                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2767                    Ins, InVals);
2768}
2769
2770SDValue
2771PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2772                                    unsigned CallConv, bool isVarArg,
2773                                    bool isTailCall,
2774                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2775                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2776                                    DebugLoc dl, SelectionDAG &DAG,
2777                                    SmallVectorImpl<SDValue> &InVals) {
2778
2779  unsigned NumOps  = Outs.size();
2780
2781  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2782  bool isPPC64 = PtrVT == MVT::i64;
2783  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2784
2785  MachineFunction &MF = DAG.getMachineFunction();
2786
2787  // Mark this function as potentially containing a function that contains a
2788  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2789  // and restoring the callers stack pointer in this functions epilog. This is
2790  // done because by tail calling the called function might overwrite the value
2791  // in this function's (MF) stack pointer stack slot 0(SP).
2792  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2793    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2794
2795  unsigned nAltivecParamsAtEnd = 0;
2796
2797  // Count how many bytes are to be pushed on the stack, including the linkage
2798  // area, and parameter passing area.  We start with 24/48 bytes, which is
2799  // prereserved space for [SP][CR][LR][3 x unused].
2800  unsigned NumBytes =
2801    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2802                                         Outs,
2803                                         nAltivecParamsAtEnd);
2804
2805  // Calculate by how many bytes the stack has to be adjusted in case of tail
2806  // call optimization.
2807  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2808
2809  // To protect arguments on the stack from being clobbered in a tail call,
2810  // force all the loads to happen before doing any other lowering.
2811  if (isTailCall)
2812    Chain = DAG.getStackArgumentTokenFactor(Chain);
2813
2814  // Adjust the stack pointer for the new arguments...
2815  // These operations are automatically eliminated by the prolog/epilog pass
2816  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2817  SDValue CallSeqStart = Chain;
2818
2819  // Load the return address and frame pointer so it can be move somewhere else
2820  // later.
2821  SDValue LROp, FPOp;
2822  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2823                                       dl);
2824
2825  // Set up a copy of the stack pointer for use loading and storing any
2826  // arguments that may not fit in the registers available for argument
2827  // passing.
2828  SDValue StackPtr;
2829  if (isPPC64)
2830    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2831  else
2832    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2833
2834  // Figure out which arguments are going to go in registers, and which in
2835  // memory.  Also, if this is a vararg function, floating point operations
2836  // must be stored to our stack, and loaded into integer regs as well, if
2837  // any integer regs are available for argument passing.
2838  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2839  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2840
2841  static const unsigned GPR_32[] = {           // 32-bit registers.
2842    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2843    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2844  };
2845  static const unsigned GPR_64[] = {           // 64-bit registers.
2846    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2847    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2848  };
2849  static const unsigned *FPR = GetFPR(PPCSubTarget);
2850
2851  static const unsigned VR[] = {
2852    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2853    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2854  };
2855  const unsigned NumGPRs = array_lengthof(GPR_32);
2856  const unsigned NumFPRs = 13;
2857  const unsigned NumVRs  = array_lengthof(VR);
2858
2859  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2860
2861  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2862  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2863
2864  SmallVector<SDValue, 8> MemOpChains;
2865  for (unsigned i = 0; i != NumOps; ++i) {
2866    bool inMem = false;
2867    SDValue Arg = Outs[i].Val;
2868    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2869
2870    // PtrOff will be used to store the current argument to the stack if a
2871    // register cannot be found for it.
2872    SDValue PtrOff;
2873
2874    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2875
2876    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2877
2878    // On PPC64, promote integers to 64-bit values.
2879    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2880      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2881      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2882      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2883    }
2884
2885    // FIXME memcpy is used way more than necessary.  Correctness first.
2886    if (Flags.isByVal()) {
2887      unsigned Size = Flags.getByValSize();
2888      if (Size==1 || Size==2) {
2889        // Very small objects are passed right-justified.
2890        // Everything else is passed left-justified.
2891        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2892        if (GPR_idx != NumGPRs) {
2893          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2894                                          NULL, 0, VT);
2895          MemOpChains.push_back(Load.getValue(1));
2896          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2897
2898          ArgOffset += PtrByteSize;
2899        } else {
2900          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2901          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2902          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2903                                CallSeqStart.getNode()->getOperand(0),
2904                                Flags, DAG, dl);
2905          // This must go outside the CALLSEQ_START..END.
2906          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2907                               CallSeqStart.getNode()->getOperand(1));
2908          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2909                                 NewCallSeqStart.getNode());
2910          Chain = CallSeqStart = NewCallSeqStart;
2911          ArgOffset += PtrByteSize;
2912        }
2913        continue;
2914      }
2915      // Copy entire object into memory.  There are cases where gcc-generated
2916      // code assumes it is there, even if it could be put entirely into
2917      // registers.  (This is not what the doc says.)
2918      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2919                            CallSeqStart.getNode()->getOperand(0),
2920                            Flags, DAG, dl);
2921      // This must go outside the CALLSEQ_START..END.
2922      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2923                           CallSeqStart.getNode()->getOperand(1));
2924      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2925      Chain = CallSeqStart = NewCallSeqStart;
2926      // And copy the pieces of it that fit into registers.
2927      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2928        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2929        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2930        if (GPR_idx != NumGPRs) {
2931          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2932          MemOpChains.push_back(Load.getValue(1));
2933          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2934          ArgOffset += PtrByteSize;
2935        } else {
2936          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2937          break;
2938        }
2939      }
2940      continue;
2941    }
2942
2943    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
2944    default: llvm_unreachable("Unexpected ValueType for argument!");
2945    case MVT::i32:
2946    case MVT::i64:
2947      if (GPR_idx != NumGPRs) {
2948        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2949      } else {
2950        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2951                         isPPC64, isTailCall, false, MemOpChains,
2952                         TailCallArguments, dl);
2953        inMem = true;
2954      }
2955      ArgOffset += PtrByteSize;
2956      break;
2957    case MVT::f32:
2958    case MVT::f64:
2959      if (FPR_idx != NumFPRs) {
2960        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2961
2962        if (isVarArg) {
2963          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2964          MemOpChains.push_back(Store);
2965
2966          // Float varargs are always shadowed in available integer registers
2967          if (GPR_idx != NumGPRs) {
2968            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2969            MemOpChains.push_back(Load.getValue(1));
2970            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2971          }
2972          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2973            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2974            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2975            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2976            MemOpChains.push_back(Load.getValue(1));
2977            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2978          }
2979        } else {
2980          // If we have any FPRs remaining, we may also have GPRs remaining.
2981          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2982          // GPRs.
2983          if (GPR_idx != NumGPRs)
2984            ++GPR_idx;
2985          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2986              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2987            ++GPR_idx;
2988        }
2989      } else {
2990        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2991                         isPPC64, isTailCall, false, MemOpChains,
2992                         TailCallArguments, dl);
2993        inMem = true;
2994      }
2995      if (isPPC64)
2996        ArgOffset += 8;
2997      else
2998        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2999      break;
3000    case MVT::v4f32:
3001    case MVT::v4i32:
3002    case MVT::v8i16:
3003    case MVT::v16i8:
3004      if (isVarArg) {
3005        // These go aligned on the stack, or in the corresponding R registers
3006        // when within range.  The Darwin PPC ABI doc claims they also go in
3007        // V registers; in fact gcc does this only for arguments that are
3008        // prototyped, not for those that match the ...  We do it for all
3009        // arguments, seems to work.
3010        while (ArgOffset % 16 !=0) {
3011          ArgOffset += PtrByteSize;
3012          if (GPR_idx != NumGPRs)
3013            GPR_idx++;
3014        }
3015        // We could elide this store in the case where the object fits
3016        // entirely in R registers.  Maybe later.
3017        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3018                            DAG.getConstant(ArgOffset, PtrVT));
3019        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3020        MemOpChains.push_back(Store);
3021        if (VR_idx != NumVRs) {
3022          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3023          MemOpChains.push_back(Load.getValue(1));
3024          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3025        }
3026        ArgOffset += 16;
3027        for (unsigned i=0; i<16; i+=PtrByteSize) {
3028          if (GPR_idx == NumGPRs)
3029            break;
3030          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3031                                  DAG.getConstant(i, PtrVT));
3032          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3033          MemOpChains.push_back(Load.getValue(1));
3034          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3035        }
3036        break;
3037      }
3038
3039      // Non-varargs Altivec params generally go in registers, but have
3040      // stack space allocated at the end.
3041      if (VR_idx != NumVRs) {
3042        // Doesn't have GPR space allocated.
3043        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3044      } else if (nAltivecParamsAtEnd==0) {
3045        // We are emitting Altivec params in order.
3046        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3047                         isPPC64, isTailCall, true, MemOpChains,
3048                         TailCallArguments, dl);
3049        ArgOffset += 16;
3050      }
3051      break;
3052    }
3053  }
3054  // If all Altivec parameters fit in registers, as they usually do,
3055  // they get stack space following the non-Altivec parameters.  We
3056  // don't track this here because nobody below needs it.
3057  // If there are more Altivec parameters than fit in registers emit
3058  // the stores here.
3059  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3060    unsigned j = 0;
3061    // Offset is aligned; skip 1st 12 params which go in V registers.
3062    ArgOffset = ((ArgOffset+15)/16)*16;
3063    ArgOffset += 12*16;
3064    for (unsigned i = 0; i != NumOps; ++i) {
3065      SDValue Arg = Outs[i].Val;
3066      EVT ArgType = Arg.getValueType();
3067      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3068          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3069        if (++j > NumVRs) {
3070          SDValue PtrOff;
3071          // We are emitting Altivec params in order.
3072          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3073                           isPPC64, isTailCall, true, MemOpChains,
3074                           TailCallArguments, dl);
3075          ArgOffset += 16;
3076        }
3077      }
3078    }
3079  }
3080
3081  if (!MemOpChains.empty())
3082    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3083                        &MemOpChains[0], MemOpChains.size());
3084
3085  // Build a sequence of copy-to-reg nodes chained together with token chain
3086  // and flag operands which copy the outgoing args into the appropriate regs.
3087  SDValue InFlag;
3088  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3089    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3090                             RegsToPass[i].second, InFlag);
3091    InFlag = Chain.getValue(1);
3092  }
3093
3094  if (isTailCall) {
3095    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3096                    FPOp, true, TailCallArguments);
3097  }
3098
3099  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3100                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3101                    Ins, InVals);
3102}
3103
3104SDValue
3105PPCTargetLowering::LowerReturn(SDValue Chain,
3106                               unsigned CallConv, bool isVarArg,
3107                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3108                               DebugLoc dl, SelectionDAG &DAG) {
3109
3110  SmallVector<CCValAssign, 16> RVLocs;
3111  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3112                 RVLocs, *DAG.getContext());
3113  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3114
3115  // If this is the first return lowered for this function, add the regs to the
3116  // liveout set for the function.
3117  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3118    for (unsigned i = 0; i != RVLocs.size(); ++i)
3119      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3120  }
3121
3122  SDValue Flag;
3123
3124  // Copy the result values into the output registers.
3125  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3126    CCValAssign &VA = RVLocs[i];
3127    assert(VA.isRegLoc() && "Can only return in registers!");
3128    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3129                             Outs[i].Val, Flag);
3130    Flag = Chain.getValue(1);
3131  }
3132
3133  if (Flag.getNode())
3134    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3135  else
3136    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3137}
3138
3139SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3140                                   const PPCSubtarget &Subtarget) {
3141  // When we pop the dynamic allocation we need to restore the SP link.
3142  DebugLoc dl = Op.getDebugLoc();
3143
3144  // Get the corect type for pointers.
3145  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3146
3147  // Construct the stack pointer operand.
3148  bool IsPPC64 = Subtarget.isPPC64();
3149  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3150  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3151
3152  // Get the operands for the STACKRESTORE.
3153  SDValue Chain = Op.getOperand(0);
3154  SDValue SaveSP = Op.getOperand(1);
3155
3156  // Load the old link SP.
3157  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3158
3159  // Restore the stack pointer.
3160  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3161
3162  // Store the old link SP.
3163  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3164}
3165
3166
3167
3168SDValue
3169PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3170  MachineFunction &MF = DAG.getMachineFunction();
3171  bool IsPPC64 = PPCSubTarget.isPPC64();
3172  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3173  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3174
3175  // Get current frame pointer save index.  The users of this index will be
3176  // primarily DYNALLOC instructions.
3177  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3178  int RASI = FI->getReturnAddrSaveIndex();
3179
3180  // If the frame pointer save index hasn't been defined yet.
3181  if (!RASI) {
3182    // Find out what the fix offset of the frame pointer save area.
3183    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3184    // Allocate the frame index for frame pointer save area.
3185    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3186    // Save the result.
3187    FI->setReturnAddrSaveIndex(RASI);
3188  }
3189  return DAG.getFrameIndex(RASI, PtrVT);
3190}
3191
3192SDValue
3193PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3194  MachineFunction &MF = DAG.getMachineFunction();
3195  bool IsPPC64 = PPCSubTarget.isPPC64();
3196  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3197  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3198
3199  // Get current frame pointer save index.  The users of this index will be
3200  // primarily DYNALLOC instructions.
3201  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3202  int FPSI = FI->getFramePointerSaveIndex();
3203
3204  // If the frame pointer save index hasn't been defined yet.
3205  if (!FPSI) {
3206    // Find out what the fix offset of the frame pointer save area.
3207    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3208                                                           isDarwinABI);
3209
3210    // Allocate the frame index for frame pointer save area.
3211    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3212    // Save the result.
3213    FI->setFramePointerSaveIndex(FPSI);
3214  }
3215  return DAG.getFrameIndex(FPSI, PtrVT);
3216}
3217
3218SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3219                                         SelectionDAG &DAG,
3220                                         const PPCSubtarget &Subtarget) {
3221  // Get the inputs.
3222  SDValue Chain = Op.getOperand(0);
3223  SDValue Size  = Op.getOperand(1);
3224  DebugLoc dl = Op.getDebugLoc();
3225
3226  // Get the corect type for pointers.
3227  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3228  // Negate the size.
3229  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3230                                  DAG.getConstant(0, PtrVT), Size);
3231  // Construct a node for the frame pointer save index.
3232  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3233  // Build a DYNALLOC node.
3234  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3235  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3236  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3237}
3238
3239/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3240/// possible.
3241SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3242  // Not FP? Not a fsel.
3243  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3244      !Op.getOperand(2).getValueType().isFloatingPoint())
3245    return Op;
3246
3247  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3248
3249  // Cannot handle SETEQ/SETNE.
3250  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3251
3252  EVT ResVT = Op.getValueType();
3253  EVT CmpVT = Op.getOperand(0).getValueType();
3254  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3255  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3256  DebugLoc dl = Op.getDebugLoc();
3257
3258  // If the RHS of the comparison is a 0.0, we don't need to do the
3259  // subtraction at all.
3260  if (isFloatingPointZero(RHS))
3261    switch (CC) {
3262    default: break;       // SETUO etc aren't handled by fsel.
3263    case ISD::SETULT:
3264    case ISD::SETLT:
3265      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3266    case ISD::SETOGE:
3267    case ISD::SETGE:
3268      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3269        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3270      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3271    case ISD::SETUGT:
3272    case ISD::SETGT:
3273      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3274    case ISD::SETOLE:
3275    case ISD::SETLE:
3276      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3277        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3278      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3279                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3280    }
3281
3282  SDValue Cmp;
3283  switch (CC) {
3284  default: break;       // SETUO etc aren't handled by fsel.
3285  case ISD::SETULT:
3286  case ISD::SETLT:
3287    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3288    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3289      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3290      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3291  case ISD::SETOGE:
3292  case ISD::SETGE:
3293    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3294    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3295      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3296      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3297  case ISD::SETUGT:
3298  case ISD::SETGT:
3299    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3300    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3301      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3302      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3303  case ISD::SETOLE:
3304  case ISD::SETLE:
3305    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3306    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3307      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3308      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3309  }
3310  return Op;
3311}
3312
3313// FIXME: Split this code up when LegalizeDAGTypes lands.
3314SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3315                                           DebugLoc dl) {
3316  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3317  SDValue Src = Op.getOperand(0);
3318  if (Src.getValueType() == MVT::f32)
3319    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3320
3321  SDValue Tmp;
3322  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3323  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3324  case MVT::i32:
3325    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3326                                                         PPCISD::FCTIDZ,
3327                      dl, MVT::f64, Src);
3328    break;
3329  case MVT::i64:
3330    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3331    break;
3332  }
3333
3334  // Convert the FP value to an int value through memory.
3335  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3336
3337  // Emit a store to the stack slot.
3338  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3339
3340  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3341  // add in a bias.
3342  if (Op.getValueType() == MVT::i32)
3343    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3344                        DAG.getConstant(4, FIPtr.getValueType()));
3345  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3346}
3347
3348SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3349  DebugLoc dl = Op.getDebugLoc();
3350  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3351  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3352    return SDValue();
3353
3354  if (Op.getOperand(0).getValueType() == MVT::i64) {
3355    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3356                               MVT::f64, Op.getOperand(0));
3357    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3358    if (Op.getValueType() == MVT::f32)
3359      FP = DAG.getNode(ISD::FP_ROUND, dl,
3360                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3361    return FP;
3362  }
3363
3364  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3365         "Unhandled SINT_TO_FP type in custom expander!");
3366  // Since we only generate this in 64-bit mode, we can take advantage of
3367  // 64-bit registers.  In particular, sign extend the input value into the
3368  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3369  // then lfd it and fcfid it.
3370  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3371  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3372  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3373  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3374
3375  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3376                                Op.getOperand(0));
3377
3378  // STD the extended value into the stack slot.
3379  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
3380                       MachineMemOperand::MOStore, 0, 8, 8);
3381  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
3382                                DAG.getEntryNode(), Ext64, FIdx,
3383                                DAG.getMemOperand(MO));
3384  // Load the value as a double.
3385  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3386
3387  // FCFID it and return it.
3388  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3389  if (Op.getValueType() == MVT::f32)
3390    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3391  return FP;
3392}
3393
3394SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3395  DebugLoc dl = Op.getDebugLoc();
3396  /*
3397   The rounding mode is in bits 30:31 of FPSR, and has the following
3398   settings:
3399     00 Round to nearest
3400     01 Round to 0
3401     10 Round to +inf
3402     11 Round to -inf
3403
3404  FLT_ROUNDS, on the other hand, expects the following:
3405    -1 Undefined
3406     0 Round to 0
3407     1 Round to nearest
3408     2 Round to +inf
3409     3 Round to -inf
3410
3411  To perform the conversion, we do:
3412    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3413  */
3414
3415  MachineFunction &MF = DAG.getMachineFunction();
3416  EVT VT = Op.getValueType();
3417  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3418  std::vector<EVT> NodeTys;
3419  SDValue MFFSreg, InFlag;
3420
3421  // Save FP Control Word to register
3422  NodeTys.push_back(MVT::f64);    // return register
3423  NodeTys.push_back(MVT::Flag);   // unused in this context
3424  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3425
3426  // Save FP register to stack slot
3427  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3428  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3429  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3430                                 StackSlot, NULL, 0);
3431
3432  // Load FP Control Word from low 32 bits of stack slot.
3433  SDValue Four = DAG.getConstant(4, PtrVT);
3434  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3435  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3436
3437  // Transform as necessary
3438  SDValue CWD1 =
3439    DAG.getNode(ISD::AND, dl, MVT::i32,
3440                CWD, DAG.getConstant(3, MVT::i32));
3441  SDValue CWD2 =
3442    DAG.getNode(ISD::SRL, dl, MVT::i32,
3443                DAG.getNode(ISD::AND, dl, MVT::i32,
3444                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3445                                        CWD, DAG.getConstant(3, MVT::i32)),
3446                            DAG.getConstant(3, MVT::i32)),
3447                DAG.getConstant(1, MVT::i32));
3448
3449  SDValue RetVal =
3450    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3451
3452  return DAG.getNode((VT.getSizeInBits() < 16 ?
3453                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3454}
3455
3456SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3457  EVT VT = Op.getValueType();
3458  unsigned BitWidth = VT.getSizeInBits();
3459  DebugLoc dl = Op.getDebugLoc();
3460  assert(Op.getNumOperands() == 3 &&
3461         VT == Op.getOperand(1).getValueType() &&
3462         "Unexpected SHL!");
3463
3464  // Expand into a bunch of logical ops.  Note that these ops
3465  // depend on the PPC behavior for oversized shift amounts.
3466  SDValue Lo = Op.getOperand(0);
3467  SDValue Hi = Op.getOperand(1);
3468  SDValue Amt = Op.getOperand(2);
3469  EVT AmtVT = Amt.getValueType();
3470
3471  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3472                             DAG.getConstant(BitWidth, AmtVT), Amt);
3473  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3474  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3475  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3476  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3477                             DAG.getConstant(-BitWidth, AmtVT));
3478  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3479  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3480  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3481  SDValue OutOps[] = { OutLo, OutHi };
3482  return DAG.getMergeValues(OutOps, 2, dl);
3483}
3484
3485SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3486  EVT VT = Op.getValueType();
3487  DebugLoc dl = Op.getDebugLoc();
3488  unsigned BitWidth = VT.getSizeInBits();
3489  assert(Op.getNumOperands() == 3 &&
3490         VT == Op.getOperand(1).getValueType() &&
3491         "Unexpected SRL!");
3492
3493  // Expand into a bunch of logical ops.  Note that these ops
3494  // depend on the PPC behavior for oversized shift amounts.
3495  SDValue Lo = Op.getOperand(0);
3496  SDValue Hi = Op.getOperand(1);
3497  SDValue Amt = Op.getOperand(2);
3498  EVT AmtVT = Amt.getValueType();
3499
3500  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3501                             DAG.getConstant(BitWidth, AmtVT), Amt);
3502  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3503  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3504  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3505  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3506                             DAG.getConstant(-BitWidth, AmtVT));
3507  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3508  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3509  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3510  SDValue OutOps[] = { OutLo, OutHi };
3511  return DAG.getMergeValues(OutOps, 2, dl);
3512}
3513
3514SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3515  DebugLoc dl = Op.getDebugLoc();
3516  EVT VT = Op.getValueType();
3517  unsigned BitWidth = VT.getSizeInBits();
3518  assert(Op.getNumOperands() == 3 &&
3519         VT == Op.getOperand(1).getValueType() &&
3520         "Unexpected SRA!");
3521
3522  // Expand into a bunch of logical ops, followed by a select_cc.
3523  SDValue Lo = Op.getOperand(0);
3524  SDValue Hi = Op.getOperand(1);
3525  SDValue Amt = Op.getOperand(2);
3526  EVT AmtVT = Amt.getValueType();
3527
3528  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3529                             DAG.getConstant(BitWidth, AmtVT), Amt);
3530  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3531  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3532  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3533  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3534                             DAG.getConstant(-BitWidth, AmtVT));
3535  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3536  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3537  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3538                                  Tmp4, Tmp6, ISD::SETLE);
3539  SDValue OutOps[] = { OutLo, OutHi };
3540  return DAG.getMergeValues(OutOps, 2, dl);
3541}
3542
3543//===----------------------------------------------------------------------===//
3544// Vector related lowering.
3545//
3546
3547/// BuildSplatI - Build a canonical splati of Val with an element size of
3548/// SplatSize.  Cast the result to VT.
3549static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3550                             SelectionDAG &DAG, DebugLoc dl) {
3551  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3552
3553  static const EVT VTys[] = { // canonical VT to use for each size.
3554    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3555  };
3556
3557  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3558
3559  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3560  if (Val == -1)
3561    SplatSize = 1;
3562
3563  EVT CanonicalVT = VTys[SplatSize-1];
3564
3565  // Build a canonical splat for this value.
3566  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3567  SmallVector<SDValue, 8> Ops;
3568  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3569  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3570                              &Ops[0], Ops.size());
3571  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3572}
3573
3574/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3575/// specified intrinsic ID.
3576static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3577                                SelectionDAG &DAG, DebugLoc dl,
3578                                EVT DestVT = MVT::Other) {
3579  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3580  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3581                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3582}
3583
3584/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3585/// specified intrinsic ID.
3586static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3587                                SDValue Op2, SelectionDAG &DAG,
3588                                DebugLoc dl, EVT DestVT = MVT::Other) {
3589  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3590  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3591                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3592}
3593
3594
3595/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3596/// amount.  The result has the specified value type.
3597static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3598                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3599  // Force LHS/RHS to be the right type.
3600  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3601  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3602
3603  int Ops[16];
3604  for (unsigned i = 0; i != 16; ++i)
3605    Ops[i] = i + Amt;
3606  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3607  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3608}
3609
3610// If this is a case we can't handle, return null and let the default
3611// expansion code take care of it.  If we CAN select this case, and if it
3612// selects to a single instruction, return Op.  Otherwise, if we can codegen
3613// this case more efficiently than a constant pool load, lower it to the
3614// sequence of ops that should be used.
3615SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3616  DebugLoc dl = Op.getDebugLoc();
3617  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3618  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3619
3620  // Check if this is a splat of a constant value.
3621  APInt APSplatBits, APSplatUndef;
3622  unsigned SplatBitSize;
3623  bool HasAnyUndefs;
3624  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3625                             HasAnyUndefs) || SplatBitSize > 32)
3626    return SDValue();
3627
3628  unsigned SplatBits = APSplatBits.getZExtValue();
3629  unsigned SplatUndef = APSplatUndef.getZExtValue();
3630  unsigned SplatSize = SplatBitSize / 8;
3631
3632  // First, handle single instruction cases.
3633
3634  // All zeros?
3635  if (SplatBits == 0) {
3636    // Canonicalize all zero vectors to be v4i32.
3637    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3638      SDValue Z = DAG.getConstant(0, MVT::i32);
3639      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3640      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3641    }
3642    return Op;
3643  }
3644
3645  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3646  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3647                    (32-SplatBitSize));
3648  if (SextVal >= -16 && SextVal <= 15)
3649    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3650
3651
3652  // Two instruction sequences.
3653
3654  // If this value is in the range [-32,30] and is even, use:
3655  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3656  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3657    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3658    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3659    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3660  }
3661
3662  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3663  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3664  // for fneg/fabs.
3665  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3666    // Make -1 and vspltisw -1:
3667    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3668
3669    // Make the VSLW intrinsic, computing 0x8000_0000.
3670    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3671                                   OnesV, DAG, dl);
3672
3673    // xor by OnesV to invert it.
3674    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3675    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3676  }
3677
3678  // Check to see if this is a wide variety of vsplti*, binop self cases.
3679  static const signed char SplatCsts[] = {
3680    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3681    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3682  };
3683
3684  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3685    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3686    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3687    int i = SplatCsts[idx];
3688
3689    // Figure out what shift amount will be used by altivec if shifted by i in
3690    // this splat size.
3691    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3692
3693    // vsplti + shl self.
3694    if (SextVal == (i << (int)TypeShiftAmt)) {
3695      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3696      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3697        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3698        Intrinsic::ppc_altivec_vslw
3699      };
3700      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3701      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3702    }
3703
3704    // vsplti + srl self.
3705    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3706      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3707      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3708        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3709        Intrinsic::ppc_altivec_vsrw
3710      };
3711      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3712      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3713    }
3714
3715    // vsplti + sra self.
3716    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3717      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3718      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3719        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3720        Intrinsic::ppc_altivec_vsraw
3721      };
3722      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3723      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3724    }
3725
3726    // vsplti + rol self.
3727    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3728                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3729      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3730      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3731        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3732        Intrinsic::ppc_altivec_vrlw
3733      };
3734      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3735      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3736    }
3737
3738    // t = vsplti c, result = vsldoi t, t, 1
3739    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3740      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3741      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3742    }
3743    // t = vsplti c, result = vsldoi t, t, 2
3744    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3745      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3746      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3747    }
3748    // t = vsplti c, result = vsldoi t, t, 3
3749    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3750      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3751      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3752    }
3753  }
3754
3755  // Three instruction sequences.
3756
3757  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3758  if (SextVal >= 0 && SextVal <= 31) {
3759    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3760    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3761    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3762    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3763  }
3764  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3765  if (SextVal >= -31 && SextVal <= 0) {
3766    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3767    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3768    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3769    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3770  }
3771
3772  return SDValue();
3773}
3774
3775/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3776/// the specified operations to build the shuffle.
3777static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3778                                      SDValue RHS, SelectionDAG &DAG,
3779                                      DebugLoc dl) {
3780  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3781  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3782  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3783
3784  enum {
3785    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3786    OP_VMRGHW,
3787    OP_VMRGLW,
3788    OP_VSPLTISW0,
3789    OP_VSPLTISW1,
3790    OP_VSPLTISW2,
3791    OP_VSPLTISW3,
3792    OP_VSLDOI4,
3793    OP_VSLDOI8,
3794    OP_VSLDOI12
3795  };
3796
3797  if (OpNum == OP_COPY) {
3798    if (LHSID == (1*9+2)*9+3) return LHS;
3799    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3800    return RHS;
3801  }
3802
3803  SDValue OpLHS, OpRHS;
3804  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3805  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3806
3807  int ShufIdxs[16];
3808  switch (OpNum) {
3809  default: llvm_unreachable("Unknown i32 permute!");
3810  case OP_VMRGHW:
3811    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3812    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3813    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3814    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3815    break;
3816  case OP_VMRGLW:
3817    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3818    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3819    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3820    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3821    break;
3822  case OP_VSPLTISW0:
3823    for (unsigned i = 0; i != 16; ++i)
3824      ShufIdxs[i] = (i&3)+0;
3825    break;
3826  case OP_VSPLTISW1:
3827    for (unsigned i = 0; i != 16; ++i)
3828      ShufIdxs[i] = (i&3)+4;
3829    break;
3830  case OP_VSPLTISW2:
3831    for (unsigned i = 0; i != 16; ++i)
3832      ShufIdxs[i] = (i&3)+8;
3833    break;
3834  case OP_VSPLTISW3:
3835    for (unsigned i = 0; i != 16; ++i)
3836      ShufIdxs[i] = (i&3)+12;
3837    break;
3838  case OP_VSLDOI4:
3839    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3840  case OP_VSLDOI8:
3841    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3842  case OP_VSLDOI12:
3843    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3844  }
3845  EVT VT = OpLHS.getValueType();
3846  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3847  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3848  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3849  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3850}
3851
3852/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3853/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3854/// return the code it can be lowered into.  Worst case, it can always be
3855/// lowered into a vperm.
3856SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3857                                               SelectionDAG &DAG) {
3858  DebugLoc dl = Op.getDebugLoc();
3859  SDValue V1 = Op.getOperand(0);
3860  SDValue V2 = Op.getOperand(1);
3861  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3862  EVT VT = Op.getValueType();
3863
3864  // Cases that are handled by instructions that take permute immediates
3865  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3866  // selected by the instruction selector.
3867  if (V2.getOpcode() == ISD::UNDEF) {
3868    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3869        PPC::isSplatShuffleMask(SVOp, 2) ||
3870        PPC::isSplatShuffleMask(SVOp, 4) ||
3871        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3872        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3873        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3874        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3875        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3876        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3877        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3878        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3879        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3880      return Op;
3881    }
3882  }
3883
3884  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3885  // and produce a fixed permutation.  If any of these match, do not lower to
3886  // VPERM.
3887  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3888      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3889      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3890      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3891      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3892      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3893      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3894      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3895      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3896    return Op;
3897
3898  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3899  // perfect shuffle table to emit an optimal matching sequence.
3900  SmallVector<int, 16> PermMask;
3901  SVOp->getMask(PermMask);
3902
3903  unsigned PFIndexes[4];
3904  bool isFourElementShuffle = true;
3905  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3906    unsigned EltNo = 8;   // Start out undef.
3907    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3908      if (PermMask[i*4+j] < 0)
3909        continue;   // Undef, ignore it.
3910
3911      unsigned ByteSource = PermMask[i*4+j];
3912      if ((ByteSource & 3) != j) {
3913        isFourElementShuffle = false;
3914        break;
3915      }
3916
3917      if (EltNo == 8) {
3918        EltNo = ByteSource/4;
3919      } else if (EltNo != ByteSource/4) {
3920        isFourElementShuffle = false;
3921        break;
3922      }
3923    }
3924    PFIndexes[i] = EltNo;
3925  }
3926
3927  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3928  // perfect shuffle vector to determine if it is cost effective to do this as
3929  // discrete instructions, or whether we should use a vperm.
3930  if (isFourElementShuffle) {
3931    // Compute the index in the perfect shuffle table.
3932    unsigned PFTableIndex =
3933      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3934
3935    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3936    unsigned Cost  = (PFEntry >> 30);
3937
3938    // Determining when to avoid vperm is tricky.  Many things affect the cost
3939    // of vperm, particularly how many times the perm mask needs to be computed.
3940    // For example, if the perm mask can be hoisted out of a loop or is already
3941    // used (perhaps because there are multiple permutes with the same shuffle
3942    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3943    // the loop requires an extra register.
3944    //
3945    // As a compromise, we only emit discrete instructions if the shuffle can be
3946    // generated in 3 or fewer operations.  When we have loop information
3947    // available, if this block is within a loop, we should avoid using vperm
3948    // for 3-operation perms and use a constant pool load instead.
3949    if (Cost < 3)
3950      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3951  }
3952
3953  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3954  // vector that will get spilled to the constant pool.
3955  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3956
3957  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3958  // that it is in input element units, not in bytes.  Convert now.
3959  EVT EltVT = V1.getValueType().getVectorElementType();
3960  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3961
3962  SmallVector<SDValue, 16> ResultMask;
3963  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3964    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3965
3966    for (unsigned j = 0; j != BytesPerElement; ++j)
3967      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3968                                           MVT::i32));
3969  }
3970
3971  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3972                                    &ResultMask[0], ResultMask.size());
3973  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3974}
3975
3976/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3977/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3978/// information about the intrinsic.
3979static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3980                                  bool &isDot) {
3981  unsigned IntrinsicID =
3982    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3983  CompareOpc = -1;
3984  isDot = false;
3985  switch (IntrinsicID) {
3986  default: return false;
3987    // Comparison predicates.
3988  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3989  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3990  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3991  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3992  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3993  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3994  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3995  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3996  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3997  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3998  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3999  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4000  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4001
4002    // Normal Comparisons.
4003  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4004  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4005  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4006  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4007  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4008  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4009  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4010  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4011  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4012  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4013  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4014  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4015  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4016  }
4017  return true;
4018}
4019
4020/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4021/// lower, do it, otherwise return null.
4022SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4023                                                     SelectionDAG &DAG) {
4024  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4025  // opcode number of the comparison.
4026  DebugLoc dl = Op.getDebugLoc();
4027  int CompareOpc;
4028  bool isDot;
4029  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4030    return SDValue();    // Don't custom lower most intrinsics.
4031
4032  // If this is a non-dot comparison, make the VCMP node and we are done.
4033  if (!isDot) {
4034    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4035                                Op.getOperand(1), Op.getOperand(2),
4036                                DAG.getConstant(CompareOpc, MVT::i32));
4037    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4038  }
4039
4040  // Create the PPCISD altivec 'dot' comparison node.
4041  SDValue Ops[] = {
4042    Op.getOperand(2),  // LHS
4043    Op.getOperand(3),  // RHS
4044    DAG.getConstant(CompareOpc, MVT::i32)
4045  };
4046  std::vector<EVT> VTs;
4047  VTs.push_back(Op.getOperand(2).getValueType());
4048  VTs.push_back(MVT::Flag);
4049  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4050
4051  // Now that we have the comparison, emit a copy from the CR to a GPR.
4052  // This is flagged to the above dot comparison.
4053  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4054                                DAG.getRegister(PPC::CR6, MVT::i32),
4055                                CompNode.getValue(1));
4056
4057  // Unpack the result based on how the target uses it.
4058  unsigned BitNo;   // Bit # of CR6.
4059  bool InvertBit;   // Invert result?
4060  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4061  default:  // Can't happen, don't crash on invalid number though.
4062  case 0:   // Return the value of the EQ bit of CR6.
4063    BitNo = 0; InvertBit = false;
4064    break;
4065  case 1:   // Return the inverted value of the EQ bit of CR6.
4066    BitNo = 0; InvertBit = true;
4067    break;
4068  case 2:   // Return the value of the LT bit of CR6.
4069    BitNo = 2; InvertBit = false;
4070    break;
4071  case 3:   // Return the inverted value of the LT bit of CR6.
4072    BitNo = 2; InvertBit = true;
4073    break;
4074  }
4075
4076  // Shift the bit into the low position.
4077  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4078                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4079  // Isolate the bit.
4080  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4081                      DAG.getConstant(1, MVT::i32));
4082
4083  // If we are supposed to, toggle the bit.
4084  if (InvertBit)
4085    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4086                        DAG.getConstant(1, MVT::i32));
4087  return Flags;
4088}
4089
4090SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4091                                                   SelectionDAG &DAG) {
4092  DebugLoc dl = Op.getDebugLoc();
4093  // Create a stack slot that is 16-byte aligned.
4094  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4095  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4096  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4097  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4098
4099  // Store the input value into Value#0 of the stack slot.
4100  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4101                                 Op.getOperand(0), FIdx, NULL, 0);
4102  // Load it out.
4103  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4104}
4105
4106SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4107  DebugLoc dl = Op.getDebugLoc();
4108  if (Op.getValueType() == MVT::v4i32) {
4109    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4110
4111    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4112    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4113
4114    SDValue RHSSwap =   // = vrlw RHS, 16
4115      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4116
4117    // Shrinkify inputs to v8i16.
4118    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4119    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4120    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4121
4122    // Low parts multiplied together, generating 32-bit results (we ignore the
4123    // top parts).
4124    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4125                                        LHS, RHS, DAG, dl, MVT::v4i32);
4126
4127    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4128                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4129    // Shift the high parts up 16 bits.
4130    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4131                              Neg16, DAG, dl);
4132    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4133  } else if (Op.getValueType() == MVT::v8i16) {
4134    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4135
4136    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4137
4138    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4139                            LHS, RHS, Zero, DAG, dl);
4140  } else if (Op.getValueType() == MVT::v16i8) {
4141    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4142
4143    // Multiply the even 8-bit parts, producing 16-bit sums.
4144    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4145                                           LHS, RHS, DAG, dl, MVT::v8i16);
4146    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4147
4148    // Multiply the odd 8-bit parts, producing 16-bit sums.
4149    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4150                                          LHS, RHS, DAG, dl, MVT::v8i16);
4151    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4152
4153    // Merge the results together.
4154    int Ops[16];
4155    for (unsigned i = 0; i != 8; ++i) {
4156      Ops[i*2  ] = 2*i+1;
4157      Ops[i*2+1] = 2*i+1+16;
4158    }
4159    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4160  } else {
4161    llvm_unreachable("Unknown mul to lower!");
4162  }
4163}
4164
4165/// LowerOperation - Provide custom lowering hooks for some operations.
4166///
4167SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4168  switch (Op.getOpcode()) {
4169  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4170  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4171  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4172  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4173  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4174  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4175  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4176  case ISD::VASTART:
4177    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4178                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4179
4180  case ISD::VAARG:
4181    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4182                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4183
4184  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4185  case ISD::DYNAMIC_STACKALLOC:
4186    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4187
4188  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4189  case ISD::FP_TO_UINT:
4190  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4191                                                       Op.getDebugLoc());
4192  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4193  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4194
4195  // Lower 64-bit shifts.
4196  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4197  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4198  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4199
4200  // Vector-related lowering.
4201  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4202  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4203  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4204  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4205  case ISD::MUL:                return LowerMUL(Op, DAG);
4206
4207  // Frame & Return address.
4208  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4209  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4210  }
4211  return SDValue();
4212}
4213
4214void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4215                                           SmallVectorImpl<SDValue>&Results,
4216                                           SelectionDAG &DAG) {
4217  DebugLoc dl = N->getDebugLoc();
4218  switch (N->getOpcode()) {
4219  default:
4220    assert(false && "Do not know how to custom type legalize this operation!");
4221    return;
4222  case ISD::FP_ROUND_INREG: {
4223    assert(N->getValueType(0) == MVT::ppcf128);
4224    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4225    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4226                             MVT::f64, N->getOperand(0),
4227                             DAG.getIntPtrConstant(0));
4228    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4229                             MVT::f64, N->getOperand(0),
4230                             DAG.getIntPtrConstant(1));
4231
4232    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4233    // of the long double, and puts FPSCR back the way it was.  We do not
4234    // actually model FPSCR.
4235    std::vector<EVT> NodeTys;
4236    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4237
4238    NodeTys.push_back(MVT::f64);   // Return register
4239    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4240    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4241    MFFSreg = Result.getValue(0);
4242    InFlag = Result.getValue(1);
4243
4244    NodeTys.clear();
4245    NodeTys.push_back(MVT::Flag);   // Returns a flag
4246    Ops[0] = DAG.getConstant(31, MVT::i32);
4247    Ops[1] = InFlag;
4248    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4249    InFlag = Result.getValue(0);
4250
4251    NodeTys.clear();
4252    NodeTys.push_back(MVT::Flag);   // Returns a flag
4253    Ops[0] = DAG.getConstant(30, MVT::i32);
4254    Ops[1] = InFlag;
4255    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4256    InFlag = Result.getValue(0);
4257
4258    NodeTys.clear();
4259    NodeTys.push_back(MVT::f64);    // result of add
4260    NodeTys.push_back(MVT::Flag);   // Returns a flag
4261    Ops[0] = Lo;
4262    Ops[1] = Hi;
4263    Ops[2] = InFlag;
4264    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4265    FPreg = Result.getValue(0);
4266    InFlag = Result.getValue(1);
4267
4268    NodeTys.clear();
4269    NodeTys.push_back(MVT::f64);
4270    Ops[0] = DAG.getConstant(1, MVT::i32);
4271    Ops[1] = MFFSreg;
4272    Ops[2] = FPreg;
4273    Ops[3] = InFlag;
4274    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4275    FPreg = Result.getValue(0);
4276
4277    // We know the low half is about to be thrown away, so just use something
4278    // convenient.
4279    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4280                                FPreg, FPreg));
4281    return;
4282  }
4283  case ISD::FP_TO_SINT:
4284    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4285    return;
4286  }
4287}
4288
4289
4290//===----------------------------------------------------------------------===//
4291//  Other Lowering Code
4292//===----------------------------------------------------------------------===//
4293
4294MachineBasicBlock *
4295PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4296                                    bool is64bit, unsigned BinOpcode) const {
4297  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4298  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4299
4300  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4301  MachineFunction *F = BB->getParent();
4302  MachineFunction::iterator It = BB;
4303  ++It;
4304
4305  unsigned dest = MI->getOperand(0).getReg();
4306  unsigned ptrA = MI->getOperand(1).getReg();
4307  unsigned ptrB = MI->getOperand(2).getReg();
4308  unsigned incr = MI->getOperand(3).getReg();
4309  DebugLoc dl = MI->getDebugLoc();
4310
4311  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4312  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4313  F->insert(It, loopMBB);
4314  F->insert(It, exitMBB);
4315  exitMBB->transferSuccessors(BB);
4316
4317  MachineRegisterInfo &RegInfo = F->getRegInfo();
4318  unsigned TmpReg = (!BinOpcode) ? incr :
4319    RegInfo.createVirtualRegister(
4320       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4321                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4322
4323  //  thisMBB:
4324  //   ...
4325  //   fallthrough --> loopMBB
4326  BB->addSuccessor(loopMBB);
4327
4328  //  loopMBB:
4329  //   l[wd]arx dest, ptr
4330  //   add r0, dest, incr
4331  //   st[wd]cx. r0, ptr
4332  //   bne- loopMBB
4333  //   fallthrough --> exitMBB
4334  BB = loopMBB;
4335  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4336    .addReg(ptrA).addReg(ptrB);
4337  if (BinOpcode)
4338    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4339  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4340    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4341  BuildMI(BB, dl, TII->get(PPC::BCC))
4342    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4343  BB->addSuccessor(loopMBB);
4344  BB->addSuccessor(exitMBB);
4345
4346  //  exitMBB:
4347  //   ...
4348  BB = exitMBB;
4349  return BB;
4350}
4351
4352MachineBasicBlock *
4353PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4354                                            MachineBasicBlock *BB,
4355                                            bool is8bit,    // operation
4356                                            unsigned BinOpcode) const {
4357  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4358  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4359  // In 64 bit mode we have to use 64 bits for addresses, even though the
4360  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4361  // registers without caring whether they're 32 or 64, but here we're
4362  // doing actual arithmetic on the addresses.
4363  bool is64bit = PPCSubTarget.isPPC64();
4364
4365  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4366  MachineFunction *F = BB->getParent();
4367  MachineFunction::iterator It = BB;
4368  ++It;
4369
4370  unsigned dest = MI->getOperand(0).getReg();
4371  unsigned ptrA = MI->getOperand(1).getReg();
4372  unsigned ptrB = MI->getOperand(2).getReg();
4373  unsigned incr = MI->getOperand(3).getReg();
4374  DebugLoc dl = MI->getDebugLoc();
4375
4376  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4377  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4378  F->insert(It, loopMBB);
4379  F->insert(It, exitMBB);
4380  exitMBB->transferSuccessors(BB);
4381
4382  MachineRegisterInfo &RegInfo = F->getRegInfo();
4383  const TargetRegisterClass *RC =
4384    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4385              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4386  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4387  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4388  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4389  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4390  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4391  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4392  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4393  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4394  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4395  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4396  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4397  unsigned Ptr1Reg;
4398  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4399
4400  //  thisMBB:
4401  //   ...
4402  //   fallthrough --> loopMBB
4403  BB->addSuccessor(loopMBB);
4404
4405  // The 4-byte load must be aligned, while a char or short may be
4406  // anywhere in the word.  Hence all this nasty bookkeeping code.
4407  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4408  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4409  //   xori shift, shift1, 24 [16]
4410  //   rlwinm ptr, ptr1, 0, 0, 29
4411  //   slw incr2, incr, shift
4412  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4413  //   slw mask, mask2, shift
4414  //  loopMBB:
4415  //   lwarx tmpDest, ptr
4416  //   add tmp, tmpDest, incr2
4417  //   andc tmp2, tmpDest, mask
4418  //   and tmp3, tmp, mask
4419  //   or tmp4, tmp3, tmp2
4420  //   stwcx. tmp4, ptr
4421  //   bne- loopMBB
4422  //   fallthrough --> exitMBB
4423  //   srw dest, tmpDest, shift
4424
4425  if (ptrA!=PPC::R0) {
4426    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4427    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4428      .addReg(ptrA).addReg(ptrB);
4429  } else {
4430    Ptr1Reg = ptrB;
4431  }
4432  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4433      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4434  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4435      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4436  if (is64bit)
4437    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4438      .addReg(Ptr1Reg).addImm(0).addImm(61);
4439  else
4440    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4441      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4442  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4443      .addReg(incr).addReg(ShiftReg);
4444  if (is8bit)
4445    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4446  else {
4447    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4448    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4449  }
4450  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4451      .addReg(Mask2Reg).addReg(ShiftReg);
4452
4453  BB = loopMBB;
4454  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4455    .addReg(PPC::R0).addReg(PtrReg);
4456  if (BinOpcode)
4457    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4458      .addReg(Incr2Reg).addReg(TmpDestReg);
4459  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4460    .addReg(TmpDestReg).addReg(MaskReg);
4461  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4462    .addReg(TmpReg).addReg(MaskReg);
4463  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4464    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4465  BuildMI(BB, dl, TII->get(PPC::STWCX))
4466    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4467  BuildMI(BB, dl, TII->get(PPC::BCC))
4468    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4469  BB->addSuccessor(loopMBB);
4470  BB->addSuccessor(exitMBB);
4471
4472  //  exitMBB:
4473  //   ...
4474  BB = exitMBB;
4475  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4476  return BB;
4477}
4478
4479MachineBasicBlock *
4480PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4481                                               MachineBasicBlock *BB) const {
4482  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4483
4484  // To "insert" these instructions we actually have to insert their
4485  // control-flow patterns.
4486  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4487  MachineFunction::iterator It = BB;
4488  ++It;
4489
4490  MachineFunction *F = BB->getParent();
4491
4492  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4493      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4494      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4495      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4496      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4497
4498    // The incoming instruction knows the destination vreg to set, the
4499    // condition code register to branch on, the true/false values to
4500    // select between, and a branch opcode to use.
4501
4502    //  thisMBB:
4503    //  ...
4504    //   TrueVal = ...
4505    //   cmpTY ccX, r1, r2
4506    //   bCC copy1MBB
4507    //   fallthrough --> copy0MBB
4508    MachineBasicBlock *thisMBB = BB;
4509    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4510    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4511    unsigned SelectPred = MI->getOperand(4).getImm();
4512    DebugLoc dl = MI->getDebugLoc();
4513    BuildMI(BB, dl, TII->get(PPC::BCC))
4514      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4515    F->insert(It, copy0MBB);
4516    F->insert(It, sinkMBB);
4517    // Update machine-CFG edges by transferring all successors of the current
4518    // block to the new block which will contain the Phi node for the select.
4519    sinkMBB->transferSuccessors(BB);
4520    // Next, add the true and fallthrough blocks as its successors.
4521    BB->addSuccessor(copy0MBB);
4522    BB->addSuccessor(sinkMBB);
4523
4524    //  copy0MBB:
4525    //   %FalseValue = ...
4526    //   # fallthrough to sinkMBB
4527    BB = copy0MBB;
4528
4529    // Update machine-CFG edges
4530    BB->addSuccessor(sinkMBB);
4531
4532    //  sinkMBB:
4533    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4534    //  ...
4535    BB = sinkMBB;
4536    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4537      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4538      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4539  }
4540  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4541    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4542  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4543    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4544  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4545    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4546  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4547    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4548
4549  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4550    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4551  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4552    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4553  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4554    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4555  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4556    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4557
4558  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4559    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4560  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4561    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4562  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4563    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4564  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4565    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4566
4567  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4568    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4569  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4570    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4571  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4572    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4573  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4574    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4575
4576  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4577    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4578  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4579    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4580  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4581    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4582  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4583    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4584
4585  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4586    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4587  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4588    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4589  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4590    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4591  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4592    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4593
4594  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4595    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4596  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4597    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4598  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4599    BB = EmitAtomicBinary(MI, BB, false, 0);
4600  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4601    BB = EmitAtomicBinary(MI, BB, true, 0);
4602
4603  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4604           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4605    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4606
4607    unsigned dest   = MI->getOperand(0).getReg();
4608    unsigned ptrA   = MI->getOperand(1).getReg();
4609    unsigned ptrB   = MI->getOperand(2).getReg();
4610    unsigned oldval = MI->getOperand(3).getReg();
4611    unsigned newval = MI->getOperand(4).getReg();
4612    DebugLoc dl     = MI->getDebugLoc();
4613
4614    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4615    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4616    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4617    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4618    F->insert(It, loop1MBB);
4619    F->insert(It, loop2MBB);
4620    F->insert(It, midMBB);
4621    F->insert(It, exitMBB);
4622    exitMBB->transferSuccessors(BB);
4623
4624    //  thisMBB:
4625    //   ...
4626    //   fallthrough --> loopMBB
4627    BB->addSuccessor(loop1MBB);
4628
4629    // loop1MBB:
4630    //   l[wd]arx dest, ptr
4631    //   cmp[wd] dest, oldval
4632    //   bne- midMBB
4633    // loop2MBB:
4634    //   st[wd]cx. newval, ptr
4635    //   bne- loopMBB
4636    //   b exitBB
4637    // midMBB:
4638    //   st[wd]cx. dest, ptr
4639    // exitBB:
4640    BB = loop1MBB;
4641    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4642      .addReg(ptrA).addReg(ptrB);
4643    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4644      .addReg(oldval).addReg(dest);
4645    BuildMI(BB, dl, TII->get(PPC::BCC))
4646      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4647    BB->addSuccessor(loop2MBB);
4648    BB->addSuccessor(midMBB);
4649
4650    BB = loop2MBB;
4651    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4652      .addReg(newval).addReg(ptrA).addReg(ptrB);
4653    BuildMI(BB, dl, TII->get(PPC::BCC))
4654      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4655    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4656    BB->addSuccessor(loop1MBB);
4657    BB->addSuccessor(exitMBB);
4658
4659    BB = midMBB;
4660    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4661      .addReg(dest).addReg(ptrA).addReg(ptrB);
4662    BB->addSuccessor(exitMBB);
4663
4664    //  exitMBB:
4665    //   ...
4666    BB = exitMBB;
4667  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4668             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4669    // We must use 64-bit registers for addresses when targeting 64-bit,
4670    // since we're actually doing arithmetic on them.  Other registers
4671    // can be 32-bit.
4672    bool is64bit = PPCSubTarget.isPPC64();
4673    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4674
4675    unsigned dest   = MI->getOperand(0).getReg();
4676    unsigned ptrA   = MI->getOperand(1).getReg();
4677    unsigned ptrB   = MI->getOperand(2).getReg();
4678    unsigned oldval = MI->getOperand(3).getReg();
4679    unsigned newval = MI->getOperand(4).getReg();
4680    DebugLoc dl     = MI->getDebugLoc();
4681
4682    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4683    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4684    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4685    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4686    F->insert(It, loop1MBB);
4687    F->insert(It, loop2MBB);
4688    F->insert(It, midMBB);
4689    F->insert(It, exitMBB);
4690    exitMBB->transferSuccessors(BB);
4691
4692    MachineRegisterInfo &RegInfo = F->getRegInfo();
4693    const TargetRegisterClass *RC =
4694      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4695                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4696    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4697    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4698    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4699    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4700    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4701    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4702    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4703    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4704    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4705    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4706    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4707    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4708    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4709    unsigned Ptr1Reg;
4710    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4711    //  thisMBB:
4712    //   ...
4713    //   fallthrough --> loopMBB
4714    BB->addSuccessor(loop1MBB);
4715
4716    // The 4-byte load must be aligned, while a char or short may be
4717    // anywhere in the word.  Hence all this nasty bookkeeping code.
4718    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4719    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4720    //   xori shift, shift1, 24 [16]
4721    //   rlwinm ptr, ptr1, 0, 0, 29
4722    //   slw newval2, newval, shift
4723    //   slw oldval2, oldval,shift
4724    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4725    //   slw mask, mask2, shift
4726    //   and newval3, newval2, mask
4727    //   and oldval3, oldval2, mask
4728    // loop1MBB:
4729    //   lwarx tmpDest, ptr
4730    //   and tmp, tmpDest, mask
4731    //   cmpw tmp, oldval3
4732    //   bne- midMBB
4733    // loop2MBB:
4734    //   andc tmp2, tmpDest, mask
4735    //   or tmp4, tmp2, newval3
4736    //   stwcx. tmp4, ptr
4737    //   bne- loop1MBB
4738    //   b exitBB
4739    // midMBB:
4740    //   stwcx. tmpDest, ptr
4741    // exitBB:
4742    //   srw dest, tmpDest, shift
4743    if (ptrA!=PPC::R0) {
4744      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4745      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4746        .addReg(ptrA).addReg(ptrB);
4747    } else {
4748      Ptr1Reg = ptrB;
4749    }
4750    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4751        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4752    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4753        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4754    if (is64bit)
4755      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4756        .addReg(Ptr1Reg).addImm(0).addImm(61);
4757    else
4758      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4759        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4760    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4761        .addReg(newval).addReg(ShiftReg);
4762    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4763        .addReg(oldval).addReg(ShiftReg);
4764    if (is8bit)
4765      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4766    else {
4767      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4768      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4769        .addReg(Mask3Reg).addImm(65535);
4770    }
4771    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4772        .addReg(Mask2Reg).addReg(ShiftReg);
4773    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4774        .addReg(NewVal2Reg).addReg(MaskReg);
4775    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4776        .addReg(OldVal2Reg).addReg(MaskReg);
4777
4778    BB = loop1MBB;
4779    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4780        .addReg(PPC::R0).addReg(PtrReg);
4781    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4782        .addReg(TmpDestReg).addReg(MaskReg);
4783    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4784        .addReg(TmpReg).addReg(OldVal3Reg);
4785    BuildMI(BB, dl, TII->get(PPC::BCC))
4786        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4787    BB->addSuccessor(loop2MBB);
4788    BB->addSuccessor(midMBB);
4789
4790    BB = loop2MBB;
4791    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4792        .addReg(TmpDestReg).addReg(MaskReg);
4793    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4794        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4795    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4796        .addReg(PPC::R0).addReg(PtrReg);
4797    BuildMI(BB, dl, TII->get(PPC::BCC))
4798      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4799    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4800    BB->addSuccessor(loop1MBB);
4801    BB->addSuccessor(exitMBB);
4802
4803    BB = midMBB;
4804    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4805      .addReg(PPC::R0).addReg(PtrReg);
4806    BB->addSuccessor(exitMBB);
4807
4808    //  exitMBB:
4809    //   ...
4810    BB = exitMBB;
4811    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4812  } else {
4813    llvm_unreachable("Unexpected instr type to insert");
4814  }
4815
4816  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4817  return BB;
4818}
4819
4820//===----------------------------------------------------------------------===//
4821// Target Optimization Hooks
4822//===----------------------------------------------------------------------===//
4823
4824SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4825                                             DAGCombinerInfo &DCI) const {
4826  TargetMachine &TM = getTargetMachine();
4827  SelectionDAG &DAG = DCI.DAG;
4828  DebugLoc dl = N->getDebugLoc();
4829  switch (N->getOpcode()) {
4830  default: break;
4831  case PPCISD::SHL:
4832    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4833      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4834        return N->getOperand(0);
4835    }
4836    break;
4837  case PPCISD::SRL:
4838    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4839      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4840        return N->getOperand(0);
4841    }
4842    break;
4843  case PPCISD::SRA:
4844    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4845      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4846          C->isAllOnesValue())    // -1 >>s V -> -1.
4847        return N->getOperand(0);
4848    }
4849    break;
4850
4851  case ISD::SINT_TO_FP:
4852    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4853      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4854        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4855        // We allow the src/dst to be either f32/f64, but the intermediate
4856        // type must be i64.
4857        if (N->getOperand(0).getValueType() == MVT::i64 &&
4858            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4859          SDValue Val = N->getOperand(0).getOperand(0);
4860          if (Val.getValueType() == MVT::f32) {
4861            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4862            DCI.AddToWorklist(Val.getNode());
4863          }
4864
4865          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4866          DCI.AddToWorklist(Val.getNode());
4867          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4868          DCI.AddToWorklist(Val.getNode());
4869          if (N->getValueType(0) == MVT::f32) {
4870            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4871                              DAG.getIntPtrConstant(0));
4872            DCI.AddToWorklist(Val.getNode());
4873          }
4874          return Val;
4875        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4876          // If the intermediate type is i32, we can avoid the load/store here
4877          // too.
4878        }
4879      }
4880    }
4881    break;
4882  case ISD::STORE:
4883    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4884    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4885        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4886        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4887        N->getOperand(1).getValueType() == MVT::i32 &&
4888        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4889      SDValue Val = N->getOperand(1).getOperand(0);
4890      if (Val.getValueType() == MVT::f32) {
4891        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4892        DCI.AddToWorklist(Val.getNode());
4893      }
4894      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4895      DCI.AddToWorklist(Val.getNode());
4896
4897      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4898                        N->getOperand(2), N->getOperand(3));
4899      DCI.AddToWorklist(Val.getNode());
4900      return Val;
4901    }
4902
4903    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4904    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4905        N->getOperand(1).getNode()->hasOneUse() &&
4906        (N->getOperand(1).getValueType() == MVT::i32 ||
4907         N->getOperand(1).getValueType() == MVT::i16)) {
4908      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4909      // Do an any-extend to 32-bits if this is a half-word input.
4910      if (BSwapOp.getValueType() == MVT::i16)
4911        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4912
4913      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4914                         BSwapOp, N->getOperand(2), N->getOperand(3),
4915                         DAG.getValueType(N->getOperand(1).getValueType()));
4916    }
4917    break;
4918  case ISD::BSWAP:
4919    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4920    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4921        N->getOperand(0).hasOneUse() &&
4922        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4923      SDValue Load = N->getOperand(0);
4924      LoadSDNode *LD = cast<LoadSDNode>(Load);
4925      // Create the byte-swapping load.
4926      std::vector<EVT> VTs;
4927      VTs.push_back(MVT::i32);
4928      VTs.push_back(MVT::Other);
4929      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4930      SDValue Ops[] = {
4931        LD->getChain(),    // Chain
4932        LD->getBasePtr(),  // Ptr
4933        MO,                // MemOperand
4934        DAG.getValueType(N->getValueType(0)) // VT
4935      };
4936      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4937
4938      // If this is an i16 load, insert the truncate.
4939      SDValue ResVal = BSLoad;
4940      if (N->getValueType(0) == MVT::i16)
4941        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4942
4943      // First, combine the bswap away.  This makes the value produced by the
4944      // load dead.
4945      DCI.CombineTo(N, ResVal);
4946
4947      // Next, combine the load away, we give it a bogus result value but a real
4948      // chain result.  The result value is dead because the bswap is dead.
4949      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4950
4951      // Return N so it doesn't get rechecked!
4952      return SDValue(N, 0);
4953    }
4954
4955    break;
4956  case PPCISD::VCMP: {
4957    // If a VCMPo node already exists with exactly the same operands as this
4958    // node, use its result instead of this node (VCMPo computes both a CR6 and
4959    // a normal output).
4960    //
4961    if (!N->getOperand(0).hasOneUse() &&
4962        !N->getOperand(1).hasOneUse() &&
4963        !N->getOperand(2).hasOneUse()) {
4964
4965      // Scan all of the users of the LHS, looking for VCMPo's that match.
4966      SDNode *VCMPoNode = 0;
4967
4968      SDNode *LHSN = N->getOperand(0).getNode();
4969      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4970           UI != E; ++UI)
4971        if (UI->getOpcode() == PPCISD::VCMPo &&
4972            UI->getOperand(1) == N->getOperand(1) &&
4973            UI->getOperand(2) == N->getOperand(2) &&
4974            UI->getOperand(0) == N->getOperand(0)) {
4975          VCMPoNode = *UI;
4976          break;
4977        }
4978
4979      // If there is no VCMPo node, or if the flag value has a single use, don't
4980      // transform this.
4981      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4982        break;
4983
4984      // Look at the (necessarily single) use of the flag value.  If it has a
4985      // chain, this transformation is more complex.  Note that multiple things
4986      // could use the value result, which we should ignore.
4987      SDNode *FlagUser = 0;
4988      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4989           FlagUser == 0; ++UI) {
4990        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4991        SDNode *User = *UI;
4992        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4993          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4994            FlagUser = User;
4995            break;
4996          }
4997        }
4998      }
4999
5000      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5001      // give up for right now.
5002      if (FlagUser->getOpcode() == PPCISD::MFCR)
5003        return SDValue(VCMPoNode, 0);
5004    }
5005    break;
5006  }
5007  case ISD::BR_CC: {
5008    // If this is a branch on an altivec predicate comparison, lower this so
5009    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5010    // lowering is done pre-legalize, because the legalizer lowers the predicate
5011    // compare down to code that is difficult to reassemble.
5012    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5013    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5014    int CompareOpc;
5015    bool isDot;
5016
5017    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5018        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5019        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5020      assert(isDot && "Can't compare against a vector result!");
5021
5022      // If this is a comparison against something other than 0/1, then we know
5023      // that the condition is never/always true.
5024      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5025      if (Val != 0 && Val != 1) {
5026        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5027          return N->getOperand(0);
5028        // Always !=, turn it into an unconditional branch.
5029        return DAG.getNode(ISD::BR, dl, MVT::Other,
5030                           N->getOperand(0), N->getOperand(4));
5031      }
5032
5033      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5034
5035      // Create the PPCISD altivec 'dot' comparison node.
5036      std::vector<EVT> VTs;
5037      SDValue Ops[] = {
5038        LHS.getOperand(2),  // LHS of compare
5039        LHS.getOperand(3),  // RHS of compare
5040        DAG.getConstant(CompareOpc, MVT::i32)
5041      };
5042      VTs.push_back(LHS.getOperand(2).getValueType());
5043      VTs.push_back(MVT::Flag);
5044      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5045
5046      // Unpack the result based on how the target uses it.
5047      PPC::Predicate CompOpc;
5048      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5049      default:  // Can't happen, don't crash on invalid number though.
5050      case 0:   // Branch on the value of the EQ bit of CR6.
5051        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5052        break;
5053      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5054        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5055        break;
5056      case 2:   // Branch on the value of the LT bit of CR6.
5057        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5058        break;
5059      case 3:   // Branch on the inverted value of the LT bit of CR6.
5060        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5061        break;
5062      }
5063
5064      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5065                         DAG.getConstant(CompOpc, MVT::i32),
5066                         DAG.getRegister(PPC::CR6, MVT::i32),
5067                         N->getOperand(4), CompNode.getValue(1));
5068    }
5069    break;
5070  }
5071  }
5072
5073  return SDValue();
5074}
5075
5076//===----------------------------------------------------------------------===//
5077// Inline Assembly Support
5078//===----------------------------------------------------------------------===//
5079
5080void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5081                                                       const APInt &Mask,
5082                                                       APInt &KnownZero,
5083                                                       APInt &KnownOne,
5084                                                       const SelectionDAG &DAG,
5085                                                       unsigned Depth) const {
5086  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5087  switch (Op.getOpcode()) {
5088  default: break;
5089  case PPCISD::LBRX: {
5090    // lhbrx is known to have the top bits cleared out.
5091    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
5092      KnownZero = 0xFFFF0000;
5093    break;
5094  }
5095  case ISD::INTRINSIC_WO_CHAIN: {
5096    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5097    default: break;
5098    case Intrinsic::ppc_altivec_vcmpbfp_p:
5099    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5100    case Intrinsic::ppc_altivec_vcmpequb_p:
5101    case Intrinsic::ppc_altivec_vcmpequh_p:
5102    case Intrinsic::ppc_altivec_vcmpequw_p:
5103    case Intrinsic::ppc_altivec_vcmpgefp_p:
5104    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5105    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5106    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5107    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5108    case Intrinsic::ppc_altivec_vcmpgtub_p:
5109    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5110    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5111      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5112      break;
5113    }
5114  }
5115  }
5116}
5117
5118
5119/// getConstraintType - Given a constraint, return the type of
5120/// constraint it is for this target.
5121PPCTargetLowering::ConstraintType
5122PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5123  if (Constraint.size() == 1) {
5124    switch (Constraint[0]) {
5125    default: break;
5126    case 'b':
5127    case 'r':
5128    case 'f':
5129    case 'v':
5130    case 'y':
5131      return C_RegisterClass;
5132    }
5133  }
5134  return TargetLowering::getConstraintType(Constraint);
5135}
5136
5137std::pair<unsigned, const TargetRegisterClass*>
5138PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5139                                                EVT VT) const {
5140  if (Constraint.size() == 1) {
5141    // GCC RS6000 Constraint Letters
5142    switch (Constraint[0]) {
5143    case 'b':   // R1-R31
5144    case 'r':   // R0-R31
5145      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5146        return std::make_pair(0U, PPC::G8RCRegisterClass);
5147      return std::make_pair(0U, PPC::GPRCRegisterClass);
5148    case 'f':
5149      if (VT == MVT::f32)
5150        return std::make_pair(0U, PPC::F4RCRegisterClass);
5151      else if (VT == MVT::f64)
5152        return std::make_pair(0U, PPC::F8RCRegisterClass);
5153      break;
5154    case 'v':
5155      return std::make_pair(0U, PPC::VRRCRegisterClass);
5156    case 'y':   // crrc
5157      return std::make_pair(0U, PPC::CRRCRegisterClass);
5158    }
5159  }
5160
5161  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5162}
5163
5164
5165/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5166/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5167/// it means one of the asm constraint of the inline asm instruction being
5168/// processed is 'm'.
5169void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5170                                                     bool hasMemory,
5171                                                     std::vector<SDValue>&Ops,
5172                                                     SelectionDAG &DAG) const {
5173  SDValue Result(0,0);
5174  switch (Letter) {
5175  default: break;
5176  case 'I':
5177  case 'J':
5178  case 'K':
5179  case 'L':
5180  case 'M':
5181  case 'N':
5182  case 'O':
5183  case 'P': {
5184    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5185    if (!CST) return; // Must be an immediate to match.
5186    unsigned Value = CST->getZExtValue();
5187    switch (Letter) {
5188    default: llvm_unreachable("Unknown constraint letter!");
5189    case 'I':  // "I" is a signed 16-bit constant.
5190      if ((short)Value == (int)Value)
5191        Result = DAG.getTargetConstant(Value, Op.getValueType());
5192      break;
5193    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5194    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5195      if ((short)Value == 0)
5196        Result = DAG.getTargetConstant(Value, Op.getValueType());
5197      break;
5198    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5199      if ((Value >> 16) == 0)
5200        Result = DAG.getTargetConstant(Value, Op.getValueType());
5201      break;
5202    case 'M':  // "M" is a constant that is greater than 31.
5203      if (Value > 31)
5204        Result = DAG.getTargetConstant(Value, Op.getValueType());
5205      break;
5206    case 'N':  // "N" is a positive constant that is an exact power of two.
5207      if ((int)Value > 0 && isPowerOf2_32(Value))
5208        Result = DAG.getTargetConstant(Value, Op.getValueType());
5209      break;
5210    case 'O':  // "O" is the constant zero.
5211      if (Value == 0)
5212        Result = DAG.getTargetConstant(Value, Op.getValueType());
5213      break;
5214    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5215      if ((short)-Value == (int)-Value)
5216        Result = DAG.getTargetConstant(Value, Op.getValueType());
5217      break;
5218    }
5219    break;
5220  }
5221  }
5222
5223  if (Result.getNode()) {
5224    Ops.push_back(Result);
5225    return;
5226  }
5227
5228  // Handle standard constraint letters.
5229  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5230}
5231
5232// isLegalAddressingMode - Return true if the addressing mode represented
5233// by AM is legal for this target, for a load/store of the specified type.
5234bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5235                                              const Type *Ty) const {
5236  // FIXME: PPC does not allow r+i addressing modes for vectors!
5237
5238  // PPC allows a sign-extended 16-bit immediate field.
5239  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5240    return false;
5241
5242  // No global is ever allowed as a base.
5243  if (AM.BaseGV)
5244    return false;
5245
5246  // PPC only support r+r,
5247  switch (AM.Scale) {
5248  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5249    break;
5250  case 1:
5251    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5252      return false;
5253    // Otherwise we have r+r or r+i.
5254    break;
5255  case 2:
5256    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5257      return false;
5258    // Allow 2*r as r+r.
5259    break;
5260  default:
5261    // No other scales are supported.
5262    return false;
5263  }
5264
5265  return true;
5266}
5267
5268/// isLegalAddressImmediate - Return true if the integer value can be used
5269/// as the offset of the target addressing mode for load / store of the
5270/// given type.
5271bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5272  // PPC allows a sign-extended 16-bit immediate field.
5273  return (V > -(1 << 16) && V < (1 << 16)-1);
5274}
5275
5276bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5277  return false;
5278}
5279
5280SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5281  DebugLoc dl = Op.getDebugLoc();
5282  // Depths > 0 not supported yet!
5283  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5284    return SDValue();
5285
5286  MachineFunction &MF = DAG.getMachineFunction();
5287  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5288
5289  // Just load the return address off the stack.
5290  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5291
5292  // Make sure the function really does not optimize away the store of the RA
5293  // to the stack.
5294  FuncInfo->setLRStoreRequired();
5295  return DAG.getLoad(getPointerTy(), dl,
5296                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5297}
5298
5299SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5300  DebugLoc dl = Op.getDebugLoc();
5301  // Depths > 0 not supported yet!
5302  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5303    return SDValue();
5304
5305  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5306  bool isPPC64 = PtrVT == MVT::i64;
5307
5308  MachineFunction &MF = DAG.getMachineFunction();
5309  MachineFrameInfo *MFI = MF.getFrameInfo();
5310  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5311                  && MFI->getStackSize();
5312
5313  if (isPPC64)
5314    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5315      MVT::i64);
5316  else
5317    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5318      MVT::i32);
5319}
5320
5321bool
5322PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5323  // The PowerPC target isn't yet aware of offsets.
5324  return false;
5325}
5326
5327EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5328                                           bool isSrcConst, bool isSrcStr,
5329                                           SelectionDAG &DAG) const {
5330  if (this->PPCSubTarget.isPPC64()) {
5331    return MVT::i64;
5332  } else {
5333    return MVT::i32;
5334  }
5335}
5336