PPCISelLowering.cpp revision 325f0a129e57ff5d1842edd0b4b7473a4d6b47f6
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
16#include "PPCPerfectShuffle.h"
17#include "llvm/ADT/VectorExtras.h"
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetOptions.h"
29using namespace llvm;
30
31PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32  : TargetLowering(TM) {
33
34  // Fold away setcc operations if possible.
35  setSetCCIsExpensive();
36  setPow2DivIsCheap();
37
38  // Use _setjmp/_longjmp instead of setjmp/longjmp.
39  setUseUnderscoreSetJmpLongJmp(true);
40
41  // Set up the register classes.
42  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
45
46  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
49  // PowerPC has no intrinsics for these particular operations
50  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  // PowerPC has no SREM/UREM instructions
59  setOperationAction(ISD::SREM, MVT::i32, Expand);
60  setOperationAction(ISD::UREM, MVT::i32, Expand);
61  setOperationAction(ISD::SREM, MVT::i64, Expand);
62  setOperationAction(ISD::UREM, MVT::i64, Expand);
63
64  // We don't support sin/cos/sqrt/fmod
65  setOperationAction(ISD::FSIN , MVT::f64, Expand);
66  setOperationAction(ISD::FCOS , MVT::f64, Expand);
67  setOperationAction(ISD::FREM , MVT::f64, Expand);
68  setOperationAction(ISD::FSIN , MVT::f32, Expand);
69  setOperationAction(ISD::FCOS , MVT::f32, Expand);
70  setOperationAction(ISD::FREM , MVT::f32, Expand);
71
72  // If we're enabling GP optimizations, use hardware square root
73  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
74    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
75    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
76  }
77
78  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
79  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
80
81  // PowerPC does not have BSWAP, CTPOP or CTTZ
82  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
83  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
84  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
85  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
86  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
87  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
88
89  // PowerPC does not have ROTR
90  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
91
92  // PowerPC does not have Select
93  setOperationAction(ISD::SELECT, MVT::i32, Expand);
94  setOperationAction(ISD::SELECT, MVT::i64, Expand);
95  setOperationAction(ISD::SELECT, MVT::f32, Expand);
96  setOperationAction(ISD::SELECT, MVT::f64, Expand);
97
98  // PowerPC wants to turn select_cc of FP into fsel when possible.
99  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
100  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
101
102  // PowerPC wants to optimize integer setcc a bit
103  setOperationAction(ISD::SETCC, MVT::i32, Custom);
104
105  // PowerPC does not have BRCOND which requires SetCC
106  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
107
108  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
109  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
110
111  // PowerPC does not have [U|S]INT_TO_FP
112  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
113  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
114
115  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
116  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
117  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
118  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
119
120  // PowerPC does not have truncstore for i1.
121  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
122
123  // We cannot sextinreg(i1).  Expand to shifts.
124  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
125
126
127  // Support label based line numbers.
128  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
129  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
130  // FIXME - use subtarget debug flags
131  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
132    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
133
134  // We want to legalize GlobalAddress and ConstantPool nodes into the
135  // appropriate instructions to materialize the address.
136  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
137  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
138  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
139  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
140  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
141  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
142
143  // RET must be custom lowered, to meet ABI requirements
144  setOperationAction(ISD::RET               , MVT::Other, Custom);
145
146  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
147  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
148
149  // Use the default implementation.
150  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
151  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
152  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
153  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
154  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
155  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
156
157  // We want to custom lower some of our intrinsics.
158  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
159
160  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
161    // They also have instructions for converting between i64 and fp.
162    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
163    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
164
165    // FIXME: disable this lowered code.  This generates 64-bit register values,
166    // and we don't model the fact that the top part is clobbered by calls.  We
167    // need to flag these together so that the value isn't live across a call.
168    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
169
170    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
171    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
172  } else {
173    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
174    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
175  }
176
177  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
178    // 64 bit PowerPC implementations can support i64 types directly
179    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
180    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
181    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
182  } else {
183    // 32 bit PowerPC wants to expand i64 shifts itself.
184    setOperationAction(ISD::SHL, MVT::i64, Custom);
185    setOperationAction(ISD::SRL, MVT::i64, Custom);
186    setOperationAction(ISD::SRA, MVT::i64, Custom);
187  }
188
189  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
190    // First set operation action for all vector types to expand. Then we
191    // will selectively turn on ones that can be effectively codegen'd.
192    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
193         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
194      // add/sub are legal for all supported vector VT's.
195      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
196      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
197
198      // We promote all shuffles to v16i8.
199      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
200      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
201
202      // We promote all non-typed operations to v4i32.
203      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
204      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
205      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
206      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
207      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
208      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
209      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
210      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
211      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
212      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
213      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
214      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
215
216      // No other operations are legal.
217      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
218      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
219      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
220      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
221      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
222      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
223      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
224      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
225      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
226
227      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
228    }
229
230    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
231    // with merges, splats, etc.
232    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
233
234    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
235    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
236    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
237    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
238    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
239    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
240
241    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
242    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
243    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
244    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
245
246    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
247    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
248    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
249    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
250
251    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
252    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
253
254    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
255    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
256    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
257    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
258  }
259
260  setSetCCResultType(MVT::i32);
261  setShiftAmountType(MVT::i32);
262  setSetCCResultContents(ZeroOrOneSetCCResult);
263  setStackPointerRegisterToSaveRestore(PPC::R1);
264
265  // We have target-specific dag combine patterns for the following nodes:
266  setTargetDAGCombine(ISD::SINT_TO_FP);
267  setTargetDAGCombine(ISD::STORE);
268  setTargetDAGCombine(ISD::BR_CC);
269  setTargetDAGCombine(ISD::BSWAP);
270
271  computeRegisterProperties();
272}
273
274const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
275  switch (Opcode) {
276  default: return 0;
277  case PPCISD::FSEL:          return "PPCISD::FSEL";
278  case PPCISD::FCFID:         return "PPCISD::FCFID";
279  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
280  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
281  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
282  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
283  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
284  case PPCISD::VPERM:         return "PPCISD::VPERM";
285  case PPCISD::Hi:            return "PPCISD::Hi";
286  case PPCISD::Lo:            return "PPCISD::Lo";
287  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
288  case PPCISD::SRL:           return "PPCISD::SRL";
289  case PPCISD::SRA:           return "PPCISD::SRA";
290  case PPCISD::SHL:           return "PPCISD::SHL";
291  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
292  case PPCISD::STD_32:        return "PPCISD::STD_32";
293  case PPCISD::CALL:          return "PPCISD::CALL";
294  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
295  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
296  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
297  case PPCISD::MFCR:          return "PPCISD::MFCR";
298  case PPCISD::VCMP:          return "PPCISD::VCMP";
299  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
300  case PPCISD::LBRX:          return "PPCISD::LBRX";
301  case PPCISD::STBRX:         return "PPCISD::STBRX";
302  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
303  }
304}
305
306//===----------------------------------------------------------------------===//
307// Node matching predicates, for use by the tblgen matching code.
308//===----------------------------------------------------------------------===//
309
310/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
311static bool isFloatingPointZero(SDOperand Op) {
312  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
313    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
314  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
315    // Maybe this has already been legalized into the constant pool?
316    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
317      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
318        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
319  }
320  return false;
321}
322
323/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
324/// true if Op is undef or if it matches the specified value.
325static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
326  return Op.getOpcode() == ISD::UNDEF ||
327         cast<ConstantSDNode>(Op)->getValue() == Val;
328}
329
330/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
331/// VPKUHUM instruction.
332bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
333  if (!isUnary) {
334    for (unsigned i = 0; i != 16; ++i)
335      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
336        return false;
337  } else {
338    for (unsigned i = 0; i != 8; ++i)
339      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
340          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
341        return false;
342  }
343  return true;
344}
345
346/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
347/// VPKUWUM instruction.
348bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
349  if (!isUnary) {
350    for (unsigned i = 0; i != 16; i += 2)
351      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
352          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
353        return false;
354  } else {
355    for (unsigned i = 0; i != 8; i += 2)
356      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
357          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
358          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
359          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
360        return false;
361  }
362  return true;
363}
364
365/// isVMerge - Common function, used to match vmrg* shuffles.
366///
367static bool isVMerge(SDNode *N, unsigned UnitSize,
368                     unsigned LHSStart, unsigned RHSStart) {
369  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
370         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
371  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
372         "Unsupported merge size!");
373
374  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
375    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
376      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
377                             LHSStart+j+i*UnitSize) ||
378          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
379                             RHSStart+j+i*UnitSize))
380        return false;
381    }
382      return true;
383}
384
385/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
386/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
387bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
388  if (!isUnary)
389    return isVMerge(N, UnitSize, 8, 24);
390  return isVMerge(N, UnitSize, 8, 8);
391}
392
393/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
394/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
395bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
396  if (!isUnary)
397    return isVMerge(N, UnitSize, 0, 16);
398  return isVMerge(N, UnitSize, 0, 0);
399}
400
401
402/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
403/// amount, otherwise return -1.
404int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
405  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
406         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
407  // Find the first non-undef value in the shuffle mask.
408  unsigned i;
409  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
410    /*search*/;
411
412  if (i == 16) return -1;  // all undef.
413
414  // Otherwise, check to see if the rest of the elements are consequtively
415  // numbered from this value.
416  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
417  if (ShiftAmt < i) return -1;
418  ShiftAmt -= i;
419
420  if (!isUnary) {
421    // Check the rest of the elements to see if they are consequtive.
422    for (++i; i != 16; ++i)
423      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
424        return -1;
425  } else {
426    // Check the rest of the elements to see if they are consequtive.
427    for (++i; i != 16; ++i)
428      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
429        return -1;
430  }
431
432  return ShiftAmt;
433}
434
435/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
436/// specifies a splat of a single element that is suitable for input to
437/// VSPLTB/VSPLTH/VSPLTW.
438bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
439  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
440         N->getNumOperands() == 16 &&
441         (EltSize == 1 || EltSize == 2 || EltSize == 4));
442
443  // This is a splat operation if each element of the permute is the same, and
444  // if the value doesn't reference the second vector.
445  unsigned ElementBase = 0;
446  SDOperand Elt = N->getOperand(0);
447  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
448    ElementBase = EltV->getValue();
449  else
450    return false;   // FIXME: Handle UNDEF elements too!
451
452  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
453    return false;
454
455  // Check that they are consequtive.
456  for (unsigned i = 1; i != EltSize; ++i) {
457    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
458        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
459      return false;
460  }
461
462  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
463  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
464    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
465    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
466           "Invalid VECTOR_SHUFFLE mask!");
467    for (unsigned j = 0; j != EltSize; ++j)
468      if (N->getOperand(i+j) != N->getOperand(j))
469        return false;
470  }
471
472  return true;
473}
474
475/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
476/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
477unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
478  assert(isSplatShuffleMask(N, EltSize));
479  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
480}
481
482/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
483/// by using a vspltis[bhw] instruction of the specified element size, return
484/// the constant being splatted.  The ByteSize field indicates the number of
485/// bytes of each element [124] -> [bhw].
486SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
487  SDOperand OpVal(0, 0);
488
489  // If ByteSize of the splat is bigger than the element size of the
490  // build_vector, then we have a case where we are checking for a splat where
491  // multiple elements of the buildvector are folded together into a single
492  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
493  unsigned EltSize = 16/N->getNumOperands();
494  if (EltSize < ByteSize) {
495    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
496    SDOperand UniquedVals[4];
497    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
498
499    // See if all of the elements in the buildvector agree across.
500    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
501      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
502      // If the element isn't a constant, bail fully out.
503      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
504
505
506      if (UniquedVals[i&(Multiple-1)].Val == 0)
507        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
508      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
509        return SDOperand();  // no match.
510    }
511
512    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
513    // either constant or undef values that are identical for each chunk.  See
514    // if these chunks can form into a larger vspltis*.
515
516    // Check to see if all of the leading entries are either 0 or -1.  If
517    // neither, then this won't fit into the immediate field.
518    bool LeadingZero = true;
519    bool LeadingOnes = true;
520    for (unsigned i = 0; i != Multiple-1; ++i) {
521      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
522
523      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
524      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
525    }
526    // Finally, check the least significant entry.
527    if (LeadingZero) {
528      if (UniquedVals[Multiple-1].Val == 0)
529        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
530      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
531      if (Val < 16)
532        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
533    }
534    if (LeadingOnes) {
535      if (UniquedVals[Multiple-1].Val == 0)
536        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
537      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
538      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
539        return DAG.getTargetConstant(Val, MVT::i32);
540    }
541
542    return SDOperand();
543  }
544
545  // Check to see if this buildvec has a single non-undef value in its elements.
546  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
547    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
548    if (OpVal.Val == 0)
549      OpVal = N->getOperand(i);
550    else if (OpVal != N->getOperand(i))
551      return SDOperand();
552  }
553
554  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
555
556  unsigned ValSizeInBytes = 0;
557  uint64_t Value = 0;
558  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
559    Value = CN->getValue();
560    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
561  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
562    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
563    Value = FloatToBits(CN->getValue());
564    ValSizeInBytes = 4;
565  }
566
567  // If the splat value is larger than the element value, then we can never do
568  // this splat.  The only case that we could fit the replicated bits into our
569  // immediate field for would be zero, and we prefer to use vxor for it.
570  if (ValSizeInBytes < ByteSize) return SDOperand();
571
572  // If the element value is larger than the splat value, cut it in half and
573  // check to see if the two halves are equal.  Continue doing this until we
574  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
575  while (ValSizeInBytes > ByteSize) {
576    ValSizeInBytes >>= 1;
577
578    // If the top half equals the bottom half, we're still ok.
579    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
580         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
581      return SDOperand();
582  }
583
584  // Properly sign extend the value.
585  int ShAmt = (4-ByteSize)*8;
586  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
587
588  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
589  if (MaskVal == 0) return SDOperand();
590
591  // Finally, if this value fits in a 5 bit sext field, return it
592  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
593    return DAG.getTargetConstant(MaskVal, MVT::i32);
594  return SDOperand();
595}
596
597//===----------------------------------------------------------------------===//
598//  LowerOperation implementation
599//===----------------------------------------------------------------------===//
600
601static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
602  MVT::ValueType PtrVT = Op.getValueType();
603  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
604  Constant *C = CP->get();
605  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
606  SDOperand Zero = DAG.getConstant(0, PtrVT);
607
608  const TargetMachine &TM = DAG.getTarget();
609
610  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
611  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
612
613  // If this is a non-darwin platform, we don't support non-static relo models
614  // yet.
615  if (TM.getRelocationModel() == Reloc::Static ||
616      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
617    // Generate non-pic code that has direct accesses to the constant pool.
618    // The address of the global is just (hi(&g)+lo(&g)).
619    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
620  }
621
622  if (TM.getRelocationModel() == Reloc::PIC_) {
623    // With PIC, the first instruction is actually "GR+hi(&G)".
624    Hi = DAG.getNode(ISD::ADD, PtrVT,
625                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
626  }
627
628  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
629  return Lo;
630}
631
632static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
633  MVT::ValueType PtrVT = Op.getValueType();
634  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
635  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
636  SDOperand Zero = DAG.getConstant(0, PtrVT);
637
638  const TargetMachine &TM = DAG.getTarget();
639
640  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
641  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
642
643  // If this is a non-darwin platform, we don't support non-static relo models
644  // yet.
645  if (TM.getRelocationModel() == Reloc::Static ||
646      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
647    // Generate non-pic code that has direct accesses to the constant pool.
648    // The address of the global is just (hi(&g)+lo(&g)).
649    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
650  }
651
652  if (TM.getRelocationModel() == Reloc::PIC_) {
653    // With PIC, the first instruction is actually "GR+hi(&G)".
654    Hi = DAG.getNode(ISD::ADD, PtrVT,
655                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
656  }
657
658  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
659  return Lo;
660}
661
662static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
663  MVT::ValueType PtrVT = Op.getValueType();
664  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
665  GlobalValue *GV = GSDN->getGlobal();
666  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
667  SDOperand Zero = DAG.getConstant(0, PtrVT);
668
669  const TargetMachine &TM = DAG.getTarget();
670
671  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
672  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
673
674  // If this is a non-darwin platform, we don't support non-static relo models
675  // yet.
676  if (TM.getRelocationModel() == Reloc::Static ||
677      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
678    // Generate non-pic code that has direct accesses to globals.
679    // The address of the global is just (hi(&g)+lo(&g)).
680    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
681  }
682
683  if (TM.getRelocationModel() == Reloc::PIC_) {
684    // With PIC, the first instruction is actually "GR+hi(&G)".
685    Hi = DAG.getNode(ISD::ADD, PtrVT,
686                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
687  }
688
689  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
690
691  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
692      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
693    return Lo;
694
695  // If the global is weak or external, we have to go through the lazy
696  // resolution stub.
697  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
698}
699
700static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
701  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
702
703  // If we're comparing for equality to zero, expose the fact that this is
704  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
705  // fold the new nodes.
706  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
707    if (C->isNullValue() && CC == ISD::SETEQ) {
708      MVT::ValueType VT = Op.getOperand(0).getValueType();
709      SDOperand Zext = Op.getOperand(0);
710      if (VT < MVT::i32) {
711        VT = MVT::i32;
712        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
713      }
714      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
715      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
716      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
717                                  DAG.getConstant(Log2b, MVT::i32));
718      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
719    }
720    // Leave comparisons against 0 and -1 alone for now, since they're usually
721    // optimized.  FIXME: revisit this when we can custom lower all setcc
722    // optimizations.
723    if (C->isAllOnesValue() || C->isNullValue())
724      return SDOperand();
725  }
726
727  // If we have an integer seteq/setne, turn it into a compare against zero
728  // by subtracting the rhs from the lhs, which is faster than setting a
729  // condition register, reading it back out, and masking the correct bit.
730  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
731  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
732    MVT::ValueType VT = Op.getValueType();
733    SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
734                                Op.getOperand(1));
735    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
736  }
737  return SDOperand();
738}
739
740static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
741                              unsigned VarArgsFrameIndex) {
742  // vastart just stores the address of the VarArgsFrameIndex slot into the
743  // memory location argument.
744  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
745  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
746  return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
747                     Op.getOperand(1), Op.getOperand(2));
748}
749
750static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
751                                       int &VarArgsFrameIndex) {
752  // TODO: add description of PPC stack frame format, or at least some docs.
753  //
754  MachineFunction &MF = DAG.getMachineFunction();
755  MachineFrameInfo *MFI = MF.getFrameInfo();
756  SSARegMap *RegMap = MF.getSSARegMap();
757  std::vector<SDOperand> ArgValues;
758  SDOperand Root = Op.getOperand(0);
759
760  unsigned ArgOffset = 24;
761  const unsigned Num_GPR_Regs = 8;
762  const unsigned Num_FPR_Regs = 13;
763  const unsigned Num_VR_Regs  = 12;
764  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
765
766  static const unsigned GPR_32[] = {           // 32-bit registers.
767    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
768    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
769  };
770  static const unsigned GPR_64[] = {           // 64-bit registers.
771    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
772    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
773  };
774  static const unsigned FPR[] = {
775    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
776    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
777  };
778  static const unsigned VR[] = {
779    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
780    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
781  };
782
783  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
784  bool isPPC64 = PtrVT == MVT::i64;
785  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
786
787  // Add DAG nodes to load the arguments or copy them out of registers.  On
788  // entry to a function on PPC, the arguments start at offset 24, although the
789  // first ones are often in registers.
790  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
791    SDOperand ArgVal;
792    bool needsLoad = false;
793    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
794    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
795
796    unsigned CurArgOffset = ArgOffset;
797    switch (ObjectVT) {
798    default: assert(0 && "Unhandled argument type!");
799    case MVT::i32:
800      // All int arguments reserve stack space.
801      ArgOffset += isPPC64 ? 8 : 4;
802
803      if (GPR_idx != Num_GPR_Regs) {
804        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
805        MF.addLiveIn(GPR[GPR_idx], VReg);
806        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
807        ++GPR_idx;
808      } else {
809        needsLoad = true;
810      }
811      break;
812    case MVT::i64:  // PPC64
813      // All int arguments reserve stack space.
814      ArgOffset += 8;
815
816      if (GPR_idx != Num_GPR_Regs) {
817        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
818        MF.addLiveIn(GPR[GPR_idx], VReg);
819        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
820        ++GPR_idx;
821      } else {
822        needsLoad = true;
823      }
824      break;
825    case MVT::f32:
826    case MVT::f64:
827      // All FP arguments reserve stack space.
828      ArgOffset += ObjSize;
829
830      // Every 4 bytes of argument space consumes one of the GPRs available for
831      // argument passing.
832      if (GPR_idx != Num_GPR_Regs) {
833        ++GPR_idx;
834        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
835          ++GPR_idx;
836      }
837      if (FPR_idx != Num_FPR_Regs) {
838        unsigned VReg;
839        if (ObjectVT == MVT::f32)
840          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
841        else
842          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
843        MF.addLiveIn(FPR[FPR_idx], VReg);
844        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
845        ++FPR_idx;
846      } else {
847        needsLoad = true;
848      }
849      break;
850    case MVT::v4f32:
851    case MVT::v4i32:
852    case MVT::v8i16:
853    case MVT::v16i8:
854      // Note that vector arguments in registers don't reserve stack space.
855      if (VR_idx != Num_VR_Regs) {
856        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
857        MF.addLiveIn(VR[VR_idx], VReg);
858        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
859        ++VR_idx;
860      } else {
861        // This should be simple, but requires getting 16-byte aligned stack
862        // values.
863        assert(0 && "Loading VR argument not implemented yet!");
864        needsLoad = true;
865      }
866      break;
867    }
868
869    // We need to load the argument to a virtual register if we determined above
870    // that we ran out of physical registers of the appropriate type
871    if (needsLoad) {
872      // If the argument is actually used, emit a load from the right stack
873      // slot.
874      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
875        int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
876        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
877        ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
878                             DAG.getSrcValue(NULL));
879      } else {
880        // Don't emit a dead load.
881        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
882      }
883    }
884
885    ArgValues.push_back(ArgVal);
886  }
887
888  // If the function takes variable number of arguments, make a frame index for
889  // the start of the first vararg value... for expansion of llvm.va_start.
890  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
891  if (isVarArg) {
892    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
893                                               ArgOffset);
894    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
895    // If this function is vararg, store any remaining integer argument regs
896    // to their spots on the stack so that they may be loaded by deferencing the
897    // result of va_next.
898    std::vector<SDOperand> MemOps;
899    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
900      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
901      MF.addLiveIn(GPR[GPR_idx], VReg);
902      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
903      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
904                                    Val, FIN, DAG.getSrcValue(NULL));
905      MemOps.push_back(Store);
906      // Increment the address by four for the next argument to store
907      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
908      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
909    }
910    if (!MemOps.empty())
911      Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
912  }
913
914  ArgValues.push_back(Root);
915
916  // Return the new list of results.
917  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
918                                    Op.Val->value_end());
919  return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
920}
921
922/// isCallCompatibleAddress - Return the immediate to use if the specified
923/// 32-bit value is representable in the immediate field of a BxA instruction.
924static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
925  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
926  if (!C) return 0;
927
928  int Addr = C->getValue();
929  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
930      (Addr << 6 >> 6) != Addr)
931    return 0;  // Top 6 bits have to be sext of immediate.
932
933  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
934}
935
936
937static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
938  SDOperand Chain = Op.getOperand(0);
939  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
940  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
941  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
942  SDOperand Callee    = Op.getOperand(4);
943  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
944
945  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
946  bool isPPC64 = PtrVT == MVT::i64;
947  unsigned PtrByteSize = isPPC64 ? 8 : 4;
948
949
950  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
951  // SelectExpr to use to put the arguments in the appropriate registers.
952  std::vector<SDOperand> args_to_use;
953
954  // Count how many bytes are to be pushed on the stack, including the linkage
955  // area, and parameter passing area.  We start with 24/48 bytes, which is
956  // prereserved space for [SP][CR][LR][3 x unused].
957  unsigned NumBytes = 6*PtrByteSize;
958
959  // Add up all the space actually used.
960  for (unsigned i = 0; i != NumOps; ++i)
961    NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
962
963  // The prolog code of the callee may store up to 8 GPR argument registers to
964  // the stack, allowing va_start to index over them in memory if its varargs.
965  // Because we cannot tell if this is needed on the caller side, we have to
966  // conservatively assume that it is needed.  As such, make sure we have at
967  // least enough stack space for the caller to store the 8 GPRs.
968  if (NumBytes < 6*PtrByteSize+8*PtrByteSize)
969    NumBytes = 6*PtrByteSize+8*PtrByteSize;
970
971  // Adjust the stack pointer for the new arguments...
972  // These operations are automatically eliminated by the prolog/epilog pass
973  Chain = DAG.getCALLSEQ_START(Chain,
974                               DAG.getConstant(NumBytes, PtrVT));
975
976  // Set up a copy of the stack pointer for use loading and storing any
977  // arguments that may not fit in the registers available for argument
978  // passing.
979  SDOperand StackPtr;
980  if (isPPC64)
981    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
982  else
983    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
984
985  // Figure out which arguments are going to go in registers, and which in
986  // memory.  Also, if this is a vararg function, floating point operations
987  // must be stored to our stack, and loaded into integer regs as well, if
988  // any integer regs are available for argument passing.
989  unsigned ArgOffset = 6*PtrByteSize;
990  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
991  static const unsigned GPR_32[] = {           // 32-bit registers.
992    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
993    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
994  };
995  static const unsigned GPR_64[] = {           // 64-bit registers.
996    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
997    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
998  };
999  static const unsigned FPR[] = {
1000    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1001    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1002  };
1003  static const unsigned VR[] = {
1004    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1005    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1006  };
1007  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1008  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1009  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1010
1011  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1012
1013  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1014  std::vector<SDOperand> MemOpChains;
1015  for (unsigned i = 0; i != NumOps; ++i) {
1016    SDOperand Arg = Op.getOperand(5+2*i);
1017
1018    // PtrOff will be used to store the current argument to the stack if a
1019    // register cannot be found for it.
1020    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1021    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1022
1023    // On PPC64, promote integers to 64-bit values.
1024    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1025      unsigned ExtOp = ISD::ZERO_EXTEND;
1026      if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1027        ExtOp = ISD::SIGN_EXTEND;
1028      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1029    }
1030
1031    switch (Arg.getValueType()) {
1032    default: assert(0 && "Unexpected ValueType for argument!");
1033    case MVT::i32:
1034    case MVT::i64:
1035      if (GPR_idx != NumGPRs) {
1036        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1037      } else {
1038        MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1039                                          Arg, PtrOff, DAG.getSrcValue(NULL)));
1040      }
1041      ArgOffset += PtrByteSize;
1042      break;
1043    case MVT::f32:
1044    case MVT::f64:
1045      if (FPR_idx != NumFPRs) {
1046        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1047
1048        if (isVarArg) {
1049          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1050                                        Arg, PtrOff,
1051                                        DAG.getSrcValue(NULL));
1052          MemOpChains.push_back(Store);
1053
1054          // Float varargs are always shadowed in available integer registers
1055          if (GPR_idx != NumGPRs) {
1056            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff,
1057                                         DAG.getSrcValue(NULL));
1058            MemOpChains.push_back(Load.getValue(1));
1059            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1060          }
1061          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
1062            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1063            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1064            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff,
1065                                         DAG.getSrcValue(NULL));
1066            MemOpChains.push_back(Load.getValue(1));
1067            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1068          }
1069        } else {
1070          // If we have any FPRs remaining, we may also have GPRs remaining.
1071          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1072          // GPRs.
1073          if (GPR_idx != NumGPRs)
1074            ++GPR_idx;
1075          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1076            ++GPR_idx;
1077        }
1078      } else {
1079        MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1080                                          Arg, PtrOff, DAG.getSrcValue(NULL)));
1081      }
1082      if (isPPC64)
1083        ArgOffset += 8;
1084      else
1085        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1086      break;
1087    case MVT::v4f32:
1088    case MVT::v4i32:
1089    case MVT::v8i16:
1090    case MVT::v16i8:
1091      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1092      assert(VR_idx != NumVRs &&
1093             "Don't support passing more than 12 vector args yet!");
1094      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1095      break;
1096    }
1097  }
1098  if (!MemOpChains.empty())
1099    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOpChains);
1100
1101  // Build a sequence of copy-to-reg nodes chained together with token chain
1102  // and flag operands which copy the outgoing args into the appropriate regs.
1103  SDOperand InFlag;
1104  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1105    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1106                             InFlag);
1107    InFlag = Chain.getValue(1);
1108  }
1109
1110  std::vector<MVT::ValueType> NodeTys;
1111  NodeTys.push_back(MVT::Other);   // Returns a chain
1112  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1113
1114  std::vector<SDOperand> Ops;
1115  unsigned CallOpc = PPCISD::CALL;
1116
1117  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1118  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1119  // node so that legalize doesn't hack it.
1120  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1121    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1122  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1123    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1124  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1125    // If this is an absolute destination address, use the munged value.
1126    Callee = SDOperand(Dest, 0);
1127  else {
1128    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1129    // to do the call, we can't use PPCISD::CALL.
1130    Ops.push_back(Chain);
1131    Ops.push_back(Callee);
1132
1133    if (InFlag.Val)
1134      Ops.push_back(InFlag);
1135    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, Ops);
1136    InFlag = Chain.getValue(1);
1137
1138    // Copy the callee address into R12 on darwin.
1139    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1140    InFlag = Chain.getValue(1);
1141
1142    NodeTys.clear();
1143    NodeTys.push_back(MVT::Other);
1144    NodeTys.push_back(MVT::Flag);
1145    Ops.clear();
1146    Ops.push_back(Chain);
1147    CallOpc = PPCISD::BCTRL;
1148    Callee.Val = 0;
1149  }
1150
1151  // If this is a direct call, pass the chain and the callee.
1152  if (Callee.Val) {
1153    Ops.push_back(Chain);
1154    Ops.push_back(Callee);
1155  }
1156
1157  // Add argument registers to the end of the list so that they are known live
1158  // into the call.
1159  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1160    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1161                                  RegsToPass[i].second.getValueType()));
1162
1163  if (InFlag.Val)
1164    Ops.push_back(InFlag);
1165  Chain = DAG.getNode(CallOpc, NodeTys, Ops);
1166  InFlag = Chain.getValue(1);
1167
1168  std::vector<SDOperand> ResultVals;
1169  NodeTys.clear();
1170
1171  // If the call has results, copy the values out of the ret val registers.
1172  switch (Op.Val->getValueType(0)) {
1173  default: assert(0 && "Unexpected ret value!");
1174  case MVT::Other: break;
1175  case MVT::i32:
1176    if (Op.Val->getValueType(1) == MVT::i32) {
1177      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1178      ResultVals.push_back(Chain.getValue(0));
1179      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1180                                 Chain.getValue(2)).getValue(1);
1181      ResultVals.push_back(Chain.getValue(0));
1182      NodeTys.push_back(MVT::i32);
1183    } else {
1184      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1185      ResultVals.push_back(Chain.getValue(0));
1186    }
1187    NodeTys.push_back(MVT::i32);
1188    break;
1189  case MVT::i64:
1190    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1191    ResultVals.push_back(Chain.getValue(0));
1192    NodeTys.push_back(MVT::i64);
1193    break;
1194  case MVT::f32:
1195  case MVT::f64:
1196    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1197                               InFlag).getValue(1);
1198    ResultVals.push_back(Chain.getValue(0));
1199    NodeTys.push_back(Op.Val->getValueType(0));
1200    break;
1201  case MVT::v4f32:
1202  case MVT::v4i32:
1203  case MVT::v8i16:
1204  case MVT::v16i8:
1205    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1206                                   InFlag).getValue(1);
1207    ResultVals.push_back(Chain.getValue(0));
1208    NodeTys.push_back(Op.Val->getValueType(0));
1209    break;
1210  }
1211
1212  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1213                      DAG.getConstant(NumBytes, PtrVT));
1214  NodeTys.push_back(MVT::Other);
1215
1216  // If the function returns void, just return the chain.
1217  if (ResultVals.empty())
1218    return Chain;
1219
1220  // Otherwise, merge everything together with a MERGE_VALUES node.
1221  ResultVals.push_back(Chain);
1222  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals);
1223  return Res.getValue(Op.ResNo);
1224}
1225
1226static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1227  SDOperand Copy;
1228  switch(Op.getNumOperands()) {
1229  default:
1230    assert(0 && "Do not know how to return this many arguments!");
1231    abort();
1232  case 1:
1233    return SDOperand(); // ret void is legal
1234  case 3: {
1235    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1236    unsigned ArgReg;
1237    if (ArgVT == MVT::i32) {
1238      ArgReg = PPC::R3;
1239    } else if (ArgVT == MVT::i64) {
1240      ArgReg = PPC::X3;
1241    } else if (MVT::isVector(ArgVT)) {
1242      ArgReg = PPC::V2;
1243    } else {
1244      assert(MVT::isFloatingPoint(ArgVT));
1245      ArgReg = PPC::F1;
1246    }
1247
1248    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1249                            SDOperand());
1250
1251    // If we haven't noted the R3/F1 are live out, do so now.
1252    if (DAG.getMachineFunction().liveout_empty())
1253      DAG.getMachineFunction().addLiveOut(ArgReg);
1254    break;
1255  }
1256  case 5:
1257    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1258                            SDOperand());
1259    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1260    // If we haven't noted the R3+R4 are live out, do so now.
1261    if (DAG.getMachineFunction().liveout_empty()) {
1262      DAG.getMachineFunction().addLiveOut(PPC::R3);
1263      DAG.getMachineFunction().addLiveOut(PPC::R4);
1264    }
1265    break;
1266  }
1267  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1268}
1269
1270/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1271/// possible.
1272static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1273  // Not FP? Not a fsel.
1274  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1275      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1276    return SDOperand();
1277
1278  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1279
1280  // Cannot handle SETEQ/SETNE.
1281  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1282
1283  MVT::ValueType ResVT = Op.getValueType();
1284  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1285  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1286  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1287
1288  // If the RHS of the comparison is a 0.0, we don't need to do the
1289  // subtraction at all.
1290  if (isFloatingPointZero(RHS))
1291    switch (CC) {
1292    default: break;       // SETUO etc aren't handled by fsel.
1293    case ISD::SETULT:
1294    case ISD::SETOLT:
1295    case ISD::SETLT:
1296      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1297    case ISD::SETUGE:
1298    case ISD::SETOGE:
1299    case ISD::SETGE:
1300      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1301        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1302      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1303    case ISD::SETUGT:
1304    case ISD::SETOGT:
1305    case ISD::SETGT:
1306      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1307    case ISD::SETULE:
1308    case ISD::SETOLE:
1309    case ISD::SETLE:
1310      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1311        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1312      return DAG.getNode(PPCISD::FSEL, ResVT,
1313                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1314    }
1315
1316      SDOperand Cmp;
1317  switch (CC) {
1318  default: break;       // SETUO etc aren't handled by fsel.
1319  case ISD::SETULT:
1320  case ISD::SETOLT:
1321  case ISD::SETLT:
1322    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1323    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1324      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1325      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1326  case ISD::SETUGE:
1327  case ISD::SETOGE:
1328  case ISD::SETGE:
1329    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1330    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1331      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1332      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1333  case ISD::SETUGT:
1334  case ISD::SETOGT:
1335  case ISD::SETGT:
1336    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1337    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1338      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1339      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1340  case ISD::SETULE:
1341  case ISD::SETOLE:
1342  case ISD::SETLE:
1343    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1344    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1345      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1346      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1347  }
1348  return SDOperand();
1349}
1350
1351static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1352  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1353  SDOperand Src = Op.getOperand(0);
1354  if (Src.getValueType() == MVT::f32)
1355    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1356
1357  SDOperand Tmp;
1358  switch (Op.getValueType()) {
1359  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1360  case MVT::i32:
1361    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1362    break;
1363  case MVT::i64:
1364    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1365    break;
1366  }
1367
1368  // Convert the FP value to an int value through memory.
1369  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1370  if (Op.getValueType() == MVT::i32)
1371    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1372  return Bits;
1373}
1374
1375static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1376  if (Op.getOperand(0).getValueType() == MVT::i64) {
1377    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1378    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1379    if (Op.getValueType() == MVT::f32)
1380      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1381    return FP;
1382  }
1383
1384  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1385         "Unhandled SINT_TO_FP type in custom expander!");
1386  // Since we only generate this in 64-bit mode, we can take advantage of
1387  // 64-bit registers.  In particular, sign extend the input value into the
1388  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1389  // then lfd it and fcfid it.
1390  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1391  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1392  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1393  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1394
1395  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1396                                Op.getOperand(0));
1397
1398  // STD the extended value into the stack slot.
1399  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1400                                DAG.getEntryNode(), Ext64, FIdx,
1401                                DAG.getSrcValue(NULL));
1402  // Load the value as a double.
1403  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
1404
1405  // FCFID it and return it.
1406  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1407  if (Op.getValueType() == MVT::f32)
1408    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1409  return FP;
1410}
1411
1412static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG,
1413                          MVT::ValueType PtrVT) {
1414  assert(Op.getValueType() == MVT::i64 &&
1415         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1416  // The generic code does a fine job expanding shift by a constant.
1417  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1418
1419  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1420  // depend on the PPC behavior for oversized shift amounts.
1421  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1422                             DAG.getConstant(0, PtrVT));
1423  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1424                             DAG.getConstant(1, PtrVT));
1425  SDOperand Amt = Op.getOperand(1);
1426
1427  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1428                               DAG.getConstant(32, MVT::i32), Amt);
1429  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1430  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1431  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1432  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1433                               DAG.getConstant(-32U, MVT::i32));
1434  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1435  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1436  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1437  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1438}
1439
1440static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG,
1441                          MVT::ValueType PtrVT) {
1442  assert(Op.getValueType() == MVT::i64 &&
1443         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1444  // The generic code does a fine job expanding shift by a constant.
1445  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1446
1447  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1448  // depend on the PPC behavior for oversized shift amounts.
1449  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1450                             DAG.getConstant(0, PtrVT));
1451  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1452                             DAG.getConstant(1, PtrVT));
1453  SDOperand Amt = Op.getOperand(1);
1454
1455  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1456                               DAG.getConstant(32, MVT::i32), Amt);
1457  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1458  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1459  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1460  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1461                               DAG.getConstant(-32U, MVT::i32));
1462  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1463  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1464  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1465  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1466}
1467
1468static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG,
1469                          MVT::ValueType PtrVT) {
1470  assert(Op.getValueType() == MVT::i64 &&
1471         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1472  // The generic code does a fine job expanding shift by a constant.
1473  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1474
1475  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1476  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1477                             DAG.getConstant(0, PtrVT));
1478  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1479                             DAG.getConstant(1, PtrVT));
1480  SDOperand Amt = Op.getOperand(1);
1481
1482  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1483                               DAG.getConstant(32, MVT::i32), Amt);
1484  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1485  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1486  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1487  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1488                               DAG.getConstant(-32U, MVT::i32));
1489  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1490  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1491  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1492                                    Tmp4, Tmp6, ISD::SETLE);
1493  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1494}
1495
1496//===----------------------------------------------------------------------===//
1497// Vector related lowering.
1498//
1499
1500// If this is a vector of constants or undefs, get the bits.  A bit in
1501// UndefBits is set if the corresponding element of the vector is an
1502// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1503// zero.   Return true if this is not an array of constants, false if it is.
1504//
1505static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1506                                       uint64_t UndefBits[2]) {
1507  // Start with zero'd results.
1508  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1509
1510  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1511  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1512    SDOperand OpVal = BV->getOperand(i);
1513
1514    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1515    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1516
1517    uint64_t EltBits = 0;
1518    if (OpVal.getOpcode() == ISD::UNDEF) {
1519      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1520      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1521      continue;
1522    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1523      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1524    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1525      assert(CN->getValueType(0) == MVT::f32 &&
1526             "Only one legal FP vector type!");
1527      EltBits = FloatToBits(CN->getValue());
1528    } else {
1529      // Nonconstant element.
1530      return true;
1531    }
1532
1533    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1534  }
1535
1536  //printf("%llx %llx  %llx %llx\n",
1537  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1538  return false;
1539}
1540
1541// If this is a splat (repetition) of a value across the whole vector, return
1542// the smallest size that splats it.  For example, "0x01010101010101..." is a
1543// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1544// SplatSize = 1 byte.
1545static bool isConstantSplat(const uint64_t Bits128[2],
1546                            const uint64_t Undef128[2],
1547                            unsigned &SplatBits, unsigned &SplatUndef,
1548                            unsigned &SplatSize) {
1549
1550  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1551  // the same as the lower 64-bits, ignoring undefs.
1552  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1553    return false;  // Can't be a splat if two pieces don't match.
1554
1555  uint64_t Bits64  = Bits128[0] | Bits128[1];
1556  uint64_t Undef64 = Undef128[0] & Undef128[1];
1557
1558  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1559  // undefs.
1560  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1561    return false;  // Can't be a splat if two pieces don't match.
1562
1563  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1564  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1565
1566  // If the top 16-bits are different than the lower 16-bits, ignoring
1567  // undefs, we have an i32 splat.
1568  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1569    SplatBits = Bits32;
1570    SplatUndef = Undef32;
1571    SplatSize = 4;
1572    return true;
1573  }
1574
1575  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1576  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1577
1578  // If the top 8-bits are different than the lower 8-bits, ignoring
1579  // undefs, we have an i16 splat.
1580  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1581    SplatBits = Bits16;
1582    SplatUndef = Undef16;
1583    SplatSize = 2;
1584    return true;
1585  }
1586
1587  // Otherwise, we have an 8-bit splat.
1588  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1589  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1590  SplatSize = 1;
1591  return true;
1592}
1593
1594/// BuildSplatI - Build a canonical splati of Val with an element size of
1595/// SplatSize.  Cast the result to VT.
1596static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1597                             SelectionDAG &DAG) {
1598  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1599
1600  // Force vspltis[hw] -1 to vspltisb -1.
1601  if (Val == -1) SplatSize = 1;
1602
1603  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1604    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1605  };
1606  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1607
1608  // Build a canonical splat for this value.
1609  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1610  std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1611  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1612  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1613}
1614
1615/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1616/// specified intrinsic ID.
1617static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1618                                  SelectionDAG &DAG,
1619                                  MVT::ValueType DestVT = MVT::Other) {
1620  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1621  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1622                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1623}
1624
1625/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1626/// specified intrinsic ID.
1627static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1628                                  SDOperand Op2, SelectionDAG &DAG,
1629                                  MVT::ValueType DestVT = MVT::Other) {
1630  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1631  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1632                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1633}
1634
1635
1636/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1637/// amount.  The result has the specified value type.
1638static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1639                             MVT::ValueType VT, SelectionDAG &DAG) {
1640  // Force LHS/RHS to be the right type.
1641  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1642  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1643
1644  std::vector<SDOperand> Ops;
1645  for (unsigned i = 0; i != 16; ++i)
1646    Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1647  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1648                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1649  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1650}
1651
1652// If this is a case we can't handle, return null and let the default
1653// expansion code take care of it.  If we CAN select this case, and if it
1654// selects to a single instruction, return Op.  Otherwise, if we can codegen
1655// this case more efficiently than a constant pool load, lower it to the
1656// sequence of ops that should be used.
1657static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1658  // If this is a vector of constants or undefs, get the bits.  A bit in
1659  // UndefBits is set if the corresponding element of the vector is an
1660  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1661  // zero.
1662  uint64_t VectorBits[2];
1663  uint64_t UndefBits[2];
1664  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1665    return SDOperand();   // Not a constant vector.
1666
1667  // If this is a splat (repetition) of a value across the whole vector, return
1668  // the smallest size that splats it.  For example, "0x01010101010101..." is a
1669  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1670  // SplatSize = 1 byte.
1671  unsigned SplatBits, SplatUndef, SplatSize;
1672  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1673    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1674
1675    // First, handle single instruction cases.
1676
1677    // All zeros?
1678    if (SplatBits == 0) {
1679      // Canonicalize all zero vectors to be v4i32.
1680      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1681        SDOperand Z = DAG.getConstant(0, MVT::i32);
1682        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1683        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1684      }
1685      return Op;
1686    }
1687
1688    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1689    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1690    if (SextVal >= -16 && SextVal <= 15)
1691      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1692
1693
1694    // Two instruction sequences.
1695
1696    // If this value is in the range [-32,30] and is even, use:
1697    //    tmp = VSPLTI[bhw], result = add tmp, tmp
1698    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1699      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1700      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1701    }
1702
1703    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
1704    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
1705    // for fneg/fabs.
1706    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1707      // Make -1 and vspltisw -1:
1708      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1709
1710      // Make the VSLW intrinsic, computing 0x8000_0000.
1711      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1712                                       OnesV, DAG);
1713
1714      // xor by OnesV to invert it.
1715      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1716      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1717    }
1718
1719    // Check to see if this is a wide variety of vsplti*, binop self cases.
1720    unsigned SplatBitSize = SplatSize*8;
1721    static const char SplatCsts[] = {
1722      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1723      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1724    };
1725    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1726      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1727      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
1728      int i = SplatCsts[idx];
1729
1730      // Figure out what shift amount will be used by altivec if shifted by i in
1731      // this splat size.
1732      unsigned TypeShiftAmt = i & (SplatBitSize-1);
1733
1734      // vsplti + shl self.
1735      if (SextVal == (i << (int)TypeShiftAmt)) {
1736        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1737        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1738          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1739          Intrinsic::ppc_altivec_vslw
1740        };
1741        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1742      }
1743
1744      // vsplti + srl self.
1745      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1746        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1747        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1748          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1749          Intrinsic::ppc_altivec_vsrw
1750        };
1751        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1752      }
1753
1754      // vsplti + sra self.
1755      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1756        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1757        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1758          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1759          Intrinsic::ppc_altivec_vsraw
1760        };
1761        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1762      }
1763
1764      // vsplti + rol self.
1765      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1766                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1767        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1768        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1769          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1770          Intrinsic::ppc_altivec_vrlw
1771        };
1772        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1773      }
1774
1775      // t = vsplti c, result = vsldoi t, t, 1
1776      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1777        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1778        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1779      }
1780      // t = vsplti c, result = vsldoi t, t, 2
1781      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1782        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1783        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1784      }
1785      // t = vsplti c, result = vsldoi t, t, 3
1786      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1787        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1788        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1789      }
1790    }
1791
1792    // Three instruction sequences.
1793
1794    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
1795    if (SextVal >= 0 && SextVal <= 31) {
1796      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1797      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1798      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1799    }
1800    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
1801    if (SextVal >= -31 && SextVal <= 0) {
1802      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1803      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1804      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1805    }
1806  }
1807
1808  return SDOperand();
1809}
1810
1811/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1812/// the specified operations to build the shuffle.
1813static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1814                                        SDOperand RHS, SelectionDAG &DAG) {
1815  unsigned OpNum = (PFEntry >> 26) & 0x0F;
1816  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
1817  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
1818
1819  enum {
1820    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1821    OP_VMRGHW,
1822    OP_VMRGLW,
1823    OP_VSPLTISW0,
1824    OP_VSPLTISW1,
1825    OP_VSPLTISW2,
1826    OP_VSPLTISW3,
1827    OP_VSLDOI4,
1828    OP_VSLDOI8,
1829    OP_VSLDOI12
1830  };
1831
1832  if (OpNum == OP_COPY) {
1833    if (LHSID == (1*9+2)*9+3) return LHS;
1834    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1835    return RHS;
1836  }
1837
1838  SDOperand OpLHS, OpRHS;
1839  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1840  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1841
1842  unsigned ShufIdxs[16];
1843  switch (OpNum) {
1844  default: assert(0 && "Unknown i32 permute!");
1845  case OP_VMRGHW:
1846    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
1847    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1848    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
1849    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1850    break;
1851  case OP_VMRGLW:
1852    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1853    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1854    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1855    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1856    break;
1857  case OP_VSPLTISW0:
1858    for (unsigned i = 0; i != 16; ++i)
1859      ShufIdxs[i] = (i&3)+0;
1860    break;
1861  case OP_VSPLTISW1:
1862    for (unsigned i = 0; i != 16; ++i)
1863      ShufIdxs[i] = (i&3)+4;
1864    break;
1865  case OP_VSPLTISW2:
1866    for (unsigned i = 0; i != 16; ++i)
1867      ShufIdxs[i] = (i&3)+8;
1868    break;
1869  case OP_VSPLTISW3:
1870    for (unsigned i = 0; i != 16; ++i)
1871      ShufIdxs[i] = (i&3)+12;
1872    break;
1873  case OP_VSLDOI4:
1874    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1875  case OP_VSLDOI8:
1876    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1877  case OP_VSLDOI12:
1878    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1879  }
1880  std::vector<SDOperand> Ops;
1881  for (unsigned i = 0; i != 16; ++i)
1882    Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1883
1884  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1885                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1886}
1887
1888/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
1889/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
1890/// return the code it can be lowered into.  Worst case, it can always be
1891/// lowered into a vperm.
1892static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1893  SDOperand V1 = Op.getOperand(0);
1894  SDOperand V2 = Op.getOperand(1);
1895  SDOperand PermMask = Op.getOperand(2);
1896
1897  // Cases that are handled by instructions that take permute immediates
1898  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1899  // selected by the instruction selector.
1900  if (V2.getOpcode() == ISD::UNDEF) {
1901    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1902        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1903        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1904        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1905        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1906        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1907        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1908        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1909        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1910        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1911        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1912        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1913      return Op;
1914    }
1915  }
1916
1917  // Altivec has a variety of "shuffle immediates" that take two vector inputs
1918  // and produce a fixed permutation.  If any of these match, do not lower to
1919  // VPERM.
1920  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1921      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1922      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1923      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1924      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1925      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1926      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1927      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1928      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1929    return Op;
1930
1931  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
1932  // perfect shuffle table to emit an optimal matching sequence.
1933  unsigned PFIndexes[4];
1934  bool isFourElementShuffle = true;
1935  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1936    unsigned EltNo = 8;   // Start out undef.
1937    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
1938      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1939        continue;   // Undef, ignore it.
1940
1941      unsigned ByteSource =
1942        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1943      if ((ByteSource & 3) != j) {
1944        isFourElementShuffle = false;
1945        break;
1946      }
1947
1948      if (EltNo == 8) {
1949        EltNo = ByteSource/4;
1950      } else if (EltNo != ByteSource/4) {
1951        isFourElementShuffle = false;
1952        break;
1953      }
1954    }
1955    PFIndexes[i] = EltNo;
1956  }
1957
1958  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1959  // perfect shuffle vector to determine if it is cost effective to do this as
1960  // discrete instructions, or whether we should use a vperm.
1961  if (isFourElementShuffle) {
1962    // Compute the index in the perfect shuffle table.
1963    unsigned PFTableIndex =
1964      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1965
1966    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1967    unsigned Cost  = (PFEntry >> 30);
1968
1969    // Determining when to avoid vperm is tricky.  Many things affect the cost
1970    // of vperm, particularly how many times the perm mask needs to be computed.
1971    // For example, if the perm mask can be hoisted out of a loop or is already
1972    // used (perhaps because there are multiple permutes with the same shuffle
1973    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
1974    // the loop requires an extra register.
1975    //
1976    // As a compromise, we only emit discrete instructions if the shuffle can be
1977    // generated in 3 or fewer operations.  When we have loop information
1978    // available, if this block is within a loop, we should avoid using vperm
1979    // for 3-operation perms and use a constant pool load instead.
1980    if (Cost < 3)
1981      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1982  }
1983
1984  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1985  // vector that will get spilled to the constant pool.
1986  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1987
1988  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1989  // that it is in input element units, not in bytes.  Convert now.
1990  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1991  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1992
1993  std::vector<SDOperand> ResultMask;
1994  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1995    unsigned SrcElt;
1996    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1997      SrcElt = 0;
1998    else
1999      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2000
2001    for (unsigned j = 0; j != BytesPerElement; ++j)
2002      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2003                                           MVT::i8));
2004  }
2005
2006  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
2007  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2008}
2009
2010/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2011/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2012/// information about the intrinsic.
2013static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2014                                  bool &isDot) {
2015  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2016  CompareOpc = -1;
2017  isDot = false;
2018  switch (IntrinsicID) {
2019  default: return false;
2020    // Comparison predicates.
2021  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2022  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2023  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2024  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2025  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2026  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2027  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2028  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2029  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2030  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2031  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2032  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2033  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2034
2035    // Normal Comparisons.
2036  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2037  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2038  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2039  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2040  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2041  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2042  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2043  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2044  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2045  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2046  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2047  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2048  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2049  }
2050  return true;
2051}
2052
2053/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2054/// lower, do it, otherwise return null.
2055static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2056  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2057  // opcode number of the comparison.
2058  int CompareOpc;
2059  bool isDot;
2060  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2061    return SDOperand();    // Don't custom lower most intrinsics.
2062
2063  // If this is a non-dot comparison, make the VCMP node and we are done.
2064  if (!isDot) {
2065    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2066                                Op.getOperand(1), Op.getOperand(2),
2067                                DAG.getConstant(CompareOpc, MVT::i32));
2068    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2069  }
2070
2071  // Create the PPCISD altivec 'dot' comparison node.
2072  std::vector<SDOperand> Ops;
2073  std::vector<MVT::ValueType> VTs;
2074  Ops.push_back(Op.getOperand(2));  // LHS
2075  Ops.push_back(Op.getOperand(3));  // RHS
2076  Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2077  VTs.push_back(Op.getOperand(2).getValueType());
2078  VTs.push_back(MVT::Flag);
2079  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2080
2081  // Now that we have the comparison, emit a copy from the CR to a GPR.
2082  // This is flagged to the above dot comparison.
2083  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2084                                DAG.getRegister(PPC::CR6, MVT::i32),
2085                                CompNode.getValue(1));
2086
2087  // Unpack the result based on how the target uses it.
2088  unsigned BitNo;   // Bit # of CR6.
2089  bool InvertBit;   // Invert result?
2090  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2091  default:  // Can't happen, don't crash on invalid number though.
2092  case 0:   // Return the value of the EQ bit of CR6.
2093    BitNo = 0; InvertBit = false;
2094    break;
2095  case 1:   // Return the inverted value of the EQ bit of CR6.
2096    BitNo = 0; InvertBit = true;
2097    break;
2098  case 2:   // Return the value of the LT bit of CR6.
2099    BitNo = 2; InvertBit = false;
2100    break;
2101  case 3:   // Return the inverted value of the LT bit of CR6.
2102    BitNo = 2; InvertBit = true;
2103    break;
2104  }
2105
2106  // Shift the bit into the low position.
2107  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2108                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2109  // Isolate the bit.
2110  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2111                      DAG.getConstant(1, MVT::i32));
2112
2113  // If we are supposed to, toggle the bit.
2114  if (InvertBit)
2115    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2116                        DAG.getConstant(1, MVT::i32));
2117  return Flags;
2118}
2119
2120static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2121  // Create a stack slot that is 16-byte aligned.
2122  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2123  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2124  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2125  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2126
2127  // Store the input value into Value#0 of the stack slot.
2128  SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
2129                                Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
2130  // Load it out.
2131  return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
2132}
2133
2134static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2135  if (Op.getValueType() == MVT::v4i32) {
2136    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2137
2138    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2139    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2140
2141    SDOperand RHSSwap =   // = vrlw RHS, 16
2142      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2143
2144    // Shrinkify inputs to v8i16.
2145    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2146    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2147    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2148
2149    // Low parts multiplied together, generating 32-bit results (we ignore the
2150    // top parts).
2151    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2152                                        LHS, RHS, DAG, MVT::v4i32);
2153
2154    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2155                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2156    // Shift the high parts up 16 bits.
2157    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2158    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2159  } else if (Op.getValueType() == MVT::v8i16) {
2160    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2161
2162    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2163
2164    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2165                            LHS, RHS, Zero, DAG);
2166  } else if (Op.getValueType() == MVT::v16i8) {
2167    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2168
2169    // Multiply the even 8-bit parts, producing 16-bit sums.
2170    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2171                                           LHS, RHS, DAG, MVT::v8i16);
2172    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2173
2174    // Multiply the odd 8-bit parts, producing 16-bit sums.
2175    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2176                                          LHS, RHS, DAG, MVT::v8i16);
2177    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2178
2179    // Merge the results together.
2180    std::vector<SDOperand> Ops;
2181    for (unsigned i = 0; i != 8; ++i) {
2182      Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
2183      Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
2184    }
2185
2186    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2187                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
2188  } else {
2189    assert(0 && "Unknown mul to lower!");
2190    abort();
2191  }
2192}
2193
2194/// LowerOperation - Provide custom lowering hooks for some operations.
2195///
2196SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2197  switch (Op.getOpcode()) {
2198  default: assert(0 && "Wasn't expecting to be able to lower this!");
2199  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2200  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2201  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2202  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2203  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2204  case ISD::FORMAL_ARGUMENTS:
2205      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2206  case ISD::CALL:               return LowerCALL(Op, DAG);
2207  case ISD::RET:                return LowerRET(Op, DAG);
2208
2209  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2210  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2211  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2212
2213  // Lower 64-bit shifts.
2214  case ISD::SHL:                return LowerSHL(Op, DAG, getPointerTy());
2215  case ISD::SRL:                return LowerSRL(Op, DAG, getPointerTy());
2216  case ISD::SRA:                return LowerSRA(Op, DAG, getPointerTy());
2217
2218  // Vector-related lowering.
2219  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2220  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2221  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2222  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2223  case ISD::MUL:                return LowerMUL(Op, DAG);
2224  }
2225  return SDOperand();
2226}
2227
2228//===----------------------------------------------------------------------===//
2229//  Other Lowering Code
2230//===----------------------------------------------------------------------===//
2231
2232MachineBasicBlock *
2233PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2234                                           MachineBasicBlock *BB) {
2235  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2236          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2237          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2238          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2239          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2240         "Unexpected instr type to insert");
2241
2242  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2243  // control-flow pattern.  The incoming instruction knows the destination vreg
2244  // to set, the condition code register to branch on, the true/false values to
2245  // select between, and a branch opcode to use.
2246  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2247  ilist<MachineBasicBlock>::iterator It = BB;
2248  ++It;
2249
2250  //  thisMBB:
2251  //  ...
2252  //   TrueVal = ...
2253  //   cmpTY ccX, r1, r2
2254  //   bCC copy1MBB
2255  //   fallthrough --> copy0MBB
2256  MachineBasicBlock *thisMBB = BB;
2257  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2258  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2259  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2260    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2261  MachineFunction *F = BB->getParent();
2262  F->getBasicBlockList().insert(It, copy0MBB);
2263  F->getBasicBlockList().insert(It, sinkMBB);
2264  // Update machine-CFG edges by first adding all successors of the current
2265  // block to the new block which will contain the Phi node for the select.
2266  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2267      e = BB->succ_end(); i != e; ++i)
2268    sinkMBB->addSuccessor(*i);
2269  // Next, remove all successors of the current block, and add the true
2270  // and fallthrough blocks as its successors.
2271  while(!BB->succ_empty())
2272    BB->removeSuccessor(BB->succ_begin());
2273  BB->addSuccessor(copy0MBB);
2274  BB->addSuccessor(sinkMBB);
2275
2276  //  copy0MBB:
2277  //   %FalseValue = ...
2278  //   # fallthrough to sinkMBB
2279  BB = copy0MBB;
2280
2281  // Update machine-CFG edges
2282  BB->addSuccessor(sinkMBB);
2283
2284  //  sinkMBB:
2285  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2286  //  ...
2287  BB = sinkMBB;
2288  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2289    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2290    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2291
2292  delete MI;   // The pseudo instruction is gone now.
2293  return BB;
2294}
2295
2296//===----------------------------------------------------------------------===//
2297// Target Optimization Hooks
2298//===----------------------------------------------------------------------===//
2299
2300SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2301                                               DAGCombinerInfo &DCI) const {
2302  TargetMachine &TM = getTargetMachine();
2303  SelectionDAG &DAG = DCI.DAG;
2304  switch (N->getOpcode()) {
2305  default: break;
2306  case ISD::SINT_TO_FP:
2307    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2308      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2309        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2310        // We allow the src/dst to be either f32/f64, but the intermediate
2311        // type must be i64.
2312        if (N->getOperand(0).getValueType() == MVT::i64) {
2313          SDOperand Val = N->getOperand(0).getOperand(0);
2314          if (Val.getValueType() == MVT::f32) {
2315            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2316            DCI.AddToWorklist(Val.Val);
2317          }
2318
2319          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2320          DCI.AddToWorklist(Val.Val);
2321          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2322          DCI.AddToWorklist(Val.Val);
2323          if (N->getValueType(0) == MVT::f32) {
2324            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2325            DCI.AddToWorklist(Val.Val);
2326          }
2327          return Val;
2328        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2329          // If the intermediate type is i32, we can avoid the load/store here
2330          // too.
2331        }
2332      }
2333    }
2334    break;
2335  case ISD::STORE:
2336    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2337    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2338        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2339        N->getOperand(1).getValueType() == MVT::i32) {
2340      SDOperand Val = N->getOperand(1).getOperand(0);
2341      if (Val.getValueType() == MVT::f32) {
2342        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2343        DCI.AddToWorklist(Val.Val);
2344      }
2345      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2346      DCI.AddToWorklist(Val.Val);
2347
2348      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2349                        N->getOperand(2), N->getOperand(3));
2350      DCI.AddToWorklist(Val.Val);
2351      return Val;
2352    }
2353
2354    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2355    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2356        N->getOperand(1).Val->hasOneUse() &&
2357        (N->getOperand(1).getValueType() == MVT::i32 ||
2358         N->getOperand(1).getValueType() == MVT::i16)) {
2359      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2360      // Do an any-extend to 32-bits if this is a half-word input.
2361      if (BSwapOp.getValueType() == MVT::i16)
2362        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2363
2364      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2365                         N->getOperand(2), N->getOperand(3),
2366                         DAG.getValueType(N->getOperand(1).getValueType()));
2367    }
2368    break;
2369  case ISD::BSWAP:
2370    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2371    if (N->getOperand(0).getOpcode() == ISD::LOAD &&
2372        N->getOperand(0).hasOneUse() &&
2373        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2374      SDOperand Load = N->getOperand(0);
2375      // Create the byte-swapping load.
2376      std::vector<MVT::ValueType> VTs;
2377      VTs.push_back(MVT::i32);
2378      VTs.push_back(MVT::Other);
2379      std::vector<SDOperand> Ops;
2380      Ops.push_back(Load.getOperand(0));   // Chain
2381      Ops.push_back(Load.getOperand(1));   // Ptr
2382      Ops.push_back(Load.getOperand(2));   // SrcValue
2383      Ops.push_back(DAG.getValueType(N->getValueType(0))); // VT
2384      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops);
2385
2386      // If this is an i16 load, insert the truncate.
2387      SDOperand ResVal = BSLoad;
2388      if (N->getValueType(0) == MVT::i16)
2389        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2390
2391      // First, combine the bswap away.  This makes the value produced by the
2392      // load dead.
2393      DCI.CombineTo(N, ResVal);
2394
2395      // Next, combine the load away, we give it a bogus result value but a real
2396      // chain result.  The result value is dead because the bswap is dead.
2397      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2398
2399      // Return N so it doesn't get rechecked!
2400      return SDOperand(N, 0);
2401    }
2402
2403    break;
2404  case PPCISD::VCMP: {
2405    // If a VCMPo node already exists with exactly the same operands as this
2406    // node, use its result instead of this node (VCMPo computes both a CR6 and
2407    // a normal output).
2408    //
2409    if (!N->getOperand(0).hasOneUse() &&
2410        !N->getOperand(1).hasOneUse() &&
2411        !N->getOperand(2).hasOneUse()) {
2412
2413      // Scan all of the users of the LHS, looking for VCMPo's that match.
2414      SDNode *VCMPoNode = 0;
2415
2416      SDNode *LHSN = N->getOperand(0).Val;
2417      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2418           UI != E; ++UI)
2419        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2420            (*UI)->getOperand(1) == N->getOperand(1) &&
2421            (*UI)->getOperand(2) == N->getOperand(2) &&
2422            (*UI)->getOperand(0) == N->getOperand(0)) {
2423          VCMPoNode = *UI;
2424          break;
2425        }
2426
2427      // If there is no VCMPo node, or if the flag value has a single use, don't
2428      // transform this.
2429      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2430        break;
2431
2432      // Look at the (necessarily single) use of the flag value.  If it has a
2433      // chain, this transformation is more complex.  Note that multiple things
2434      // could use the value result, which we should ignore.
2435      SDNode *FlagUser = 0;
2436      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2437           FlagUser == 0; ++UI) {
2438        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2439        SDNode *User = *UI;
2440        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2441          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2442            FlagUser = User;
2443            break;
2444          }
2445        }
2446      }
2447
2448      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2449      // give up for right now.
2450      if (FlagUser->getOpcode() == PPCISD::MFCR)
2451        return SDOperand(VCMPoNode, 0);
2452    }
2453    break;
2454  }
2455  case ISD::BR_CC: {
2456    // If this is a branch on an altivec predicate comparison, lower this so
2457    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2458    // lowering is done pre-legalize, because the legalizer lowers the predicate
2459    // compare down to code that is difficult to reassemble.
2460    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2461    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2462    int CompareOpc;
2463    bool isDot;
2464
2465    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2466        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2467        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2468      assert(isDot && "Can't compare against a vector result!");
2469
2470      // If this is a comparison against something other than 0/1, then we know
2471      // that the condition is never/always true.
2472      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2473      if (Val != 0 && Val != 1) {
2474        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2475          return N->getOperand(0);
2476        // Always !=, turn it into an unconditional branch.
2477        return DAG.getNode(ISD::BR, MVT::Other,
2478                           N->getOperand(0), N->getOperand(4));
2479      }
2480
2481      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2482
2483      // Create the PPCISD altivec 'dot' comparison node.
2484      std::vector<SDOperand> Ops;
2485      std::vector<MVT::ValueType> VTs;
2486      Ops.push_back(LHS.getOperand(2));  // LHS of compare
2487      Ops.push_back(LHS.getOperand(3));  // RHS of compare
2488      Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2489      VTs.push_back(LHS.getOperand(2).getValueType());
2490      VTs.push_back(MVT::Flag);
2491      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2492
2493      // Unpack the result based on how the target uses it.
2494      unsigned CompOpc;
2495      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2496      default:  // Can't happen, don't crash on invalid number though.
2497      case 0:   // Branch on the value of the EQ bit of CR6.
2498        CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2499        break;
2500      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2501        CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2502        break;
2503      case 2:   // Branch on the value of the LT bit of CR6.
2504        CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2505        break;
2506      case 3:   // Branch on the inverted value of the LT bit of CR6.
2507        CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2508        break;
2509      }
2510
2511      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2512                         DAG.getRegister(PPC::CR6, MVT::i32),
2513                         DAG.getConstant(CompOpc, MVT::i32),
2514                         N->getOperand(4), CompNode.getValue(1));
2515    }
2516    break;
2517  }
2518  }
2519
2520  return SDOperand();
2521}
2522
2523//===----------------------------------------------------------------------===//
2524// Inline Assembly Support
2525//===----------------------------------------------------------------------===//
2526
2527void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2528                                                       uint64_t Mask,
2529                                                       uint64_t &KnownZero,
2530                                                       uint64_t &KnownOne,
2531                                                       unsigned Depth) const {
2532  KnownZero = 0;
2533  KnownOne = 0;
2534  switch (Op.getOpcode()) {
2535  default: break;
2536  case PPCISD::LBRX: {
2537    // lhbrx is known to have the top bits cleared out.
2538    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
2539      KnownZero = 0xFFFF0000;
2540    break;
2541  }
2542  case ISD::INTRINSIC_WO_CHAIN: {
2543    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2544    default: break;
2545    case Intrinsic::ppc_altivec_vcmpbfp_p:
2546    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2547    case Intrinsic::ppc_altivec_vcmpequb_p:
2548    case Intrinsic::ppc_altivec_vcmpequh_p:
2549    case Intrinsic::ppc_altivec_vcmpequw_p:
2550    case Intrinsic::ppc_altivec_vcmpgefp_p:
2551    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2552    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2553    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2554    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2555    case Intrinsic::ppc_altivec_vcmpgtub_p:
2556    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2557    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2558      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2559      break;
2560    }
2561  }
2562  }
2563}
2564
2565
2566/// getConstraintType - Given a constraint letter, return the type of
2567/// constraint it is for this target.
2568PPCTargetLowering::ConstraintType
2569PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2570  switch (ConstraintLetter) {
2571  default: break;
2572  case 'b':
2573  case 'r':
2574  case 'f':
2575  case 'v':
2576  case 'y':
2577    return C_RegisterClass;
2578  }
2579  return TargetLowering::getConstraintType(ConstraintLetter);
2580}
2581
2582
2583std::vector<unsigned> PPCTargetLowering::
2584getRegClassForInlineAsmConstraint(const std::string &Constraint,
2585                                  MVT::ValueType VT) const {
2586  if (Constraint.size() == 1) {
2587    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
2588    default: break;  // Unknown constriant letter
2589    case 'b':
2590      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2591                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2592                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2593                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2594                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2595                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2596                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2597                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2598                                   0);
2599    case 'r':
2600      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2601                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2602                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2603                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2604                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2605                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2606                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2607                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2608                                   0);
2609    case 'f':
2610      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2611                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2612                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2613                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2614                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2615                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2616                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2617                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2618                                   0);
2619    case 'v':
2620      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2621                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2622                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2623                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2624                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2625                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2626                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2627                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2628                                   0);
2629    case 'y':
2630      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2631                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2632                                   0);
2633    }
2634  }
2635
2636  return std::vector<unsigned>();
2637}
2638
2639// isOperandValidForConstraint
2640bool PPCTargetLowering::
2641isOperandValidForConstraint(SDOperand Op, char Letter) {
2642  switch (Letter) {
2643  default: break;
2644  case 'I':
2645  case 'J':
2646  case 'K':
2647  case 'L':
2648  case 'M':
2649  case 'N':
2650  case 'O':
2651  case 'P': {
2652    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
2653    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2654    switch (Letter) {
2655    default: assert(0 && "Unknown constraint letter!");
2656    case 'I':  // "I" is a signed 16-bit constant.
2657      return (short)Value == (int)Value;
2658    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
2659    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
2660      return (short)Value == 0;
2661    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
2662      return (Value >> 16) == 0;
2663    case 'M':  // "M" is a constant that is greater than 31.
2664      return Value > 31;
2665    case 'N':  // "N" is a positive constant that is an exact power of two.
2666      return (int)Value > 0 && isPowerOf2_32(Value);
2667    case 'O':  // "O" is the constant zero.
2668      return Value == 0;
2669    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
2670      return (short)-Value == (int)-Value;
2671    }
2672    break;
2673  }
2674  }
2675
2676  // Handle standard constraint letters.
2677  return TargetLowering::isOperandValidForConstraint(Op, Letter);
2678}
2679
2680/// isLegalAddressImmediate - Return true if the integer value can be used
2681/// as the offset of the target addressing mode.
2682bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2683  // PPC allows a sign-extended 16-bit immediate field.
2684  return (V > -(1 << 16) && V < (1 << 16)-1);
2685}
2686