PPCISelLowering.cpp revision 46479197843ecb651adc9417c49bbd1b00acfcb6
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                       CCValAssign::LocInfo &LocInfo,
41                                       ISD::ArgFlagsTy &ArgFlags,
42                                       CCState &State);
43static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                              MVT &LocVT,
45                                              CCValAssign::LocInfo &LocInfo,
46                                              ISD::ArgFlagsTy &ArgFlags,
47                                              CCState &State);
48static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                                MVT &LocVT,
50                                                CCValAssign::LocInfo &LocInfo,
51                                                ISD::ArgFlagsTy &ArgFlags,
52                                                CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
61cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
62
63static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
64  if (TM.getSubtargetImpl()->isDarwin())
65    return new TargetLoweringObjectFileMachO();
66
67  return new TargetLoweringObjectFileELF();
68}
69
70PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
71  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
72  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
73  PPCRegInfo = TM.getRegisterInfo();
74
75  setPow2DivIsCheap();
76
77  // Use _setjmp/_longjmp instead of setjmp/longjmp.
78  setUseUnderscoreSetJmp(true);
79  setUseUnderscoreLongJmp(true);
80
81  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
82  // arguments are at least 4/8 bytes aligned.
83  bool isPPC64 = Subtarget->isPPC64();
84  setMinStackArgumentAlignment(isPPC64 ? 8:4);
85
86  // Set up the register classes.
87  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
88  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
89  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
90
91  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
92  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
93  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
94
95  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
96
97  // PowerPC has pre-inc load and store's.
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
99  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
100  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
101  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
102  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
104  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
105  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
106  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
107  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
108
109  // This is used in the ppcf128->int sequence.  Note it has different semantics
110  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
111  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
112
113  // We do not currently implement these libm ops for PowerPC.
114  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
115  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
116  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
117  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
118  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
119
120  // PowerPC has no SREM/UREM instructions
121  setOperationAction(ISD::SREM, MVT::i32, Expand);
122  setOperationAction(ISD::UREM, MVT::i32, Expand);
123  setOperationAction(ISD::SREM, MVT::i64, Expand);
124  setOperationAction(ISD::UREM, MVT::i64, Expand);
125
126  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
127  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
128  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
129  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
130  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
131  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
132  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
133  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
134  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
135
136  // We don't support sin/cos/sqrt/fmod/pow
137  setOperationAction(ISD::FSIN , MVT::f64, Expand);
138  setOperationAction(ISD::FCOS , MVT::f64, Expand);
139  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
140  setOperationAction(ISD::FREM , MVT::f64, Expand);
141  setOperationAction(ISD::FPOW , MVT::f64, Expand);
142  setOperationAction(ISD::FMA  , MVT::f64, Legal);
143  setOperationAction(ISD::FSIN , MVT::f32, Expand);
144  setOperationAction(ISD::FCOS , MVT::f32, Expand);
145  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
146  setOperationAction(ISD::FREM , MVT::f32, Expand);
147  setOperationAction(ISD::FPOW , MVT::f32, Expand);
148  setOperationAction(ISD::FMA  , MVT::f32, Legal);
149
150  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
151
152  // If we're enabling GP optimizations, use hardware square root
153  if (!Subtarget->hasFSQRT()) {
154    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
155    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
156  }
157
158  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
159  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
160
161  if (Subtarget->hasFPRND()) {
162    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
163    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
164    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
165
166    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
167    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
168    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
169
170    // frin does not implement "ties to even." Thus, this is safe only in
171    // fast-math mode.
172    if (TM.Options.UnsafeFPMath) {
173      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
174      setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
175
176      // These need to set FE_INEXACT, and use a custom inserter.
177      setOperationAction(ISD::FRINT, MVT::f64, Legal);
178      setOperationAction(ISD::FRINT, MVT::f32, Legal);
179    }
180  }
181
182  // PowerPC does not have BSWAP, CTPOP or CTTZ
183  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
184  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
185  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
186  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
187  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
188  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
189  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
190  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
191
192  if (Subtarget->hasPOPCNTD()) {
193    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
194    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
195  } else {
196    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
197    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
198  }
199
200  // PowerPC does not have ROTR
201  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
202  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
203
204  // PowerPC does not have Select
205  setOperationAction(ISD::SELECT, MVT::i32, Expand);
206  setOperationAction(ISD::SELECT, MVT::i64, Expand);
207  setOperationAction(ISD::SELECT, MVT::f32, Expand);
208  setOperationAction(ISD::SELECT, MVT::f64, Expand);
209
210  // PowerPC wants to turn select_cc of FP into fsel when possible.
211  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
212  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
213
214  // PowerPC wants to optimize integer setcc a bit
215  setOperationAction(ISD::SETCC, MVT::i32, Custom);
216
217  // PowerPC does not have BRCOND which requires SetCC
218  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
219
220  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
221
222  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
223  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
224
225  // PowerPC does not have [U|S]INT_TO_FP
226  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
227  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
228
229  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
230  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
231  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
232  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
233
234  // We cannot sextinreg(i1).  Expand to shifts.
235  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
236
237  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
238  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
239  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
240  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
241
242  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
243  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
244  // support continuation, user-level threading, and etc.. As a result, no
245  // other SjLj exception interfaces are implemented and please don't build
246  // your own exception handling based on them.
247  // LLVM/Clang supports zero-cost DWARF exception handling.
248  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
249  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
250
251  // We want to legalize GlobalAddress and ConstantPool nodes into the
252  // appropriate instructions to materialize the address.
253  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
254  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
255  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
256  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
257  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
258  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
259  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
260  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
261  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
262  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
263
264  // TRAP is legal.
265  setOperationAction(ISD::TRAP, MVT::Other, Legal);
266
267  // TRAMPOLINE is custom lowered.
268  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
269  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
270
271  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
272  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
273
274  if (Subtarget->isSVR4ABI()) {
275    if (isPPC64) {
276      // VAARG always uses double-word chunks, so promote anything smaller.
277      setOperationAction(ISD::VAARG, MVT::i1, Promote);
278      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
279      setOperationAction(ISD::VAARG, MVT::i8, Promote);
280      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
281      setOperationAction(ISD::VAARG, MVT::i16, Promote);
282      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
283      setOperationAction(ISD::VAARG, MVT::i32, Promote);
284      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
285      setOperationAction(ISD::VAARG, MVT::Other, Expand);
286    } else {
287      // VAARG is custom lowered with the 32-bit SVR4 ABI.
288      setOperationAction(ISD::VAARG, MVT::Other, Custom);
289      setOperationAction(ISD::VAARG, MVT::i64, Custom);
290    }
291  } else
292    setOperationAction(ISD::VAARG, MVT::Other, Expand);
293
294  // Use the default implementation.
295  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
296  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
297  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
298  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
299  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
300  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
301
302  // We want to custom lower some of our intrinsics.
303  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
304
305  // Comparisons that require checking two conditions.
306  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
307  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
308  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
309  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
310  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
311  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
312  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
313  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
314  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
315  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
316  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
317  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
318
319  if (Subtarget->has64BitSupport()) {
320    // They also have instructions for converting between i64 and fp.
321    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
322    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
323    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
324    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
325    // This is just the low 32 bits of a (signed) fp->i64 conversion.
326    // We cannot do this with Promote because i64 is not a legal type.
327    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
328
329    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
330      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
331  } else {
332    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
333    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
334  }
335
336  // With the instructions enabled under FPCVT, we can do everything.
337  if (PPCSubTarget.hasFPCVT()) {
338    if (Subtarget->has64BitSupport()) {
339      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
340      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
341      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
342      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
343    }
344
345    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
346    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
347    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
348    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
349  }
350
351  if (Subtarget->use64BitRegs()) {
352    // 64-bit PowerPC implementations can support i64 types directly
353    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
354    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
355    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
356    // 64-bit PowerPC wants to expand i128 shifts itself.
357    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
358    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
359    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
360  } else {
361    // 32-bit PowerPC wants to expand i64 shifts itself.
362    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
363    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
364    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
365  }
366
367  if (Subtarget->hasAltivec()) {
368    // First set operation action for all vector types to expand. Then we
369    // will selectively turn on ones that can be effectively codegen'd.
370    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
371         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
372      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
373
374      // add/sub are legal for all supported vector VT's.
375      setOperationAction(ISD::ADD , VT, Legal);
376      setOperationAction(ISD::SUB , VT, Legal);
377
378      // We promote all shuffles to v16i8.
379      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
380      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
381
382      // We promote all non-typed operations to v4i32.
383      setOperationAction(ISD::AND   , VT, Promote);
384      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
385      setOperationAction(ISD::OR    , VT, Promote);
386      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
387      setOperationAction(ISD::XOR   , VT, Promote);
388      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
389      setOperationAction(ISD::LOAD  , VT, Promote);
390      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
391      setOperationAction(ISD::SELECT, VT, Promote);
392      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
393      setOperationAction(ISD::STORE, VT, Promote);
394      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
395
396      // No other operations are legal.
397      setOperationAction(ISD::MUL , VT, Expand);
398      setOperationAction(ISD::SDIV, VT, Expand);
399      setOperationAction(ISD::SREM, VT, Expand);
400      setOperationAction(ISD::UDIV, VT, Expand);
401      setOperationAction(ISD::UREM, VT, Expand);
402      setOperationAction(ISD::FDIV, VT, Expand);
403      setOperationAction(ISD::FNEG, VT, Expand);
404      setOperationAction(ISD::FSQRT, VT, Expand);
405      setOperationAction(ISD::FLOG, VT, Expand);
406      setOperationAction(ISD::FLOG10, VT, Expand);
407      setOperationAction(ISD::FLOG2, VT, Expand);
408      setOperationAction(ISD::FEXP, VT, Expand);
409      setOperationAction(ISD::FEXP2, VT, Expand);
410      setOperationAction(ISD::FSIN, VT, Expand);
411      setOperationAction(ISD::FCOS, VT, Expand);
412      setOperationAction(ISD::FABS, VT, Expand);
413      setOperationAction(ISD::FPOWI, VT, Expand);
414      setOperationAction(ISD::FFLOOR, VT, Expand);
415      setOperationAction(ISD::FCEIL,  VT, Expand);
416      setOperationAction(ISD::FTRUNC, VT, Expand);
417      setOperationAction(ISD::FRINT,  VT, Expand);
418      setOperationAction(ISD::FNEARBYINT, VT, Expand);
419      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
420      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
421      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
422      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
423      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
424      setOperationAction(ISD::UDIVREM, VT, Expand);
425      setOperationAction(ISD::SDIVREM, VT, Expand);
426      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
427      setOperationAction(ISD::FPOW, VT, Expand);
428      setOperationAction(ISD::CTPOP, VT, Expand);
429      setOperationAction(ISD::CTLZ, VT, Expand);
430      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
431      setOperationAction(ISD::CTTZ, VT, Expand);
432      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
433      setOperationAction(ISD::VSELECT, VT, Expand);
434      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
435
436      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
437           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
438        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
439        setTruncStoreAction(VT, InnerVT, Expand);
440      }
441      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
442      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
443      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
444    }
445
446    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
447    // with merges, splats, etc.
448    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
449
450    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
451    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
452    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
453    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
454    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
455    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
456    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
457    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
458    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
459    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
460    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
461    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
462    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
463    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
464
465    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
466    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
467    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
468    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
469
470    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
471    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
472    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
473    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
474    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
475
476    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
477    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
478
479    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
480    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
481    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
482    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
483
484    // Altivec does not contain unordered floating-point compare instructions
485    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
486    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
487    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
488    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
489    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
490    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
491  }
492
493  if (Subtarget->has64BitSupport()) {
494    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
495    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
496  }
497
498  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
499  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
500  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
501  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
502
503  setBooleanContents(ZeroOrOneBooleanContent);
504  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
505
506  if (isPPC64) {
507    setStackPointerRegisterToSaveRestore(PPC::X1);
508    setExceptionPointerRegister(PPC::X3);
509    setExceptionSelectorRegister(PPC::X4);
510  } else {
511    setStackPointerRegisterToSaveRestore(PPC::R1);
512    setExceptionPointerRegister(PPC::R3);
513    setExceptionSelectorRegister(PPC::R4);
514  }
515
516  // We have target-specific dag combine patterns for the following nodes:
517  setTargetDAGCombine(ISD::SINT_TO_FP);
518  setTargetDAGCombine(ISD::STORE);
519  setTargetDAGCombine(ISD::BR_CC);
520  setTargetDAGCombine(ISD::BSWAP);
521
522  // Darwin long double math library functions have $LDBL128 appended.
523  if (Subtarget->isDarwin()) {
524    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
525    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
526    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
527    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
528    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
529    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
530    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
531    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
532    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
533    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
534  }
535
536  setMinFunctionAlignment(2);
537  if (PPCSubTarget.isDarwin())
538    setPrefFunctionAlignment(4);
539
540  if (isPPC64 && Subtarget->isJITCodeModel())
541    // Temporary workaround for the inability of PPC64 JIT to handle jump
542    // tables.
543    setSupportJumpTables(false);
544
545  setInsertFencesForAtomic(true);
546
547  setSchedulingPreference(Sched::Hybrid);
548
549  computeRegisterProperties();
550
551  // The Freescale cores does better with aggressive inlining of memcpy and
552  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
553  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
554      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
555    MaxStoresPerMemset = 32;
556    MaxStoresPerMemsetOptSize = 16;
557    MaxStoresPerMemcpy = 32;
558    MaxStoresPerMemcpyOptSize = 8;
559    MaxStoresPerMemmove = 32;
560    MaxStoresPerMemmoveOptSize = 8;
561
562    setPrefFunctionAlignment(4);
563  }
564}
565
566/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
567/// function arguments in the caller parameter area.
568unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
569  const TargetMachine &TM = getTargetMachine();
570  // Darwin passes everything on 4 byte boundary.
571  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
572    return 4;
573
574  // 16byte and wider vectors are passed on 16byte boundary.
575  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
576    if (VTy->getBitWidth() >= 128)
577      return 16;
578
579  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
580   if (PPCSubTarget.isPPC64())
581     return 8;
582
583  return 4;
584}
585
586const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
587  switch (Opcode) {
588  default: return 0;
589  case PPCISD::FSEL:            return "PPCISD::FSEL";
590  case PPCISD::FCFID:           return "PPCISD::FCFID";
591  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
592  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
593  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
594  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
595  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
596  case PPCISD::VPERM:           return "PPCISD::VPERM";
597  case PPCISD::Hi:              return "PPCISD::Hi";
598  case PPCISD::Lo:              return "PPCISD::Lo";
599  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
600  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
601  case PPCISD::LOAD:            return "PPCISD::LOAD";
602  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
603  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
604  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
605  case PPCISD::SRL:             return "PPCISD::SRL";
606  case PPCISD::SRA:             return "PPCISD::SRA";
607  case PPCISD::SHL:             return "PPCISD::SHL";
608  case PPCISD::CALL:            return "PPCISD::CALL";
609  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
610  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
611  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
612  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
613  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
614  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
615  case PPCISD::MFCR:            return "PPCISD::MFCR";
616  case PPCISD::VCMP:            return "PPCISD::VCMP";
617  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
618  case PPCISD::LBRX:            return "PPCISD::LBRX";
619  case PPCISD::STBRX:           return "PPCISD::STBRX";
620  case PPCISD::LARX:            return "PPCISD::LARX";
621  case PPCISD::STCX:            return "PPCISD::STCX";
622  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
623  case PPCISD::MFFS:            return "PPCISD::MFFS";
624  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
625  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
626  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
627  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
628  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
629  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
630  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
631  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
632  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
633  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
634  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
635  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
636  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
637  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
638  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
639  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
640  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
641  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
642  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
643  }
644}
645
646EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
647  if (!VT.isVector())
648    return MVT::i32;
649  return VT.changeVectorElementTypeToInteger();
650}
651
652//===----------------------------------------------------------------------===//
653// Node matching predicates, for use by the tblgen matching code.
654//===----------------------------------------------------------------------===//
655
656/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
657static bool isFloatingPointZero(SDValue Op) {
658  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
659    return CFP->getValueAPF().isZero();
660  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
661    // Maybe this has already been legalized into the constant pool?
662    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
663      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
664        return CFP->getValueAPF().isZero();
665  }
666  return false;
667}
668
669/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
670/// true if Op is undef or if it matches the specified value.
671static bool isConstantOrUndef(int Op, int Val) {
672  return Op < 0 || Op == Val;
673}
674
675/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
676/// VPKUHUM instruction.
677bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
678  if (!isUnary) {
679    for (unsigned i = 0; i != 16; ++i)
680      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
681        return false;
682  } else {
683    for (unsigned i = 0; i != 8; ++i)
684      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
685          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
686        return false;
687  }
688  return true;
689}
690
691/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
692/// VPKUWUM instruction.
693bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
694  if (!isUnary) {
695    for (unsigned i = 0; i != 16; i += 2)
696      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
697          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
698        return false;
699  } else {
700    for (unsigned i = 0; i != 8; i += 2)
701      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
702          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
703          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
704          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
705        return false;
706  }
707  return true;
708}
709
710/// isVMerge - Common function, used to match vmrg* shuffles.
711///
712static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
713                     unsigned LHSStart, unsigned RHSStart) {
714  assert(N->getValueType(0) == MVT::v16i8 &&
715         "PPC only supports shuffles by bytes!");
716  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
717         "Unsupported merge size!");
718
719  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
720    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
721      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
722                             LHSStart+j+i*UnitSize) ||
723          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
724                             RHSStart+j+i*UnitSize))
725        return false;
726    }
727  return true;
728}
729
730/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
731/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
732bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
733                             bool isUnary) {
734  if (!isUnary)
735    return isVMerge(N, UnitSize, 8, 24);
736  return isVMerge(N, UnitSize, 8, 8);
737}
738
739/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
740/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
741bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
742                             bool isUnary) {
743  if (!isUnary)
744    return isVMerge(N, UnitSize, 0, 16);
745  return isVMerge(N, UnitSize, 0, 0);
746}
747
748
749/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
750/// amount, otherwise return -1.
751int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
752  assert(N->getValueType(0) == MVT::v16i8 &&
753         "PPC only supports shuffles by bytes!");
754
755  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
756
757  // Find the first non-undef value in the shuffle mask.
758  unsigned i;
759  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
760    /*search*/;
761
762  if (i == 16) return -1;  // all undef.
763
764  // Otherwise, check to see if the rest of the elements are consecutively
765  // numbered from this value.
766  unsigned ShiftAmt = SVOp->getMaskElt(i);
767  if (ShiftAmt < i) return -1;
768  ShiftAmt -= i;
769
770  if (!isUnary) {
771    // Check the rest of the elements to see if they are consecutive.
772    for (++i; i != 16; ++i)
773      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
774        return -1;
775  } else {
776    // Check the rest of the elements to see if they are consecutive.
777    for (++i; i != 16; ++i)
778      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
779        return -1;
780  }
781  return ShiftAmt;
782}
783
784/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
785/// specifies a splat of a single element that is suitable for input to
786/// VSPLTB/VSPLTH/VSPLTW.
787bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
788  assert(N->getValueType(0) == MVT::v16i8 &&
789         (EltSize == 1 || EltSize == 2 || EltSize == 4));
790
791  // This is a splat operation if each element of the permute is the same, and
792  // if the value doesn't reference the second vector.
793  unsigned ElementBase = N->getMaskElt(0);
794
795  // FIXME: Handle UNDEF elements too!
796  if (ElementBase >= 16)
797    return false;
798
799  // Check that the indices are consecutive, in the case of a multi-byte element
800  // splatted with a v16i8 mask.
801  for (unsigned i = 1; i != EltSize; ++i)
802    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
803      return false;
804
805  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
806    if (N->getMaskElt(i) < 0) continue;
807    for (unsigned j = 0; j != EltSize; ++j)
808      if (N->getMaskElt(i+j) != N->getMaskElt(j))
809        return false;
810  }
811  return true;
812}
813
814/// isAllNegativeZeroVector - Returns true if all elements of build_vector
815/// are -0.0.
816bool PPC::isAllNegativeZeroVector(SDNode *N) {
817  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
818
819  APInt APVal, APUndef;
820  unsigned BitSize;
821  bool HasAnyUndefs;
822
823  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
824    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
825      return CFP->getValueAPF().isNegZero();
826
827  return false;
828}
829
830/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
831/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
832unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
833  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
834  assert(isSplatShuffleMask(SVOp, EltSize));
835  return SVOp->getMaskElt(0) / EltSize;
836}
837
838/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
839/// by using a vspltis[bhw] instruction of the specified element size, return
840/// the constant being splatted.  The ByteSize field indicates the number of
841/// bytes of each element [124] -> [bhw].
842SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
843  SDValue OpVal(0, 0);
844
845  // If ByteSize of the splat is bigger than the element size of the
846  // build_vector, then we have a case where we are checking for a splat where
847  // multiple elements of the buildvector are folded together into a single
848  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
849  unsigned EltSize = 16/N->getNumOperands();
850  if (EltSize < ByteSize) {
851    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
852    SDValue UniquedVals[4];
853    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
854
855    // See if all of the elements in the buildvector agree across.
856    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
857      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
858      // If the element isn't a constant, bail fully out.
859      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
860
861
862      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
863        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
864      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
865        return SDValue();  // no match.
866    }
867
868    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
869    // either constant or undef values that are identical for each chunk.  See
870    // if these chunks can form into a larger vspltis*.
871
872    // Check to see if all of the leading entries are either 0 or -1.  If
873    // neither, then this won't fit into the immediate field.
874    bool LeadingZero = true;
875    bool LeadingOnes = true;
876    for (unsigned i = 0; i != Multiple-1; ++i) {
877      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
878
879      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
880      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
881    }
882    // Finally, check the least significant entry.
883    if (LeadingZero) {
884      if (UniquedVals[Multiple-1].getNode() == 0)
885        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
886      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
887      if (Val < 16)
888        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
889    }
890    if (LeadingOnes) {
891      if (UniquedVals[Multiple-1].getNode() == 0)
892        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
893      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
894      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
895        return DAG.getTargetConstant(Val, MVT::i32);
896    }
897
898    return SDValue();
899  }
900
901  // Check to see if this buildvec has a single non-undef value in its elements.
902  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
903    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
904    if (OpVal.getNode() == 0)
905      OpVal = N->getOperand(i);
906    else if (OpVal != N->getOperand(i))
907      return SDValue();
908  }
909
910  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
911
912  unsigned ValSizeInBytes = EltSize;
913  uint64_t Value = 0;
914  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
915    Value = CN->getZExtValue();
916  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
917    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
918    Value = FloatToBits(CN->getValueAPF().convertToFloat());
919  }
920
921  // If the splat value is larger than the element value, then we can never do
922  // this splat.  The only case that we could fit the replicated bits into our
923  // immediate field for would be zero, and we prefer to use vxor for it.
924  if (ValSizeInBytes < ByteSize) return SDValue();
925
926  // If the element value is larger than the splat value, cut it in half and
927  // check to see if the two halves are equal.  Continue doing this until we
928  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
929  while (ValSizeInBytes > ByteSize) {
930    ValSizeInBytes >>= 1;
931
932    // If the top half equals the bottom half, we're still ok.
933    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
934         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
935      return SDValue();
936  }
937
938  // Properly sign extend the value.
939  int MaskVal = SignExtend32(Value, ByteSize * 8);
940
941  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
942  if (MaskVal == 0) return SDValue();
943
944  // Finally, if this value fits in a 5 bit sext field, return it
945  if (SignExtend32<5>(MaskVal) == MaskVal)
946    return DAG.getTargetConstant(MaskVal, MVT::i32);
947  return SDValue();
948}
949
950//===----------------------------------------------------------------------===//
951//  Addressing Mode Selection
952//===----------------------------------------------------------------------===//
953
954/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
955/// or 64-bit immediate, and if the value can be accurately represented as a
956/// sign extension from a 16-bit value.  If so, this returns true and the
957/// immediate.
958static bool isIntS16Immediate(SDNode *N, short &Imm) {
959  if (N->getOpcode() != ISD::Constant)
960    return false;
961
962  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
963  if (N->getValueType(0) == MVT::i32)
964    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
965  else
966    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
967}
968static bool isIntS16Immediate(SDValue Op, short &Imm) {
969  return isIntS16Immediate(Op.getNode(), Imm);
970}
971
972
973/// SelectAddressRegReg - Given the specified addressed, check to see if it
974/// can be represented as an indexed [r+r] operation.  Returns false if it
975/// can be more efficiently represented with [r+imm].
976bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
977                                            SDValue &Index,
978                                            SelectionDAG &DAG) const {
979  short imm = 0;
980  if (N.getOpcode() == ISD::ADD) {
981    if (isIntS16Immediate(N.getOperand(1), imm))
982      return false;    // r+i
983    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
984      return false;    // r+i
985
986    Base = N.getOperand(0);
987    Index = N.getOperand(1);
988    return true;
989  } else if (N.getOpcode() == ISD::OR) {
990    if (isIntS16Immediate(N.getOperand(1), imm))
991      return false;    // r+i can fold it if we can.
992
993    // If this is an or of disjoint bitfields, we can codegen this as an add
994    // (for better address arithmetic) if the LHS and RHS of the OR are provably
995    // disjoint.
996    APInt LHSKnownZero, LHSKnownOne;
997    APInt RHSKnownZero, RHSKnownOne;
998    DAG.ComputeMaskedBits(N.getOperand(0),
999                          LHSKnownZero, LHSKnownOne);
1000
1001    if (LHSKnownZero.getBoolValue()) {
1002      DAG.ComputeMaskedBits(N.getOperand(1),
1003                            RHSKnownZero, RHSKnownOne);
1004      // If all of the bits are known zero on the LHS or RHS, the add won't
1005      // carry.
1006      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1007        Base = N.getOperand(0);
1008        Index = N.getOperand(1);
1009        return true;
1010      }
1011    }
1012  }
1013
1014  return false;
1015}
1016
1017/// Returns true if the address N can be represented by a base register plus
1018/// a signed 16-bit displacement [r+imm], and if it is not better
1019/// represented as reg+reg.
1020bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1021                                            SDValue &Base,
1022                                            SelectionDAG &DAG) const {
1023  // FIXME dl should come from parent load or store, not from address
1024  DebugLoc dl = N.getDebugLoc();
1025  // If this can be more profitably realized as r+r, fail.
1026  if (SelectAddressRegReg(N, Disp, Base, DAG))
1027    return false;
1028
1029  if (N.getOpcode() == ISD::ADD) {
1030    short imm = 0;
1031    if (isIntS16Immediate(N.getOperand(1), imm)) {
1032      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1033      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1034        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1035      } else {
1036        Base = N.getOperand(0);
1037      }
1038      return true; // [r+i]
1039    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1040      // Match LOAD (ADD (X, Lo(G))).
1041      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1042             && "Cannot handle constant offsets yet!");
1043      Disp = N.getOperand(1).getOperand(0);  // The global address.
1044      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1045             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1046             Disp.getOpcode() == ISD::TargetConstantPool ||
1047             Disp.getOpcode() == ISD::TargetJumpTable);
1048      Base = N.getOperand(0);
1049      return true;  // [&g+r]
1050    }
1051  } else if (N.getOpcode() == ISD::OR) {
1052    short imm = 0;
1053    if (isIntS16Immediate(N.getOperand(1), imm)) {
1054      // If this is an or of disjoint bitfields, we can codegen this as an add
1055      // (for better address arithmetic) if the LHS and RHS of the OR are
1056      // provably disjoint.
1057      APInt LHSKnownZero, LHSKnownOne;
1058      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1059
1060      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1061        // If all of the bits are known zero on the LHS or RHS, the add won't
1062        // carry.
1063        Base = N.getOperand(0);
1064        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1065        return true;
1066      }
1067    }
1068  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1069    // Loading from a constant address.
1070
1071    // If this address fits entirely in a 16-bit sext immediate field, codegen
1072    // this as "d, 0"
1073    short Imm;
1074    if (isIntS16Immediate(CN, Imm)) {
1075      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1076      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1077                             CN->getValueType(0));
1078      return true;
1079    }
1080
1081    // Handle 32-bit sext immediates with LIS + addr mode.
1082    if (CN->getValueType(0) == MVT::i32 ||
1083        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1084      int Addr = (int)CN->getZExtValue();
1085
1086      // Otherwise, break this down into an LIS + disp.
1087      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1088
1089      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1090      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1091      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1092      return true;
1093    }
1094  }
1095
1096  Disp = DAG.getTargetConstant(0, getPointerTy());
1097  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1098    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1099  else
1100    Base = N;
1101  return true;      // [r+0]
1102}
1103
1104/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1105/// represented as an indexed [r+r] operation.
1106bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1107                                                SDValue &Index,
1108                                                SelectionDAG &DAG) const {
1109  // Check to see if we can easily represent this as an [r+r] address.  This
1110  // will fail if it thinks that the address is more profitably represented as
1111  // reg+imm, e.g. where imm = 0.
1112  if (SelectAddressRegReg(N, Base, Index, DAG))
1113    return true;
1114
1115  // If the operand is an addition, always emit this as [r+r], since this is
1116  // better (for code size, and execution, as the memop does the add for free)
1117  // than emitting an explicit add.
1118  if (N.getOpcode() == ISD::ADD) {
1119    Base = N.getOperand(0);
1120    Index = N.getOperand(1);
1121    return true;
1122  }
1123
1124  // Otherwise, do it the hard way, using R0 as the base register.
1125  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1126                         N.getValueType());
1127  Index = N;
1128  return true;
1129}
1130
1131/// SelectAddressRegImmShift - Returns true if the address N can be
1132/// represented by a base register plus a signed 14-bit displacement
1133/// [r+imm*4].  Suitable for use by STD and friends.
1134bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1135                                                 SDValue &Base,
1136                                                 SelectionDAG &DAG) const {
1137  // FIXME dl should come from the parent load or store, not the address
1138  DebugLoc dl = N.getDebugLoc();
1139  // If this can be more profitably realized as r+r, fail.
1140  if (SelectAddressRegReg(N, Disp, Base, DAG))
1141    return false;
1142
1143  if (N.getOpcode() == ISD::ADD) {
1144    short imm = 0;
1145    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1146      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1147      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1148        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1149      } else {
1150        Base = N.getOperand(0);
1151      }
1152      return true; // [r+i]
1153    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1154      // Match LOAD (ADD (X, Lo(G))).
1155      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1156             && "Cannot handle constant offsets yet!");
1157      Disp = N.getOperand(1).getOperand(0);  // The global address.
1158      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1159             Disp.getOpcode() == ISD::TargetConstantPool ||
1160             Disp.getOpcode() == ISD::TargetJumpTable);
1161      Base = N.getOperand(0);
1162      return true;  // [&g+r]
1163    }
1164  } else if (N.getOpcode() == ISD::OR) {
1165    short imm = 0;
1166    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1167      // If this is an or of disjoint bitfields, we can codegen this as an add
1168      // (for better address arithmetic) if the LHS and RHS of the OR are
1169      // provably disjoint.
1170      APInt LHSKnownZero, LHSKnownOne;
1171      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1172      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1173        // If all of the bits are known zero on the LHS or RHS, the add won't
1174        // carry.
1175        Base = N.getOperand(0);
1176        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1177        return true;
1178      }
1179    }
1180  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1181    // Loading from a constant address.  Verify low two bits are clear.
1182    if ((CN->getZExtValue() & 3) == 0) {
1183      // If this address fits entirely in a 14-bit sext immediate field, codegen
1184      // this as "d, 0"
1185      short Imm;
1186      if (isIntS16Immediate(CN, Imm)) {
1187        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1188        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1189                               CN->getValueType(0));
1190        return true;
1191      }
1192
1193      // Fold the low-part of 32-bit absolute addresses into addr mode.
1194      if (CN->getValueType(0) == MVT::i32 ||
1195          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1196        int Addr = (int)CN->getZExtValue();
1197
1198        // Otherwise, break this down into an LIS + disp.
1199        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1200        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1201        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1202        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1203        return true;
1204      }
1205    }
1206  }
1207
1208  Disp = DAG.getTargetConstant(0, getPointerTy());
1209  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1210    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1211  else
1212    Base = N;
1213  return true;      // [r+0]
1214}
1215
1216
1217/// getPreIndexedAddressParts - returns true by value, base pointer and
1218/// offset pointer and addressing mode by reference if the node's address
1219/// can be legally represented as pre-indexed load / store address.
1220bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1221                                                  SDValue &Offset,
1222                                                  ISD::MemIndexedMode &AM,
1223                                                  SelectionDAG &DAG) const {
1224  if (DisablePPCPreinc) return false;
1225
1226  bool isLoad = true;
1227  SDValue Ptr;
1228  EVT VT;
1229  unsigned Alignment;
1230  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1231    Ptr = LD->getBasePtr();
1232    VT = LD->getMemoryVT();
1233    Alignment = LD->getAlignment();
1234  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1235    Ptr = ST->getBasePtr();
1236    VT  = ST->getMemoryVT();
1237    Alignment = ST->getAlignment();
1238    isLoad = false;
1239  } else
1240    return false;
1241
1242  // PowerPC doesn't have preinc load/store instructions for vectors.
1243  if (VT.isVector())
1244    return false;
1245
1246  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1247
1248    // Common code will reject creating a pre-inc form if the base pointer
1249    // is a frame index, or if N is a store and the base pointer is either
1250    // the same as or a predecessor of the value being stored.  Check for
1251    // those situations here, and try with swapped Base/Offset instead.
1252    bool Swap = false;
1253
1254    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1255      Swap = true;
1256    else if (!isLoad) {
1257      SDValue Val = cast<StoreSDNode>(N)->getValue();
1258      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1259        Swap = true;
1260    }
1261
1262    if (Swap)
1263      std::swap(Base, Offset);
1264
1265    AM = ISD::PRE_INC;
1266    return true;
1267  }
1268
1269  // LDU/STU use reg+imm*4, others use reg+imm.
1270  if (VT != MVT::i64) {
1271    // reg + imm
1272    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1273      return false;
1274  } else {
1275    // LDU/STU need an address with at least 4-byte alignment.
1276    if (Alignment < 4)
1277      return false;
1278
1279    // reg + imm * 4.
1280    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1281      return false;
1282  }
1283
1284  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1285    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1286    // sext i32 to i64 when addr mode is r+i.
1287    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1288        LD->getExtensionType() == ISD::SEXTLOAD &&
1289        isa<ConstantSDNode>(Offset))
1290      return false;
1291  }
1292
1293  AM = ISD::PRE_INC;
1294  return true;
1295}
1296
1297//===----------------------------------------------------------------------===//
1298//  LowerOperation implementation
1299//===----------------------------------------------------------------------===//
1300
1301/// GetLabelAccessInfo - Return true if we should reference labels using a
1302/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1303static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1304                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1305  HiOpFlags = PPCII::MO_HA16;
1306  LoOpFlags = PPCII::MO_LO16;
1307
1308  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1309  // non-darwin platform.  We don't support PIC on other platforms yet.
1310  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1311               TM.getSubtarget<PPCSubtarget>().isDarwin();
1312  if (isPIC) {
1313    HiOpFlags |= PPCII::MO_PIC_FLAG;
1314    LoOpFlags |= PPCII::MO_PIC_FLAG;
1315  }
1316
1317  // If this is a reference to a global value that requires a non-lazy-ptr, make
1318  // sure that instruction lowering adds it.
1319  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1320    HiOpFlags |= PPCII::MO_NLP_FLAG;
1321    LoOpFlags |= PPCII::MO_NLP_FLAG;
1322
1323    if (GV->hasHiddenVisibility()) {
1324      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1325      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1326    }
1327  }
1328
1329  return isPIC;
1330}
1331
1332static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1333                             SelectionDAG &DAG) {
1334  EVT PtrVT = HiPart.getValueType();
1335  SDValue Zero = DAG.getConstant(0, PtrVT);
1336  DebugLoc DL = HiPart.getDebugLoc();
1337
1338  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1339  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1340
1341  // With PIC, the first instruction is actually "GR+hi(&G)".
1342  if (isPIC)
1343    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1344                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1345
1346  // Generate non-pic code that has direct accesses to the constant pool.
1347  // The address of the global is just (hi(&g)+lo(&g)).
1348  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1349}
1350
1351SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1352                                             SelectionDAG &DAG) const {
1353  EVT PtrVT = Op.getValueType();
1354  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1355  const Constant *C = CP->getConstVal();
1356
1357  // 64-bit SVR4 ABI code is always position-independent.
1358  // The actual address of the GlobalValue is stored in the TOC.
1359  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1360    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1361    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1362                       DAG.getRegister(PPC::X2, MVT::i64));
1363  }
1364
1365  unsigned MOHiFlag, MOLoFlag;
1366  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1367  SDValue CPIHi =
1368    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1369  SDValue CPILo =
1370    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1371  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1372}
1373
1374SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1375  EVT PtrVT = Op.getValueType();
1376  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1377
1378  // 64-bit SVR4 ABI code is always position-independent.
1379  // The actual address of the GlobalValue is stored in the TOC.
1380  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1381    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1382    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1383                       DAG.getRegister(PPC::X2, MVT::i64));
1384  }
1385
1386  unsigned MOHiFlag, MOLoFlag;
1387  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1388  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1389  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1390  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1391}
1392
1393SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1394                                             SelectionDAG &DAG) const {
1395  EVT PtrVT = Op.getValueType();
1396
1397  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1398
1399  unsigned MOHiFlag, MOLoFlag;
1400  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1401  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1402  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1403  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1404}
1405
1406SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1407                                              SelectionDAG &DAG) const {
1408
1409  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1410  DebugLoc dl = GA->getDebugLoc();
1411  const GlobalValue *GV = GA->getGlobal();
1412  EVT PtrVT = getPointerTy();
1413  bool is64bit = PPCSubTarget.isPPC64();
1414
1415  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1416
1417  if (Model == TLSModel::LocalExec) {
1418    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1419                                               PPCII::MO_TPREL16_HA);
1420    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1421                                               PPCII::MO_TPREL16_LO);
1422    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1423                                     is64bit ? MVT::i64 : MVT::i32);
1424    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1425    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1426  }
1427
1428  if (!is64bit)
1429    llvm_unreachable("only local-exec is currently supported for ppc32");
1430
1431  if (Model == TLSModel::InitialExec) {
1432    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1433    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1434    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1435                                     PtrVT, GOTReg, TGA);
1436    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1437                                   PtrVT, TGA, TPOffsetHi);
1438    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1439  }
1440
1441  if (Model == TLSModel::GeneralDynamic) {
1442    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1443    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1444    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1445                                     GOTReg, TGA);
1446    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1447                                   GOTEntryHi, TGA);
1448
1449    // We need a chain node, and don't have one handy.  The underlying
1450    // call has no side effects, so using the function entry node
1451    // suffices.
1452    SDValue Chain = DAG.getEntryNode();
1453    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1454    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1455    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1456                                  PtrVT, ParmReg, TGA);
1457    // The return value from GET_TLS_ADDR really is in X3 already, but
1458    // some hacks are needed here to tie everything together.  The extra
1459    // copies dissolve during subsequent transforms.
1460    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1461    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1462  }
1463
1464  if (Model == TLSModel::LocalDynamic) {
1465    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1466    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1467    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1468                                     GOTReg, TGA);
1469    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1470                                   GOTEntryHi, TGA);
1471
1472    // We need a chain node, and don't have one handy.  The underlying
1473    // call has no side effects, so using the function entry node
1474    // suffices.
1475    SDValue Chain = DAG.getEntryNode();
1476    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1477    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1478    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1479                                  PtrVT, ParmReg, TGA);
1480    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1481    // some hacks are needed here to tie everything together.  The extra
1482    // copies dissolve during subsequent transforms.
1483    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1484    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1485                                      Chain, ParmReg, TGA);
1486    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1487  }
1488
1489  llvm_unreachable("Unknown TLS model!");
1490}
1491
1492SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1493                                              SelectionDAG &DAG) const {
1494  EVT PtrVT = Op.getValueType();
1495  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1496  DebugLoc DL = GSDN->getDebugLoc();
1497  const GlobalValue *GV = GSDN->getGlobal();
1498
1499  // 64-bit SVR4 ABI code is always position-independent.
1500  // The actual address of the GlobalValue is stored in the TOC.
1501  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1502    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1503    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1504                       DAG.getRegister(PPC::X2, MVT::i64));
1505  }
1506
1507  unsigned MOHiFlag, MOLoFlag;
1508  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1509
1510  SDValue GAHi =
1511    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1512  SDValue GALo =
1513    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1514
1515  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1516
1517  // If the global reference is actually to a non-lazy-pointer, we have to do an
1518  // extra load to get the address of the global.
1519  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1520    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1521                      false, false, false, 0);
1522  return Ptr;
1523}
1524
1525SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1526  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1527  DebugLoc dl = Op.getDebugLoc();
1528
1529  // If we're comparing for equality to zero, expose the fact that this is
1530  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1531  // fold the new nodes.
1532  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1533    if (C->isNullValue() && CC == ISD::SETEQ) {
1534      EVT VT = Op.getOperand(0).getValueType();
1535      SDValue Zext = Op.getOperand(0);
1536      if (VT.bitsLT(MVT::i32)) {
1537        VT = MVT::i32;
1538        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1539      }
1540      unsigned Log2b = Log2_32(VT.getSizeInBits());
1541      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1542      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1543                                DAG.getConstant(Log2b, MVT::i32));
1544      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1545    }
1546    // Leave comparisons against 0 and -1 alone for now, since they're usually
1547    // optimized.  FIXME: revisit this when we can custom lower all setcc
1548    // optimizations.
1549    if (C->isAllOnesValue() || C->isNullValue())
1550      return SDValue();
1551  }
1552
1553  // If we have an integer seteq/setne, turn it into a compare against zero
1554  // by xor'ing the rhs with the lhs, which is faster than setting a
1555  // condition register, reading it back out, and masking the correct bit.  The
1556  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1557  // the result to other bit-twiddling opportunities.
1558  EVT LHSVT = Op.getOperand(0).getValueType();
1559  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1560    EVT VT = Op.getValueType();
1561    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1562                                Op.getOperand(1));
1563    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1564  }
1565  return SDValue();
1566}
1567
1568SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1569                                      const PPCSubtarget &Subtarget) const {
1570  SDNode *Node = Op.getNode();
1571  EVT VT = Node->getValueType(0);
1572  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1573  SDValue InChain = Node->getOperand(0);
1574  SDValue VAListPtr = Node->getOperand(1);
1575  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1576  DebugLoc dl = Node->getDebugLoc();
1577
1578  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1579
1580  // gpr_index
1581  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1582                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1583                                    false, false, 0);
1584  InChain = GprIndex.getValue(1);
1585
1586  if (VT == MVT::i64) {
1587    // Check if GprIndex is even
1588    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1589                                 DAG.getConstant(1, MVT::i32));
1590    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1591                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1592    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1593                                          DAG.getConstant(1, MVT::i32));
1594    // Align GprIndex to be even if it isn't
1595    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1596                           GprIndex);
1597  }
1598
1599  // fpr index is 1 byte after gpr
1600  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1601                               DAG.getConstant(1, MVT::i32));
1602
1603  // fpr
1604  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1605                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1606                                    false, false, 0);
1607  InChain = FprIndex.getValue(1);
1608
1609  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1610                                       DAG.getConstant(8, MVT::i32));
1611
1612  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1613                                        DAG.getConstant(4, MVT::i32));
1614
1615  // areas
1616  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1617                                     MachinePointerInfo(), false, false,
1618                                     false, 0);
1619  InChain = OverflowArea.getValue(1);
1620
1621  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1622                                    MachinePointerInfo(), false, false,
1623                                    false, 0);
1624  InChain = RegSaveArea.getValue(1);
1625
1626  // select overflow_area if index > 8
1627  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1628                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1629
1630  // adjustment constant gpr_index * 4/8
1631  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1632                                    VT.isInteger() ? GprIndex : FprIndex,
1633                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1634                                                    MVT::i32));
1635
1636  // OurReg = RegSaveArea + RegConstant
1637  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1638                               RegConstant);
1639
1640  // Floating types are 32 bytes into RegSaveArea
1641  if (VT.isFloatingPoint())
1642    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1643                         DAG.getConstant(32, MVT::i32));
1644
1645  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1646  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1647                                   VT.isInteger() ? GprIndex : FprIndex,
1648                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1649                                                   MVT::i32));
1650
1651  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1652                              VT.isInteger() ? VAListPtr : FprPtr,
1653                              MachinePointerInfo(SV),
1654                              MVT::i8, false, false, 0);
1655
1656  // determine if we should load from reg_save_area or overflow_area
1657  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1658
1659  // increase overflow_area by 4/8 if gpr/fpr > 8
1660  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1661                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1662                                          MVT::i32));
1663
1664  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1665                             OverflowAreaPlusN);
1666
1667  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1668                              OverflowAreaPtr,
1669                              MachinePointerInfo(),
1670                              MVT::i32, false, false, 0);
1671
1672  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1673                     false, false, false, 0);
1674}
1675
1676SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1677                                                  SelectionDAG &DAG) const {
1678  return Op.getOperand(0);
1679}
1680
1681SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1682                                                SelectionDAG &DAG) const {
1683  SDValue Chain = Op.getOperand(0);
1684  SDValue Trmp = Op.getOperand(1); // trampoline
1685  SDValue FPtr = Op.getOperand(2); // nested function
1686  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1687  DebugLoc dl = Op.getDebugLoc();
1688
1689  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1690  bool isPPC64 = (PtrVT == MVT::i64);
1691  Type *IntPtrTy =
1692    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1693                                                             *DAG.getContext());
1694
1695  TargetLowering::ArgListTy Args;
1696  TargetLowering::ArgListEntry Entry;
1697
1698  Entry.Ty = IntPtrTy;
1699  Entry.Node = Trmp; Args.push_back(Entry);
1700
1701  // TrampSize == (isPPC64 ? 48 : 40);
1702  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1703                               isPPC64 ? MVT::i64 : MVT::i32);
1704  Args.push_back(Entry);
1705
1706  Entry.Node = FPtr; Args.push_back(Entry);
1707  Entry.Node = Nest; Args.push_back(Entry);
1708
1709  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1710  TargetLowering::CallLoweringInfo CLI(Chain,
1711                                       Type::getVoidTy(*DAG.getContext()),
1712                                       false, false, false, false, 0,
1713                                       CallingConv::C,
1714                /*isTailCall=*/false,
1715                                       /*doesNotRet=*/false,
1716                                       /*isReturnValueUsed=*/true,
1717                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1718                Args, DAG, dl);
1719  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1720
1721  return CallResult.second;
1722}
1723
1724SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1725                                        const PPCSubtarget &Subtarget) const {
1726  MachineFunction &MF = DAG.getMachineFunction();
1727  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1728
1729  DebugLoc dl = Op.getDebugLoc();
1730
1731  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1732    // vastart just stores the address of the VarArgsFrameIndex slot into the
1733    // memory location argument.
1734    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1735    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1736    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1737    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1738                        MachinePointerInfo(SV),
1739                        false, false, 0);
1740  }
1741
1742  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1743  // We suppose the given va_list is already allocated.
1744  //
1745  // typedef struct {
1746  //  char gpr;     /* index into the array of 8 GPRs
1747  //                 * stored in the register save area
1748  //                 * gpr=0 corresponds to r3,
1749  //                 * gpr=1 to r4, etc.
1750  //                 */
1751  //  char fpr;     /* index into the array of 8 FPRs
1752  //                 * stored in the register save area
1753  //                 * fpr=0 corresponds to f1,
1754  //                 * fpr=1 to f2, etc.
1755  //                 */
1756  //  char *overflow_arg_area;
1757  //                /* location on stack that holds
1758  //                 * the next overflow argument
1759  //                 */
1760  //  char *reg_save_area;
1761  //               /* where r3:r10 and f1:f8 (if saved)
1762  //                * are stored
1763  //                */
1764  // } va_list[1];
1765
1766
1767  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1768  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1769
1770
1771  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1772
1773  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1774                                            PtrVT);
1775  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1776                                 PtrVT);
1777
1778  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1779  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1780
1781  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1782  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1783
1784  uint64_t FPROffset = 1;
1785  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1786
1787  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1788
1789  // Store first byte : number of int regs
1790  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1791                                         Op.getOperand(1),
1792                                         MachinePointerInfo(SV),
1793                                         MVT::i8, false, false, 0);
1794  uint64_t nextOffset = FPROffset;
1795  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1796                                  ConstFPROffset);
1797
1798  // Store second byte : number of float regs
1799  SDValue secondStore =
1800    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1801                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1802                      false, false, 0);
1803  nextOffset += StackOffset;
1804  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1805
1806  // Store second word : arguments given on stack
1807  SDValue thirdStore =
1808    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1809                 MachinePointerInfo(SV, nextOffset),
1810                 false, false, 0);
1811  nextOffset += FrameOffset;
1812  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1813
1814  // Store third word : arguments given in registers
1815  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1816                      MachinePointerInfo(SV, nextOffset),
1817                      false, false, 0);
1818
1819}
1820
1821#include "PPCGenCallingConv.inc"
1822
1823static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1824                                       CCValAssign::LocInfo &LocInfo,
1825                                       ISD::ArgFlagsTy &ArgFlags,
1826                                       CCState &State) {
1827  return true;
1828}
1829
1830static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1831                                              MVT &LocVT,
1832                                              CCValAssign::LocInfo &LocInfo,
1833                                              ISD::ArgFlagsTy &ArgFlags,
1834                                              CCState &State) {
1835  static const uint16_t ArgRegs[] = {
1836    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1837    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1838  };
1839  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1840
1841  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1842
1843  // Skip one register if the first unallocated register has an even register
1844  // number and there are still argument registers available which have not been
1845  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1846  // need to skip a register if RegNum is odd.
1847  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1848    State.AllocateReg(ArgRegs[RegNum]);
1849  }
1850
1851  // Always return false here, as this function only makes sure that the first
1852  // unallocated register has an odd register number and does not actually
1853  // allocate a register for the current argument.
1854  return false;
1855}
1856
1857static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1858                                                MVT &LocVT,
1859                                                CCValAssign::LocInfo &LocInfo,
1860                                                ISD::ArgFlagsTy &ArgFlags,
1861                                                CCState &State) {
1862  static const uint16_t ArgRegs[] = {
1863    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1864    PPC::F8
1865  };
1866
1867  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1868
1869  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1870
1871  // If there is only one Floating-point register left we need to put both f64
1872  // values of a split ppc_fp128 value on the stack.
1873  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1874    State.AllocateReg(ArgRegs[RegNum]);
1875  }
1876
1877  // Always return false here, as this function only makes sure that the two f64
1878  // values a ppc_fp128 value is split into are both passed in registers or both
1879  // passed on the stack and does not actually allocate a register for the
1880  // current argument.
1881  return false;
1882}
1883
1884/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1885/// on Darwin.
1886static const uint16_t *GetFPR() {
1887  static const uint16_t FPR[] = {
1888    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1889    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1890  };
1891
1892  return FPR;
1893}
1894
1895/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1896/// the stack.
1897static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1898                                       unsigned PtrByteSize) {
1899  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1900  if (Flags.isByVal())
1901    ArgSize = Flags.getByValSize();
1902  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1903
1904  return ArgSize;
1905}
1906
1907SDValue
1908PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1909                                        CallingConv::ID CallConv, bool isVarArg,
1910                                        const SmallVectorImpl<ISD::InputArg>
1911                                          &Ins,
1912                                        DebugLoc dl, SelectionDAG &DAG,
1913                                        SmallVectorImpl<SDValue> &InVals)
1914                                          const {
1915  if (PPCSubTarget.isSVR4ABI()) {
1916    if (PPCSubTarget.isPPC64())
1917      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1918                                         dl, DAG, InVals);
1919    else
1920      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1921                                         dl, DAG, InVals);
1922  } else {
1923    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1924                                       dl, DAG, InVals);
1925  }
1926}
1927
1928SDValue
1929PPCTargetLowering::LowerFormalArguments_32SVR4(
1930                                      SDValue Chain,
1931                                      CallingConv::ID CallConv, bool isVarArg,
1932                                      const SmallVectorImpl<ISD::InputArg>
1933                                        &Ins,
1934                                      DebugLoc dl, SelectionDAG &DAG,
1935                                      SmallVectorImpl<SDValue> &InVals) const {
1936
1937  // 32-bit SVR4 ABI Stack Frame Layout:
1938  //              +-----------------------------------+
1939  //        +-->  |            Back chain             |
1940  //        |     +-----------------------------------+
1941  //        |     | Floating-point register save area |
1942  //        |     +-----------------------------------+
1943  //        |     |    General register save area     |
1944  //        |     +-----------------------------------+
1945  //        |     |          CR save word             |
1946  //        |     +-----------------------------------+
1947  //        |     |         VRSAVE save word          |
1948  //        |     +-----------------------------------+
1949  //        |     |         Alignment padding         |
1950  //        |     +-----------------------------------+
1951  //        |     |     Vector register save area     |
1952  //        |     +-----------------------------------+
1953  //        |     |       Local variable space        |
1954  //        |     +-----------------------------------+
1955  //        |     |        Parameter list area        |
1956  //        |     +-----------------------------------+
1957  //        |     |           LR save word            |
1958  //        |     +-----------------------------------+
1959  // SP-->  +---  |            Back chain             |
1960  //              +-----------------------------------+
1961  //
1962  // Specifications:
1963  //   System V Application Binary Interface PowerPC Processor Supplement
1964  //   AltiVec Technology Programming Interface Manual
1965
1966  MachineFunction &MF = DAG.getMachineFunction();
1967  MachineFrameInfo *MFI = MF.getFrameInfo();
1968  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1969
1970  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1971  // Potential tail calls could cause overwriting of argument stack slots.
1972  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1973                       (CallConv == CallingConv::Fast));
1974  unsigned PtrByteSize = 4;
1975
1976  // Assign locations to all of the incoming arguments.
1977  SmallVector<CCValAssign, 16> ArgLocs;
1978  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1979                 getTargetMachine(), ArgLocs, *DAG.getContext());
1980
1981  // Reserve space for the linkage area on the stack.
1982  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1983
1984  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1985
1986  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1987    CCValAssign &VA = ArgLocs[i];
1988
1989    // Arguments stored in registers.
1990    if (VA.isRegLoc()) {
1991      const TargetRegisterClass *RC;
1992      EVT ValVT = VA.getValVT();
1993
1994      switch (ValVT.getSimpleVT().SimpleTy) {
1995        default:
1996          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1997        case MVT::i32:
1998          RC = &PPC::GPRCRegClass;
1999          break;
2000        case MVT::f32:
2001          RC = &PPC::F4RCRegClass;
2002          break;
2003        case MVT::f64:
2004          RC = &PPC::F8RCRegClass;
2005          break;
2006        case MVT::v16i8:
2007        case MVT::v8i16:
2008        case MVT::v4i32:
2009        case MVT::v4f32:
2010          RC = &PPC::VRRCRegClass;
2011          break;
2012      }
2013
2014      // Transform the arguments stored in physical registers into virtual ones.
2015      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2016      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
2017
2018      InVals.push_back(ArgValue);
2019    } else {
2020      // Argument stored in memory.
2021      assert(VA.isMemLoc());
2022
2023      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
2024      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2025                                      isImmutable);
2026
2027      // Create load nodes to retrieve arguments from the stack.
2028      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2029      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2030                                   MachinePointerInfo(),
2031                                   false, false, false, 0));
2032    }
2033  }
2034
2035  // Assign locations to all of the incoming aggregate by value arguments.
2036  // Aggregates passed by value are stored in the local variable space of the
2037  // caller's stack frame, right above the parameter list area.
2038  SmallVector<CCValAssign, 16> ByValArgLocs;
2039  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2040                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2041
2042  // Reserve stack space for the allocations in CCInfo.
2043  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2044
2045  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2046
2047  // Area that is at least reserved in the caller of this function.
2048  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2049
2050  // Set the size that is at least reserved in caller of this function.  Tail
2051  // call optimized function's reserved stack space needs to be aligned so that
2052  // taking the difference between two stack areas will result in an aligned
2053  // stack.
2054  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2055
2056  MinReservedArea =
2057    std::max(MinReservedArea,
2058             PPCFrameLowering::getMinCallFrameSize(false, false));
2059
2060  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2061    getStackAlignment();
2062  unsigned AlignMask = TargetAlign-1;
2063  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2064
2065  FI->setMinReservedArea(MinReservedArea);
2066
2067  SmallVector<SDValue, 8> MemOps;
2068
2069  // If the function takes variable number of arguments, make a frame index for
2070  // the start of the first vararg value... for expansion of llvm.va_start.
2071  if (isVarArg) {
2072    static const uint16_t GPArgRegs[] = {
2073      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2074      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2075    };
2076    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2077
2078    static const uint16_t FPArgRegs[] = {
2079      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2080      PPC::F8
2081    };
2082    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2083
2084    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2085                                                          NumGPArgRegs));
2086    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2087                                                          NumFPArgRegs));
2088
2089    // Make room for NumGPArgRegs and NumFPArgRegs.
2090    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2091                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2092
2093    FuncInfo->setVarArgsStackOffset(
2094      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2095                             CCInfo.getNextStackOffset(), true));
2096
2097    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2098    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2099
2100    // The fixed integer arguments of a variadic function are stored to the
2101    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2102    // the result of va_next.
2103    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2104      // Get an existing live-in vreg, or add a new one.
2105      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2106      if (!VReg)
2107        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2108
2109      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2110      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2111                                   MachinePointerInfo(), false, false, 0);
2112      MemOps.push_back(Store);
2113      // Increment the address by four for the next argument to store
2114      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2115      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2116    }
2117
2118    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2119    // is set.
2120    // The double arguments are stored to the VarArgsFrameIndex
2121    // on the stack.
2122    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2123      // Get an existing live-in vreg, or add a new one.
2124      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2125      if (!VReg)
2126        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2127
2128      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2129      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2130                                   MachinePointerInfo(), false, false, 0);
2131      MemOps.push_back(Store);
2132      // Increment the address by eight for the next argument to store
2133      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2134                                         PtrVT);
2135      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2136    }
2137  }
2138
2139  if (!MemOps.empty())
2140    Chain = DAG.getNode(ISD::TokenFactor, dl,
2141                        MVT::Other, &MemOps[0], MemOps.size());
2142
2143  return Chain;
2144}
2145
2146// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2147// value to MVT::i64 and then truncate to the correct register size.
2148SDValue
2149PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2150                                     SelectionDAG &DAG, SDValue ArgVal,
2151                                     DebugLoc dl) const {
2152  if (Flags.isSExt())
2153    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2154                         DAG.getValueType(ObjectVT));
2155  else if (Flags.isZExt())
2156    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2157                         DAG.getValueType(ObjectVT));
2158
2159  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2160}
2161
2162// Set the size that is at least reserved in caller of this function.  Tail
2163// call optimized functions' reserved stack space needs to be aligned so that
2164// taking the difference between two stack areas will result in an aligned
2165// stack.
2166void
2167PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2168                                      unsigned nAltivecParamsAtEnd,
2169                                      unsigned MinReservedArea,
2170                                      bool isPPC64) const {
2171  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2172  // Add the Altivec parameters at the end, if needed.
2173  if (nAltivecParamsAtEnd) {
2174    MinReservedArea = ((MinReservedArea+15)/16)*16;
2175    MinReservedArea += 16*nAltivecParamsAtEnd;
2176  }
2177  MinReservedArea =
2178    std::max(MinReservedArea,
2179             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2180  unsigned TargetAlign
2181    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2182        getStackAlignment();
2183  unsigned AlignMask = TargetAlign-1;
2184  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2185  FI->setMinReservedArea(MinReservedArea);
2186}
2187
2188SDValue
2189PPCTargetLowering::LowerFormalArguments_64SVR4(
2190                                      SDValue Chain,
2191                                      CallingConv::ID CallConv, bool isVarArg,
2192                                      const SmallVectorImpl<ISD::InputArg>
2193                                        &Ins,
2194                                      DebugLoc dl, SelectionDAG &DAG,
2195                                      SmallVectorImpl<SDValue> &InVals) const {
2196  // TODO: add description of PPC stack frame format, or at least some docs.
2197  //
2198  MachineFunction &MF = DAG.getMachineFunction();
2199  MachineFrameInfo *MFI = MF.getFrameInfo();
2200  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2201
2202  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2203  // Potential tail calls could cause overwriting of argument stack slots.
2204  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2205                       (CallConv == CallingConv::Fast));
2206  unsigned PtrByteSize = 8;
2207
2208  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2209  // Area that is at least reserved in caller of this function.
2210  unsigned MinReservedArea = ArgOffset;
2211
2212  static const uint16_t GPR[] = {
2213    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2214    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2215  };
2216
2217  static const uint16_t *FPR = GetFPR();
2218
2219  static const uint16_t VR[] = {
2220    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2221    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2222  };
2223
2224  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2225  const unsigned Num_FPR_Regs = 13;
2226  const unsigned Num_VR_Regs  = array_lengthof(VR);
2227
2228  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2229
2230  // Add DAG nodes to load the arguments or copy them out of registers.  On
2231  // entry to a function on PPC, the arguments start after the linkage area,
2232  // although the first ones are often in registers.
2233
2234  SmallVector<SDValue, 8> MemOps;
2235  unsigned nAltivecParamsAtEnd = 0;
2236  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2237  unsigned CurArgIdx = 0;
2238  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2239    SDValue ArgVal;
2240    bool needsLoad = false;
2241    EVT ObjectVT = Ins[ArgNo].VT;
2242    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2243    unsigned ArgSize = ObjSize;
2244    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2245    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2246    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2247
2248    unsigned CurArgOffset = ArgOffset;
2249
2250    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2251    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2252        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2253      if (isVarArg) {
2254        MinReservedArea = ((MinReservedArea+15)/16)*16;
2255        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2256                                                  Flags,
2257                                                  PtrByteSize);
2258      } else
2259        nAltivecParamsAtEnd++;
2260    } else
2261      // Calculate min reserved area.
2262      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2263                                                Flags,
2264                                                PtrByteSize);
2265
2266    // FIXME the codegen can be much improved in some cases.
2267    // We do not have to keep everything in memory.
2268    if (Flags.isByVal()) {
2269      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2270      ObjSize = Flags.getByValSize();
2271      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2272      // Empty aggregate parameters do not take up registers.  Examples:
2273      //   struct { } a;
2274      //   union  { } b;
2275      //   int c[0];
2276      // etc.  However, we have to provide a place-holder in InVals, so
2277      // pretend we have an 8-byte item at the current address for that
2278      // purpose.
2279      if (!ObjSize) {
2280        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2281        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2282        InVals.push_back(FIN);
2283        continue;
2284      }
2285      // All aggregates smaller than 8 bytes must be passed right-justified.
2286      if (ObjSize < PtrByteSize)
2287        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2288      // The value of the object is its address.
2289      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2290      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2291      InVals.push_back(FIN);
2292
2293      if (ObjSize < 8) {
2294        if (GPR_idx != Num_GPR_Regs) {
2295          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2296          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2297          SDValue Store;
2298
2299          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2300            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2301                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2302            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2303                                      MachinePointerInfo(FuncArg, CurArgOffset),
2304                                      ObjType, false, false, 0);
2305          } else {
2306            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2307            // store the whole register as-is to the parameter save area
2308            // slot.  The address of the parameter was already calculated
2309            // above (InVals.push_back(FIN)) to be the right-justified
2310            // offset within the slot.  For this store, we need a new
2311            // frame index that points at the beginning of the slot.
2312            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2313            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2314            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2315                                 MachinePointerInfo(FuncArg, ArgOffset),
2316                                 false, false, 0);
2317          }
2318
2319          MemOps.push_back(Store);
2320          ++GPR_idx;
2321        }
2322        // Whether we copied from a register or not, advance the offset
2323        // into the parameter save area by a full doubleword.
2324        ArgOffset += PtrByteSize;
2325        continue;
2326      }
2327
2328      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2329        // Store whatever pieces of the object are in registers
2330        // to memory.  ArgOffset will be the address of the beginning
2331        // of the object.
2332        if (GPR_idx != Num_GPR_Regs) {
2333          unsigned VReg;
2334          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2335          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2336          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2337          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2338          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2339                                       MachinePointerInfo(FuncArg, ArgOffset),
2340                                       false, false, 0);
2341          MemOps.push_back(Store);
2342          ++GPR_idx;
2343          ArgOffset += PtrByteSize;
2344        } else {
2345          ArgOffset += ArgSize - j;
2346          break;
2347        }
2348      }
2349      continue;
2350    }
2351
2352    switch (ObjectVT.getSimpleVT().SimpleTy) {
2353    default: llvm_unreachable("Unhandled argument type!");
2354    case MVT::i32:
2355    case MVT::i64:
2356      if (GPR_idx != Num_GPR_Regs) {
2357        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2358        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2359
2360        if (ObjectVT == MVT::i32)
2361          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2362          // value to MVT::i64 and then truncate to the correct register size.
2363          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2364
2365        ++GPR_idx;
2366      } else {
2367        needsLoad = true;
2368        ArgSize = PtrByteSize;
2369      }
2370      ArgOffset += 8;
2371      break;
2372
2373    case MVT::f32:
2374    case MVT::f64:
2375      // Every 8 bytes of argument space consumes one of the GPRs available for
2376      // argument passing.
2377      if (GPR_idx != Num_GPR_Regs) {
2378        ++GPR_idx;
2379      }
2380      if (FPR_idx != Num_FPR_Regs) {
2381        unsigned VReg;
2382
2383        if (ObjectVT == MVT::f32)
2384          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2385        else
2386          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2387
2388        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2389        ++FPR_idx;
2390      } else {
2391        needsLoad = true;
2392        ArgSize = PtrByteSize;
2393      }
2394
2395      ArgOffset += 8;
2396      break;
2397    case MVT::v4f32:
2398    case MVT::v4i32:
2399    case MVT::v8i16:
2400    case MVT::v16i8:
2401      // Note that vector arguments in registers don't reserve stack space,
2402      // except in varargs functions.
2403      if (VR_idx != Num_VR_Regs) {
2404        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2405        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2406        if (isVarArg) {
2407          while ((ArgOffset % 16) != 0) {
2408            ArgOffset += PtrByteSize;
2409            if (GPR_idx != Num_GPR_Regs)
2410              GPR_idx++;
2411          }
2412          ArgOffset += 16;
2413          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2414        }
2415        ++VR_idx;
2416      } else {
2417        // Vectors are aligned.
2418        ArgOffset = ((ArgOffset+15)/16)*16;
2419        CurArgOffset = ArgOffset;
2420        ArgOffset += 16;
2421        needsLoad = true;
2422      }
2423      break;
2424    }
2425
2426    // We need to load the argument to a virtual register if we determined
2427    // above that we ran out of physical registers of the appropriate type.
2428    if (needsLoad) {
2429      int FI = MFI->CreateFixedObject(ObjSize,
2430                                      CurArgOffset + (ArgSize - ObjSize),
2431                                      isImmutable);
2432      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2433      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2434                           false, false, false, 0);
2435    }
2436
2437    InVals.push_back(ArgVal);
2438  }
2439
2440  // Set the size that is at least reserved in caller of this function.  Tail
2441  // call optimized functions' reserved stack space needs to be aligned so that
2442  // taking the difference between two stack areas will result in an aligned
2443  // stack.
2444  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2445
2446  // If the function takes variable number of arguments, make a frame index for
2447  // the start of the first vararg value... for expansion of llvm.va_start.
2448  if (isVarArg) {
2449    int Depth = ArgOffset;
2450
2451    FuncInfo->setVarArgsFrameIndex(
2452      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2453    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2454
2455    // If this function is vararg, store any remaining integer argument regs
2456    // to their spots on the stack so that they may be loaded by deferencing the
2457    // result of va_next.
2458    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2459      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2460      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2461      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2462                                   MachinePointerInfo(), false, false, 0);
2463      MemOps.push_back(Store);
2464      // Increment the address by four for the next argument to store
2465      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2466      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2467    }
2468  }
2469
2470  if (!MemOps.empty())
2471    Chain = DAG.getNode(ISD::TokenFactor, dl,
2472                        MVT::Other, &MemOps[0], MemOps.size());
2473
2474  return Chain;
2475}
2476
2477SDValue
2478PPCTargetLowering::LowerFormalArguments_Darwin(
2479                                      SDValue Chain,
2480                                      CallingConv::ID CallConv, bool isVarArg,
2481                                      const SmallVectorImpl<ISD::InputArg>
2482                                        &Ins,
2483                                      DebugLoc dl, SelectionDAG &DAG,
2484                                      SmallVectorImpl<SDValue> &InVals) const {
2485  // TODO: add description of PPC stack frame format, or at least some docs.
2486  //
2487  MachineFunction &MF = DAG.getMachineFunction();
2488  MachineFrameInfo *MFI = MF.getFrameInfo();
2489  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2490
2491  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2492  bool isPPC64 = PtrVT == MVT::i64;
2493  // Potential tail calls could cause overwriting of argument stack slots.
2494  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2495                       (CallConv == CallingConv::Fast));
2496  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2497
2498  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2499  // Area that is at least reserved in caller of this function.
2500  unsigned MinReservedArea = ArgOffset;
2501
2502  static const uint16_t GPR_32[] = {           // 32-bit registers.
2503    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2504    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2505  };
2506  static const uint16_t GPR_64[] = {           // 64-bit registers.
2507    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2508    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2509  };
2510
2511  static const uint16_t *FPR = GetFPR();
2512
2513  static const uint16_t VR[] = {
2514    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2515    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2516  };
2517
2518  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2519  const unsigned Num_FPR_Regs = 13;
2520  const unsigned Num_VR_Regs  = array_lengthof( VR);
2521
2522  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2523
2524  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2525
2526  // In 32-bit non-varargs functions, the stack space for vectors is after the
2527  // stack space for non-vectors.  We do not use this space unless we have
2528  // too many vectors to fit in registers, something that only occurs in
2529  // constructed examples:), but we have to walk the arglist to figure
2530  // that out...for the pathological case, compute VecArgOffset as the
2531  // start of the vector parameter area.  Computing VecArgOffset is the
2532  // entire point of the following loop.
2533  unsigned VecArgOffset = ArgOffset;
2534  if (!isVarArg && !isPPC64) {
2535    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2536         ++ArgNo) {
2537      EVT ObjectVT = Ins[ArgNo].VT;
2538      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2539
2540      if (Flags.isByVal()) {
2541        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2542        unsigned ObjSize = Flags.getByValSize();
2543        unsigned ArgSize =
2544                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2545        VecArgOffset += ArgSize;
2546        continue;
2547      }
2548
2549      switch(ObjectVT.getSimpleVT().SimpleTy) {
2550      default: llvm_unreachable("Unhandled argument type!");
2551      case MVT::i32:
2552      case MVT::f32:
2553        VecArgOffset += 4;
2554        break;
2555      case MVT::i64:  // PPC64
2556      case MVT::f64:
2557        // FIXME: We are guaranteed to be !isPPC64 at this point.
2558        // Does MVT::i64 apply?
2559        VecArgOffset += 8;
2560        break;
2561      case MVT::v4f32:
2562      case MVT::v4i32:
2563      case MVT::v8i16:
2564      case MVT::v16i8:
2565        // Nothing to do, we're only looking at Nonvector args here.
2566        break;
2567      }
2568    }
2569  }
2570  // We've found where the vector parameter area in memory is.  Skip the
2571  // first 12 parameters; these don't use that memory.
2572  VecArgOffset = ((VecArgOffset+15)/16)*16;
2573  VecArgOffset += 12*16;
2574
2575  // Add DAG nodes to load the arguments or copy them out of registers.  On
2576  // entry to a function on PPC, the arguments start after the linkage area,
2577  // although the first ones are often in registers.
2578
2579  SmallVector<SDValue, 8> MemOps;
2580  unsigned nAltivecParamsAtEnd = 0;
2581  // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
2582  // When passing anonymous aggregates, this is currently not true.
2583  // See LowerFormalArguments_64SVR4 for a fix.
2584  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2585  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2586    SDValue ArgVal;
2587    bool needsLoad = false;
2588    EVT ObjectVT = Ins[ArgNo].VT;
2589    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2590    unsigned ArgSize = ObjSize;
2591    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2592
2593    unsigned CurArgOffset = ArgOffset;
2594
2595    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2596    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2597        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2598      if (isVarArg || isPPC64) {
2599        MinReservedArea = ((MinReservedArea+15)/16)*16;
2600        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2601                                                  Flags,
2602                                                  PtrByteSize);
2603      } else  nAltivecParamsAtEnd++;
2604    } else
2605      // Calculate min reserved area.
2606      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2607                                                Flags,
2608                                                PtrByteSize);
2609
2610    // FIXME the codegen can be much improved in some cases.
2611    // We do not have to keep everything in memory.
2612    if (Flags.isByVal()) {
2613      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2614      ObjSize = Flags.getByValSize();
2615      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2616      // Objects of size 1 and 2 are right justified, everything else is
2617      // left justified.  This means the memory address is adjusted forwards.
2618      if (ObjSize==1 || ObjSize==2) {
2619        CurArgOffset = CurArgOffset + (4 - ObjSize);
2620      }
2621      // The value of the object is its address.
2622      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2623      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2624      InVals.push_back(FIN);
2625      if (ObjSize==1 || ObjSize==2) {
2626        if (GPR_idx != Num_GPR_Regs) {
2627          unsigned VReg;
2628          if (isPPC64)
2629            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2630          else
2631            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2632          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2633          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2634          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2635                                            MachinePointerInfo(FuncArg,
2636                                              CurArgOffset),
2637                                            ObjType, false, false, 0);
2638          MemOps.push_back(Store);
2639          ++GPR_idx;
2640        }
2641
2642        ArgOffset += PtrByteSize;
2643
2644        continue;
2645      }
2646      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2647        // Store whatever pieces of the object are in registers
2648        // to memory.  ArgOffset will be the address of the beginning
2649        // of the object.
2650        if (GPR_idx != Num_GPR_Regs) {
2651          unsigned VReg;
2652          if (isPPC64)
2653            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2654          else
2655            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2656          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2657          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2658          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2659          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2660                                       MachinePointerInfo(FuncArg, ArgOffset),
2661                                       false, false, 0);
2662          MemOps.push_back(Store);
2663          ++GPR_idx;
2664          ArgOffset += PtrByteSize;
2665        } else {
2666          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2667          break;
2668        }
2669      }
2670      continue;
2671    }
2672
2673    switch (ObjectVT.getSimpleVT().SimpleTy) {
2674    default: llvm_unreachable("Unhandled argument type!");
2675    case MVT::i32:
2676      if (!isPPC64) {
2677        if (GPR_idx != Num_GPR_Regs) {
2678          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2679          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2680          ++GPR_idx;
2681        } else {
2682          needsLoad = true;
2683          ArgSize = PtrByteSize;
2684        }
2685        // All int arguments reserve stack space in the Darwin ABI.
2686        ArgOffset += PtrByteSize;
2687        break;
2688      }
2689      // FALLTHROUGH
2690    case MVT::i64:  // PPC64
2691      if (GPR_idx != Num_GPR_Regs) {
2692        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2693        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2694
2695        if (ObjectVT == MVT::i32)
2696          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2697          // value to MVT::i64 and then truncate to the correct register size.
2698          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2699
2700        ++GPR_idx;
2701      } else {
2702        needsLoad = true;
2703        ArgSize = PtrByteSize;
2704      }
2705      // All int arguments reserve stack space in the Darwin ABI.
2706      ArgOffset += 8;
2707      break;
2708
2709    case MVT::f32:
2710    case MVT::f64:
2711      // Every 4 bytes of argument space consumes one of the GPRs available for
2712      // argument passing.
2713      if (GPR_idx != Num_GPR_Regs) {
2714        ++GPR_idx;
2715        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2716          ++GPR_idx;
2717      }
2718      if (FPR_idx != Num_FPR_Regs) {
2719        unsigned VReg;
2720
2721        if (ObjectVT == MVT::f32)
2722          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2723        else
2724          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2725
2726        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2727        ++FPR_idx;
2728      } else {
2729        needsLoad = true;
2730      }
2731
2732      // All FP arguments reserve stack space in the Darwin ABI.
2733      ArgOffset += isPPC64 ? 8 : ObjSize;
2734      break;
2735    case MVT::v4f32:
2736    case MVT::v4i32:
2737    case MVT::v8i16:
2738    case MVT::v16i8:
2739      // Note that vector arguments in registers don't reserve stack space,
2740      // except in varargs functions.
2741      if (VR_idx != Num_VR_Regs) {
2742        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2743        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2744        if (isVarArg) {
2745          while ((ArgOffset % 16) != 0) {
2746            ArgOffset += PtrByteSize;
2747            if (GPR_idx != Num_GPR_Regs)
2748              GPR_idx++;
2749          }
2750          ArgOffset += 16;
2751          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2752        }
2753        ++VR_idx;
2754      } else {
2755        if (!isVarArg && !isPPC64) {
2756          // Vectors go after all the nonvectors.
2757          CurArgOffset = VecArgOffset;
2758          VecArgOffset += 16;
2759        } else {
2760          // Vectors are aligned.
2761          ArgOffset = ((ArgOffset+15)/16)*16;
2762          CurArgOffset = ArgOffset;
2763          ArgOffset += 16;
2764        }
2765        needsLoad = true;
2766      }
2767      break;
2768    }
2769
2770    // We need to load the argument to a virtual register if we determined above
2771    // that we ran out of physical registers of the appropriate type.
2772    if (needsLoad) {
2773      int FI = MFI->CreateFixedObject(ObjSize,
2774                                      CurArgOffset + (ArgSize - ObjSize),
2775                                      isImmutable);
2776      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2777      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2778                           false, false, false, 0);
2779    }
2780
2781    InVals.push_back(ArgVal);
2782  }
2783
2784  // Set the size that is at least reserved in caller of this function.  Tail
2785  // call optimized functions' reserved stack space needs to be aligned so that
2786  // taking the difference between two stack areas will result in an aligned
2787  // stack.
2788  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2789
2790  // If the function takes variable number of arguments, make a frame index for
2791  // the start of the first vararg value... for expansion of llvm.va_start.
2792  if (isVarArg) {
2793    int Depth = ArgOffset;
2794
2795    FuncInfo->setVarArgsFrameIndex(
2796      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2797                             Depth, true));
2798    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2799
2800    // If this function is vararg, store any remaining integer argument regs
2801    // to their spots on the stack so that they may be loaded by deferencing the
2802    // result of va_next.
2803    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2804      unsigned VReg;
2805
2806      if (isPPC64)
2807        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2808      else
2809        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2810
2811      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2812      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2813                                   MachinePointerInfo(), false, false, 0);
2814      MemOps.push_back(Store);
2815      // Increment the address by four for the next argument to store
2816      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2817      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2818    }
2819  }
2820
2821  if (!MemOps.empty())
2822    Chain = DAG.getNode(ISD::TokenFactor, dl,
2823                        MVT::Other, &MemOps[0], MemOps.size());
2824
2825  return Chain;
2826}
2827
2828/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2829/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2830static unsigned
2831CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2832                                     bool isPPC64,
2833                                     bool isVarArg,
2834                                     unsigned CC,
2835                                     const SmallVectorImpl<ISD::OutputArg>
2836                                       &Outs,
2837                                     const SmallVectorImpl<SDValue> &OutVals,
2838                                     unsigned &nAltivecParamsAtEnd) {
2839  // Count how many bytes are to be pushed on the stack, including the linkage
2840  // area, and parameter passing area.  We start with 24/48 bytes, which is
2841  // prereserved space for [SP][CR][LR][3 x unused].
2842  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2843  unsigned NumOps = Outs.size();
2844  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2845
2846  // Add up all the space actually used.
2847  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2848  // they all go in registers, but we must reserve stack space for them for
2849  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2850  // assigned stack space in order, with padding so Altivec parameters are
2851  // 16-byte aligned.
2852  nAltivecParamsAtEnd = 0;
2853  for (unsigned i = 0; i != NumOps; ++i) {
2854    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2855    EVT ArgVT = Outs[i].VT;
2856    // Varargs Altivec parameters are padded to a 16 byte boundary.
2857    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2858        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2859      if (!isVarArg && !isPPC64) {
2860        // Non-varargs Altivec parameters go after all the non-Altivec
2861        // parameters; handle those later so we know how much padding we need.
2862        nAltivecParamsAtEnd++;
2863        continue;
2864      }
2865      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2866      NumBytes = ((NumBytes+15)/16)*16;
2867    }
2868    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2869  }
2870
2871   // Allow for Altivec parameters at the end, if needed.
2872  if (nAltivecParamsAtEnd) {
2873    NumBytes = ((NumBytes+15)/16)*16;
2874    NumBytes += 16*nAltivecParamsAtEnd;
2875  }
2876
2877  // The prolog code of the callee may store up to 8 GPR argument registers to
2878  // the stack, allowing va_start to index over them in memory if its varargs.
2879  // Because we cannot tell if this is needed on the caller side, we have to
2880  // conservatively assume that it is needed.  As such, make sure we have at
2881  // least enough stack space for the caller to store the 8 GPRs.
2882  NumBytes = std::max(NumBytes,
2883                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2884
2885  // Tail call needs the stack to be aligned.
2886  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2887    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2888      getFrameLowering()->getStackAlignment();
2889    unsigned AlignMask = TargetAlign-1;
2890    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2891  }
2892
2893  return NumBytes;
2894}
2895
2896/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2897/// adjusted to accommodate the arguments for the tailcall.
2898static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2899                                   unsigned ParamSize) {
2900
2901  if (!isTailCall) return 0;
2902
2903  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2904  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2905  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2906  // Remember only if the new adjustement is bigger.
2907  if (SPDiff < FI->getTailCallSPDelta())
2908    FI->setTailCallSPDelta(SPDiff);
2909
2910  return SPDiff;
2911}
2912
2913/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2914/// for tail call optimization. Targets which want to do tail call
2915/// optimization should implement this function.
2916bool
2917PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2918                                                     CallingConv::ID CalleeCC,
2919                                                     bool isVarArg,
2920                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2921                                                     SelectionDAG& DAG) const {
2922  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2923    return false;
2924
2925  // Variable argument functions are not supported.
2926  if (isVarArg)
2927    return false;
2928
2929  MachineFunction &MF = DAG.getMachineFunction();
2930  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2931  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2932    // Functions containing by val parameters are not supported.
2933    for (unsigned i = 0; i != Ins.size(); i++) {
2934       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2935       if (Flags.isByVal()) return false;
2936    }
2937
2938    // Non PIC/GOT  tail calls are supported.
2939    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2940      return true;
2941
2942    // At the moment we can only do local tail calls (in same module, hidden
2943    // or protected) if we are generating PIC.
2944    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2945      return G->getGlobal()->hasHiddenVisibility()
2946          || G->getGlobal()->hasProtectedVisibility();
2947  }
2948
2949  return false;
2950}
2951
2952/// isCallCompatibleAddress - Return the immediate to use if the specified
2953/// 32-bit value is representable in the immediate field of a BxA instruction.
2954static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2955  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2956  if (!C) return 0;
2957
2958  int Addr = C->getZExtValue();
2959  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2960      SignExtend32<26>(Addr) != Addr)
2961    return 0;  // Top 6 bits have to be sext of immediate.
2962
2963  return DAG.getConstant((int)C->getZExtValue() >> 2,
2964                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2965}
2966
2967namespace {
2968
2969struct TailCallArgumentInfo {
2970  SDValue Arg;
2971  SDValue FrameIdxOp;
2972  int       FrameIdx;
2973
2974  TailCallArgumentInfo() : FrameIdx(0) {}
2975};
2976
2977}
2978
2979/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2980static void
2981StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2982                                           SDValue Chain,
2983                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2984                   SmallVector<SDValue, 8> &MemOpChains,
2985                   DebugLoc dl) {
2986  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2987    SDValue Arg = TailCallArgs[i].Arg;
2988    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2989    int FI = TailCallArgs[i].FrameIdx;
2990    // Store relative to framepointer.
2991    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2992                                       MachinePointerInfo::getFixedStack(FI),
2993                                       false, false, 0));
2994  }
2995}
2996
2997/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2998/// the appropriate stack slot for the tail call optimized function call.
2999static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3000                                               MachineFunction &MF,
3001                                               SDValue Chain,
3002                                               SDValue OldRetAddr,
3003                                               SDValue OldFP,
3004                                               int SPDiff,
3005                                               bool isPPC64,
3006                                               bool isDarwinABI,
3007                                               DebugLoc dl) {
3008  if (SPDiff) {
3009    // Calculate the new stack slot for the return address.
3010    int SlotSize = isPPC64 ? 8 : 4;
3011    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3012                                                                   isDarwinABI);
3013    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3014                                                          NewRetAddrLoc, true);
3015    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3016    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3017    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3018                         MachinePointerInfo::getFixedStack(NewRetAddr),
3019                         false, false, 0);
3020
3021    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3022    // slot as the FP is never overwritten.
3023    if (isDarwinABI) {
3024      int NewFPLoc =
3025        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3026      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3027                                                          true);
3028      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3029      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3030                           MachinePointerInfo::getFixedStack(NewFPIdx),
3031                           false, false, 0);
3032    }
3033  }
3034  return Chain;
3035}
3036
3037/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3038/// the position of the argument.
3039static void
3040CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3041                         SDValue Arg, int SPDiff, unsigned ArgOffset,
3042                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
3043  int Offset = ArgOffset + SPDiff;
3044  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3045  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3046  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3047  SDValue FIN = DAG.getFrameIndex(FI, VT);
3048  TailCallArgumentInfo Info;
3049  Info.Arg = Arg;
3050  Info.FrameIdxOp = FIN;
3051  Info.FrameIdx = FI;
3052  TailCallArguments.push_back(Info);
3053}
3054
3055/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3056/// stack slot. Returns the chain as result and the loaded frame pointers in
3057/// LROpOut/FPOpout. Used when tail calling.
3058SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3059                                                        int SPDiff,
3060                                                        SDValue Chain,
3061                                                        SDValue &LROpOut,
3062                                                        SDValue &FPOpOut,
3063                                                        bool isDarwinABI,
3064                                                        DebugLoc dl) const {
3065  if (SPDiff) {
3066    // Load the LR and FP stack slot for later adjusting.
3067    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3068    LROpOut = getReturnAddrFrameIndex(DAG);
3069    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3070                          false, false, false, 0);
3071    Chain = SDValue(LROpOut.getNode(), 1);
3072
3073    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3074    // slot as the FP is never overwritten.
3075    if (isDarwinABI) {
3076      FPOpOut = getFramePointerFrameIndex(DAG);
3077      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3078                            false, false, false, 0);
3079      Chain = SDValue(FPOpOut.getNode(), 1);
3080    }
3081  }
3082  return Chain;
3083}
3084
3085/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3086/// by "Src" to address "Dst" of size "Size".  Alignment information is
3087/// specified by the specific parameter attribute. The copy will be passed as
3088/// a byval function parameter.
3089/// Sometimes what we are copying is the end of a larger object, the part that
3090/// does not fit in registers.
3091static SDValue
3092CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3093                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3094                          DebugLoc dl) {
3095  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3096  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3097                       false, false, MachinePointerInfo(0),
3098                       MachinePointerInfo(0));
3099}
3100
3101/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3102/// tail calls.
3103static void
3104LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3105                 SDValue Arg, SDValue PtrOff, int SPDiff,
3106                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3107                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3108                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3109                 DebugLoc dl) {
3110  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3111  if (!isTailCall) {
3112    if (isVector) {
3113      SDValue StackPtr;
3114      if (isPPC64)
3115        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3116      else
3117        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3118      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3119                           DAG.getConstant(ArgOffset, PtrVT));
3120    }
3121    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3122                                       MachinePointerInfo(), false, false, 0));
3123  // Calculate and remember argument location.
3124  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3125                                  TailCallArguments);
3126}
3127
3128static
3129void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3130                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3131                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3132                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3133  MachineFunction &MF = DAG.getMachineFunction();
3134
3135  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3136  // might overwrite each other in case of tail call optimization.
3137  SmallVector<SDValue, 8> MemOpChains2;
3138  // Do not flag preceding copytoreg stuff together with the following stuff.
3139  InFlag = SDValue();
3140  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3141                                    MemOpChains2, dl);
3142  if (!MemOpChains2.empty())
3143    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3144                        &MemOpChains2[0], MemOpChains2.size());
3145
3146  // Store the return address to the appropriate stack slot.
3147  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3148                                        isPPC64, isDarwinABI, dl);
3149
3150  // Emit callseq_end just before tailcall node.
3151  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3152                             DAG.getIntPtrConstant(0, true), InFlag);
3153  InFlag = Chain.getValue(1);
3154}
3155
3156static
3157unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3158                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3159                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3160                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3161                     const PPCSubtarget &PPCSubTarget) {
3162
3163  bool isPPC64 = PPCSubTarget.isPPC64();
3164  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3165
3166  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3167  NodeTys.push_back(MVT::Other);   // Returns a chain
3168  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3169
3170  unsigned CallOpc = PPCISD::CALL;
3171
3172  bool needIndirectCall = true;
3173  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3174    // If this is an absolute destination address, use the munged value.
3175    Callee = SDValue(Dest, 0);
3176    needIndirectCall = false;
3177  }
3178
3179  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3180    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3181    // Use indirect calls for ALL functions calls in JIT mode, since the
3182    // far-call stubs may be outside relocation limits for a BL instruction.
3183    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3184      unsigned OpFlags = 0;
3185      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3186          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3187           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3188          (G->getGlobal()->isDeclaration() ||
3189           G->getGlobal()->isWeakForLinker())) {
3190        // PC-relative references to external symbols should go through $stub,
3191        // unless we're building with the leopard linker or later, which
3192        // automatically synthesizes these stubs.
3193        OpFlags = PPCII::MO_DARWIN_STUB;
3194      }
3195
3196      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3197      // every direct call is) turn it into a TargetGlobalAddress /
3198      // TargetExternalSymbol node so that legalize doesn't hack it.
3199      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3200                                          Callee.getValueType(),
3201                                          0, OpFlags);
3202      needIndirectCall = false;
3203    }
3204  }
3205
3206  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3207    unsigned char OpFlags = 0;
3208
3209    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3210        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3211         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3212      // PC-relative references to external symbols should go through $stub,
3213      // unless we're building with the leopard linker or later, which
3214      // automatically synthesizes these stubs.
3215      OpFlags = PPCII::MO_DARWIN_STUB;
3216    }
3217
3218    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3219                                         OpFlags);
3220    needIndirectCall = false;
3221  }
3222
3223  if (needIndirectCall) {
3224    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3225    // to do the call, we can't use PPCISD::CALL.
3226    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3227
3228    if (isSVR4ABI && isPPC64) {
3229      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3230      // entry point, but to the function descriptor (the function entry point
3231      // address is part of the function descriptor though).
3232      // The function descriptor is a three doubleword structure with the
3233      // following fields: function entry point, TOC base address and
3234      // environment pointer.
3235      // Thus for a call through a function pointer, the following actions need
3236      // to be performed:
3237      //   1. Save the TOC of the caller in the TOC save area of its stack
3238      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3239      //   2. Load the address of the function entry point from the function
3240      //      descriptor.
3241      //   3. Load the TOC of the callee from the function descriptor into r2.
3242      //   4. Load the environment pointer from the function descriptor into
3243      //      r11.
3244      //   5. Branch to the function entry point address.
3245      //   6. On return of the callee, the TOC of the caller needs to be
3246      //      restored (this is done in FinishCall()).
3247      //
3248      // All those operations are flagged together to ensure that no other
3249      // operations can be scheduled in between. E.g. without flagging the
3250      // operations together, a TOC access in the caller could be scheduled
3251      // between the load of the callee TOC and the branch to the callee, which
3252      // results in the TOC access going through the TOC of the callee instead
3253      // of going through the TOC of the caller, which leads to incorrect code.
3254
3255      // Load the address of the function entry point from the function
3256      // descriptor.
3257      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3258      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3259                                        InFlag.getNode() ? 3 : 2);
3260      Chain = LoadFuncPtr.getValue(1);
3261      InFlag = LoadFuncPtr.getValue(2);
3262
3263      // Load environment pointer into r11.
3264      // Offset of the environment pointer within the function descriptor.
3265      SDValue PtrOff = DAG.getIntPtrConstant(16);
3266
3267      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3268      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3269                                       InFlag);
3270      Chain = LoadEnvPtr.getValue(1);
3271      InFlag = LoadEnvPtr.getValue(2);
3272
3273      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3274                                        InFlag);
3275      Chain = EnvVal.getValue(0);
3276      InFlag = EnvVal.getValue(1);
3277
3278      // Load TOC of the callee into r2. We are using a target-specific load
3279      // with r2 hard coded, because the result of a target-independent load
3280      // would never go directly into r2, since r2 is a reserved register (which
3281      // prevents the register allocator from allocating it), resulting in an
3282      // additional register being allocated and an unnecessary move instruction
3283      // being generated.
3284      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3285      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3286                                       Callee, InFlag);
3287      Chain = LoadTOCPtr.getValue(0);
3288      InFlag = LoadTOCPtr.getValue(1);
3289
3290      MTCTROps[0] = Chain;
3291      MTCTROps[1] = LoadFuncPtr;
3292      MTCTROps[2] = InFlag;
3293    }
3294
3295    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3296                        2 + (InFlag.getNode() != 0));
3297    InFlag = Chain.getValue(1);
3298
3299    NodeTys.clear();
3300    NodeTys.push_back(MVT::Other);
3301    NodeTys.push_back(MVT::Glue);
3302    Ops.push_back(Chain);
3303    CallOpc = PPCISD::BCTRL;
3304    Callee.setNode(0);
3305    // Add use of X11 (holding environment pointer)
3306    if (isSVR4ABI && isPPC64)
3307      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3308    // Add CTR register as callee so a bctr can be emitted later.
3309    if (isTailCall)
3310      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3311  }
3312
3313  // If this is a direct call, pass the chain and the callee.
3314  if (Callee.getNode()) {
3315    Ops.push_back(Chain);
3316    Ops.push_back(Callee);
3317  }
3318  // If this is a tail call add stack pointer delta.
3319  if (isTailCall)
3320    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3321
3322  // Add argument registers to the end of the list so that they are known live
3323  // into the call.
3324  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3325    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3326                                  RegsToPass[i].second.getValueType()));
3327
3328  return CallOpc;
3329}
3330
3331static
3332bool isLocalCall(const SDValue &Callee)
3333{
3334  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3335    return !G->getGlobal()->isDeclaration() &&
3336           !G->getGlobal()->isWeakForLinker();
3337  return false;
3338}
3339
3340SDValue
3341PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3342                                   CallingConv::ID CallConv, bool isVarArg,
3343                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3344                                   DebugLoc dl, SelectionDAG &DAG,
3345                                   SmallVectorImpl<SDValue> &InVals) const {
3346
3347  SmallVector<CCValAssign, 16> RVLocs;
3348  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3349                    getTargetMachine(), RVLocs, *DAG.getContext());
3350  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3351
3352  // Copy all of the result registers out of their specified physreg.
3353  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3354    CCValAssign &VA = RVLocs[i];
3355    assert(VA.isRegLoc() && "Can only return in registers!");
3356
3357    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3358                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3359    Chain = Val.getValue(1);
3360    InFlag = Val.getValue(2);
3361
3362    switch (VA.getLocInfo()) {
3363    default: llvm_unreachable("Unknown loc info!");
3364    case CCValAssign::Full: break;
3365    case CCValAssign::AExt:
3366      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3367      break;
3368    case CCValAssign::ZExt:
3369      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3370                        DAG.getValueType(VA.getValVT()));
3371      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3372      break;
3373    case CCValAssign::SExt:
3374      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3375                        DAG.getValueType(VA.getValVT()));
3376      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3377      break;
3378    }
3379
3380    InVals.push_back(Val);
3381  }
3382
3383  return Chain;
3384}
3385
3386SDValue
3387PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3388                              bool isTailCall, bool isVarArg,
3389                              SelectionDAG &DAG,
3390                              SmallVector<std::pair<unsigned, SDValue>, 8>
3391                                &RegsToPass,
3392                              SDValue InFlag, SDValue Chain,
3393                              SDValue &Callee,
3394                              int SPDiff, unsigned NumBytes,
3395                              const SmallVectorImpl<ISD::InputArg> &Ins,
3396                              SmallVectorImpl<SDValue> &InVals) const {
3397  std::vector<EVT> NodeTys;
3398  SmallVector<SDValue, 8> Ops;
3399  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3400                                 isTailCall, RegsToPass, Ops, NodeTys,
3401                                 PPCSubTarget);
3402
3403  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3404  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3405    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3406
3407  // When performing tail call optimization the callee pops its arguments off
3408  // the stack. Account for this here so these bytes can be pushed back on in
3409  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3410  int BytesCalleePops =
3411    (CallConv == CallingConv::Fast &&
3412     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3413
3414  // Add a register mask operand representing the call-preserved registers.
3415  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3416  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3417  assert(Mask && "Missing call preserved mask for calling convention");
3418  Ops.push_back(DAG.getRegisterMask(Mask));
3419
3420  if (InFlag.getNode())
3421    Ops.push_back(InFlag);
3422
3423  // Emit tail call.
3424  if (isTailCall) {
3425    assert(((Callee.getOpcode() == ISD::Register &&
3426             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3427            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3428            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3429            isa<ConstantSDNode>(Callee)) &&
3430    "Expecting an global address, external symbol, absolute value or register");
3431
3432    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3433  }
3434
3435  // Add a NOP immediately after the branch instruction when using the 64-bit
3436  // SVR4 ABI. At link time, if caller and callee are in a different module and
3437  // thus have a different TOC, the call will be replaced with a call to a stub
3438  // function which saves the current TOC, loads the TOC of the callee and
3439  // branches to the callee. The NOP will be replaced with a load instruction
3440  // which restores the TOC of the caller from the TOC save slot of the current
3441  // stack frame. If caller and callee belong to the same module (and have the
3442  // same TOC), the NOP will remain unchanged.
3443
3444  bool needsTOCRestore = false;
3445  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3446    if (CallOpc == PPCISD::BCTRL) {
3447      // This is a call through a function pointer.
3448      // Restore the caller TOC from the save area into R2.
3449      // See PrepareCall() for more information about calls through function
3450      // pointers in the 64-bit SVR4 ABI.
3451      // We are using a target-specific load with r2 hard coded, because the
3452      // result of a target-independent load would never go directly into r2,
3453      // since r2 is a reserved register (which prevents the register allocator
3454      // from allocating it), resulting in an additional register being
3455      // allocated and an unnecessary move instruction being generated.
3456      needsTOCRestore = true;
3457    } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3458      // Otherwise insert NOP for non-local calls.
3459      CallOpc = PPCISD::CALL_NOP;
3460    }
3461  }
3462
3463  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3464  InFlag = Chain.getValue(1);
3465
3466  if (needsTOCRestore) {
3467    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3468    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3469    InFlag = Chain.getValue(1);
3470  }
3471
3472  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3473                             DAG.getIntPtrConstant(BytesCalleePops, true),
3474                             InFlag);
3475  if (!Ins.empty())
3476    InFlag = Chain.getValue(1);
3477
3478  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3479                         Ins, dl, DAG, InVals);
3480}
3481
3482SDValue
3483PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3484                             SmallVectorImpl<SDValue> &InVals) const {
3485  SelectionDAG &DAG                     = CLI.DAG;
3486  DebugLoc &dl                          = CLI.DL;
3487  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3488  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3489  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3490  SDValue Chain                         = CLI.Chain;
3491  SDValue Callee                        = CLI.Callee;
3492  bool &isTailCall                      = CLI.IsTailCall;
3493  CallingConv::ID CallConv              = CLI.CallConv;
3494  bool isVarArg                         = CLI.IsVarArg;
3495
3496  if (isTailCall)
3497    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3498                                                   Ins, DAG);
3499
3500  if (PPCSubTarget.isSVR4ABI()) {
3501    if (PPCSubTarget.isPPC64())
3502      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3503                              isTailCall, Outs, OutVals, Ins,
3504                              dl, DAG, InVals);
3505    else
3506      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3507                              isTailCall, Outs, OutVals, Ins,
3508                              dl, DAG, InVals);
3509  }
3510
3511  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3512                          isTailCall, Outs, OutVals, Ins,
3513                          dl, DAG, InVals);
3514}
3515
3516SDValue
3517PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3518                                    CallingConv::ID CallConv, bool isVarArg,
3519                                    bool isTailCall,
3520                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3521                                    const SmallVectorImpl<SDValue> &OutVals,
3522                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3523                                    DebugLoc dl, SelectionDAG &DAG,
3524                                    SmallVectorImpl<SDValue> &InVals) const {
3525  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3526  // of the 32-bit SVR4 ABI stack frame layout.
3527
3528  assert((CallConv == CallingConv::C ||
3529          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3530
3531  unsigned PtrByteSize = 4;
3532
3533  MachineFunction &MF = DAG.getMachineFunction();
3534
3535  // Mark this function as potentially containing a function that contains a
3536  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3537  // and restoring the callers stack pointer in this functions epilog. This is
3538  // done because by tail calling the called function might overwrite the value
3539  // in this function's (MF) stack pointer stack slot 0(SP).
3540  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3541      CallConv == CallingConv::Fast)
3542    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3543
3544  // Count how many bytes are to be pushed on the stack, including the linkage
3545  // area, parameter list area and the part of the local variable space which
3546  // contains copies of aggregates which are passed by value.
3547
3548  // Assign locations to all of the outgoing arguments.
3549  SmallVector<CCValAssign, 16> ArgLocs;
3550  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3551                 getTargetMachine(), ArgLocs, *DAG.getContext());
3552
3553  // Reserve space for the linkage area on the stack.
3554  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3555
3556  if (isVarArg) {
3557    // Handle fixed and variable vector arguments differently.
3558    // Fixed vector arguments go into registers as long as registers are
3559    // available. Variable vector arguments always go into memory.
3560    unsigned NumArgs = Outs.size();
3561
3562    for (unsigned i = 0; i != NumArgs; ++i) {
3563      MVT ArgVT = Outs[i].VT;
3564      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3565      bool Result;
3566
3567      if (Outs[i].IsFixed) {
3568        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3569                               CCInfo);
3570      } else {
3571        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3572                                      ArgFlags, CCInfo);
3573      }
3574
3575      if (Result) {
3576#ifndef NDEBUG
3577        errs() << "Call operand #" << i << " has unhandled type "
3578             << EVT(ArgVT).getEVTString() << "\n";
3579#endif
3580        llvm_unreachable(0);
3581      }
3582    }
3583  } else {
3584    // All arguments are treated the same.
3585    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3586  }
3587
3588  // Assign locations to all of the outgoing aggregate by value arguments.
3589  SmallVector<CCValAssign, 16> ByValArgLocs;
3590  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3591                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3592
3593  // Reserve stack space for the allocations in CCInfo.
3594  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3595
3596  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3597
3598  // Size of the linkage area, parameter list area and the part of the local
3599  // space variable where copies of aggregates which are passed by value are
3600  // stored.
3601  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3602
3603  // Calculate by how many bytes the stack has to be adjusted in case of tail
3604  // call optimization.
3605  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3606
3607  // Adjust the stack pointer for the new arguments...
3608  // These operations are automatically eliminated by the prolog/epilog pass
3609  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3610  SDValue CallSeqStart = Chain;
3611
3612  // Load the return address and frame pointer so it can be moved somewhere else
3613  // later.
3614  SDValue LROp, FPOp;
3615  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3616                                       dl);
3617
3618  // Set up a copy of the stack pointer for use loading and storing any
3619  // arguments that may not fit in the registers available for argument
3620  // passing.
3621  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3622
3623  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3624  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3625  SmallVector<SDValue, 8> MemOpChains;
3626
3627  bool seenFloatArg = false;
3628  // Walk the register/memloc assignments, inserting copies/loads.
3629  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3630       i != e;
3631       ++i) {
3632    CCValAssign &VA = ArgLocs[i];
3633    SDValue Arg = OutVals[i];
3634    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3635
3636    if (Flags.isByVal()) {
3637      // Argument is an aggregate which is passed by value, thus we need to
3638      // create a copy of it in the local variable space of the current stack
3639      // frame (which is the stack frame of the caller) and pass the address of
3640      // this copy to the callee.
3641      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3642      CCValAssign &ByValVA = ByValArgLocs[j++];
3643      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3644
3645      // Memory reserved in the local variable space of the callers stack frame.
3646      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3647
3648      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3649      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3650
3651      // Create a copy of the argument in the local area of the current
3652      // stack frame.
3653      SDValue MemcpyCall =
3654        CreateCopyOfByValArgument(Arg, PtrOff,
3655                                  CallSeqStart.getNode()->getOperand(0),
3656                                  Flags, DAG, dl);
3657
3658      // This must go outside the CALLSEQ_START..END.
3659      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3660                           CallSeqStart.getNode()->getOperand(1));
3661      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3662                             NewCallSeqStart.getNode());
3663      Chain = CallSeqStart = NewCallSeqStart;
3664
3665      // Pass the address of the aggregate copy on the stack either in a
3666      // physical register or in the parameter list area of the current stack
3667      // frame to the callee.
3668      Arg = PtrOff;
3669    }
3670
3671    if (VA.isRegLoc()) {
3672      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3673      // Put argument in a physical register.
3674      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3675    } else {
3676      // Put argument in the parameter list area of the current stack frame.
3677      assert(VA.isMemLoc());
3678      unsigned LocMemOffset = VA.getLocMemOffset();
3679
3680      if (!isTailCall) {
3681        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3682        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3683
3684        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3685                                           MachinePointerInfo(),
3686                                           false, false, 0));
3687      } else {
3688        // Calculate and remember argument location.
3689        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3690                                 TailCallArguments);
3691      }
3692    }
3693  }
3694
3695  if (!MemOpChains.empty())
3696    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3697                        &MemOpChains[0], MemOpChains.size());
3698
3699  // Build a sequence of copy-to-reg nodes chained together with token chain
3700  // and flag operands which copy the outgoing args into the appropriate regs.
3701  SDValue InFlag;
3702  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3703    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3704                             RegsToPass[i].second, InFlag);
3705    InFlag = Chain.getValue(1);
3706  }
3707
3708  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3709  // registers.
3710  if (isVarArg) {
3711    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3712    SDValue Ops[] = { Chain, InFlag };
3713
3714    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3715                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3716
3717    InFlag = Chain.getValue(1);
3718  }
3719
3720  if (isTailCall)
3721    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3722                    false, TailCallArguments);
3723
3724  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3725                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3726                    Ins, InVals);
3727}
3728
3729// Copy an argument into memory, being careful to do this outside the
3730// call sequence for the call to which the argument belongs.
3731SDValue
3732PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3733                                              SDValue CallSeqStart,
3734                                              ISD::ArgFlagsTy Flags,
3735                                              SelectionDAG &DAG,
3736                                              DebugLoc dl) const {
3737  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3738                        CallSeqStart.getNode()->getOperand(0),
3739                        Flags, DAG, dl);
3740  // The MEMCPY must go outside the CALLSEQ_START..END.
3741  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3742                             CallSeqStart.getNode()->getOperand(1));
3743  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3744                         NewCallSeqStart.getNode());
3745  return NewCallSeqStart;
3746}
3747
3748SDValue
3749PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3750                                    CallingConv::ID CallConv, bool isVarArg,
3751                                    bool isTailCall,
3752                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3753                                    const SmallVectorImpl<SDValue> &OutVals,
3754                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3755                                    DebugLoc dl, SelectionDAG &DAG,
3756                                    SmallVectorImpl<SDValue> &InVals) const {
3757
3758  unsigned NumOps = Outs.size();
3759
3760  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3761  unsigned PtrByteSize = 8;
3762
3763  MachineFunction &MF = DAG.getMachineFunction();
3764
3765  // Mark this function as potentially containing a function that contains a
3766  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3767  // and restoring the callers stack pointer in this functions epilog. This is
3768  // done because by tail calling the called function might overwrite the value
3769  // in this function's (MF) stack pointer stack slot 0(SP).
3770  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3771      CallConv == CallingConv::Fast)
3772    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3773
3774  unsigned nAltivecParamsAtEnd = 0;
3775
3776  // Count how many bytes are to be pushed on the stack, including the linkage
3777  // area, and parameter passing area.  We start with at least 48 bytes, which
3778  // is reserved space for [SP][CR][LR][3 x unused].
3779  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3780  // of this call.
3781  unsigned NumBytes =
3782    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3783                                         Outs, OutVals, nAltivecParamsAtEnd);
3784
3785  // Calculate by how many bytes the stack has to be adjusted in case of tail
3786  // call optimization.
3787  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3788
3789  // To protect arguments on the stack from being clobbered in a tail call,
3790  // force all the loads to happen before doing any other lowering.
3791  if (isTailCall)
3792    Chain = DAG.getStackArgumentTokenFactor(Chain);
3793
3794  // Adjust the stack pointer for the new arguments...
3795  // These operations are automatically eliminated by the prolog/epilog pass
3796  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3797  SDValue CallSeqStart = Chain;
3798
3799  // Load the return address and frame pointer so it can be move somewhere else
3800  // later.
3801  SDValue LROp, FPOp;
3802  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3803                                       dl);
3804
3805  // Set up a copy of the stack pointer for use loading and storing any
3806  // arguments that may not fit in the registers available for argument
3807  // passing.
3808  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3809
3810  // Figure out which arguments are going to go in registers, and which in
3811  // memory.  Also, if this is a vararg function, floating point operations
3812  // must be stored to our stack, and loaded into integer regs as well, if
3813  // any integer regs are available for argument passing.
3814  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3815  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3816
3817  static const uint16_t GPR[] = {
3818    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3819    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3820  };
3821  static const uint16_t *FPR = GetFPR();
3822
3823  static const uint16_t VR[] = {
3824    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3825    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3826  };
3827  const unsigned NumGPRs = array_lengthof(GPR);
3828  const unsigned NumFPRs = 13;
3829  const unsigned NumVRs  = array_lengthof(VR);
3830
3831  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3832  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3833
3834  SmallVector<SDValue, 8> MemOpChains;
3835  for (unsigned i = 0; i != NumOps; ++i) {
3836    SDValue Arg = OutVals[i];
3837    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3838
3839    // PtrOff will be used to store the current argument to the stack if a
3840    // register cannot be found for it.
3841    SDValue PtrOff;
3842
3843    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3844
3845    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3846
3847    // Promote integers to 64-bit values.
3848    if (Arg.getValueType() == MVT::i32) {
3849      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3850      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3851      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3852    }
3853
3854    // FIXME memcpy is used way more than necessary.  Correctness first.
3855    // Note: "by value" is code for passing a structure by value, not
3856    // basic types.
3857    if (Flags.isByVal()) {
3858      // Note: Size includes alignment padding, so
3859      //   struct x { short a; char b; }
3860      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3861      // These are the proper values we need for right-justifying the
3862      // aggregate in a parameter register.
3863      unsigned Size = Flags.getByValSize();
3864
3865      // An empty aggregate parameter takes up no storage and no
3866      // registers.
3867      if (Size == 0)
3868        continue;
3869
3870      // All aggregates smaller than 8 bytes must be passed right-justified.
3871      if (Size==1 || Size==2 || Size==4) {
3872        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3873        if (GPR_idx != NumGPRs) {
3874          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3875                                        MachinePointerInfo(), VT,
3876                                        false, false, 0);
3877          MemOpChains.push_back(Load.getValue(1));
3878          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3879
3880          ArgOffset += PtrByteSize;
3881          continue;
3882        }
3883      }
3884
3885      if (GPR_idx == NumGPRs && Size < 8) {
3886        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3887                                        PtrOff.getValueType());
3888        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3889        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3890                                                          CallSeqStart,
3891                                                          Flags, DAG, dl);
3892        ArgOffset += PtrByteSize;
3893        continue;
3894      }
3895      // Copy entire object into memory.  There are cases where gcc-generated
3896      // code assumes it is there, even if it could be put entirely into
3897      // registers.  (This is not what the doc says.)
3898
3899      // FIXME: The above statement is likely due to a misunderstanding of the
3900      // documents.  All arguments must be copied into the parameter area BY
3901      // THE CALLEE in the event that the callee takes the address of any
3902      // formal argument.  That has not yet been implemented.  However, it is
3903      // reasonable to use the stack area as a staging area for the register
3904      // load.
3905
3906      // Skip this for small aggregates, as we will use the same slot for a
3907      // right-justified copy, below.
3908      if (Size >= 8)
3909        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3910                                                          CallSeqStart,
3911                                                          Flags, DAG, dl);
3912
3913      // When a register is available, pass a small aggregate right-justified.
3914      if (Size < 8 && GPR_idx != NumGPRs) {
3915        // The easiest way to get this right-justified in a register
3916        // is to copy the structure into the rightmost portion of a
3917        // local variable slot, then load the whole slot into the
3918        // register.
3919        // FIXME: The memcpy seems to produce pretty awful code for
3920        // small aggregates, particularly for packed ones.
3921        // FIXME: It would be preferable to use the slot in the
3922        // parameter save area instead of a new local variable.
3923        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3924        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3925        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3926                                                          CallSeqStart,
3927                                                          Flags, DAG, dl);
3928
3929        // Load the slot into the register.
3930        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3931                                   MachinePointerInfo(),
3932                                   false, false, false, 0);
3933        MemOpChains.push_back(Load.getValue(1));
3934        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3935
3936        // Done with this argument.
3937        ArgOffset += PtrByteSize;
3938        continue;
3939      }
3940
3941      // For aggregates larger than PtrByteSize, copy the pieces of the
3942      // object that fit into registers from the parameter save area.
3943      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3944        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3945        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3946        if (GPR_idx != NumGPRs) {
3947          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3948                                     MachinePointerInfo(),
3949                                     false, false, false, 0);
3950          MemOpChains.push_back(Load.getValue(1));
3951          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3952          ArgOffset += PtrByteSize;
3953        } else {
3954          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3955          break;
3956        }
3957      }
3958      continue;
3959    }
3960
3961    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3962    default: llvm_unreachable("Unexpected ValueType for argument!");
3963    case MVT::i32:
3964    case MVT::i64:
3965      if (GPR_idx != NumGPRs) {
3966        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3967      } else {
3968        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3969                         true, isTailCall, false, MemOpChains,
3970                         TailCallArguments, dl);
3971      }
3972      ArgOffset += PtrByteSize;
3973      break;
3974    case MVT::f32:
3975    case MVT::f64:
3976      if (FPR_idx != NumFPRs) {
3977        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3978
3979        if (isVarArg) {
3980          // A single float or an aggregate containing only a single float
3981          // must be passed right-justified in the stack doubleword, and
3982          // in the GPR, if one is available.
3983          SDValue StoreOff;
3984          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3985            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3986            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3987          } else
3988            StoreOff = PtrOff;
3989
3990          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3991                                       MachinePointerInfo(), false, false, 0);
3992          MemOpChains.push_back(Store);
3993
3994          // Float varargs are always shadowed in available integer registers
3995          if (GPR_idx != NumGPRs) {
3996            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3997                                       MachinePointerInfo(), false, false,
3998                                       false, 0);
3999            MemOpChains.push_back(Load.getValue(1));
4000            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4001          }
4002        } else if (GPR_idx != NumGPRs)
4003          // If we have any FPRs remaining, we may also have GPRs remaining.
4004          ++GPR_idx;
4005      } else {
4006        // Single-precision floating-point values are mapped to the
4007        // second (rightmost) word of the stack doubleword.
4008        if (Arg.getValueType() == MVT::f32) {
4009          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4010          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4011        }
4012
4013        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4014                         true, isTailCall, false, MemOpChains,
4015                         TailCallArguments, dl);
4016      }
4017      ArgOffset += 8;
4018      break;
4019    case MVT::v4f32:
4020    case MVT::v4i32:
4021    case MVT::v8i16:
4022    case MVT::v16i8:
4023      if (isVarArg) {
4024        // These go aligned on the stack, or in the corresponding R registers
4025        // when within range.  The Darwin PPC ABI doc claims they also go in
4026        // V registers; in fact gcc does this only for arguments that are
4027        // prototyped, not for those that match the ...  We do it for all
4028        // arguments, seems to work.
4029        while (ArgOffset % 16 !=0) {
4030          ArgOffset += PtrByteSize;
4031          if (GPR_idx != NumGPRs)
4032            GPR_idx++;
4033        }
4034        // We could elide this store in the case where the object fits
4035        // entirely in R registers.  Maybe later.
4036        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4037                            DAG.getConstant(ArgOffset, PtrVT));
4038        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4039                                     MachinePointerInfo(), false, false, 0);
4040        MemOpChains.push_back(Store);
4041        if (VR_idx != NumVRs) {
4042          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4043                                     MachinePointerInfo(),
4044                                     false, false, false, 0);
4045          MemOpChains.push_back(Load.getValue(1));
4046          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4047        }
4048        ArgOffset += 16;
4049        for (unsigned i=0; i<16; i+=PtrByteSize) {
4050          if (GPR_idx == NumGPRs)
4051            break;
4052          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4053                                  DAG.getConstant(i, PtrVT));
4054          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4055                                     false, false, false, 0);
4056          MemOpChains.push_back(Load.getValue(1));
4057          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4058        }
4059        break;
4060      }
4061
4062      // Non-varargs Altivec params generally go in registers, but have
4063      // stack space allocated at the end.
4064      if (VR_idx != NumVRs) {
4065        // Doesn't have GPR space allocated.
4066        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4067      } else {
4068        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4069                         true, isTailCall, true, MemOpChains,
4070                         TailCallArguments, dl);
4071        ArgOffset += 16;
4072      }
4073      break;
4074    }
4075  }
4076
4077  if (!MemOpChains.empty())
4078    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4079                        &MemOpChains[0], MemOpChains.size());
4080
4081  // Check if this is an indirect call (MTCTR/BCTRL).
4082  // See PrepareCall() for more information about calls through function
4083  // pointers in the 64-bit SVR4 ABI.
4084  if (!isTailCall &&
4085      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4086      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4087      !isBLACompatibleAddress(Callee, DAG)) {
4088    // Load r2 into a virtual register and store it to the TOC save area.
4089    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4090    // TOC save area offset.
4091    SDValue PtrOff = DAG.getIntPtrConstant(40);
4092    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4093    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4094                         false, false, 0);
4095    // R12 must contain the address of an indirect callee.  This does not
4096    // mean the MTCTR instruction must use R12; it's easier to model this
4097    // as an extra parameter, so do that.
4098    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4099  }
4100
4101  // Build a sequence of copy-to-reg nodes chained together with token chain
4102  // and flag operands which copy the outgoing args into the appropriate regs.
4103  SDValue InFlag;
4104  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4105    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4106                             RegsToPass[i].second, InFlag);
4107    InFlag = Chain.getValue(1);
4108  }
4109
4110  if (isTailCall)
4111    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4112                    FPOp, true, TailCallArguments);
4113
4114  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4115                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4116                    Ins, InVals);
4117}
4118
4119SDValue
4120PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4121                                    CallingConv::ID CallConv, bool isVarArg,
4122                                    bool isTailCall,
4123                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4124                                    const SmallVectorImpl<SDValue> &OutVals,
4125                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4126                                    DebugLoc dl, SelectionDAG &DAG,
4127                                    SmallVectorImpl<SDValue> &InVals) const {
4128
4129  unsigned NumOps = Outs.size();
4130
4131  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4132  bool isPPC64 = PtrVT == MVT::i64;
4133  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4134
4135  MachineFunction &MF = DAG.getMachineFunction();
4136
4137  // Mark this function as potentially containing a function that contains a
4138  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4139  // and restoring the callers stack pointer in this functions epilog. This is
4140  // done because by tail calling the called function might overwrite the value
4141  // in this function's (MF) stack pointer stack slot 0(SP).
4142  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4143      CallConv == CallingConv::Fast)
4144    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4145
4146  unsigned nAltivecParamsAtEnd = 0;
4147
4148  // Count how many bytes are to be pushed on the stack, including the linkage
4149  // area, and parameter passing area.  We start with 24/48 bytes, which is
4150  // prereserved space for [SP][CR][LR][3 x unused].
4151  unsigned NumBytes =
4152    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4153                                         Outs, OutVals,
4154                                         nAltivecParamsAtEnd);
4155
4156  // Calculate by how many bytes the stack has to be adjusted in case of tail
4157  // call optimization.
4158  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4159
4160  // To protect arguments on the stack from being clobbered in a tail call,
4161  // force all the loads to happen before doing any other lowering.
4162  if (isTailCall)
4163    Chain = DAG.getStackArgumentTokenFactor(Chain);
4164
4165  // Adjust the stack pointer for the new arguments...
4166  // These operations are automatically eliminated by the prolog/epilog pass
4167  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4168  SDValue CallSeqStart = Chain;
4169
4170  // Load the return address and frame pointer so it can be move somewhere else
4171  // later.
4172  SDValue LROp, FPOp;
4173  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4174                                       dl);
4175
4176  // Set up a copy of the stack pointer for use loading and storing any
4177  // arguments that may not fit in the registers available for argument
4178  // passing.
4179  SDValue StackPtr;
4180  if (isPPC64)
4181    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4182  else
4183    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4184
4185  // Figure out which arguments are going to go in registers, and which in
4186  // memory.  Also, if this is a vararg function, floating point operations
4187  // must be stored to our stack, and loaded into integer regs as well, if
4188  // any integer regs are available for argument passing.
4189  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4190  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4191
4192  static const uint16_t GPR_32[] = {           // 32-bit registers.
4193    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4194    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4195  };
4196  static const uint16_t GPR_64[] = {           // 64-bit registers.
4197    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4198    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4199  };
4200  static const uint16_t *FPR = GetFPR();
4201
4202  static const uint16_t VR[] = {
4203    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4204    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4205  };
4206  const unsigned NumGPRs = array_lengthof(GPR_32);
4207  const unsigned NumFPRs = 13;
4208  const unsigned NumVRs  = array_lengthof(VR);
4209
4210  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4211
4212  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4213  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4214
4215  SmallVector<SDValue, 8> MemOpChains;
4216  for (unsigned i = 0; i != NumOps; ++i) {
4217    SDValue Arg = OutVals[i];
4218    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4219
4220    // PtrOff will be used to store the current argument to the stack if a
4221    // register cannot be found for it.
4222    SDValue PtrOff;
4223
4224    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4225
4226    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4227
4228    // On PPC64, promote integers to 64-bit values.
4229    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4230      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4231      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4232      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4233    }
4234
4235    // FIXME memcpy is used way more than necessary.  Correctness first.
4236    // Note: "by value" is code for passing a structure by value, not
4237    // basic types.
4238    if (Flags.isByVal()) {
4239      unsigned Size = Flags.getByValSize();
4240      // Very small objects are passed right-justified.  Everything else is
4241      // passed left-justified.
4242      if (Size==1 || Size==2) {
4243        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4244        if (GPR_idx != NumGPRs) {
4245          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4246                                        MachinePointerInfo(), VT,
4247                                        false, false, 0);
4248          MemOpChains.push_back(Load.getValue(1));
4249          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4250
4251          ArgOffset += PtrByteSize;
4252        } else {
4253          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4254                                          PtrOff.getValueType());
4255          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4256          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4257                                                            CallSeqStart,
4258                                                            Flags, DAG, dl);
4259          ArgOffset += PtrByteSize;
4260        }
4261        continue;
4262      }
4263      // Copy entire object into memory.  There are cases where gcc-generated
4264      // code assumes it is there, even if it could be put entirely into
4265      // registers.  (This is not what the doc says.)
4266      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4267                                                        CallSeqStart,
4268                                                        Flags, DAG, dl);
4269
4270      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4271      // copy the pieces of the object that fit into registers from the
4272      // parameter save area.
4273      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4274        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4275        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4276        if (GPR_idx != NumGPRs) {
4277          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4278                                     MachinePointerInfo(),
4279                                     false, false, false, 0);
4280          MemOpChains.push_back(Load.getValue(1));
4281          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4282          ArgOffset += PtrByteSize;
4283        } else {
4284          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4285          break;
4286        }
4287      }
4288      continue;
4289    }
4290
4291    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4292    default: llvm_unreachable("Unexpected ValueType for argument!");
4293    case MVT::i32:
4294    case MVT::i64:
4295      if (GPR_idx != NumGPRs) {
4296        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4297      } else {
4298        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4299                         isPPC64, isTailCall, false, MemOpChains,
4300                         TailCallArguments, dl);
4301      }
4302      ArgOffset += PtrByteSize;
4303      break;
4304    case MVT::f32:
4305    case MVT::f64:
4306      if (FPR_idx != NumFPRs) {
4307        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4308
4309        if (isVarArg) {
4310          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4311                                       MachinePointerInfo(), false, false, 0);
4312          MemOpChains.push_back(Store);
4313
4314          // Float varargs are always shadowed in available integer registers
4315          if (GPR_idx != NumGPRs) {
4316            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4317                                       MachinePointerInfo(), false, false,
4318                                       false, 0);
4319            MemOpChains.push_back(Load.getValue(1));
4320            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4321          }
4322          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4323            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4324            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4325            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4326                                       MachinePointerInfo(),
4327                                       false, false, false, 0);
4328            MemOpChains.push_back(Load.getValue(1));
4329            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4330          }
4331        } else {
4332          // If we have any FPRs remaining, we may also have GPRs remaining.
4333          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4334          // GPRs.
4335          if (GPR_idx != NumGPRs)
4336            ++GPR_idx;
4337          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4338              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4339            ++GPR_idx;
4340        }
4341      } else
4342        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4343                         isPPC64, isTailCall, false, MemOpChains,
4344                         TailCallArguments, dl);
4345      if (isPPC64)
4346        ArgOffset += 8;
4347      else
4348        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4349      break;
4350    case MVT::v4f32:
4351    case MVT::v4i32:
4352    case MVT::v8i16:
4353    case MVT::v16i8:
4354      if (isVarArg) {
4355        // These go aligned on the stack, or in the corresponding R registers
4356        // when within range.  The Darwin PPC ABI doc claims they also go in
4357        // V registers; in fact gcc does this only for arguments that are
4358        // prototyped, not for those that match the ...  We do it for all
4359        // arguments, seems to work.
4360        while (ArgOffset % 16 !=0) {
4361          ArgOffset += PtrByteSize;
4362          if (GPR_idx != NumGPRs)
4363            GPR_idx++;
4364        }
4365        // We could elide this store in the case where the object fits
4366        // entirely in R registers.  Maybe later.
4367        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4368                            DAG.getConstant(ArgOffset, PtrVT));
4369        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4370                                     MachinePointerInfo(), false, false, 0);
4371        MemOpChains.push_back(Store);
4372        if (VR_idx != NumVRs) {
4373          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4374                                     MachinePointerInfo(),
4375                                     false, false, false, 0);
4376          MemOpChains.push_back(Load.getValue(1));
4377          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4378        }
4379        ArgOffset += 16;
4380        for (unsigned i=0; i<16; i+=PtrByteSize) {
4381          if (GPR_idx == NumGPRs)
4382            break;
4383          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4384                                  DAG.getConstant(i, PtrVT));
4385          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4386                                     false, false, false, 0);
4387          MemOpChains.push_back(Load.getValue(1));
4388          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4389        }
4390        break;
4391      }
4392
4393      // Non-varargs Altivec params generally go in registers, but have
4394      // stack space allocated at the end.
4395      if (VR_idx != NumVRs) {
4396        // Doesn't have GPR space allocated.
4397        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4398      } else if (nAltivecParamsAtEnd==0) {
4399        // We are emitting Altivec params in order.
4400        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4401                         isPPC64, isTailCall, true, MemOpChains,
4402                         TailCallArguments, dl);
4403        ArgOffset += 16;
4404      }
4405      break;
4406    }
4407  }
4408  // If all Altivec parameters fit in registers, as they usually do,
4409  // they get stack space following the non-Altivec parameters.  We
4410  // don't track this here because nobody below needs it.
4411  // If there are more Altivec parameters than fit in registers emit
4412  // the stores here.
4413  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4414    unsigned j = 0;
4415    // Offset is aligned; skip 1st 12 params which go in V registers.
4416    ArgOffset = ((ArgOffset+15)/16)*16;
4417    ArgOffset += 12*16;
4418    for (unsigned i = 0; i != NumOps; ++i) {
4419      SDValue Arg = OutVals[i];
4420      EVT ArgType = Outs[i].VT;
4421      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4422          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4423        if (++j > NumVRs) {
4424          SDValue PtrOff;
4425          // We are emitting Altivec params in order.
4426          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4427                           isPPC64, isTailCall, true, MemOpChains,
4428                           TailCallArguments, dl);
4429          ArgOffset += 16;
4430        }
4431      }
4432    }
4433  }
4434
4435  if (!MemOpChains.empty())
4436    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4437                        &MemOpChains[0], MemOpChains.size());
4438
4439  // On Darwin, R12 must contain the address of an indirect callee.  This does
4440  // not mean the MTCTR instruction must use R12; it's easier to model this as
4441  // an extra parameter, so do that.
4442  if (!isTailCall &&
4443      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4444      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4445      !isBLACompatibleAddress(Callee, DAG))
4446    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4447                                                   PPC::R12), Callee));
4448
4449  // Build a sequence of copy-to-reg nodes chained together with token chain
4450  // and flag operands which copy the outgoing args into the appropriate regs.
4451  SDValue InFlag;
4452  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4453    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4454                             RegsToPass[i].second, InFlag);
4455    InFlag = Chain.getValue(1);
4456  }
4457
4458  if (isTailCall)
4459    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4460                    FPOp, true, TailCallArguments);
4461
4462  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4463                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4464                    Ins, InVals);
4465}
4466
4467bool
4468PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4469                                  MachineFunction &MF, bool isVarArg,
4470                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4471                                  LLVMContext &Context) const {
4472  SmallVector<CCValAssign, 16> RVLocs;
4473  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4474                 RVLocs, Context);
4475  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4476}
4477
4478SDValue
4479PPCTargetLowering::LowerReturn(SDValue Chain,
4480                               CallingConv::ID CallConv, bool isVarArg,
4481                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4482                               const SmallVectorImpl<SDValue> &OutVals,
4483                               DebugLoc dl, SelectionDAG &DAG) const {
4484
4485  SmallVector<CCValAssign, 16> RVLocs;
4486  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4487                 getTargetMachine(), RVLocs, *DAG.getContext());
4488  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4489
4490  SDValue Flag;
4491  SmallVector<SDValue, 4> RetOps(1, Chain);
4492
4493  // Copy the result values into the output registers.
4494  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4495    CCValAssign &VA = RVLocs[i];
4496    assert(VA.isRegLoc() && "Can only return in registers!");
4497
4498    SDValue Arg = OutVals[i];
4499
4500    switch (VA.getLocInfo()) {
4501    default: llvm_unreachable("Unknown loc info!");
4502    case CCValAssign::Full: break;
4503    case CCValAssign::AExt:
4504      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4505      break;
4506    case CCValAssign::ZExt:
4507      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4508      break;
4509    case CCValAssign::SExt:
4510      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4511      break;
4512    }
4513
4514    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4515    Flag = Chain.getValue(1);
4516    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4517  }
4518
4519  RetOps[0] = Chain;  // Update chain.
4520
4521  // Add the flag if we have it.
4522  if (Flag.getNode())
4523    RetOps.push_back(Flag);
4524
4525  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4526                     &RetOps[0], RetOps.size());
4527}
4528
4529SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4530                                   const PPCSubtarget &Subtarget) const {
4531  // When we pop the dynamic allocation we need to restore the SP link.
4532  DebugLoc dl = Op.getDebugLoc();
4533
4534  // Get the corect type for pointers.
4535  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4536
4537  // Construct the stack pointer operand.
4538  bool isPPC64 = Subtarget.isPPC64();
4539  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4540  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4541
4542  // Get the operands for the STACKRESTORE.
4543  SDValue Chain = Op.getOperand(0);
4544  SDValue SaveSP = Op.getOperand(1);
4545
4546  // Load the old link SP.
4547  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4548                                   MachinePointerInfo(),
4549                                   false, false, false, 0);
4550
4551  // Restore the stack pointer.
4552  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4553
4554  // Store the old link SP.
4555  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4556                      false, false, 0);
4557}
4558
4559
4560
4561SDValue
4562PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4563  MachineFunction &MF = DAG.getMachineFunction();
4564  bool isPPC64 = PPCSubTarget.isPPC64();
4565  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4566  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4567
4568  // Get current frame pointer save index.  The users of this index will be
4569  // primarily DYNALLOC instructions.
4570  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4571  int RASI = FI->getReturnAddrSaveIndex();
4572
4573  // If the frame pointer save index hasn't been defined yet.
4574  if (!RASI) {
4575    // Find out what the fix offset of the frame pointer save area.
4576    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4577    // Allocate the frame index for frame pointer save area.
4578    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4579    // Save the result.
4580    FI->setReturnAddrSaveIndex(RASI);
4581  }
4582  return DAG.getFrameIndex(RASI, PtrVT);
4583}
4584
4585SDValue
4586PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4587  MachineFunction &MF = DAG.getMachineFunction();
4588  bool isPPC64 = PPCSubTarget.isPPC64();
4589  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4590  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4591
4592  // Get current frame pointer save index.  The users of this index will be
4593  // primarily DYNALLOC instructions.
4594  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4595  int FPSI = FI->getFramePointerSaveIndex();
4596
4597  // If the frame pointer save index hasn't been defined yet.
4598  if (!FPSI) {
4599    // Find out what the fix offset of the frame pointer save area.
4600    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4601                                                           isDarwinABI);
4602
4603    // Allocate the frame index for frame pointer save area.
4604    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4605    // Save the result.
4606    FI->setFramePointerSaveIndex(FPSI);
4607  }
4608  return DAG.getFrameIndex(FPSI, PtrVT);
4609}
4610
4611SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4612                                         SelectionDAG &DAG,
4613                                         const PPCSubtarget &Subtarget) const {
4614  // Get the inputs.
4615  SDValue Chain = Op.getOperand(0);
4616  SDValue Size  = Op.getOperand(1);
4617  DebugLoc dl = Op.getDebugLoc();
4618
4619  // Get the corect type for pointers.
4620  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4621  // Negate the size.
4622  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4623                                  DAG.getConstant(0, PtrVT), Size);
4624  // Construct a node for the frame pointer save index.
4625  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4626  // Build a DYNALLOC node.
4627  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4628  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4629  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4630}
4631
4632SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4633                                               SelectionDAG &DAG) const {
4634  DebugLoc DL = Op.getDebugLoc();
4635  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4636                     DAG.getVTList(MVT::i32, MVT::Other),
4637                     Op.getOperand(0), Op.getOperand(1));
4638}
4639
4640SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4641                                                SelectionDAG &DAG) const {
4642  DebugLoc DL = Op.getDebugLoc();
4643  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4644                     Op.getOperand(0), Op.getOperand(1));
4645}
4646
4647/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4648/// possible.
4649SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4650  // Not FP? Not a fsel.
4651  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4652      !Op.getOperand(2).getValueType().isFloatingPoint())
4653    return Op;
4654
4655  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4656
4657  // Cannot handle SETEQ/SETNE.
4658  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4659
4660  EVT ResVT = Op.getValueType();
4661  EVT CmpVT = Op.getOperand(0).getValueType();
4662  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4663  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4664  DebugLoc dl = Op.getDebugLoc();
4665
4666  // If the RHS of the comparison is a 0.0, we don't need to do the
4667  // subtraction at all.
4668  if (isFloatingPointZero(RHS))
4669    switch (CC) {
4670    default: break;       // SETUO etc aren't handled by fsel.
4671    case ISD::SETULT:
4672    case ISD::SETLT:
4673      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4674    case ISD::SETOGE:
4675    case ISD::SETGE:
4676      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4677        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4678      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4679    case ISD::SETUGT:
4680    case ISD::SETGT:
4681      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4682    case ISD::SETOLE:
4683    case ISD::SETLE:
4684      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4685        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4686      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4687                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4688    }
4689
4690  SDValue Cmp;
4691  switch (CC) {
4692  default: break;       // SETUO etc aren't handled by fsel.
4693  case ISD::SETULT:
4694  case ISD::SETLT:
4695    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4696    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4697      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4698      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4699  case ISD::SETOGE:
4700  case ISD::SETGE:
4701    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4702    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4703      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4704      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4705  case ISD::SETUGT:
4706  case ISD::SETGT:
4707    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4708    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4709      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4710      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4711  case ISD::SETOLE:
4712  case ISD::SETLE:
4713    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4714    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4715      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4716      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4717  }
4718  return Op;
4719}
4720
4721// FIXME: Split this code up when LegalizeDAGTypes lands.
4722SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4723                                           DebugLoc dl) const {
4724  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4725  SDValue Src = Op.getOperand(0);
4726  if (Src.getValueType() == MVT::f32)
4727    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4728
4729  SDValue Tmp;
4730  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4731  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4732  case MVT::i32:
4733    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4734                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
4735                                                   PPCISD::FCTIDZ),
4736                      dl, MVT::f64, Src);
4737    break;
4738  case MVT::i64:
4739    assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4740           "i64 UINT_TO_FP is supported only with FPCVT");
4741    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
4742                                                        PPCISD::FCTIDUZ,
4743                      dl, MVT::f64, Src);
4744    break;
4745  }
4746
4747  // Convert the FP value to an int value through memory.
4748  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
4749    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
4750  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
4751  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
4752  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
4753
4754  // Emit a store to the stack slot.
4755  SDValue Chain;
4756  if (i32Stack) {
4757    MachineFunction &MF = DAG.getMachineFunction();
4758    MachineMemOperand *MMO =
4759      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
4760    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
4761    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
4762              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
4763              MVT::i32, MMO);
4764  } else
4765    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4766                         MPI, false, false, 0);
4767
4768  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4769  // add in a bias.
4770  if (Op.getValueType() == MVT::i32 && !i32Stack) {
4771    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4772                        DAG.getConstant(4, FIPtr.getValueType()));
4773    MPI = MachinePointerInfo();
4774  }
4775
4776  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
4777                     false, false, false, 0);
4778}
4779
4780SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
4781                                           SelectionDAG &DAG) const {
4782  DebugLoc dl = Op.getDebugLoc();
4783  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4784  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4785    return SDValue();
4786
4787  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4788         "UINT_TO_FP is supported only with FPCVT");
4789
4790  // If we have FCFIDS, then use it when converting to single-precision.
4791  // Otherwise, convert to double-prcision and then round.
4792  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4793                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4794                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
4795                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4796                    PPCISD::FCFIDU : PPCISD::FCFID);
4797  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4798                   MVT::f32 : MVT::f64;
4799
4800  if (Op.getOperand(0).getValueType() == MVT::i64) {
4801    SDValue SINT = Op.getOperand(0);
4802    // When converting to single-precision, we actually need to convert
4803    // to double-precision first and then round to single-precision.
4804    // To avoid double-rounding effects during that operation, we have
4805    // to prepare the input operand.  Bits that might be truncated when
4806    // converting to double-precision are replaced by a bit that won't
4807    // be lost at this stage, but is below the single-precision rounding
4808    // position.
4809    //
4810    // However, if -enable-unsafe-fp-math is in effect, accept double
4811    // rounding to avoid the extra overhead.
4812    if (Op.getValueType() == MVT::f32 &&
4813        !PPCSubTarget.hasFPCVT() &&
4814        !DAG.getTarget().Options.UnsafeFPMath) {
4815
4816      // Twiddle input to make sure the low 11 bits are zero.  (If this
4817      // is the case, we are guaranteed the value will fit into the 53 bit
4818      // mantissa of an IEEE double-precision value without rounding.)
4819      // If any of those low 11 bits were not zero originally, make sure
4820      // bit 12 (value 2048) is set instead, so that the final rounding
4821      // to single-precision gets the correct result.
4822      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4823                                  SINT, DAG.getConstant(2047, MVT::i64));
4824      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4825                          Round, DAG.getConstant(2047, MVT::i64));
4826      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4827      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4828                          Round, DAG.getConstant(-2048, MVT::i64));
4829
4830      // However, we cannot use that value unconditionally: if the magnitude
4831      // of the input value is small, the bit-twiddling we did above might
4832      // end up visibly changing the output.  Fortunately, in that case, we
4833      // don't need to twiddle bits since the original input will convert
4834      // exactly to double-precision floating-point already.  Therefore,
4835      // construct a conditional to use the original value if the top 11
4836      // bits are all sign-bit copies, and use the rounded value computed
4837      // above otherwise.
4838      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4839                                 SINT, DAG.getConstant(53, MVT::i32));
4840      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4841                         Cond, DAG.getConstant(1, MVT::i64));
4842      Cond = DAG.getSetCC(dl, MVT::i32,
4843                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4844
4845      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4846    }
4847
4848    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4849    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
4850
4851    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4852      FP = DAG.getNode(ISD::FP_ROUND, dl,
4853                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4854    return FP;
4855  }
4856
4857  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4858         "Unhandled INT_TO_FP type in custom expander!");
4859  // Since we only generate this in 64-bit mode, we can take advantage of
4860  // 64-bit registers.  In particular, sign extend the input value into the
4861  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4862  // then lfd it and fcfid it.
4863  MachineFunction &MF = DAG.getMachineFunction();
4864  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4865  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4866
4867  SDValue Ld;
4868  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
4869    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
4870    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4871
4872    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
4873                                 MachinePointerInfo::getFixedStack(FrameIdx),
4874                                 false, false, 0);
4875
4876    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
4877           "Expected an i32 store");
4878    MachineMemOperand *MMO =
4879      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4880                              MachineMemOperand::MOLoad, 4, 4);
4881    SDValue Ops[] = { Store, FIdx };
4882    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
4883                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
4884                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
4885                                 Ops, 2, MVT::i32, MMO);
4886  } else {
4887    assert(PPCSubTarget.isPPC64() &&
4888           "i32->FP without LFIWAX supported only on PPC64");
4889
4890    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4891    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4892
4893    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
4894                                Op.getOperand(0));
4895
4896    // STD the extended value into the stack slot.
4897    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
4898                                 MachinePointerInfo::getFixedStack(FrameIdx),
4899                                 false, false, 0);
4900
4901    // Load the value as a double.
4902    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
4903                     MachinePointerInfo::getFixedStack(FrameIdx),
4904                     false, false, false, 0);
4905  }
4906
4907  // FCFID it and return it.
4908  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
4909  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4910    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4911  return FP;
4912}
4913
4914SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4915                                            SelectionDAG &DAG) const {
4916  DebugLoc dl = Op.getDebugLoc();
4917  /*
4918   The rounding mode is in bits 30:31 of FPSR, and has the following
4919   settings:
4920     00 Round to nearest
4921     01 Round to 0
4922     10 Round to +inf
4923     11 Round to -inf
4924
4925  FLT_ROUNDS, on the other hand, expects the following:
4926    -1 Undefined
4927     0 Round to 0
4928     1 Round to nearest
4929     2 Round to +inf
4930     3 Round to -inf
4931
4932  To perform the conversion, we do:
4933    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4934  */
4935
4936  MachineFunction &MF = DAG.getMachineFunction();
4937  EVT VT = Op.getValueType();
4938  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4939  SDValue MFFSreg, InFlag;
4940
4941  // Save FP Control Word to register
4942  EVT NodeTys[] = {
4943    MVT::f64,    // return register
4944    MVT::Glue    // unused in this context
4945  };
4946  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4947
4948  // Save FP register to stack slot
4949  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4950  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4951  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4952                               StackSlot, MachinePointerInfo(), false, false,0);
4953
4954  // Load FP Control Word from low 32 bits of stack slot.
4955  SDValue Four = DAG.getConstant(4, PtrVT);
4956  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4957  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4958                            false, false, false, 0);
4959
4960  // Transform as necessary
4961  SDValue CWD1 =
4962    DAG.getNode(ISD::AND, dl, MVT::i32,
4963                CWD, DAG.getConstant(3, MVT::i32));
4964  SDValue CWD2 =
4965    DAG.getNode(ISD::SRL, dl, MVT::i32,
4966                DAG.getNode(ISD::AND, dl, MVT::i32,
4967                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4968                                        CWD, DAG.getConstant(3, MVT::i32)),
4969                            DAG.getConstant(3, MVT::i32)),
4970                DAG.getConstant(1, MVT::i32));
4971
4972  SDValue RetVal =
4973    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4974
4975  return DAG.getNode((VT.getSizeInBits() < 16 ?
4976                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4977}
4978
4979SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4980  EVT VT = Op.getValueType();
4981  unsigned BitWidth = VT.getSizeInBits();
4982  DebugLoc dl = Op.getDebugLoc();
4983  assert(Op.getNumOperands() == 3 &&
4984         VT == Op.getOperand(1).getValueType() &&
4985         "Unexpected SHL!");
4986
4987  // Expand into a bunch of logical ops.  Note that these ops
4988  // depend on the PPC behavior for oversized shift amounts.
4989  SDValue Lo = Op.getOperand(0);
4990  SDValue Hi = Op.getOperand(1);
4991  SDValue Amt = Op.getOperand(2);
4992  EVT AmtVT = Amt.getValueType();
4993
4994  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4995                             DAG.getConstant(BitWidth, AmtVT), Amt);
4996  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4997  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4998  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4999  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5000                             DAG.getConstant(-BitWidth, AmtVT));
5001  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
5002  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5003  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
5004  SDValue OutOps[] = { OutLo, OutHi };
5005  return DAG.getMergeValues(OutOps, 2, dl);
5006}
5007
5008SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5009  EVT VT = Op.getValueType();
5010  DebugLoc dl = Op.getDebugLoc();
5011  unsigned BitWidth = VT.getSizeInBits();
5012  assert(Op.getNumOperands() == 3 &&
5013         VT == Op.getOperand(1).getValueType() &&
5014         "Unexpected SRL!");
5015
5016  // Expand into a bunch of logical ops.  Note that these ops
5017  // depend on the PPC behavior for oversized shift amounts.
5018  SDValue Lo = Op.getOperand(0);
5019  SDValue Hi = Op.getOperand(1);
5020  SDValue Amt = Op.getOperand(2);
5021  EVT AmtVT = Amt.getValueType();
5022
5023  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5024                             DAG.getConstant(BitWidth, AmtVT), Amt);
5025  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5026  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5027  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5028  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5029                             DAG.getConstant(-BitWidth, AmtVT));
5030  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5031  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5032  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5033  SDValue OutOps[] = { OutLo, OutHi };
5034  return DAG.getMergeValues(OutOps, 2, dl);
5035}
5036
5037SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5038  DebugLoc dl = Op.getDebugLoc();
5039  EVT VT = Op.getValueType();
5040  unsigned BitWidth = VT.getSizeInBits();
5041  assert(Op.getNumOperands() == 3 &&
5042         VT == Op.getOperand(1).getValueType() &&
5043         "Unexpected SRA!");
5044
5045  // Expand into a bunch of logical ops, followed by a select_cc.
5046  SDValue Lo = Op.getOperand(0);
5047  SDValue Hi = Op.getOperand(1);
5048  SDValue Amt = Op.getOperand(2);
5049  EVT AmtVT = Amt.getValueType();
5050
5051  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5052                             DAG.getConstant(BitWidth, AmtVT), Amt);
5053  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5054  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5055  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5056  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5057                             DAG.getConstant(-BitWidth, AmtVT));
5058  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5059  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5060  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5061                                  Tmp4, Tmp6, ISD::SETLE);
5062  SDValue OutOps[] = { OutLo, OutHi };
5063  return DAG.getMergeValues(OutOps, 2, dl);
5064}
5065
5066//===----------------------------------------------------------------------===//
5067// Vector related lowering.
5068//
5069
5070/// BuildSplatI - Build a canonical splati of Val with an element size of
5071/// SplatSize.  Cast the result to VT.
5072static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5073                             SelectionDAG &DAG, DebugLoc dl) {
5074  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5075
5076  static const EVT VTys[] = { // canonical VT to use for each size.
5077    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5078  };
5079
5080  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5081
5082  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5083  if (Val == -1)
5084    SplatSize = 1;
5085
5086  EVT CanonicalVT = VTys[SplatSize-1];
5087
5088  // Build a canonical splat for this value.
5089  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5090  SmallVector<SDValue, 8> Ops;
5091  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5092  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5093                              &Ops[0], Ops.size());
5094  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5095}
5096
5097/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5098/// specified intrinsic ID.
5099static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5100                                SelectionDAG &DAG, DebugLoc dl,
5101                                EVT DestVT = MVT::Other) {
5102  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5103  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5104                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5105}
5106
5107/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5108/// specified intrinsic ID.
5109static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5110                                SDValue Op2, SelectionDAG &DAG,
5111                                DebugLoc dl, EVT DestVT = MVT::Other) {
5112  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5113  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5114                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5115}
5116
5117
5118/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5119/// amount.  The result has the specified value type.
5120static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5121                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
5122  // Force LHS/RHS to be the right type.
5123  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5124  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5125
5126  int Ops[16];
5127  for (unsigned i = 0; i != 16; ++i)
5128    Ops[i] = i + Amt;
5129  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5130  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5131}
5132
5133// If this is a case we can't handle, return null and let the default
5134// expansion code take care of it.  If we CAN select this case, and if it
5135// selects to a single instruction, return Op.  Otherwise, if we can codegen
5136// this case more efficiently than a constant pool load, lower it to the
5137// sequence of ops that should be used.
5138SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5139                                             SelectionDAG &DAG) const {
5140  DebugLoc dl = Op.getDebugLoc();
5141  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5142  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5143
5144  // Check if this is a splat of a constant value.
5145  APInt APSplatBits, APSplatUndef;
5146  unsigned SplatBitSize;
5147  bool HasAnyUndefs;
5148  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5149                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5150    return SDValue();
5151
5152  unsigned SplatBits = APSplatBits.getZExtValue();
5153  unsigned SplatUndef = APSplatUndef.getZExtValue();
5154  unsigned SplatSize = SplatBitSize / 8;
5155
5156  // First, handle single instruction cases.
5157
5158  // All zeros?
5159  if (SplatBits == 0) {
5160    // Canonicalize all zero vectors to be v4i32.
5161    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5162      SDValue Z = DAG.getConstant(0, MVT::i32);
5163      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5164      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5165    }
5166    return Op;
5167  }
5168
5169  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5170  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5171                    (32-SplatBitSize));
5172  if (SextVal >= -16 && SextVal <= 15)
5173    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5174
5175
5176  // Two instruction sequences.
5177
5178  // If this value is in the range [-32,30] and is even, use:
5179  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5180  // If this value is in the range [17,31] and is odd, use:
5181  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5182  // If this value is in the range [-31,-17] and is odd, use:
5183  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5184  // Note the last two are three-instruction sequences.
5185  if (SextVal >= -32 && SextVal <= 31) {
5186    // To avoid having these optimizations undone by constant folding,
5187    // we convert to a pseudo that will be expanded later into one of
5188    // the above forms.
5189    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5190    EVT VT = Op.getValueType();
5191    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5192    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5193    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5194  }
5195
5196  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5197  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5198  // for fneg/fabs.
5199  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5200    // Make -1 and vspltisw -1:
5201    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5202
5203    // Make the VSLW intrinsic, computing 0x8000_0000.
5204    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5205                                   OnesV, DAG, dl);
5206
5207    // xor by OnesV to invert it.
5208    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5209    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5210  }
5211
5212  // Check to see if this is a wide variety of vsplti*, binop self cases.
5213  static const signed char SplatCsts[] = {
5214    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5215    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5216  };
5217
5218  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5219    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5220    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5221    int i = SplatCsts[idx];
5222
5223    // Figure out what shift amount will be used by altivec if shifted by i in
5224    // this splat size.
5225    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5226
5227    // vsplti + shl self.
5228    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5229      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5230      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5231        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5232        Intrinsic::ppc_altivec_vslw
5233      };
5234      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5235      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5236    }
5237
5238    // vsplti + srl self.
5239    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5240      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5241      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5242        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5243        Intrinsic::ppc_altivec_vsrw
5244      };
5245      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5246      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5247    }
5248
5249    // vsplti + sra self.
5250    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5251      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5252      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5253        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5254        Intrinsic::ppc_altivec_vsraw
5255      };
5256      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5257      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5258    }
5259
5260    // vsplti + rol self.
5261    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5262                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5263      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5264      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5265        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5266        Intrinsic::ppc_altivec_vrlw
5267      };
5268      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5269      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5270    }
5271
5272    // t = vsplti c, result = vsldoi t, t, 1
5273    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5274      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5275      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5276    }
5277    // t = vsplti c, result = vsldoi t, t, 2
5278    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5279      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5280      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5281    }
5282    // t = vsplti c, result = vsldoi t, t, 3
5283    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5284      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5285      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5286    }
5287  }
5288
5289  return SDValue();
5290}
5291
5292/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5293/// the specified operations to build the shuffle.
5294static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5295                                      SDValue RHS, SelectionDAG &DAG,
5296                                      DebugLoc dl) {
5297  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5298  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5299  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5300
5301  enum {
5302    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5303    OP_VMRGHW,
5304    OP_VMRGLW,
5305    OP_VSPLTISW0,
5306    OP_VSPLTISW1,
5307    OP_VSPLTISW2,
5308    OP_VSPLTISW3,
5309    OP_VSLDOI4,
5310    OP_VSLDOI8,
5311    OP_VSLDOI12
5312  };
5313
5314  if (OpNum == OP_COPY) {
5315    if (LHSID == (1*9+2)*9+3) return LHS;
5316    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5317    return RHS;
5318  }
5319
5320  SDValue OpLHS, OpRHS;
5321  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5322  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5323
5324  int ShufIdxs[16];
5325  switch (OpNum) {
5326  default: llvm_unreachable("Unknown i32 permute!");
5327  case OP_VMRGHW:
5328    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5329    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5330    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5331    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5332    break;
5333  case OP_VMRGLW:
5334    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5335    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5336    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5337    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5338    break;
5339  case OP_VSPLTISW0:
5340    for (unsigned i = 0; i != 16; ++i)
5341      ShufIdxs[i] = (i&3)+0;
5342    break;
5343  case OP_VSPLTISW1:
5344    for (unsigned i = 0; i != 16; ++i)
5345      ShufIdxs[i] = (i&3)+4;
5346    break;
5347  case OP_VSPLTISW2:
5348    for (unsigned i = 0; i != 16; ++i)
5349      ShufIdxs[i] = (i&3)+8;
5350    break;
5351  case OP_VSPLTISW3:
5352    for (unsigned i = 0; i != 16; ++i)
5353      ShufIdxs[i] = (i&3)+12;
5354    break;
5355  case OP_VSLDOI4:
5356    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5357  case OP_VSLDOI8:
5358    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5359  case OP_VSLDOI12:
5360    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5361  }
5362  EVT VT = OpLHS.getValueType();
5363  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5364  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5365  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5366  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5367}
5368
5369/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5370/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5371/// return the code it can be lowered into.  Worst case, it can always be
5372/// lowered into a vperm.
5373SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5374                                               SelectionDAG &DAG) const {
5375  DebugLoc dl = Op.getDebugLoc();
5376  SDValue V1 = Op.getOperand(0);
5377  SDValue V2 = Op.getOperand(1);
5378  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5379  EVT VT = Op.getValueType();
5380
5381  // Cases that are handled by instructions that take permute immediates
5382  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5383  // selected by the instruction selector.
5384  if (V2.getOpcode() == ISD::UNDEF) {
5385    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5386        PPC::isSplatShuffleMask(SVOp, 2) ||
5387        PPC::isSplatShuffleMask(SVOp, 4) ||
5388        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5389        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5390        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5391        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5392        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5393        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5394        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5395        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5396        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5397      return Op;
5398    }
5399  }
5400
5401  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5402  // and produce a fixed permutation.  If any of these match, do not lower to
5403  // VPERM.
5404  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5405      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5406      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5407      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5408      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5409      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5410      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5411      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5412      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5413    return Op;
5414
5415  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5416  // perfect shuffle table to emit an optimal matching sequence.
5417  ArrayRef<int> PermMask = SVOp->getMask();
5418
5419  unsigned PFIndexes[4];
5420  bool isFourElementShuffle = true;
5421  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5422    unsigned EltNo = 8;   // Start out undef.
5423    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5424      if (PermMask[i*4+j] < 0)
5425        continue;   // Undef, ignore it.
5426
5427      unsigned ByteSource = PermMask[i*4+j];
5428      if ((ByteSource & 3) != j) {
5429        isFourElementShuffle = false;
5430        break;
5431      }
5432
5433      if (EltNo == 8) {
5434        EltNo = ByteSource/4;
5435      } else if (EltNo != ByteSource/4) {
5436        isFourElementShuffle = false;
5437        break;
5438      }
5439    }
5440    PFIndexes[i] = EltNo;
5441  }
5442
5443  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5444  // perfect shuffle vector to determine if it is cost effective to do this as
5445  // discrete instructions, or whether we should use a vperm.
5446  if (isFourElementShuffle) {
5447    // Compute the index in the perfect shuffle table.
5448    unsigned PFTableIndex =
5449      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5450
5451    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5452    unsigned Cost  = (PFEntry >> 30);
5453
5454    // Determining when to avoid vperm is tricky.  Many things affect the cost
5455    // of vperm, particularly how many times the perm mask needs to be computed.
5456    // For example, if the perm mask can be hoisted out of a loop or is already
5457    // used (perhaps because there are multiple permutes with the same shuffle
5458    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5459    // the loop requires an extra register.
5460    //
5461    // As a compromise, we only emit discrete instructions if the shuffle can be
5462    // generated in 3 or fewer operations.  When we have loop information
5463    // available, if this block is within a loop, we should avoid using vperm
5464    // for 3-operation perms and use a constant pool load instead.
5465    if (Cost < 3)
5466      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5467  }
5468
5469  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5470  // vector that will get spilled to the constant pool.
5471  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5472
5473  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5474  // that it is in input element units, not in bytes.  Convert now.
5475  EVT EltVT = V1.getValueType().getVectorElementType();
5476  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5477
5478  SmallVector<SDValue, 16> ResultMask;
5479  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5480    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5481
5482    for (unsigned j = 0; j != BytesPerElement; ++j)
5483      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5484                                           MVT::i32));
5485  }
5486
5487  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5488                                    &ResultMask[0], ResultMask.size());
5489  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5490}
5491
5492/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5493/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5494/// information about the intrinsic.
5495static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5496                                  bool &isDot) {
5497  unsigned IntrinsicID =
5498    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5499  CompareOpc = -1;
5500  isDot = false;
5501  switch (IntrinsicID) {
5502  default: return false;
5503    // Comparison predicates.
5504  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5505  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5506  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5507  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5508  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5509  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5510  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5511  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5512  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5513  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5514  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5515  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5516  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5517
5518    // Normal Comparisons.
5519  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5520  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5521  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5522  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5523  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5524  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5525  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5526  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5527  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5528  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5529  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5530  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5531  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5532  }
5533  return true;
5534}
5535
5536/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5537/// lower, do it, otherwise return null.
5538SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5539                                                   SelectionDAG &DAG) const {
5540  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5541  // opcode number of the comparison.
5542  DebugLoc dl = Op.getDebugLoc();
5543  int CompareOpc;
5544  bool isDot;
5545  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5546    return SDValue();    // Don't custom lower most intrinsics.
5547
5548  // If this is a non-dot comparison, make the VCMP node and we are done.
5549  if (!isDot) {
5550    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5551                              Op.getOperand(1), Op.getOperand(2),
5552                              DAG.getConstant(CompareOpc, MVT::i32));
5553    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5554  }
5555
5556  // Create the PPCISD altivec 'dot' comparison node.
5557  SDValue Ops[] = {
5558    Op.getOperand(2),  // LHS
5559    Op.getOperand(3),  // RHS
5560    DAG.getConstant(CompareOpc, MVT::i32)
5561  };
5562  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5563  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5564
5565  // Now that we have the comparison, emit a copy from the CR to a GPR.
5566  // This is flagged to the above dot comparison.
5567  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5568                                DAG.getRegister(PPC::CR6, MVT::i32),
5569                                CompNode.getValue(1));
5570
5571  // Unpack the result based on how the target uses it.
5572  unsigned BitNo;   // Bit # of CR6.
5573  bool InvertBit;   // Invert result?
5574  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5575  default:  // Can't happen, don't crash on invalid number though.
5576  case 0:   // Return the value of the EQ bit of CR6.
5577    BitNo = 0; InvertBit = false;
5578    break;
5579  case 1:   // Return the inverted value of the EQ bit of CR6.
5580    BitNo = 0; InvertBit = true;
5581    break;
5582  case 2:   // Return the value of the LT bit of CR6.
5583    BitNo = 2; InvertBit = false;
5584    break;
5585  case 3:   // Return the inverted value of the LT bit of CR6.
5586    BitNo = 2; InvertBit = true;
5587    break;
5588  }
5589
5590  // Shift the bit into the low position.
5591  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5592                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5593  // Isolate the bit.
5594  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5595                      DAG.getConstant(1, MVT::i32));
5596
5597  // If we are supposed to, toggle the bit.
5598  if (InvertBit)
5599    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5600                        DAG.getConstant(1, MVT::i32));
5601  return Flags;
5602}
5603
5604SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5605                                                   SelectionDAG &DAG) const {
5606  DebugLoc dl = Op.getDebugLoc();
5607  // Create a stack slot that is 16-byte aligned.
5608  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5609  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5610  EVT PtrVT = getPointerTy();
5611  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5612
5613  // Store the input value into Value#0 of the stack slot.
5614  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5615                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5616                               false, false, 0);
5617  // Load it out.
5618  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5619                     false, false, false, 0);
5620}
5621
5622SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5623  DebugLoc dl = Op.getDebugLoc();
5624  if (Op.getValueType() == MVT::v4i32) {
5625    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5626
5627    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5628    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5629
5630    SDValue RHSSwap =   // = vrlw RHS, 16
5631      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5632
5633    // Shrinkify inputs to v8i16.
5634    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5635    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5636    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5637
5638    // Low parts multiplied together, generating 32-bit results (we ignore the
5639    // top parts).
5640    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5641                                        LHS, RHS, DAG, dl, MVT::v4i32);
5642
5643    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5644                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5645    // Shift the high parts up 16 bits.
5646    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5647                              Neg16, DAG, dl);
5648    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5649  } else if (Op.getValueType() == MVT::v8i16) {
5650    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5651
5652    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5653
5654    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5655                            LHS, RHS, Zero, DAG, dl);
5656  } else if (Op.getValueType() == MVT::v16i8) {
5657    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5658
5659    // Multiply the even 8-bit parts, producing 16-bit sums.
5660    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5661                                           LHS, RHS, DAG, dl, MVT::v8i16);
5662    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5663
5664    // Multiply the odd 8-bit parts, producing 16-bit sums.
5665    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5666                                          LHS, RHS, DAG, dl, MVT::v8i16);
5667    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5668
5669    // Merge the results together.
5670    int Ops[16];
5671    for (unsigned i = 0; i != 8; ++i) {
5672      Ops[i*2  ] = 2*i+1;
5673      Ops[i*2+1] = 2*i+1+16;
5674    }
5675    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5676  } else {
5677    llvm_unreachable("Unknown mul to lower!");
5678  }
5679}
5680
5681/// LowerOperation - Provide custom lowering hooks for some operations.
5682///
5683SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5684  switch (Op.getOpcode()) {
5685  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5686  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5687  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5688  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5689  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5690  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5691  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5692  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5693  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5694  case ISD::VASTART:
5695    return LowerVASTART(Op, DAG, PPCSubTarget);
5696
5697  case ISD::VAARG:
5698    return LowerVAARG(Op, DAG, PPCSubTarget);
5699
5700  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5701  case ISD::DYNAMIC_STACKALLOC:
5702    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5703
5704  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5705  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5706
5707  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5708  case ISD::FP_TO_UINT:
5709  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5710                                                       Op.getDebugLoc());
5711  case ISD::UINT_TO_FP:
5712  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
5713  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5714
5715  // Lower 64-bit shifts.
5716  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5717  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5718  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5719
5720  // Vector-related lowering.
5721  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5722  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5723  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5724  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5725  case ISD::MUL:                return LowerMUL(Op, DAG);
5726
5727  // Frame & Return address.
5728  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5729  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5730  }
5731}
5732
5733void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5734                                           SmallVectorImpl<SDValue>&Results,
5735                                           SelectionDAG &DAG) const {
5736  const TargetMachine &TM = getTargetMachine();
5737  DebugLoc dl = N->getDebugLoc();
5738  switch (N->getOpcode()) {
5739  default:
5740    llvm_unreachable("Do not know how to custom type legalize this operation!");
5741  case ISD::VAARG: {
5742    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5743        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5744      return;
5745
5746    EVT VT = N->getValueType(0);
5747
5748    if (VT == MVT::i64) {
5749      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5750
5751      Results.push_back(NewNode);
5752      Results.push_back(NewNode.getValue(1));
5753    }
5754    return;
5755  }
5756  case ISD::FP_ROUND_INREG: {
5757    assert(N->getValueType(0) == MVT::ppcf128);
5758    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5759    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5760                             MVT::f64, N->getOperand(0),
5761                             DAG.getIntPtrConstant(0));
5762    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5763                             MVT::f64, N->getOperand(0),
5764                             DAG.getIntPtrConstant(1));
5765
5766    // Add the two halves of the long double in round-to-zero mode.
5767    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5768
5769    // We know the low half is about to be thrown away, so just use something
5770    // convenient.
5771    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5772                                FPreg, FPreg));
5773    return;
5774  }
5775  case ISD::FP_TO_SINT:
5776    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5777    return;
5778  }
5779}
5780
5781
5782//===----------------------------------------------------------------------===//
5783//  Other Lowering Code
5784//===----------------------------------------------------------------------===//
5785
5786MachineBasicBlock *
5787PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5788                                    bool is64bit, unsigned BinOpcode) const {
5789  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5790  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5791
5792  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5793  MachineFunction *F = BB->getParent();
5794  MachineFunction::iterator It = BB;
5795  ++It;
5796
5797  unsigned dest = MI->getOperand(0).getReg();
5798  unsigned ptrA = MI->getOperand(1).getReg();
5799  unsigned ptrB = MI->getOperand(2).getReg();
5800  unsigned incr = MI->getOperand(3).getReg();
5801  DebugLoc dl = MI->getDebugLoc();
5802
5803  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5804  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5805  F->insert(It, loopMBB);
5806  F->insert(It, exitMBB);
5807  exitMBB->splice(exitMBB->begin(), BB,
5808                  llvm::next(MachineBasicBlock::iterator(MI)),
5809                  BB->end());
5810  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5811
5812  MachineRegisterInfo &RegInfo = F->getRegInfo();
5813  unsigned TmpReg = (!BinOpcode) ? incr :
5814    RegInfo.createVirtualRegister(
5815       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5816                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5817
5818  //  thisMBB:
5819  //   ...
5820  //   fallthrough --> loopMBB
5821  BB->addSuccessor(loopMBB);
5822
5823  //  loopMBB:
5824  //   l[wd]arx dest, ptr
5825  //   add r0, dest, incr
5826  //   st[wd]cx. r0, ptr
5827  //   bne- loopMBB
5828  //   fallthrough --> exitMBB
5829  BB = loopMBB;
5830  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5831    .addReg(ptrA).addReg(ptrB);
5832  if (BinOpcode)
5833    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5834  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5835    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5836  BuildMI(BB, dl, TII->get(PPC::BCC))
5837    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5838  BB->addSuccessor(loopMBB);
5839  BB->addSuccessor(exitMBB);
5840
5841  //  exitMBB:
5842  //   ...
5843  BB = exitMBB;
5844  return BB;
5845}
5846
5847MachineBasicBlock *
5848PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5849                                            MachineBasicBlock *BB,
5850                                            bool is8bit,    // operation
5851                                            unsigned BinOpcode) const {
5852  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5853  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5854  // In 64 bit mode we have to use 64 bits for addresses, even though the
5855  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5856  // registers without caring whether they're 32 or 64, but here we're
5857  // doing actual arithmetic on the addresses.
5858  bool is64bit = PPCSubTarget.isPPC64();
5859  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5860
5861  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5862  MachineFunction *F = BB->getParent();
5863  MachineFunction::iterator It = BB;
5864  ++It;
5865
5866  unsigned dest = MI->getOperand(0).getReg();
5867  unsigned ptrA = MI->getOperand(1).getReg();
5868  unsigned ptrB = MI->getOperand(2).getReg();
5869  unsigned incr = MI->getOperand(3).getReg();
5870  DebugLoc dl = MI->getDebugLoc();
5871
5872  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5873  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5874  F->insert(It, loopMBB);
5875  F->insert(It, exitMBB);
5876  exitMBB->splice(exitMBB->begin(), BB,
5877                  llvm::next(MachineBasicBlock::iterator(MI)),
5878                  BB->end());
5879  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5880
5881  MachineRegisterInfo &RegInfo = F->getRegInfo();
5882  const TargetRegisterClass *RC =
5883    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5884              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5885  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5886  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5887  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5888  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5889  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5890  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5891  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5892  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5893  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5894  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5895  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5896  unsigned Ptr1Reg;
5897  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5898
5899  //  thisMBB:
5900  //   ...
5901  //   fallthrough --> loopMBB
5902  BB->addSuccessor(loopMBB);
5903
5904  // The 4-byte load must be aligned, while a char or short may be
5905  // anywhere in the word.  Hence all this nasty bookkeeping code.
5906  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5907  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5908  //   xori shift, shift1, 24 [16]
5909  //   rlwinm ptr, ptr1, 0, 0, 29
5910  //   slw incr2, incr, shift
5911  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5912  //   slw mask, mask2, shift
5913  //  loopMBB:
5914  //   lwarx tmpDest, ptr
5915  //   add tmp, tmpDest, incr2
5916  //   andc tmp2, tmpDest, mask
5917  //   and tmp3, tmp, mask
5918  //   or tmp4, tmp3, tmp2
5919  //   stwcx. tmp4, ptr
5920  //   bne- loopMBB
5921  //   fallthrough --> exitMBB
5922  //   srw dest, tmpDest, shift
5923  if (ptrA != ZeroReg) {
5924    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5925    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5926      .addReg(ptrA).addReg(ptrB);
5927  } else {
5928    Ptr1Reg = ptrB;
5929  }
5930  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5931      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5932  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5933      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5934  if (is64bit)
5935    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5936      .addReg(Ptr1Reg).addImm(0).addImm(61);
5937  else
5938    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5939      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5940  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5941      .addReg(incr).addReg(ShiftReg);
5942  if (is8bit)
5943    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5944  else {
5945    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5946    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5947  }
5948  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5949      .addReg(Mask2Reg).addReg(ShiftReg);
5950
5951  BB = loopMBB;
5952  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5953    .addReg(ZeroReg).addReg(PtrReg);
5954  if (BinOpcode)
5955    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5956      .addReg(Incr2Reg).addReg(TmpDestReg);
5957  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5958    .addReg(TmpDestReg).addReg(MaskReg);
5959  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5960    .addReg(TmpReg).addReg(MaskReg);
5961  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5962    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5963  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5964    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5965  BuildMI(BB, dl, TII->get(PPC::BCC))
5966    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5967  BB->addSuccessor(loopMBB);
5968  BB->addSuccessor(exitMBB);
5969
5970  //  exitMBB:
5971  //   ...
5972  BB = exitMBB;
5973  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5974    .addReg(ShiftReg);
5975  return BB;
5976}
5977
5978llvm::MachineBasicBlock*
5979PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
5980                                    MachineBasicBlock *MBB) const {
5981  DebugLoc DL = MI->getDebugLoc();
5982  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5983
5984  MachineFunction *MF = MBB->getParent();
5985  MachineRegisterInfo &MRI = MF->getRegInfo();
5986
5987  const BasicBlock *BB = MBB->getBasicBlock();
5988  MachineFunction::iterator I = MBB;
5989  ++I;
5990
5991  // Memory Reference
5992  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
5993  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
5994
5995  unsigned DstReg = MI->getOperand(0).getReg();
5996  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
5997  assert(RC->hasType(MVT::i32) && "Invalid destination!");
5998  unsigned mainDstReg = MRI.createVirtualRegister(RC);
5999  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6000
6001  MVT PVT = getPointerTy();
6002  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6003         "Invalid Pointer Size!");
6004  // For v = setjmp(buf), we generate
6005  //
6006  // thisMBB:
6007  //  SjLjSetup mainMBB
6008  //  bl mainMBB
6009  //  v_restore = 1
6010  //  b sinkMBB
6011  //
6012  // mainMBB:
6013  //  buf[LabelOffset] = LR
6014  //  v_main = 0
6015  //
6016  // sinkMBB:
6017  //  v = phi(main, restore)
6018  //
6019
6020  MachineBasicBlock *thisMBB = MBB;
6021  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6022  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6023  MF->insert(I, mainMBB);
6024  MF->insert(I, sinkMBB);
6025
6026  MachineInstrBuilder MIB;
6027
6028  // Transfer the remainder of BB and its successor edges to sinkMBB.
6029  sinkMBB->splice(sinkMBB->begin(), MBB,
6030                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
6031  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6032
6033  // Note that the structure of the jmp_buf used here is not compatible
6034  // with that used by libc, and is not designed to be. Specifically, it
6035  // stores only those 'reserved' registers that LLVM does not otherwise
6036  // understand how to spill. Also, by convention, by the time this
6037  // intrinsic is called, Clang has already stored the frame address in the
6038  // first slot of the buffer and stack address in the third. Following the
6039  // X86 target code, we'll store the jump address in the second slot. We also
6040  // need to save the TOC pointer (R2) to handle jumps between shared
6041  // libraries, and that will be stored in the fourth slot. The thread
6042  // identifier (R13) is not affected.
6043
6044  // thisMBB:
6045  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6046  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6047
6048  // Prepare IP either in reg.
6049  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6050  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6051  unsigned BufReg = MI->getOperand(1).getReg();
6052
6053  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6054    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6055            .addReg(PPC::X2)
6056            .addImm(TOCOffset / 4)
6057            .addReg(BufReg);
6058
6059    MIB.setMemRefs(MMOBegin, MMOEnd);
6060  }
6061
6062  // Setup
6063  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCL)).addMBB(mainMBB);
6064  MIB.addRegMask(PPCRegInfo->getNoPreservedMask());
6065
6066  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6067
6068  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6069          .addMBB(mainMBB);
6070  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6071
6072  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6073  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6074
6075  // mainMBB:
6076  //  mainDstReg = 0
6077  MIB = BuildMI(mainMBB, DL,
6078    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6079
6080  // Store IP
6081  if (PPCSubTarget.isPPC64()) {
6082    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6083            .addReg(LabelReg)
6084            .addImm(LabelOffset / 4)
6085            .addReg(BufReg);
6086  } else {
6087    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6088            .addReg(LabelReg)
6089            .addImm(LabelOffset)
6090            .addReg(BufReg);
6091  }
6092
6093  MIB.setMemRefs(MMOBegin, MMOEnd);
6094
6095  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6096  mainMBB->addSuccessor(sinkMBB);
6097
6098  // sinkMBB:
6099  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6100          TII->get(PPC::PHI), DstReg)
6101    .addReg(mainDstReg).addMBB(mainMBB)
6102    .addReg(restoreDstReg).addMBB(thisMBB);
6103
6104  MI->eraseFromParent();
6105  return sinkMBB;
6106}
6107
6108MachineBasicBlock *
6109PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6110                                     MachineBasicBlock *MBB) const {
6111  DebugLoc DL = MI->getDebugLoc();
6112  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6113
6114  MachineFunction *MF = MBB->getParent();
6115  MachineRegisterInfo &MRI = MF->getRegInfo();
6116
6117  // Memory Reference
6118  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6119  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6120
6121  MVT PVT = getPointerTy();
6122  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6123         "Invalid Pointer Size!");
6124
6125  const TargetRegisterClass *RC =
6126    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6127  unsigned Tmp = MRI.createVirtualRegister(RC);
6128  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6129  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6130  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6131
6132  MachineInstrBuilder MIB;
6133
6134  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6135  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6136  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6137
6138  unsigned BufReg = MI->getOperand(0).getReg();
6139
6140  // Reload FP (the jumped-to function may not have had a
6141  // frame pointer, and if so, then its r31 will be restored
6142  // as necessary).
6143  if (PVT == MVT::i64) {
6144    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6145            .addImm(0)
6146            .addReg(BufReg);
6147  } else {
6148    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6149            .addImm(0)
6150            .addReg(BufReg);
6151  }
6152  MIB.setMemRefs(MMOBegin, MMOEnd);
6153
6154  // Reload IP
6155  if (PVT == MVT::i64) {
6156    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6157            .addImm(LabelOffset / 4)
6158            .addReg(BufReg);
6159  } else {
6160    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6161            .addImm(LabelOffset)
6162            .addReg(BufReg);
6163  }
6164  MIB.setMemRefs(MMOBegin, MMOEnd);
6165
6166  // Reload SP
6167  if (PVT == MVT::i64) {
6168    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6169            .addImm(SPOffset / 4)
6170            .addReg(BufReg);
6171  } else {
6172    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6173            .addImm(SPOffset)
6174            .addReg(BufReg);
6175  }
6176  MIB.setMemRefs(MMOBegin, MMOEnd);
6177
6178  // FIXME: When we also support base pointers, that register must also be
6179  // restored here.
6180
6181  // Reload TOC
6182  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6183    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6184            .addImm(TOCOffset / 4)
6185            .addReg(BufReg);
6186
6187    MIB.setMemRefs(MMOBegin, MMOEnd);
6188  }
6189
6190  // Jump
6191  BuildMI(*MBB, MI, DL,
6192          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6193  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6194
6195  MI->eraseFromParent();
6196  return MBB;
6197}
6198
6199MachineBasicBlock *
6200PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6201                                               MachineBasicBlock *BB) const {
6202  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6203      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6204    return emitEHSjLjSetJmp(MI, BB);
6205  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6206             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6207    return emitEHSjLjLongJmp(MI, BB);
6208  }
6209
6210  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6211
6212  // To "insert" these instructions we actually have to insert their
6213  // control-flow patterns.
6214  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6215  MachineFunction::iterator It = BB;
6216  ++It;
6217
6218  MachineFunction *F = BB->getParent();
6219
6220  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6221                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6222    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
6223                                         PPC::ISEL8 : PPC::ISEL;
6224    unsigned SelectPred = MI->getOperand(4).getImm();
6225    DebugLoc dl = MI->getDebugLoc();
6226
6227    unsigned SubIdx;
6228    bool SwapOps;
6229    switch (SelectPred) {
6230    default: llvm_unreachable("invalid predicate for isel");
6231    case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
6232    case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
6233    case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
6234    case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
6235    case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
6236    case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
6237    case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
6238    case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
6239    }
6240
6241    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
6242      .addReg(MI->getOperand(SwapOps? 3 : 2).getReg())
6243      .addReg(MI->getOperand(SwapOps? 2 : 3).getReg())
6244      .addReg(MI->getOperand(1).getReg(), 0, SubIdx);
6245  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6246             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6247             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6248             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6249             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6250
6251
6252    // The incoming instruction knows the destination vreg to set, the
6253    // condition code register to branch on, the true/false values to
6254    // select between, and a branch opcode to use.
6255
6256    //  thisMBB:
6257    //  ...
6258    //   TrueVal = ...
6259    //   cmpTY ccX, r1, r2
6260    //   bCC copy1MBB
6261    //   fallthrough --> copy0MBB
6262    MachineBasicBlock *thisMBB = BB;
6263    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6264    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6265    unsigned SelectPred = MI->getOperand(4).getImm();
6266    DebugLoc dl = MI->getDebugLoc();
6267    F->insert(It, copy0MBB);
6268    F->insert(It, sinkMBB);
6269
6270    // Transfer the remainder of BB and its successor edges to sinkMBB.
6271    sinkMBB->splice(sinkMBB->begin(), BB,
6272                    llvm::next(MachineBasicBlock::iterator(MI)),
6273                    BB->end());
6274    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6275
6276    // Next, add the true and fallthrough blocks as its successors.
6277    BB->addSuccessor(copy0MBB);
6278    BB->addSuccessor(sinkMBB);
6279
6280    BuildMI(BB, dl, TII->get(PPC::BCC))
6281      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6282
6283    //  copy0MBB:
6284    //   %FalseValue = ...
6285    //   # fallthrough to sinkMBB
6286    BB = copy0MBB;
6287
6288    // Update machine-CFG edges
6289    BB->addSuccessor(sinkMBB);
6290
6291    //  sinkMBB:
6292    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6293    //  ...
6294    BB = sinkMBB;
6295    BuildMI(*BB, BB->begin(), dl,
6296            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6297      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6298      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6299  }
6300  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6301    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6302  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6303    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6304  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6305    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6306  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6307    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6308
6309  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6310    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6311  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6312    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6313  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6314    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6315  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6316    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6317
6318  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6319    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6320  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6321    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6322  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6323    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6324  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6325    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6326
6327  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6328    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6329  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6330    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6331  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6332    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6333  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6334    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6335
6336  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6337    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6338  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6339    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6340  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6341    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6342  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6343    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6344
6345  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6346    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6347  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6348    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6349  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6350    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6351  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6352    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6353
6354  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6355    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6356  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6357    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6358  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6359    BB = EmitAtomicBinary(MI, BB, false, 0);
6360  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6361    BB = EmitAtomicBinary(MI, BB, true, 0);
6362
6363  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6364           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6365    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6366
6367    unsigned dest   = MI->getOperand(0).getReg();
6368    unsigned ptrA   = MI->getOperand(1).getReg();
6369    unsigned ptrB   = MI->getOperand(2).getReg();
6370    unsigned oldval = MI->getOperand(3).getReg();
6371    unsigned newval = MI->getOperand(4).getReg();
6372    DebugLoc dl     = MI->getDebugLoc();
6373
6374    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6375    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6376    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6377    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6378    F->insert(It, loop1MBB);
6379    F->insert(It, loop2MBB);
6380    F->insert(It, midMBB);
6381    F->insert(It, exitMBB);
6382    exitMBB->splice(exitMBB->begin(), BB,
6383                    llvm::next(MachineBasicBlock::iterator(MI)),
6384                    BB->end());
6385    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6386
6387    //  thisMBB:
6388    //   ...
6389    //   fallthrough --> loopMBB
6390    BB->addSuccessor(loop1MBB);
6391
6392    // loop1MBB:
6393    //   l[wd]arx dest, ptr
6394    //   cmp[wd] dest, oldval
6395    //   bne- midMBB
6396    // loop2MBB:
6397    //   st[wd]cx. newval, ptr
6398    //   bne- loopMBB
6399    //   b exitBB
6400    // midMBB:
6401    //   st[wd]cx. dest, ptr
6402    // exitBB:
6403    BB = loop1MBB;
6404    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6405      .addReg(ptrA).addReg(ptrB);
6406    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6407      .addReg(oldval).addReg(dest);
6408    BuildMI(BB, dl, TII->get(PPC::BCC))
6409      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6410    BB->addSuccessor(loop2MBB);
6411    BB->addSuccessor(midMBB);
6412
6413    BB = loop2MBB;
6414    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6415      .addReg(newval).addReg(ptrA).addReg(ptrB);
6416    BuildMI(BB, dl, TII->get(PPC::BCC))
6417      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6418    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6419    BB->addSuccessor(loop1MBB);
6420    BB->addSuccessor(exitMBB);
6421
6422    BB = midMBB;
6423    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6424      .addReg(dest).addReg(ptrA).addReg(ptrB);
6425    BB->addSuccessor(exitMBB);
6426
6427    //  exitMBB:
6428    //   ...
6429    BB = exitMBB;
6430  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6431             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6432    // We must use 64-bit registers for addresses when targeting 64-bit,
6433    // since we're actually doing arithmetic on them.  Other registers
6434    // can be 32-bit.
6435    bool is64bit = PPCSubTarget.isPPC64();
6436    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6437
6438    unsigned dest   = MI->getOperand(0).getReg();
6439    unsigned ptrA   = MI->getOperand(1).getReg();
6440    unsigned ptrB   = MI->getOperand(2).getReg();
6441    unsigned oldval = MI->getOperand(3).getReg();
6442    unsigned newval = MI->getOperand(4).getReg();
6443    DebugLoc dl     = MI->getDebugLoc();
6444
6445    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6446    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6447    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6448    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6449    F->insert(It, loop1MBB);
6450    F->insert(It, loop2MBB);
6451    F->insert(It, midMBB);
6452    F->insert(It, exitMBB);
6453    exitMBB->splice(exitMBB->begin(), BB,
6454                    llvm::next(MachineBasicBlock::iterator(MI)),
6455                    BB->end());
6456    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6457
6458    MachineRegisterInfo &RegInfo = F->getRegInfo();
6459    const TargetRegisterClass *RC =
6460      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6461                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6462    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6463    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6464    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6465    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6466    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6467    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6468    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6469    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6470    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6471    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6472    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6473    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6474    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6475    unsigned Ptr1Reg;
6476    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6477    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6478    //  thisMBB:
6479    //   ...
6480    //   fallthrough --> loopMBB
6481    BB->addSuccessor(loop1MBB);
6482
6483    // The 4-byte load must be aligned, while a char or short may be
6484    // anywhere in the word.  Hence all this nasty bookkeeping code.
6485    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6486    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6487    //   xori shift, shift1, 24 [16]
6488    //   rlwinm ptr, ptr1, 0, 0, 29
6489    //   slw newval2, newval, shift
6490    //   slw oldval2, oldval,shift
6491    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6492    //   slw mask, mask2, shift
6493    //   and newval3, newval2, mask
6494    //   and oldval3, oldval2, mask
6495    // loop1MBB:
6496    //   lwarx tmpDest, ptr
6497    //   and tmp, tmpDest, mask
6498    //   cmpw tmp, oldval3
6499    //   bne- midMBB
6500    // loop2MBB:
6501    //   andc tmp2, tmpDest, mask
6502    //   or tmp4, tmp2, newval3
6503    //   stwcx. tmp4, ptr
6504    //   bne- loop1MBB
6505    //   b exitBB
6506    // midMBB:
6507    //   stwcx. tmpDest, ptr
6508    // exitBB:
6509    //   srw dest, tmpDest, shift
6510    if (ptrA != ZeroReg) {
6511      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6512      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6513        .addReg(ptrA).addReg(ptrB);
6514    } else {
6515      Ptr1Reg = ptrB;
6516    }
6517    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6518        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6519    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6520        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6521    if (is64bit)
6522      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6523        .addReg(Ptr1Reg).addImm(0).addImm(61);
6524    else
6525      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6526        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6527    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6528        .addReg(newval).addReg(ShiftReg);
6529    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6530        .addReg(oldval).addReg(ShiftReg);
6531    if (is8bit)
6532      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6533    else {
6534      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6535      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6536        .addReg(Mask3Reg).addImm(65535);
6537    }
6538    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6539        .addReg(Mask2Reg).addReg(ShiftReg);
6540    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6541        .addReg(NewVal2Reg).addReg(MaskReg);
6542    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6543        .addReg(OldVal2Reg).addReg(MaskReg);
6544
6545    BB = loop1MBB;
6546    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6547        .addReg(ZeroReg).addReg(PtrReg);
6548    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6549        .addReg(TmpDestReg).addReg(MaskReg);
6550    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6551        .addReg(TmpReg).addReg(OldVal3Reg);
6552    BuildMI(BB, dl, TII->get(PPC::BCC))
6553        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6554    BB->addSuccessor(loop2MBB);
6555    BB->addSuccessor(midMBB);
6556
6557    BB = loop2MBB;
6558    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6559        .addReg(TmpDestReg).addReg(MaskReg);
6560    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6561        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6562    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6563        .addReg(ZeroReg).addReg(PtrReg);
6564    BuildMI(BB, dl, TII->get(PPC::BCC))
6565      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6566    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6567    BB->addSuccessor(loop1MBB);
6568    BB->addSuccessor(exitMBB);
6569
6570    BB = midMBB;
6571    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6572      .addReg(ZeroReg).addReg(PtrReg);
6573    BB->addSuccessor(exitMBB);
6574
6575    //  exitMBB:
6576    //   ...
6577    BB = exitMBB;
6578    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6579      .addReg(ShiftReg);
6580  } else if (MI->getOpcode() == PPC::FADDrtz) {
6581    // This pseudo performs an FADD with rounding mode temporarily forced
6582    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6583    // is not modeled at the SelectionDAG level.
6584    unsigned Dest = MI->getOperand(0).getReg();
6585    unsigned Src1 = MI->getOperand(1).getReg();
6586    unsigned Src2 = MI->getOperand(2).getReg();
6587    DebugLoc dl   = MI->getDebugLoc();
6588
6589    MachineRegisterInfo &RegInfo = F->getRegInfo();
6590    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6591
6592    // Save FPSCR value.
6593    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6594
6595    // Set rounding mode to round-to-zero.
6596    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6597    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6598
6599    // Perform addition.
6600    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6601
6602    // Restore FPSCR value.
6603    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6604  } else if (MI->getOpcode() == PPC::FRINDrint ||
6605             MI->getOpcode() == PPC::FRINSrint) {
6606    bool isf32 = MI->getOpcode() == PPC::FRINSrint;
6607    unsigned Dest = MI->getOperand(0).getReg();
6608    unsigned Src = MI->getOperand(1).getReg();
6609    DebugLoc dl   = MI->getDebugLoc();
6610
6611    MachineRegisterInfo &RegInfo = F->getRegInfo();
6612    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
6613
6614    // Perform the rounding.
6615    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
6616      .addReg(Src);
6617
6618    // Compare the results.
6619    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
6620      .addReg(Dest).addReg(Src);
6621
6622    // If the results were not equal, then set the FPSCR XX bit.
6623    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6624    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6625    F->insert(It, midMBB);
6626    F->insert(It, exitMBB);
6627    exitMBB->splice(exitMBB->begin(), BB,
6628                    llvm::next(MachineBasicBlock::iterator(MI)),
6629                    BB->end());
6630    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6631
6632    BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
6633      .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
6634
6635    BB->addSuccessor(midMBB);
6636    BB->addSuccessor(exitMBB);
6637
6638    BB = midMBB;
6639
6640    // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
6641    // the FI bit here because that will not automatically set XX also,
6642    // and XX is what libm interprets as the FE_INEXACT flag.
6643    BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
6644    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6645
6646    BB->addSuccessor(exitMBB);
6647
6648    BB = exitMBB;
6649  } else {
6650    llvm_unreachable("Unexpected instr type to insert");
6651  }
6652
6653  MI->eraseFromParent();   // The pseudo instruction is gone now.
6654  return BB;
6655}
6656
6657//===----------------------------------------------------------------------===//
6658// Target Optimization Hooks
6659//===----------------------------------------------------------------------===//
6660
6661SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6662                                             DAGCombinerInfo &DCI) const {
6663  const TargetMachine &TM = getTargetMachine();
6664  SelectionDAG &DAG = DCI.DAG;
6665  DebugLoc dl = N->getDebugLoc();
6666  switch (N->getOpcode()) {
6667  default: break;
6668  case PPCISD::SHL:
6669    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6670      if (C->isNullValue())   // 0 << V -> 0.
6671        return N->getOperand(0);
6672    }
6673    break;
6674  case PPCISD::SRL:
6675    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6676      if (C->isNullValue())   // 0 >>u V -> 0.
6677        return N->getOperand(0);
6678    }
6679    break;
6680  case PPCISD::SRA:
6681    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6682      if (C->isNullValue() ||   //  0 >>s V -> 0.
6683          C->isAllOnesValue())    // -1 >>s V -> -1.
6684        return N->getOperand(0);
6685    }
6686    break;
6687
6688  case ISD::SINT_TO_FP:
6689    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6690      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6691        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6692        // We allow the src/dst to be either f32/f64, but the intermediate
6693        // type must be i64.
6694        if (N->getOperand(0).getValueType() == MVT::i64 &&
6695            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6696          SDValue Val = N->getOperand(0).getOperand(0);
6697          if (Val.getValueType() == MVT::f32) {
6698            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6699            DCI.AddToWorklist(Val.getNode());
6700          }
6701
6702          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6703          DCI.AddToWorklist(Val.getNode());
6704          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6705          DCI.AddToWorklist(Val.getNode());
6706          if (N->getValueType(0) == MVT::f32) {
6707            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6708                              DAG.getIntPtrConstant(0));
6709            DCI.AddToWorklist(Val.getNode());
6710          }
6711          return Val;
6712        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6713          // If the intermediate type is i32, we can avoid the load/store here
6714          // too.
6715        }
6716      }
6717    }
6718    break;
6719  case ISD::STORE:
6720    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6721    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6722        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6723        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6724        N->getOperand(1).getValueType() == MVT::i32 &&
6725        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6726      SDValue Val = N->getOperand(1).getOperand(0);
6727      if (Val.getValueType() == MVT::f32) {
6728        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6729        DCI.AddToWorklist(Val.getNode());
6730      }
6731      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6732      DCI.AddToWorklist(Val.getNode());
6733
6734      SDValue Ops[] = {
6735        N->getOperand(0), Val, N->getOperand(2),
6736        DAG.getValueType(N->getOperand(1).getValueType())
6737      };
6738
6739      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6740              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
6741              cast<StoreSDNode>(N)->getMemoryVT(),
6742              cast<StoreSDNode>(N)->getMemOperand());
6743      DCI.AddToWorklist(Val.getNode());
6744      return Val;
6745    }
6746
6747    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6748    if (cast<StoreSDNode>(N)->isUnindexed() &&
6749        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6750        N->getOperand(1).getNode()->hasOneUse() &&
6751        (N->getOperand(1).getValueType() == MVT::i32 ||
6752         N->getOperand(1).getValueType() == MVT::i16 ||
6753         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6754          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6755          N->getOperand(1).getValueType() == MVT::i64))) {
6756      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6757      // Do an any-extend to 32-bits if this is a half-word input.
6758      if (BSwapOp.getValueType() == MVT::i16)
6759        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6760
6761      SDValue Ops[] = {
6762        N->getOperand(0), BSwapOp, N->getOperand(2),
6763        DAG.getValueType(N->getOperand(1).getValueType())
6764      };
6765      return
6766        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6767                                Ops, array_lengthof(Ops),
6768                                cast<StoreSDNode>(N)->getMemoryVT(),
6769                                cast<StoreSDNode>(N)->getMemOperand());
6770    }
6771    break;
6772  case ISD::BSWAP:
6773    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6774    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6775        N->getOperand(0).hasOneUse() &&
6776        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
6777         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6778          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6779          N->getValueType(0) == MVT::i64))) {
6780      SDValue Load = N->getOperand(0);
6781      LoadSDNode *LD = cast<LoadSDNode>(Load);
6782      // Create the byte-swapping load.
6783      SDValue Ops[] = {
6784        LD->getChain(),    // Chain
6785        LD->getBasePtr(),  // Ptr
6786        DAG.getValueType(N->getValueType(0)) // VT
6787      };
6788      SDValue BSLoad =
6789        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6790                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
6791                                              MVT::i64 : MVT::i32, MVT::Other),
6792                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
6793
6794      // If this is an i16 load, insert the truncate.
6795      SDValue ResVal = BSLoad;
6796      if (N->getValueType(0) == MVT::i16)
6797        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6798
6799      // First, combine the bswap away.  This makes the value produced by the
6800      // load dead.
6801      DCI.CombineTo(N, ResVal);
6802
6803      // Next, combine the load away, we give it a bogus result value but a real
6804      // chain result.  The result value is dead because the bswap is dead.
6805      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6806
6807      // Return N so it doesn't get rechecked!
6808      return SDValue(N, 0);
6809    }
6810
6811    break;
6812  case PPCISD::VCMP: {
6813    // If a VCMPo node already exists with exactly the same operands as this
6814    // node, use its result instead of this node (VCMPo computes both a CR6 and
6815    // a normal output).
6816    //
6817    if (!N->getOperand(0).hasOneUse() &&
6818        !N->getOperand(1).hasOneUse() &&
6819        !N->getOperand(2).hasOneUse()) {
6820
6821      // Scan all of the users of the LHS, looking for VCMPo's that match.
6822      SDNode *VCMPoNode = 0;
6823
6824      SDNode *LHSN = N->getOperand(0).getNode();
6825      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6826           UI != E; ++UI)
6827        if (UI->getOpcode() == PPCISD::VCMPo &&
6828            UI->getOperand(1) == N->getOperand(1) &&
6829            UI->getOperand(2) == N->getOperand(2) &&
6830            UI->getOperand(0) == N->getOperand(0)) {
6831          VCMPoNode = *UI;
6832          break;
6833        }
6834
6835      // If there is no VCMPo node, or if the flag value has a single use, don't
6836      // transform this.
6837      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6838        break;
6839
6840      // Look at the (necessarily single) use of the flag value.  If it has a
6841      // chain, this transformation is more complex.  Note that multiple things
6842      // could use the value result, which we should ignore.
6843      SDNode *FlagUser = 0;
6844      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6845           FlagUser == 0; ++UI) {
6846        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6847        SDNode *User = *UI;
6848        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6849          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6850            FlagUser = User;
6851            break;
6852          }
6853        }
6854      }
6855
6856      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
6857      // give up for right now.
6858      if (FlagUser->getOpcode() == PPCISD::MFCR)
6859        return SDValue(VCMPoNode, 0);
6860    }
6861    break;
6862  }
6863  case ISD::BR_CC: {
6864    // If this is a branch on an altivec predicate comparison, lower this so
6865    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
6866    // lowering is done pre-legalize, because the legalizer lowers the predicate
6867    // compare down to code that is difficult to reassemble.
6868    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6869    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6870    int CompareOpc;
6871    bool isDot;
6872
6873    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6874        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6875        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6876      assert(isDot && "Can't compare against a vector result!");
6877
6878      // If this is a comparison against something other than 0/1, then we know
6879      // that the condition is never/always true.
6880      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6881      if (Val != 0 && Val != 1) {
6882        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
6883          return N->getOperand(0);
6884        // Always !=, turn it into an unconditional branch.
6885        return DAG.getNode(ISD::BR, dl, MVT::Other,
6886                           N->getOperand(0), N->getOperand(4));
6887      }
6888
6889      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6890
6891      // Create the PPCISD altivec 'dot' comparison node.
6892      SDValue Ops[] = {
6893        LHS.getOperand(2),  // LHS of compare
6894        LHS.getOperand(3),  // RHS of compare
6895        DAG.getConstant(CompareOpc, MVT::i32)
6896      };
6897      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
6898      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6899
6900      // Unpack the result based on how the target uses it.
6901      PPC::Predicate CompOpc;
6902      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6903      default:  // Can't happen, don't crash on invalid number though.
6904      case 0:   // Branch on the value of the EQ bit of CR6.
6905        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6906        break;
6907      case 1:   // Branch on the inverted value of the EQ bit of CR6.
6908        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6909        break;
6910      case 2:   // Branch on the value of the LT bit of CR6.
6911        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6912        break;
6913      case 3:   // Branch on the inverted value of the LT bit of CR6.
6914        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6915        break;
6916      }
6917
6918      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6919                         DAG.getConstant(CompOpc, MVT::i32),
6920                         DAG.getRegister(PPC::CR6, MVT::i32),
6921                         N->getOperand(4), CompNode.getValue(1));
6922    }
6923    break;
6924  }
6925  }
6926
6927  return SDValue();
6928}
6929
6930//===----------------------------------------------------------------------===//
6931// Inline Assembly Support
6932//===----------------------------------------------------------------------===//
6933
6934void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6935                                                       APInt &KnownZero,
6936                                                       APInt &KnownOne,
6937                                                       const SelectionDAG &DAG,
6938                                                       unsigned Depth) const {
6939  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6940  switch (Op.getOpcode()) {
6941  default: break;
6942  case PPCISD::LBRX: {
6943    // lhbrx is known to have the top bits cleared out.
6944    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6945      KnownZero = 0xFFFF0000;
6946    break;
6947  }
6948  case ISD::INTRINSIC_WO_CHAIN: {
6949    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6950    default: break;
6951    case Intrinsic::ppc_altivec_vcmpbfp_p:
6952    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6953    case Intrinsic::ppc_altivec_vcmpequb_p:
6954    case Intrinsic::ppc_altivec_vcmpequh_p:
6955    case Intrinsic::ppc_altivec_vcmpequw_p:
6956    case Intrinsic::ppc_altivec_vcmpgefp_p:
6957    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6958    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6959    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6960    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6961    case Intrinsic::ppc_altivec_vcmpgtub_p:
6962    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6963    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6964      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6965      break;
6966    }
6967  }
6968  }
6969}
6970
6971
6972/// getConstraintType - Given a constraint, return the type of
6973/// constraint it is for this target.
6974PPCTargetLowering::ConstraintType
6975PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6976  if (Constraint.size() == 1) {
6977    switch (Constraint[0]) {
6978    default: break;
6979    case 'b':
6980    case 'r':
6981    case 'f':
6982    case 'v':
6983    case 'y':
6984      return C_RegisterClass;
6985    case 'Z':
6986      // FIXME: While Z does indicate a memory constraint, it specifically
6987      // indicates an r+r address (used in conjunction with the 'y' modifier
6988      // in the replacement string). Currently, we're forcing the base
6989      // register to be r0 in the asm printer (which is interpreted as zero)
6990      // and forming the complete address in the second register. This is
6991      // suboptimal.
6992      return C_Memory;
6993    }
6994  }
6995  return TargetLowering::getConstraintType(Constraint);
6996}
6997
6998/// Examine constraint type and operand type and determine a weight value.
6999/// This object must already have been set up with the operand type
7000/// and the current alternative constraint selected.
7001TargetLowering::ConstraintWeight
7002PPCTargetLowering::getSingleConstraintMatchWeight(
7003    AsmOperandInfo &info, const char *constraint) const {
7004  ConstraintWeight weight = CW_Invalid;
7005  Value *CallOperandVal = info.CallOperandVal;
7006    // If we don't have a value, we can't do a match,
7007    // but allow it at the lowest weight.
7008  if (CallOperandVal == NULL)
7009    return CW_Default;
7010  Type *type = CallOperandVal->getType();
7011  // Look at the constraint type.
7012  switch (*constraint) {
7013  default:
7014    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7015    break;
7016  case 'b':
7017    if (type->isIntegerTy())
7018      weight = CW_Register;
7019    break;
7020  case 'f':
7021    if (type->isFloatTy())
7022      weight = CW_Register;
7023    break;
7024  case 'd':
7025    if (type->isDoubleTy())
7026      weight = CW_Register;
7027    break;
7028  case 'v':
7029    if (type->isVectorTy())
7030      weight = CW_Register;
7031    break;
7032  case 'y':
7033    weight = CW_Register;
7034    break;
7035  case 'Z':
7036    weight = CW_Memory;
7037    break;
7038  }
7039  return weight;
7040}
7041
7042std::pair<unsigned, const TargetRegisterClass*>
7043PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7044                                                EVT VT) const {
7045  if (Constraint.size() == 1) {
7046    // GCC RS6000 Constraint Letters
7047    switch (Constraint[0]) {
7048    case 'b':   // R1-R31
7049      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7050        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
7051      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
7052    case 'r':   // R0-R31
7053      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7054        return std::make_pair(0U, &PPC::G8RCRegClass);
7055      return std::make_pair(0U, &PPC::GPRCRegClass);
7056    case 'f':
7057      if (VT == MVT::f32 || VT == MVT::i32)
7058        return std::make_pair(0U, &PPC::F4RCRegClass);
7059      if (VT == MVT::f64 || VT == MVT::i64)
7060        return std::make_pair(0U, &PPC::F8RCRegClass);
7061      break;
7062    case 'v':
7063      return std::make_pair(0U, &PPC::VRRCRegClass);
7064    case 'y':   // crrc
7065      return std::make_pair(0U, &PPC::CRRCRegClass);
7066    }
7067  }
7068
7069  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7070}
7071
7072
7073/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7074/// vector.  If it is invalid, don't add anything to Ops.
7075void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7076                                                     std::string &Constraint,
7077                                                     std::vector<SDValue>&Ops,
7078                                                     SelectionDAG &DAG) const {
7079  SDValue Result(0,0);
7080
7081  // Only support length 1 constraints.
7082  if (Constraint.length() > 1) return;
7083
7084  char Letter = Constraint[0];
7085  switch (Letter) {
7086  default: break;
7087  case 'I':
7088  case 'J':
7089  case 'K':
7090  case 'L':
7091  case 'M':
7092  case 'N':
7093  case 'O':
7094  case 'P': {
7095    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7096    if (!CST) return; // Must be an immediate to match.
7097    unsigned Value = CST->getZExtValue();
7098    switch (Letter) {
7099    default: llvm_unreachable("Unknown constraint letter!");
7100    case 'I':  // "I" is a signed 16-bit constant.
7101      if ((short)Value == (int)Value)
7102        Result = DAG.getTargetConstant(Value, Op.getValueType());
7103      break;
7104    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7105    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7106      if ((short)Value == 0)
7107        Result = DAG.getTargetConstant(Value, Op.getValueType());
7108      break;
7109    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7110      if ((Value >> 16) == 0)
7111        Result = DAG.getTargetConstant(Value, Op.getValueType());
7112      break;
7113    case 'M':  // "M" is a constant that is greater than 31.
7114      if (Value > 31)
7115        Result = DAG.getTargetConstant(Value, Op.getValueType());
7116      break;
7117    case 'N':  // "N" is a positive constant that is an exact power of two.
7118      if ((int)Value > 0 && isPowerOf2_32(Value))
7119        Result = DAG.getTargetConstant(Value, Op.getValueType());
7120      break;
7121    case 'O':  // "O" is the constant zero.
7122      if (Value == 0)
7123        Result = DAG.getTargetConstant(Value, Op.getValueType());
7124      break;
7125    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7126      if ((short)-Value == (int)-Value)
7127        Result = DAG.getTargetConstant(Value, Op.getValueType());
7128      break;
7129    }
7130    break;
7131  }
7132  }
7133
7134  if (Result.getNode()) {
7135    Ops.push_back(Result);
7136    return;
7137  }
7138
7139  // Handle standard constraint letters.
7140  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7141}
7142
7143// isLegalAddressingMode - Return true if the addressing mode represented
7144// by AM is legal for this target, for a load/store of the specified type.
7145bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7146                                              Type *Ty) const {
7147  // FIXME: PPC does not allow r+i addressing modes for vectors!
7148
7149  // PPC allows a sign-extended 16-bit immediate field.
7150  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7151    return false;
7152
7153  // No global is ever allowed as a base.
7154  if (AM.BaseGV)
7155    return false;
7156
7157  // PPC only support r+r,
7158  switch (AM.Scale) {
7159  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7160    break;
7161  case 1:
7162    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7163      return false;
7164    // Otherwise we have r+r or r+i.
7165    break;
7166  case 2:
7167    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7168      return false;
7169    // Allow 2*r as r+r.
7170    break;
7171  default:
7172    // No other scales are supported.
7173    return false;
7174  }
7175
7176  return true;
7177}
7178
7179/// isLegalAddressImmediate - Return true if the integer value can be used
7180/// as the offset of the target addressing mode for load / store of the
7181/// given type.
7182bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
7183  // PPC allows a sign-extended 16-bit immediate field.
7184  return (V > -(1 << 16) && V < (1 << 16)-1);
7185}
7186
7187bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
7188  return false;
7189}
7190
7191SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7192                                           SelectionDAG &DAG) const {
7193  MachineFunction &MF = DAG.getMachineFunction();
7194  MachineFrameInfo *MFI = MF.getFrameInfo();
7195  MFI->setReturnAddressIsTaken(true);
7196
7197  DebugLoc dl = Op.getDebugLoc();
7198  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7199
7200  // Make sure the function does not optimize away the store of the RA to
7201  // the stack.
7202  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7203  FuncInfo->setLRStoreRequired();
7204  bool isPPC64 = PPCSubTarget.isPPC64();
7205  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7206
7207  if (Depth > 0) {
7208    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7209    SDValue Offset =
7210
7211      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7212                      isPPC64? MVT::i64 : MVT::i32);
7213    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7214                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7215                                   FrameAddr, Offset),
7216                       MachinePointerInfo(), false, false, false, 0);
7217  }
7218
7219  // Just load the return address off the stack.
7220  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7221  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7222                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7223}
7224
7225SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7226                                          SelectionDAG &DAG) const {
7227  DebugLoc dl = Op.getDebugLoc();
7228  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7229
7230  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7231  bool isPPC64 = PtrVT == MVT::i64;
7232
7233  MachineFunction &MF = DAG.getMachineFunction();
7234  MachineFrameInfo *MFI = MF.getFrameInfo();
7235  MFI->setFrameAddressIsTaken(true);
7236
7237  // Naked functions never have a frame pointer, and so we use r1. For all
7238  // other functions, this decision must be delayed until during PEI.
7239  unsigned FrameReg;
7240  if (MF.getFunction()->getAttributes().hasAttribute(
7241        AttributeSet::FunctionIndex, Attribute::Naked))
7242    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7243  else
7244    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7245
7246  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7247                                         PtrVT);
7248  while (Depth--)
7249    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7250                            FrameAddr, MachinePointerInfo(), false, false,
7251                            false, 0);
7252  return FrameAddr;
7253}
7254
7255bool
7256PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7257  // The PowerPC target isn't yet aware of offsets.
7258  return false;
7259}
7260
7261/// getOptimalMemOpType - Returns the target specific optimal type for load
7262/// and store operations as a result of memset, memcpy, and memmove
7263/// lowering. If DstAlign is zero that means it's safe to destination
7264/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7265/// means there isn't a need to check it against alignment requirement,
7266/// probably because the source does not need to be loaded. If 'IsMemset' is
7267/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7268/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7269/// source is constant so it does not need to be loaded.
7270/// It returns EVT::Other if the type should be determined using generic
7271/// target-independent logic.
7272EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7273                                           unsigned DstAlign, unsigned SrcAlign,
7274                                           bool IsMemset, bool ZeroMemset,
7275                                           bool MemcpyStrSrc,
7276                                           MachineFunction &MF) const {
7277  if (this->PPCSubTarget.isPPC64()) {
7278    return MVT::i64;
7279  } else {
7280    return MVT::i32;
7281  }
7282}
7283
7284bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7285                                                      bool *Fast) const {
7286  if (DisablePPCUnaligned)
7287    return false;
7288
7289  // PowerPC supports unaligned memory access for simple non-vector types.
7290  // Although accessing unaligned addresses is not as efficient as accessing
7291  // aligned addresses, it is generally more efficient than manual expansion,
7292  // and generally only traps for software emulation when crossing page
7293  // boundaries.
7294
7295  if (!VT.isSimple())
7296    return false;
7297
7298  if (VT.getSimpleVT().isVector())
7299    return false;
7300
7301  if (VT == MVT::ppcf128)
7302    return false;
7303
7304  if (Fast)
7305    *Fast = true;
7306
7307  return true;
7308}
7309
7310/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7311/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7312/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7313/// is expanded to mul + add.
7314bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7315  if (!VT.isSimple())
7316    return false;
7317
7318  switch (VT.getSimpleVT().SimpleTy) {
7319  case MVT::f32:
7320  case MVT::f64:
7321  case MVT::v4f32:
7322    return true;
7323  default:
7324    break;
7325  }
7326
7327  return false;
7328}
7329
7330Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7331  if (DisableILPPref)
7332    return TargetLowering::getSchedulingPreference(N);
7333
7334  return Sched::ILP;
7335}
7336
7337