PPCISelLowering.cpp revision 257f75d0b88a7d3d5ba5b7b7908a97f6dd56e27d
16e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2ba5f6eced29937e4e4851a2c0980744768413d66Nick Lewycky//
36e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith//                     The LLVM Compiler Infrastructure
46e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith//
59b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor// This file is distributed under the University of Illinois Open Source
69b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor// License. See LICENSE.TXT for details.
7fe057ac36b9a76cdfa37dfa003f986461fb5fb98Douglas Gregor//
8fe057ac36b9a76cdfa37dfa003f986461fb5fb98Douglas Gregor//===----------------------------------------------------------------------===//
9fe057ac36b9a76cdfa37dfa003f986461fb5fb98Douglas Gregor//
109b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor// This file implements the PPCISelLowering class.
11ba5f6eced29937e4e4851a2c0980744768413d66Nick Lewycky//
12a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor//===----------------------------------------------------------------------===//
13a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor
14a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "PPCISelLowering.h"
159b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor#include "PPCMachineFunctionInfo.h"
169b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor#include "PPCPredicates.h"
17a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "PPCTargetMachine.h"
18a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "PPCPerfectShuffle.h"
19a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/ADT/STLExtras.h"
20a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/ADT/VectorExtras.h"
21a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/Analysis/ScalarEvolutionExpressions.h"
229b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor#include "llvm/CodeGen/CallingConvLower.h"
239b3064b55f3c858923734e8b1c9831777fc22554Douglas Gregor#include "llvm/CodeGen/MachineFrameInfo.h"
24a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/CodeGen/MachineFunction.h"
25a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/CodeGen/MachineInstrBuilder.h"
26a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/CodeGen/MachineRegisterInfo.h"
27a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/CodeGen/PseudoSourceValue.h"
28a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/CodeGen/SelectionDAG.h"
29a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/Constants.h"
30a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/Function.h"
31a3a835149ed4b183e3b009a1f94a6123779d696bDouglas Gregor#include "llvm/Intrinsics.h"
3298e13eac132c16466b75af3fd2365be09130e9d6Richard Smith#include "llvm/Support/MathExtras.h"
33ad26b7376b6fd71d14b9b893eaa1ba79e029c830Anders Carlsson#include "llvm/Target/TargetOptions.h"
3428485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregor#include "llvm/Support/CommandLine.h"
3528485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregorusing namespace llvm;
3628485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregor
3728485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregorstatic cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
3828485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregorcl::desc("enable preincrement load/store generation on PPC (experimental)"),
39ad26b7376b6fd71d14b9b893eaa1ba79e029c830Anders Carlsson                                     cl::Hidden);
4028485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregor
4128485232e411b4a296f629bcabd3904dbb9cd7beDouglas GregorPPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
4228485232e411b4a296f629bcabd3904dbb9cd7beDouglas Gregor  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
432eef829b19bdc59976a827fa39b409440e352bffDouglas Gregor
4498e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  setPow2DivIsCheap();
452eef829b19bdc59976a827fa39b409440e352bffDouglas Gregor
461aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor  // Use _setjmp/_longjmp instead of setjmp/longjmp.
471aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor  setUseUnderscoreSetJmp(true);
481aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor  setUseUnderscoreLongJmp(true);
491aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor
50ba5f6eced29937e4e4851a2c0980744768413d66Nick Lewycky  // Set up the register classes.
511aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
521aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
531aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
541aae80b173e22fa5d649f114eb6607efac350d79Douglas Gregor
55b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor
59b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor
61b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  // PowerPC has pre-inc load and store's.
62b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63b1f6fa48960eae269a3931d1fc545ed468d9a4d2Douglas Gregor  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64a4a301dc74dd4e7da1c35cbb3c1e03614482728bGabor Greif  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65c71d8eb6592ae3ef498fc57db3563d1dfae48dffFrancois Pichet  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66c71d8eb6592ae3ef498fc57db3563d1dfae48dffFrancois Pichet  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
6798e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68c71d8eb6592ae3ef498fc57db3563d1dfae48dffFrancois Pichet  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69c71d8eb6592ae3ef498fc57db3563d1dfae48dffFrancois Pichet  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
73fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // This is used in the ppcf128->int sequence.  Note it has different semantics
77fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
80fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // PowerPC has no intrinsics for these particular operations
81fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
84fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
86a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis  // PowerPC has no SREM/UREM instructions
87a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis  setOperationAction(ISD::SREM, MVT::i32, Expand);
88fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::UREM, MVT::i32, Expand);
89a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis  setOperationAction(ISD::SREM, MVT::i64, Expand);
90fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::UREM, MVT::i64, Expand);
91fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
92fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
101fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
102fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // We don't support sin/cos/sqrt/fmod/pow
103fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FSIN , MVT::f64, Expand);
104fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FCOS , MVT::f64, Expand);
105fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FREM , MVT::f64, Expand);
106fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FPOW , MVT::f64, Expand);
107fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FSIN , MVT::f32, Expand);
108fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FCOS , MVT::f32, Expand);
109fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FREM , MVT::f32, Expand);
110fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FPOW , MVT::f32, Expand);
111fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
112fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
113fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
114fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // If we're enabling GP optimizations, use hardware square root
115fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  }
119fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
120fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
123fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // PowerPC does not have BSWAP, CTPOP or CTTZ
124fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
125fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
126fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
127fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
128fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
129fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
130fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu
131fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  // PowerPC does not have ROTR
132fcaf27e185695bdf755e202aeba9632e0a8ef3c6Richard Trieu  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
133a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis
134a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis  // PowerPC does not have Select
135a6eb5f81d13bacac01faff70a947047725b4413fArgyrios Kyrtzidis  setOperationAction(ISD::SELECT, MVT::i32, Expand);
1364147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::SELECT, MVT::i64, Expand);
1374147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::SELECT, MVT::f32, Expand);
1384147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::SELECT, MVT::f64, Expand);
1394147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet
1404147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  // PowerPC wants to turn select_cc of FP into fsel when possible.
1414147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1424147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1434147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet
1444147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  // PowerPC wants to optimize integer setcc a bit
1454147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::SETCC, MVT::i32, Custom);
1464147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet
1474147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  // PowerPC does not have BRCOND which requires SetCC
1484147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1494147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet
1504147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
1514147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet
1524147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
1534147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1546722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks
1556722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  // PowerPC does not have [U|S]INT_TO_FP
1566722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
1576722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
1586722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks
1596722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
1606722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
1616722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
16298e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
1636722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks
1646722155dfe056e2c3dfbacbcaffae04dea0c2be0Anna Zaks  // We cannot sextinreg(i1).  Expand to shifts.
165d37b360bf9f954af119c9805fdc79ab9d30e06c6Richard Smith  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166d37b360bf9f954af119c9805fdc79ab9d30e06c6Richard Smith
167d37b360bf9f954af119c9805fdc79ab9d30e06c6Richard Smith  // Support label based line numbers.
1684147d307086cf024a40a080e2bf379e9725f6f41Francois Pichet  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
1690706df40064d4d7559b4304af79d519033414b84Richard Smith  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
1700706df40064d4d7559b4304af79d519033414b84Richard Smith
1710706df40064d4d7559b4304af79d519033414b84Richard Smith  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
17298e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
1730706df40064d4d7559b4304af79d519033414b84Richard Smith  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
17498e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
1750706df40064d4d7559b4304af79d519033414b84Richard Smith
17698e13eac132c16466b75af3fd2365be09130e9d6Richard Smith
17798e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  // We want to legalize GlobalAddress and ConstantPool nodes into the
1780706df40064d4d7559b4304af79d519033414b84Richard Smith  // appropriate instructions to materialize the address.
17998e13eac132c16466b75af3fd2365be09130e9d6Richard Smith  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1800706df40064d4d7559b4304af79d519033414b84Richard Smith  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1810706df40064d4d7559b4304af79d519033414b84Richard Smith  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
1821c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
1831c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
1841c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
1851c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
1861c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
1871c94c16317c1a35c1549e022958188eea2567089Richard Smith
1881c94c16317c1a35c1549e022958188eea2567089Richard Smith  // RET must be custom lowered, to meet ABI requirements
1891c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::RET               , MVT::Other, Custom);
1901c94c16317c1a35c1549e022958188eea2567089Richard Smith
1911c94c16317c1a35c1549e022958188eea2567089Richard Smith  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
1921c94c16317c1a35c1549e022958188eea2567089Richard Smith  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1931c94c16317c1a35c1549e022958188eea2567089Richard Smith
1941c94c16317c1a35c1549e022958188eea2567089Richard Smith  // VAARG is custom lowered with ELF 32 ABI
195874d253668f9ed183ca409cdff9d424925ee7800Richard Smith  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
1966e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith    setOperationAction(ISD::VAARG, MVT::Other, Custom);
1976e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith  else
1986e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith    setOperationAction(ISD::VAARG, MVT::Other, Expand);
1996e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith
2006e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith  // Use the default implementation.
2016e1fd33116c2977174f2df17ac8bad2a32659db8Richard Smith  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
202460ef136eb96b879f149c8703938a13c35b4bc68David Blaikie  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
203460ef136eb96b879f149c8703938a13c35b4bc68David Blaikie  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
204460ef136eb96b879f149c8703938a13c35b4bc68David Blaikie  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
205460ef136eb96b879f149c8703938a13c35b4bc68David Blaikie  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
206460ef136eb96b879f149c8703938a13c35b4bc68David Blaikie  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
207
208  // We want to custom lower some of our intrinsics.
209  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212    // They also have instructions for converting between i64 and fp.
213    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219    // FIXME: disable this lowered code.  This generates 64-bit register values,
220    // and we don't model the fact that the top part is clobbered by calls.  We
221    // need to flag these together so that the value isn't live across a call.
222    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226  } else {
227    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229  }
230
231  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232    // 64-bit PowerPC implementations can support i64 types directly
233    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236    // 64-bit PowerPC wants to expand i128 shifts itself.
237    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
238    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
239    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
240  } else {
241    // 32-bit PowerPC wants to expand i64 shifts itself.
242    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
243    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
244    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
245  }
246
247  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
248    // First set operation action for all vector types to expand. Then we
249    // will selectively turn on ones that can be effectively codegen'd.
250    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
251         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
252      // add/sub are legal for all supported vector VT's.
253      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
254      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
255
256      // We promote all shuffles to v16i8.
257      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
258      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
259
260      // We promote all non-typed operations to v4i32.
261      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
269      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
270      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
271      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
272      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
273
274      // No other operations are legal.
275      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
292      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
293      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
294    }
295
296    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297    // with merges, splats, etc.
298    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
301    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
302    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
303    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
304    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324  }
325
326  setShiftAmountType(MVT::i32);
327  setSetCCResultContents(ZeroOrOneSetCCResult);
328
329  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330    setStackPointerRegisterToSaveRestore(PPC::X1);
331    setExceptionPointerRegister(PPC::X3);
332    setExceptionSelectorRegister(PPC::X4);
333  } else {
334    setStackPointerRegisterToSaveRestore(PPC::R1);
335    setExceptionPointerRegister(PPC::R3);
336    setExceptionSelectorRegister(PPC::R4);
337  }
338
339  // We have target-specific dag combine patterns for the following nodes:
340  setTargetDAGCombine(ISD::SINT_TO_FP);
341  setTargetDAGCombine(ISD::STORE);
342  setTargetDAGCombine(ISD::BR_CC);
343  setTargetDAGCombine(ISD::BSWAP);
344
345  // Darwin long double math library functions have $LDBL128 appended.
346  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
347    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
348    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
350    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
352  }
353
354  computeRegisterProperties();
355}
356
357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360  TargetMachine &TM = getTargetMachine();
361  // Darwin passes everything on 4 byte boundary.
362  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363    return 4;
364  // FIXME Elf TBD
365  return 4;
366}
367
368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369  switch (Opcode) {
370  default: return 0;
371  case PPCISD::FSEL:          return "PPCISD::FSEL";
372  case PPCISD::FCFID:         return "PPCISD::FCFID";
373  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
374  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
375  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
376  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
377  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
378  case PPCISD::VPERM:         return "PPCISD::VPERM";
379  case PPCISD::Hi:            return "PPCISD::Hi";
380  case PPCISD::Lo:            return "PPCISD::Lo";
381  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
382  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
383  case PPCISD::SRL:           return "PPCISD::SRL";
384  case PPCISD::SRA:           return "PPCISD::SRA";
385  case PPCISD::SHL:           return "PPCISD::SHL";
386  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
387  case PPCISD::STD_32:        return "PPCISD::STD_32";
388  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
389  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
390  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
391  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
392  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
393  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
394  case PPCISD::MFCR:          return "PPCISD::MFCR";
395  case PPCISD::VCMP:          return "PPCISD::VCMP";
396  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
397  case PPCISD::LBRX:          return "PPCISD::LBRX";
398  case PPCISD::STBRX:         return "PPCISD::STBRX";
399  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
400  case PPCISD::MFFS:          return "PPCISD::MFFS";
401  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
402  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
403  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
404  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
405  }
406}
407
408
409MVT::ValueType
410PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
411  return MVT::i32;
412}
413
414
415//===----------------------------------------------------------------------===//
416// Node matching predicates, for use by the tblgen matching code.
417//===----------------------------------------------------------------------===//
418
419/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
420static bool isFloatingPointZero(SDOperand Op) {
421  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
422    return CFP->getValueAPF().isZero();
423  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
424    // Maybe this has already been legalized into the constant pool?
425    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
426      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
427        return CFP->getValueAPF().isZero();
428  }
429  return false;
430}
431
432/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
433/// true if Op is undef or if it matches the specified value.
434static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
435  return Op.getOpcode() == ISD::UNDEF ||
436         cast<ConstantSDNode>(Op)->getValue() == Val;
437}
438
439/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
440/// VPKUHUM instruction.
441bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
442  if (!isUnary) {
443    for (unsigned i = 0; i != 16; ++i)
444      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
445        return false;
446  } else {
447    for (unsigned i = 0; i != 8; ++i)
448      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
449          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
450        return false;
451  }
452  return true;
453}
454
455/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
456/// VPKUWUM instruction.
457bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
458  if (!isUnary) {
459    for (unsigned i = 0; i != 16; i += 2)
460      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
461          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
462        return false;
463  } else {
464    for (unsigned i = 0; i != 8; i += 2)
465      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
466          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
467          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
468          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
469        return false;
470  }
471  return true;
472}
473
474/// isVMerge - Common function, used to match vmrg* shuffles.
475///
476static bool isVMerge(SDNode *N, unsigned UnitSize,
477                     unsigned LHSStart, unsigned RHSStart) {
478  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
479         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
480  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
481         "Unsupported merge size!");
482
483  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
484    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
485      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
486                             LHSStart+j+i*UnitSize) ||
487          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
488                             RHSStart+j+i*UnitSize))
489        return false;
490    }
491      return true;
492}
493
494/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
495/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
496bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
497  if (!isUnary)
498    return isVMerge(N, UnitSize, 8, 24);
499  return isVMerge(N, UnitSize, 8, 8);
500}
501
502/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
503/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
504bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
505  if (!isUnary)
506    return isVMerge(N, UnitSize, 0, 16);
507  return isVMerge(N, UnitSize, 0, 0);
508}
509
510
511/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
512/// amount, otherwise return -1.
513int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
514  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
515         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
516  // Find the first non-undef value in the shuffle mask.
517  unsigned i;
518  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
519    /*search*/;
520
521  if (i == 16) return -1;  // all undef.
522
523  // Otherwise, check to see if the rest of the elements are consequtively
524  // numbered from this value.
525  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
526  if (ShiftAmt < i) return -1;
527  ShiftAmt -= i;
528
529  if (!isUnary) {
530    // Check the rest of the elements to see if they are consequtive.
531    for (++i; i != 16; ++i)
532      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
533        return -1;
534  } else {
535    // Check the rest of the elements to see if they are consequtive.
536    for (++i; i != 16; ++i)
537      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
538        return -1;
539  }
540
541  return ShiftAmt;
542}
543
544/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
545/// specifies a splat of a single element that is suitable for input to
546/// VSPLTB/VSPLTH/VSPLTW.
547bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
548  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
549         N->getNumOperands() == 16 &&
550         (EltSize == 1 || EltSize == 2 || EltSize == 4));
551
552  // This is a splat operation if each element of the permute is the same, and
553  // if the value doesn't reference the second vector.
554  unsigned ElementBase = 0;
555  SDOperand Elt = N->getOperand(0);
556  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
557    ElementBase = EltV->getValue();
558  else
559    return false;   // FIXME: Handle UNDEF elements too!
560
561  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
562    return false;
563
564  // Check that they are consequtive.
565  for (unsigned i = 1; i != EltSize; ++i) {
566    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
567        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
568      return false;
569  }
570
571  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
572  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
573    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
575           "Invalid VECTOR_SHUFFLE mask!");
576    for (unsigned j = 0; j != EltSize; ++j)
577      if (N->getOperand(i+j) != N->getOperand(j))
578        return false;
579  }
580
581  return true;
582}
583
584/// isAllNegativeZeroVector - Returns true if all elements of build_vector
585/// are -0.0.
586bool PPC::isAllNegativeZeroVector(SDNode *N) {
587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
588  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
589    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
590      return CFP->getValueAPF().isNegZero();
591  return false;
592}
593
594/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
595/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
596unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
597  assert(isSplatShuffleMask(N, EltSize));
598  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
599}
600
601/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
602/// by using a vspltis[bhw] instruction of the specified element size, return
603/// the constant being splatted.  The ByteSize field indicates the number of
604/// bytes of each element [124] -> [bhw].
605SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
606  SDOperand OpVal(0, 0);
607
608  // If ByteSize of the splat is bigger than the element size of the
609  // build_vector, then we have a case where we are checking for a splat where
610  // multiple elements of the buildvector are folded together into a single
611  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
612  unsigned EltSize = 16/N->getNumOperands();
613  if (EltSize < ByteSize) {
614    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
615    SDOperand UniquedVals[4];
616    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
617
618    // See if all of the elements in the buildvector agree across.
619    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
620      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
621      // If the element isn't a constant, bail fully out.
622      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
623
624
625      if (UniquedVals[i&(Multiple-1)].Val == 0)
626        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
627      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
628        return SDOperand();  // no match.
629    }
630
631    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
632    // either constant or undef values that are identical for each chunk.  See
633    // if these chunks can form into a larger vspltis*.
634
635    // Check to see if all of the leading entries are either 0 or -1.  If
636    // neither, then this won't fit into the immediate field.
637    bool LeadingZero = true;
638    bool LeadingOnes = true;
639    for (unsigned i = 0; i != Multiple-1; ++i) {
640      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
641
642      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
643      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
644    }
645    // Finally, check the least significant entry.
646    if (LeadingZero) {
647      if (UniquedVals[Multiple-1].Val == 0)
648        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
649      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
650      if (Val < 16)
651        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
652    }
653    if (LeadingOnes) {
654      if (UniquedVals[Multiple-1].Val == 0)
655        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
656      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
657      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
658        return DAG.getTargetConstant(Val, MVT::i32);
659    }
660
661    return SDOperand();
662  }
663
664  // Check to see if this buildvec has a single non-undef value in its elements.
665  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
666    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
667    if (OpVal.Val == 0)
668      OpVal = N->getOperand(i);
669    else if (OpVal != N->getOperand(i))
670      return SDOperand();
671  }
672
673  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
674
675  unsigned ValSizeInBytes = 0;
676  uint64_t Value = 0;
677  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
678    Value = CN->getValue();
679    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
680  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
681    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
682    Value = FloatToBits(CN->getValueAPF().convertToFloat());
683    ValSizeInBytes = 4;
684  }
685
686  // If the splat value is larger than the element value, then we can never do
687  // this splat.  The only case that we could fit the replicated bits into our
688  // immediate field for would be zero, and we prefer to use vxor for it.
689  if (ValSizeInBytes < ByteSize) return SDOperand();
690
691  // If the element value is larger than the splat value, cut it in half and
692  // check to see if the two halves are equal.  Continue doing this until we
693  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
694  while (ValSizeInBytes > ByteSize) {
695    ValSizeInBytes >>= 1;
696
697    // If the top half equals the bottom half, we're still ok.
698    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
699         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
700      return SDOperand();
701  }
702
703  // Properly sign extend the value.
704  int ShAmt = (4-ByteSize)*8;
705  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
706
707  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
708  if (MaskVal == 0) return SDOperand();
709
710  // Finally, if this value fits in a 5 bit sext field, return it
711  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
712    return DAG.getTargetConstant(MaskVal, MVT::i32);
713  return SDOperand();
714}
715
716//===----------------------------------------------------------------------===//
717//  Addressing Mode Selection
718//===----------------------------------------------------------------------===//
719
720/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
721/// or 64-bit immediate, and if the value can be accurately represented as a
722/// sign extension from a 16-bit value.  If so, this returns true and the
723/// immediate.
724static bool isIntS16Immediate(SDNode *N, short &Imm) {
725  if (N->getOpcode() != ISD::Constant)
726    return false;
727
728  Imm = (short)cast<ConstantSDNode>(N)->getValue();
729  if (N->getValueType(0) == MVT::i32)
730    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
731  else
732    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
733}
734static bool isIntS16Immediate(SDOperand Op, short &Imm) {
735  return isIntS16Immediate(Op.Val, Imm);
736}
737
738
739/// SelectAddressRegReg - Given the specified addressed, check to see if it
740/// can be represented as an indexed [r+r] operation.  Returns false if it
741/// can be more efficiently represented with [r+imm].
742bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
743                                            SDOperand &Index,
744                                            SelectionDAG &DAG) {
745  short imm = 0;
746  if (N.getOpcode() == ISD::ADD) {
747    if (isIntS16Immediate(N.getOperand(1), imm))
748      return false;    // r+i
749    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
750      return false;    // r+i
751
752    Base = N.getOperand(0);
753    Index = N.getOperand(1);
754    return true;
755  } else if (N.getOpcode() == ISD::OR) {
756    if (isIntS16Immediate(N.getOperand(1), imm))
757      return false;    // r+i can fold it if we can.
758
759    // If this is an or of disjoint bitfields, we can codegen this as an add
760    // (for better address arithmetic) if the LHS and RHS of the OR are provably
761    // disjoint.
762    APInt LHSKnownZero, LHSKnownOne;
763    APInt RHSKnownZero, RHSKnownOne;
764    DAG.ComputeMaskedBits(N.getOperand(0),
765                          APInt::getAllOnesValue(N.getOperand(0)
766                            .getValueSizeInBits()),
767                          LHSKnownZero, LHSKnownOne);
768
769    if (LHSKnownZero.getBoolValue()) {
770      DAG.ComputeMaskedBits(N.getOperand(1),
771                            APInt::getAllOnesValue(N.getOperand(1)
772                              .getValueSizeInBits()),
773                            RHSKnownZero, RHSKnownOne);
774      // If all of the bits are known zero on the LHS or RHS, the add won't
775      // carry.
776      if (~(LHSKnownZero | RHSKnownZero) == 0) {
777        Base = N.getOperand(0);
778        Index = N.getOperand(1);
779        return true;
780      }
781    }
782  }
783
784  return false;
785}
786
787/// Returns true if the address N can be represented by a base register plus
788/// a signed 16-bit displacement [r+imm], and if it is not better
789/// represented as reg+reg.
790bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
791                                            SDOperand &Base, SelectionDAG &DAG){
792  // If this can be more profitably realized as r+r, fail.
793  if (SelectAddressRegReg(N, Disp, Base, DAG))
794    return false;
795
796  if (N.getOpcode() == ISD::ADD) {
797    short imm = 0;
798    if (isIntS16Immediate(N.getOperand(1), imm)) {
799      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
800      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
801        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
802      } else {
803        Base = N.getOperand(0);
804      }
805      return true; // [r+i]
806    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
807      // Match LOAD (ADD (X, Lo(G))).
808      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
809             && "Cannot handle constant offsets yet!");
810      Disp = N.getOperand(1).getOperand(0);  // The global address.
811      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
812             Disp.getOpcode() == ISD::TargetConstantPool ||
813             Disp.getOpcode() == ISD::TargetJumpTable);
814      Base = N.getOperand(0);
815      return true;  // [&g+r]
816    }
817  } else if (N.getOpcode() == ISD::OR) {
818    short imm = 0;
819    if (isIntS16Immediate(N.getOperand(1), imm)) {
820      // If this is an or of disjoint bitfields, we can codegen this as an add
821      // (for better address arithmetic) if the LHS and RHS of the OR are
822      // provably disjoint.
823      APInt LHSKnownZero, LHSKnownOne;
824      DAG.ComputeMaskedBits(N.getOperand(0),
825                            APInt::getAllOnesValue(32),
826                            LHSKnownZero, LHSKnownOne);
827      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
828        // If all of the bits are known zero on the LHS or RHS, the add won't
829        // carry.
830        Base = N.getOperand(0);
831        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
832        return true;
833      }
834    }
835  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
836    // Loading from a constant address.
837
838    // If this address fits entirely in a 16-bit sext immediate field, codegen
839    // this as "d, 0"
840    short Imm;
841    if (isIntS16Immediate(CN, Imm)) {
842      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
843      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
844      return true;
845    }
846
847    // Handle 32-bit sext immediates with LIS + addr mode.
848    if (CN->getValueType(0) == MVT::i32 ||
849        (int64_t)CN->getValue() == (int)CN->getValue()) {
850      int Addr = (int)CN->getValue();
851
852      // Otherwise, break this down into an LIS + disp.
853      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
854
855      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
856      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
857      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
858      return true;
859    }
860  }
861
862  Disp = DAG.getTargetConstant(0, getPointerTy());
863  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
864    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
865  else
866    Base = N;
867  return true;      // [r+0]
868}
869
870/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
871/// represented as an indexed [r+r] operation.
872bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
873                                                SDOperand &Index,
874                                                SelectionDAG &DAG) {
875  // Check to see if we can easily represent this as an [r+r] address.  This
876  // will fail if it thinks that the address is more profitably represented as
877  // reg+imm, e.g. where imm = 0.
878  if (SelectAddressRegReg(N, Base, Index, DAG))
879    return true;
880
881  // If the operand is an addition, always emit this as [r+r], since this is
882  // better (for code size, and execution, as the memop does the add for free)
883  // than emitting an explicit add.
884  if (N.getOpcode() == ISD::ADD) {
885    Base = N.getOperand(0);
886    Index = N.getOperand(1);
887    return true;
888  }
889
890  // Otherwise, do it the hard way, using R0 as the base register.
891  Base = DAG.getRegister(PPC::R0, N.getValueType());
892  Index = N;
893  return true;
894}
895
896/// SelectAddressRegImmShift - Returns true if the address N can be
897/// represented by a base register plus a signed 14-bit displacement
898/// [r+imm*4].  Suitable for use by STD and friends.
899bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
900                                                 SDOperand &Base,
901                                                 SelectionDAG &DAG) {
902  // If this can be more profitably realized as r+r, fail.
903  if (SelectAddressRegReg(N, Disp, Base, DAG))
904    return false;
905
906  if (N.getOpcode() == ISD::ADD) {
907    short imm = 0;
908    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
909      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
910      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
911        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
912      } else {
913        Base = N.getOperand(0);
914      }
915      return true; // [r+i]
916    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
917      // Match LOAD (ADD (X, Lo(G))).
918      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
919             && "Cannot handle constant offsets yet!");
920      Disp = N.getOperand(1).getOperand(0);  // The global address.
921      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
922             Disp.getOpcode() == ISD::TargetConstantPool ||
923             Disp.getOpcode() == ISD::TargetJumpTable);
924      Base = N.getOperand(0);
925      return true;  // [&g+r]
926    }
927  } else if (N.getOpcode() == ISD::OR) {
928    short imm = 0;
929    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
930      // If this is an or of disjoint bitfields, we can codegen this as an add
931      // (for better address arithmetic) if the LHS and RHS of the OR are
932      // provably disjoint.
933      APInt LHSKnownZero, LHSKnownOne;
934      DAG.ComputeMaskedBits(N.getOperand(0),
935                            APInt::getAllOnesValue(32),
936                            LHSKnownZero, LHSKnownOne);
937      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
938        // If all of the bits are known zero on the LHS or RHS, the add won't
939        // carry.
940        Base = N.getOperand(0);
941        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
942        return true;
943      }
944    }
945  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
946    // Loading from a constant address.  Verify low two bits are clear.
947    if ((CN->getValue() & 3) == 0) {
948      // If this address fits entirely in a 14-bit sext immediate field, codegen
949      // this as "d, 0"
950      short Imm;
951      if (isIntS16Immediate(CN, Imm)) {
952        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
953        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
954        return true;
955      }
956
957      // Fold the low-part of 32-bit absolute addresses into addr mode.
958      if (CN->getValueType(0) == MVT::i32 ||
959          (int64_t)CN->getValue() == (int)CN->getValue()) {
960        int Addr = (int)CN->getValue();
961
962        // Otherwise, break this down into an LIS + disp.
963        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
964
965        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
966        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
967        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
968        return true;
969      }
970    }
971  }
972
973  Disp = DAG.getTargetConstant(0, getPointerTy());
974  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
975    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
976  else
977    Base = N;
978  return true;      // [r+0]
979}
980
981
982/// getPreIndexedAddressParts - returns true by value, base pointer and
983/// offset pointer and addressing mode by reference if the node's address
984/// can be legally represented as pre-indexed load / store address.
985bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
986                                                  SDOperand &Offset,
987                                                  ISD::MemIndexedMode &AM,
988                                                  SelectionDAG &DAG) {
989  // Disabled by default for now.
990  if (!EnablePPCPreinc) return false;
991
992  SDOperand Ptr;
993  MVT::ValueType VT;
994  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
995    Ptr = LD->getBasePtr();
996    VT = LD->getMemoryVT();
997
998  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
999    ST = ST;
1000    Ptr = ST->getBasePtr();
1001    VT  = ST->getMemoryVT();
1002  } else
1003    return false;
1004
1005  // PowerPC doesn't have preinc load/store instructions for vectors.
1006  if (MVT::isVector(VT))
1007    return false;
1008
1009  // TODO: Check reg+reg first.
1010
1011  // LDU/STU use reg+imm*4, others use reg+imm.
1012  if (VT != MVT::i64) {
1013    // reg + imm
1014    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1015      return false;
1016  } else {
1017    // reg + imm * 4.
1018    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1019      return false;
1020  }
1021
1022  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1023    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1024    // sext i32 to i64 when addr mode is r+i.
1025    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1026        LD->getExtensionType() == ISD::SEXTLOAD &&
1027        isa<ConstantSDNode>(Offset))
1028      return false;
1029  }
1030
1031  AM = ISD::PRE_INC;
1032  return true;
1033}
1034
1035//===----------------------------------------------------------------------===//
1036//  LowerOperation implementation
1037//===----------------------------------------------------------------------===//
1038
1039SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1040                                             SelectionDAG &DAG) {
1041  MVT::ValueType PtrVT = Op.getValueType();
1042  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1043  Constant *C = CP->getConstVal();
1044  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1045  SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047  const TargetMachine &TM = DAG.getTarget();
1048
1049  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1050  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1051
1052  // If this is a non-darwin platform, we don't support non-static relo models
1053  // yet.
1054  if (TM.getRelocationModel() == Reloc::Static ||
1055      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056    // Generate non-pic code that has direct accesses to the constant pool.
1057    // The address of the global is just (hi(&g)+lo(&g)).
1058    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  }
1060
1061  if (TM.getRelocationModel() == Reloc::PIC_) {
1062    // With PIC, the first instruction is actually "GR+hi(&G)".
1063    Hi = DAG.getNode(ISD::ADD, PtrVT,
1064                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065  }
1066
1067  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068  return Lo;
1069}
1070
1071SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1072  MVT::ValueType PtrVT = Op.getValueType();
1073  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1074  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1075  SDOperand Zero = DAG.getConstant(0, PtrVT);
1076
1077  const TargetMachine &TM = DAG.getTarget();
1078
1079  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1080  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1081
1082  // If this is a non-darwin platform, we don't support non-static relo models
1083  // yet.
1084  if (TM.getRelocationModel() == Reloc::Static ||
1085      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1086    // Generate non-pic code that has direct accesses to the constant pool.
1087    // The address of the global is just (hi(&g)+lo(&g)).
1088    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089  }
1090
1091  if (TM.getRelocationModel() == Reloc::PIC_) {
1092    // With PIC, the first instruction is actually "GR+hi(&G)".
1093    Hi = DAG.getNode(ISD::ADD, PtrVT,
1094                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1095  }
1096
1097  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1098  return Lo;
1099}
1100
1101SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1102                                                   SelectionDAG &DAG) {
1103  assert(0 && "TLS not implemented for PPC.");
1104}
1105
1106SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1107                                                SelectionDAG &DAG) {
1108  MVT::ValueType PtrVT = Op.getValueType();
1109  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1110  GlobalValue *GV = GSDN->getGlobal();
1111  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1112  // If it's a debug information descriptor, don't mess with it.
1113  if (DAG.isVerifiedDebugInfoDesc(Op))
1114    return GA;
1115  SDOperand Zero = DAG.getConstant(0, PtrVT);
1116
1117  const TargetMachine &TM = DAG.getTarget();
1118
1119  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1120  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1121
1122  // If this is a non-darwin platform, we don't support non-static relo models
1123  // yet.
1124  if (TM.getRelocationModel() == Reloc::Static ||
1125      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1126    // Generate non-pic code that has direct accesses to globals.
1127    // The address of the global is just (hi(&g)+lo(&g)).
1128    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1129  }
1130
1131  if (TM.getRelocationModel() == Reloc::PIC_) {
1132    // With PIC, the first instruction is actually "GR+hi(&G)".
1133    Hi = DAG.getNode(ISD::ADD, PtrVT,
1134                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1135  }
1136
1137  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1138
1139  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1140    return Lo;
1141
1142  // If the global is weak or external, we have to go through the lazy
1143  // resolution stub.
1144  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1145}
1146
1147SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1148  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1149
1150  // If we're comparing for equality to zero, expose the fact that this is
1151  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1152  // fold the new nodes.
1153  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154    if (C->isNullValue() && CC == ISD::SETEQ) {
1155      MVT::ValueType VT = Op.getOperand(0).getValueType();
1156      SDOperand Zext = Op.getOperand(0);
1157      if (VT < MVT::i32) {
1158        VT = MVT::i32;
1159        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1160      }
1161      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1162      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1163      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1164                                  DAG.getConstant(Log2b, MVT::i32));
1165      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1166    }
1167    // Leave comparisons against 0 and -1 alone for now, since they're usually
1168    // optimized.  FIXME: revisit this when we can custom lower all setcc
1169    // optimizations.
1170    if (C->isAllOnesValue() || C->isNullValue())
1171      return SDOperand();
1172  }
1173
1174  // If we have an integer seteq/setne, turn it into a compare against zero
1175  // by xor'ing the rhs with the lhs, which is faster than setting a
1176  // condition register, reading it back out, and masking the correct bit.  The
1177  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1178  // the result to other bit-twiddling opportunities.
1179  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1180  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1181    MVT::ValueType VT = Op.getValueType();
1182    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1183                                Op.getOperand(1));
1184    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1185  }
1186  return SDOperand();
1187}
1188
1189SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1190                              int VarArgsFrameIndex,
1191                              int VarArgsStackOffset,
1192                              unsigned VarArgsNumGPR,
1193                              unsigned VarArgsNumFPR,
1194                              const PPCSubtarget &Subtarget) {
1195
1196  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1197}
1198
1199SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1200                              int VarArgsFrameIndex,
1201                              int VarArgsStackOffset,
1202                              unsigned VarArgsNumGPR,
1203                              unsigned VarArgsNumFPR,
1204                              const PPCSubtarget &Subtarget) {
1205
1206  if (Subtarget.isMachoABI()) {
1207    // vastart just stores the address of the VarArgsFrameIndex slot into the
1208    // memory location argument.
1209    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1210    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1211    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1212    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1213  }
1214
1215  // For ELF 32 ABI we follow the layout of the va_list struct.
1216  // We suppose the given va_list is already allocated.
1217  //
1218  // typedef struct {
1219  //  char gpr;     /* index into the array of 8 GPRs
1220  //                 * stored in the register save area
1221  //                 * gpr=0 corresponds to r3,
1222  //                 * gpr=1 to r4, etc.
1223  //                 */
1224  //  char fpr;     /* index into the array of 8 FPRs
1225  //                 * stored in the register save area
1226  //                 * fpr=0 corresponds to f1,
1227  //                 * fpr=1 to f2, etc.
1228  //                 */
1229  //  char *overflow_arg_area;
1230  //                /* location on stack that holds
1231  //                 * the next overflow argument
1232  //                 */
1233  //  char *reg_save_area;
1234  //               /* where r3:r10 and f1:f8 (if saved)
1235  //                * are stored
1236  //                */
1237  // } va_list[1];
1238
1239
1240  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1241  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1242
1243
1244  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1245
1246  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1247  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1248
1249  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1250  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1251
1252  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1253  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1254
1255  uint64_t FPROffset = 1;
1256  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1257
1258  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1259
1260  // Store first byte : number of int regs
1261  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1262                                      Op.getOperand(1), SV, 0);
1263  uint64_t nextOffset = FPROffset;
1264  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1265                                  ConstFPROffset);
1266
1267  // Store second byte : number of float regs
1268  SDOperand secondStore =
1269    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1270  nextOffset += StackOffset;
1271  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1272
1273  // Store second word : arguments given on stack
1274  SDOperand thirdStore =
1275    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1276  nextOffset += FrameOffset;
1277  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1278
1279  // Store third word : arguments given in registers
1280  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1281
1282}
1283
1284#include "PPCGenCallingConv.inc"
1285
1286/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1287/// depending on which subtarget is selected.
1288static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1289  if (Subtarget.isMachoABI()) {
1290    static const unsigned FPR[] = {
1291      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1292      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1293    };
1294    return FPR;
1295  }
1296
1297
1298  static const unsigned FPR[] = {
1299    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1300    PPC::F8
1301  };
1302  return FPR;
1303}
1304
1305SDOperand
1306PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1307                                         SelectionDAG &DAG,
1308                                         int &VarArgsFrameIndex,
1309                                         int &VarArgsStackOffset,
1310                                         unsigned &VarArgsNumGPR,
1311                                         unsigned &VarArgsNumFPR,
1312                                         const PPCSubtarget &Subtarget) {
1313  // TODO: add description of PPC stack frame format, or at least some docs.
1314  //
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  MachineFrameInfo *MFI = MF.getFrameInfo();
1317  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1318  SmallVector<SDOperand, 8> ArgValues;
1319  SDOperand Root = Op.getOperand(0);
1320  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1321
1322  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1323  bool isPPC64 = PtrVT == MVT::i64;
1324  bool isMachoABI = Subtarget.isMachoABI();
1325  bool isELF32_ABI = Subtarget.isELF32_ABI();
1326  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1327
1328  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1329
1330  static const unsigned GPR_32[] = {           // 32-bit registers.
1331    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1332    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1333  };
1334  static const unsigned GPR_64[] = {           // 64-bit registers.
1335    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1336    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1337  };
1338
1339  static const unsigned *FPR = GetFPR(Subtarget);
1340
1341  static const unsigned VR[] = {
1342    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1343    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1344  };
1345
1346  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1347  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1348  const unsigned Num_VR_Regs  = array_lengthof( VR);
1349
1350  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1351
1352  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1353
1354  // In 32-bit non-varargs functions, the stack space for vectors is after the
1355  // stack space for non-vectors.  We do not use this space unless we have
1356  // too many vectors to fit in registers, something that only occurs in
1357  // constructed examples:), but we have to walk the arglist to figure
1358  // that out...for the pathological case, compute VecArgOffset as the
1359  // start of the vector parameter area.  Computing VecArgOffset is the
1360  // entire point of the following loop.
1361  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1362  // to handle Elf here.
1363  unsigned VecArgOffset = ArgOffset;
1364  if (!isVarArg && !isPPC64) {
1365    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1366         ++ArgNo) {
1367      MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1368      unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1369      ISD::ParamFlags::ParamFlagsTy Flags =
1370                cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1371      unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
1372
1373      if (isByVal) {
1374        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1375        ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1376                        ISD::ParamFlags::ByValSizeOffs;
1377        unsigned ArgSize =
1378                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1379        VecArgOffset += ArgSize;
1380        continue;
1381      }
1382
1383      switch(ObjectVT) {
1384      default: assert(0 && "Unhandled argument type!");
1385      case MVT::i32:
1386      case MVT::f32:
1387        VecArgOffset += isPPC64 ? 8 : 4;
1388        break;
1389      case MVT::i64:  // PPC64
1390      case MVT::f64:
1391        VecArgOffset += 8;
1392        break;
1393      case MVT::v4f32:
1394      case MVT::v4i32:
1395      case MVT::v8i16:
1396      case MVT::v16i8:
1397        // Nothing to do, we're only looking at Nonvector args here.
1398        break;
1399      }
1400    }
1401  }
1402  // We've found where the vector parameter area in memory is.  Skip the
1403  // first 12 parameters; these don't use that memory.
1404  VecArgOffset = ((VecArgOffset+15)/16)*16;
1405  VecArgOffset += 12*16;
1406
1407  // Add DAG nodes to load the arguments or copy them out of registers.  On
1408  // entry to a function on PPC, the arguments start after the linkage area,
1409  // although the first ones are often in registers.
1410  //
1411  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1412  // represented with two words (long long or double) must be copied to an
1413  // even GPR_idx value or to an even ArgOffset value.
1414
1415  SmallVector<SDOperand, 8> MemOps;
1416
1417  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1418    SDOperand ArgVal;
1419    bool needsLoad = false;
1420    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1421    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1422    unsigned ArgSize = ObjSize;
1423    ISD::ParamFlags::ParamFlagsTy Flags =
1424              cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1425    unsigned AlignFlag = ISD::ParamFlags::One
1426                                << ISD::ParamFlags::OrigAlignmentOffs;
1427    unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
1428    // See if next argument requires stack alignment in ELF
1429    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1430      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1431      (!(Flags & AlignFlag)));
1432
1433    unsigned CurArgOffset = ArgOffset;
1434
1435    // FIXME alignment for ELF may not be right
1436    // FIXME the codegen can be much improved in some cases.
1437    // We do not have to keep everything in memory.
1438    if (isByVal) {
1439      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1440      ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1441                      ISD::ParamFlags::ByValSizeOffs;
1442      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1443      // Double word align in ELF
1444      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1445      // Objects of size 1 and 2 are right justified, everything else is
1446      // left justified.  This means the memory address is adjusted forwards.
1447      if (ObjSize==1 || ObjSize==2) {
1448        CurArgOffset = CurArgOffset + (4 - ObjSize);
1449      }
1450      // The value of the object is its address.
1451      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1452      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1453      ArgValues.push_back(FIN);
1454      if (ObjSize==1 || ObjSize==2) {
1455        if (GPR_idx != Num_GPR_Regs) {
1456          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1457          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1458          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1459          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1460                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1461          MemOps.push_back(Store);
1462          ++GPR_idx;
1463          if (isMachoABI) ArgOffset += PtrByteSize;
1464        } else {
1465          ArgOffset += PtrByteSize;
1466        }
1467        continue;
1468      }
1469      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1470        // Store whatever pieces of the object are in registers
1471        // to memory.  ArgVal will be address of the beginning of
1472        // the object.
1473        if (GPR_idx != Num_GPR_Regs) {
1474          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1475          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1476          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1477          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1478          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1479          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1480          MemOps.push_back(Store);
1481          ++GPR_idx;
1482          if (isMachoABI) ArgOffset += PtrByteSize;
1483        } else {
1484          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1485          break;
1486        }
1487      }
1488      continue;
1489    }
1490
1491    switch (ObjectVT) {
1492    default: assert(0 && "Unhandled argument type!");
1493    case MVT::i32:
1494      if (!isPPC64) {
1495        // Double word align in ELF
1496        if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1497
1498        if (GPR_idx != Num_GPR_Regs) {
1499          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1500          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1501          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1502          ++GPR_idx;
1503        } else {
1504          needsLoad = true;
1505          ArgSize = PtrByteSize;
1506        }
1507        // Stack align in ELF
1508        if (needsLoad && Expand && isELF32_ABI)
1509          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1510        // All int arguments reserve stack space in Macho ABI.
1511        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1512        break;
1513      }
1514      // FALLTHROUGH
1515    case MVT::i64:  // PPC64
1516      if (GPR_idx != Num_GPR_Regs) {
1517        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1518        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1519        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1520
1521        if (ObjectVT == MVT::i32) {
1522          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1523          // value to MVT::i64 and then truncate to the correct register size.
1524          if (Flags & ISD::ParamFlags::SExt)
1525            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1526                                 DAG.getValueType(ObjectVT));
1527          else if (Flags & ISD::ParamFlags::ZExt)
1528            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1529                                 DAG.getValueType(ObjectVT));
1530
1531          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1532        }
1533
1534        ++GPR_idx;
1535      } else {
1536        needsLoad = true;
1537      }
1538      // All int arguments reserve stack space in Macho ABI.
1539      if (isMachoABI || needsLoad) ArgOffset += 8;
1540      break;
1541
1542    case MVT::f32:
1543    case MVT::f64:
1544      // Every 4 bytes of argument space consumes one of the GPRs available for
1545      // argument passing.
1546      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1547        ++GPR_idx;
1548        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1549          ++GPR_idx;
1550      }
1551      if (FPR_idx != Num_FPR_Regs) {
1552        unsigned VReg;
1553        if (ObjectVT == MVT::f32)
1554          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1555        else
1556          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1557        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1558        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1559        ++FPR_idx;
1560      } else {
1561        needsLoad = true;
1562      }
1563
1564      // Stack align in ELF
1565      if (needsLoad && Expand && isELF32_ABI)
1566        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1567      // All FP arguments reserve stack space in Macho ABI.
1568      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1569      break;
1570    case MVT::v4f32:
1571    case MVT::v4i32:
1572    case MVT::v8i16:
1573    case MVT::v16i8:
1574      // Note that vector arguments in registers don't reserve stack space,
1575      // except in varargs functions.
1576      if (VR_idx != Num_VR_Regs) {
1577        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1578        RegInfo.addLiveIn(VR[VR_idx], VReg);
1579        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1580        if (isVarArg) {
1581          while ((ArgOffset % 16) != 0) {
1582            ArgOffset += PtrByteSize;
1583            if (GPR_idx != Num_GPR_Regs)
1584              GPR_idx++;
1585          }
1586          ArgOffset += 16;
1587          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1588        }
1589        ++VR_idx;
1590      } else {
1591        if (!isVarArg && !isPPC64) {
1592          // Vectors go after all the nonvectors.
1593          CurArgOffset = VecArgOffset;
1594          VecArgOffset += 16;
1595        } else {
1596          // Vectors are aligned.
1597          ArgOffset = ((ArgOffset+15)/16)*16;
1598          CurArgOffset = ArgOffset;
1599          ArgOffset += 16;
1600        }
1601        needsLoad = true;
1602      }
1603      break;
1604    }
1605
1606    // We need to load the argument to a virtual register if we determined above
1607    // that we ran out of physical registers of the appropriate type.
1608    if (needsLoad) {
1609      int FI = MFI->CreateFixedObject(ObjSize,
1610                                      CurArgOffset + (ArgSize - ObjSize));
1611      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1612      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1613    }
1614
1615    ArgValues.push_back(ArgVal);
1616  }
1617
1618  // If the function takes variable number of arguments, make a frame index for
1619  // the start of the first vararg value... for expansion of llvm.va_start.
1620  if (isVarArg) {
1621
1622    int depth;
1623    if (isELF32_ABI) {
1624      VarArgsNumGPR = GPR_idx;
1625      VarArgsNumFPR = FPR_idx;
1626
1627      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1628      // pointer.
1629      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1630                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1631                MVT::getSizeInBits(PtrVT)/8);
1632
1633      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1634                                                  ArgOffset);
1635
1636    }
1637    else
1638      depth = ArgOffset;
1639
1640    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1641                                               depth);
1642    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1643
1644    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1645    // stored to the VarArgsFrameIndex on the stack.
1646    if (isELF32_ABI) {
1647      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1648        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1649        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1650        MemOps.push_back(Store);
1651        // Increment the address by four for the next argument to store
1652        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1653        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1654      }
1655    }
1656
1657    // If this function is vararg, store any remaining integer argument regs
1658    // to their spots on the stack so that they may be loaded by deferencing the
1659    // result of va_next.
1660    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1661      unsigned VReg;
1662      if (isPPC64)
1663        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1664      else
1665        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1666
1667      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1668      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1669      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1670      MemOps.push_back(Store);
1671      // Increment the address by four for the next argument to store
1672      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1673      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1674    }
1675
1676    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1677    // on the stack.
1678    if (isELF32_ABI) {
1679      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1680        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1681        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1682        MemOps.push_back(Store);
1683        // Increment the address by eight for the next argument to store
1684        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1685                                           PtrVT);
1686        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1687      }
1688
1689      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1690        unsigned VReg;
1691        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1692
1693        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1694        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1695        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1696        MemOps.push_back(Store);
1697        // Increment the address by eight for the next argument to store
1698        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1699                                           PtrVT);
1700        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1701      }
1702    }
1703  }
1704
1705  if (!MemOps.empty())
1706    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1707
1708  ArgValues.push_back(Root);
1709
1710  // Return the new list of results.
1711  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1712                                    Op.Val->value_end());
1713  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1714}
1715
1716/// isCallCompatibleAddress - Return the immediate to use if the specified
1717/// 32-bit value is representable in the immediate field of a BxA instruction.
1718static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1719  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1720  if (!C) return 0;
1721
1722  int Addr = C->getValue();
1723  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1724      (Addr << 6 >> 6) != Addr)
1725    return 0;  // Top 6 bits have to be sext of immediate.
1726
1727  return DAG.getConstant((int)C->getValue() >> 2,
1728                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1729}
1730
1731/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1732/// by "Src" to address "Dst" of size "Size".  Alignment information is
1733/// specified by the specific parameter attribute. The copy will be passed as
1734/// a byval function parameter.
1735/// Sometimes what we are copying is the end of a larger object, the part that
1736/// does not fit in registers.
1737static SDOperand
1738CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1739                          ISD::ParamFlags::ParamFlagsTy Flags,
1740                          SelectionDAG &DAG, unsigned Size) {
1741  unsigned Align = ISD::ParamFlags::One <<
1742    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1743  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1744  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1745  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
1746  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1747}
1748
1749SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1750                                       const PPCSubtarget &Subtarget) {
1751  SDOperand Chain  = Op.getOperand(0);
1752  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1753  SDOperand Callee = Op.getOperand(4);
1754  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1755
1756  bool isMachoABI = Subtarget.isMachoABI();
1757  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1758
1759  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1760  bool isPPC64 = PtrVT == MVT::i64;
1761  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1762
1763  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1764  // SelectExpr to use to put the arguments in the appropriate registers.
1765  std::vector<SDOperand> args_to_use;
1766
1767  // Count how many bytes are to be pushed on the stack, including the linkage
1768  // area, and parameter passing area.  We start with 24/48 bytes, which is
1769  // prereserved space for [SP][CR][LR][3 x unused].
1770  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1771
1772  // Add up all the space actually used.
1773  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1774  // they all go in registers, but we must reserve stack space for them for
1775  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1776  // assigned stack space in order, with padding so Altivec parameters are
1777  // 16-byte aligned.
1778  unsigned nAltivecParamsAtEnd = 0;
1779  for (unsigned i = 0; i != NumOps; ++i) {
1780    SDOperand Arg = Op.getOperand(5+2*i);
1781    MVT::ValueType ArgVT = Arg.getValueType();
1782    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1783        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1784      if (!isVarArg && !isPPC64) {
1785      // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1786      // do those last so we know how much padding we need.
1787        nAltivecParamsAtEnd++;
1788        continue;
1789      } else {
1790        // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1791        NumBytes = ((NumBytes+15)/16)*16;
1792      }
1793    }
1794    ISD::ParamFlags::ParamFlagsTy Flags =
1795          cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1796    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1797    if (Flags & ISD::ParamFlags::ByVal)
1798      ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1799                ISD::ParamFlags::ByValSizeOffs;
1800    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1801    NumBytes += ArgSize;
1802  }
1803  // Allow for Altivec parameters at the end, if needed.
1804  if (nAltivecParamsAtEnd) {
1805    NumBytes = ((NumBytes+15)/16)*16;
1806    NumBytes += 16*nAltivecParamsAtEnd;
1807  }
1808
1809  // The prolog code of the callee may store up to 8 GPR argument registers to
1810  // the stack, allowing va_start to index over them in memory if its varargs.
1811  // Because we cannot tell if this is needed on the caller side, we have to
1812  // conservatively assume that it is needed.  As such, make sure we have at
1813  // least enough stack space for the caller to store the 8 GPRs.
1814  NumBytes = std::max(NumBytes,
1815                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1816
1817  // Adjust the stack pointer for the new arguments...
1818  // These operations are automatically eliminated by the prolog/epilog pass
1819  Chain = DAG.getCALLSEQ_START(Chain,
1820                               DAG.getConstant(NumBytes, PtrVT));
1821  SDOperand CallSeqStart = Chain;
1822
1823  // Set up a copy of the stack pointer for use loading and storing any
1824  // arguments that may not fit in the registers available for argument
1825  // passing.
1826  SDOperand StackPtr;
1827  if (isPPC64)
1828    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1829  else
1830    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1831
1832  // Figure out which arguments are going to go in registers, and which in
1833  // memory.  Also, if this is a vararg function, floating point operations
1834  // must be stored to our stack, and loaded into integer regs as well, if
1835  // any integer regs are available for argument passing.
1836  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1837  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1838
1839  static const unsigned GPR_32[] = {           // 32-bit registers.
1840    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1841    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1842  };
1843  static const unsigned GPR_64[] = {           // 64-bit registers.
1844    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1845    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1846  };
1847  static const unsigned *FPR = GetFPR(Subtarget);
1848
1849  static const unsigned VR[] = {
1850    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1851    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1852  };
1853  const unsigned NumGPRs = array_lengthof(GPR_32);
1854  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1855  const unsigned NumVRs  = array_lengthof( VR);
1856
1857  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1858
1859  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1860  SmallVector<SDOperand, 8> MemOpChains;
1861  for (unsigned i = 0; i != NumOps; ++i) {
1862    bool inMem = false;
1863    SDOperand Arg = Op.getOperand(5+2*i);
1864    ISD::ParamFlags::ParamFlagsTy Flags =
1865            cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1866    unsigned AlignFlag = ISD::ParamFlags::One <<
1867                         ISD::ParamFlags::OrigAlignmentOffs;
1868    // See if next argument requires stack alignment in ELF
1869    unsigned next = 5+2*(i+1)+1;
1870    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1871      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1872      (!(Flags & AlignFlag)));
1873
1874    // PtrOff will be used to store the current argument to the stack if a
1875    // register cannot be found for it.
1876    SDOperand PtrOff;
1877
1878    // Stack align in ELF 32
1879    if (isELF32_ABI && Expand)
1880      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1881                               StackPtr.getValueType());
1882    else
1883      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1884
1885    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1886
1887    // On PPC64, promote integers to 64-bit values.
1888    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1889      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1890      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1891    }
1892
1893    // FIXME Elf untested, what are alignment rules?
1894    // FIXME memcpy is used way more than necessary.  Correctness first.
1895    if (Flags & ISD::ParamFlags::ByVal) {
1896      unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1897                      ISD::ParamFlags::ByValSizeOffs;
1898      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1899      if (Size==1 || Size==2) {
1900        // Very small objects are passed right-justified.
1901        // Everything else is passed left-justified.
1902        MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1903        if (GPR_idx != NumGPRs) {
1904          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1905                                          NULL, 0, VT);
1906          MemOpChains.push_back(Load.getValue(1));
1907          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1908          if (isMachoABI)
1909            ArgOffset += PtrByteSize;
1910        } else {
1911          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1912          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1913          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1914                                CallSeqStart.Val->getOperand(0),
1915                                Flags, DAG, Size);
1916          // This must go outside the CALLSEQ_START..END.
1917          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1918                               CallSeqStart.Val->getOperand(1));
1919          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1920          Chain = CallSeqStart = NewCallSeqStart;
1921          ArgOffset += PtrByteSize;
1922        }
1923        continue;
1924      }
1925      // Copy entire object into memory.  There are cases where gcc-generated
1926      // code assumes it is there, even if it could be put entirely into
1927      // registers.  (This is not what the doc says.)
1928      SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1929                            CallSeqStart.Val->getOperand(0),
1930                            Flags, DAG, Size);
1931      // This must go outside the CALLSEQ_START..END.
1932      SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1933                           CallSeqStart.Val->getOperand(1));
1934      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1935      Chain = CallSeqStart = NewCallSeqStart;
1936      // And copy the pieces of it that fit into registers.
1937      for (unsigned j=0; j<Size; j+=PtrByteSize) {
1938        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1939        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1940        if (GPR_idx != NumGPRs) {
1941          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1942          MemOpChains.push_back(Load.getValue(1));
1943          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1944          if (isMachoABI)
1945            ArgOffset += PtrByteSize;
1946        } else {
1947          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
1948          break;
1949        }
1950      }
1951      continue;
1952    }
1953
1954    switch (Arg.getValueType()) {
1955    default: assert(0 && "Unexpected ValueType for argument!");
1956    case MVT::i32:
1957    case MVT::i64:
1958      // Double word align in ELF
1959      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1960      if (GPR_idx != NumGPRs) {
1961        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1962      } else {
1963        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1964        inMem = true;
1965      }
1966      if (inMem || isMachoABI) {
1967        // Stack align in ELF
1968        if (isELF32_ABI && Expand)
1969          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1970
1971        ArgOffset += PtrByteSize;
1972      }
1973      break;
1974    case MVT::f32:
1975    case MVT::f64:
1976      if (FPR_idx != NumFPRs) {
1977        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1978
1979        if (isVarArg) {
1980          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1981          MemOpChains.push_back(Store);
1982
1983          // Float varargs are always shadowed in available integer registers
1984          if (GPR_idx != NumGPRs) {
1985            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1986            MemOpChains.push_back(Load.getValue(1));
1987            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1988                                                                Load));
1989          }
1990          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1991            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1992            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1993            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1994            MemOpChains.push_back(Load.getValue(1));
1995            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1996                                                                Load));
1997          }
1998        } else {
1999          // If we have any FPRs remaining, we may also have GPRs remaining.
2000          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2001          // GPRs.
2002          if (isMachoABI) {
2003            if (GPR_idx != NumGPRs)
2004              ++GPR_idx;
2005            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2006                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2007              ++GPR_idx;
2008          }
2009        }
2010      } else {
2011        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2012        inMem = true;
2013      }
2014      if (inMem || isMachoABI) {
2015        // Stack align in ELF
2016        if (isELF32_ABI && Expand)
2017          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2018        if (isPPC64)
2019          ArgOffset += 8;
2020        else
2021          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2022      }
2023      break;
2024    case MVT::v4f32:
2025    case MVT::v4i32:
2026    case MVT::v8i16:
2027    case MVT::v16i8:
2028      if (isVarArg) {
2029        // These go aligned on the stack, or in the corresponding R registers
2030        // when within range.  The Darwin PPC ABI doc claims they also go in
2031        // V registers; in fact gcc does this only for arguments that are
2032        // prototyped, not for those that match the ...  We do it for all
2033        // arguments, seems to work.
2034        while (ArgOffset % 16 !=0) {
2035          ArgOffset += PtrByteSize;
2036          if (GPR_idx != NumGPRs)
2037            GPR_idx++;
2038        }
2039        // We could elide this store in the case where the object fits
2040        // entirely in R registers.  Maybe later.
2041        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2042                            DAG.getConstant(ArgOffset, PtrVT));
2043        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2044        MemOpChains.push_back(Store);
2045        if (VR_idx != NumVRs) {
2046          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2047          MemOpChains.push_back(Load.getValue(1));
2048          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2049        }
2050        ArgOffset += 16;
2051        for (unsigned i=0; i<16; i+=PtrByteSize) {
2052          if (GPR_idx == NumGPRs)
2053            break;
2054          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2055                                  DAG.getConstant(i, PtrVT));
2056          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2057          MemOpChains.push_back(Load.getValue(1));
2058          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2059        }
2060        break;
2061      }
2062      // Non-varargs Altivec params generally go in registers, but have
2063      // stack space allocated at the end.
2064      if (VR_idx != NumVRs) {
2065        // Doesn't have GPR space allocated.
2066        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2067      } else if (nAltivecParamsAtEnd==0) {
2068        // We are emitting Altivec params in order.
2069        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2070                            DAG.getConstant(ArgOffset, PtrVT));
2071        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2072        MemOpChains.push_back(Store);
2073        ArgOffset += 16;
2074      }
2075      break;
2076    }
2077  }
2078  // If all Altivec parameters fit in registers, as they usually do,
2079  // they get stack space following the non-Altivec parameters.  We
2080  // don't track this here because nobody below needs it.
2081  // If there are more Altivec parameters than fit in registers emit
2082  // the stores here.
2083  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2084    unsigned j = 0;
2085    // Offset is aligned; skip 1st 12 params which go in V registers.
2086    ArgOffset = ((ArgOffset+15)/16)*16;
2087    ArgOffset += 12*16;
2088    for (unsigned i = 0; i != NumOps; ++i) {
2089      SDOperand Arg = Op.getOperand(5+2*i);
2090      MVT::ValueType ArgType = Arg.getValueType();
2091      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2092          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2093        if (++j > NumVRs) {
2094          SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2095                              DAG.getConstant(ArgOffset, PtrVT));
2096          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2097          MemOpChains.push_back(Store);
2098          ArgOffset += 16;
2099        }
2100      }
2101    }
2102  }
2103
2104  if (!MemOpChains.empty())
2105    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2106                        &MemOpChains[0], MemOpChains.size());
2107
2108  // Build a sequence of copy-to-reg nodes chained together with token chain
2109  // and flag operands which copy the outgoing args into the appropriate regs.
2110  SDOperand InFlag;
2111  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2112    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2113                             InFlag);
2114    InFlag = Chain.getValue(1);
2115  }
2116
2117  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2118  if (isVarArg && isELF32_ABI) {
2119    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2120    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2121    InFlag = Chain.getValue(1);
2122  }
2123
2124  std::vector<MVT::ValueType> NodeTys;
2125  NodeTys.push_back(MVT::Other);   // Returns a chain
2126  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2127
2128  SmallVector<SDOperand, 8> Ops;
2129  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2130
2131  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2132  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2133  // node so that legalize doesn't hack it.
2134  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2135    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2136  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2137    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2138  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2139    // If this is an absolute destination address, use the munged value.
2140    Callee = SDOperand(Dest, 0);
2141  else {
2142    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2143    // to do the call, we can't use PPCISD::CALL.
2144    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2145    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2146    InFlag = Chain.getValue(1);
2147
2148    // Copy the callee address into R12/X12 on darwin.
2149    if (isMachoABI) {
2150      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2151      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2152      InFlag = Chain.getValue(1);
2153    }
2154
2155    NodeTys.clear();
2156    NodeTys.push_back(MVT::Other);
2157    NodeTys.push_back(MVT::Flag);
2158    Ops.push_back(Chain);
2159    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2160    Callee.Val = 0;
2161  }
2162
2163  // If this is a direct call, pass the chain and the callee.
2164  if (Callee.Val) {
2165    Ops.push_back(Chain);
2166    Ops.push_back(Callee);
2167  }
2168
2169  // Add argument registers to the end of the list so that they are known live
2170  // into the call.
2171  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2172    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2173                                  RegsToPass[i].second.getValueType()));
2174
2175  if (InFlag.Val)
2176    Ops.push_back(InFlag);
2177  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2178  InFlag = Chain.getValue(1);
2179
2180  Chain = DAG.getCALLSEQ_END(Chain,
2181                             DAG.getConstant(NumBytes, PtrVT),
2182                             DAG.getConstant(0, PtrVT),
2183                             InFlag);
2184  if (Op.Val->getValueType(0) != MVT::Other)
2185    InFlag = Chain.getValue(1);
2186
2187  SDOperand ResultVals[9];
2188  unsigned NumResults = 0;
2189  NodeTys.clear();
2190
2191  // If the call has results, copy the values out of the ret val registers.
2192  switch (Op.Val->getValueType(0)) {
2193  default: assert(0 && "Unexpected ret value!");
2194  case MVT::Other: break;
2195  case MVT::i32:
2196    // There are 8 result regs for Complex double, and 4 for Complex long long.
2197    if (Op.Val->getNumValues()>=8 && Op.Val->getValueType(7) == MVT::i32) {
2198      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2199      ResultVals[0] = Chain.getValue(0);
2200      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
2201                                 Chain.getValue(2)).getValue(1);
2202      ResultVals[1] = Chain.getValue(0);
2203      Chain = DAG.getCopyFromReg(Chain, PPC::R5, MVT::i32,
2204                                 Chain.getValue(2)).getValue(1);
2205      ResultVals[2] = Chain.getValue(0);
2206      Chain = DAG.getCopyFromReg(Chain, PPC::R6, MVT::i32,
2207                                 Chain.getValue(2)).getValue(1);
2208      ResultVals[3] = Chain.getValue(0);
2209      Chain = DAG.getCopyFromReg(Chain, PPC::R7, MVT::i32,
2210                                 Chain.getValue(2)).getValue(1);
2211      ResultVals[4] = Chain.getValue(0);
2212      Chain = DAG.getCopyFromReg(Chain, PPC::R8, MVT::i32,
2213                                 Chain.getValue(2)).getValue(1);
2214      ResultVals[5] = Chain.getValue(0);
2215      Chain = DAG.getCopyFromReg(Chain, PPC::R9, MVT::i32,
2216                                 Chain.getValue(2)).getValue(1);
2217      ResultVals[6] = Chain.getValue(0);
2218      Chain = DAG.getCopyFromReg(Chain, PPC::R10, MVT::i32,
2219                                 Chain.getValue(2)).getValue(1);
2220      ResultVals[7] = Chain.getValue(0);
2221      NumResults = 8;
2222      NodeTys.push_back(MVT::i32);
2223      NodeTys.push_back(MVT::i32);
2224      NodeTys.push_back(MVT::i32);
2225      NodeTys.push_back(MVT::i32);
2226      NodeTys.push_back(MVT::i32);
2227      NodeTys.push_back(MVT::i32);
2228      NodeTys.push_back(MVT::i32);
2229    } else if (Op.Val->getNumValues()>=4 &&
2230               Op.Val->getValueType(3) == MVT::i32) {
2231      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2232      ResultVals[0] = Chain.getValue(0);
2233      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
2234                                 Chain.getValue(2)).getValue(1);
2235      ResultVals[1] = Chain.getValue(0);
2236      Chain = DAG.getCopyFromReg(Chain, PPC::R5, MVT::i32,
2237                                 Chain.getValue(2)).getValue(1);
2238      ResultVals[2] = Chain.getValue(0);
2239      Chain = DAG.getCopyFromReg(Chain, PPC::R6, MVT::i32,
2240                                 Chain.getValue(2)).getValue(1);
2241      ResultVals[3] = Chain.getValue(0);
2242      NumResults = 4;
2243      NodeTys.push_back(MVT::i32);
2244      NodeTys.push_back(MVT::i32);
2245      NodeTys.push_back(MVT::i32);
2246    } else if (Op.Val->getValueType(1) == MVT::i32) {
2247      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2248      ResultVals[0] = Chain.getValue(0);
2249      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
2250                                 Chain.getValue(2)).getValue(1);
2251      ResultVals[1] = Chain.getValue(0);
2252      NumResults = 2;
2253      NodeTys.push_back(MVT::i32);
2254    } else {
2255      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2256      ResultVals[0] = Chain.getValue(0);
2257      NumResults = 1;
2258    }
2259    NodeTys.push_back(MVT::i32);
2260    break;
2261  case MVT::i64:
2262    if (Op.Val->getNumValues()>=4 &&
2263        Op.Val->getValueType(3) == MVT::i64) {
2264      Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2265      ResultVals[0] = Chain.getValue(0);
2266      Chain = DAG.getCopyFromReg(Chain, PPC::X4, MVT::i64,
2267                                 Chain.getValue(2)).getValue(1);
2268      ResultVals[1] = Chain.getValue(0);
2269      Chain = DAG.getCopyFromReg(Chain, PPC::X5, MVT::i64,
2270                                 Chain.getValue(2)).getValue(1);
2271      ResultVals[2] = Chain.getValue(0);
2272      Chain = DAG.getCopyFromReg(Chain, PPC::X6, MVT::i64,
2273                                 Chain.getValue(2)).getValue(1);
2274      ResultVals[3] = Chain.getValue(0);
2275      NumResults = 4;
2276      NodeTys.push_back(MVT::i64);
2277      NodeTys.push_back(MVT::i64);
2278      NodeTys.push_back(MVT::i64);
2279    } else if (Op.Val->getValueType(1) == MVT::i64) {
2280      Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2281      ResultVals[0] = Chain.getValue(0);
2282      Chain = DAG.getCopyFromReg(Chain, PPC::X4, MVT::i64,
2283                                 Chain.getValue(2)).getValue(1);
2284      ResultVals[1] = Chain.getValue(0);
2285      NumResults = 2;
2286      NodeTys.push_back(MVT::i64);
2287    } else {
2288      Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2289      ResultVals[0] = Chain.getValue(0);
2290      NumResults = 1;
2291    }
2292    NodeTys.push_back(MVT::i64);
2293    break;
2294  case MVT::f64:
2295    if (Op.Val->getValueType(1) == MVT::f64) {
2296      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
2297      ResultVals[0] = Chain.getValue(0);
2298      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
2299                                 Chain.getValue(2)).getValue(1);
2300      ResultVals[1] = Chain.getValue(0);
2301      NumResults = 2;
2302      NodeTys.push_back(MVT::f64);
2303      NodeTys.push_back(MVT::f64);
2304      break;
2305    }
2306    // else fall through
2307  case MVT::f32:
2308    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
2309                               InFlag).getValue(1);
2310    ResultVals[0] = Chain.getValue(0);
2311    NumResults = 1;
2312    NodeTys.push_back(Op.Val->getValueType(0));
2313    break;
2314  case MVT::v4f32:
2315  case MVT::v4i32:
2316  case MVT::v8i16:
2317  case MVT::v16i8:
2318    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
2319                                   InFlag).getValue(1);
2320    ResultVals[0] = Chain.getValue(0);
2321    NumResults = 1;
2322    NodeTys.push_back(Op.Val->getValueType(0));
2323    break;
2324  }
2325
2326  NodeTys.push_back(MVT::Other);
2327
2328  // If the function returns void, just return the chain.
2329  if (NumResults == 0)
2330    return Chain;
2331
2332  // Otherwise, merge everything together with a MERGE_VALUES node.
2333  ResultVals[NumResults++] = Chain;
2334  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2335                              ResultVals, NumResults);
2336  return Res.getValue(Op.ResNo);
2337}
2338
2339SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2340                                      TargetMachine &TM) {
2341  SmallVector<CCValAssign, 16> RVLocs;
2342  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2343  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2344  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2345  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2346
2347  // If this is the first return lowered for this function, add the regs to the
2348  // liveout set for the function.
2349  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2350    for (unsigned i = 0; i != RVLocs.size(); ++i)
2351      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2352  }
2353
2354  SDOperand Chain = Op.getOperand(0);
2355  SDOperand Flag;
2356
2357  // Copy the result values into the output registers.
2358  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2359    CCValAssign &VA = RVLocs[i];
2360    assert(VA.isRegLoc() && "Can only return in registers!");
2361    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2362    Flag = Chain.getValue(1);
2363  }
2364
2365  if (Flag.Val)
2366    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2367  else
2368    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2369}
2370
2371SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2372                                   const PPCSubtarget &Subtarget) {
2373  // When we pop the dynamic allocation we need to restore the SP link.
2374
2375  // Get the corect type for pointers.
2376  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2377
2378  // Construct the stack pointer operand.
2379  bool IsPPC64 = Subtarget.isPPC64();
2380  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2381  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2382
2383  // Get the operands for the STACKRESTORE.
2384  SDOperand Chain = Op.getOperand(0);
2385  SDOperand SaveSP = Op.getOperand(1);
2386
2387  // Load the old link SP.
2388  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2389
2390  // Restore the stack pointer.
2391  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2392
2393  // Store the old link SP.
2394  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2395}
2396
2397SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2398                                         SelectionDAG &DAG,
2399                                         const PPCSubtarget &Subtarget) {
2400  MachineFunction &MF = DAG.getMachineFunction();
2401  bool IsPPC64 = Subtarget.isPPC64();
2402  bool isMachoABI = Subtarget.isMachoABI();
2403
2404  // Get current frame pointer save index.  The users of this index will be
2405  // primarily DYNALLOC instructions.
2406  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2407  int FPSI = FI->getFramePointerSaveIndex();
2408
2409  // If the frame pointer save index hasn't been defined yet.
2410  if (!FPSI) {
2411    // Find out what the fix offset of the frame pointer save area.
2412    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2413
2414    // Allocate the frame index for frame pointer save area.
2415    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2416    // Save the result.
2417    FI->setFramePointerSaveIndex(FPSI);
2418  }
2419
2420  // Get the inputs.
2421  SDOperand Chain = Op.getOperand(0);
2422  SDOperand Size  = Op.getOperand(1);
2423
2424  // Get the corect type for pointers.
2425  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2426  // Negate the size.
2427  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2428                                  DAG.getConstant(0, PtrVT), Size);
2429  // Construct a node for the frame pointer save index.
2430  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2431  // Build a DYNALLOC node.
2432  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2433  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2434  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2435}
2436
2437
2438/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2439/// possible.
2440SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2441  // Not FP? Not a fsel.
2442  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2443      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2444    return SDOperand();
2445
2446  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2447
2448  // Cannot handle SETEQ/SETNE.
2449  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2450
2451  MVT::ValueType ResVT = Op.getValueType();
2452  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2453  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2454  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2455
2456  // If the RHS of the comparison is a 0.0, we don't need to do the
2457  // subtraction at all.
2458  if (isFloatingPointZero(RHS))
2459    switch (CC) {
2460    default: break;       // SETUO etc aren't handled by fsel.
2461    case ISD::SETULT:
2462    case ISD::SETOLT:
2463    case ISD::SETLT:
2464      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2465    case ISD::SETUGE:
2466    case ISD::SETOGE:
2467    case ISD::SETGE:
2468      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2469        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2470      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2471    case ISD::SETUGT:
2472    case ISD::SETOGT:
2473    case ISD::SETGT:
2474      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2475    case ISD::SETULE:
2476    case ISD::SETOLE:
2477    case ISD::SETLE:
2478      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2479        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2480      return DAG.getNode(PPCISD::FSEL, ResVT,
2481                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2482    }
2483
2484  SDOperand Cmp;
2485  switch (CC) {
2486  default: break;       // SETUO etc aren't handled by fsel.
2487  case ISD::SETULT:
2488  case ISD::SETOLT:
2489  case ISD::SETLT:
2490    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2491    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2492      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2493      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2494  case ISD::SETUGE:
2495  case ISD::SETOGE:
2496  case ISD::SETGE:
2497    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2498    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2499      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2500      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2501  case ISD::SETUGT:
2502  case ISD::SETOGT:
2503  case ISD::SETGT:
2504    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2505    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2506      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2507      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2508  case ISD::SETULE:
2509  case ISD::SETOLE:
2510  case ISD::SETLE:
2511    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2512    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2513      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2514      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2515  }
2516  return SDOperand();
2517}
2518
2519// FIXME: Split this code up when LegalizeDAGTypes lands.
2520SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2521  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2522  SDOperand Src = Op.getOperand(0);
2523  if (Src.getValueType() == MVT::f32)
2524    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2525
2526  SDOperand Tmp;
2527  switch (Op.getValueType()) {
2528  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2529  case MVT::i32:
2530    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2531    break;
2532  case MVT::i64:
2533    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2534    break;
2535  }
2536
2537  // Convert the FP value to an int value through memory.
2538  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2539
2540  // Emit a store to the stack slot.
2541  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2542
2543  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2544  // add in a bias.
2545  if (Op.getValueType() == MVT::i32)
2546    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2547                        DAG.getConstant(4, FIPtr.getValueType()));
2548  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2549}
2550
2551SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2552                                                 SelectionDAG &DAG) {
2553  assert(Op.getValueType() == MVT::ppcf128);
2554  SDNode *Node = Op.Val;
2555  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2556  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2557  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2558  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2559
2560  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2561  // of the long double, and puts FPSCR back the way it was.  We do not
2562  // actually model FPSCR.
2563  std::vector<MVT::ValueType> NodeTys;
2564  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2565
2566  NodeTys.push_back(MVT::f64);   // Return register
2567  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2568  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2569  MFFSreg = Result.getValue(0);
2570  InFlag = Result.getValue(1);
2571
2572  NodeTys.clear();
2573  NodeTys.push_back(MVT::Flag);   // Returns a flag
2574  Ops[0] = DAG.getConstant(31, MVT::i32);
2575  Ops[1] = InFlag;
2576  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2577  InFlag = Result.getValue(0);
2578
2579  NodeTys.clear();
2580  NodeTys.push_back(MVT::Flag);   // Returns a flag
2581  Ops[0] = DAG.getConstant(30, MVT::i32);
2582  Ops[1] = InFlag;
2583  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2584  InFlag = Result.getValue(0);
2585
2586  NodeTys.clear();
2587  NodeTys.push_back(MVT::f64);    // result of add
2588  NodeTys.push_back(MVT::Flag);   // Returns a flag
2589  Ops[0] = Lo;
2590  Ops[1] = Hi;
2591  Ops[2] = InFlag;
2592  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2593  FPreg = Result.getValue(0);
2594  InFlag = Result.getValue(1);
2595
2596  NodeTys.clear();
2597  NodeTys.push_back(MVT::f64);
2598  Ops[0] = DAG.getConstant(1, MVT::i32);
2599  Ops[1] = MFFSreg;
2600  Ops[2] = FPreg;
2601  Ops[3] = InFlag;
2602  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2603  FPreg = Result.getValue(0);
2604
2605  // We know the low half is about to be thrown away, so just use something
2606  // convenient.
2607  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2608}
2609
2610SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2611  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2612  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2613    return SDOperand();
2614
2615  if (Op.getOperand(0).getValueType() == MVT::i64) {
2616    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2617    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2618    if (Op.getValueType() == MVT::f32)
2619      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2620    return FP;
2621  }
2622
2623  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2624         "Unhandled SINT_TO_FP type in custom expander!");
2625  // Since we only generate this in 64-bit mode, we can take advantage of
2626  // 64-bit registers.  In particular, sign extend the input value into the
2627  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2628  // then lfd it and fcfid it.
2629  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2630  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2631  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2632  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2633
2634  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2635                                Op.getOperand(0));
2636
2637  // STD the extended value into the stack slot.
2638  MemOperand MO(PseudoSourceValue::getFixedStack(),
2639                MemOperand::MOStore, FrameIdx, 8, 8);
2640  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2641                                DAG.getEntryNode(), Ext64, FIdx,
2642                                DAG.getMemOperand(MO));
2643  // Load the value as a double.
2644  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2645
2646  // FCFID it and return it.
2647  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2648  if (Op.getValueType() == MVT::f32)
2649    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2650  return FP;
2651}
2652
2653SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2654  /*
2655   The rounding mode is in bits 30:31 of FPSR, and has the following
2656   settings:
2657     00 Round to nearest
2658     01 Round to 0
2659     10 Round to +inf
2660     11 Round to -inf
2661
2662  FLT_ROUNDS, on the other hand, expects the following:
2663    -1 Undefined
2664     0 Round to 0
2665     1 Round to nearest
2666     2 Round to +inf
2667     3 Round to -inf
2668
2669  To perform the conversion, we do:
2670    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2671  */
2672
2673  MachineFunction &MF = DAG.getMachineFunction();
2674  MVT::ValueType VT = Op.getValueType();
2675  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2676  std::vector<MVT::ValueType> NodeTys;
2677  SDOperand MFFSreg, InFlag;
2678
2679  // Save FP Control Word to register
2680  NodeTys.push_back(MVT::f64);    // return register
2681  NodeTys.push_back(MVT::Flag);   // unused in this context
2682  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2683
2684  // Save FP register to stack slot
2685  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2686  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2687  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2688                                 StackSlot, NULL, 0);
2689
2690  // Load FP Control Word from low 32 bits of stack slot.
2691  SDOperand Four = DAG.getConstant(4, PtrVT);
2692  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2693  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2694
2695  // Transform as necessary
2696  SDOperand CWD1 =
2697    DAG.getNode(ISD::AND, MVT::i32,
2698                CWD, DAG.getConstant(3, MVT::i32));
2699  SDOperand CWD2 =
2700    DAG.getNode(ISD::SRL, MVT::i32,
2701                DAG.getNode(ISD::AND, MVT::i32,
2702                            DAG.getNode(ISD::XOR, MVT::i32,
2703                                        CWD, DAG.getConstant(3, MVT::i32)),
2704                            DAG.getConstant(3, MVT::i32)),
2705                DAG.getConstant(1, MVT::i8));
2706
2707  SDOperand RetVal =
2708    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2709
2710  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2711                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2712}
2713
2714SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2715  MVT::ValueType VT = Op.getValueType();
2716  unsigned BitWidth = MVT::getSizeInBits(VT);
2717  assert(Op.getNumOperands() == 3 &&
2718         VT == Op.getOperand(1).getValueType() &&
2719         "Unexpected SHL!");
2720
2721  // Expand into a bunch of logical ops.  Note that these ops
2722  // depend on the PPC behavior for oversized shift amounts.
2723  SDOperand Lo = Op.getOperand(0);
2724  SDOperand Hi = Op.getOperand(1);
2725  SDOperand Amt = Op.getOperand(2);
2726  MVT::ValueType AmtVT = Amt.getValueType();
2727
2728  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2729                               DAG.getConstant(BitWidth, AmtVT), Amt);
2730  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2731  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2732  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2733  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2734                               DAG.getConstant(-BitWidth, AmtVT));
2735  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2736  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2737  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
2738  SDOperand OutOps[] = { OutLo, OutHi };
2739  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2740                     OutOps, 2);
2741}
2742
2743SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2744  MVT::ValueType VT = Op.getValueType();
2745  unsigned BitWidth = MVT::getSizeInBits(VT);
2746  assert(Op.getNumOperands() == 3 &&
2747         VT == Op.getOperand(1).getValueType() &&
2748         "Unexpected SRL!");
2749
2750  // Expand into a bunch of logical ops.  Note that these ops
2751  // depend on the PPC behavior for oversized shift amounts.
2752  SDOperand Lo = Op.getOperand(0);
2753  SDOperand Hi = Op.getOperand(1);
2754  SDOperand Amt = Op.getOperand(2);
2755  MVT::ValueType AmtVT = Amt.getValueType();
2756
2757  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2758                               DAG.getConstant(BitWidth, AmtVT), Amt);
2759  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2760  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2761  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2762  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2763                               DAG.getConstant(-BitWidth, AmtVT));
2764  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2765  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2766  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
2767  SDOperand OutOps[] = { OutLo, OutHi };
2768  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2769                     OutOps, 2);
2770}
2771
2772SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2773  MVT::ValueType VT = Op.getValueType();
2774  unsigned BitWidth = MVT::getSizeInBits(VT);
2775  assert(Op.getNumOperands() == 3 &&
2776         VT == Op.getOperand(1).getValueType() &&
2777         "Unexpected SRA!");
2778
2779  // Expand into a bunch of logical ops, followed by a select_cc.
2780  SDOperand Lo = Op.getOperand(0);
2781  SDOperand Hi = Op.getOperand(1);
2782  SDOperand Amt = Op.getOperand(2);
2783  MVT::ValueType AmtVT = Amt.getValueType();
2784
2785  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2786                               DAG.getConstant(BitWidth, AmtVT), Amt);
2787  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2788  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2789  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2790  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2791                               DAG.getConstant(-BitWidth, AmtVT));
2792  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2793  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2794  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
2795                                    Tmp4, Tmp6, ISD::SETLE);
2796  SDOperand OutOps[] = { OutLo, OutHi };
2797  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2798                     OutOps, 2);
2799}
2800
2801//===----------------------------------------------------------------------===//
2802// Vector related lowering.
2803//
2804
2805// If this is a vector of constants or undefs, get the bits.  A bit in
2806// UndefBits is set if the corresponding element of the vector is an
2807// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2808// zero.   Return true if this is not an array of constants, false if it is.
2809//
2810static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2811                                       uint64_t UndefBits[2]) {
2812  // Start with zero'd results.
2813  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2814
2815  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2816  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2817    SDOperand OpVal = BV->getOperand(i);
2818
2819    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2820    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2821
2822    uint64_t EltBits = 0;
2823    if (OpVal.getOpcode() == ISD::UNDEF) {
2824      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2825      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2826      continue;
2827    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2828      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2829    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2830      assert(CN->getValueType(0) == MVT::f32 &&
2831             "Only one legal FP vector type!");
2832      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2833    } else {
2834      // Nonconstant element.
2835      return true;
2836    }
2837
2838    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2839  }
2840
2841  //printf("%llx %llx  %llx %llx\n",
2842  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2843  return false;
2844}
2845
2846// If this is a splat (repetition) of a value across the whole vector, return
2847// the smallest size that splats it.  For example, "0x01010101010101..." is a
2848// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2849// SplatSize = 1 byte.
2850static bool isConstantSplat(const uint64_t Bits128[2],
2851                            const uint64_t Undef128[2],
2852                            unsigned &SplatBits, unsigned &SplatUndef,
2853                            unsigned &SplatSize) {
2854
2855  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2856  // the same as the lower 64-bits, ignoring undefs.
2857  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2858    return false;  // Can't be a splat if two pieces don't match.
2859
2860  uint64_t Bits64  = Bits128[0] | Bits128[1];
2861  uint64_t Undef64 = Undef128[0] & Undef128[1];
2862
2863  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2864  // undefs.
2865  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2866    return false;  // Can't be a splat if two pieces don't match.
2867
2868  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2869  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2870
2871  // If the top 16-bits are different than the lower 16-bits, ignoring
2872  // undefs, we have an i32 splat.
2873  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2874    SplatBits = Bits32;
2875    SplatUndef = Undef32;
2876    SplatSize = 4;
2877    return true;
2878  }
2879
2880  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2881  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2882
2883  // If the top 8-bits are different than the lower 8-bits, ignoring
2884  // undefs, we have an i16 splat.
2885  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2886    SplatBits = Bits16;
2887    SplatUndef = Undef16;
2888    SplatSize = 2;
2889    return true;
2890  }
2891
2892  // Otherwise, we have an 8-bit splat.
2893  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2894  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2895  SplatSize = 1;
2896  return true;
2897}
2898
2899/// BuildSplatI - Build a canonical splati of Val with an element size of
2900/// SplatSize.  Cast the result to VT.
2901static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2902                             SelectionDAG &DAG) {
2903  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2904
2905  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2906    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2907  };
2908
2909  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2910
2911  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2912  if (Val == -1)
2913    SplatSize = 1;
2914
2915  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2916
2917  // Build a canonical splat for this value.
2918  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2919  SmallVector<SDOperand, 8> Ops;
2920  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2921  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2922                              &Ops[0], Ops.size());
2923  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2924}
2925
2926/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2927/// specified intrinsic ID.
2928static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2929                                  SelectionDAG &DAG,
2930                                  MVT::ValueType DestVT = MVT::Other) {
2931  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2932  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2933                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2934}
2935
2936/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2937/// specified intrinsic ID.
2938static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2939                                  SDOperand Op2, SelectionDAG &DAG,
2940                                  MVT::ValueType DestVT = MVT::Other) {
2941  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2942  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2943                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2944}
2945
2946
2947/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2948/// amount.  The result has the specified value type.
2949static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2950                             MVT::ValueType VT, SelectionDAG &DAG) {
2951  // Force LHS/RHS to be the right type.
2952  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2953  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2954
2955  SDOperand Ops[16];
2956  for (unsigned i = 0; i != 16; ++i)
2957    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2958  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2959                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2960  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2961}
2962
2963// If this is a case we can't handle, return null and let the default
2964// expansion code take care of it.  If we CAN select this case, and if it
2965// selects to a single instruction, return Op.  Otherwise, if we can codegen
2966// this case more efficiently than a constant pool load, lower it to the
2967// sequence of ops that should be used.
2968SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2969                                               SelectionDAG &DAG) {
2970  // If this is a vector of constants or undefs, get the bits.  A bit in
2971  // UndefBits is set if the corresponding element of the vector is an
2972  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2973  // zero.
2974  uint64_t VectorBits[2];
2975  uint64_t UndefBits[2];
2976  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2977    return SDOperand();   // Not a constant vector.
2978
2979  // If this is a splat (repetition) of a value across the whole vector, return
2980  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2981  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2982  // SplatSize = 1 byte.
2983  unsigned SplatBits, SplatUndef, SplatSize;
2984  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2985    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2986
2987    // First, handle single instruction cases.
2988
2989    // All zeros?
2990    if (SplatBits == 0) {
2991      // Canonicalize all zero vectors to be v4i32.
2992      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2993        SDOperand Z = DAG.getConstant(0, MVT::i32);
2994        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2995        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2996      }
2997      return Op;
2998    }
2999
3000    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3001    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3002    if (SextVal >= -16 && SextVal <= 15)
3003      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3004
3005
3006    // Two instruction sequences.
3007
3008    // If this value is in the range [-32,30] and is even, use:
3009    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3010    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3011      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
3012      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
3013    }
3014
3015    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3016    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3017    // for fneg/fabs.
3018    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3019      // Make -1 and vspltisw -1:
3020      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3021
3022      // Make the VSLW intrinsic, computing 0x8000_0000.
3023      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3024                                       OnesV, DAG);
3025
3026      // xor by OnesV to invert it.
3027      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3028      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3029    }
3030
3031    // Check to see if this is a wide variety of vsplti*, binop self cases.
3032    unsigned SplatBitSize = SplatSize*8;
3033    static const signed char SplatCsts[] = {
3034      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3035      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3036    };
3037
3038    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3039      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3040      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3041      int i = SplatCsts[idx];
3042
3043      // Figure out what shift amount will be used by altivec if shifted by i in
3044      // this splat size.
3045      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3046
3047      // vsplti + shl self.
3048      if (SextVal == (i << (int)TypeShiftAmt)) {
3049        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3050        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3051          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3052          Intrinsic::ppc_altivec_vslw
3053        };
3054        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3055        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3056      }
3057
3058      // vsplti + srl self.
3059      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3060        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3061        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3062          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3063          Intrinsic::ppc_altivec_vsrw
3064        };
3065        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3066        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3067      }
3068
3069      // vsplti + sra self.
3070      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3071        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3072        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3073          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3074          Intrinsic::ppc_altivec_vsraw
3075        };
3076        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3077        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3078      }
3079
3080      // vsplti + rol self.
3081      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3082                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3083        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3084        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3085          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3086          Intrinsic::ppc_altivec_vrlw
3087        };
3088        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3089        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3090      }
3091
3092      // t = vsplti c, result = vsldoi t, t, 1
3093      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3094        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3095        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3096      }
3097      // t = vsplti c, result = vsldoi t, t, 2
3098      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3099        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3100        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3101      }
3102      // t = vsplti c, result = vsldoi t, t, 3
3103      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3104        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3105        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3106      }
3107    }
3108
3109    // Three instruction sequences.
3110
3111    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3112    if (SextVal >= 0 && SextVal <= 31) {
3113      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3114      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3115      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3116      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3117    }
3118    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3119    if (SextVal >= -31 && SextVal <= 0) {
3120      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3121      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3122      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3123      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3124    }
3125  }
3126
3127  return SDOperand();
3128}
3129
3130/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3131/// the specified operations to build the shuffle.
3132static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
3133                                        SDOperand RHS, SelectionDAG &DAG) {
3134  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3135  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3136  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3137
3138  enum {
3139    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3140    OP_VMRGHW,
3141    OP_VMRGLW,
3142    OP_VSPLTISW0,
3143    OP_VSPLTISW1,
3144    OP_VSPLTISW2,
3145    OP_VSPLTISW3,
3146    OP_VSLDOI4,
3147    OP_VSLDOI8,
3148    OP_VSLDOI12
3149  };
3150
3151  if (OpNum == OP_COPY) {
3152    if (LHSID == (1*9+2)*9+3) return LHS;
3153    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3154    return RHS;
3155  }
3156
3157  SDOperand OpLHS, OpRHS;
3158  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3159  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3160
3161  unsigned ShufIdxs[16];
3162  switch (OpNum) {
3163  default: assert(0 && "Unknown i32 permute!");
3164  case OP_VMRGHW:
3165    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3166    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3167    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3168    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3169    break;
3170  case OP_VMRGLW:
3171    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3172    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3173    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3174    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3175    break;
3176  case OP_VSPLTISW0:
3177    for (unsigned i = 0; i != 16; ++i)
3178      ShufIdxs[i] = (i&3)+0;
3179    break;
3180  case OP_VSPLTISW1:
3181    for (unsigned i = 0; i != 16; ++i)
3182      ShufIdxs[i] = (i&3)+4;
3183    break;
3184  case OP_VSPLTISW2:
3185    for (unsigned i = 0; i != 16; ++i)
3186      ShufIdxs[i] = (i&3)+8;
3187    break;
3188  case OP_VSPLTISW3:
3189    for (unsigned i = 0; i != 16; ++i)
3190      ShufIdxs[i] = (i&3)+12;
3191    break;
3192  case OP_VSLDOI4:
3193    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3194  case OP_VSLDOI8:
3195    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3196  case OP_VSLDOI12:
3197    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3198  }
3199  SDOperand Ops[16];
3200  for (unsigned i = 0; i != 16; ++i)
3201    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3202
3203  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3204                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3205}
3206
3207/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3208/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3209/// return the code it can be lowered into.  Worst case, it can always be
3210/// lowered into a vperm.
3211SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3212                                                 SelectionDAG &DAG) {
3213  SDOperand V1 = Op.getOperand(0);
3214  SDOperand V2 = Op.getOperand(1);
3215  SDOperand PermMask = Op.getOperand(2);
3216
3217  // Cases that are handled by instructions that take permute immediates
3218  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3219  // selected by the instruction selector.
3220  if (V2.getOpcode() == ISD::UNDEF) {
3221    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3222        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3223        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3224        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3225        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3226        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3227        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3228        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3229        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3230        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3231        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3232        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3233      return Op;
3234    }
3235  }
3236
3237  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3238  // and produce a fixed permutation.  If any of these match, do not lower to
3239  // VPERM.
3240  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3241      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3242      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3243      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3244      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3245      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3246      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3247      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3248      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3249    return Op;
3250
3251  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3252  // perfect shuffle table to emit an optimal matching sequence.
3253  unsigned PFIndexes[4];
3254  bool isFourElementShuffle = true;
3255  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3256    unsigned EltNo = 8;   // Start out undef.
3257    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3258      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3259        continue;   // Undef, ignore it.
3260
3261      unsigned ByteSource =
3262        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3263      if ((ByteSource & 3) != j) {
3264        isFourElementShuffle = false;
3265        break;
3266      }
3267
3268      if (EltNo == 8) {
3269        EltNo = ByteSource/4;
3270      } else if (EltNo != ByteSource/4) {
3271        isFourElementShuffle = false;
3272        break;
3273      }
3274    }
3275    PFIndexes[i] = EltNo;
3276  }
3277
3278  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3279  // perfect shuffle vector to determine if it is cost effective to do this as
3280  // discrete instructions, or whether we should use a vperm.
3281  if (isFourElementShuffle) {
3282    // Compute the index in the perfect shuffle table.
3283    unsigned PFTableIndex =
3284      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3285
3286    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3287    unsigned Cost  = (PFEntry >> 30);
3288
3289    // Determining when to avoid vperm is tricky.  Many things affect the cost
3290    // of vperm, particularly how many times the perm mask needs to be computed.
3291    // For example, if the perm mask can be hoisted out of a loop or is already
3292    // used (perhaps because there are multiple permutes with the same shuffle
3293    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3294    // the loop requires an extra register.
3295    //
3296    // As a compromise, we only emit discrete instructions if the shuffle can be
3297    // generated in 3 or fewer operations.  When we have loop information
3298    // available, if this block is within a loop, we should avoid using vperm
3299    // for 3-operation perms and use a constant pool load instead.
3300    if (Cost < 3)
3301      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3302  }
3303
3304  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3305  // vector that will get spilled to the constant pool.
3306  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3307
3308  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3309  // that it is in input element units, not in bytes.  Convert now.
3310  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3311  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3312
3313  SmallVector<SDOperand, 16> ResultMask;
3314  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3315    unsigned SrcElt;
3316    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3317      SrcElt = 0;
3318    else
3319      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3320
3321    for (unsigned j = 0; j != BytesPerElement; ++j)
3322      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3323                                           MVT::i8));
3324  }
3325
3326  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3327                                    &ResultMask[0], ResultMask.size());
3328  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3329}
3330
3331/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3332/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3333/// information about the intrinsic.
3334static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3335                                  bool &isDot) {
3336  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3337  CompareOpc = -1;
3338  isDot = false;
3339  switch (IntrinsicID) {
3340  default: return false;
3341    // Comparison predicates.
3342  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3343  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3344  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3345  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3346  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3347  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3348  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3349  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3350  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3351  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3352  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3353  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3354  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3355
3356    // Normal Comparisons.
3357  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3358  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3359  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3360  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3361  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3362  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3363  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3364  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3365  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3366  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3367  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3368  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3369  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3370  }
3371  return true;
3372}
3373
3374/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3375/// lower, do it, otherwise return null.
3376SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3377                                                     SelectionDAG &DAG) {
3378  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3379  // opcode number of the comparison.
3380  int CompareOpc;
3381  bool isDot;
3382  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3383    return SDOperand();    // Don't custom lower most intrinsics.
3384
3385  // If this is a non-dot comparison, make the VCMP node and we are done.
3386  if (!isDot) {
3387    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3388                                Op.getOperand(1), Op.getOperand(2),
3389                                DAG.getConstant(CompareOpc, MVT::i32));
3390    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3391  }
3392
3393  // Create the PPCISD altivec 'dot' comparison node.
3394  SDOperand Ops[] = {
3395    Op.getOperand(2),  // LHS
3396    Op.getOperand(3),  // RHS
3397    DAG.getConstant(CompareOpc, MVT::i32)
3398  };
3399  std::vector<MVT::ValueType> VTs;
3400  VTs.push_back(Op.getOperand(2).getValueType());
3401  VTs.push_back(MVT::Flag);
3402  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3403
3404  // Now that we have the comparison, emit a copy from the CR to a GPR.
3405  // This is flagged to the above dot comparison.
3406  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3407                                DAG.getRegister(PPC::CR6, MVT::i32),
3408                                CompNode.getValue(1));
3409
3410  // Unpack the result based on how the target uses it.
3411  unsigned BitNo;   // Bit # of CR6.
3412  bool InvertBit;   // Invert result?
3413  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3414  default:  // Can't happen, don't crash on invalid number though.
3415  case 0:   // Return the value of the EQ bit of CR6.
3416    BitNo = 0; InvertBit = false;
3417    break;
3418  case 1:   // Return the inverted value of the EQ bit of CR6.
3419    BitNo = 0; InvertBit = true;
3420    break;
3421  case 2:   // Return the value of the LT bit of CR6.
3422    BitNo = 2; InvertBit = false;
3423    break;
3424  case 3:   // Return the inverted value of the LT bit of CR6.
3425    BitNo = 2; InvertBit = true;
3426    break;
3427  }
3428
3429  // Shift the bit into the low position.
3430  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3431                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3432  // Isolate the bit.
3433  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3434                      DAG.getConstant(1, MVT::i32));
3435
3436  // If we are supposed to, toggle the bit.
3437  if (InvertBit)
3438    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3439                        DAG.getConstant(1, MVT::i32));
3440  return Flags;
3441}
3442
3443SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3444                                                   SelectionDAG &DAG) {
3445  // Create a stack slot that is 16-byte aligned.
3446  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3447  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3448  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3449  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3450
3451  // Store the input value into Value#0 of the stack slot.
3452  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3453                                 Op.getOperand(0), FIdx, NULL, 0);
3454  // Load it out.
3455  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3456}
3457
3458SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3459  if (Op.getValueType() == MVT::v4i32) {
3460    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3461
3462    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3463    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3464
3465    SDOperand RHSSwap =   // = vrlw RHS, 16
3466      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3467
3468    // Shrinkify inputs to v8i16.
3469    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3470    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3471    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3472
3473    // Low parts multiplied together, generating 32-bit results (we ignore the
3474    // top parts).
3475    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3476                                        LHS, RHS, DAG, MVT::v4i32);
3477
3478    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3479                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3480    // Shift the high parts up 16 bits.
3481    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3482    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3483  } else if (Op.getValueType() == MVT::v8i16) {
3484    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3485
3486    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3487
3488    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3489                            LHS, RHS, Zero, DAG);
3490  } else if (Op.getValueType() == MVT::v16i8) {
3491    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3492
3493    // Multiply the even 8-bit parts, producing 16-bit sums.
3494    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3495                                           LHS, RHS, DAG, MVT::v8i16);
3496    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3497
3498    // Multiply the odd 8-bit parts, producing 16-bit sums.
3499    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3500                                          LHS, RHS, DAG, MVT::v8i16);
3501    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3502
3503    // Merge the results together.
3504    SDOperand Ops[16];
3505    for (unsigned i = 0; i != 8; ++i) {
3506      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3507      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3508    }
3509    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3510                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3511  } else {
3512    assert(0 && "Unknown mul to lower!");
3513    abort();
3514  }
3515}
3516
3517/// LowerOperation - Provide custom lowering hooks for some operations.
3518///
3519SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3520  switch (Op.getOpcode()) {
3521  default: assert(0 && "Wasn't expecting to be able to lower this!");
3522  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3523  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3524  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3525  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3526  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3527  case ISD::VASTART:
3528    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3529                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3530
3531  case ISD::VAARG:
3532    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3533                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3534
3535  case ISD::FORMAL_ARGUMENTS:
3536    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3537                                 VarArgsStackOffset, VarArgsNumGPR,
3538                                 VarArgsNumFPR, PPCSubTarget);
3539
3540  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3541  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3542  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3543  case ISD::DYNAMIC_STACKALLOC:
3544    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3545
3546  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3547  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3548  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3549  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3550  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3551
3552  // Lower 64-bit shifts.
3553  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3554  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3555  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3556
3557  // Vector-related lowering.
3558  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3559  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3560  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3561  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3562  case ISD::MUL:                return LowerMUL(Op, DAG);
3563
3564  // Frame & Return address.
3565  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3566  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3567  }
3568  return SDOperand();
3569}
3570
3571SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3572  switch (N->getOpcode()) {
3573  default: assert(0 && "Wasn't expecting to be able to lower this!");
3574  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3575  }
3576}
3577
3578
3579//===----------------------------------------------------------------------===//
3580//  Other Lowering Code
3581//===----------------------------------------------------------------------===//
3582
3583MachineBasicBlock *
3584PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3585                                               MachineBasicBlock *BB) {
3586  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3587  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3588          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3589          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3590          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3591          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3592         "Unexpected instr type to insert");
3593
3594  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3595  // control-flow pattern.  The incoming instruction knows the destination vreg
3596  // to set, the condition code register to branch on, the true/false values to
3597  // select between, and a branch opcode to use.
3598  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3599  ilist<MachineBasicBlock>::iterator It = BB;
3600  ++It;
3601
3602  //  thisMBB:
3603  //  ...
3604  //   TrueVal = ...
3605  //   cmpTY ccX, r1, r2
3606  //   bCC copy1MBB
3607  //   fallthrough --> copy0MBB
3608  MachineBasicBlock *thisMBB = BB;
3609  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3610  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3611  unsigned SelectPred = MI->getOperand(4).getImm();
3612  BuildMI(BB, TII->get(PPC::BCC))
3613    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3614  MachineFunction *F = BB->getParent();
3615  F->getBasicBlockList().insert(It, copy0MBB);
3616  F->getBasicBlockList().insert(It, sinkMBB);
3617  // Update machine-CFG edges by first adding all successors of the current
3618  // block to the new block which will contain the Phi node for the select.
3619  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3620      e = BB->succ_end(); i != e; ++i)
3621    sinkMBB->addSuccessor(*i);
3622  // Next, remove all successors of the current block, and add the true
3623  // and fallthrough blocks as its successors.
3624  while(!BB->succ_empty())
3625    BB->removeSuccessor(BB->succ_begin());
3626  BB->addSuccessor(copy0MBB);
3627  BB->addSuccessor(sinkMBB);
3628
3629  //  copy0MBB:
3630  //   %FalseValue = ...
3631  //   # fallthrough to sinkMBB
3632  BB = copy0MBB;
3633
3634  // Update machine-CFG edges
3635  BB->addSuccessor(sinkMBB);
3636
3637  //  sinkMBB:
3638  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3639  //  ...
3640  BB = sinkMBB;
3641  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3642    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3643    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3644
3645  delete MI;   // The pseudo instruction is gone now.
3646  return BB;
3647}
3648
3649//===----------------------------------------------------------------------===//
3650// Target Optimization Hooks
3651//===----------------------------------------------------------------------===//
3652
3653SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3654                                               DAGCombinerInfo &DCI) const {
3655  TargetMachine &TM = getTargetMachine();
3656  SelectionDAG &DAG = DCI.DAG;
3657  switch (N->getOpcode()) {
3658  default: break;
3659  case PPCISD::SHL:
3660    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3661      if (C->getValue() == 0)   // 0 << V -> 0.
3662        return N->getOperand(0);
3663    }
3664    break;
3665  case PPCISD::SRL:
3666    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3667      if (C->getValue() == 0)   // 0 >>u V -> 0.
3668        return N->getOperand(0);
3669    }
3670    break;
3671  case PPCISD::SRA:
3672    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3673      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3674          C->isAllOnesValue())    // -1 >>s V -> -1.
3675        return N->getOperand(0);
3676    }
3677    break;
3678
3679  case ISD::SINT_TO_FP:
3680    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3681      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3682        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3683        // We allow the src/dst to be either f32/f64, but the intermediate
3684        // type must be i64.
3685        if (N->getOperand(0).getValueType() == MVT::i64 &&
3686            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3687          SDOperand Val = N->getOperand(0).getOperand(0);
3688          if (Val.getValueType() == MVT::f32) {
3689            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3690            DCI.AddToWorklist(Val.Val);
3691          }
3692
3693          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3694          DCI.AddToWorklist(Val.Val);
3695          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3696          DCI.AddToWorklist(Val.Val);
3697          if (N->getValueType(0) == MVT::f32) {
3698            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3699                              DAG.getIntPtrConstant(0));
3700            DCI.AddToWorklist(Val.Val);
3701          }
3702          return Val;
3703        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3704          // If the intermediate type is i32, we can avoid the load/store here
3705          // too.
3706        }
3707      }
3708    }
3709    break;
3710  case ISD::STORE:
3711    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3712    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3713        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3714        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3715        N->getOperand(1).getValueType() == MVT::i32 &&
3716        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3717      SDOperand Val = N->getOperand(1).getOperand(0);
3718      if (Val.getValueType() == MVT::f32) {
3719        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3720        DCI.AddToWorklist(Val.Val);
3721      }
3722      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3723      DCI.AddToWorklist(Val.Val);
3724
3725      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3726                        N->getOperand(2), N->getOperand(3));
3727      DCI.AddToWorklist(Val.Val);
3728      return Val;
3729    }
3730
3731    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3732    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3733        N->getOperand(1).Val->hasOneUse() &&
3734        (N->getOperand(1).getValueType() == MVT::i32 ||
3735         N->getOperand(1).getValueType() == MVT::i16)) {
3736      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3737      // Do an any-extend to 32-bits if this is a half-word input.
3738      if (BSwapOp.getValueType() == MVT::i16)
3739        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3740
3741      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3742                         N->getOperand(2), N->getOperand(3),
3743                         DAG.getValueType(N->getOperand(1).getValueType()));
3744    }
3745    break;
3746  case ISD::BSWAP:
3747    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3748    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3749        N->getOperand(0).hasOneUse() &&
3750        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3751      SDOperand Load = N->getOperand(0);
3752      LoadSDNode *LD = cast<LoadSDNode>(Load);
3753      // Create the byte-swapping load.
3754      std::vector<MVT::ValueType> VTs;
3755      VTs.push_back(MVT::i32);
3756      VTs.push_back(MVT::Other);
3757      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3758      SDOperand Ops[] = {
3759        LD->getChain(),    // Chain
3760        LD->getBasePtr(),  // Ptr
3761        MO,                // MemOperand
3762        DAG.getValueType(N->getValueType(0)) // VT
3763      };
3764      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3765
3766      // If this is an i16 load, insert the truncate.
3767      SDOperand ResVal = BSLoad;
3768      if (N->getValueType(0) == MVT::i16)
3769        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3770
3771      // First, combine the bswap away.  This makes the value produced by the
3772      // load dead.
3773      DCI.CombineTo(N, ResVal);
3774
3775      // Next, combine the load away, we give it a bogus result value but a real
3776      // chain result.  The result value is dead because the bswap is dead.
3777      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3778
3779      // Return N so it doesn't get rechecked!
3780      return SDOperand(N, 0);
3781    }
3782
3783    break;
3784  case PPCISD::VCMP: {
3785    // If a VCMPo node already exists with exactly the same operands as this
3786    // node, use its result instead of this node (VCMPo computes both a CR6 and
3787    // a normal output).
3788    //
3789    if (!N->getOperand(0).hasOneUse() &&
3790        !N->getOperand(1).hasOneUse() &&
3791        !N->getOperand(2).hasOneUse()) {
3792
3793      // Scan all of the users of the LHS, looking for VCMPo's that match.
3794      SDNode *VCMPoNode = 0;
3795
3796      SDNode *LHSN = N->getOperand(0).Val;
3797      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3798           UI != E; ++UI)
3799        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3800            (*UI)->getOperand(1) == N->getOperand(1) &&
3801            (*UI)->getOperand(2) == N->getOperand(2) &&
3802            (*UI)->getOperand(0) == N->getOperand(0)) {
3803          VCMPoNode = *UI;
3804          break;
3805        }
3806
3807      // If there is no VCMPo node, or if the flag value has a single use, don't
3808      // transform this.
3809      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3810        break;
3811
3812      // Look at the (necessarily single) use of the flag value.  If it has a
3813      // chain, this transformation is more complex.  Note that multiple things
3814      // could use the value result, which we should ignore.
3815      SDNode *FlagUser = 0;
3816      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3817           FlagUser == 0; ++UI) {
3818        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3819        SDNode *User = *UI;
3820        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3821          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3822            FlagUser = User;
3823            break;
3824          }
3825        }
3826      }
3827
3828      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3829      // give up for right now.
3830      if (FlagUser->getOpcode() == PPCISD::MFCR)
3831        return SDOperand(VCMPoNode, 0);
3832    }
3833    break;
3834  }
3835  case ISD::BR_CC: {
3836    // If this is a branch on an altivec predicate comparison, lower this so
3837    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3838    // lowering is done pre-legalize, because the legalizer lowers the predicate
3839    // compare down to code that is difficult to reassemble.
3840    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3841    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3842    int CompareOpc;
3843    bool isDot;
3844
3845    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3846        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3847        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3848      assert(isDot && "Can't compare against a vector result!");
3849
3850      // If this is a comparison against something other than 0/1, then we know
3851      // that the condition is never/always true.
3852      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3853      if (Val != 0 && Val != 1) {
3854        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3855          return N->getOperand(0);
3856        // Always !=, turn it into an unconditional branch.
3857        return DAG.getNode(ISD::BR, MVT::Other,
3858                           N->getOperand(0), N->getOperand(4));
3859      }
3860
3861      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3862
3863      // Create the PPCISD altivec 'dot' comparison node.
3864      std::vector<MVT::ValueType> VTs;
3865      SDOperand Ops[] = {
3866        LHS.getOperand(2),  // LHS of compare
3867        LHS.getOperand(3),  // RHS of compare
3868        DAG.getConstant(CompareOpc, MVT::i32)
3869      };
3870      VTs.push_back(LHS.getOperand(2).getValueType());
3871      VTs.push_back(MVT::Flag);
3872      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3873
3874      // Unpack the result based on how the target uses it.
3875      PPC::Predicate CompOpc;
3876      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3877      default:  // Can't happen, don't crash on invalid number though.
3878      case 0:   // Branch on the value of the EQ bit of CR6.
3879        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3880        break;
3881      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3882        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3883        break;
3884      case 2:   // Branch on the value of the LT bit of CR6.
3885        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3886        break;
3887      case 3:   // Branch on the inverted value of the LT bit of CR6.
3888        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3889        break;
3890      }
3891
3892      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3893                         DAG.getConstant(CompOpc, MVT::i32),
3894                         DAG.getRegister(PPC::CR6, MVT::i32),
3895                         N->getOperand(4), CompNode.getValue(1));
3896    }
3897    break;
3898  }
3899  }
3900
3901  return SDOperand();
3902}
3903
3904//===----------------------------------------------------------------------===//
3905// Inline Assembly Support
3906//===----------------------------------------------------------------------===//
3907
3908void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3909                                                       const APInt &Mask,
3910                                                       APInt &KnownZero,
3911                                                       APInt &KnownOne,
3912                                                       const SelectionDAG &DAG,
3913                                                       unsigned Depth) const {
3914  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3915  switch (Op.getOpcode()) {
3916  default: break;
3917  case PPCISD::LBRX: {
3918    // lhbrx is known to have the top bits cleared out.
3919    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3920      KnownZero = 0xFFFF0000;
3921    break;
3922  }
3923  case ISD::INTRINSIC_WO_CHAIN: {
3924    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3925    default: break;
3926    case Intrinsic::ppc_altivec_vcmpbfp_p:
3927    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3928    case Intrinsic::ppc_altivec_vcmpequb_p:
3929    case Intrinsic::ppc_altivec_vcmpequh_p:
3930    case Intrinsic::ppc_altivec_vcmpequw_p:
3931    case Intrinsic::ppc_altivec_vcmpgefp_p:
3932    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3933    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3934    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3935    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3936    case Intrinsic::ppc_altivec_vcmpgtub_p:
3937    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3938    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3939      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3940      break;
3941    }
3942  }
3943  }
3944}
3945
3946
3947/// getConstraintType - Given a constraint, return the type of
3948/// constraint it is for this target.
3949PPCTargetLowering::ConstraintType
3950PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3951  if (Constraint.size() == 1) {
3952    switch (Constraint[0]) {
3953    default: break;
3954    case 'b':
3955    case 'r':
3956    case 'f':
3957    case 'v':
3958    case 'y':
3959      return C_RegisterClass;
3960    }
3961  }
3962  return TargetLowering::getConstraintType(Constraint);
3963}
3964
3965std::pair<unsigned, const TargetRegisterClass*>
3966PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3967                                                MVT::ValueType VT) const {
3968  if (Constraint.size() == 1) {
3969    // GCC RS6000 Constraint Letters
3970    switch (Constraint[0]) {
3971    case 'b':   // R1-R31
3972    case 'r':   // R0-R31
3973      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3974        return std::make_pair(0U, PPC::G8RCRegisterClass);
3975      return std::make_pair(0U, PPC::GPRCRegisterClass);
3976    case 'f':
3977      if (VT == MVT::f32)
3978        return std::make_pair(0U, PPC::F4RCRegisterClass);
3979      else if (VT == MVT::f64)
3980        return std::make_pair(0U, PPC::F8RCRegisterClass);
3981      break;
3982    case 'v':
3983      return std::make_pair(0U, PPC::VRRCRegisterClass);
3984    case 'y':   // crrc
3985      return std::make_pair(0U, PPC::CRRCRegisterClass);
3986    }
3987  }
3988
3989  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3990}
3991
3992
3993/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3994/// vector.  If it is invalid, don't add anything to Ops.
3995void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3996                                                     std::vector<SDOperand>&Ops,
3997                                                     SelectionDAG &DAG) {
3998  SDOperand Result(0,0);
3999  switch (Letter) {
4000  default: break;
4001  case 'I':
4002  case 'J':
4003  case 'K':
4004  case 'L':
4005  case 'M':
4006  case 'N':
4007  case 'O':
4008  case 'P': {
4009    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4010    if (!CST) return; // Must be an immediate to match.
4011    unsigned Value = CST->getValue();
4012    switch (Letter) {
4013    default: assert(0 && "Unknown constraint letter!");
4014    case 'I':  // "I" is a signed 16-bit constant.
4015      if ((short)Value == (int)Value)
4016        Result = DAG.getTargetConstant(Value, Op.getValueType());
4017      break;
4018    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4019    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4020      if ((short)Value == 0)
4021        Result = DAG.getTargetConstant(Value, Op.getValueType());
4022      break;
4023    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4024      if ((Value >> 16) == 0)
4025        Result = DAG.getTargetConstant(Value, Op.getValueType());
4026      break;
4027    case 'M':  // "M" is a constant that is greater than 31.
4028      if (Value > 31)
4029        Result = DAG.getTargetConstant(Value, Op.getValueType());
4030      break;
4031    case 'N':  // "N" is a positive constant that is an exact power of two.
4032      if ((int)Value > 0 && isPowerOf2_32(Value))
4033        Result = DAG.getTargetConstant(Value, Op.getValueType());
4034      break;
4035    case 'O':  // "O" is the constant zero.
4036      if (Value == 0)
4037        Result = DAG.getTargetConstant(Value, Op.getValueType());
4038      break;
4039    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4040      if ((short)-Value == (int)-Value)
4041        Result = DAG.getTargetConstant(Value, Op.getValueType());
4042      break;
4043    }
4044    break;
4045  }
4046  }
4047
4048  if (Result.Val) {
4049    Ops.push_back(Result);
4050    return;
4051  }
4052
4053  // Handle standard constraint letters.
4054  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4055}
4056
4057// isLegalAddressingMode - Return true if the addressing mode represented
4058// by AM is legal for this target, for a load/store of the specified type.
4059bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4060                                              const Type *Ty) const {
4061  // FIXME: PPC does not allow r+i addressing modes for vectors!
4062
4063  // PPC allows a sign-extended 16-bit immediate field.
4064  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4065    return false;
4066
4067  // No global is ever allowed as a base.
4068  if (AM.BaseGV)
4069    return false;
4070
4071  // PPC only support r+r,
4072  switch (AM.Scale) {
4073  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4074    break;
4075  case 1:
4076    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4077      return false;
4078    // Otherwise we have r+r or r+i.
4079    break;
4080  case 2:
4081    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4082      return false;
4083    // Allow 2*r as r+r.
4084    break;
4085  default:
4086    // No other scales are supported.
4087    return false;
4088  }
4089
4090  return true;
4091}
4092
4093/// isLegalAddressImmediate - Return true if the integer value can be used
4094/// as the offset of the target addressing mode for load / store of the
4095/// given type.
4096bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4097  // PPC allows a sign-extended 16-bit immediate field.
4098  return (V > -(1 << 16) && V < (1 << 16)-1);
4099}
4100
4101bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4102  return false;
4103}
4104
4105SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4106  // Depths > 0 not supported yet!
4107  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4108    return SDOperand();
4109
4110  MachineFunction &MF = DAG.getMachineFunction();
4111  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4112  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
4113  if (RAIdx == 0) {
4114    bool isPPC64 = PPCSubTarget.isPPC64();
4115    int Offset =
4116      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
4117
4118    // Set up a frame object for the return address.
4119    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
4120
4121    // Remember it for next time.
4122    FuncInfo->setReturnAddrSaveIndex(RAIdx);
4123
4124    // Make sure the function really does not optimize away the store of the RA
4125    // to the stack.
4126    FuncInfo->setLRStoreRequired();
4127  }
4128
4129  // Just load the return address off the stack.
4130  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
4131  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4132}
4133
4134SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4135  // Depths > 0 not supported yet!
4136  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4137    return SDOperand();
4138
4139  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4140  bool isPPC64 = PtrVT == MVT::i64;
4141
4142  MachineFunction &MF = DAG.getMachineFunction();
4143  MachineFrameInfo *MFI = MF.getFrameInfo();
4144  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4145                  && MFI->getStackSize();
4146
4147  if (isPPC64)
4148    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4149      MVT::i64);
4150  else
4151    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4152      MVT::i32);
4153}
4154