PPCISelLowering.cpp revision 44ab89eb376af838d1123293a79975aede501464
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// License. See LICENSE.TXT for details.
75821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
85821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
95821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
105821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)// This file implements the PPCISelLowering class.
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===----------------------------------------------------------------------===//
135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "PPCISelLowering.h"
155821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "PPCMachineFunctionInfo.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "PPCPerfectShuffle.h"
175821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "PPCPredicates.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "PPCTargetMachine.h"
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/STLExtras.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/ADT/VectorExtras.h"
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/CallingConvLower.h"
225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFrameInfo.h"
235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineFunction.h"
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineInstrBuilder.h"
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/MachineRegisterInfo.h"
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/PseudoSourceValue.h"
275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/SelectionDAG.h"
285821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/CallingConv.h"
305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Constants.h"
315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Function.h"
325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Intrinsics.h"
335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/MathExtras.h"
345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Target/TargetOptions.h"
355821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/CommandLine.h"
365821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/ErrorHandling.h"
375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/DerivedTypes.h"
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace llvm;
405821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
415821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
425821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                     CCValAssign::LocInfo &LocInfo,
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                     ISD::ArgFlagsTy &ArgFlags,
445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                     CCState &State);
455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                            EVT &LocVT,
475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                            CCValAssign::LocInfo &LocInfo,
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                            ISD::ArgFlagsTy &ArgFlags,
495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                            CCState &State);
505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
515821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                              EVT &LocVT,
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                              CCValAssign::LocInfo &LocInfo,
535821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                              ISD::ArgFlagsTy &ArgFlags,
545821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                              CCState &State);
555821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
565821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
575821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)cl::desc("enable preincrement load/store generation on PPC (experimental)"),
585821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                     cl::Hidden);
595821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  if (TM.getSubtargetImpl()->isDarwin())
625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return new TargetLoweringObjectFileMachO();
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return new TargetLoweringObjectFileELF();
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
675821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
685821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
695821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
705821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  setPow2DivIsCheap();
715821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Use _setjmp/_longjmp instead of setjmp/longjmp.
735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  setUseUnderscoreSetJmp(true);
745821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  setUseUnderscoreLongJmp(true);
755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
765821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
775821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // arguments are at least 4/8 bytes aligned.
785821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
795821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
805821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Set up the register classes.
815821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FSIN , MVT::f32, Expand);
129  setOperationAction(ISD::FCOS , MVT::f32, Expand);
130  setOperationAction(ISD::FREM , MVT::f32, Expand);
131  setOperationAction(ISD::FPOW , MVT::f32, Expand);
132
133  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134
135  // If we're enabling GP optimizations, use hardware square root
136  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139  }
140
141  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143
144  // PowerPC does not have BSWAP, CTPOP or CTTZ
145  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151
152  // PowerPC does not have ROTR
153  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155
156  // PowerPC does not have Select
157  setOperationAction(ISD::SELECT, MVT::i32, Expand);
158  setOperationAction(ISD::SELECT, MVT::i64, Expand);
159  setOperationAction(ISD::SELECT, MVT::f32, Expand);
160  setOperationAction(ISD::SELECT, MVT::f64, Expand);
161
162  // PowerPC wants to turn select_cc of FP into fsel when possible.
163  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165
166  // PowerPC wants to optimize integer setcc a bit
167  setOperationAction(ISD::SETCC, MVT::i32, Custom);
168
169  // PowerPC does not have BRCOND which requires SetCC
170  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173
174  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176
177  // PowerPC does not have [U|S]INT_TO_FP
178  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180
181  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
182  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
183  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
184  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
185
186  // We cannot sextinreg(i1).  Expand to shifts.
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setShiftAmountType(MVT::i32);
366  setBooleanContents(ZeroOrOneBooleanContent);
367
368  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
369    setStackPointerRegisterToSaveRestore(PPC::X1);
370    setExceptionPointerRegister(PPC::X3);
371    setExceptionSelectorRegister(PPC::X4);
372  } else {
373    setStackPointerRegisterToSaveRestore(PPC::R1);
374    setExceptionPointerRegister(PPC::R3);
375    setExceptionSelectorRegister(PPC::R4);
376  }
377
378  // We have target-specific dag combine patterns for the following nodes:
379  setTargetDAGCombine(ISD::SINT_TO_FP);
380  setTargetDAGCombine(ISD::STORE);
381  setTargetDAGCombine(ISD::BR_CC);
382  setTargetDAGCombine(ISD::BSWAP);
383
384  // Darwin long double math library functions have $LDBL128 appended.
385  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
386    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
387    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
388    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
389    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
390    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
391    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
392    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
393    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
394    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
395    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
396  }
397
398  computeRegisterProperties();
399}
400
401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402/// function arguments in the caller parameter area.
403unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
404  const TargetMachine &TM = getTargetMachine();
405  // Darwin passes everything on 4 byte boundary.
406  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
407    return 4;
408  // FIXME SVR4 TBD
409  return 4;
410}
411
412const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
413  switch (Opcode) {
414  default: return 0;
415  case PPCISD::FSEL:            return "PPCISD::FSEL";
416  case PPCISD::FCFID:           return "PPCISD::FCFID";
417  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
418  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
419  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
420  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
421  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
422  case PPCISD::VPERM:           return "PPCISD::VPERM";
423  case PPCISD::Hi:              return "PPCISD::Hi";
424  case PPCISD::Lo:              return "PPCISD::Lo";
425  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
426  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
427  case PPCISD::LOAD:            return "PPCISD::LOAD";
428  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
429  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
430  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
431  case PPCISD::SRL:             return "PPCISD::SRL";
432  case PPCISD::SRA:             return "PPCISD::SRA";
433  case PPCISD::SHL:             return "PPCISD::SHL";
434  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
435  case PPCISD::STD_32:          return "PPCISD::STD_32";
436  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
437  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
438  case PPCISD::NOP:             return "PPCISD::NOP";
439  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
440  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
441  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
442  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
443  case PPCISD::MFCR:            return "PPCISD::MFCR";
444  case PPCISD::VCMP:            return "PPCISD::VCMP";
445  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
446  case PPCISD::LBRX:            return "PPCISD::LBRX";
447  case PPCISD::STBRX:           return "PPCISD::STBRX";
448  case PPCISD::LARX:            return "PPCISD::LARX";
449  case PPCISD::STCX:            return "PPCISD::STCX";
450  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
451  case PPCISD::MFFS:            return "PPCISD::MFFS";
452  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
453  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
454  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
455  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
456  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
457  }
458}
459
460MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
461  return MVT::i32;
462}
463
464/// getFunctionAlignment - Return the Log2 alignment of this function.
465unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
466  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
467    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
468  else
469    return 2;
470}
471
472//===----------------------------------------------------------------------===//
473// Node matching predicates, for use by the tblgen matching code.
474//===----------------------------------------------------------------------===//
475
476/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
477static bool isFloatingPointZero(SDValue Op) {
478  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
479    return CFP->getValueAPF().isZero();
480  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
481    // Maybe this has already been legalized into the constant pool?
482    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
483      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
484        return CFP->getValueAPF().isZero();
485  }
486  return false;
487}
488
489/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
490/// true if Op is undef or if it matches the specified value.
491static bool isConstantOrUndef(int Op, int Val) {
492  return Op < 0 || Op == Val;
493}
494
495/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
496/// VPKUHUM instruction.
497bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
498  if (!isUnary) {
499    for (unsigned i = 0; i != 16; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
501        return false;
502  } else {
503    for (unsigned i = 0; i != 8; ++i)
504      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
505          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
506        return false;
507  }
508  return true;
509}
510
511/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
512/// VPKUWUM instruction.
513bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
514  if (!isUnary) {
515    for (unsigned i = 0; i != 16; i += 2)
516      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
518        return false;
519  } else {
520    for (unsigned i = 0; i != 8; i += 2)
521      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
523          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
524          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
525        return false;
526  }
527  return true;
528}
529
530/// isVMerge - Common function, used to match vmrg* shuffles.
531///
532static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
533                     unsigned LHSStart, unsigned RHSStart) {
534  assert(N->getValueType(0) == MVT::v16i8 &&
535         "PPC only supports shuffles by bytes!");
536  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
537         "Unsupported merge size!");
538
539  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
540    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
541      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
542                             LHSStart+j+i*UnitSize) ||
543          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
544                             RHSStart+j+i*UnitSize))
545        return false;
546    }
547  return true;
548}
549
550/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
551/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
552bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
553                             bool isUnary) {
554  if (!isUnary)
555    return isVMerge(N, UnitSize, 8, 24);
556  return isVMerge(N, UnitSize, 8, 8);
557}
558
559/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
560/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
561bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
562                             bool isUnary) {
563  if (!isUnary)
564    return isVMerge(N, UnitSize, 0, 16);
565  return isVMerge(N, UnitSize, 0, 0);
566}
567
568
569/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
570/// amount, otherwise return -1.
571int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
572  assert(N->getValueType(0) == MVT::v16i8 &&
573         "PPC only supports shuffles by bytes!");
574
575  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
576
577  // Find the first non-undef value in the shuffle mask.
578  unsigned i;
579  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
580    /*search*/;
581
582  if (i == 16) return -1;  // all undef.
583
584  // Otherwise, check to see if the rest of the elements are consecutively
585  // numbered from this value.
586  unsigned ShiftAmt = SVOp->getMaskElt(i);
587  if (ShiftAmt < i) return -1;
588  ShiftAmt -= i;
589
590  if (!isUnary) {
591    // Check the rest of the elements to see if they are consecutive.
592    for (++i; i != 16; ++i)
593      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
594        return -1;
595  } else {
596    // Check the rest of the elements to see if they are consecutive.
597    for (++i; i != 16; ++i)
598      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
599        return -1;
600  }
601  return ShiftAmt;
602}
603
604/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
605/// specifies a splat of a single element that is suitable for input to
606/// VSPLTB/VSPLTH/VSPLTW.
607bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
608  assert(N->getValueType(0) == MVT::v16i8 &&
609         (EltSize == 1 || EltSize == 2 || EltSize == 4));
610
611  // This is a splat operation if each element of the permute is the same, and
612  // if the value doesn't reference the second vector.
613  unsigned ElementBase = N->getMaskElt(0);
614
615  // FIXME: Handle UNDEF elements too!
616  if (ElementBase >= 16)
617    return false;
618
619  // Check that the indices are consecutive, in the case of a multi-byte element
620  // splatted with a v16i8 mask.
621  for (unsigned i = 1; i != EltSize; ++i)
622    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
623      return false;
624
625  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
626    if (N->getMaskElt(i) < 0) continue;
627    for (unsigned j = 0; j != EltSize; ++j)
628      if (N->getMaskElt(i+j) != N->getMaskElt(j))
629        return false;
630  }
631  return true;
632}
633
634/// isAllNegativeZeroVector - Returns true if all elements of build_vector
635/// are -0.0.
636bool PPC::isAllNegativeZeroVector(SDNode *N) {
637  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
638
639  APInt APVal, APUndef;
640  unsigned BitSize;
641  bool HasAnyUndefs;
642
643  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
644    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
645      return CFP->getValueAPF().isNegZero();
646
647  return false;
648}
649
650/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
651/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
652unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
653  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
654  assert(isSplatShuffleMask(SVOp, EltSize));
655  return SVOp->getMaskElt(0) / EltSize;
656}
657
658/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
659/// by using a vspltis[bhw] instruction of the specified element size, return
660/// the constant being splatted.  The ByteSize field indicates the number of
661/// bytes of each element [124] -> [bhw].
662SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
663  SDValue OpVal(0, 0);
664
665  // If ByteSize of the splat is bigger than the element size of the
666  // build_vector, then we have a case where we are checking for a splat where
667  // multiple elements of the buildvector are folded together into a single
668  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
669  unsigned EltSize = 16/N->getNumOperands();
670  if (EltSize < ByteSize) {
671    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
672    SDValue UniquedVals[4];
673    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
674
675    // See if all of the elements in the buildvector agree across.
676    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
677      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
678      // If the element isn't a constant, bail fully out.
679      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
680
681
682      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
683        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
684      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
685        return SDValue();  // no match.
686    }
687
688    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
689    // either constant or undef values that are identical for each chunk.  See
690    // if these chunks can form into a larger vspltis*.
691
692    // Check to see if all of the leading entries are either 0 or -1.  If
693    // neither, then this won't fit into the immediate field.
694    bool LeadingZero = true;
695    bool LeadingOnes = true;
696    for (unsigned i = 0; i != Multiple-1; ++i) {
697      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
698
699      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
700      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
701    }
702    // Finally, check the least significant entry.
703    if (LeadingZero) {
704      if (UniquedVals[Multiple-1].getNode() == 0)
705        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
706      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
707      if (Val < 16)
708        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
709    }
710    if (LeadingOnes) {
711      if (UniquedVals[Multiple-1].getNode() == 0)
712        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
713      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
714      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
715        return DAG.getTargetConstant(Val, MVT::i32);
716    }
717
718    return SDValue();
719  }
720
721  // Check to see if this buildvec has a single non-undef value in its elements.
722  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
723    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
724    if (OpVal.getNode() == 0)
725      OpVal = N->getOperand(i);
726    else if (OpVal != N->getOperand(i))
727      return SDValue();
728  }
729
730  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
731
732  unsigned ValSizeInBytes = EltSize;
733  uint64_t Value = 0;
734  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
735    Value = CN->getZExtValue();
736  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
737    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
738    Value = FloatToBits(CN->getValueAPF().convertToFloat());
739  }
740
741  // If the splat value is larger than the element value, then we can never do
742  // this splat.  The only case that we could fit the replicated bits into our
743  // immediate field for would be zero, and we prefer to use vxor for it.
744  if (ValSizeInBytes < ByteSize) return SDValue();
745
746  // If the element value is larger than the splat value, cut it in half and
747  // check to see if the two halves are equal.  Continue doing this until we
748  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
749  while (ValSizeInBytes > ByteSize) {
750    ValSizeInBytes >>= 1;
751
752    // If the top half equals the bottom half, we're still ok.
753    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
754         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
755      return SDValue();
756  }
757
758  // Properly sign extend the value.
759  int ShAmt = (4-ByteSize)*8;
760  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
761
762  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
763  if (MaskVal == 0) return SDValue();
764
765  // Finally, if this value fits in a 5 bit sext field, return it
766  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
767    return DAG.getTargetConstant(MaskVal, MVT::i32);
768  return SDValue();
769}
770
771//===----------------------------------------------------------------------===//
772//  Addressing Mode Selection
773//===----------------------------------------------------------------------===//
774
775/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
776/// or 64-bit immediate, and if the value can be accurately represented as a
777/// sign extension from a 16-bit value.  If so, this returns true and the
778/// immediate.
779static bool isIntS16Immediate(SDNode *N, short &Imm) {
780  if (N->getOpcode() != ISD::Constant)
781    return false;
782
783  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
784  if (N->getValueType(0) == MVT::i32)
785    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
786  else
787    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
788}
789static bool isIntS16Immediate(SDValue Op, short &Imm) {
790  return isIntS16Immediate(Op.getNode(), Imm);
791}
792
793
794/// SelectAddressRegReg - Given the specified addressed, check to see if it
795/// can be represented as an indexed [r+r] operation.  Returns false if it
796/// can be more efficiently represented with [r+imm].
797bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
798                                            SDValue &Index,
799                                            SelectionDAG &DAG) const {
800  short imm = 0;
801  if (N.getOpcode() == ISD::ADD) {
802    if (isIntS16Immediate(N.getOperand(1), imm))
803      return false;    // r+i
804    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
805      return false;    // r+i
806
807    Base = N.getOperand(0);
808    Index = N.getOperand(1);
809    return true;
810  } else if (N.getOpcode() == ISD::OR) {
811    if (isIntS16Immediate(N.getOperand(1), imm))
812      return false;    // r+i can fold it if we can.
813
814    // If this is an or of disjoint bitfields, we can codegen this as an add
815    // (for better address arithmetic) if the LHS and RHS of the OR are provably
816    // disjoint.
817    APInt LHSKnownZero, LHSKnownOne;
818    APInt RHSKnownZero, RHSKnownOne;
819    DAG.ComputeMaskedBits(N.getOperand(0),
820                          APInt::getAllOnesValue(N.getOperand(0)
821                            .getValueSizeInBits()),
822                          LHSKnownZero, LHSKnownOne);
823
824    if (LHSKnownZero.getBoolValue()) {
825      DAG.ComputeMaskedBits(N.getOperand(1),
826                            APInt::getAllOnesValue(N.getOperand(1)
827                              .getValueSizeInBits()),
828                            RHSKnownZero, RHSKnownOne);
829      // If all of the bits are known zero on the LHS or RHS, the add won't
830      // carry.
831      if (~(LHSKnownZero | RHSKnownZero) == 0) {
832        Base = N.getOperand(0);
833        Index = N.getOperand(1);
834        return true;
835      }
836    }
837  }
838
839  return false;
840}
841
842/// Returns true if the address N can be represented by a base register plus
843/// a signed 16-bit displacement [r+imm], and if it is not better
844/// represented as reg+reg.
845bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
846                                            SDValue &Base,
847                                            SelectionDAG &DAG) const {
848  // FIXME dl should come from parent load or store, not from address
849  DebugLoc dl = N.getDebugLoc();
850  // If this can be more profitably realized as r+r, fail.
851  if (SelectAddressRegReg(N, Disp, Base, DAG))
852    return false;
853
854  if (N.getOpcode() == ISD::ADD) {
855    short imm = 0;
856    if (isIntS16Immediate(N.getOperand(1), imm)) {
857      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
858      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
859        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860      } else {
861        Base = N.getOperand(0);
862      }
863      return true; // [r+i]
864    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
865      // Match LOAD (ADD (X, Lo(G))).
866     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
867             && "Cannot handle constant offsets yet!");
868      Disp = N.getOperand(1).getOperand(0);  // The global address.
869      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
870             Disp.getOpcode() == ISD::TargetConstantPool ||
871             Disp.getOpcode() == ISD::TargetJumpTable);
872      Base = N.getOperand(0);
873      return true;  // [&g+r]
874    }
875  } else if (N.getOpcode() == ISD::OR) {
876    short imm = 0;
877    if (isIntS16Immediate(N.getOperand(1), imm)) {
878      // If this is an or of disjoint bitfields, we can codegen this as an add
879      // (for better address arithmetic) if the LHS and RHS of the OR are
880      // provably disjoint.
881      APInt LHSKnownZero, LHSKnownOne;
882      DAG.ComputeMaskedBits(N.getOperand(0),
883                            APInt::getAllOnesValue(N.getOperand(0)
884                                                   .getValueSizeInBits()),
885                            LHSKnownZero, LHSKnownOne);
886
887      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
888        // If all of the bits are known zero on the LHS or RHS, the add won't
889        // carry.
890        Base = N.getOperand(0);
891        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
892        return true;
893      }
894    }
895  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
896    // Loading from a constant address.
897
898    // If this address fits entirely in a 16-bit sext immediate field, codegen
899    // this as "d, 0"
900    short Imm;
901    if (isIntS16Immediate(CN, Imm)) {
902      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
903      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
904      return true;
905    }
906
907    // Handle 32-bit sext immediates with LIS + addr mode.
908    if (CN->getValueType(0) == MVT::i32 ||
909        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
910      int Addr = (int)CN->getZExtValue();
911
912      // Otherwise, break this down into an LIS + disp.
913      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
914
915      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
916      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
917      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
918      return true;
919    }
920  }
921
922  Disp = DAG.getTargetConstant(0, getPointerTy());
923  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
924    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925  else
926    Base = N;
927  return true;      // [r+0]
928}
929
930/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
931/// represented as an indexed [r+r] operation.
932bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
933                                                SDValue &Index,
934                                                SelectionDAG &DAG) const {
935  // Check to see if we can easily represent this as an [r+r] address.  This
936  // will fail if it thinks that the address is more profitably represented as
937  // reg+imm, e.g. where imm = 0.
938  if (SelectAddressRegReg(N, Base, Index, DAG))
939    return true;
940
941  // If the operand is an addition, always emit this as [r+r], since this is
942  // better (for code size, and execution, as the memop does the add for free)
943  // than emitting an explicit add.
944  if (N.getOpcode() == ISD::ADD) {
945    Base = N.getOperand(0);
946    Index = N.getOperand(1);
947    return true;
948  }
949
950  // Otherwise, do it the hard way, using R0 as the base register.
951  Base = DAG.getRegister(PPC::R0, N.getValueType());
952  Index = N;
953  return true;
954}
955
956/// SelectAddressRegImmShift - Returns true if the address N can be
957/// represented by a base register plus a signed 14-bit displacement
958/// [r+imm*4].  Suitable for use by STD and friends.
959bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960                                                 SDValue &Base,
961                                                 SelectionDAG &DAG) const {
962  // FIXME dl should come from the parent load or store, not the address
963  DebugLoc dl = N.getDebugLoc();
964  // If this can be more profitably realized as r+r, fail.
965  if (SelectAddressRegReg(N, Disp, Base, DAG))
966    return false;
967
968  if (N.getOpcode() == ISD::ADD) {
969    short imm = 0;
970    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974      } else {
975        Base = N.getOperand(0);
976      }
977      return true; // [r+i]
978    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979      // Match LOAD (ADD (X, Lo(G))).
980     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981             && "Cannot handle constant offsets yet!");
982      Disp = N.getOperand(1).getOperand(0);  // The global address.
983      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984             Disp.getOpcode() == ISD::TargetConstantPool ||
985             Disp.getOpcode() == ISD::TargetJumpTable);
986      Base = N.getOperand(0);
987      return true;  // [&g+r]
988    }
989  } else if (N.getOpcode() == ISD::OR) {
990    short imm = 0;
991    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992      // If this is an or of disjoint bitfields, we can codegen this as an add
993      // (for better address arithmetic) if the LHS and RHS of the OR are
994      // provably disjoint.
995      APInt LHSKnownZero, LHSKnownOne;
996      DAG.ComputeMaskedBits(N.getOperand(0),
997                            APInt::getAllOnesValue(N.getOperand(0)
998                                                   .getValueSizeInBits()),
999                            LHSKnownZero, LHSKnownOne);
1000      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001        // If all of the bits are known zero on the LHS or RHS, the add won't
1002        // carry.
1003        Base = N.getOperand(0);
1004        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005        return true;
1006      }
1007    }
1008  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009    // Loading from a constant address.  Verify low two bits are clear.
1010    if ((CN->getZExtValue() & 3) == 0) {
1011      // If this address fits entirely in a 14-bit sext immediate field, codegen
1012      // this as "d, 0"
1013      short Imm;
1014      if (isIntS16Immediate(CN, Imm)) {
1015        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1017        return true;
1018      }
1019
1020      // Fold the low-part of 32-bit absolute addresses into addr mode.
1021      if (CN->getValueType(0) == MVT::i32 ||
1022          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1023        int Addr = (int)CN->getZExtValue();
1024
1025        // Otherwise, break this down into an LIS + disp.
1026        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1027        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1028        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1029        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1030        return true;
1031      }
1032    }
1033  }
1034
1035  Disp = DAG.getTargetConstant(0, getPointerTy());
1036  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1037    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1038  else
1039    Base = N;
1040  return true;      // [r+0]
1041}
1042
1043
1044/// getPreIndexedAddressParts - returns true by value, base pointer and
1045/// offset pointer and addressing mode by reference if the node's address
1046/// can be legally represented as pre-indexed load / store address.
1047bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1048                                                  SDValue &Offset,
1049                                                  ISD::MemIndexedMode &AM,
1050                                                  SelectionDAG &DAG) const {
1051  // Disabled by default for now.
1052  if (!EnablePPCPreinc) return false;
1053
1054  SDValue Ptr;
1055  EVT VT;
1056  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1057    Ptr = LD->getBasePtr();
1058    VT = LD->getMemoryVT();
1059
1060  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1061    ST = ST;
1062    Ptr = ST->getBasePtr();
1063    VT  = ST->getMemoryVT();
1064  } else
1065    return false;
1066
1067  // PowerPC doesn't have preinc load/store instructions for vectors.
1068  if (VT.isVector())
1069    return false;
1070
1071  // TODO: Check reg+reg first.
1072
1073  // LDU/STU use reg+imm*4, others use reg+imm.
1074  if (VT != MVT::i64) {
1075    // reg + imm
1076    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077      return false;
1078  } else {
1079    // reg + imm * 4.
1080    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081      return false;
1082  }
1083
1084  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1086    // sext i32 to i64 when addr mode is r+i.
1087    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088        LD->getExtensionType() == ISD::SEXTLOAD &&
1089        isa<ConstantSDNode>(Offset))
1090      return false;
1091  }
1092
1093  AM = ISD::PRE_INC;
1094  return true;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//  LowerOperation implementation
1099//===----------------------------------------------------------------------===//
1100
1101SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1102                                             SelectionDAG &DAG) const {
1103  EVT PtrVT = Op.getValueType();
1104  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1105  const Constant *C = CP->getConstVal();
1106  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1107  SDValue Zero = DAG.getConstant(0, PtrVT);
1108  // FIXME there isn't really any debug info here
1109  DebugLoc dl = Op.getDebugLoc();
1110
1111  const TargetMachine &TM = DAG.getTarget();
1112
1113  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1114  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1115
1116  // If this is a non-darwin platform, we don't support non-static relo models
1117  // yet.
1118  if (TM.getRelocationModel() == Reloc::Static ||
1119      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1120    // Generate non-pic code that has direct accesses to the constant pool.
1121    // The address of the global is just (hi(&g)+lo(&g)).
1122    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1123  }
1124
1125  if (TM.getRelocationModel() == Reloc::PIC_) {
1126    // With PIC, the first instruction is actually "GR+hi(&G)".
1127    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1128                     DAG.getNode(PPCISD::GlobalBaseReg,
1129                                 DebugLoc(), PtrVT), Hi);
1130  }
1131
1132  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1133  return Lo;
1134}
1135
1136SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1137  EVT PtrVT = Op.getValueType();
1138  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1139  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1140  SDValue Zero = DAG.getConstant(0, PtrVT);
1141  // FIXME there isn't really any debug loc here
1142  DebugLoc dl = Op.getDebugLoc();
1143
1144  const TargetMachine &TM = DAG.getTarget();
1145
1146  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1147  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1148
1149  // If this is a non-darwin platform, we don't support non-static relo models
1150  // yet.
1151  if (TM.getRelocationModel() == Reloc::Static ||
1152      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1153    // Generate non-pic code that has direct accesses to the constant pool.
1154    // The address of the global is just (hi(&g)+lo(&g)).
1155    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1156  }
1157
1158  if (TM.getRelocationModel() == Reloc::PIC_) {
1159    // With PIC, the first instruction is actually "GR+hi(&G)".
1160    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1161                     DAG.getNode(PPCISD::GlobalBaseReg,
1162                                 DebugLoc(), PtrVT), Hi);
1163  }
1164
1165  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1166  return Lo;
1167}
1168
1169SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1170                                                 SelectionDAG &DAG) const {
1171  llvm_unreachable("TLS not implemented for PPC.");
1172  return SDValue(); // Not reached
1173}
1174
1175SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1176                                             SelectionDAG &DAG) const {
1177  EVT PtrVT = Op.getValueType();
1178  DebugLoc DL = Op.getDebugLoc();
1179
1180  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1181  SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1182  SDValue Zero = DAG.getConstant(0, PtrVT);
1183  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1184  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1185
1186  // If this is a non-darwin platform, we don't support non-static relo models
1187  // yet.
1188  const TargetMachine &TM = DAG.getTarget();
1189  if (TM.getRelocationModel() == Reloc::Static ||
1190      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1191    // Generate non-pic code that has direct accesses to globals.
1192    // The address of the global is just (hi(&g)+lo(&g)).
1193    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1194  }
1195
1196  if (TM.getRelocationModel() == Reloc::PIC_) {
1197    // With PIC, the first instruction is actually "GR+hi(&G)".
1198    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1199                     DAG.getNode(PPCISD::GlobalBaseReg,
1200                                 DebugLoc(), PtrVT), Hi);
1201  }
1202
1203  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1204}
1205
1206SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1207                                              SelectionDAG &DAG) const {
1208  EVT PtrVT = Op.getValueType();
1209  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1210  // FIXME there isn't really any debug info here
1211  DebugLoc dl = GSDN->getDebugLoc();
1212  const GlobalValue *GV = GSDN->getGlobal();
1213  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, GSDN->getOffset());
1214  SDValue Zero = DAG.getConstant(0, PtrVT);
1215
1216  const TargetMachine &TM = DAG.getTarget();
1217
1218  // 64-bit SVR4 ABI code is always position-independent.
1219  // The actual address of the GlobalValue is stored in the TOC.
1220  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1221    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1222                       DAG.getRegister(PPC::X2, MVT::i64));
1223  }
1224
1225  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1226  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1227
1228  // If this is a non-darwin platform, we don't support non-static relo models
1229  // yet.
1230  if (TM.getRelocationModel() == Reloc::Static ||
1231      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1232    // Generate non-pic code that has direct accesses to globals.
1233    // The address of the global is just (hi(&g)+lo(&g)).
1234    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1235  }
1236
1237  if (TM.getRelocationModel() == Reloc::PIC_) {
1238    // With PIC, the first instruction is actually "GR+hi(&G)".
1239    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1240                     DAG.getNode(PPCISD::GlobalBaseReg,
1241                                 DebugLoc(), PtrVT), Hi);
1242  }
1243
1244  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1245
1246  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1247    return Lo;
1248
1249  // If the global is weak or external, we have to go through the lazy
1250  // resolution stub.
1251  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, MachinePointerInfo(),
1252                     false, false, 0);
1253}
1254
1255SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1256  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1257  DebugLoc dl = Op.getDebugLoc();
1258
1259  // If we're comparing for equality to zero, expose the fact that this is
1260  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1261  // fold the new nodes.
1262  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1263    if (C->isNullValue() && CC == ISD::SETEQ) {
1264      EVT VT = Op.getOperand(0).getValueType();
1265      SDValue Zext = Op.getOperand(0);
1266      if (VT.bitsLT(MVT::i32)) {
1267        VT = MVT::i32;
1268        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1269      }
1270      unsigned Log2b = Log2_32(VT.getSizeInBits());
1271      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1272      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1273                                DAG.getConstant(Log2b, MVT::i32));
1274      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1275    }
1276    // Leave comparisons against 0 and -1 alone for now, since they're usually
1277    // optimized.  FIXME: revisit this when we can custom lower all setcc
1278    // optimizations.
1279    if (C->isAllOnesValue() || C->isNullValue())
1280      return SDValue();
1281  }
1282
1283  // If we have an integer seteq/setne, turn it into a compare against zero
1284  // by xor'ing the rhs with the lhs, which is faster than setting a
1285  // condition register, reading it back out, and masking the correct bit.  The
1286  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1287  // the result to other bit-twiddling opportunities.
1288  EVT LHSVT = Op.getOperand(0).getValueType();
1289  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1290    EVT VT = Op.getValueType();
1291    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1292                                Op.getOperand(1));
1293    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1294  }
1295  return SDValue();
1296}
1297
1298SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1299                                      const PPCSubtarget &Subtarget) const {
1300
1301  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1302  return SDValue(); // Not reached
1303}
1304
1305SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1306                                           SelectionDAG &DAG) const {
1307  SDValue Chain = Op.getOperand(0);
1308  SDValue Trmp = Op.getOperand(1); // trampoline
1309  SDValue FPtr = Op.getOperand(2); // nested function
1310  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1311  DebugLoc dl = Op.getDebugLoc();
1312
1313  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1314  bool isPPC64 = (PtrVT == MVT::i64);
1315  const Type *IntPtrTy =
1316    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1317                                                             *DAG.getContext());
1318
1319  TargetLowering::ArgListTy Args;
1320  TargetLowering::ArgListEntry Entry;
1321
1322  Entry.Ty = IntPtrTy;
1323  Entry.Node = Trmp; Args.push_back(Entry);
1324
1325  // TrampSize == (isPPC64 ? 48 : 40);
1326  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1327                               isPPC64 ? MVT::i64 : MVT::i32);
1328  Args.push_back(Entry);
1329
1330  Entry.Node = FPtr; Args.push_back(Entry);
1331  Entry.Node = Nest; Args.push_back(Entry);
1332
1333  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1334  std::pair<SDValue, SDValue> CallResult =
1335    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1336                false, false, false, false, 0, CallingConv::C, false,
1337                /*isReturnValueUsed=*/true,
1338                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1339                Args, DAG, dl);
1340
1341  SDValue Ops[] =
1342    { CallResult.first, CallResult.second };
1343
1344  return DAG.getMergeValues(Ops, 2, dl);
1345}
1346
1347SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1348                                        const PPCSubtarget &Subtarget) const {
1349  MachineFunction &MF = DAG.getMachineFunction();
1350  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1351
1352  DebugLoc dl = Op.getDebugLoc();
1353
1354  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1355    // vastart just stores the address of the VarArgsFrameIndex slot into the
1356    // memory location argument.
1357    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1358    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1359    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1360    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1361                        MachinePointerInfo(SV),
1362                        false, false, 0);
1363  }
1364
1365  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1366  // We suppose the given va_list is already allocated.
1367  //
1368  // typedef struct {
1369  //  char gpr;     /* index into the array of 8 GPRs
1370  //                 * stored in the register save area
1371  //                 * gpr=0 corresponds to r3,
1372  //                 * gpr=1 to r4, etc.
1373  //                 */
1374  //  char fpr;     /* index into the array of 8 FPRs
1375  //                 * stored in the register save area
1376  //                 * fpr=0 corresponds to f1,
1377  //                 * fpr=1 to f2, etc.
1378  //                 */
1379  //  char *overflow_arg_area;
1380  //                /* location on stack that holds
1381  //                 * the next overflow argument
1382  //                 */
1383  //  char *reg_save_area;
1384  //               /* where r3:r10 and f1:f8 (if saved)
1385  //                * are stored
1386  //                */
1387  // } va_list[1];
1388
1389
1390  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1391  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1392
1393
1394  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1395
1396  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1397                                            PtrVT);
1398  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1399                                 PtrVT);
1400
1401  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1402  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1403
1404  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1405  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1406
1407  uint64_t FPROffset = 1;
1408  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1409
1410  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1411
1412  // Store first byte : number of int regs
1413  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1414                                         Op.getOperand(1),
1415                                         MachinePointerInfo(SV),
1416                                         MVT::i8, false, false, 0);
1417  uint64_t nextOffset = FPROffset;
1418  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1419                                  ConstFPROffset);
1420
1421  // Store second byte : number of float regs
1422  SDValue secondStore =
1423    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1424                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1425                      false, false, 0);
1426  nextOffset += StackOffset;
1427  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1428
1429  // Store second word : arguments given on stack
1430  SDValue thirdStore =
1431    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1432                 MachinePointerInfo(SV, nextOffset),
1433                 false, false, 0);
1434  nextOffset += FrameOffset;
1435  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1436
1437  // Store third word : arguments given in registers
1438  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1439                      MachinePointerInfo(SV, nextOffset),
1440                      false, false, 0);
1441
1442}
1443
1444#include "PPCGenCallingConv.inc"
1445
1446static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1447                                     CCValAssign::LocInfo &LocInfo,
1448                                     ISD::ArgFlagsTy &ArgFlags,
1449                                     CCState &State) {
1450  return true;
1451}
1452
1453static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1454                                            EVT &LocVT,
1455                                            CCValAssign::LocInfo &LocInfo,
1456                                            ISD::ArgFlagsTy &ArgFlags,
1457                                            CCState &State) {
1458  static const unsigned ArgRegs[] = {
1459    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1460    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1461  };
1462  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1463
1464  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1465
1466  // Skip one register if the first unallocated register has an even register
1467  // number and there are still argument registers available which have not been
1468  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1469  // need to skip a register if RegNum is odd.
1470  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1471    State.AllocateReg(ArgRegs[RegNum]);
1472  }
1473
1474  // Always return false here, as this function only makes sure that the first
1475  // unallocated register has an odd register number and does not actually
1476  // allocate a register for the current argument.
1477  return false;
1478}
1479
1480static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1481                                              EVT &LocVT,
1482                                              CCValAssign::LocInfo &LocInfo,
1483                                              ISD::ArgFlagsTy &ArgFlags,
1484                                              CCState &State) {
1485  static const unsigned ArgRegs[] = {
1486    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1487    PPC::F8
1488  };
1489
1490  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1491
1492  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1493
1494  // If there is only one Floating-point register left we need to put both f64
1495  // values of a split ppc_fp128 value on the stack.
1496  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1497    State.AllocateReg(ArgRegs[RegNum]);
1498  }
1499
1500  // Always return false here, as this function only makes sure that the two f64
1501  // values a ppc_fp128 value is split into are both passed in registers or both
1502  // passed on the stack and does not actually allocate a register for the
1503  // current argument.
1504  return false;
1505}
1506
1507/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1508/// on Darwin.
1509static const unsigned *GetFPR() {
1510  static const unsigned FPR[] = {
1511    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1512    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1513  };
1514
1515  return FPR;
1516}
1517
1518/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1519/// the stack.
1520static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1521                                       unsigned PtrByteSize) {
1522  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1523  if (Flags.isByVal())
1524    ArgSize = Flags.getByValSize();
1525  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1526
1527  return ArgSize;
1528}
1529
1530SDValue
1531PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1532                                        CallingConv::ID CallConv, bool isVarArg,
1533                                        const SmallVectorImpl<ISD::InputArg>
1534                                          &Ins,
1535                                        DebugLoc dl, SelectionDAG &DAG,
1536                                        SmallVectorImpl<SDValue> &InVals)
1537                                          const {
1538  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1539    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1540                                     dl, DAG, InVals);
1541  } else {
1542    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1543                                       dl, DAG, InVals);
1544  }
1545}
1546
1547SDValue
1548PPCTargetLowering::LowerFormalArguments_SVR4(
1549                                      SDValue Chain,
1550                                      CallingConv::ID CallConv, bool isVarArg,
1551                                      const SmallVectorImpl<ISD::InputArg>
1552                                        &Ins,
1553                                      DebugLoc dl, SelectionDAG &DAG,
1554                                      SmallVectorImpl<SDValue> &InVals) const {
1555
1556  // 32-bit SVR4 ABI Stack Frame Layout:
1557  //              +-----------------------------------+
1558  //        +-->  |            Back chain             |
1559  //        |     +-----------------------------------+
1560  //        |     | Floating-point register save area |
1561  //        |     +-----------------------------------+
1562  //        |     |    General register save area     |
1563  //        |     +-----------------------------------+
1564  //        |     |          CR save word             |
1565  //        |     +-----------------------------------+
1566  //        |     |         VRSAVE save word          |
1567  //        |     +-----------------------------------+
1568  //        |     |         Alignment padding         |
1569  //        |     +-----------------------------------+
1570  //        |     |     Vector register save area     |
1571  //        |     +-----------------------------------+
1572  //        |     |       Local variable space        |
1573  //        |     +-----------------------------------+
1574  //        |     |        Parameter list area        |
1575  //        |     +-----------------------------------+
1576  //        |     |           LR save word            |
1577  //        |     +-----------------------------------+
1578  // SP-->  +---  |            Back chain             |
1579  //              +-----------------------------------+
1580  //
1581  // Specifications:
1582  //   System V Application Binary Interface PowerPC Processor Supplement
1583  //   AltiVec Technology Programming Interface Manual
1584
1585  MachineFunction &MF = DAG.getMachineFunction();
1586  MachineFrameInfo *MFI = MF.getFrameInfo();
1587  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1588
1589  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1590  // Potential tail calls could cause overwriting of argument stack slots.
1591  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1592  unsigned PtrByteSize = 4;
1593
1594  // Assign locations to all of the incoming arguments.
1595  SmallVector<CCValAssign, 16> ArgLocs;
1596  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1597                 *DAG.getContext());
1598
1599  // Reserve space for the linkage area on the stack.
1600  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1601
1602  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1603
1604  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1605    CCValAssign &VA = ArgLocs[i];
1606
1607    // Arguments stored in registers.
1608    if (VA.isRegLoc()) {
1609      TargetRegisterClass *RC;
1610      EVT ValVT = VA.getValVT();
1611
1612      switch (ValVT.getSimpleVT().SimpleTy) {
1613        default:
1614          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1615        case MVT::i32:
1616          RC = PPC::GPRCRegisterClass;
1617          break;
1618        case MVT::f32:
1619          RC = PPC::F4RCRegisterClass;
1620          break;
1621        case MVT::f64:
1622          RC = PPC::F8RCRegisterClass;
1623          break;
1624        case MVT::v16i8:
1625        case MVT::v8i16:
1626        case MVT::v4i32:
1627        case MVT::v4f32:
1628          RC = PPC::VRRCRegisterClass;
1629          break;
1630      }
1631
1632      // Transform the arguments stored in physical registers into virtual ones.
1633      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1634      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1635
1636      InVals.push_back(ArgValue);
1637    } else {
1638      // Argument stored in memory.
1639      assert(VA.isMemLoc());
1640
1641      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1642      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1643                                      isImmutable);
1644
1645      // Create load nodes to retrieve arguments from the stack.
1646      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1647      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1648                                   MachinePointerInfo(),
1649                                   false, false, 0));
1650    }
1651  }
1652
1653  // Assign locations to all of the incoming aggregate by value arguments.
1654  // Aggregates passed by value are stored in the local variable space of the
1655  // caller's stack frame, right above the parameter list area.
1656  SmallVector<CCValAssign, 16> ByValArgLocs;
1657  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1658                      ByValArgLocs, *DAG.getContext());
1659
1660  // Reserve stack space for the allocations in CCInfo.
1661  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1662
1663  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1664
1665  // Area that is at least reserved in the caller of this function.
1666  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1667
1668  // Set the size that is at least reserved in caller of this function.  Tail
1669  // call optimized function's reserved stack space needs to be aligned so that
1670  // taking the difference between two stack areas will result in an aligned
1671  // stack.
1672  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1673
1674  MinReservedArea =
1675    std::max(MinReservedArea,
1676             PPCFrameInfo::getMinCallFrameSize(false, false));
1677
1678  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1679    getStackAlignment();
1680  unsigned AlignMask = TargetAlign-1;
1681  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1682
1683  FI->setMinReservedArea(MinReservedArea);
1684
1685  SmallVector<SDValue, 8> MemOps;
1686
1687  // If the function takes variable number of arguments, make a frame index for
1688  // the start of the first vararg value... for expansion of llvm.va_start.
1689  if (isVarArg) {
1690    static const unsigned GPArgRegs[] = {
1691      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1692      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1693    };
1694    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1695
1696    static const unsigned FPArgRegs[] = {
1697      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1698      PPC::F8
1699    };
1700    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1701
1702    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1703                                                          NumGPArgRegs));
1704    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1705                                                          NumFPArgRegs));
1706
1707    // Make room for NumGPArgRegs and NumFPArgRegs.
1708    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1709                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1710
1711    FuncInfo->setVarArgsStackOffset(
1712      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1713                             CCInfo.getNextStackOffset(), true));
1714
1715    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1716    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1717
1718    // The fixed integer arguments of a variadic function are stored to the
1719    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1720    // the result of va_next.
1721    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1722      // Get an existing live-in vreg, or add a new one.
1723      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1724      if (!VReg)
1725        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1726
1727      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1728      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1729                                   MachinePointerInfo(), false, false, 0);
1730      MemOps.push_back(Store);
1731      // Increment the address by four for the next argument to store
1732      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1733      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1734    }
1735
1736    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1737    // is set.
1738    // The double arguments are stored to the VarArgsFrameIndex
1739    // on the stack.
1740    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1741      // Get an existing live-in vreg, or add a new one.
1742      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1743      if (!VReg)
1744        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1745
1746      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1747      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1748                                   MachinePointerInfo(), false, false, 0);
1749      MemOps.push_back(Store);
1750      // Increment the address by eight for the next argument to store
1751      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1752                                         PtrVT);
1753      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1754    }
1755  }
1756
1757  if (!MemOps.empty())
1758    Chain = DAG.getNode(ISD::TokenFactor, dl,
1759                        MVT::Other, &MemOps[0], MemOps.size());
1760
1761  return Chain;
1762}
1763
1764SDValue
1765PPCTargetLowering::LowerFormalArguments_Darwin(
1766                                      SDValue Chain,
1767                                      CallingConv::ID CallConv, bool isVarArg,
1768                                      const SmallVectorImpl<ISD::InputArg>
1769                                        &Ins,
1770                                      DebugLoc dl, SelectionDAG &DAG,
1771                                      SmallVectorImpl<SDValue> &InVals) const {
1772  // TODO: add description of PPC stack frame format, or at least some docs.
1773  //
1774  MachineFunction &MF = DAG.getMachineFunction();
1775  MachineFrameInfo *MFI = MF.getFrameInfo();
1776  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1777
1778  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1779  bool isPPC64 = PtrVT == MVT::i64;
1780  // Potential tail calls could cause overwriting of argument stack slots.
1781  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1782  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1783
1784  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1785  // Area that is at least reserved in caller of this function.
1786  unsigned MinReservedArea = ArgOffset;
1787
1788  static const unsigned GPR_32[] = {           // 32-bit registers.
1789    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1790    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1791  };
1792  static const unsigned GPR_64[] = {           // 64-bit registers.
1793    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1794    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1795  };
1796
1797  static const unsigned *FPR = GetFPR();
1798
1799  static const unsigned VR[] = {
1800    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1801    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1802  };
1803
1804  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1805  const unsigned Num_FPR_Regs = 13;
1806  const unsigned Num_VR_Regs  = array_lengthof( VR);
1807
1808  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1809
1810  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1811
1812  // In 32-bit non-varargs functions, the stack space for vectors is after the
1813  // stack space for non-vectors.  We do not use this space unless we have
1814  // too many vectors to fit in registers, something that only occurs in
1815  // constructed examples:), but we have to walk the arglist to figure
1816  // that out...for the pathological case, compute VecArgOffset as the
1817  // start of the vector parameter area.  Computing VecArgOffset is the
1818  // entire point of the following loop.
1819  unsigned VecArgOffset = ArgOffset;
1820  if (!isVarArg && !isPPC64) {
1821    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1822         ++ArgNo) {
1823      EVT ObjectVT = Ins[ArgNo].VT;
1824      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1825      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1826
1827      if (Flags.isByVal()) {
1828        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1829        ObjSize = Flags.getByValSize();
1830        unsigned ArgSize =
1831                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1832        VecArgOffset += ArgSize;
1833        continue;
1834      }
1835
1836      switch(ObjectVT.getSimpleVT().SimpleTy) {
1837      default: llvm_unreachable("Unhandled argument type!");
1838      case MVT::i32:
1839      case MVT::f32:
1840        VecArgOffset += isPPC64 ? 8 : 4;
1841        break;
1842      case MVT::i64:  // PPC64
1843      case MVT::f64:
1844        VecArgOffset += 8;
1845        break;
1846      case MVT::v4f32:
1847      case MVT::v4i32:
1848      case MVT::v8i16:
1849      case MVT::v16i8:
1850        // Nothing to do, we're only looking at Nonvector args here.
1851        break;
1852      }
1853    }
1854  }
1855  // We've found where the vector parameter area in memory is.  Skip the
1856  // first 12 parameters; these don't use that memory.
1857  VecArgOffset = ((VecArgOffset+15)/16)*16;
1858  VecArgOffset += 12*16;
1859
1860  // Add DAG nodes to load the arguments or copy them out of registers.  On
1861  // entry to a function on PPC, the arguments start after the linkage area,
1862  // although the first ones are often in registers.
1863
1864  SmallVector<SDValue, 8> MemOps;
1865  unsigned nAltivecParamsAtEnd = 0;
1866  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1867    SDValue ArgVal;
1868    bool needsLoad = false;
1869    EVT ObjectVT = Ins[ArgNo].VT;
1870    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1871    unsigned ArgSize = ObjSize;
1872    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1873
1874    unsigned CurArgOffset = ArgOffset;
1875
1876    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1877    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1878        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1879      if (isVarArg || isPPC64) {
1880        MinReservedArea = ((MinReservedArea+15)/16)*16;
1881        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1882                                                  Flags,
1883                                                  PtrByteSize);
1884      } else  nAltivecParamsAtEnd++;
1885    } else
1886      // Calculate min reserved area.
1887      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1888                                                Flags,
1889                                                PtrByteSize);
1890
1891    // FIXME the codegen can be much improved in some cases.
1892    // We do not have to keep everything in memory.
1893    if (Flags.isByVal()) {
1894      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1895      ObjSize = Flags.getByValSize();
1896      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1897      // Objects of size 1 and 2 are right justified, everything else is
1898      // left justified.  This means the memory address is adjusted forwards.
1899      if (ObjSize==1 || ObjSize==2) {
1900        CurArgOffset = CurArgOffset + (4 - ObjSize);
1901      }
1902      // The value of the object is its address.
1903      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1904      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1905      InVals.push_back(FIN);
1906      if (ObjSize==1 || ObjSize==2) {
1907        if (GPR_idx != Num_GPR_Regs) {
1908          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1909          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1910          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1911                                            MachinePointerInfo(),
1912                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1913                                            false, false, 0);
1914          MemOps.push_back(Store);
1915          ++GPR_idx;
1916        }
1917
1918        ArgOffset += PtrByteSize;
1919
1920        continue;
1921      }
1922      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1923        // Store whatever pieces of the object are in registers
1924        // to memory.  ArgVal will be address of the beginning of
1925        // the object.
1926        if (GPR_idx != Num_GPR_Regs) {
1927          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1928          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1929          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1930          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1931          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1932                                       MachinePointerInfo(),
1933                                       false, false, 0);
1934          MemOps.push_back(Store);
1935          ++GPR_idx;
1936          ArgOffset += PtrByteSize;
1937        } else {
1938          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1939          break;
1940        }
1941      }
1942      continue;
1943    }
1944
1945    switch (ObjectVT.getSimpleVT().SimpleTy) {
1946    default: llvm_unreachable("Unhandled argument type!");
1947    case MVT::i32:
1948      if (!isPPC64) {
1949        if (GPR_idx != Num_GPR_Regs) {
1950          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1951          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1952          ++GPR_idx;
1953        } else {
1954          needsLoad = true;
1955          ArgSize = PtrByteSize;
1956        }
1957        // All int arguments reserve stack space in the Darwin ABI.
1958        ArgOffset += PtrByteSize;
1959        break;
1960      }
1961      // FALLTHROUGH
1962    case MVT::i64:  // PPC64
1963      if (GPR_idx != Num_GPR_Regs) {
1964        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1965        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1966
1967        if (ObjectVT == MVT::i32) {
1968          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1969          // value to MVT::i64 and then truncate to the correct register size.
1970          if (Flags.isSExt())
1971            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1972                                 DAG.getValueType(ObjectVT));
1973          else if (Flags.isZExt())
1974            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1975                                 DAG.getValueType(ObjectVT));
1976
1977          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1978        }
1979
1980        ++GPR_idx;
1981      } else {
1982        needsLoad = true;
1983        ArgSize = PtrByteSize;
1984      }
1985      // All int arguments reserve stack space in the Darwin ABI.
1986      ArgOffset += 8;
1987      break;
1988
1989    case MVT::f32:
1990    case MVT::f64:
1991      // Every 4 bytes of argument space consumes one of the GPRs available for
1992      // argument passing.
1993      if (GPR_idx != Num_GPR_Regs) {
1994        ++GPR_idx;
1995        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1996          ++GPR_idx;
1997      }
1998      if (FPR_idx != Num_FPR_Regs) {
1999        unsigned VReg;
2000
2001        if (ObjectVT == MVT::f32)
2002          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2003        else
2004          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2005
2006        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2007        ++FPR_idx;
2008      } else {
2009        needsLoad = true;
2010      }
2011
2012      // All FP arguments reserve stack space in the Darwin ABI.
2013      ArgOffset += isPPC64 ? 8 : ObjSize;
2014      break;
2015    case MVT::v4f32:
2016    case MVT::v4i32:
2017    case MVT::v8i16:
2018    case MVT::v16i8:
2019      // Note that vector arguments in registers don't reserve stack space,
2020      // except in varargs functions.
2021      if (VR_idx != Num_VR_Regs) {
2022        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2023        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2024        if (isVarArg) {
2025          while ((ArgOffset % 16) != 0) {
2026            ArgOffset += PtrByteSize;
2027            if (GPR_idx != Num_GPR_Regs)
2028              GPR_idx++;
2029          }
2030          ArgOffset += 16;
2031          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2032        }
2033        ++VR_idx;
2034      } else {
2035        if (!isVarArg && !isPPC64) {
2036          // Vectors go after all the nonvectors.
2037          CurArgOffset = VecArgOffset;
2038          VecArgOffset += 16;
2039        } else {
2040          // Vectors are aligned.
2041          ArgOffset = ((ArgOffset+15)/16)*16;
2042          CurArgOffset = ArgOffset;
2043          ArgOffset += 16;
2044        }
2045        needsLoad = true;
2046      }
2047      break;
2048    }
2049
2050    // We need to load the argument to a virtual register if we determined above
2051    // that we ran out of physical registers of the appropriate type.
2052    if (needsLoad) {
2053      int FI = MFI->CreateFixedObject(ObjSize,
2054                                      CurArgOffset + (ArgSize - ObjSize),
2055                                      isImmutable);
2056      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2057      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2058                           false, false, 0);
2059    }
2060
2061    InVals.push_back(ArgVal);
2062  }
2063
2064  // Set the size that is at least reserved in caller of this function.  Tail
2065  // call optimized function's reserved stack space needs to be aligned so that
2066  // taking the difference between two stack areas will result in an aligned
2067  // stack.
2068  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2069  // Add the Altivec parameters at the end, if needed.
2070  if (nAltivecParamsAtEnd) {
2071    MinReservedArea = ((MinReservedArea+15)/16)*16;
2072    MinReservedArea += 16*nAltivecParamsAtEnd;
2073  }
2074  MinReservedArea =
2075    std::max(MinReservedArea,
2076             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2077  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2078    getStackAlignment();
2079  unsigned AlignMask = TargetAlign-1;
2080  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2081  FI->setMinReservedArea(MinReservedArea);
2082
2083  // If the function takes variable number of arguments, make a frame index for
2084  // the start of the first vararg value... for expansion of llvm.va_start.
2085  if (isVarArg) {
2086    int Depth = ArgOffset;
2087
2088    FuncInfo->setVarArgsFrameIndex(
2089      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2090                             Depth, true));
2091    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2092
2093    // If this function is vararg, store any remaining integer argument regs
2094    // to their spots on the stack so that they may be loaded by deferencing the
2095    // result of va_next.
2096    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2097      unsigned VReg;
2098
2099      if (isPPC64)
2100        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2101      else
2102        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2103
2104      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2105      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2106                                   MachinePointerInfo(), false, false, 0);
2107      MemOps.push_back(Store);
2108      // Increment the address by four for the next argument to store
2109      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2110      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2111    }
2112  }
2113
2114  if (!MemOps.empty())
2115    Chain = DAG.getNode(ISD::TokenFactor, dl,
2116                        MVT::Other, &MemOps[0], MemOps.size());
2117
2118  return Chain;
2119}
2120
2121/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2122/// linkage area for the Darwin ABI.
2123static unsigned
2124CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2125                                     bool isPPC64,
2126                                     bool isVarArg,
2127                                     unsigned CC,
2128                                     const SmallVectorImpl<ISD::OutputArg>
2129                                       &Outs,
2130                                     const SmallVectorImpl<SDValue> &OutVals,
2131                                     unsigned &nAltivecParamsAtEnd) {
2132  // Count how many bytes are to be pushed on the stack, including the linkage
2133  // area, and parameter passing area.  We start with 24/48 bytes, which is
2134  // prereserved space for [SP][CR][LR][3 x unused].
2135  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2136  unsigned NumOps = Outs.size();
2137  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2138
2139  // Add up all the space actually used.
2140  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2141  // they all go in registers, but we must reserve stack space for them for
2142  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2143  // assigned stack space in order, with padding so Altivec parameters are
2144  // 16-byte aligned.
2145  nAltivecParamsAtEnd = 0;
2146  for (unsigned i = 0; i != NumOps; ++i) {
2147    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2148    EVT ArgVT = Outs[i].VT;
2149    // Varargs Altivec parameters are padded to a 16 byte boundary.
2150    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2151        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2152      if (!isVarArg && !isPPC64) {
2153        // Non-varargs Altivec parameters go after all the non-Altivec
2154        // parameters; handle those later so we know how much padding we need.
2155        nAltivecParamsAtEnd++;
2156        continue;
2157      }
2158      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2159      NumBytes = ((NumBytes+15)/16)*16;
2160    }
2161    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2162  }
2163
2164   // Allow for Altivec parameters at the end, if needed.
2165  if (nAltivecParamsAtEnd) {
2166    NumBytes = ((NumBytes+15)/16)*16;
2167    NumBytes += 16*nAltivecParamsAtEnd;
2168  }
2169
2170  // The prolog code of the callee may store up to 8 GPR argument registers to
2171  // the stack, allowing va_start to index over them in memory if its varargs.
2172  // Because we cannot tell if this is needed on the caller side, we have to
2173  // conservatively assume that it is needed.  As such, make sure we have at
2174  // least enough stack space for the caller to store the 8 GPRs.
2175  NumBytes = std::max(NumBytes,
2176                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2177
2178  // Tail call needs the stack to be aligned.
2179  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2180    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2181      getStackAlignment();
2182    unsigned AlignMask = TargetAlign-1;
2183    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2184  }
2185
2186  return NumBytes;
2187}
2188
2189/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2190/// adjusted to accomodate the arguments for the tailcall.
2191static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2192                                   unsigned ParamSize) {
2193
2194  if (!isTailCall) return 0;
2195
2196  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2197  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2198  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2199  // Remember only if the new adjustement is bigger.
2200  if (SPDiff < FI->getTailCallSPDelta())
2201    FI->setTailCallSPDelta(SPDiff);
2202
2203  return SPDiff;
2204}
2205
2206/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2207/// for tail call optimization. Targets which want to do tail call
2208/// optimization should implement this function.
2209bool
2210PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2211                                                     CallingConv::ID CalleeCC,
2212                                                     bool isVarArg,
2213                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2214                                                     SelectionDAG& DAG) const {
2215  if (!GuaranteedTailCallOpt)
2216    return false;
2217
2218  // Variable argument functions are not supported.
2219  if (isVarArg)
2220    return false;
2221
2222  MachineFunction &MF = DAG.getMachineFunction();
2223  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2224  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2225    // Functions containing by val parameters are not supported.
2226    for (unsigned i = 0; i != Ins.size(); i++) {
2227       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2228       if (Flags.isByVal()) return false;
2229    }
2230
2231    // Non PIC/GOT  tail calls are supported.
2232    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2233      return true;
2234
2235    // At the moment we can only do local tail calls (in same module, hidden
2236    // or protected) if we are generating PIC.
2237    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2238      return G->getGlobal()->hasHiddenVisibility()
2239          || G->getGlobal()->hasProtectedVisibility();
2240  }
2241
2242  return false;
2243}
2244
2245/// isCallCompatibleAddress - Return the immediate to use if the specified
2246/// 32-bit value is representable in the immediate field of a BxA instruction.
2247static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2248  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2249  if (!C) return 0;
2250
2251  int Addr = C->getZExtValue();
2252  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2253      (Addr << 6 >> 6) != Addr)
2254    return 0;  // Top 6 bits have to be sext of immediate.
2255
2256  return DAG.getConstant((int)C->getZExtValue() >> 2,
2257                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2258}
2259
2260namespace {
2261
2262struct TailCallArgumentInfo {
2263  SDValue Arg;
2264  SDValue FrameIdxOp;
2265  int       FrameIdx;
2266
2267  TailCallArgumentInfo() : FrameIdx(0) {}
2268};
2269
2270}
2271
2272/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2273static void
2274StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2275                                           SDValue Chain,
2276                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2277                   SmallVector<SDValue, 8> &MemOpChains,
2278                   DebugLoc dl) {
2279  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2280    SDValue Arg = TailCallArgs[i].Arg;
2281    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2282    int FI = TailCallArgs[i].FrameIdx;
2283    // Store relative to framepointer.
2284    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2285                                       MachinePointerInfo::getFixedStack(FI),
2286                                       false, false, 0));
2287  }
2288}
2289
2290/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2291/// the appropriate stack slot for the tail call optimized function call.
2292static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2293                                               MachineFunction &MF,
2294                                               SDValue Chain,
2295                                               SDValue OldRetAddr,
2296                                               SDValue OldFP,
2297                                               int SPDiff,
2298                                               bool isPPC64,
2299                                               bool isDarwinABI,
2300                                               DebugLoc dl) {
2301  if (SPDiff) {
2302    // Calculate the new stack slot for the return address.
2303    int SlotSize = isPPC64 ? 8 : 4;
2304    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2305                                                                   isDarwinABI);
2306    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2307                                                          NewRetAddrLoc, true);
2308    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2309    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2310    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2311                         MachinePointerInfo::getFixedStack(NewRetAddr),
2312                         false, false, 0);
2313
2314    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2315    // slot as the FP is never overwritten.
2316    if (isDarwinABI) {
2317      int NewFPLoc =
2318        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2319      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2320                                                          true);
2321      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2322      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2323                           MachinePointerInfo::getFixedStack(NewFPIdx),
2324                           false, false, 0);
2325    }
2326  }
2327  return Chain;
2328}
2329
2330/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2331/// the position of the argument.
2332static void
2333CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2334                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2335                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2336  int Offset = ArgOffset + SPDiff;
2337  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2338  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2339  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2340  SDValue FIN = DAG.getFrameIndex(FI, VT);
2341  TailCallArgumentInfo Info;
2342  Info.Arg = Arg;
2343  Info.FrameIdxOp = FIN;
2344  Info.FrameIdx = FI;
2345  TailCallArguments.push_back(Info);
2346}
2347
2348/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2349/// stack slot. Returns the chain as result and the loaded frame pointers in
2350/// LROpOut/FPOpout. Used when tail calling.
2351SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2352                                                        int SPDiff,
2353                                                        SDValue Chain,
2354                                                        SDValue &LROpOut,
2355                                                        SDValue &FPOpOut,
2356                                                        bool isDarwinABI,
2357                                                        DebugLoc dl) const {
2358  if (SPDiff) {
2359    // Load the LR and FP stack slot for later adjusting.
2360    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2361    LROpOut = getReturnAddrFrameIndex(DAG);
2362    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2363                          false, false, 0);
2364    Chain = SDValue(LROpOut.getNode(), 1);
2365
2366    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2367    // slot as the FP is never overwritten.
2368    if (isDarwinABI) {
2369      FPOpOut = getFramePointerFrameIndex(DAG);
2370      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2371                            false, false, 0);
2372      Chain = SDValue(FPOpOut.getNode(), 1);
2373    }
2374  }
2375  return Chain;
2376}
2377
2378/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2379/// by "Src" to address "Dst" of size "Size".  Alignment information is
2380/// specified by the specific parameter attribute. The copy will be passed as
2381/// a byval function parameter.
2382/// Sometimes what we are copying is the end of a larger object, the part that
2383/// does not fit in registers.
2384static SDValue
2385CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2386                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2387                          DebugLoc dl) {
2388  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2389  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2390                       false, false, MachinePointerInfo(0),
2391                       MachinePointerInfo(0));
2392}
2393
2394/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2395/// tail calls.
2396static void
2397LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2398                 SDValue Arg, SDValue PtrOff, int SPDiff,
2399                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2400                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2401                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2402                 DebugLoc dl) {
2403  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2404  if (!isTailCall) {
2405    if (isVector) {
2406      SDValue StackPtr;
2407      if (isPPC64)
2408        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2409      else
2410        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2411      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2412                           DAG.getConstant(ArgOffset, PtrVT));
2413    }
2414    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2415                                       MachinePointerInfo(), false, false, 0));
2416  // Calculate and remember argument location.
2417  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2418                                  TailCallArguments);
2419}
2420
2421static
2422void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2423                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2424                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2425                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2426  MachineFunction &MF = DAG.getMachineFunction();
2427
2428  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2429  // might overwrite each other in case of tail call optimization.
2430  SmallVector<SDValue, 8> MemOpChains2;
2431  // Do not flag preceeding copytoreg stuff together with the following stuff.
2432  InFlag = SDValue();
2433  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2434                                    MemOpChains2, dl);
2435  if (!MemOpChains2.empty())
2436    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2437                        &MemOpChains2[0], MemOpChains2.size());
2438
2439  // Store the return address to the appropriate stack slot.
2440  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2441                                        isPPC64, isDarwinABI, dl);
2442
2443  // Emit callseq_end just before tailcall node.
2444  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2445                             DAG.getIntPtrConstant(0, true), InFlag);
2446  InFlag = Chain.getValue(1);
2447}
2448
2449static
2450unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2451                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2452                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2453                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2454                     bool isPPC64, bool isSVR4ABI) {
2455  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2456  NodeTys.push_back(MVT::Other);   // Returns a chain
2457  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2458
2459  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2460
2461  bool needIndirectCall = true;
2462  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2463    // If this is an absolute destination address, use the munged value.
2464    Callee = SDValue(Dest, 0);
2465    needIndirectCall = false;
2466  }
2467  // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2468  // Use indirect calls for ALL functions calls in JIT mode, since the
2469  // far-call stubs may be outside relocation limits for a BL instruction.
2470  if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2471    // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2472    // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2473    // node so that legalize doesn't hack it.
2474    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2475      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2476            Callee.getValueType());
2477      needIndirectCall = false;
2478    }
2479  }
2480  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2481      Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
2482             Callee.getValueType());
2483      needIndirectCall = false;
2484  }
2485  if (needIndirectCall) {
2486    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2487    // to do the call, we can't use PPCISD::CALL.
2488    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2489
2490    if (isSVR4ABI && isPPC64) {
2491      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2492      // entry point, but to the function descriptor (the function entry point
2493      // address is part of the function descriptor though).
2494      // The function descriptor is a three doubleword structure with the
2495      // following fields: function entry point, TOC base address and
2496      // environment pointer.
2497      // Thus for a call through a function pointer, the following actions need
2498      // to be performed:
2499      //   1. Save the TOC of the caller in the TOC save area of its stack
2500      //      frame (this is done in LowerCall_Darwin()).
2501      //   2. Load the address of the function entry point from the function
2502      //      descriptor.
2503      //   3. Load the TOC of the callee from the function descriptor into r2.
2504      //   4. Load the environment pointer from the function descriptor into
2505      //      r11.
2506      //   5. Branch to the function entry point address.
2507      //   6. On return of the callee, the TOC of the caller needs to be
2508      //      restored (this is done in FinishCall()).
2509      //
2510      // All those operations are flagged together to ensure that no other
2511      // operations can be scheduled in between. E.g. without flagging the
2512      // operations together, a TOC access in the caller could be scheduled
2513      // between the load of the callee TOC and the branch to the callee, which
2514      // results in the TOC access going through the TOC of the callee instead
2515      // of going through the TOC of the caller, which leads to incorrect code.
2516
2517      // Load the address of the function entry point from the function
2518      // descriptor.
2519      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2520      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2521                                        InFlag.getNode() ? 3 : 2);
2522      Chain = LoadFuncPtr.getValue(1);
2523      InFlag = LoadFuncPtr.getValue(2);
2524
2525      // Load environment pointer into r11.
2526      // Offset of the environment pointer within the function descriptor.
2527      SDValue PtrOff = DAG.getIntPtrConstant(16);
2528
2529      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2530      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2531                                       InFlag);
2532      Chain = LoadEnvPtr.getValue(1);
2533      InFlag = LoadEnvPtr.getValue(2);
2534
2535      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2536                                        InFlag);
2537      Chain = EnvVal.getValue(0);
2538      InFlag = EnvVal.getValue(1);
2539
2540      // Load TOC of the callee into r2. We are using a target-specific load
2541      // with r2 hard coded, because the result of a target-independent load
2542      // would never go directly into r2, since r2 is a reserved register (which
2543      // prevents the register allocator from allocating it), resulting in an
2544      // additional register being allocated and an unnecessary move instruction
2545      // being generated.
2546      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2547      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2548                                       Callee, InFlag);
2549      Chain = LoadTOCPtr.getValue(0);
2550      InFlag = LoadTOCPtr.getValue(1);
2551
2552      MTCTROps[0] = Chain;
2553      MTCTROps[1] = LoadFuncPtr;
2554      MTCTROps[2] = InFlag;
2555    }
2556
2557    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2558                        2 + (InFlag.getNode() != 0));
2559    InFlag = Chain.getValue(1);
2560
2561    NodeTys.clear();
2562    NodeTys.push_back(MVT::Other);
2563    NodeTys.push_back(MVT::Flag);
2564    Ops.push_back(Chain);
2565    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2566    Callee.setNode(0);
2567    // Add CTR register as callee so a bctr can be emitted later.
2568    if (isTailCall)
2569      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2570  }
2571
2572  // If this is a direct call, pass the chain and the callee.
2573  if (Callee.getNode()) {
2574    Ops.push_back(Chain);
2575    Ops.push_back(Callee);
2576  }
2577  // If this is a tail call add stack pointer delta.
2578  if (isTailCall)
2579    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2580
2581  // Add argument registers to the end of the list so that they are known live
2582  // into the call.
2583  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2584    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2585                                  RegsToPass[i].second.getValueType()));
2586
2587  return CallOpc;
2588}
2589
2590SDValue
2591PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2592                                   CallingConv::ID CallConv, bool isVarArg,
2593                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2594                                   DebugLoc dl, SelectionDAG &DAG,
2595                                   SmallVectorImpl<SDValue> &InVals) const {
2596
2597  SmallVector<CCValAssign, 16> RVLocs;
2598  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2599                    RVLocs, *DAG.getContext());
2600  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2601
2602  // Copy all of the result registers out of their specified physreg.
2603  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2604    CCValAssign &VA = RVLocs[i];
2605    EVT VT = VA.getValVT();
2606    assert(VA.isRegLoc() && "Can only return in registers!");
2607    Chain = DAG.getCopyFromReg(Chain, dl,
2608                               VA.getLocReg(), VT, InFlag).getValue(1);
2609    InVals.push_back(Chain.getValue(0));
2610    InFlag = Chain.getValue(2);
2611  }
2612
2613  return Chain;
2614}
2615
2616SDValue
2617PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2618                              bool isTailCall, bool isVarArg,
2619                              SelectionDAG &DAG,
2620                              SmallVector<std::pair<unsigned, SDValue>, 8>
2621                                &RegsToPass,
2622                              SDValue InFlag, SDValue Chain,
2623                              SDValue &Callee,
2624                              int SPDiff, unsigned NumBytes,
2625                              const SmallVectorImpl<ISD::InputArg> &Ins,
2626                              SmallVectorImpl<SDValue> &InVals) const {
2627  std::vector<EVT> NodeTys;
2628  SmallVector<SDValue, 8> Ops;
2629  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2630                                 isTailCall, RegsToPass, Ops, NodeTys,
2631                                 PPCSubTarget.isPPC64(),
2632                                 PPCSubTarget.isSVR4ABI());
2633
2634  // When performing tail call optimization the callee pops its arguments off
2635  // the stack. Account for this here so these bytes can be pushed back on in
2636  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2637  int BytesCalleePops =
2638    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2639
2640  if (InFlag.getNode())
2641    Ops.push_back(InFlag);
2642
2643  // Emit tail call.
2644  if (isTailCall) {
2645    // If this is the first return lowered for this function, add the regs
2646    // to the liveout set for the function.
2647    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2648      SmallVector<CCValAssign, 16> RVLocs;
2649      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2650                     *DAG.getContext());
2651      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2652      for (unsigned i = 0; i != RVLocs.size(); ++i)
2653        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2654    }
2655
2656    assert(((Callee.getOpcode() == ISD::Register &&
2657             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2658            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2659            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2660            isa<ConstantSDNode>(Callee)) &&
2661    "Expecting an global address, external symbol, absolute value or register");
2662
2663    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2664  }
2665
2666  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2667  InFlag = Chain.getValue(1);
2668
2669  // Add a NOP immediately after the branch instruction when using the 64-bit
2670  // SVR4 ABI. At link time, if caller and callee are in a different module and
2671  // thus have a different TOC, the call will be replaced with a call to a stub
2672  // function which saves the current TOC, loads the TOC of the callee and
2673  // branches to the callee. The NOP will be replaced with a load instruction
2674  // which restores the TOC of the caller from the TOC save slot of the current
2675  // stack frame. If caller and callee belong to the same module (and have the
2676  // same TOC), the NOP will remain unchanged.
2677  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2678    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2679    if (CallOpc == PPCISD::BCTRL_SVR4) {
2680      // This is a call through a function pointer.
2681      // Restore the caller TOC from the save area into R2.
2682      // See PrepareCall() for more information about calls through function
2683      // pointers in the 64-bit SVR4 ABI.
2684      // We are using a target-specific load with r2 hard coded, because the
2685      // result of a target-independent load would never go directly into r2,
2686      // since r2 is a reserved register (which prevents the register allocator
2687      // from allocating it), resulting in an additional register being
2688      // allocated and an unnecessary move instruction being generated.
2689      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2690      InFlag = Chain.getValue(1);
2691    } else {
2692      // Otherwise insert NOP.
2693      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2694    }
2695  }
2696
2697  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2698                             DAG.getIntPtrConstant(BytesCalleePops, true),
2699                             InFlag);
2700  if (!Ins.empty())
2701    InFlag = Chain.getValue(1);
2702
2703  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2704                         Ins, dl, DAG, InVals);
2705}
2706
2707SDValue
2708PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2709                             CallingConv::ID CallConv, bool isVarArg,
2710                             bool &isTailCall,
2711                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2712                             const SmallVectorImpl<SDValue> &OutVals,
2713                             const SmallVectorImpl<ISD::InputArg> &Ins,
2714                             DebugLoc dl, SelectionDAG &DAG,
2715                             SmallVectorImpl<SDValue> &InVals) const {
2716  if (isTailCall)
2717    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2718                                                   Ins, DAG);
2719
2720  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2721    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2722                          isTailCall, Outs, OutVals, Ins,
2723                          dl, DAG, InVals);
2724  } else {
2725    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2726                            isTailCall, Outs, OutVals, Ins,
2727                            dl, DAG, InVals);
2728  }
2729}
2730
2731SDValue
2732PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2733                                  CallingConv::ID CallConv, bool isVarArg,
2734                                  bool isTailCall,
2735                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2736                                  const SmallVectorImpl<SDValue> &OutVals,
2737                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2738                                  DebugLoc dl, SelectionDAG &DAG,
2739                                  SmallVectorImpl<SDValue> &InVals) const {
2740  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2741  // of the 32-bit SVR4 ABI stack frame layout.
2742
2743  assert((CallConv == CallingConv::C ||
2744          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2745
2746  unsigned PtrByteSize = 4;
2747
2748  MachineFunction &MF = DAG.getMachineFunction();
2749
2750  // Mark this function as potentially containing a function that contains a
2751  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2752  // and restoring the callers stack pointer in this functions epilog. This is
2753  // done because by tail calling the called function might overwrite the value
2754  // in this function's (MF) stack pointer stack slot 0(SP).
2755  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2756    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2757
2758  // Count how many bytes are to be pushed on the stack, including the linkage
2759  // area, parameter list area and the part of the local variable space which
2760  // contains copies of aggregates which are passed by value.
2761
2762  // Assign locations to all of the outgoing arguments.
2763  SmallVector<CCValAssign, 16> ArgLocs;
2764  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2765                 ArgLocs, *DAG.getContext());
2766
2767  // Reserve space for the linkage area on the stack.
2768  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2769
2770  if (isVarArg) {
2771    // Handle fixed and variable vector arguments differently.
2772    // Fixed vector arguments go into registers as long as registers are
2773    // available. Variable vector arguments always go into memory.
2774    unsigned NumArgs = Outs.size();
2775
2776    for (unsigned i = 0; i != NumArgs; ++i) {
2777      EVT ArgVT = Outs[i].VT;
2778      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2779      bool Result;
2780
2781      if (Outs[i].IsFixed) {
2782        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2783                             CCInfo);
2784      } else {
2785        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2786                                    ArgFlags, CCInfo);
2787      }
2788
2789      if (Result) {
2790#ifndef NDEBUG
2791        errs() << "Call operand #" << i << " has unhandled type "
2792             << ArgVT.getEVTString() << "\n";
2793#endif
2794        llvm_unreachable(0);
2795      }
2796    }
2797  } else {
2798    // All arguments are treated the same.
2799    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2800  }
2801
2802  // Assign locations to all of the outgoing aggregate by value arguments.
2803  SmallVector<CCValAssign, 16> ByValArgLocs;
2804  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2805                      *DAG.getContext());
2806
2807  // Reserve stack space for the allocations in CCInfo.
2808  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2809
2810  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2811
2812  // Size of the linkage area, parameter list area and the part of the local
2813  // space variable where copies of aggregates which are passed by value are
2814  // stored.
2815  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2816
2817  // Calculate by how many bytes the stack has to be adjusted in case of tail
2818  // call optimization.
2819  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2820
2821  // Adjust the stack pointer for the new arguments...
2822  // These operations are automatically eliminated by the prolog/epilog pass
2823  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2824  SDValue CallSeqStart = Chain;
2825
2826  // Load the return address and frame pointer so it can be moved somewhere else
2827  // later.
2828  SDValue LROp, FPOp;
2829  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2830                                       dl);
2831
2832  // Set up a copy of the stack pointer for use loading and storing any
2833  // arguments that may not fit in the registers available for argument
2834  // passing.
2835  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2836
2837  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2838  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2839  SmallVector<SDValue, 8> MemOpChains;
2840
2841  // Walk the register/memloc assignments, inserting copies/loads.
2842  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2843       i != e;
2844       ++i) {
2845    CCValAssign &VA = ArgLocs[i];
2846    SDValue Arg = OutVals[i];
2847    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2848
2849    if (Flags.isByVal()) {
2850      // Argument is an aggregate which is passed by value, thus we need to
2851      // create a copy of it in the local variable space of the current stack
2852      // frame (which is the stack frame of the caller) and pass the address of
2853      // this copy to the callee.
2854      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2855      CCValAssign &ByValVA = ByValArgLocs[j++];
2856      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2857
2858      // Memory reserved in the local variable space of the callers stack frame.
2859      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2860
2861      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2862      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2863
2864      // Create a copy of the argument in the local area of the current
2865      // stack frame.
2866      SDValue MemcpyCall =
2867        CreateCopyOfByValArgument(Arg, PtrOff,
2868                                  CallSeqStart.getNode()->getOperand(0),
2869                                  Flags, DAG, dl);
2870
2871      // This must go outside the CALLSEQ_START..END.
2872      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2873                           CallSeqStart.getNode()->getOperand(1));
2874      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2875                             NewCallSeqStart.getNode());
2876      Chain = CallSeqStart = NewCallSeqStart;
2877
2878      // Pass the address of the aggregate copy on the stack either in a
2879      // physical register or in the parameter list area of the current stack
2880      // frame to the callee.
2881      Arg = PtrOff;
2882    }
2883
2884    if (VA.isRegLoc()) {
2885      // Put argument in a physical register.
2886      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2887    } else {
2888      // Put argument in the parameter list area of the current stack frame.
2889      assert(VA.isMemLoc());
2890      unsigned LocMemOffset = VA.getLocMemOffset();
2891
2892      if (!isTailCall) {
2893        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2894        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2895
2896        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2897                                           MachinePointerInfo(),
2898                                           false, false, 0));
2899      } else {
2900        // Calculate and remember argument location.
2901        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2902                                 TailCallArguments);
2903      }
2904    }
2905  }
2906
2907  if (!MemOpChains.empty())
2908    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2909                        &MemOpChains[0], MemOpChains.size());
2910
2911  // Build a sequence of copy-to-reg nodes chained together with token chain
2912  // and flag operands which copy the outgoing args into the appropriate regs.
2913  SDValue InFlag;
2914  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2915    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2916                             RegsToPass[i].second, InFlag);
2917    InFlag = Chain.getValue(1);
2918  }
2919
2920  // Set CR6 to true if this is a vararg call.
2921  if (isVarArg) {
2922    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2923    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2924    InFlag = Chain.getValue(1);
2925  }
2926
2927  if (isTailCall) {
2928    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2929                    false, TailCallArguments);
2930  }
2931
2932  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2933                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2934                    Ins, InVals);
2935}
2936
2937SDValue
2938PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2939                                    CallingConv::ID CallConv, bool isVarArg,
2940                                    bool isTailCall,
2941                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2942                                    const SmallVectorImpl<SDValue> &OutVals,
2943                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2944                                    DebugLoc dl, SelectionDAG &DAG,
2945                                    SmallVectorImpl<SDValue> &InVals) const {
2946
2947  unsigned NumOps  = Outs.size();
2948
2949  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2950  bool isPPC64 = PtrVT == MVT::i64;
2951  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2952
2953  MachineFunction &MF = DAG.getMachineFunction();
2954
2955  // Mark this function as potentially containing a function that contains a
2956  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2957  // and restoring the callers stack pointer in this functions epilog. This is
2958  // done because by tail calling the called function might overwrite the value
2959  // in this function's (MF) stack pointer stack slot 0(SP).
2960  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2961    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2962
2963  unsigned nAltivecParamsAtEnd = 0;
2964
2965  // Count how many bytes are to be pushed on the stack, including the linkage
2966  // area, and parameter passing area.  We start with 24/48 bytes, which is
2967  // prereserved space for [SP][CR][LR][3 x unused].
2968  unsigned NumBytes =
2969    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2970                                         Outs, OutVals,
2971                                         nAltivecParamsAtEnd);
2972
2973  // Calculate by how many bytes the stack has to be adjusted in case of tail
2974  // call optimization.
2975  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2976
2977  // To protect arguments on the stack from being clobbered in a tail call,
2978  // force all the loads to happen before doing any other lowering.
2979  if (isTailCall)
2980    Chain = DAG.getStackArgumentTokenFactor(Chain);
2981
2982  // Adjust the stack pointer for the new arguments...
2983  // These operations are automatically eliminated by the prolog/epilog pass
2984  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2985  SDValue CallSeqStart = Chain;
2986
2987  // Load the return address and frame pointer so it can be move somewhere else
2988  // later.
2989  SDValue LROp, FPOp;
2990  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2991                                       dl);
2992
2993  // Set up a copy of the stack pointer for use loading and storing any
2994  // arguments that may not fit in the registers available for argument
2995  // passing.
2996  SDValue StackPtr;
2997  if (isPPC64)
2998    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2999  else
3000    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3001
3002  // Figure out which arguments are going to go in registers, and which in
3003  // memory.  Also, if this is a vararg function, floating point operations
3004  // must be stored to our stack, and loaded into integer regs as well, if
3005  // any integer regs are available for argument passing.
3006  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
3007  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3008
3009  static const unsigned GPR_32[] = {           // 32-bit registers.
3010    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3011    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3012  };
3013  static const unsigned GPR_64[] = {           // 64-bit registers.
3014    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3015    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3016  };
3017  static const unsigned *FPR = GetFPR();
3018
3019  static const unsigned VR[] = {
3020    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3021    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3022  };
3023  const unsigned NumGPRs = array_lengthof(GPR_32);
3024  const unsigned NumFPRs = 13;
3025  const unsigned NumVRs  = array_lengthof(VR);
3026
3027  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3028
3029  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3030  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3031
3032  SmallVector<SDValue, 8> MemOpChains;
3033  for (unsigned i = 0; i != NumOps; ++i) {
3034    SDValue Arg = OutVals[i];
3035    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3036
3037    // PtrOff will be used to store the current argument to the stack if a
3038    // register cannot be found for it.
3039    SDValue PtrOff;
3040
3041    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3042
3043    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3044
3045    // On PPC64, promote integers to 64-bit values.
3046    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3047      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3048      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3049      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3050    }
3051
3052    // FIXME memcpy is used way more than necessary.  Correctness first.
3053    if (Flags.isByVal()) {
3054      unsigned Size = Flags.getByValSize();
3055      if (Size==1 || Size==2) {
3056        // Very small objects are passed right-justified.
3057        // Everything else is passed left-justified.
3058        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3059        if (GPR_idx != NumGPRs) {
3060          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, dl, Chain, Arg,
3061                                        MachinePointerInfo(), VT,
3062                                        false, false, 0);
3063          MemOpChains.push_back(Load.getValue(1));
3064          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3065
3066          ArgOffset += PtrByteSize;
3067        } else {
3068          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3069          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3070          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3071                                CallSeqStart.getNode()->getOperand(0),
3072                                Flags, DAG, dl);
3073          // This must go outside the CALLSEQ_START..END.
3074          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3075                               CallSeqStart.getNode()->getOperand(1));
3076          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3077                                 NewCallSeqStart.getNode());
3078          Chain = CallSeqStart = NewCallSeqStart;
3079          ArgOffset += PtrByteSize;
3080        }
3081        continue;
3082      }
3083      // Copy entire object into memory.  There are cases where gcc-generated
3084      // code assumes it is there, even if it could be put entirely into
3085      // registers.  (This is not what the doc says.)
3086      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3087                            CallSeqStart.getNode()->getOperand(0),
3088                            Flags, DAG, dl);
3089      // This must go outside the CALLSEQ_START..END.
3090      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3091                           CallSeqStart.getNode()->getOperand(1));
3092      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3093      Chain = CallSeqStart = NewCallSeqStart;
3094      // And copy the pieces of it that fit into registers.
3095      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3096        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3097        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3098        if (GPR_idx != NumGPRs) {
3099          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3100                                     MachinePointerInfo(),
3101                                     false, false, 0);
3102          MemOpChains.push_back(Load.getValue(1));
3103          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3104          ArgOffset += PtrByteSize;
3105        } else {
3106          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3107          break;
3108        }
3109      }
3110      continue;
3111    }
3112
3113    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3114    default: llvm_unreachable("Unexpected ValueType for argument!");
3115    case MVT::i32:
3116    case MVT::i64:
3117      if (GPR_idx != NumGPRs) {
3118        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3119      } else {
3120        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3121                         isPPC64, isTailCall, false, MemOpChains,
3122                         TailCallArguments, dl);
3123      }
3124      ArgOffset += PtrByteSize;
3125      break;
3126    case MVT::f32:
3127    case MVT::f64:
3128      if (FPR_idx != NumFPRs) {
3129        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3130
3131        if (isVarArg) {
3132          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3133                                       MachinePointerInfo(), false, false, 0);
3134          MemOpChains.push_back(Store);
3135
3136          // Float varargs are always shadowed in available integer registers
3137          if (GPR_idx != NumGPRs) {
3138            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3139                                       MachinePointerInfo(), false, false, 0);
3140            MemOpChains.push_back(Load.getValue(1));
3141            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3142          }
3143          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3144            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3145            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3146            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3147                                       MachinePointerInfo(),
3148                                       false, false, 0);
3149            MemOpChains.push_back(Load.getValue(1));
3150            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3151          }
3152        } else {
3153          // If we have any FPRs remaining, we may also have GPRs remaining.
3154          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3155          // GPRs.
3156          if (GPR_idx != NumGPRs)
3157            ++GPR_idx;
3158          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3159              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3160            ++GPR_idx;
3161        }
3162      } else {
3163        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3164                         isPPC64, isTailCall, false, MemOpChains,
3165                         TailCallArguments, dl);
3166      }
3167      if (isPPC64)
3168        ArgOffset += 8;
3169      else
3170        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3171      break;
3172    case MVT::v4f32:
3173    case MVT::v4i32:
3174    case MVT::v8i16:
3175    case MVT::v16i8:
3176      if (isVarArg) {
3177        // These go aligned on the stack, or in the corresponding R registers
3178        // when within range.  The Darwin PPC ABI doc claims they also go in
3179        // V registers; in fact gcc does this only for arguments that are
3180        // prototyped, not for those that match the ...  We do it for all
3181        // arguments, seems to work.
3182        while (ArgOffset % 16 !=0) {
3183          ArgOffset += PtrByteSize;
3184          if (GPR_idx != NumGPRs)
3185            GPR_idx++;
3186        }
3187        // We could elide this store in the case where the object fits
3188        // entirely in R registers.  Maybe later.
3189        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3190                            DAG.getConstant(ArgOffset, PtrVT));
3191        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3192                                     MachinePointerInfo(), false, false, 0);
3193        MemOpChains.push_back(Store);
3194        if (VR_idx != NumVRs) {
3195          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3196                                     MachinePointerInfo(),
3197                                     false, false, 0);
3198          MemOpChains.push_back(Load.getValue(1));
3199          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3200        }
3201        ArgOffset += 16;
3202        for (unsigned i=0; i<16; i+=PtrByteSize) {
3203          if (GPR_idx == NumGPRs)
3204            break;
3205          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3206                                  DAG.getConstant(i, PtrVT));
3207          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3208                                     false, false, 0);
3209          MemOpChains.push_back(Load.getValue(1));
3210          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3211        }
3212        break;
3213      }
3214
3215      // Non-varargs Altivec params generally go in registers, but have
3216      // stack space allocated at the end.
3217      if (VR_idx != NumVRs) {
3218        // Doesn't have GPR space allocated.
3219        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3220      } else if (nAltivecParamsAtEnd==0) {
3221        // We are emitting Altivec params in order.
3222        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3223                         isPPC64, isTailCall, true, MemOpChains,
3224                         TailCallArguments, dl);
3225        ArgOffset += 16;
3226      }
3227      break;
3228    }
3229  }
3230  // If all Altivec parameters fit in registers, as they usually do,
3231  // they get stack space following the non-Altivec parameters.  We
3232  // don't track this here because nobody below needs it.
3233  // If there are more Altivec parameters than fit in registers emit
3234  // the stores here.
3235  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3236    unsigned j = 0;
3237    // Offset is aligned; skip 1st 12 params which go in V registers.
3238    ArgOffset = ((ArgOffset+15)/16)*16;
3239    ArgOffset += 12*16;
3240    for (unsigned i = 0; i != NumOps; ++i) {
3241      SDValue Arg = OutVals[i];
3242      EVT ArgType = Outs[i].VT;
3243      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3244          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3245        if (++j > NumVRs) {
3246          SDValue PtrOff;
3247          // We are emitting Altivec params in order.
3248          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3249                           isPPC64, isTailCall, true, MemOpChains,
3250                           TailCallArguments, dl);
3251          ArgOffset += 16;
3252        }
3253      }
3254    }
3255  }
3256
3257  if (!MemOpChains.empty())
3258    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3259                        &MemOpChains[0], MemOpChains.size());
3260
3261  // Check if this is an indirect call (MTCTR/BCTRL).
3262  // See PrepareCall() for more information about calls through function
3263  // pointers in the 64-bit SVR4 ABI.
3264  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3265      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3266      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3267      !isBLACompatibleAddress(Callee, DAG)) {
3268    // Load r2 into a virtual register and store it to the TOC save area.
3269    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3270    // TOC save area offset.
3271    SDValue PtrOff = DAG.getIntPtrConstant(40);
3272    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3273    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3274                         false, false, 0);
3275  }
3276
3277  // On Darwin, R12 must contain the address of an indirect callee.  This does
3278  // not mean the MTCTR instruction must use R12; it's easier to model this as
3279  // an extra parameter, so do that.
3280  if (!isTailCall &&
3281      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3282      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3283      !isBLACompatibleAddress(Callee, DAG))
3284    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3285                                                   PPC::R12), Callee));
3286
3287  // Build a sequence of copy-to-reg nodes chained together with token chain
3288  // and flag operands which copy the outgoing args into the appropriate regs.
3289  SDValue InFlag;
3290  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3291    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3292                             RegsToPass[i].second, InFlag);
3293    InFlag = Chain.getValue(1);
3294  }
3295
3296  if (isTailCall) {
3297    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3298                    FPOp, true, TailCallArguments);
3299  }
3300
3301  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3302                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3303                    Ins, InVals);
3304}
3305
3306SDValue
3307PPCTargetLowering::LowerReturn(SDValue Chain,
3308                               CallingConv::ID CallConv, bool isVarArg,
3309                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3310                               const SmallVectorImpl<SDValue> &OutVals,
3311                               DebugLoc dl, SelectionDAG &DAG) const {
3312
3313  SmallVector<CCValAssign, 16> RVLocs;
3314  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3315                 RVLocs, *DAG.getContext());
3316  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3317
3318  // If this is the first return lowered for this function, add the regs to the
3319  // liveout set for the function.
3320  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3321    for (unsigned i = 0; i != RVLocs.size(); ++i)
3322      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3323  }
3324
3325  SDValue Flag;
3326
3327  // Copy the result values into the output registers.
3328  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3329    CCValAssign &VA = RVLocs[i];
3330    assert(VA.isRegLoc() && "Can only return in registers!");
3331    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3332                             OutVals[i], Flag);
3333    Flag = Chain.getValue(1);
3334  }
3335
3336  if (Flag.getNode())
3337    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3338  else
3339    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3340}
3341
3342SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3343                                   const PPCSubtarget &Subtarget) const {
3344  // When we pop the dynamic allocation we need to restore the SP link.
3345  DebugLoc dl = Op.getDebugLoc();
3346
3347  // Get the corect type for pointers.
3348  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3349
3350  // Construct the stack pointer operand.
3351  bool isPPC64 = Subtarget.isPPC64();
3352  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3353  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3354
3355  // Get the operands for the STACKRESTORE.
3356  SDValue Chain = Op.getOperand(0);
3357  SDValue SaveSP = Op.getOperand(1);
3358
3359  // Load the old link SP.
3360  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3361                                   MachinePointerInfo(),
3362                                   false, false, 0);
3363
3364  // Restore the stack pointer.
3365  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3366
3367  // Store the old link SP.
3368  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3369                      false, false, 0);
3370}
3371
3372
3373
3374SDValue
3375PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3376  MachineFunction &MF = DAG.getMachineFunction();
3377  bool isPPC64 = PPCSubTarget.isPPC64();
3378  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3379  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3380
3381  // Get current frame pointer save index.  The users of this index will be
3382  // primarily DYNALLOC instructions.
3383  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3384  int RASI = FI->getReturnAddrSaveIndex();
3385
3386  // If the frame pointer save index hasn't been defined yet.
3387  if (!RASI) {
3388    // Find out what the fix offset of the frame pointer save area.
3389    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3390    // Allocate the frame index for frame pointer save area.
3391    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3392    // Save the result.
3393    FI->setReturnAddrSaveIndex(RASI);
3394  }
3395  return DAG.getFrameIndex(RASI, PtrVT);
3396}
3397
3398SDValue
3399PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3400  MachineFunction &MF = DAG.getMachineFunction();
3401  bool isPPC64 = PPCSubTarget.isPPC64();
3402  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3403  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3404
3405  // Get current frame pointer save index.  The users of this index will be
3406  // primarily DYNALLOC instructions.
3407  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3408  int FPSI = FI->getFramePointerSaveIndex();
3409
3410  // If the frame pointer save index hasn't been defined yet.
3411  if (!FPSI) {
3412    // Find out what the fix offset of the frame pointer save area.
3413    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3414                                                           isDarwinABI);
3415
3416    // Allocate the frame index for frame pointer save area.
3417    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3418    // Save the result.
3419    FI->setFramePointerSaveIndex(FPSI);
3420  }
3421  return DAG.getFrameIndex(FPSI, PtrVT);
3422}
3423
3424SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3425                                         SelectionDAG &DAG,
3426                                         const PPCSubtarget &Subtarget) const {
3427  // Get the inputs.
3428  SDValue Chain = Op.getOperand(0);
3429  SDValue Size  = Op.getOperand(1);
3430  DebugLoc dl = Op.getDebugLoc();
3431
3432  // Get the corect type for pointers.
3433  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3434  // Negate the size.
3435  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3436                                  DAG.getConstant(0, PtrVT), Size);
3437  // Construct a node for the frame pointer save index.
3438  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3439  // Build a DYNALLOC node.
3440  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3441  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3442  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3443}
3444
3445/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3446/// possible.
3447SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3448  // Not FP? Not a fsel.
3449  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3450      !Op.getOperand(2).getValueType().isFloatingPoint())
3451    return Op;
3452
3453  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3454
3455  // Cannot handle SETEQ/SETNE.
3456  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3457
3458  EVT ResVT = Op.getValueType();
3459  EVT CmpVT = Op.getOperand(0).getValueType();
3460  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3461  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3462  DebugLoc dl = Op.getDebugLoc();
3463
3464  // If the RHS of the comparison is a 0.0, we don't need to do the
3465  // subtraction at all.
3466  if (isFloatingPointZero(RHS))
3467    switch (CC) {
3468    default: break;       // SETUO etc aren't handled by fsel.
3469    case ISD::SETULT:
3470    case ISD::SETLT:
3471      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3472    case ISD::SETOGE:
3473    case ISD::SETGE:
3474      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3475        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3476      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3477    case ISD::SETUGT:
3478    case ISD::SETGT:
3479      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3480    case ISD::SETOLE:
3481    case ISD::SETLE:
3482      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3483        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3484      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3485                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3486    }
3487
3488  SDValue Cmp;
3489  switch (CC) {
3490  default: break;       // SETUO etc aren't handled by fsel.
3491  case ISD::SETULT:
3492  case ISD::SETLT:
3493    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3494    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3495      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3496      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3497  case ISD::SETOGE:
3498  case ISD::SETGE:
3499    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3500    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3501      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3502      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3503  case ISD::SETUGT:
3504  case ISD::SETGT:
3505    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3506    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3507      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3508      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3509  case ISD::SETOLE:
3510  case ISD::SETLE:
3511    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3512    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3513      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3514      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3515  }
3516  return Op;
3517}
3518
3519// FIXME: Split this code up when LegalizeDAGTypes lands.
3520SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3521                                           DebugLoc dl) const {
3522  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3523  SDValue Src = Op.getOperand(0);
3524  if (Src.getValueType() == MVT::f32)
3525    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3526
3527  SDValue Tmp;
3528  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3529  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3530  case MVT::i32:
3531    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3532                                                         PPCISD::FCTIDZ,
3533                      dl, MVT::f64, Src);
3534    break;
3535  case MVT::i64:
3536    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3537    break;
3538  }
3539
3540  // Convert the FP value to an int value through memory.
3541  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3542
3543  // Emit a store to the stack slot.
3544  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3545                               MachinePointerInfo(), false, false, 0);
3546
3547  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3548  // add in a bias.
3549  if (Op.getValueType() == MVT::i32)
3550    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3551                        DAG.getConstant(4, FIPtr.getValueType()));
3552  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3553                     false, false, 0);
3554}
3555
3556SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3557                                           SelectionDAG &DAG) const {
3558  DebugLoc dl = Op.getDebugLoc();
3559  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3560  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3561    return SDValue();
3562
3563  if (Op.getOperand(0).getValueType() == MVT::i64) {
3564    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3565                               MVT::f64, Op.getOperand(0));
3566    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3567    if (Op.getValueType() == MVT::f32)
3568      FP = DAG.getNode(ISD::FP_ROUND, dl,
3569                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3570    return FP;
3571  }
3572
3573  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3574         "Unhandled SINT_TO_FP type in custom expander!");
3575  // Since we only generate this in 64-bit mode, we can take advantage of
3576  // 64-bit registers.  In particular, sign extend the input value into the
3577  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3578  // then lfd it and fcfid it.
3579  MachineFunction &MF = DAG.getMachineFunction();
3580  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3581  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3582  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3583  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3584
3585  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3586                                Op.getOperand(0));
3587
3588  // STD the extended value into the stack slot.
3589  MachineMemOperand *MMO =
3590    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3591                            MachineMemOperand::MOStore, 8, 8);
3592  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3593  SDValue Store =
3594    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3595                            Ops, 4, MVT::i64, MMO);
3596  // Load the value as a double.
3597  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3598                           false, false, 0);
3599
3600  // FCFID it and return it.
3601  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3602  if (Op.getValueType() == MVT::f32)
3603    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3604  return FP;
3605}
3606
3607SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3608                                            SelectionDAG &DAG) const {
3609  DebugLoc dl = Op.getDebugLoc();
3610  /*
3611   The rounding mode is in bits 30:31 of FPSR, and has the following
3612   settings:
3613     00 Round to nearest
3614     01 Round to 0
3615     10 Round to +inf
3616     11 Round to -inf
3617
3618  FLT_ROUNDS, on the other hand, expects the following:
3619    -1 Undefined
3620     0 Round to 0
3621     1 Round to nearest
3622     2 Round to +inf
3623     3 Round to -inf
3624
3625  To perform the conversion, we do:
3626    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3627  */
3628
3629  MachineFunction &MF = DAG.getMachineFunction();
3630  EVT VT = Op.getValueType();
3631  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3632  std::vector<EVT> NodeTys;
3633  SDValue MFFSreg, InFlag;
3634
3635  // Save FP Control Word to register
3636  NodeTys.push_back(MVT::f64);    // return register
3637  NodeTys.push_back(MVT::Flag);   // unused in this context
3638  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3639
3640  // Save FP register to stack slot
3641  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3642  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3643  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3644                               StackSlot, MachinePointerInfo(), false, false,0);
3645
3646  // Load FP Control Word from low 32 bits of stack slot.
3647  SDValue Four = DAG.getConstant(4, PtrVT);
3648  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3649  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3650                            false, false, 0);
3651
3652  // Transform as necessary
3653  SDValue CWD1 =
3654    DAG.getNode(ISD::AND, dl, MVT::i32,
3655                CWD, DAG.getConstant(3, MVT::i32));
3656  SDValue CWD2 =
3657    DAG.getNode(ISD::SRL, dl, MVT::i32,
3658                DAG.getNode(ISD::AND, dl, MVT::i32,
3659                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3660                                        CWD, DAG.getConstant(3, MVT::i32)),
3661                            DAG.getConstant(3, MVT::i32)),
3662                DAG.getConstant(1, MVT::i32));
3663
3664  SDValue RetVal =
3665    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3666
3667  return DAG.getNode((VT.getSizeInBits() < 16 ?
3668                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3669}
3670
3671SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3672  EVT VT = Op.getValueType();
3673  unsigned BitWidth = VT.getSizeInBits();
3674  DebugLoc dl = Op.getDebugLoc();
3675  assert(Op.getNumOperands() == 3 &&
3676         VT == Op.getOperand(1).getValueType() &&
3677         "Unexpected SHL!");
3678
3679  // Expand into a bunch of logical ops.  Note that these ops
3680  // depend on the PPC behavior for oversized shift amounts.
3681  SDValue Lo = Op.getOperand(0);
3682  SDValue Hi = Op.getOperand(1);
3683  SDValue Amt = Op.getOperand(2);
3684  EVT AmtVT = Amt.getValueType();
3685
3686  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3687                             DAG.getConstant(BitWidth, AmtVT), Amt);
3688  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3689  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3690  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3691  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3692                             DAG.getConstant(-BitWidth, AmtVT));
3693  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3694  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3695  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3696  SDValue OutOps[] = { OutLo, OutHi };
3697  return DAG.getMergeValues(OutOps, 2, dl);
3698}
3699
3700SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3701  EVT VT = Op.getValueType();
3702  DebugLoc dl = Op.getDebugLoc();
3703  unsigned BitWidth = VT.getSizeInBits();
3704  assert(Op.getNumOperands() == 3 &&
3705         VT == Op.getOperand(1).getValueType() &&
3706         "Unexpected SRL!");
3707
3708  // Expand into a bunch of logical ops.  Note that these ops
3709  // depend on the PPC behavior for oversized shift amounts.
3710  SDValue Lo = Op.getOperand(0);
3711  SDValue Hi = Op.getOperand(1);
3712  SDValue Amt = Op.getOperand(2);
3713  EVT AmtVT = Amt.getValueType();
3714
3715  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3716                             DAG.getConstant(BitWidth, AmtVT), Amt);
3717  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3718  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3719  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3720  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3721                             DAG.getConstant(-BitWidth, AmtVT));
3722  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3723  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3724  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3725  SDValue OutOps[] = { OutLo, OutHi };
3726  return DAG.getMergeValues(OutOps, 2, dl);
3727}
3728
3729SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3730  DebugLoc dl = Op.getDebugLoc();
3731  EVT VT = Op.getValueType();
3732  unsigned BitWidth = VT.getSizeInBits();
3733  assert(Op.getNumOperands() == 3 &&
3734         VT == Op.getOperand(1).getValueType() &&
3735         "Unexpected SRA!");
3736
3737  // Expand into a bunch of logical ops, followed by a select_cc.
3738  SDValue Lo = Op.getOperand(0);
3739  SDValue Hi = Op.getOperand(1);
3740  SDValue Amt = Op.getOperand(2);
3741  EVT AmtVT = Amt.getValueType();
3742
3743  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3744                             DAG.getConstant(BitWidth, AmtVT), Amt);
3745  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3746  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3747  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3748  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3749                             DAG.getConstant(-BitWidth, AmtVT));
3750  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3751  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3752  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3753                                  Tmp4, Tmp6, ISD::SETLE);
3754  SDValue OutOps[] = { OutLo, OutHi };
3755  return DAG.getMergeValues(OutOps, 2, dl);
3756}
3757
3758//===----------------------------------------------------------------------===//
3759// Vector related lowering.
3760//
3761
3762/// BuildSplatI - Build a canonical splati of Val with an element size of
3763/// SplatSize.  Cast the result to VT.
3764static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3765                             SelectionDAG &DAG, DebugLoc dl) {
3766  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3767
3768  static const EVT VTys[] = { // canonical VT to use for each size.
3769    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3770  };
3771
3772  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3773
3774  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3775  if (Val == -1)
3776    SplatSize = 1;
3777
3778  EVT CanonicalVT = VTys[SplatSize-1];
3779
3780  // Build a canonical splat for this value.
3781  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3782  SmallVector<SDValue, 8> Ops;
3783  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3784  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3785                              &Ops[0], Ops.size());
3786  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3787}
3788
3789/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3790/// specified intrinsic ID.
3791static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3792                                SelectionDAG &DAG, DebugLoc dl,
3793                                EVT DestVT = MVT::Other) {
3794  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3795  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3796                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3797}
3798
3799/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3800/// specified intrinsic ID.
3801static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3802                                SDValue Op2, SelectionDAG &DAG,
3803                                DebugLoc dl, EVT DestVT = MVT::Other) {
3804  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3805  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3806                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3807}
3808
3809
3810/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3811/// amount.  The result has the specified value type.
3812static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3813                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3814  // Force LHS/RHS to be the right type.
3815  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3816  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3817
3818  int Ops[16];
3819  for (unsigned i = 0; i != 16; ++i)
3820    Ops[i] = i + Amt;
3821  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3822  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3823}
3824
3825// If this is a case we can't handle, return null and let the default
3826// expansion code take care of it.  If we CAN select this case, and if it
3827// selects to a single instruction, return Op.  Otherwise, if we can codegen
3828// this case more efficiently than a constant pool load, lower it to the
3829// sequence of ops that should be used.
3830SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3831                                             SelectionDAG &DAG) const {
3832  DebugLoc dl = Op.getDebugLoc();
3833  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3834  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3835
3836  // Check if this is a splat of a constant value.
3837  APInt APSplatBits, APSplatUndef;
3838  unsigned SplatBitSize;
3839  bool HasAnyUndefs;
3840  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3841                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3842    return SDValue();
3843
3844  unsigned SplatBits = APSplatBits.getZExtValue();
3845  unsigned SplatUndef = APSplatUndef.getZExtValue();
3846  unsigned SplatSize = SplatBitSize / 8;
3847
3848  // First, handle single instruction cases.
3849
3850  // All zeros?
3851  if (SplatBits == 0) {
3852    // Canonicalize all zero vectors to be v4i32.
3853    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3854      SDValue Z = DAG.getConstant(0, MVT::i32);
3855      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3856      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3857    }
3858    return Op;
3859  }
3860
3861  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3862  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3863                    (32-SplatBitSize));
3864  if (SextVal >= -16 && SextVal <= 15)
3865    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3866
3867
3868  // Two instruction sequences.
3869
3870  // If this value is in the range [-32,30] and is even, use:
3871  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3872  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3873    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3874    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3875    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3876  }
3877
3878  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3879  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3880  // for fneg/fabs.
3881  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3882    // Make -1 and vspltisw -1:
3883    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3884
3885    // Make the VSLW intrinsic, computing 0x8000_0000.
3886    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3887                                   OnesV, DAG, dl);
3888
3889    // xor by OnesV to invert it.
3890    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3891    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3892  }
3893
3894  // Check to see if this is a wide variety of vsplti*, binop self cases.
3895  static const signed char SplatCsts[] = {
3896    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3897    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3898  };
3899
3900  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3901    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3902    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3903    int i = SplatCsts[idx];
3904
3905    // Figure out what shift amount will be used by altivec if shifted by i in
3906    // this splat size.
3907    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3908
3909    // vsplti + shl self.
3910    if (SextVal == (i << (int)TypeShiftAmt)) {
3911      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3912      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3913        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3914        Intrinsic::ppc_altivec_vslw
3915      };
3916      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3917      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3918    }
3919
3920    // vsplti + srl self.
3921    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3922      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3923      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3924        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3925        Intrinsic::ppc_altivec_vsrw
3926      };
3927      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3928      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3929    }
3930
3931    // vsplti + sra self.
3932    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3933      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3934      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3935        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3936        Intrinsic::ppc_altivec_vsraw
3937      };
3938      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3939      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3940    }
3941
3942    // vsplti + rol self.
3943    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3944                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3945      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3946      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3947        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3948        Intrinsic::ppc_altivec_vrlw
3949      };
3950      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3951      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3952    }
3953
3954    // t = vsplti c, result = vsldoi t, t, 1
3955    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3956      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3957      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3958    }
3959    // t = vsplti c, result = vsldoi t, t, 2
3960    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3961      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3962      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3963    }
3964    // t = vsplti c, result = vsldoi t, t, 3
3965    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3966      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3967      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3968    }
3969  }
3970
3971  // Three instruction sequences.
3972
3973  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3974  if (SextVal >= 0 && SextVal <= 31) {
3975    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3976    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3977    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3978    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3979  }
3980  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3981  if (SextVal >= -31 && SextVal <= 0) {
3982    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3983    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3984    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3985    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3986  }
3987
3988  return SDValue();
3989}
3990
3991/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3992/// the specified operations to build the shuffle.
3993static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3994                                      SDValue RHS, SelectionDAG &DAG,
3995                                      DebugLoc dl) {
3996  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3997  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3998  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3999
4000  enum {
4001    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4002    OP_VMRGHW,
4003    OP_VMRGLW,
4004    OP_VSPLTISW0,
4005    OP_VSPLTISW1,
4006    OP_VSPLTISW2,
4007    OP_VSPLTISW3,
4008    OP_VSLDOI4,
4009    OP_VSLDOI8,
4010    OP_VSLDOI12
4011  };
4012
4013  if (OpNum == OP_COPY) {
4014    if (LHSID == (1*9+2)*9+3) return LHS;
4015    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4016    return RHS;
4017  }
4018
4019  SDValue OpLHS, OpRHS;
4020  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4021  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4022
4023  int ShufIdxs[16];
4024  switch (OpNum) {
4025  default: llvm_unreachable("Unknown i32 permute!");
4026  case OP_VMRGHW:
4027    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4028    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4029    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4030    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4031    break;
4032  case OP_VMRGLW:
4033    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4034    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4035    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4036    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4037    break;
4038  case OP_VSPLTISW0:
4039    for (unsigned i = 0; i != 16; ++i)
4040      ShufIdxs[i] = (i&3)+0;
4041    break;
4042  case OP_VSPLTISW1:
4043    for (unsigned i = 0; i != 16; ++i)
4044      ShufIdxs[i] = (i&3)+4;
4045    break;
4046  case OP_VSPLTISW2:
4047    for (unsigned i = 0; i != 16; ++i)
4048      ShufIdxs[i] = (i&3)+8;
4049    break;
4050  case OP_VSPLTISW3:
4051    for (unsigned i = 0; i != 16; ++i)
4052      ShufIdxs[i] = (i&3)+12;
4053    break;
4054  case OP_VSLDOI4:
4055    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4056  case OP_VSLDOI8:
4057    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4058  case OP_VSLDOI12:
4059    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4060  }
4061  EVT VT = OpLHS.getValueType();
4062  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
4063  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
4064  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4065  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4066}
4067
4068/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4069/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4070/// return the code it can be lowered into.  Worst case, it can always be
4071/// lowered into a vperm.
4072SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4073                                               SelectionDAG &DAG) const {
4074  DebugLoc dl = Op.getDebugLoc();
4075  SDValue V1 = Op.getOperand(0);
4076  SDValue V2 = Op.getOperand(1);
4077  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4078  EVT VT = Op.getValueType();
4079
4080  // Cases that are handled by instructions that take permute immediates
4081  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4082  // selected by the instruction selector.
4083  if (V2.getOpcode() == ISD::UNDEF) {
4084    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4085        PPC::isSplatShuffleMask(SVOp, 2) ||
4086        PPC::isSplatShuffleMask(SVOp, 4) ||
4087        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4088        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4089        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4090        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4091        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4092        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4093        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4094        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4095        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4096      return Op;
4097    }
4098  }
4099
4100  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4101  // and produce a fixed permutation.  If any of these match, do not lower to
4102  // VPERM.
4103  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4104      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4105      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4106      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4107      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4108      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4109      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4110      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4111      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4112    return Op;
4113
4114  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4115  // perfect shuffle table to emit an optimal matching sequence.
4116  SmallVector<int, 16> PermMask;
4117  SVOp->getMask(PermMask);
4118
4119  unsigned PFIndexes[4];
4120  bool isFourElementShuffle = true;
4121  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4122    unsigned EltNo = 8;   // Start out undef.
4123    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4124      if (PermMask[i*4+j] < 0)
4125        continue;   // Undef, ignore it.
4126
4127      unsigned ByteSource = PermMask[i*4+j];
4128      if ((ByteSource & 3) != j) {
4129        isFourElementShuffle = false;
4130        break;
4131      }
4132
4133      if (EltNo == 8) {
4134        EltNo = ByteSource/4;
4135      } else if (EltNo != ByteSource/4) {
4136        isFourElementShuffle = false;
4137        break;
4138      }
4139    }
4140    PFIndexes[i] = EltNo;
4141  }
4142
4143  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4144  // perfect shuffle vector to determine if it is cost effective to do this as
4145  // discrete instructions, or whether we should use a vperm.
4146  if (isFourElementShuffle) {
4147    // Compute the index in the perfect shuffle table.
4148    unsigned PFTableIndex =
4149      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4150
4151    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4152    unsigned Cost  = (PFEntry >> 30);
4153
4154    // Determining when to avoid vperm is tricky.  Many things affect the cost
4155    // of vperm, particularly how many times the perm mask needs to be computed.
4156    // For example, if the perm mask can be hoisted out of a loop or is already
4157    // used (perhaps because there are multiple permutes with the same shuffle
4158    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4159    // the loop requires an extra register.
4160    //
4161    // As a compromise, we only emit discrete instructions if the shuffle can be
4162    // generated in 3 or fewer operations.  When we have loop information
4163    // available, if this block is within a loop, we should avoid using vperm
4164    // for 3-operation perms and use a constant pool load instead.
4165    if (Cost < 3)
4166      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4167  }
4168
4169  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4170  // vector that will get spilled to the constant pool.
4171  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4172
4173  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4174  // that it is in input element units, not in bytes.  Convert now.
4175  EVT EltVT = V1.getValueType().getVectorElementType();
4176  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4177
4178  SmallVector<SDValue, 16> ResultMask;
4179  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4180    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4181
4182    for (unsigned j = 0; j != BytesPerElement; ++j)
4183      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4184                                           MVT::i32));
4185  }
4186
4187  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4188                                    &ResultMask[0], ResultMask.size());
4189  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4190}
4191
4192/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4193/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4194/// information about the intrinsic.
4195static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4196                                  bool &isDot) {
4197  unsigned IntrinsicID =
4198    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4199  CompareOpc = -1;
4200  isDot = false;
4201  switch (IntrinsicID) {
4202  default: return false;
4203    // Comparison predicates.
4204  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4205  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4206  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4207  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4208  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4209  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4210  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4211  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4212  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4213  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4214  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4215  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4216  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4217
4218    // Normal Comparisons.
4219  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4220  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4221  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4222  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4223  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4224  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4225  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4226  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4227  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4228  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4229  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4230  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4231  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4232  }
4233  return true;
4234}
4235
4236/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4237/// lower, do it, otherwise return null.
4238SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4239                                                   SelectionDAG &DAG) const {
4240  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4241  // opcode number of the comparison.
4242  DebugLoc dl = Op.getDebugLoc();
4243  int CompareOpc;
4244  bool isDot;
4245  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4246    return SDValue();    // Don't custom lower most intrinsics.
4247
4248  // If this is a non-dot comparison, make the VCMP node and we are done.
4249  if (!isDot) {
4250    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4251                              Op.getOperand(1), Op.getOperand(2),
4252                              DAG.getConstant(CompareOpc, MVT::i32));
4253    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4254  }
4255
4256  // Create the PPCISD altivec 'dot' comparison node.
4257  SDValue Ops[] = {
4258    Op.getOperand(2),  // LHS
4259    Op.getOperand(3),  // RHS
4260    DAG.getConstant(CompareOpc, MVT::i32)
4261  };
4262  std::vector<EVT> VTs;
4263  VTs.push_back(Op.getOperand(2).getValueType());
4264  VTs.push_back(MVT::Flag);
4265  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4266
4267  // Now that we have the comparison, emit a copy from the CR to a GPR.
4268  // This is flagged to the above dot comparison.
4269  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4270                                DAG.getRegister(PPC::CR6, MVT::i32),
4271                                CompNode.getValue(1));
4272
4273  // Unpack the result based on how the target uses it.
4274  unsigned BitNo;   // Bit # of CR6.
4275  bool InvertBit;   // Invert result?
4276  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4277  default:  // Can't happen, don't crash on invalid number though.
4278  case 0:   // Return the value of the EQ bit of CR6.
4279    BitNo = 0; InvertBit = false;
4280    break;
4281  case 1:   // Return the inverted value of the EQ bit of CR6.
4282    BitNo = 0; InvertBit = true;
4283    break;
4284  case 2:   // Return the value of the LT bit of CR6.
4285    BitNo = 2; InvertBit = false;
4286    break;
4287  case 3:   // Return the inverted value of the LT bit of CR6.
4288    BitNo = 2; InvertBit = true;
4289    break;
4290  }
4291
4292  // Shift the bit into the low position.
4293  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4294                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4295  // Isolate the bit.
4296  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4297                      DAG.getConstant(1, MVT::i32));
4298
4299  // If we are supposed to, toggle the bit.
4300  if (InvertBit)
4301    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4302                        DAG.getConstant(1, MVT::i32));
4303  return Flags;
4304}
4305
4306SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4307                                                   SelectionDAG &DAG) const {
4308  DebugLoc dl = Op.getDebugLoc();
4309  // Create a stack slot that is 16-byte aligned.
4310  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4311  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4312  EVT PtrVT = getPointerTy();
4313  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4314
4315  // Store the input value into Value#0 of the stack slot.
4316  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4317                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4318                               false, false, 0);
4319  // Load it out.
4320  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4321                     false, false, 0);
4322}
4323
4324SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4325  DebugLoc dl = Op.getDebugLoc();
4326  if (Op.getValueType() == MVT::v4i32) {
4327    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4328
4329    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4330    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4331
4332    SDValue RHSSwap =   // = vrlw RHS, 16
4333      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4334
4335    // Shrinkify inputs to v8i16.
4336    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4337    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4338    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4339
4340    // Low parts multiplied together, generating 32-bit results (we ignore the
4341    // top parts).
4342    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4343                                        LHS, RHS, DAG, dl, MVT::v4i32);
4344
4345    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4346                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4347    // Shift the high parts up 16 bits.
4348    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4349                              Neg16, DAG, dl);
4350    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4351  } else if (Op.getValueType() == MVT::v8i16) {
4352    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4353
4354    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4355
4356    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4357                            LHS, RHS, Zero, DAG, dl);
4358  } else if (Op.getValueType() == MVT::v16i8) {
4359    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4360
4361    // Multiply the even 8-bit parts, producing 16-bit sums.
4362    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4363                                           LHS, RHS, DAG, dl, MVT::v8i16);
4364    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4365
4366    // Multiply the odd 8-bit parts, producing 16-bit sums.
4367    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4368                                          LHS, RHS, DAG, dl, MVT::v8i16);
4369    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4370
4371    // Merge the results together.
4372    int Ops[16];
4373    for (unsigned i = 0; i != 8; ++i) {
4374      Ops[i*2  ] = 2*i+1;
4375      Ops[i*2+1] = 2*i+1+16;
4376    }
4377    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4378  } else {
4379    llvm_unreachable("Unknown mul to lower!");
4380  }
4381}
4382
4383/// LowerOperation - Provide custom lowering hooks for some operations.
4384///
4385SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4386  switch (Op.getOpcode()) {
4387  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4388  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4389  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4390  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4391  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4392  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4393  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4394  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4395  case ISD::VASTART:
4396    return LowerVASTART(Op, DAG, PPCSubTarget);
4397
4398  case ISD::VAARG:
4399    return LowerVAARG(Op, DAG, PPCSubTarget);
4400
4401  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4402  case ISD::DYNAMIC_STACKALLOC:
4403    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4404
4405  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4406  case ISD::FP_TO_UINT:
4407  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4408                                                       Op.getDebugLoc());
4409  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4410  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4411
4412  // Lower 64-bit shifts.
4413  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4414  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4415  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4416
4417  // Vector-related lowering.
4418  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4419  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4420  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4421  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4422  case ISD::MUL:                return LowerMUL(Op, DAG);
4423
4424  // Frame & Return address.
4425  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4426  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4427  }
4428  return SDValue();
4429}
4430
4431void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4432                                           SmallVectorImpl<SDValue>&Results,
4433                                           SelectionDAG &DAG) const {
4434  DebugLoc dl = N->getDebugLoc();
4435  switch (N->getOpcode()) {
4436  default:
4437    assert(false && "Do not know how to custom type legalize this operation!");
4438    return;
4439  case ISD::FP_ROUND_INREG: {
4440    assert(N->getValueType(0) == MVT::ppcf128);
4441    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4442    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4443                             MVT::f64, N->getOperand(0),
4444                             DAG.getIntPtrConstant(0));
4445    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4446                             MVT::f64, N->getOperand(0),
4447                             DAG.getIntPtrConstant(1));
4448
4449    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4450    // of the long double, and puts FPSCR back the way it was.  We do not
4451    // actually model FPSCR.
4452    std::vector<EVT> NodeTys;
4453    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4454
4455    NodeTys.push_back(MVT::f64);   // Return register
4456    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4457    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4458    MFFSreg = Result.getValue(0);
4459    InFlag = Result.getValue(1);
4460
4461    NodeTys.clear();
4462    NodeTys.push_back(MVT::Flag);   // Returns a flag
4463    Ops[0] = DAG.getConstant(31, MVT::i32);
4464    Ops[1] = InFlag;
4465    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4466    InFlag = Result.getValue(0);
4467
4468    NodeTys.clear();
4469    NodeTys.push_back(MVT::Flag);   // Returns a flag
4470    Ops[0] = DAG.getConstant(30, MVT::i32);
4471    Ops[1] = InFlag;
4472    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4473    InFlag = Result.getValue(0);
4474
4475    NodeTys.clear();
4476    NodeTys.push_back(MVT::f64);    // result of add
4477    NodeTys.push_back(MVT::Flag);   // Returns a flag
4478    Ops[0] = Lo;
4479    Ops[1] = Hi;
4480    Ops[2] = InFlag;
4481    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4482    FPreg = Result.getValue(0);
4483    InFlag = Result.getValue(1);
4484
4485    NodeTys.clear();
4486    NodeTys.push_back(MVT::f64);
4487    Ops[0] = DAG.getConstant(1, MVT::i32);
4488    Ops[1] = MFFSreg;
4489    Ops[2] = FPreg;
4490    Ops[3] = InFlag;
4491    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4492    FPreg = Result.getValue(0);
4493
4494    // We know the low half is about to be thrown away, so just use something
4495    // convenient.
4496    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4497                                FPreg, FPreg));
4498    return;
4499  }
4500  case ISD::FP_TO_SINT:
4501    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4502    return;
4503  }
4504}
4505
4506
4507//===----------------------------------------------------------------------===//
4508//  Other Lowering Code
4509//===----------------------------------------------------------------------===//
4510
4511MachineBasicBlock *
4512PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4513                                    bool is64bit, unsigned BinOpcode) const {
4514  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4515  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4516
4517  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4518  MachineFunction *F = BB->getParent();
4519  MachineFunction::iterator It = BB;
4520  ++It;
4521
4522  unsigned dest = MI->getOperand(0).getReg();
4523  unsigned ptrA = MI->getOperand(1).getReg();
4524  unsigned ptrB = MI->getOperand(2).getReg();
4525  unsigned incr = MI->getOperand(3).getReg();
4526  DebugLoc dl = MI->getDebugLoc();
4527
4528  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4529  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4530  F->insert(It, loopMBB);
4531  F->insert(It, exitMBB);
4532  exitMBB->splice(exitMBB->begin(), BB,
4533                  llvm::next(MachineBasicBlock::iterator(MI)),
4534                  BB->end());
4535  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4536
4537  MachineRegisterInfo &RegInfo = F->getRegInfo();
4538  unsigned TmpReg = (!BinOpcode) ? incr :
4539    RegInfo.createVirtualRegister(
4540       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4541                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4542
4543  //  thisMBB:
4544  //   ...
4545  //   fallthrough --> loopMBB
4546  BB->addSuccessor(loopMBB);
4547
4548  //  loopMBB:
4549  //   l[wd]arx dest, ptr
4550  //   add r0, dest, incr
4551  //   st[wd]cx. r0, ptr
4552  //   bne- loopMBB
4553  //   fallthrough --> exitMBB
4554  BB = loopMBB;
4555  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4556    .addReg(ptrA).addReg(ptrB);
4557  if (BinOpcode)
4558    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4559  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4560    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4561  BuildMI(BB, dl, TII->get(PPC::BCC))
4562    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4563  BB->addSuccessor(loopMBB);
4564  BB->addSuccessor(exitMBB);
4565
4566  //  exitMBB:
4567  //   ...
4568  BB = exitMBB;
4569  return BB;
4570}
4571
4572MachineBasicBlock *
4573PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4574                                            MachineBasicBlock *BB,
4575                                            bool is8bit,    // operation
4576                                            unsigned BinOpcode) const {
4577  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4578  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4579  // In 64 bit mode we have to use 64 bits for addresses, even though the
4580  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4581  // registers without caring whether they're 32 or 64, but here we're
4582  // doing actual arithmetic on the addresses.
4583  bool is64bit = PPCSubTarget.isPPC64();
4584
4585  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4586  MachineFunction *F = BB->getParent();
4587  MachineFunction::iterator It = BB;
4588  ++It;
4589
4590  unsigned dest = MI->getOperand(0).getReg();
4591  unsigned ptrA = MI->getOperand(1).getReg();
4592  unsigned ptrB = MI->getOperand(2).getReg();
4593  unsigned incr = MI->getOperand(3).getReg();
4594  DebugLoc dl = MI->getDebugLoc();
4595
4596  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4597  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4598  F->insert(It, loopMBB);
4599  F->insert(It, exitMBB);
4600  exitMBB->splice(exitMBB->begin(), BB,
4601                  llvm::next(MachineBasicBlock::iterator(MI)),
4602                  BB->end());
4603  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4604
4605  MachineRegisterInfo &RegInfo = F->getRegInfo();
4606  const TargetRegisterClass *RC =
4607    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4608              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4609  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4610  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4611  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4612  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4613  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4614  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4615  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4616  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4617  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4618  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4619  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4620  unsigned Ptr1Reg;
4621  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4622
4623  //  thisMBB:
4624  //   ...
4625  //   fallthrough --> loopMBB
4626  BB->addSuccessor(loopMBB);
4627
4628  // The 4-byte load must be aligned, while a char or short may be
4629  // anywhere in the word.  Hence all this nasty bookkeeping code.
4630  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4631  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4632  //   xori shift, shift1, 24 [16]
4633  //   rlwinm ptr, ptr1, 0, 0, 29
4634  //   slw incr2, incr, shift
4635  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4636  //   slw mask, mask2, shift
4637  //  loopMBB:
4638  //   lwarx tmpDest, ptr
4639  //   add tmp, tmpDest, incr2
4640  //   andc tmp2, tmpDest, mask
4641  //   and tmp3, tmp, mask
4642  //   or tmp4, tmp3, tmp2
4643  //   stwcx. tmp4, ptr
4644  //   bne- loopMBB
4645  //   fallthrough --> exitMBB
4646  //   srw dest, tmpDest, shift
4647
4648  if (ptrA!=PPC::R0) {
4649    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4650    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4651      .addReg(ptrA).addReg(ptrB);
4652  } else {
4653    Ptr1Reg = ptrB;
4654  }
4655  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4656      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4657  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4658      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4659  if (is64bit)
4660    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4661      .addReg(Ptr1Reg).addImm(0).addImm(61);
4662  else
4663    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4664      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4665  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4666      .addReg(incr).addReg(ShiftReg);
4667  if (is8bit)
4668    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4669  else {
4670    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4671    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4672  }
4673  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4674      .addReg(Mask2Reg).addReg(ShiftReg);
4675
4676  BB = loopMBB;
4677  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4678    .addReg(PPC::R0).addReg(PtrReg);
4679  if (BinOpcode)
4680    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4681      .addReg(Incr2Reg).addReg(TmpDestReg);
4682  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4683    .addReg(TmpDestReg).addReg(MaskReg);
4684  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4685    .addReg(TmpReg).addReg(MaskReg);
4686  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4687    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4688  BuildMI(BB, dl, TII->get(PPC::STWCX))
4689    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4690  BuildMI(BB, dl, TII->get(PPC::BCC))
4691    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4692  BB->addSuccessor(loopMBB);
4693  BB->addSuccessor(exitMBB);
4694
4695  //  exitMBB:
4696  //   ...
4697  BB = exitMBB;
4698  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4699  return BB;
4700}
4701
4702MachineBasicBlock *
4703PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4704                                               MachineBasicBlock *BB) const {
4705  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4706
4707  // To "insert" these instructions we actually have to insert their
4708  // control-flow patterns.
4709  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4710  MachineFunction::iterator It = BB;
4711  ++It;
4712
4713  MachineFunction *F = BB->getParent();
4714
4715  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4716      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4717      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4718      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4719      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4720
4721    // The incoming instruction knows the destination vreg to set, the
4722    // condition code register to branch on, the true/false values to
4723    // select between, and a branch opcode to use.
4724
4725    //  thisMBB:
4726    //  ...
4727    //   TrueVal = ...
4728    //   cmpTY ccX, r1, r2
4729    //   bCC copy1MBB
4730    //   fallthrough --> copy0MBB
4731    MachineBasicBlock *thisMBB = BB;
4732    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4733    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4734    unsigned SelectPred = MI->getOperand(4).getImm();
4735    DebugLoc dl = MI->getDebugLoc();
4736    F->insert(It, copy0MBB);
4737    F->insert(It, sinkMBB);
4738
4739    // Transfer the remainder of BB and its successor edges to sinkMBB.
4740    sinkMBB->splice(sinkMBB->begin(), BB,
4741                    llvm::next(MachineBasicBlock::iterator(MI)),
4742                    BB->end());
4743    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4744
4745    // Next, add the true and fallthrough blocks as its successors.
4746    BB->addSuccessor(copy0MBB);
4747    BB->addSuccessor(sinkMBB);
4748
4749    BuildMI(BB, dl, TII->get(PPC::BCC))
4750      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4751
4752    //  copy0MBB:
4753    //   %FalseValue = ...
4754    //   # fallthrough to sinkMBB
4755    BB = copy0MBB;
4756
4757    // Update machine-CFG edges
4758    BB->addSuccessor(sinkMBB);
4759
4760    //  sinkMBB:
4761    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4762    //  ...
4763    BB = sinkMBB;
4764    BuildMI(*BB, BB->begin(), dl,
4765            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4766      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4767      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4768  }
4769  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4770    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4771  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4772    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4773  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4774    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4775  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4776    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4777
4778  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4779    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4780  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4781    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4782  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4783    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4784  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4785    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4786
4787  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4788    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4789  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4790    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4791  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4792    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4793  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4794    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4795
4796  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4797    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4798  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4799    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4800  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4801    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4802  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4803    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4804
4805  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4806    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4807  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4808    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4809  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4810    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4811  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4812    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4813
4814  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4815    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4816  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4817    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4818  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4819    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4820  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4821    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4822
4823  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4824    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4825  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4826    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4827  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4828    BB = EmitAtomicBinary(MI, BB, false, 0);
4829  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4830    BB = EmitAtomicBinary(MI, BB, true, 0);
4831
4832  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4833           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4834    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4835
4836    unsigned dest   = MI->getOperand(0).getReg();
4837    unsigned ptrA   = MI->getOperand(1).getReg();
4838    unsigned ptrB   = MI->getOperand(2).getReg();
4839    unsigned oldval = MI->getOperand(3).getReg();
4840    unsigned newval = MI->getOperand(4).getReg();
4841    DebugLoc dl     = MI->getDebugLoc();
4842
4843    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4844    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4845    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4846    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4847    F->insert(It, loop1MBB);
4848    F->insert(It, loop2MBB);
4849    F->insert(It, midMBB);
4850    F->insert(It, exitMBB);
4851    exitMBB->splice(exitMBB->begin(), BB,
4852                    llvm::next(MachineBasicBlock::iterator(MI)),
4853                    BB->end());
4854    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4855
4856    //  thisMBB:
4857    //   ...
4858    //   fallthrough --> loopMBB
4859    BB->addSuccessor(loop1MBB);
4860
4861    // loop1MBB:
4862    //   l[wd]arx dest, ptr
4863    //   cmp[wd] dest, oldval
4864    //   bne- midMBB
4865    // loop2MBB:
4866    //   st[wd]cx. newval, ptr
4867    //   bne- loopMBB
4868    //   b exitBB
4869    // midMBB:
4870    //   st[wd]cx. dest, ptr
4871    // exitBB:
4872    BB = loop1MBB;
4873    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4874      .addReg(ptrA).addReg(ptrB);
4875    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4876      .addReg(oldval).addReg(dest);
4877    BuildMI(BB, dl, TII->get(PPC::BCC))
4878      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4879    BB->addSuccessor(loop2MBB);
4880    BB->addSuccessor(midMBB);
4881
4882    BB = loop2MBB;
4883    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4884      .addReg(newval).addReg(ptrA).addReg(ptrB);
4885    BuildMI(BB, dl, TII->get(PPC::BCC))
4886      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4887    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4888    BB->addSuccessor(loop1MBB);
4889    BB->addSuccessor(exitMBB);
4890
4891    BB = midMBB;
4892    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4893      .addReg(dest).addReg(ptrA).addReg(ptrB);
4894    BB->addSuccessor(exitMBB);
4895
4896    //  exitMBB:
4897    //   ...
4898    BB = exitMBB;
4899  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4900             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4901    // We must use 64-bit registers for addresses when targeting 64-bit,
4902    // since we're actually doing arithmetic on them.  Other registers
4903    // can be 32-bit.
4904    bool is64bit = PPCSubTarget.isPPC64();
4905    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4906
4907    unsigned dest   = MI->getOperand(0).getReg();
4908    unsigned ptrA   = MI->getOperand(1).getReg();
4909    unsigned ptrB   = MI->getOperand(2).getReg();
4910    unsigned oldval = MI->getOperand(3).getReg();
4911    unsigned newval = MI->getOperand(4).getReg();
4912    DebugLoc dl     = MI->getDebugLoc();
4913
4914    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4915    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4916    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4917    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4918    F->insert(It, loop1MBB);
4919    F->insert(It, loop2MBB);
4920    F->insert(It, midMBB);
4921    F->insert(It, exitMBB);
4922    exitMBB->splice(exitMBB->begin(), BB,
4923                    llvm::next(MachineBasicBlock::iterator(MI)),
4924                    BB->end());
4925    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4926
4927    MachineRegisterInfo &RegInfo = F->getRegInfo();
4928    const TargetRegisterClass *RC =
4929      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4930                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4931    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4932    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4933    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4934    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4935    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4936    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4937    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4938    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4939    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4940    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4941    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4942    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4943    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4944    unsigned Ptr1Reg;
4945    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4946    //  thisMBB:
4947    //   ...
4948    //   fallthrough --> loopMBB
4949    BB->addSuccessor(loop1MBB);
4950
4951    // The 4-byte load must be aligned, while a char or short may be
4952    // anywhere in the word.  Hence all this nasty bookkeeping code.
4953    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4954    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4955    //   xori shift, shift1, 24 [16]
4956    //   rlwinm ptr, ptr1, 0, 0, 29
4957    //   slw newval2, newval, shift
4958    //   slw oldval2, oldval,shift
4959    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4960    //   slw mask, mask2, shift
4961    //   and newval3, newval2, mask
4962    //   and oldval3, oldval2, mask
4963    // loop1MBB:
4964    //   lwarx tmpDest, ptr
4965    //   and tmp, tmpDest, mask
4966    //   cmpw tmp, oldval3
4967    //   bne- midMBB
4968    // loop2MBB:
4969    //   andc tmp2, tmpDest, mask
4970    //   or tmp4, tmp2, newval3
4971    //   stwcx. tmp4, ptr
4972    //   bne- loop1MBB
4973    //   b exitBB
4974    // midMBB:
4975    //   stwcx. tmpDest, ptr
4976    // exitBB:
4977    //   srw dest, tmpDest, shift
4978    if (ptrA!=PPC::R0) {
4979      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4980      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4981        .addReg(ptrA).addReg(ptrB);
4982    } else {
4983      Ptr1Reg = ptrB;
4984    }
4985    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4986        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4987    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4988        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4989    if (is64bit)
4990      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4991        .addReg(Ptr1Reg).addImm(0).addImm(61);
4992    else
4993      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4994        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4995    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4996        .addReg(newval).addReg(ShiftReg);
4997    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4998        .addReg(oldval).addReg(ShiftReg);
4999    if (is8bit)
5000      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5001    else {
5002      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5003      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5004        .addReg(Mask3Reg).addImm(65535);
5005    }
5006    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5007        .addReg(Mask2Reg).addReg(ShiftReg);
5008    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5009        .addReg(NewVal2Reg).addReg(MaskReg);
5010    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5011        .addReg(OldVal2Reg).addReg(MaskReg);
5012
5013    BB = loop1MBB;
5014    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5015        .addReg(PPC::R0).addReg(PtrReg);
5016    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5017        .addReg(TmpDestReg).addReg(MaskReg);
5018    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5019        .addReg(TmpReg).addReg(OldVal3Reg);
5020    BuildMI(BB, dl, TII->get(PPC::BCC))
5021        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5022    BB->addSuccessor(loop2MBB);
5023    BB->addSuccessor(midMBB);
5024
5025    BB = loop2MBB;
5026    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5027        .addReg(TmpDestReg).addReg(MaskReg);
5028    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5029        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5030    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5031        .addReg(PPC::R0).addReg(PtrReg);
5032    BuildMI(BB, dl, TII->get(PPC::BCC))
5033      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5034    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5035    BB->addSuccessor(loop1MBB);
5036    BB->addSuccessor(exitMBB);
5037
5038    BB = midMBB;
5039    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5040      .addReg(PPC::R0).addReg(PtrReg);
5041    BB->addSuccessor(exitMBB);
5042
5043    //  exitMBB:
5044    //   ...
5045    BB = exitMBB;
5046    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5047  } else {
5048    llvm_unreachable("Unexpected instr type to insert");
5049  }
5050
5051  MI->eraseFromParent();   // The pseudo instruction is gone now.
5052  return BB;
5053}
5054
5055//===----------------------------------------------------------------------===//
5056// Target Optimization Hooks
5057//===----------------------------------------------------------------------===//
5058
5059SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5060                                             DAGCombinerInfo &DCI) const {
5061  const TargetMachine &TM = getTargetMachine();
5062  SelectionDAG &DAG = DCI.DAG;
5063  DebugLoc dl = N->getDebugLoc();
5064  switch (N->getOpcode()) {
5065  default: break;
5066  case PPCISD::SHL:
5067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5068      if (C->isNullValue())   // 0 << V -> 0.
5069        return N->getOperand(0);
5070    }
5071    break;
5072  case PPCISD::SRL:
5073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5074      if (C->isNullValue())   // 0 >>u V -> 0.
5075        return N->getOperand(0);
5076    }
5077    break;
5078  case PPCISD::SRA:
5079    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5080      if (C->isNullValue() ||   //  0 >>s V -> 0.
5081          C->isAllOnesValue())    // -1 >>s V -> -1.
5082        return N->getOperand(0);
5083    }
5084    break;
5085
5086  case ISD::SINT_TO_FP:
5087    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5088      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5089        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5090        // We allow the src/dst to be either f32/f64, but the intermediate
5091        // type must be i64.
5092        if (N->getOperand(0).getValueType() == MVT::i64 &&
5093            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5094          SDValue Val = N->getOperand(0).getOperand(0);
5095          if (Val.getValueType() == MVT::f32) {
5096            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5097            DCI.AddToWorklist(Val.getNode());
5098          }
5099
5100          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5101          DCI.AddToWorklist(Val.getNode());
5102          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5103          DCI.AddToWorklist(Val.getNode());
5104          if (N->getValueType(0) == MVT::f32) {
5105            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5106                              DAG.getIntPtrConstant(0));
5107            DCI.AddToWorklist(Val.getNode());
5108          }
5109          return Val;
5110        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5111          // If the intermediate type is i32, we can avoid the load/store here
5112          // too.
5113        }
5114      }
5115    }
5116    break;
5117  case ISD::STORE:
5118    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5119    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5120        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5121        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5122        N->getOperand(1).getValueType() == MVT::i32 &&
5123        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5124      SDValue Val = N->getOperand(1).getOperand(0);
5125      if (Val.getValueType() == MVT::f32) {
5126        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5127        DCI.AddToWorklist(Val.getNode());
5128      }
5129      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5130      DCI.AddToWorklist(Val.getNode());
5131
5132      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5133                        N->getOperand(2), N->getOperand(3));
5134      DCI.AddToWorklist(Val.getNode());
5135      return Val;
5136    }
5137
5138    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5139    if (cast<StoreSDNode>(N)->isUnindexed() &&
5140        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5141        N->getOperand(1).getNode()->hasOneUse() &&
5142        (N->getOperand(1).getValueType() == MVT::i32 ||
5143         N->getOperand(1).getValueType() == MVT::i16)) {
5144      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5145      // Do an any-extend to 32-bits if this is a half-word input.
5146      if (BSwapOp.getValueType() == MVT::i16)
5147        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5148
5149      SDValue Ops[] = {
5150        N->getOperand(0), BSwapOp, N->getOperand(2),
5151        DAG.getValueType(N->getOperand(1).getValueType())
5152      };
5153      return
5154        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5155                                Ops, array_lengthof(Ops),
5156                                cast<StoreSDNode>(N)->getMemoryVT(),
5157                                cast<StoreSDNode>(N)->getMemOperand());
5158    }
5159    break;
5160  case ISD::BSWAP:
5161    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5162    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5163        N->getOperand(0).hasOneUse() &&
5164        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5165      SDValue Load = N->getOperand(0);
5166      LoadSDNode *LD = cast<LoadSDNode>(Load);
5167      // Create the byte-swapping load.
5168      SDValue Ops[] = {
5169        LD->getChain(),    // Chain
5170        LD->getBasePtr(),  // Ptr
5171        DAG.getValueType(N->getValueType(0)) // VT
5172      };
5173      SDValue BSLoad =
5174        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5175                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5176                                LD->getMemoryVT(), LD->getMemOperand());
5177
5178      // If this is an i16 load, insert the truncate.
5179      SDValue ResVal = BSLoad;
5180      if (N->getValueType(0) == MVT::i16)
5181        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5182
5183      // First, combine the bswap away.  This makes the value produced by the
5184      // load dead.
5185      DCI.CombineTo(N, ResVal);
5186
5187      // Next, combine the load away, we give it a bogus result value but a real
5188      // chain result.  The result value is dead because the bswap is dead.
5189      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5190
5191      // Return N so it doesn't get rechecked!
5192      return SDValue(N, 0);
5193    }
5194
5195    break;
5196  case PPCISD::VCMP: {
5197    // If a VCMPo node already exists with exactly the same operands as this
5198    // node, use its result instead of this node (VCMPo computes both a CR6 and
5199    // a normal output).
5200    //
5201    if (!N->getOperand(0).hasOneUse() &&
5202        !N->getOperand(1).hasOneUse() &&
5203        !N->getOperand(2).hasOneUse()) {
5204
5205      // Scan all of the users of the LHS, looking for VCMPo's that match.
5206      SDNode *VCMPoNode = 0;
5207
5208      SDNode *LHSN = N->getOperand(0).getNode();
5209      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5210           UI != E; ++UI)
5211        if (UI->getOpcode() == PPCISD::VCMPo &&
5212            UI->getOperand(1) == N->getOperand(1) &&
5213            UI->getOperand(2) == N->getOperand(2) &&
5214            UI->getOperand(0) == N->getOperand(0)) {
5215          VCMPoNode = *UI;
5216          break;
5217        }
5218
5219      // If there is no VCMPo node, or if the flag value has a single use, don't
5220      // transform this.
5221      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5222        break;
5223
5224      // Look at the (necessarily single) use of the flag value.  If it has a
5225      // chain, this transformation is more complex.  Note that multiple things
5226      // could use the value result, which we should ignore.
5227      SDNode *FlagUser = 0;
5228      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5229           FlagUser == 0; ++UI) {
5230        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5231        SDNode *User = *UI;
5232        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5233          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5234            FlagUser = User;
5235            break;
5236          }
5237        }
5238      }
5239
5240      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5241      // give up for right now.
5242      if (FlagUser->getOpcode() == PPCISD::MFCR)
5243        return SDValue(VCMPoNode, 0);
5244    }
5245    break;
5246  }
5247  case ISD::BR_CC: {
5248    // If this is a branch on an altivec predicate comparison, lower this so
5249    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5250    // lowering is done pre-legalize, because the legalizer lowers the predicate
5251    // compare down to code that is difficult to reassemble.
5252    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5253    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5254    int CompareOpc;
5255    bool isDot;
5256
5257    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5258        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5259        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5260      assert(isDot && "Can't compare against a vector result!");
5261
5262      // If this is a comparison against something other than 0/1, then we know
5263      // that the condition is never/always true.
5264      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5265      if (Val != 0 && Val != 1) {
5266        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5267          return N->getOperand(0);
5268        // Always !=, turn it into an unconditional branch.
5269        return DAG.getNode(ISD::BR, dl, MVT::Other,
5270                           N->getOperand(0), N->getOperand(4));
5271      }
5272
5273      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5274
5275      // Create the PPCISD altivec 'dot' comparison node.
5276      std::vector<EVT> VTs;
5277      SDValue Ops[] = {
5278        LHS.getOperand(2),  // LHS of compare
5279        LHS.getOperand(3),  // RHS of compare
5280        DAG.getConstant(CompareOpc, MVT::i32)
5281      };
5282      VTs.push_back(LHS.getOperand(2).getValueType());
5283      VTs.push_back(MVT::Flag);
5284      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5285
5286      // Unpack the result based on how the target uses it.
5287      PPC::Predicate CompOpc;
5288      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5289      default:  // Can't happen, don't crash on invalid number though.
5290      case 0:   // Branch on the value of the EQ bit of CR6.
5291        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5292        break;
5293      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5294        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5295        break;
5296      case 2:   // Branch on the value of the LT bit of CR6.
5297        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5298        break;
5299      case 3:   // Branch on the inverted value of the LT bit of CR6.
5300        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5301        break;
5302      }
5303
5304      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5305                         DAG.getConstant(CompOpc, MVT::i32),
5306                         DAG.getRegister(PPC::CR6, MVT::i32),
5307                         N->getOperand(4), CompNode.getValue(1));
5308    }
5309    break;
5310  }
5311  }
5312
5313  return SDValue();
5314}
5315
5316//===----------------------------------------------------------------------===//
5317// Inline Assembly Support
5318//===----------------------------------------------------------------------===//
5319
5320void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5321                                                       const APInt &Mask,
5322                                                       APInt &KnownZero,
5323                                                       APInt &KnownOne,
5324                                                       const SelectionDAG &DAG,
5325                                                       unsigned Depth) const {
5326  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5327  switch (Op.getOpcode()) {
5328  default: break;
5329  case PPCISD::LBRX: {
5330    // lhbrx is known to have the top bits cleared out.
5331    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5332      KnownZero = 0xFFFF0000;
5333    break;
5334  }
5335  case ISD::INTRINSIC_WO_CHAIN: {
5336    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5337    default: break;
5338    case Intrinsic::ppc_altivec_vcmpbfp_p:
5339    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5340    case Intrinsic::ppc_altivec_vcmpequb_p:
5341    case Intrinsic::ppc_altivec_vcmpequh_p:
5342    case Intrinsic::ppc_altivec_vcmpequw_p:
5343    case Intrinsic::ppc_altivec_vcmpgefp_p:
5344    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5345    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5346    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5347    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5348    case Intrinsic::ppc_altivec_vcmpgtub_p:
5349    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5350    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5351      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5352      break;
5353    }
5354  }
5355  }
5356}
5357
5358
5359/// getConstraintType - Given a constraint, return the type of
5360/// constraint it is for this target.
5361PPCTargetLowering::ConstraintType
5362PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5363  if (Constraint.size() == 1) {
5364    switch (Constraint[0]) {
5365    default: break;
5366    case 'b':
5367    case 'r':
5368    case 'f':
5369    case 'v':
5370    case 'y':
5371      return C_RegisterClass;
5372    }
5373  }
5374  return TargetLowering::getConstraintType(Constraint);
5375}
5376
5377/// Examine constraint type and operand type and determine a weight value.
5378/// This object must already have been set up with the operand type
5379/// and the current alternative constraint selected.
5380TargetLowering::ConstraintWeight
5381PPCTargetLowering::getSingleConstraintMatchWeight(
5382    AsmOperandInfo &info, const char *constraint) const {
5383  ConstraintWeight weight = CW_Invalid;
5384  Value *CallOperandVal = info.CallOperandVal;
5385    // If we don't have a value, we can't do a match,
5386    // but allow it at the lowest weight.
5387  if (CallOperandVal == NULL)
5388    return CW_Default;
5389  const Type *type = CallOperandVal->getType();
5390  // Look at the constraint type.
5391  switch (*constraint) {
5392  default:
5393    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5394    break;
5395  case 'b':
5396    if (type->isIntegerTy())
5397      weight = CW_Register;
5398    break;
5399  case 'f':
5400    if (type->isFloatTy())
5401      weight = CW_Register;
5402    break;
5403  case 'd':
5404    if (type->isDoubleTy())
5405      weight = CW_Register;
5406    break;
5407  case 'v':
5408    if (type->isVectorTy())
5409      weight = CW_Register;
5410    break;
5411  case 'y':
5412    weight = CW_Register;
5413    break;
5414  }
5415  return weight;
5416}
5417
5418std::pair<unsigned, const TargetRegisterClass*>
5419PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5420                                                EVT VT) const {
5421  if (Constraint.size() == 1) {
5422    // GCC RS6000 Constraint Letters
5423    switch (Constraint[0]) {
5424    case 'b':   // R1-R31
5425    case 'r':   // R0-R31
5426      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5427        return std::make_pair(0U, PPC::G8RCRegisterClass);
5428      return std::make_pair(0U, PPC::GPRCRegisterClass);
5429    case 'f':
5430      if (VT == MVT::f32)
5431        return std::make_pair(0U, PPC::F4RCRegisterClass);
5432      else if (VT == MVT::f64)
5433        return std::make_pair(0U, PPC::F8RCRegisterClass);
5434      break;
5435    case 'v':
5436      return std::make_pair(0U, PPC::VRRCRegisterClass);
5437    case 'y':   // crrc
5438      return std::make_pair(0U, PPC::CRRCRegisterClass);
5439    }
5440  }
5441
5442  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5443}
5444
5445
5446/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5447/// vector.  If it is invalid, don't add anything to Ops.
5448void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5449                                                     std::vector<SDValue>&Ops,
5450                                                     SelectionDAG &DAG) const {
5451  SDValue Result(0,0);
5452  switch (Letter) {
5453  default: break;
5454  case 'I':
5455  case 'J':
5456  case 'K':
5457  case 'L':
5458  case 'M':
5459  case 'N':
5460  case 'O':
5461  case 'P': {
5462    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5463    if (!CST) return; // Must be an immediate to match.
5464    unsigned Value = CST->getZExtValue();
5465    switch (Letter) {
5466    default: llvm_unreachable("Unknown constraint letter!");
5467    case 'I':  // "I" is a signed 16-bit constant.
5468      if ((short)Value == (int)Value)
5469        Result = DAG.getTargetConstant(Value, Op.getValueType());
5470      break;
5471    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5472    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5473      if ((short)Value == 0)
5474        Result = DAG.getTargetConstant(Value, Op.getValueType());
5475      break;
5476    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5477      if ((Value >> 16) == 0)
5478        Result = DAG.getTargetConstant(Value, Op.getValueType());
5479      break;
5480    case 'M':  // "M" is a constant that is greater than 31.
5481      if (Value > 31)
5482        Result = DAG.getTargetConstant(Value, Op.getValueType());
5483      break;
5484    case 'N':  // "N" is a positive constant that is an exact power of two.
5485      if ((int)Value > 0 && isPowerOf2_32(Value))
5486        Result = DAG.getTargetConstant(Value, Op.getValueType());
5487      break;
5488    case 'O':  // "O" is the constant zero.
5489      if (Value == 0)
5490        Result = DAG.getTargetConstant(Value, Op.getValueType());
5491      break;
5492    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5493      if ((short)-Value == (int)-Value)
5494        Result = DAG.getTargetConstant(Value, Op.getValueType());
5495      break;
5496    }
5497    break;
5498  }
5499  }
5500
5501  if (Result.getNode()) {
5502    Ops.push_back(Result);
5503    return;
5504  }
5505
5506  // Handle standard constraint letters.
5507  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
5508}
5509
5510// isLegalAddressingMode - Return true if the addressing mode represented
5511// by AM is legal for this target, for a load/store of the specified type.
5512bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5513                                              const Type *Ty) const {
5514  // FIXME: PPC does not allow r+i addressing modes for vectors!
5515
5516  // PPC allows a sign-extended 16-bit immediate field.
5517  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5518    return false;
5519
5520  // No global is ever allowed as a base.
5521  if (AM.BaseGV)
5522    return false;
5523
5524  // PPC only support r+r,
5525  switch (AM.Scale) {
5526  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5527    break;
5528  case 1:
5529    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5530      return false;
5531    // Otherwise we have r+r or r+i.
5532    break;
5533  case 2:
5534    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5535      return false;
5536    // Allow 2*r as r+r.
5537    break;
5538  default:
5539    // No other scales are supported.
5540    return false;
5541  }
5542
5543  return true;
5544}
5545
5546/// isLegalAddressImmediate - Return true if the integer value can be used
5547/// as the offset of the target addressing mode for load / store of the
5548/// given type.
5549bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5550  // PPC allows a sign-extended 16-bit immediate field.
5551  return (V > -(1 << 16) && V < (1 << 16)-1);
5552}
5553
5554bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5555  return false;
5556}
5557
5558SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5559                                           SelectionDAG &DAG) const {
5560  MachineFunction &MF = DAG.getMachineFunction();
5561  MachineFrameInfo *MFI = MF.getFrameInfo();
5562  MFI->setReturnAddressIsTaken(true);
5563
5564  DebugLoc dl = Op.getDebugLoc();
5565  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5566
5567  // Make sure the function does not optimize away the store of the RA to
5568  // the stack.
5569  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5570  FuncInfo->setLRStoreRequired();
5571  bool isPPC64 = PPCSubTarget.isPPC64();
5572  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5573
5574  if (Depth > 0) {
5575    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5576    SDValue Offset =
5577
5578      DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI),
5579                      isPPC64? MVT::i64 : MVT::i32);
5580    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5581                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5582                                   FrameAddr, Offset),
5583                       MachinePointerInfo(), false, false, 0);
5584  }
5585
5586  // Just load the return address off the stack.
5587  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5588  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5589                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5590}
5591
5592SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5593                                          SelectionDAG &DAG) const {
5594  DebugLoc dl = Op.getDebugLoc();
5595  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5596
5597  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5598  bool isPPC64 = PtrVT == MVT::i64;
5599
5600  MachineFunction &MF = DAG.getMachineFunction();
5601  MachineFrameInfo *MFI = MF.getFrameInfo();
5602  MFI->setFrameAddressIsTaken(true);
5603  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5604                  MFI->getStackSize() &&
5605                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5606  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5607                                (is31 ? PPC::R31 : PPC::R1);
5608  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5609                                         PtrVT);
5610  while (Depth--)
5611    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5612                            FrameAddr, MachinePointerInfo(), false, false, 0);
5613  return FrameAddr;
5614}
5615
5616bool
5617PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5618  // The PowerPC target isn't yet aware of offsets.
5619  return false;
5620}
5621
5622/// getOptimalMemOpType - Returns the target specific optimal type for load
5623/// and store operations as a result of memset, memcpy, and memmove
5624/// lowering. If DstAlign is zero that means it's safe to destination
5625/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5626/// means there isn't a need to check it against alignment requirement,
5627/// probably because the source does not need to be loaded. If
5628/// 'NonScalarIntSafe' is true, that means it's safe to return a
5629/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5630/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5631/// constant so it does not need to be loaded.
5632/// It returns EVT::Other if the type should be determined using generic
5633/// target-independent logic.
5634EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5635                                           unsigned DstAlign, unsigned SrcAlign,
5636                                           bool NonScalarIntSafe,
5637                                           bool MemcpyStrSrc,
5638                                           MachineFunction &MF) const {
5639  if (this->PPCSubTarget.isPPC64()) {
5640    return MVT::i64;
5641  } else {
5642    return MVT::i32;
5643  }
5644}
5645