PPCISelLowering.cpp revision 2ad9f17fee5d6395cd8db81668853e6dbf94060b
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Support/CommandLine.h"
32using namespace llvm;
33
34static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
35
36PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
37  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
38
39  setPow2DivIsCheap();
40
41  // Use _setjmp/_longjmp instead of setjmp/longjmp.
42  setUseUnderscoreSetJmp(true);
43  setUseUnderscoreLongJmp(true);
44
45  // Set up the register classes.
46  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
47  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
48  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
49
50  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
51  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
52  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
53
54  // PowerPC does not have truncstore for i1.
55  setStoreXAction(MVT::i1, Promote);
56
57  // PowerPC has pre-inc load and store's.
58  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
59  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
63  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
68
69  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
70  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
71
72  // PowerPC has no intrinsics for these particular operations
73  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
74  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
75  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
76
77  // PowerPC has no SREM/UREM instructions
78  setOperationAction(ISD::SREM, MVT::i32, Expand);
79  setOperationAction(ISD::UREM, MVT::i32, Expand);
80  setOperationAction(ISD::SREM, MVT::i64, Expand);
81  setOperationAction(ISD::UREM, MVT::i64, Expand);
82
83  // We don't support sin/cos/sqrt/fmod
84  setOperationAction(ISD::FSIN , MVT::f64, Expand);
85  setOperationAction(ISD::FCOS , MVT::f64, Expand);
86  setOperationAction(ISD::FREM , MVT::f64, Expand);
87  setOperationAction(ISD::FSIN , MVT::f32, Expand);
88  setOperationAction(ISD::FCOS , MVT::f32, Expand);
89  setOperationAction(ISD::FREM , MVT::f32, Expand);
90
91  // If we're enabling GP optimizations, use hardware square root
92  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
93    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
94    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
95  }
96
97  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
98  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
99
100  // PowerPC does not have BSWAP, CTPOP or CTTZ
101  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
102  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
103  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
104  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
105  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
106  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
107
108  // PowerPC does not have ROTR
109  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
110
111  // PowerPC does not have Select
112  setOperationAction(ISD::SELECT, MVT::i32, Expand);
113  setOperationAction(ISD::SELECT, MVT::i64, Expand);
114  setOperationAction(ISD::SELECT, MVT::f32, Expand);
115  setOperationAction(ISD::SELECT, MVT::f64, Expand);
116
117  // PowerPC wants to turn select_cc of FP into fsel when possible.
118  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
119  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
120
121  // PowerPC wants to optimize integer setcc a bit
122  setOperationAction(ISD::SETCC, MVT::i32, Custom);
123
124  // PowerPC does not have BRCOND which requires SetCC
125  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
126
127  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
128
129  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
130  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
131
132  // PowerPC does not have [U|S]INT_TO_FP
133  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
134  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
135
136  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
137  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
138  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
139  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
140
141  // We cannot sextinreg(i1).  Expand to shifts.
142  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
143
144  // Support label based line numbers.
145  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
146  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
147  if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
148    setOperationAction(ISD::LABEL, MVT::Other, Expand);
149  } else {
150    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
151    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
152    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
153    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
154  }
155
156  // We want to legalize GlobalAddress and ConstantPool nodes into the
157  // appropriate instructions to materialize the address.
158  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
159  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
160  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
161  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
162  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
163  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
164
165  // RET must be custom lowered, to meet ABI requirements
166  setOperationAction(ISD::RET               , MVT::Other, Custom);
167
168  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
169  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
170
171  // Use the default implementation.
172  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
173  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
174  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
175  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
176  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
177  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
178  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
179
180  // We want to custom lower some of our intrinsics.
181  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
182
183  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
184    // They also have instructions for converting between i64 and fp.
185    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
186    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
187    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
188    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
189    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
190
191    // FIXME: disable this lowered code.  This generates 64-bit register values,
192    // and we don't model the fact that the top part is clobbered by calls.  We
193    // need to flag these together so that the value isn't live across a call.
194    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
195
196    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
197    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
198  } else {
199    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
200    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
201  }
202
203  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
204    // 64 bit PowerPC implementations can support i64 types directly
205    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
206    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
207    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
208  } else {
209    // 32 bit PowerPC wants to expand i64 shifts itself.
210    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
211    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
212    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
213  }
214
215  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
216    // First set operation action for all vector types to expand. Then we
217    // will selectively turn on ones that can be effectively codegen'd.
218    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
219         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
220      // add/sub are legal for all supported vector VT's.
221      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
222      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
223
224      // We promote all shuffles to v16i8.
225      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
226      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
227
228      // We promote all non-typed operations to v4i32.
229      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
230      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
231      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
233      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
234      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
235      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
236      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
237      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
238      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
239      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
240      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
241
242      // No other operations are legal.
243      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
244      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
245      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
246      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
247      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
248      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
249      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
250      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
251      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
252
253      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
254    }
255
256    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
257    // with merges, splats, etc.
258    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
259
260    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
261    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
262    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
263    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
264    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
265    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
266
267    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
268    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
269    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
270    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
271
272    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
273    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
274    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
275    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
276
277    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
278    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
279
280    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
281    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
282    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
283    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
284  }
285
286  setSetCCResultType(MVT::i32);
287  setShiftAmountType(MVT::i32);
288  setSetCCResultContents(ZeroOrOneSetCCResult);
289
290  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
291    setStackPointerRegisterToSaveRestore(PPC::X1);
292    setExceptionPointerRegister(PPC::X3);
293    setExceptionSelectorRegister(PPC::X4);
294  } else {
295    setStackPointerRegisterToSaveRestore(PPC::R1);
296    setExceptionPointerRegister(PPC::R3);
297    setExceptionSelectorRegister(PPC::R4);
298  }
299
300  // We have target-specific dag combine patterns for the following nodes:
301  setTargetDAGCombine(ISD::SINT_TO_FP);
302  setTargetDAGCombine(ISD::STORE);
303  setTargetDAGCombine(ISD::BR_CC);
304  setTargetDAGCombine(ISD::BSWAP);
305
306  computeRegisterProperties();
307}
308
309const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
310  switch (Opcode) {
311  default: return 0;
312  case PPCISD::FSEL:          return "PPCISD::FSEL";
313  case PPCISD::FCFID:         return "PPCISD::FCFID";
314  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
315  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
316  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
317  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
318  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
319  case PPCISD::VPERM:         return "PPCISD::VPERM";
320  case PPCISD::Hi:            return "PPCISD::Hi";
321  case PPCISD::Lo:            return "PPCISD::Lo";
322  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
323  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
324  case PPCISD::SRL:           return "PPCISD::SRL";
325  case PPCISD::SRA:           return "PPCISD::SRA";
326  case PPCISD::SHL:           return "PPCISD::SHL";
327  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
328  case PPCISD::STD_32:        return "PPCISD::STD_32";
329  case PPCISD::CALL:          return "PPCISD::CALL";
330  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
331  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
332  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
333  case PPCISD::MFCR:          return "PPCISD::MFCR";
334  case PPCISD::VCMP:          return "PPCISD::VCMP";
335  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
336  case PPCISD::LBRX:          return "PPCISD::LBRX";
337  case PPCISD::STBRX:         return "PPCISD::STBRX";
338  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
339  }
340}
341
342//===----------------------------------------------------------------------===//
343// Node matching predicates, for use by the tblgen matching code.
344//===----------------------------------------------------------------------===//
345
346/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
347static bool isFloatingPointZero(SDOperand Op) {
348  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
349    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
350  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
351    // Maybe this has already been legalized into the constant pool?
352    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
353      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
354        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
355  }
356  return false;
357}
358
359/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
360/// true if Op is undef or if it matches the specified value.
361static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
362  return Op.getOpcode() == ISD::UNDEF ||
363         cast<ConstantSDNode>(Op)->getValue() == Val;
364}
365
366/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
367/// VPKUHUM instruction.
368bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
369  if (!isUnary) {
370    for (unsigned i = 0; i != 16; ++i)
371      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
372        return false;
373  } else {
374    for (unsigned i = 0; i != 8; ++i)
375      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
376          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
377        return false;
378  }
379  return true;
380}
381
382/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
383/// VPKUWUM instruction.
384bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
385  if (!isUnary) {
386    for (unsigned i = 0; i != 16; i += 2)
387      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
388          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
389        return false;
390  } else {
391    for (unsigned i = 0; i != 8; i += 2)
392      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
393          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
394          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
395          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
396        return false;
397  }
398  return true;
399}
400
401/// isVMerge - Common function, used to match vmrg* shuffles.
402///
403static bool isVMerge(SDNode *N, unsigned UnitSize,
404                     unsigned LHSStart, unsigned RHSStart) {
405  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
406         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
407  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
408         "Unsupported merge size!");
409
410  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
411    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
412      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
413                             LHSStart+j+i*UnitSize) ||
414          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
415                             RHSStart+j+i*UnitSize))
416        return false;
417    }
418      return true;
419}
420
421/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
422/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
423bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
424  if (!isUnary)
425    return isVMerge(N, UnitSize, 8, 24);
426  return isVMerge(N, UnitSize, 8, 8);
427}
428
429/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
430/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
431bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
432  if (!isUnary)
433    return isVMerge(N, UnitSize, 0, 16);
434  return isVMerge(N, UnitSize, 0, 0);
435}
436
437
438/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
439/// amount, otherwise return -1.
440int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
441  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
442         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
443  // Find the first non-undef value in the shuffle mask.
444  unsigned i;
445  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
446    /*search*/;
447
448  if (i == 16) return -1;  // all undef.
449
450  // Otherwise, check to see if the rest of the elements are consequtively
451  // numbered from this value.
452  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
453  if (ShiftAmt < i) return -1;
454  ShiftAmt -= i;
455
456  if (!isUnary) {
457    // Check the rest of the elements to see if they are consequtive.
458    for (++i; i != 16; ++i)
459      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
460        return -1;
461  } else {
462    // Check the rest of the elements to see if they are consequtive.
463    for (++i; i != 16; ++i)
464      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
465        return -1;
466  }
467
468  return ShiftAmt;
469}
470
471/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
472/// specifies a splat of a single element that is suitable for input to
473/// VSPLTB/VSPLTH/VSPLTW.
474bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
475  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
476         N->getNumOperands() == 16 &&
477         (EltSize == 1 || EltSize == 2 || EltSize == 4));
478
479  // This is a splat operation if each element of the permute is the same, and
480  // if the value doesn't reference the second vector.
481  unsigned ElementBase = 0;
482  SDOperand Elt = N->getOperand(0);
483  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
484    ElementBase = EltV->getValue();
485  else
486    return false;   // FIXME: Handle UNDEF elements too!
487
488  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
489    return false;
490
491  // Check that they are consequtive.
492  for (unsigned i = 1; i != EltSize; ++i) {
493    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
494        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
495      return false;
496  }
497
498  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
499  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
500    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
501    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
502           "Invalid VECTOR_SHUFFLE mask!");
503    for (unsigned j = 0; j != EltSize; ++j)
504      if (N->getOperand(i+j) != N->getOperand(j))
505        return false;
506  }
507
508  return true;
509}
510
511/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
512/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
513unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
514  assert(isSplatShuffleMask(N, EltSize));
515  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
516}
517
518/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
519/// by using a vspltis[bhw] instruction of the specified element size, return
520/// the constant being splatted.  The ByteSize field indicates the number of
521/// bytes of each element [124] -> [bhw].
522SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
523  SDOperand OpVal(0, 0);
524
525  // If ByteSize of the splat is bigger than the element size of the
526  // build_vector, then we have a case where we are checking for a splat where
527  // multiple elements of the buildvector are folded together into a single
528  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
529  unsigned EltSize = 16/N->getNumOperands();
530  if (EltSize < ByteSize) {
531    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
532    SDOperand UniquedVals[4];
533    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
534
535    // See if all of the elements in the buildvector agree across.
536    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
537      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
538      // If the element isn't a constant, bail fully out.
539      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
540
541
542      if (UniquedVals[i&(Multiple-1)].Val == 0)
543        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
544      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
545        return SDOperand();  // no match.
546    }
547
548    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
549    // either constant or undef values that are identical for each chunk.  See
550    // if these chunks can form into a larger vspltis*.
551
552    // Check to see if all of the leading entries are either 0 or -1.  If
553    // neither, then this won't fit into the immediate field.
554    bool LeadingZero = true;
555    bool LeadingOnes = true;
556    for (unsigned i = 0; i != Multiple-1; ++i) {
557      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
558
559      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
560      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
561    }
562    // Finally, check the least significant entry.
563    if (LeadingZero) {
564      if (UniquedVals[Multiple-1].Val == 0)
565        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
566      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
567      if (Val < 16)
568        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
569    }
570    if (LeadingOnes) {
571      if (UniquedVals[Multiple-1].Val == 0)
572        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
573      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
574      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
575        return DAG.getTargetConstant(Val, MVT::i32);
576    }
577
578    return SDOperand();
579  }
580
581  // Check to see if this buildvec has a single non-undef value in its elements.
582  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
583    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
584    if (OpVal.Val == 0)
585      OpVal = N->getOperand(i);
586    else if (OpVal != N->getOperand(i))
587      return SDOperand();
588  }
589
590  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
591
592  unsigned ValSizeInBytes = 0;
593  uint64_t Value = 0;
594  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
595    Value = CN->getValue();
596    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
597  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
598    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
599    Value = FloatToBits(CN->getValue());
600    ValSizeInBytes = 4;
601  }
602
603  // If the splat value is larger than the element value, then we can never do
604  // this splat.  The only case that we could fit the replicated bits into our
605  // immediate field for would be zero, and we prefer to use vxor for it.
606  if (ValSizeInBytes < ByteSize) return SDOperand();
607
608  // If the element value is larger than the splat value, cut it in half and
609  // check to see if the two halves are equal.  Continue doing this until we
610  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
611  while (ValSizeInBytes > ByteSize) {
612    ValSizeInBytes >>= 1;
613
614    // If the top half equals the bottom half, we're still ok.
615    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
616         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
617      return SDOperand();
618  }
619
620  // Properly sign extend the value.
621  int ShAmt = (4-ByteSize)*8;
622  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
623
624  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
625  if (MaskVal == 0) return SDOperand();
626
627  // Finally, if this value fits in a 5 bit sext field, return it
628  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
629    return DAG.getTargetConstant(MaskVal, MVT::i32);
630  return SDOperand();
631}
632
633//===----------------------------------------------------------------------===//
634//  Addressing Mode Selection
635//===----------------------------------------------------------------------===//
636
637/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
638/// or 64-bit immediate, and if the value can be accurately represented as a
639/// sign extension from a 16-bit value.  If so, this returns true and the
640/// immediate.
641static bool isIntS16Immediate(SDNode *N, short &Imm) {
642  if (N->getOpcode() != ISD::Constant)
643    return false;
644
645  Imm = (short)cast<ConstantSDNode>(N)->getValue();
646  if (N->getValueType(0) == MVT::i32)
647    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
648  else
649    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
650}
651static bool isIntS16Immediate(SDOperand Op, short &Imm) {
652  return isIntS16Immediate(Op.Val, Imm);
653}
654
655
656/// SelectAddressRegReg - Given the specified addressed, check to see if it
657/// can be represented as an indexed [r+r] operation.  Returns false if it
658/// can be more efficiently represented with [r+imm].
659bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
660                                            SDOperand &Index,
661                                            SelectionDAG &DAG) {
662  short imm = 0;
663  if (N.getOpcode() == ISD::ADD) {
664    if (isIntS16Immediate(N.getOperand(1), imm))
665      return false;    // r+i
666    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
667      return false;    // r+i
668
669    Base = N.getOperand(0);
670    Index = N.getOperand(1);
671    return true;
672  } else if (N.getOpcode() == ISD::OR) {
673    if (isIntS16Immediate(N.getOperand(1), imm))
674      return false;    // r+i can fold it if we can.
675
676    // If this is an or of disjoint bitfields, we can codegen this as an add
677    // (for better address arithmetic) if the LHS and RHS of the OR are provably
678    // disjoint.
679    uint64_t LHSKnownZero, LHSKnownOne;
680    uint64_t RHSKnownZero, RHSKnownOne;
681    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
682
683    if (LHSKnownZero) {
684      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
685      // If all of the bits are known zero on the LHS or RHS, the add won't
686      // carry.
687      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
688        Base = N.getOperand(0);
689        Index = N.getOperand(1);
690        return true;
691      }
692    }
693  }
694
695  return false;
696}
697
698/// Returns true if the address N can be represented by a base register plus
699/// a signed 16-bit displacement [r+imm], and if it is not better
700/// represented as reg+reg.
701bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
702                                            SDOperand &Base, SelectionDAG &DAG){
703  // If this can be more profitably realized as r+r, fail.
704  if (SelectAddressRegReg(N, Disp, Base, DAG))
705    return false;
706
707  if (N.getOpcode() == ISD::ADD) {
708    short imm = 0;
709    if (isIntS16Immediate(N.getOperand(1), imm)) {
710      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
711      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
712        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
713      } else {
714        Base = N.getOperand(0);
715      }
716      return true; // [r+i]
717    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
718      // Match LOAD (ADD (X, Lo(G))).
719      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
720             && "Cannot handle constant offsets yet!");
721      Disp = N.getOperand(1).getOperand(0);  // The global address.
722      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
723             Disp.getOpcode() == ISD::TargetConstantPool ||
724             Disp.getOpcode() == ISD::TargetJumpTable);
725      Base = N.getOperand(0);
726      return true;  // [&g+r]
727    }
728  } else if (N.getOpcode() == ISD::OR) {
729    short imm = 0;
730    if (isIntS16Immediate(N.getOperand(1), imm)) {
731      // If this is an or of disjoint bitfields, we can codegen this as an add
732      // (for better address arithmetic) if the LHS and RHS of the OR are
733      // provably disjoint.
734      uint64_t LHSKnownZero, LHSKnownOne;
735      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
736      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
737        // If all of the bits are known zero on the LHS or RHS, the add won't
738        // carry.
739        Base = N.getOperand(0);
740        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
741        return true;
742      }
743    }
744  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
745    // Loading from a constant address.
746
747    // If this address fits entirely in a 16-bit sext immediate field, codegen
748    // this as "d, 0"
749    short Imm;
750    if (isIntS16Immediate(CN, Imm)) {
751      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
752      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
753      return true;
754    }
755
756    // Handle 32-bit sext immediates with LIS + addr mode.
757    if (CN->getValueType(0) == MVT::i32 ||
758        (int64_t)CN->getValue() == (int)CN->getValue()) {
759      int Addr = (int)CN->getValue();
760
761      // Otherwise, break this down into an LIS + disp.
762      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
763
764      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
765      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
766      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
767      return true;
768    }
769  }
770
771  Disp = DAG.getTargetConstant(0, getPointerTy());
772  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
773    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
774  else
775    Base = N;
776  return true;      // [r+0]
777}
778
779/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
780/// represented as an indexed [r+r] operation.
781bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
782                                                SDOperand &Index,
783                                                SelectionDAG &DAG) {
784  // Check to see if we can easily represent this as an [r+r] address.  This
785  // will fail if it thinks that the address is more profitably represented as
786  // reg+imm, e.g. where imm = 0.
787  if (SelectAddressRegReg(N, Base, Index, DAG))
788    return true;
789
790  // If the operand is an addition, always emit this as [r+r], since this is
791  // better (for code size, and execution, as the memop does the add for free)
792  // than emitting an explicit add.
793  if (N.getOpcode() == ISD::ADD) {
794    Base = N.getOperand(0);
795    Index = N.getOperand(1);
796    return true;
797  }
798
799  // Otherwise, do it the hard way, using R0 as the base register.
800  Base = DAG.getRegister(PPC::R0, N.getValueType());
801  Index = N;
802  return true;
803}
804
805/// SelectAddressRegImmShift - Returns true if the address N can be
806/// represented by a base register plus a signed 14-bit displacement
807/// [r+imm*4].  Suitable for use by STD and friends.
808bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
809                                                 SDOperand &Base,
810                                                 SelectionDAG &DAG) {
811  // If this can be more profitably realized as r+r, fail.
812  if (SelectAddressRegReg(N, Disp, Base, DAG))
813    return false;
814
815  if (N.getOpcode() == ISD::ADD) {
816    short imm = 0;
817    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
818      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
819      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
820        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
821      } else {
822        Base = N.getOperand(0);
823      }
824      return true; // [r+i]
825    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
826      // Match LOAD (ADD (X, Lo(G))).
827      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
828             && "Cannot handle constant offsets yet!");
829      Disp = N.getOperand(1).getOperand(0);  // The global address.
830      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
831             Disp.getOpcode() == ISD::TargetConstantPool ||
832             Disp.getOpcode() == ISD::TargetJumpTable);
833      Base = N.getOperand(0);
834      return true;  // [&g+r]
835    }
836  } else if (N.getOpcode() == ISD::OR) {
837    short imm = 0;
838    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
839      // If this is an or of disjoint bitfields, we can codegen this as an add
840      // (for better address arithmetic) if the LHS and RHS of the OR are
841      // provably disjoint.
842      uint64_t LHSKnownZero, LHSKnownOne;
843      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
844      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
845        // If all of the bits are known zero on the LHS or RHS, the add won't
846        // carry.
847        Base = N.getOperand(0);
848        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
849        return true;
850      }
851    }
852  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
853    // Loading from a constant address.  Verify low two bits are clear.
854    if ((CN->getValue() & 3) == 0) {
855      // If this address fits entirely in a 14-bit sext immediate field, codegen
856      // this as "d, 0"
857      short Imm;
858      if (isIntS16Immediate(CN, Imm)) {
859        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
860        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
861        return true;
862      }
863
864      // Fold the low-part of 32-bit absolute addresses into addr mode.
865      if (CN->getValueType(0) == MVT::i32 ||
866          (int64_t)CN->getValue() == (int)CN->getValue()) {
867        int Addr = (int)CN->getValue();
868
869        // Otherwise, break this down into an LIS + disp.
870        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
871
872        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
873        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
874        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
875        return true;
876      }
877    }
878  }
879
880  Disp = DAG.getTargetConstant(0, getPointerTy());
881  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
882    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
883  else
884    Base = N;
885  return true;      // [r+0]
886}
887
888
889/// getPreIndexedAddressParts - returns true by value, base pointer and
890/// offset pointer and addressing mode by reference if the node's address
891/// can be legally represented as pre-indexed load / store address.
892bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
893                                                  SDOperand &Offset,
894                                                  ISD::MemIndexedMode &AM,
895                                                  SelectionDAG &DAG) {
896  // Disabled by default for now.
897  if (!EnablePPCPreinc) return false;
898
899  SDOperand Ptr;
900  MVT::ValueType VT;
901  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
902    Ptr = LD->getBasePtr();
903    VT = LD->getLoadedVT();
904
905  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
906    ST = ST;
907    Ptr = ST->getBasePtr();
908    VT  = ST->getStoredVT();
909  } else
910    return false;
911
912  // PowerPC doesn't have preinc load/store instructions for vectors.
913  if (MVT::isVector(VT))
914    return false;
915
916  // TODO: Check reg+reg first.
917
918  // LDU/STU use reg+imm*4, others use reg+imm.
919  if (VT != MVT::i64) {
920    // reg + imm
921    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
922      return false;
923  } else {
924    // reg + imm * 4.
925    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
926      return false;
927  }
928
929  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
930    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
931    // sext i32 to i64 when addr mode is r+i.
932    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
933        LD->getExtensionType() == ISD::SEXTLOAD &&
934        isa<ConstantSDNode>(Offset))
935      return false;
936  }
937
938  AM = ISD::PRE_INC;
939  return true;
940}
941
942//===----------------------------------------------------------------------===//
943//  LowerOperation implementation
944//===----------------------------------------------------------------------===//
945
946static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
947  MVT::ValueType PtrVT = Op.getValueType();
948  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
949  Constant *C = CP->getConstVal();
950  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
951  SDOperand Zero = DAG.getConstant(0, PtrVT);
952
953  const TargetMachine &TM = DAG.getTarget();
954
955  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
956  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
957
958  // If this is a non-darwin platform, we don't support non-static relo models
959  // yet.
960  if (TM.getRelocationModel() == Reloc::Static ||
961      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
962    // Generate non-pic code that has direct accesses to the constant pool.
963    // The address of the global is just (hi(&g)+lo(&g)).
964    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
965  }
966
967  if (TM.getRelocationModel() == Reloc::PIC_) {
968    // With PIC, the first instruction is actually "GR+hi(&G)".
969    Hi = DAG.getNode(ISD::ADD, PtrVT,
970                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
971  }
972
973  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
974  return Lo;
975}
976
977static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
978  MVT::ValueType PtrVT = Op.getValueType();
979  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
980  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
981  SDOperand Zero = DAG.getConstant(0, PtrVT);
982
983  const TargetMachine &TM = DAG.getTarget();
984
985  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
986  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
987
988  // If this is a non-darwin platform, we don't support non-static relo models
989  // yet.
990  if (TM.getRelocationModel() == Reloc::Static ||
991      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
992    // Generate non-pic code that has direct accesses to the constant pool.
993    // The address of the global is just (hi(&g)+lo(&g)).
994    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
995  }
996
997  if (TM.getRelocationModel() == Reloc::PIC_) {
998    // With PIC, the first instruction is actually "GR+hi(&G)".
999    Hi = DAG.getNode(ISD::ADD, PtrVT,
1000                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1001  }
1002
1003  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1004  return Lo;
1005}
1006
1007static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1008  MVT::ValueType PtrVT = Op.getValueType();
1009  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1010  GlobalValue *GV = GSDN->getGlobal();
1011  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1012  SDOperand Zero = DAG.getConstant(0, PtrVT);
1013
1014  const TargetMachine &TM = DAG.getTarget();
1015
1016  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1017  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1018
1019  // If this is a non-darwin platform, we don't support non-static relo models
1020  // yet.
1021  if (TM.getRelocationModel() == Reloc::Static ||
1022      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1023    // Generate non-pic code that has direct accesses to globals.
1024    // The address of the global is just (hi(&g)+lo(&g)).
1025    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1026  }
1027
1028  if (TM.getRelocationModel() == Reloc::PIC_) {
1029    // With PIC, the first instruction is actually "GR+hi(&G)".
1030    Hi = DAG.getNode(ISD::ADD, PtrVT,
1031                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1032  }
1033
1034  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1035
1036  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1037    return Lo;
1038
1039  // If the global is weak or external, we have to go through the lazy
1040  // resolution stub.
1041  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1042}
1043
1044static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1045  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1046
1047  // If we're comparing for equality to zero, expose the fact that this is
1048  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1049  // fold the new nodes.
1050  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1051    if (C->isNullValue() && CC == ISD::SETEQ) {
1052      MVT::ValueType VT = Op.getOperand(0).getValueType();
1053      SDOperand Zext = Op.getOperand(0);
1054      if (VT < MVT::i32) {
1055        VT = MVT::i32;
1056        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1057      }
1058      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1059      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1060      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1061                                  DAG.getConstant(Log2b, MVT::i32));
1062      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1063    }
1064    // Leave comparisons against 0 and -1 alone for now, since they're usually
1065    // optimized.  FIXME: revisit this when we can custom lower all setcc
1066    // optimizations.
1067    if (C->isAllOnesValue() || C->isNullValue())
1068      return SDOperand();
1069  }
1070
1071  // If we have an integer seteq/setne, turn it into a compare against zero
1072  // by xor'ing the rhs with the lhs, which is faster than setting a
1073  // condition register, reading it back out, and masking the correct bit.  The
1074  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1075  // the result to other bit-twiddling opportunities.
1076  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1077  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1078    MVT::ValueType VT = Op.getValueType();
1079    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1080                                Op.getOperand(1));
1081    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1082  }
1083  return SDOperand();
1084}
1085
1086static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1087                              unsigned VarArgsFrameIndex) {
1088  // vastart just stores the address of the VarArgsFrameIndex slot into the
1089  // memory location argument.
1090  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1091  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1092  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1093  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1094                      SV->getOffset());
1095}
1096
1097static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1098                                       int &VarArgsFrameIndex) {
1099  // TODO: add description of PPC stack frame format, or at least some docs.
1100  //
1101  MachineFunction &MF = DAG.getMachineFunction();
1102  MachineFrameInfo *MFI = MF.getFrameInfo();
1103  SSARegMap *RegMap = MF.getSSARegMap();
1104  SmallVector<SDOperand, 8> ArgValues;
1105  SDOperand Root = Op.getOperand(0);
1106
1107  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1108  bool isPPC64 = PtrVT == MVT::i64;
1109  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1110
1111  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1112
1113  static const unsigned GPR_32[] = {           // 32-bit registers.
1114    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1115    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1116  };
1117  static const unsigned GPR_64[] = {           // 64-bit registers.
1118    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1119    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1120  };
1121  static const unsigned FPR[] = {
1122    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1123    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1124  };
1125  static const unsigned VR[] = {
1126    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1127    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1128  };
1129
1130  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1131  const unsigned Num_FPR_Regs = sizeof(FPR)/sizeof(FPR[0]);
1132  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1133
1134  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1135
1136  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1137
1138  // Add DAG nodes to load the arguments or copy them out of registers.  On
1139  // entry to a function on PPC, the arguments start after the linkage area,
1140  // although the first ones are often in registers.
1141  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1142    SDOperand ArgVal;
1143    bool needsLoad = false;
1144    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1145    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1146    unsigned ArgSize = ObjSize;
1147
1148    unsigned CurArgOffset = ArgOffset;
1149    switch (ObjectVT) {
1150    default: assert(0 && "Unhandled argument type!");
1151    case MVT::i32:
1152      // All int arguments reserve stack space.
1153      ArgOffset += PtrByteSize;
1154
1155      if (GPR_idx != Num_GPR_Regs) {
1156        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1157        MF.addLiveIn(GPR[GPR_idx], VReg);
1158        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1159        ++GPR_idx;
1160      } else {
1161        needsLoad = true;
1162        ArgSize = PtrByteSize;
1163      }
1164      break;
1165    case MVT::i64:  // PPC64
1166      // All int arguments reserve stack space.
1167      ArgOffset += 8;
1168
1169      if (GPR_idx != Num_GPR_Regs) {
1170        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1171        MF.addLiveIn(GPR[GPR_idx], VReg);
1172        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1173        ++GPR_idx;
1174      } else {
1175        needsLoad = true;
1176      }
1177      break;
1178    case MVT::f32:
1179    case MVT::f64:
1180      // All FP arguments reserve stack space.
1181      ArgOffset += isPPC64 ? 8 : ObjSize;
1182
1183      // Every 4 bytes of argument space consumes one of the GPRs available for
1184      // argument passing.
1185      if (GPR_idx != Num_GPR_Regs) {
1186        ++GPR_idx;
1187        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1188          ++GPR_idx;
1189      }
1190      if (FPR_idx != Num_FPR_Regs) {
1191        unsigned VReg;
1192        if (ObjectVT == MVT::f32)
1193          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1194        else
1195          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1196        MF.addLiveIn(FPR[FPR_idx], VReg);
1197        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1198        ++FPR_idx;
1199      } else {
1200        needsLoad = true;
1201      }
1202      break;
1203    case MVT::v4f32:
1204    case MVT::v4i32:
1205    case MVT::v8i16:
1206    case MVT::v16i8:
1207      // Note that vector arguments in registers don't reserve stack space.
1208      if (VR_idx != Num_VR_Regs) {
1209        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1210        MF.addLiveIn(VR[VR_idx], VReg);
1211        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1212        ++VR_idx;
1213      } else {
1214        // This should be simple, but requires getting 16-byte aligned stack
1215        // values.
1216        assert(0 && "Loading VR argument not implemented yet!");
1217        needsLoad = true;
1218      }
1219      break;
1220    }
1221
1222    // We need to load the argument to a virtual register if we determined above
1223    // that we ran out of physical registers of the appropriate type
1224    if (needsLoad) {
1225      // If the argument is actually used, emit a load from the right stack
1226      // slot.
1227      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1228        int FI = MFI->CreateFixedObject(ObjSize,
1229                                        CurArgOffset + (ArgSize - ObjSize));
1230        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1231        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1232      } else {
1233        // Don't emit a dead load.
1234        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1235      }
1236    }
1237
1238    ArgValues.push_back(ArgVal);
1239  }
1240
1241  // If the function takes variable number of arguments, make a frame index for
1242  // the start of the first vararg value... for expansion of llvm.va_start.
1243  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1244  if (isVarArg) {
1245    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1246                                               ArgOffset);
1247    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1248    // If this function is vararg, store any remaining integer argument regs
1249    // to their spots on the stack so that they may be loaded by deferencing the
1250    // result of va_next.
1251    SmallVector<SDOperand, 8> MemOps;
1252    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1253      unsigned VReg;
1254      if (isPPC64)
1255        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1256      else
1257        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1258
1259      MF.addLiveIn(GPR[GPR_idx], VReg);
1260      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1261      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1262      MemOps.push_back(Store);
1263      // Increment the address by four for the next argument to store
1264      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1265      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1266    }
1267    if (!MemOps.empty())
1268      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1269  }
1270
1271  ArgValues.push_back(Root);
1272
1273  // Return the new list of results.
1274  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1275                                    Op.Val->value_end());
1276  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1277}
1278
1279/// isCallCompatibleAddress - Return the immediate to use if the specified
1280/// 32-bit value is representable in the immediate field of a BxA instruction.
1281static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1282  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1283  if (!C) return 0;
1284
1285  int Addr = C->getValue();
1286  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1287      (Addr << 6 >> 6) != Addr)
1288    return 0;  // Top 6 bits have to be sext of immediate.
1289
1290  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1291}
1292
1293static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1294  SDOperand Chain = Op.getOperand(0);
1295  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1296  SDOperand Callee    = Op.getOperand(4);
1297  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1298
1299  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1300  bool isPPC64 = PtrVT == MVT::i64;
1301  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1302
1303  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1304  // SelectExpr to use to put the arguments in the appropriate registers.
1305  std::vector<SDOperand> args_to_use;
1306
1307  // Count how many bytes are to be pushed on the stack, including the linkage
1308  // area, and parameter passing area.  We start with 24/48 bytes, which is
1309  // prereserved space for [SP][CR][LR][3 x unused].
1310  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64);
1311
1312  // Add up all the space actually used.
1313  for (unsigned i = 0; i != NumOps; ++i) {
1314    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1315    ArgSize = std::max(ArgSize, PtrByteSize);
1316    NumBytes += ArgSize;
1317  }
1318
1319  // The prolog code of the callee may store up to 8 GPR argument registers to
1320  // the stack, allowing va_start to index over them in memory if its varargs.
1321  // Because we cannot tell if this is needed on the caller side, we have to
1322  // conservatively assume that it is needed.  As such, make sure we have at
1323  // least enough stack space for the caller to store the 8 GPRs.
1324  NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64));
1325
1326  // Adjust the stack pointer for the new arguments...
1327  // These operations are automatically eliminated by the prolog/epilog pass
1328  Chain = DAG.getCALLSEQ_START(Chain,
1329                               DAG.getConstant(NumBytes, PtrVT));
1330
1331  // Set up a copy of the stack pointer for use loading and storing any
1332  // arguments that may not fit in the registers available for argument
1333  // passing.
1334  SDOperand StackPtr;
1335  if (isPPC64)
1336    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1337  else
1338    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1339
1340  // Figure out which arguments are going to go in registers, and which in
1341  // memory.  Also, if this is a vararg function, floating point operations
1342  // must be stored to our stack, and loaded into integer regs as well, if
1343  // any integer regs are available for argument passing.
1344  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1345  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1346
1347  static const unsigned GPR_32[] = {           // 32-bit registers.
1348    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1349    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1350  };
1351  static const unsigned GPR_64[] = {           // 64-bit registers.
1352    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1353    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1354  };
1355  static const unsigned FPR[] = {
1356    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1357    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1358  };
1359  static const unsigned VR[] = {
1360    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1361    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1362  };
1363  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1364  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1365  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1366
1367  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1368
1369  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1370  SmallVector<SDOperand, 8> MemOpChains;
1371  for (unsigned i = 0; i != NumOps; ++i) {
1372    SDOperand Arg = Op.getOperand(5+2*i);
1373
1374    // PtrOff will be used to store the current argument to the stack if a
1375    // register cannot be found for it.
1376    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1377    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1378
1379    // On PPC64, promote integers to 64-bit values.
1380    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1381      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1382      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1383
1384      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1385    }
1386
1387    switch (Arg.getValueType()) {
1388    default: assert(0 && "Unexpected ValueType for argument!");
1389    case MVT::i32:
1390    case MVT::i64:
1391      if (GPR_idx != NumGPRs) {
1392        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1393      } else {
1394        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1395      }
1396      ArgOffset += PtrByteSize;
1397      break;
1398    case MVT::f32:
1399    case MVT::f64:
1400      if (isVarArg && isPPC64) {
1401        // Float varargs need to be promoted to double.
1402        if (Arg.getValueType() == MVT::f32)
1403          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1404      }
1405
1406      if (FPR_idx != NumFPRs) {
1407        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1408
1409        if (isVarArg) {
1410          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1411          MemOpChains.push_back(Store);
1412
1413          // Float varargs are always shadowed in available integer registers
1414          if (GPR_idx != NumGPRs) {
1415            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1416            MemOpChains.push_back(Load.getValue(1));
1417            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1418          }
1419          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1420            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1421            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1422            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1423            MemOpChains.push_back(Load.getValue(1));
1424            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1425          }
1426        } else {
1427          // If we have any FPRs remaining, we may also have GPRs remaining.
1428          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1429          // GPRs.
1430          if (GPR_idx != NumGPRs)
1431            ++GPR_idx;
1432          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1433            ++GPR_idx;
1434        }
1435      } else {
1436        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1437      }
1438      if (isPPC64)
1439        ArgOffset += 8;
1440      else
1441        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1442      break;
1443    case MVT::v4f32:
1444    case MVT::v4i32:
1445    case MVT::v8i16:
1446    case MVT::v16i8:
1447      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1448      assert(VR_idx != NumVRs &&
1449             "Don't support passing more than 12 vector args yet!");
1450      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1451      break;
1452    }
1453  }
1454  if (!MemOpChains.empty())
1455    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1456                        &MemOpChains[0], MemOpChains.size());
1457
1458  // Build a sequence of copy-to-reg nodes chained together with token chain
1459  // and flag operands which copy the outgoing args into the appropriate regs.
1460  SDOperand InFlag;
1461  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1462    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1463                             InFlag);
1464    InFlag = Chain.getValue(1);
1465  }
1466
1467  std::vector<MVT::ValueType> NodeTys;
1468  NodeTys.push_back(MVT::Other);   // Returns a chain
1469  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1470
1471  SmallVector<SDOperand, 8> Ops;
1472  unsigned CallOpc = PPCISD::CALL;
1473
1474  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1475  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1476  // node so that legalize doesn't hack it.
1477  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1478    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1479  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1480    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1481  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1482    // If this is an absolute destination address, use the munged value.
1483    Callee = SDOperand(Dest, 0);
1484  else {
1485    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1486    // to do the call, we can't use PPCISD::CALL.
1487    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1488    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1489    InFlag = Chain.getValue(1);
1490
1491    // Copy the callee address into R12 on darwin.
1492    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1493    InFlag = Chain.getValue(1);
1494
1495    NodeTys.clear();
1496    NodeTys.push_back(MVT::Other);
1497    NodeTys.push_back(MVT::Flag);
1498    Ops.push_back(Chain);
1499    CallOpc = PPCISD::BCTRL;
1500    Callee.Val = 0;
1501  }
1502
1503  // If this is a direct call, pass the chain and the callee.
1504  if (Callee.Val) {
1505    Ops.push_back(Chain);
1506    Ops.push_back(Callee);
1507  }
1508
1509  // Add argument registers to the end of the list so that they are known live
1510  // into the call.
1511  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1512    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1513                                  RegsToPass[i].second.getValueType()));
1514
1515  if (InFlag.Val)
1516    Ops.push_back(InFlag);
1517  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1518  InFlag = Chain.getValue(1);
1519
1520  SDOperand ResultVals[3];
1521  unsigned NumResults = 0;
1522  NodeTys.clear();
1523
1524  // If the call has results, copy the values out of the ret val registers.
1525  switch (Op.Val->getValueType(0)) {
1526  default: assert(0 && "Unexpected ret value!");
1527  case MVT::Other: break;
1528  case MVT::i32:
1529    if (Op.Val->getValueType(1) == MVT::i32) {
1530      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1531      ResultVals[0] = Chain.getValue(0);
1532      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1533                                 Chain.getValue(2)).getValue(1);
1534      ResultVals[1] = Chain.getValue(0);
1535      NumResults = 2;
1536      NodeTys.push_back(MVT::i32);
1537    } else {
1538      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1539      ResultVals[0] = Chain.getValue(0);
1540      NumResults = 1;
1541    }
1542    NodeTys.push_back(MVT::i32);
1543    break;
1544  case MVT::i64:
1545    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1546    ResultVals[0] = Chain.getValue(0);
1547    NumResults = 1;
1548    NodeTys.push_back(MVT::i64);
1549    break;
1550  case MVT::f32:
1551  case MVT::f64:
1552    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1553                               InFlag).getValue(1);
1554    ResultVals[0] = Chain.getValue(0);
1555    NumResults = 1;
1556    NodeTys.push_back(Op.Val->getValueType(0));
1557    break;
1558  case MVT::v4f32:
1559  case MVT::v4i32:
1560  case MVT::v8i16:
1561  case MVT::v16i8:
1562    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1563                                   InFlag).getValue(1);
1564    ResultVals[0] = Chain.getValue(0);
1565    NumResults = 1;
1566    NodeTys.push_back(Op.Val->getValueType(0));
1567    break;
1568  }
1569
1570  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1571                      DAG.getConstant(NumBytes, PtrVT));
1572  NodeTys.push_back(MVT::Other);
1573
1574  // If the function returns void, just return the chain.
1575  if (NumResults == 0)
1576    return Chain;
1577
1578  // Otherwise, merge everything together with a MERGE_VALUES node.
1579  ResultVals[NumResults++] = Chain;
1580  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1581                              ResultVals, NumResults);
1582  return Res.getValue(Op.ResNo);
1583}
1584
1585static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1586  SDOperand Copy;
1587  switch(Op.getNumOperands()) {
1588  default:
1589    assert(0 && "Do not know how to return this many arguments!");
1590    abort();
1591  case 1:
1592    return SDOperand(); // ret void is legal
1593  case 3: {
1594    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1595    unsigned ArgReg;
1596    if (ArgVT == MVT::i32) {
1597      ArgReg = PPC::R3;
1598    } else if (ArgVT == MVT::i64) {
1599      ArgReg = PPC::X3;
1600    } else if (MVT::isVector(ArgVT)) {
1601      ArgReg = PPC::V2;
1602    } else {
1603      assert(MVT::isFloatingPoint(ArgVT));
1604      ArgReg = PPC::F1;
1605    }
1606
1607    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1608                            SDOperand());
1609
1610    // If we haven't noted the R3/F1 are live out, do so now.
1611    if (DAG.getMachineFunction().liveout_empty())
1612      DAG.getMachineFunction().addLiveOut(ArgReg);
1613    break;
1614  }
1615  case 5:
1616    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1617                            SDOperand());
1618    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1619    // If we haven't noted the R3+R4 are live out, do so now.
1620    if (DAG.getMachineFunction().liveout_empty()) {
1621      DAG.getMachineFunction().addLiveOut(PPC::R3);
1622      DAG.getMachineFunction().addLiveOut(PPC::R4);
1623    }
1624    break;
1625  }
1626  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1627}
1628
1629static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1630                                   const PPCSubtarget &Subtarget) {
1631  // When we pop the dynamic allocation we need to restore the SP link.
1632
1633  // Get the corect type for pointers.
1634  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1635
1636  // Construct the stack pointer operand.
1637  bool IsPPC64 = Subtarget.isPPC64();
1638  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1639  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1640
1641  // Get the operands for the STACKRESTORE.
1642  SDOperand Chain = Op.getOperand(0);
1643  SDOperand SaveSP = Op.getOperand(1);
1644
1645  // Load the old link SP.
1646  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1647
1648  // Restore the stack pointer.
1649  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1650
1651  // Store the old link SP.
1652  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1653}
1654
1655static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1656                                         const PPCSubtarget &Subtarget) {
1657  MachineFunction &MF = DAG.getMachineFunction();
1658  bool IsPPC64 = Subtarget.isPPC64();
1659
1660  // Get current frame pointer save index.  The users of this index will be
1661  // primarily DYNALLOC instructions.
1662  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1663  int FPSI = FI->getFramePointerSaveIndex();
1664
1665  // If the frame pointer save index hasn't been defined yet.
1666  if (!FPSI) {
1667    // Find out what the fix offset of the frame pointer save area.
1668    int Offset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64);
1669    // Allocate the frame index for frame pointer save area.
1670    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, Offset);
1671    // Save the result.
1672    FI->setFramePointerSaveIndex(FPSI);
1673  }
1674
1675  // Get the inputs.
1676  SDOperand Chain = Op.getOperand(0);
1677  SDOperand Size  = Op.getOperand(1);
1678
1679  // Get the corect type for pointers.
1680  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1681  // Negate the size.
1682  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1683                                  DAG.getConstant(0, PtrVT), Size);
1684  // Construct a node for the frame pointer save index.
1685  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1686  // Build a DYNALLOC node.
1687  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1688  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1689  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1690}
1691
1692
1693/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1694/// possible.
1695static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1696  // Not FP? Not a fsel.
1697  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1698      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1699    return SDOperand();
1700
1701  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1702
1703  // Cannot handle SETEQ/SETNE.
1704  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1705
1706  MVT::ValueType ResVT = Op.getValueType();
1707  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1708  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1709  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1710
1711  // If the RHS of the comparison is a 0.0, we don't need to do the
1712  // subtraction at all.
1713  if (isFloatingPointZero(RHS))
1714    switch (CC) {
1715    default: break;       // SETUO etc aren't handled by fsel.
1716    case ISD::SETULT:
1717    case ISD::SETOLT:
1718    case ISD::SETLT:
1719      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1720    case ISD::SETUGE:
1721    case ISD::SETOGE:
1722    case ISD::SETGE:
1723      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1724        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1725      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1726    case ISD::SETUGT:
1727    case ISD::SETOGT:
1728    case ISD::SETGT:
1729      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1730    case ISD::SETULE:
1731    case ISD::SETOLE:
1732    case ISD::SETLE:
1733      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1734        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1735      return DAG.getNode(PPCISD::FSEL, ResVT,
1736                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1737    }
1738
1739      SDOperand Cmp;
1740  switch (CC) {
1741  default: break;       // SETUO etc aren't handled by fsel.
1742  case ISD::SETULT:
1743  case ISD::SETOLT:
1744  case ISD::SETLT:
1745    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1746    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1747      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1748      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1749  case ISD::SETUGE:
1750  case ISD::SETOGE:
1751  case ISD::SETGE:
1752    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1753    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1754      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1755      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1756  case ISD::SETUGT:
1757  case ISD::SETOGT:
1758  case ISD::SETGT:
1759    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1760    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1761      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1762      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1763  case ISD::SETULE:
1764  case ISD::SETOLE:
1765  case ISD::SETLE:
1766    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1767    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1768      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1769      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1770  }
1771  return SDOperand();
1772}
1773
1774static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1775  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1776  SDOperand Src = Op.getOperand(0);
1777  if (Src.getValueType() == MVT::f32)
1778    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1779
1780  SDOperand Tmp;
1781  switch (Op.getValueType()) {
1782  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1783  case MVT::i32:
1784    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1785    break;
1786  case MVT::i64:
1787    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1788    break;
1789  }
1790
1791  // Convert the FP value to an int value through memory.
1792  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1793  if (Op.getValueType() == MVT::i32)
1794    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1795  return Bits;
1796}
1797
1798static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1799  if (Op.getOperand(0).getValueType() == MVT::i64) {
1800    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1801    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1802    if (Op.getValueType() == MVT::f32)
1803      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1804    return FP;
1805  }
1806
1807  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1808         "Unhandled SINT_TO_FP type in custom expander!");
1809  // Since we only generate this in 64-bit mode, we can take advantage of
1810  // 64-bit registers.  In particular, sign extend the input value into the
1811  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1812  // then lfd it and fcfid it.
1813  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1814  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1815  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1816  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1817
1818  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1819                                Op.getOperand(0));
1820
1821  // STD the extended value into the stack slot.
1822  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1823                                DAG.getEntryNode(), Ext64, FIdx,
1824                                DAG.getSrcValue(NULL));
1825  // Load the value as a double.
1826  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1827
1828  // FCFID it and return it.
1829  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1830  if (Op.getValueType() == MVT::f32)
1831    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1832  return FP;
1833}
1834
1835static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1836  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1837         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1838
1839  // Expand into a bunch of logical ops.  Note that these ops
1840  // depend on the PPC behavior for oversized shift amounts.
1841  SDOperand Lo = Op.getOperand(0);
1842  SDOperand Hi = Op.getOperand(1);
1843  SDOperand Amt = Op.getOperand(2);
1844
1845  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1846                               DAG.getConstant(32, MVT::i32), Amt);
1847  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1848  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1849  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1850  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1851                               DAG.getConstant(-32U, MVT::i32));
1852  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1853  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1854  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1855  SDOperand OutOps[] = { OutLo, OutHi };
1856  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1857                     OutOps, 2);
1858}
1859
1860static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1861  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1862         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1863
1864  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1865  // depend on the PPC behavior for oversized shift amounts.
1866  SDOperand Lo = Op.getOperand(0);
1867  SDOperand Hi = Op.getOperand(1);
1868  SDOperand Amt = Op.getOperand(2);
1869
1870  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1871                               DAG.getConstant(32, MVT::i32), Amt);
1872  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1873  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1874  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1875  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1876                               DAG.getConstant(-32U, MVT::i32));
1877  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1878  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1879  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1880  SDOperand OutOps[] = { OutLo, OutHi };
1881  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1882                     OutOps, 2);
1883}
1884
1885static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1886  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1887         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1888
1889  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1890  SDOperand Lo = Op.getOperand(0);
1891  SDOperand Hi = Op.getOperand(1);
1892  SDOperand Amt = Op.getOperand(2);
1893
1894  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1895                               DAG.getConstant(32, MVT::i32), Amt);
1896  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1897  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1898  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1899  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1900                               DAG.getConstant(-32U, MVT::i32));
1901  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1902  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1903  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1904                                    Tmp4, Tmp6, ISD::SETLE);
1905  SDOperand OutOps[] = { OutLo, OutHi };
1906  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1907                     OutOps, 2);
1908}
1909
1910//===----------------------------------------------------------------------===//
1911// Vector related lowering.
1912//
1913
1914// If this is a vector of constants or undefs, get the bits.  A bit in
1915// UndefBits is set if the corresponding element of the vector is an
1916// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1917// zero.   Return true if this is not an array of constants, false if it is.
1918//
1919static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1920                                       uint64_t UndefBits[2]) {
1921  // Start with zero'd results.
1922  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1923
1924  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1925  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1926    SDOperand OpVal = BV->getOperand(i);
1927
1928    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1929    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1930
1931    uint64_t EltBits = 0;
1932    if (OpVal.getOpcode() == ISD::UNDEF) {
1933      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1934      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1935      continue;
1936    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1937      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1938    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1939      assert(CN->getValueType(0) == MVT::f32 &&
1940             "Only one legal FP vector type!");
1941      EltBits = FloatToBits(CN->getValue());
1942    } else {
1943      // Nonconstant element.
1944      return true;
1945    }
1946
1947    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1948  }
1949
1950  //printf("%llx %llx  %llx %llx\n",
1951  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1952  return false;
1953}
1954
1955// If this is a splat (repetition) of a value across the whole vector, return
1956// the smallest size that splats it.  For example, "0x01010101010101..." is a
1957// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1958// SplatSize = 1 byte.
1959static bool isConstantSplat(const uint64_t Bits128[2],
1960                            const uint64_t Undef128[2],
1961                            unsigned &SplatBits, unsigned &SplatUndef,
1962                            unsigned &SplatSize) {
1963
1964  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1965  // the same as the lower 64-bits, ignoring undefs.
1966  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1967    return false;  // Can't be a splat if two pieces don't match.
1968
1969  uint64_t Bits64  = Bits128[0] | Bits128[1];
1970  uint64_t Undef64 = Undef128[0] & Undef128[1];
1971
1972  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1973  // undefs.
1974  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1975    return false;  // Can't be a splat if two pieces don't match.
1976
1977  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1978  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1979
1980  // If the top 16-bits are different than the lower 16-bits, ignoring
1981  // undefs, we have an i32 splat.
1982  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1983    SplatBits = Bits32;
1984    SplatUndef = Undef32;
1985    SplatSize = 4;
1986    return true;
1987  }
1988
1989  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1990  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1991
1992  // If the top 8-bits are different than the lower 8-bits, ignoring
1993  // undefs, we have an i16 splat.
1994  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1995    SplatBits = Bits16;
1996    SplatUndef = Undef16;
1997    SplatSize = 2;
1998    return true;
1999  }
2000
2001  // Otherwise, we have an 8-bit splat.
2002  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2003  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2004  SplatSize = 1;
2005  return true;
2006}
2007
2008/// BuildSplatI - Build a canonical splati of Val with an element size of
2009/// SplatSize.  Cast the result to VT.
2010static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2011                             SelectionDAG &DAG) {
2012  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2013
2014  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2015    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2016  };
2017
2018  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2019
2020  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2021  if (Val == -1)
2022    SplatSize = 1;
2023
2024  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2025
2026  // Build a canonical splat for this value.
2027  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
2028  SmallVector<SDOperand, 8> Ops;
2029  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2030  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2031                              &Ops[0], Ops.size());
2032  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2033}
2034
2035/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2036/// specified intrinsic ID.
2037static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2038                                  SelectionDAG &DAG,
2039                                  MVT::ValueType DestVT = MVT::Other) {
2040  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2041  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2042                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2043}
2044
2045/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2046/// specified intrinsic ID.
2047static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2048                                  SDOperand Op2, SelectionDAG &DAG,
2049                                  MVT::ValueType DestVT = MVT::Other) {
2050  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2051  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2052                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2053}
2054
2055
2056/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2057/// amount.  The result has the specified value type.
2058static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2059                             MVT::ValueType VT, SelectionDAG &DAG) {
2060  // Force LHS/RHS to be the right type.
2061  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2062  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2063
2064  SDOperand Ops[16];
2065  for (unsigned i = 0; i != 16; ++i)
2066    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2067  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2068                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2069  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2070}
2071
2072// If this is a case we can't handle, return null and let the default
2073// expansion code take care of it.  If we CAN select this case, and if it
2074// selects to a single instruction, return Op.  Otherwise, if we can codegen
2075// this case more efficiently than a constant pool load, lower it to the
2076// sequence of ops that should be used.
2077static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2078  // If this is a vector of constants or undefs, get the bits.  A bit in
2079  // UndefBits is set if the corresponding element of the vector is an
2080  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2081  // zero.
2082  uint64_t VectorBits[2];
2083  uint64_t UndefBits[2];
2084  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2085    return SDOperand();   // Not a constant vector.
2086
2087  // If this is a splat (repetition) of a value across the whole vector, return
2088  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2089  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2090  // SplatSize = 1 byte.
2091  unsigned SplatBits, SplatUndef, SplatSize;
2092  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2093    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2094
2095    // First, handle single instruction cases.
2096
2097    // All zeros?
2098    if (SplatBits == 0) {
2099      // Canonicalize all zero vectors to be v4i32.
2100      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2101        SDOperand Z = DAG.getConstant(0, MVT::i32);
2102        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2103        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2104      }
2105      return Op;
2106    }
2107
2108    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2109    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2110    if (SextVal >= -16 && SextVal <= 15)
2111      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2112
2113
2114    // Two instruction sequences.
2115
2116    // If this value is in the range [-32,30] and is even, use:
2117    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2118    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2119      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2120      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2121    }
2122
2123    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2124    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2125    // for fneg/fabs.
2126    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2127      // Make -1 and vspltisw -1:
2128      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2129
2130      // Make the VSLW intrinsic, computing 0x8000_0000.
2131      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2132                                       OnesV, DAG);
2133
2134      // xor by OnesV to invert it.
2135      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2136      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2137    }
2138
2139    // Check to see if this is a wide variety of vsplti*, binop self cases.
2140    unsigned SplatBitSize = SplatSize*8;
2141    static const char SplatCsts[] = {
2142      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2143      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2144    };
2145
2146    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2147      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2148      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2149      int i = SplatCsts[idx];
2150
2151      // Figure out what shift amount will be used by altivec if shifted by i in
2152      // this splat size.
2153      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2154
2155      // vsplti + shl self.
2156      if (SextVal == (i << (int)TypeShiftAmt)) {
2157        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2158        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2159          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2160          Intrinsic::ppc_altivec_vslw
2161        };
2162        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2163        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2164      }
2165
2166      // vsplti + srl self.
2167      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2168        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2169        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2170          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2171          Intrinsic::ppc_altivec_vsrw
2172        };
2173        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2174        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2175      }
2176
2177      // vsplti + sra self.
2178      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2179        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2180        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2181          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2182          Intrinsic::ppc_altivec_vsraw
2183        };
2184        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2185        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2186      }
2187
2188      // vsplti + rol self.
2189      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2190                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2191        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2192        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2193          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2194          Intrinsic::ppc_altivec_vrlw
2195        };
2196        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2197        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2198      }
2199
2200      // t = vsplti c, result = vsldoi t, t, 1
2201      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2202        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2203        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2204      }
2205      // t = vsplti c, result = vsldoi t, t, 2
2206      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2207        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2208        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2209      }
2210      // t = vsplti c, result = vsldoi t, t, 3
2211      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2212        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2213        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2214      }
2215    }
2216
2217    // Three instruction sequences.
2218
2219    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2220    if (SextVal >= 0 && SextVal <= 31) {
2221      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2222      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2223      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2224      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2225    }
2226    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2227    if (SextVal >= -31 && SextVal <= 0) {
2228      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2229      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2230      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2231      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2232    }
2233  }
2234
2235  return SDOperand();
2236}
2237
2238/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2239/// the specified operations to build the shuffle.
2240static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2241                                        SDOperand RHS, SelectionDAG &DAG) {
2242  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2243  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2244  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2245
2246  enum {
2247    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2248    OP_VMRGHW,
2249    OP_VMRGLW,
2250    OP_VSPLTISW0,
2251    OP_VSPLTISW1,
2252    OP_VSPLTISW2,
2253    OP_VSPLTISW3,
2254    OP_VSLDOI4,
2255    OP_VSLDOI8,
2256    OP_VSLDOI12
2257  };
2258
2259  if (OpNum == OP_COPY) {
2260    if (LHSID == (1*9+2)*9+3) return LHS;
2261    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2262    return RHS;
2263  }
2264
2265  SDOperand OpLHS, OpRHS;
2266  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2267  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2268
2269  unsigned ShufIdxs[16];
2270  switch (OpNum) {
2271  default: assert(0 && "Unknown i32 permute!");
2272  case OP_VMRGHW:
2273    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2274    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2275    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2276    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2277    break;
2278  case OP_VMRGLW:
2279    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2280    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2281    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2282    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2283    break;
2284  case OP_VSPLTISW0:
2285    for (unsigned i = 0; i != 16; ++i)
2286      ShufIdxs[i] = (i&3)+0;
2287    break;
2288  case OP_VSPLTISW1:
2289    for (unsigned i = 0; i != 16; ++i)
2290      ShufIdxs[i] = (i&3)+4;
2291    break;
2292  case OP_VSPLTISW2:
2293    for (unsigned i = 0; i != 16; ++i)
2294      ShufIdxs[i] = (i&3)+8;
2295    break;
2296  case OP_VSPLTISW3:
2297    for (unsigned i = 0; i != 16; ++i)
2298      ShufIdxs[i] = (i&3)+12;
2299    break;
2300  case OP_VSLDOI4:
2301    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2302  case OP_VSLDOI8:
2303    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2304  case OP_VSLDOI12:
2305    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2306  }
2307  SDOperand Ops[16];
2308  for (unsigned i = 0; i != 16; ++i)
2309    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2310
2311  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2312                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2313}
2314
2315/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2316/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2317/// return the code it can be lowered into.  Worst case, it can always be
2318/// lowered into a vperm.
2319static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2320  SDOperand V1 = Op.getOperand(0);
2321  SDOperand V2 = Op.getOperand(1);
2322  SDOperand PermMask = Op.getOperand(2);
2323
2324  // Cases that are handled by instructions that take permute immediates
2325  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2326  // selected by the instruction selector.
2327  if (V2.getOpcode() == ISD::UNDEF) {
2328    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2329        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2330        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2331        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2332        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2333        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2334        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2335        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2336        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2337        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2338        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2339        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2340      return Op;
2341    }
2342  }
2343
2344  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2345  // and produce a fixed permutation.  If any of these match, do not lower to
2346  // VPERM.
2347  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2348      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2349      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2350      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2351      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2352      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2353      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2354      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2355      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2356    return Op;
2357
2358  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2359  // perfect shuffle table to emit an optimal matching sequence.
2360  unsigned PFIndexes[4];
2361  bool isFourElementShuffle = true;
2362  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2363    unsigned EltNo = 8;   // Start out undef.
2364    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2365      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2366        continue;   // Undef, ignore it.
2367
2368      unsigned ByteSource =
2369        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2370      if ((ByteSource & 3) != j) {
2371        isFourElementShuffle = false;
2372        break;
2373      }
2374
2375      if (EltNo == 8) {
2376        EltNo = ByteSource/4;
2377      } else if (EltNo != ByteSource/4) {
2378        isFourElementShuffle = false;
2379        break;
2380      }
2381    }
2382    PFIndexes[i] = EltNo;
2383  }
2384
2385  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2386  // perfect shuffle vector to determine if it is cost effective to do this as
2387  // discrete instructions, or whether we should use a vperm.
2388  if (isFourElementShuffle) {
2389    // Compute the index in the perfect shuffle table.
2390    unsigned PFTableIndex =
2391      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2392
2393    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2394    unsigned Cost  = (PFEntry >> 30);
2395
2396    // Determining when to avoid vperm is tricky.  Many things affect the cost
2397    // of vperm, particularly how many times the perm mask needs to be computed.
2398    // For example, if the perm mask can be hoisted out of a loop or is already
2399    // used (perhaps because there are multiple permutes with the same shuffle
2400    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2401    // the loop requires an extra register.
2402    //
2403    // As a compromise, we only emit discrete instructions if the shuffle can be
2404    // generated in 3 or fewer operations.  When we have loop information
2405    // available, if this block is within a loop, we should avoid using vperm
2406    // for 3-operation perms and use a constant pool load instead.
2407    if (Cost < 3)
2408      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2409  }
2410
2411  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2412  // vector that will get spilled to the constant pool.
2413  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2414
2415  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2416  // that it is in input element units, not in bytes.  Convert now.
2417  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2418  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2419
2420  SmallVector<SDOperand, 16> ResultMask;
2421  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2422    unsigned SrcElt;
2423    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2424      SrcElt = 0;
2425    else
2426      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2427
2428    for (unsigned j = 0; j != BytesPerElement; ++j)
2429      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2430                                           MVT::i8));
2431  }
2432
2433  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2434                                    &ResultMask[0], ResultMask.size());
2435  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2436}
2437
2438/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2439/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2440/// information about the intrinsic.
2441static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2442                                  bool &isDot) {
2443  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2444  CompareOpc = -1;
2445  isDot = false;
2446  switch (IntrinsicID) {
2447  default: return false;
2448    // Comparison predicates.
2449  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2450  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2451  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2452  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2453  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2454  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2455  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2456  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2457  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2458  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2459  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2460  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2461  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2462
2463    // Normal Comparisons.
2464  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2465  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2466  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2467  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2468  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2469  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2470  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2471  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2472  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2473  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2474  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2475  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2476  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2477  }
2478  return true;
2479}
2480
2481/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2482/// lower, do it, otherwise return null.
2483static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2484  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2485  // opcode number of the comparison.
2486  int CompareOpc;
2487  bool isDot;
2488  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2489    return SDOperand();    // Don't custom lower most intrinsics.
2490
2491  // If this is a non-dot comparison, make the VCMP node and we are done.
2492  if (!isDot) {
2493    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2494                                Op.getOperand(1), Op.getOperand(2),
2495                                DAG.getConstant(CompareOpc, MVT::i32));
2496    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2497  }
2498
2499  // Create the PPCISD altivec 'dot' comparison node.
2500  SDOperand Ops[] = {
2501    Op.getOperand(2),  // LHS
2502    Op.getOperand(3),  // RHS
2503    DAG.getConstant(CompareOpc, MVT::i32)
2504  };
2505  std::vector<MVT::ValueType> VTs;
2506  VTs.push_back(Op.getOperand(2).getValueType());
2507  VTs.push_back(MVT::Flag);
2508  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2509
2510  // Now that we have the comparison, emit a copy from the CR to a GPR.
2511  // This is flagged to the above dot comparison.
2512  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2513                                DAG.getRegister(PPC::CR6, MVT::i32),
2514                                CompNode.getValue(1));
2515
2516  // Unpack the result based on how the target uses it.
2517  unsigned BitNo;   // Bit # of CR6.
2518  bool InvertBit;   // Invert result?
2519  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2520  default:  // Can't happen, don't crash on invalid number though.
2521  case 0:   // Return the value of the EQ bit of CR6.
2522    BitNo = 0; InvertBit = false;
2523    break;
2524  case 1:   // Return the inverted value of the EQ bit of CR6.
2525    BitNo = 0; InvertBit = true;
2526    break;
2527  case 2:   // Return the value of the LT bit of CR6.
2528    BitNo = 2; InvertBit = false;
2529    break;
2530  case 3:   // Return the inverted value of the LT bit of CR6.
2531    BitNo = 2; InvertBit = true;
2532    break;
2533  }
2534
2535  // Shift the bit into the low position.
2536  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2537                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2538  // Isolate the bit.
2539  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2540                      DAG.getConstant(1, MVT::i32));
2541
2542  // If we are supposed to, toggle the bit.
2543  if (InvertBit)
2544    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2545                        DAG.getConstant(1, MVT::i32));
2546  return Flags;
2547}
2548
2549static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2550  // Create a stack slot that is 16-byte aligned.
2551  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2552  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2553  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2554  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2555
2556  // Store the input value into Value#0 of the stack slot.
2557  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2558                                 Op.getOperand(0), FIdx, NULL, 0);
2559  // Load it out.
2560  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2561}
2562
2563static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2564  if (Op.getValueType() == MVT::v4i32) {
2565    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2566
2567    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2568    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2569
2570    SDOperand RHSSwap =   // = vrlw RHS, 16
2571      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2572
2573    // Shrinkify inputs to v8i16.
2574    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2575    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2576    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2577
2578    // Low parts multiplied together, generating 32-bit results (we ignore the
2579    // top parts).
2580    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2581                                        LHS, RHS, DAG, MVT::v4i32);
2582
2583    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2584                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2585    // Shift the high parts up 16 bits.
2586    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2587    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2588  } else if (Op.getValueType() == MVT::v8i16) {
2589    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2590
2591    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2592
2593    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2594                            LHS, RHS, Zero, DAG);
2595  } else if (Op.getValueType() == MVT::v16i8) {
2596    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2597
2598    // Multiply the even 8-bit parts, producing 16-bit sums.
2599    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2600                                           LHS, RHS, DAG, MVT::v8i16);
2601    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2602
2603    // Multiply the odd 8-bit parts, producing 16-bit sums.
2604    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2605                                          LHS, RHS, DAG, MVT::v8i16);
2606    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2607
2608    // Merge the results together.
2609    SDOperand Ops[16];
2610    for (unsigned i = 0; i != 8; ++i) {
2611      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2612      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2613    }
2614    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2615                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2616  } else {
2617    assert(0 && "Unknown mul to lower!");
2618    abort();
2619  }
2620}
2621
2622/// LowerOperation - Provide custom lowering hooks for some operations.
2623///
2624SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2625  switch (Op.getOpcode()) {
2626  default: assert(0 && "Wasn't expecting to be able to lower this!");
2627  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2628  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2629  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2630  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2631  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2632  case ISD::FORMAL_ARGUMENTS:
2633      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2634  case ISD::CALL:               return LowerCALL(Op, DAG);
2635  case ISD::RET:                return LowerRET(Op, DAG);
2636  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2637  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
2638                                                               PPCSubTarget);
2639
2640  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2641  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2642  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2643
2644  // Lower 64-bit shifts.
2645  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2646  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2647  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2648
2649  // Vector-related lowering.
2650  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2651  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2652  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2653  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2654  case ISD::MUL:                return LowerMUL(Op, DAG);
2655
2656  // Frame & Return address.  Currently unimplemented
2657  case ISD::RETURNADDR:         break;
2658  case ISD::FRAMEADDR:          break;
2659  }
2660  return SDOperand();
2661}
2662
2663//===----------------------------------------------------------------------===//
2664//  Other Lowering Code
2665//===----------------------------------------------------------------------===//
2666
2667MachineBasicBlock *
2668PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2669                                           MachineBasicBlock *BB) {
2670  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2671  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2672          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2673          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2674          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2675          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2676         "Unexpected instr type to insert");
2677
2678  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2679  // control-flow pattern.  The incoming instruction knows the destination vreg
2680  // to set, the condition code register to branch on, the true/false values to
2681  // select between, and a branch opcode to use.
2682  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2683  ilist<MachineBasicBlock>::iterator It = BB;
2684  ++It;
2685
2686  //  thisMBB:
2687  //  ...
2688  //   TrueVal = ...
2689  //   cmpTY ccX, r1, r2
2690  //   bCC copy1MBB
2691  //   fallthrough --> copy0MBB
2692  MachineBasicBlock *thisMBB = BB;
2693  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2694  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2695  unsigned SelectPred = MI->getOperand(4).getImm();
2696  BuildMI(BB, TII->get(PPC::BCC))
2697    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2698  MachineFunction *F = BB->getParent();
2699  F->getBasicBlockList().insert(It, copy0MBB);
2700  F->getBasicBlockList().insert(It, sinkMBB);
2701  // Update machine-CFG edges by first adding all successors of the current
2702  // block to the new block which will contain the Phi node for the select.
2703  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2704      e = BB->succ_end(); i != e; ++i)
2705    sinkMBB->addSuccessor(*i);
2706  // Next, remove all successors of the current block, and add the true
2707  // and fallthrough blocks as its successors.
2708  while(!BB->succ_empty())
2709    BB->removeSuccessor(BB->succ_begin());
2710  BB->addSuccessor(copy0MBB);
2711  BB->addSuccessor(sinkMBB);
2712
2713  //  copy0MBB:
2714  //   %FalseValue = ...
2715  //   # fallthrough to sinkMBB
2716  BB = copy0MBB;
2717
2718  // Update machine-CFG edges
2719  BB->addSuccessor(sinkMBB);
2720
2721  //  sinkMBB:
2722  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2723  //  ...
2724  BB = sinkMBB;
2725  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2726    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2727    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2728
2729  delete MI;   // The pseudo instruction is gone now.
2730  return BB;
2731}
2732
2733//===----------------------------------------------------------------------===//
2734// Target Optimization Hooks
2735//===----------------------------------------------------------------------===//
2736
2737SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2738                                               DAGCombinerInfo &DCI) const {
2739  TargetMachine &TM = getTargetMachine();
2740  SelectionDAG &DAG = DCI.DAG;
2741  switch (N->getOpcode()) {
2742  default: break;
2743  case PPCISD::SHL:
2744    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2745      if (C->getValue() == 0)   // 0 << V -> 0.
2746        return N->getOperand(0);
2747    }
2748    break;
2749  case PPCISD::SRL:
2750    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2751      if (C->getValue() == 0)   // 0 >>u V -> 0.
2752        return N->getOperand(0);
2753    }
2754    break;
2755  case PPCISD::SRA:
2756    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2757      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2758          C->isAllOnesValue())    // -1 >>s V -> -1.
2759        return N->getOperand(0);
2760    }
2761    break;
2762
2763  case ISD::SINT_TO_FP:
2764    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2765      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2766        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2767        // We allow the src/dst to be either f32/f64, but the intermediate
2768        // type must be i64.
2769        if (N->getOperand(0).getValueType() == MVT::i64) {
2770          SDOperand Val = N->getOperand(0).getOperand(0);
2771          if (Val.getValueType() == MVT::f32) {
2772            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2773            DCI.AddToWorklist(Val.Val);
2774          }
2775
2776          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2777          DCI.AddToWorklist(Val.Val);
2778          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2779          DCI.AddToWorklist(Val.Val);
2780          if (N->getValueType(0) == MVT::f32) {
2781            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2782            DCI.AddToWorklist(Val.Val);
2783          }
2784          return Val;
2785        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2786          // If the intermediate type is i32, we can avoid the load/store here
2787          // too.
2788        }
2789      }
2790    }
2791    break;
2792  case ISD::STORE:
2793    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2794    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2795        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2796        N->getOperand(1).getValueType() == MVT::i32) {
2797      SDOperand Val = N->getOperand(1).getOperand(0);
2798      if (Val.getValueType() == MVT::f32) {
2799        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2800        DCI.AddToWorklist(Val.Val);
2801      }
2802      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2803      DCI.AddToWorklist(Val.Val);
2804
2805      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2806                        N->getOperand(2), N->getOperand(3));
2807      DCI.AddToWorklist(Val.Val);
2808      return Val;
2809    }
2810
2811    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2812    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2813        N->getOperand(1).Val->hasOneUse() &&
2814        (N->getOperand(1).getValueType() == MVT::i32 ||
2815         N->getOperand(1).getValueType() == MVT::i16)) {
2816      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2817      // Do an any-extend to 32-bits if this is a half-word input.
2818      if (BSwapOp.getValueType() == MVT::i16)
2819        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2820
2821      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2822                         N->getOperand(2), N->getOperand(3),
2823                         DAG.getValueType(N->getOperand(1).getValueType()));
2824    }
2825    break;
2826  case ISD::BSWAP:
2827    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2828    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2829        N->getOperand(0).hasOneUse() &&
2830        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2831      SDOperand Load = N->getOperand(0);
2832      LoadSDNode *LD = cast<LoadSDNode>(Load);
2833      // Create the byte-swapping load.
2834      std::vector<MVT::ValueType> VTs;
2835      VTs.push_back(MVT::i32);
2836      VTs.push_back(MVT::Other);
2837      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2838      SDOperand Ops[] = {
2839        LD->getChain(),    // Chain
2840        LD->getBasePtr(),  // Ptr
2841        SV,                // SrcValue
2842        DAG.getValueType(N->getValueType(0)) // VT
2843      };
2844      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2845
2846      // If this is an i16 load, insert the truncate.
2847      SDOperand ResVal = BSLoad;
2848      if (N->getValueType(0) == MVT::i16)
2849        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2850
2851      // First, combine the bswap away.  This makes the value produced by the
2852      // load dead.
2853      DCI.CombineTo(N, ResVal);
2854
2855      // Next, combine the load away, we give it a bogus result value but a real
2856      // chain result.  The result value is dead because the bswap is dead.
2857      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2858
2859      // Return N so it doesn't get rechecked!
2860      return SDOperand(N, 0);
2861    }
2862
2863    break;
2864  case PPCISD::VCMP: {
2865    // If a VCMPo node already exists with exactly the same operands as this
2866    // node, use its result instead of this node (VCMPo computes both a CR6 and
2867    // a normal output).
2868    //
2869    if (!N->getOperand(0).hasOneUse() &&
2870        !N->getOperand(1).hasOneUse() &&
2871        !N->getOperand(2).hasOneUse()) {
2872
2873      // Scan all of the users of the LHS, looking for VCMPo's that match.
2874      SDNode *VCMPoNode = 0;
2875
2876      SDNode *LHSN = N->getOperand(0).Val;
2877      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2878           UI != E; ++UI)
2879        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2880            (*UI)->getOperand(1) == N->getOperand(1) &&
2881            (*UI)->getOperand(2) == N->getOperand(2) &&
2882            (*UI)->getOperand(0) == N->getOperand(0)) {
2883          VCMPoNode = *UI;
2884          break;
2885        }
2886
2887      // If there is no VCMPo node, or if the flag value has a single use, don't
2888      // transform this.
2889      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2890        break;
2891
2892      // Look at the (necessarily single) use of the flag value.  If it has a
2893      // chain, this transformation is more complex.  Note that multiple things
2894      // could use the value result, which we should ignore.
2895      SDNode *FlagUser = 0;
2896      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2897           FlagUser == 0; ++UI) {
2898        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2899        SDNode *User = *UI;
2900        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2901          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2902            FlagUser = User;
2903            break;
2904          }
2905        }
2906      }
2907
2908      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2909      // give up for right now.
2910      if (FlagUser->getOpcode() == PPCISD::MFCR)
2911        return SDOperand(VCMPoNode, 0);
2912    }
2913    break;
2914  }
2915  case ISD::BR_CC: {
2916    // If this is a branch on an altivec predicate comparison, lower this so
2917    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2918    // lowering is done pre-legalize, because the legalizer lowers the predicate
2919    // compare down to code that is difficult to reassemble.
2920    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2921    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2922    int CompareOpc;
2923    bool isDot;
2924
2925    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2926        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2927        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2928      assert(isDot && "Can't compare against a vector result!");
2929
2930      // If this is a comparison against something other than 0/1, then we know
2931      // that the condition is never/always true.
2932      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2933      if (Val != 0 && Val != 1) {
2934        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2935          return N->getOperand(0);
2936        // Always !=, turn it into an unconditional branch.
2937        return DAG.getNode(ISD::BR, MVT::Other,
2938                           N->getOperand(0), N->getOperand(4));
2939      }
2940
2941      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2942
2943      // Create the PPCISD altivec 'dot' comparison node.
2944      std::vector<MVT::ValueType> VTs;
2945      SDOperand Ops[] = {
2946        LHS.getOperand(2),  // LHS of compare
2947        LHS.getOperand(3),  // RHS of compare
2948        DAG.getConstant(CompareOpc, MVT::i32)
2949      };
2950      VTs.push_back(LHS.getOperand(2).getValueType());
2951      VTs.push_back(MVT::Flag);
2952      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2953
2954      // Unpack the result based on how the target uses it.
2955      PPC::Predicate CompOpc;
2956      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2957      default:  // Can't happen, don't crash on invalid number though.
2958      case 0:   // Branch on the value of the EQ bit of CR6.
2959        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
2960        break;
2961      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2962        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
2963        break;
2964      case 2:   // Branch on the value of the LT bit of CR6.
2965        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
2966        break;
2967      case 3:   // Branch on the inverted value of the LT bit of CR6.
2968        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
2969        break;
2970      }
2971
2972      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2973                         DAG.getConstant(CompOpc, MVT::i32),
2974                         DAG.getRegister(PPC::CR6, MVT::i32),
2975                         N->getOperand(4), CompNode.getValue(1));
2976    }
2977    break;
2978  }
2979  }
2980
2981  return SDOperand();
2982}
2983
2984//===----------------------------------------------------------------------===//
2985// Inline Assembly Support
2986//===----------------------------------------------------------------------===//
2987
2988void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2989                                                       uint64_t Mask,
2990                                                       uint64_t &KnownZero,
2991                                                       uint64_t &KnownOne,
2992                                                       unsigned Depth) const {
2993  KnownZero = 0;
2994  KnownOne = 0;
2995  switch (Op.getOpcode()) {
2996  default: break;
2997  case PPCISD::LBRX: {
2998    // lhbrx is known to have the top bits cleared out.
2999    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3000      KnownZero = 0xFFFF0000;
3001    break;
3002  }
3003  case ISD::INTRINSIC_WO_CHAIN: {
3004    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3005    default: break;
3006    case Intrinsic::ppc_altivec_vcmpbfp_p:
3007    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3008    case Intrinsic::ppc_altivec_vcmpequb_p:
3009    case Intrinsic::ppc_altivec_vcmpequh_p:
3010    case Intrinsic::ppc_altivec_vcmpequw_p:
3011    case Intrinsic::ppc_altivec_vcmpgefp_p:
3012    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3013    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3014    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3015    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3016    case Intrinsic::ppc_altivec_vcmpgtub_p:
3017    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3018    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3019      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3020      break;
3021    }
3022  }
3023  }
3024}
3025
3026
3027/// getConstraintType - Given a constraint letter, return the type of
3028/// constraint it is for this target.
3029PPCTargetLowering::ConstraintType
3030PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
3031  switch (ConstraintLetter) {
3032  default: break;
3033  case 'b':
3034  case 'r':
3035  case 'f':
3036  case 'v':
3037  case 'y':
3038    return C_RegisterClass;
3039  }
3040  return TargetLowering::getConstraintType(ConstraintLetter);
3041}
3042
3043std::pair<unsigned, const TargetRegisterClass*>
3044PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3045                                                MVT::ValueType VT) const {
3046  if (Constraint.size() == 1) {
3047    // GCC RS6000 Constraint Letters
3048    switch (Constraint[0]) {
3049    case 'b':   // R1-R31
3050    case 'r':   // R0-R31
3051      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3052        return std::make_pair(0U, PPC::G8RCRegisterClass);
3053      return std::make_pair(0U, PPC::GPRCRegisterClass);
3054    case 'f':
3055      if (VT == MVT::f32)
3056        return std::make_pair(0U, PPC::F4RCRegisterClass);
3057      else if (VT == MVT::f64)
3058        return std::make_pair(0U, PPC::F8RCRegisterClass);
3059      break;
3060    case 'v':
3061      return std::make_pair(0U, PPC::VRRCRegisterClass);
3062    case 'y':   // crrc
3063      return std::make_pair(0U, PPC::CRRCRegisterClass);
3064    }
3065  }
3066
3067  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3068}
3069
3070
3071// isOperandValidForConstraint
3072SDOperand PPCTargetLowering::
3073isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3074  switch (Letter) {
3075  default: break;
3076  case 'I':
3077  case 'J':
3078  case 'K':
3079  case 'L':
3080  case 'M':
3081  case 'N':
3082  case 'O':
3083  case 'P': {
3084    if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate.
3085    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
3086    switch (Letter) {
3087    default: assert(0 && "Unknown constraint letter!");
3088    case 'I':  // "I" is a signed 16-bit constant.
3089      if ((short)Value == (int)Value) return Op;
3090      break;
3091    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3092    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3093      if ((short)Value == 0) return Op;
3094      break;
3095    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3096      if ((Value >> 16) == 0) return Op;
3097      break;
3098    case 'M':  // "M" is a constant that is greater than 31.
3099      if (Value > 31) return Op;
3100      break;
3101    case 'N':  // "N" is a positive constant that is an exact power of two.
3102      if ((int)Value > 0 && isPowerOf2_32(Value)) return Op;
3103      break;
3104    case 'O':  // "O" is the constant zero.
3105      if (Value == 0) return Op;
3106      break;
3107    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3108      if ((short)-Value == (int)-Value) return Op;
3109      break;
3110    }
3111    break;
3112  }
3113  }
3114
3115  // Handle standard constraint letters.
3116  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3117}
3118
3119/// isLegalAddressImmediate - Return true if the integer value can be used
3120/// as the offset of the target addressing mode.
3121bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
3122  // PPC allows a sign-extended 16-bit immediate field.
3123  return (V > -(1 << 16) && V < (1 << 16)-1);
3124}
3125
3126bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3127  return TargetLowering::isLegalAddressImmediate(GV);
3128}
3129