PPCISelLowering.cpp revision 475871a144eb604ddaf37503397ba0941442e5fb
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/ParameterAttributes.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
75  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
76  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
77  // This is used in the ppcf128->int sequence.  Note it has different semantics
78  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
79  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80
81  // PowerPC has no intrinsics for these particular operations
82  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
83
84  // PowerPC has no SREM/UREM instructions
85  setOperationAction(ISD::SREM, MVT::i32, Expand);
86  setOperationAction(ISD::UREM, MVT::i32, Expand);
87  setOperationAction(ISD::SREM, MVT::i64, Expand);
88  setOperationAction(ISD::UREM, MVT::i64, Expand);
89
90  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
91  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
92  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
93  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
94  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
95  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
96  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
97  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
98  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
99
100  // We don't support sin/cos/sqrt/fmod/pow
101  setOperationAction(ISD::FSIN , MVT::f64, Expand);
102  setOperationAction(ISD::FCOS , MVT::f64, Expand);
103  setOperationAction(ISD::FREM , MVT::f64, Expand);
104  setOperationAction(ISD::FPOW , MVT::f64, Expand);
105  setOperationAction(ISD::FSIN , MVT::f32, Expand);
106  setOperationAction(ISD::FCOS , MVT::f32, Expand);
107  setOperationAction(ISD::FREM , MVT::f32, Expand);
108  setOperationAction(ISD::FPOW , MVT::f32, Expand);
109
110  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
111
112  // If we're enabling GP optimizations, use hardware square root
113  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
114    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
115    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
116  }
117
118  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
119  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
120
121  // PowerPC does not have BSWAP, CTPOP or CTTZ
122  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
123  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
125  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
126  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
128
129  // PowerPC does not have ROTR
130  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
131
132  // PowerPC does not have Select
133  setOperationAction(ISD::SELECT, MVT::i32, Expand);
134  setOperationAction(ISD::SELECT, MVT::i64, Expand);
135  setOperationAction(ISD::SELECT, MVT::f32, Expand);
136  setOperationAction(ISD::SELECT, MVT::f64, Expand);
137
138  // PowerPC wants to turn select_cc of FP into fsel when possible.
139  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141
142  // PowerPC wants to optimize integer setcc a bit
143  setOperationAction(ISD::SETCC, MVT::i32, Custom);
144
145  // PowerPC does not have BRCOND which requires SetCC
146  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
147
148  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
149
150  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
151  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
152
153  // PowerPC does not have [U|S]INT_TO_FP
154  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
155  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
156
157  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
158  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
161
162  // We cannot sextinreg(i1).  Expand to shifts.
163  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164
165  // Support label based line numbers.
166  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
167  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
168
169  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
170  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
173
174
175  // We want to legalize GlobalAddress and ConstantPool nodes into the
176  // appropriate instructions to materialize the address.
177  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
178  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
179  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
180  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
181  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
182  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
183  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
184  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
185
186  // RET must be custom lowered, to meet ABI requirements
187  setOperationAction(ISD::RET               , MVT::Other, Custom);
188
189  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
190  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
191
192  // VAARG is custom lowered with ELF 32 ABI
193  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
194    setOperationAction(ISD::VAARG, MVT::Other, Custom);
195  else
196    setOperationAction(ISD::VAARG, MVT::Other, Expand);
197
198  // Use the default implementation.
199  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
200  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
201  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
202  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
203  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
205
206  setOperationAction(ISD::ATOMIC_LOAD_ADD   , MVT::i32  , Custom);
207  setOperationAction(ISD::ATOMIC_CMP_SWAP   , MVT::i32  , Custom);
208  setOperationAction(ISD::ATOMIC_SWAP       , MVT::i32  , Custom);
209  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
210    setOperationAction(ISD::ATOMIC_LOAD_ADD , MVT::i64  , Custom);
211    setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64  , Custom);
212    setOperationAction(ISD::ATOMIC_SWAP     , MVT::i64  , Custom);
213  }
214
215  // We want to custom lower some of our intrinsics.
216  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
217
218  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
219    // They also have instructions for converting between i64 and fp.
220    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
221    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
222    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
223    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
224    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
225
226    // FIXME: disable this lowered code.  This generates 64-bit register values,
227    // and we don't model the fact that the top part is clobbered by calls.  We
228    // need to flag these together so that the value isn't live across a call.
229    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
230
231    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
232    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
233  } else {
234    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
235    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
236  }
237
238  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
239    // 64-bit PowerPC implementations can support i64 types directly
240    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
241    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
242    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
243    // 64-bit PowerPC wants to expand i128 shifts itself.
244    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
245    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
246    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
247  } else {
248    // 32-bit PowerPC wants to expand i64 shifts itself.
249    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
250    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
251    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
252  }
253
254  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
255    // First set operation action for all vector types to expand. Then we
256    // will selectively turn on ones that can be effectively codegen'd.
257    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
258         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
259      MVT VT = (MVT::SimpleValueType)i;
260
261      // add/sub are legal for all supported vector VT's.
262      setOperationAction(ISD::ADD , VT, Legal);
263      setOperationAction(ISD::SUB , VT, Legal);
264
265      // We promote all shuffles to v16i8.
266      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
267      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
268
269      // We promote all non-typed operations to v4i32.
270      setOperationAction(ISD::AND   , VT, Promote);
271      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
272      setOperationAction(ISD::OR    , VT, Promote);
273      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
274      setOperationAction(ISD::XOR   , VT, Promote);
275      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
276      setOperationAction(ISD::LOAD  , VT, Promote);
277      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
278      setOperationAction(ISD::SELECT, VT, Promote);
279      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
280      setOperationAction(ISD::STORE, VT, Promote);
281      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
282
283      // No other operations are legal.
284      setOperationAction(ISD::MUL , VT, Expand);
285      setOperationAction(ISD::SDIV, VT, Expand);
286      setOperationAction(ISD::SREM, VT, Expand);
287      setOperationAction(ISD::UDIV, VT, Expand);
288      setOperationAction(ISD::UREM, VT, Expand);
289      setOperationAction(ISD::FDIV, VT, Expand);
290      setOperationAction(ISD::FNEG, VT, Expand);
291      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
292      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
293      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
294      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
295      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
296      setOperationAction(ISD::UDIVREM, VT, Expand);
297      setOperationAction(ISD::SDIVREM, VT, Expand);
298      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
299      setOperationAction(ISD::FPOW, VT, Expand);
300      setOperationAction(ISD::CTPOP, VT, Expand);
301      setOperationAction(ISD::CTLZ, VT, Expand);
302      setOperationAction(ISD::CTTZ, VT, Expand);
303    }
304
305    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
306    // with merges, splats, etc.
307    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
308
309    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
310    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
311    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
312    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
313    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
314    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
315
316    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
317    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
318    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
319    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
320
321    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
322    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
323    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
324    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
325
326    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
327    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
328
329    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
330    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
331    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
332    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
333  }
334
335  setShiftAmountType(MVT::i32);
336  setSetCCResultContents(ZeroOrOneSetCCResult);
337
338  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
339    setStackPointerRegisterToSaveRestore(PPC::X1);
340    setExceptionPointerRegister(PPC::X3);
341    setExceptionSelectorRegister(PPC::X4);
342  } else {
343    setStackPointerRegisterToSaveRestore(PPC::R1);
344    setExceptionPointerRegister(PPC::R3);
345    setExceptionSelectorRegister(PPC::R4);
346  }
347
348  // We have target-specific dag combine patterns for the following nodes:
349  setTargetDAGCombine(ISD::SINT_TO_FP);
350  setTargetDAGCombine(ISD::STORE);
351  setTargetDAGCombine(ISD::BR_CC);
352  setTargetDAGCombine(ISD::BSWAP);
353
354  // Darwin long double math library functions have $LDBL128 appended.
355  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
356    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
357    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
358    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
359    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
360    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
361  }
362
363  computeRegisterProperties();
364}
365
366/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
367/// function arguments in the caller parameter area.
368unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
369  TargetMachine &TM = getTargetMachine();
370  // Darwin passes everything on 4 byte boundary.
371  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
372    return 4;
373  // FIXME Elf TBD
374  return 4;
375}
376
377const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
378  switch (Opcode) {
379  default: return 0;
380  case PPCISD::FSEL:            return "PPCISD::FSEL";
381  case PPCISD::FCFID:           return "PPCISD::FCFID";
382  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
383  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
384  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
385  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
386  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
387  case PPCISD::VPERM:           return "PPCISD::VPERM";
388  case PPCISD::Hi:              return "PPCISD::Hi";
389  case PPCISD::Lo:              return "PPCISD::Lo";
390  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
391  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
392  case PPCISD::SRL:             return "PPCISD::SRL";
393  case PPCISD::SRA:             return "PPCISD::SRA";
394  case PPCISD::SHL:             return "PPCISD::SHL";
395  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
396  case PPCISD::STD_32:          return "PPCISD::STD_32";
397  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
398  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
399  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
400  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
401  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
402  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
403  case PPCISD::MFCR:            return "PPCISD::MFCR";
404  case PPCISD::VCMP:            return "PPCISD::VCMP";
405  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
406  case PPCISD::LBRX:            return "PPCISD::LBRX";
407  case PPCISD::STBRX:           return "PPCISD::STBRX";
408  case PPCISD::ATOMIC_LOAD_ADD: return "PPCISD::ATOMIC_LOAD_ADD";
409  case PPCISD::ATOMIC_CMP_SWAP: return "PPCISD::ATOMIC_CMP_SWAP";
410  case PPCISD::ATOMIC_SWAP:     return "PPCISD::ATOMIC_SWAP";
411  case PPCISD::LARX:            return "PPCISD::LARX";
412  case PPCISD::STCX:            return "PPCISD::STCX";
413  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
414  case PPCISD::MFFS:            return "PPCISD::MFFS";
415  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
416  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
417  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
418  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
419  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
420  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
421  }
422}
423
424
425MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
426  return MVT::i32;
427}
428
429
430//===----------------------------------------------------------------------===//
431// Node matching predicates, for use by the tblgen matching code.
432//===----------------------------------------------------------------------===//
433
434/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
435static bool isFloatingPointZero(SDValue Op) {
436  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
437    return CFP->getValueAPF().isZero();
438  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
439    // Maybe this has already been legalized into the constant pool?
440    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
441      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
442        return CFP->getValueAPF().isZero();
443  }
444  return false;
445}
446
447/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
448/// true if Op is undef or if it matches the specified value.
449static bool isConstantOrUndef(SDValue Op, unsigned Val) {
450  return Op.getOpcode() == ISD::UNDEF ||
451         cast<ConstantSDNode>(Op)->getValue() == Val;
452}
453
454/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
455/// VPKUHUM instruction.
456bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
457  if (!isUnary) {
458    for (unsigned i = 0; i != 16; ++i)
459      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
460        return false;
461  } else {
462    for (unsigned i = 0; i != 8; ++i)
463      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
464          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
465        return false;
466  }
467  return true;
468}
469
470/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
471/// VPKUWUM instruction.
472bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
473  if (!isUnary) {
474    for (unsigned i = 0; i != 16; i += 2)
475      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
476          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
477        return false;
478  } else {
479    for (unsigned i = 0; i != 8; i += 2)
480      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
481          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
482          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
483          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
484        return false;
485  }
486  return true;
487}
488
489/// isVMerge - Common function, used to match vmrg* shuffles.
490///
491static bool isVMerge(SDNode *N, unsigned UnitSize,
492                     unsigned LHSStart, unsigned RHSStart) {
493  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
494         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
495  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
496         "Unsupported merge size!");
497
498  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
499    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
500      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
501                             LHSStart+j+i*UnitSize) ||
502          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
503                             RHSStart+j+i*UnitSize))
504        return false;
505    }
506      return true;
507}
508
509/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
510/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
511bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
512  if (!isUnary)
513    return isVMerge(N, UnitSize, 8, 24);
514  return isVMerge(N, UnitSize, 8, 8);
515}
516
517/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
518/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
519bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
520  if (!isUnary)
521    return isVMerge(N, UnitSize, 0, 16);
522  return isVMerge(N, UnitSize, 0, 0);
523}
524
525
526/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
527/// amount, otherwise return -1.
528int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
529  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
530         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
531  // Find the first non-undef value in the shuffle mask.
532  unsigned i;
533  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
534    /*search*/;
535
536  if (i == 16) return -1;  // all undef.
537
538  // Otherwise, check to see if the rest of the elements are consequtively
539  // numbered from this value.
540  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
541  if (ShiftAmt < i) return -1;
542  ShiftAmt -= i;
543
544  if (!isUnary) {
545    // Check the rest of the elements to see if they are consequtive.
546    for (++i; i != 16; ++i)
547      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
548        return -1;
549  } else {
550    // Check the rest of the elements to see if they are consequtive.
551    for (++i; i != 16; ++i)
552      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
553        return -1;
554  }
555
556  return ShiftAmt;
557}
558
559/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
560/// specifies a splat of a single element that is suitable for input to
561/// VSPLTB/VSPLTH/VSPLTW.
562bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
563  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
564         N->getNumOperands() == 16 &&
565         (EltSize == 1 || EltSize == 2 || EltSize == 4));
566
567  // This is a splat operation if each element of the permute is the same, and
568  // if the value doesn't reference the second vector.
569  unsigned ElementBase = 0;
570  SDValue Elt = N->getOperand(0);
571  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
572    ElementBase = EltV->getValue();
573  else
574    return false;   // FIXME: Handle UNDEF elements too!
575
576  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
577    return false;
578
579  // Check that they are consequtive.
580  for (unsigned i = 1; i != EltSize; ++i) {
581    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
582        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
583      return false;
584  }
585
586  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
587  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
588    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
589    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
590           "Invalid VECTOR_SHUFFLE mask!");
591    for (unsigned j = 0; j != EltSize; ++j)
592      if (N->getOperand(i+j) != N->getOperand(j))
593        return false;
594  }
595
596  return true;
597}
598
599/// isAllNegativeZeroVector - Returns true if all elements of build_vector
600/// are -0.0.
601bool PPC::isAllNegativeZeroVector(SDNode *N) {
602  assert(N->getOpcode() == ISD::BUILD_VECTOR);
603  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
604    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
605      return CFP->getValueAPF().isNegZero();
606  return false;
607}
608
609/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
610/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
611unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
612  assert(isSplatShuffleMask(N, EltSize));
613  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
614}
615
616/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
617/// by using a vspltis[bhw] instruction of the specified element size, return
618/// the constant being splatted.  The ByteSize field indicates the number of
619/// bytes of each element [124] -> [bhw].
620SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
621  SDValue OpVal(0, 0);
622
623  // If ByteSize of the splat is bigger than the element size of the
624  // build_vector, then we have a case where we are checking for a splat where
625  // multiple elements of the buildvector are folded together into a single
626  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
627  unsigned EltSize = 16/N->getNumOperands();
628  if (EltSize < ByteSize) {
629    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
630    SDValue UniquedVals[4];
631    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
632
633    // See if all of the elements in the buildvector agree across.
634    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
635      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
636      // If the element isn't a constant, bail fully out.
637      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
638
639
640      if (UniquedVals[i&(Multiple-1)].Val == 0)
641        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
642      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
643        return SDValue();  // no match.
644    }
645
646    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
647    // either constant or undef values that are identical for each chunk.  See
648    // if these chunks can form into a larger vspltis*.
649
650    // Check to see if all of the leading entries are either 0 or -1.  If
651    // neither, then this won't fit into the immediate field.
652    bool LeadingZero = true;
653    bool LeadingOnes = true;
654    for (unsigned i = 0; i != Multiple-1; ++i) {
655      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
656
657      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
658      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
659    }
660    // Finally, check the least significant entry.
661    if (LeadingZero) {
662      if (UniquedVals[Multiple-1].Val == 0)
663        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
664      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
665      if (Val < 16)
666        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
667    }
668    if (LeadingOnes) {
669      if (UniquedVals[Multiple-1].Val == 0)
670        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
671      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
672      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
673        return DAG.getTargetConstant(Val, MVT::i32);
674    }
675
676    return SDValue();
677  }
678
679  // Check to see if this buildvec has a single non-undef value in its elements.
680  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
681    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
682    if (OpVal.Val == 0)
683      OpVal = N->getOperand(i);
684    else if (OpVal != N->getOperand(i))
685      return SDValue();
686  }
687
688  if (OpVal.Val == 0) return SDValue();  // All UNDEF: use implicit def.
689
690  unsigned ValSizeInBytes = 0;
691  uint64_t Value = 0;
692  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
693    Value = CN->getValue();
694    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
695  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
696    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
697    Value = FloatToBits(CN->getValueAPF().convertToFloat());
698    ValSizeInBytes = 4;
699  }
700
701  // If the splat value is larger than the element value, then we can never do
702  // this splat.  The only case that we could fit the replicated bits into our
703  // immediate field for would be zero, and we prefer to use vxor for it.
704  if (ValSizeInBytes < ByteSize) return SDValue();
705
706  // If the element value is larger than the splat value, cut it in half and
707  // check to see if the two halves are equal.  Continue doing this until we
708  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
709  while (ValSizeInBytes > ByteSize) {
710    ValSizeInBytes >>= 1;
711
712    // If the top half equals the bottom half, we're still ok.
713    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
714         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
715      return SDValue();
716  }
717
718  // Properly sign extend the value.
719  int ShAmt = (4-ByteSize)*8;
720  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
721
722  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
723  if (MaskVal == 0) return SDValue();
724
725  // Finally, if this value fits in a 5 bit sext field, return it
726  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
727    return DAG.getTargetConstant(MaskVal, MVT::i32);
728  return SDValue();
729}
730
731//===----------------------------------------------------------------------===//
732//  Addressing Mode Selection
733//===----------------------------------------------------------------------===//
734
735/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
736/// or 64-bit immediate, and if the value can be accurately represented as a
737/// sign extension from a 16-bit value.  If so, this returns true and the
738/// immediate.
739static bool isIntS16Immediate(SDNode *N, short &Imm) {
740  if (N->getOpcode() != ISD::Constant)
741    return false;
742
743  Imm = (short)cast<ConstantSDNode>(N)->getValue();
744  if (N->getValueType(0) == MVT::i32)
745    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
746  else
747    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
748}
749static bool isIntS16Immediate(SDValue Op, short &Imm) {
750  return isIntS16Immediate(Op.Val, Imm);
751}
752
753
754/// SelectAddressRegReg - Given the specified addressed, check to see if it
755/// can be represented as an indexed [r+r] operation.  Returns false if it
756/// can be more efficiently represented with [r+imm].
757bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
758                                            SDValue &Index,
759                                            SelectionDAG &DAG) {
760  short imm = 0;
761  if (N.getOpcode() == ISD::ADD) {
762    if (isIntS16Immediate(N.getOperand(1), imm))
763      return false;    // r+i
764    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
765      return false;    // r+i
766
767    Base = N.getOperand(0);
768    Index = N.getOperand(1);
769    return true;
770  } else if (N.getOpcode() == ISD::OR) {
771    if (isIntS16Immediate(N.getOperand(1), imm))
772      return false;    // r+i can fold it if we can.
773
774    // If this is an or of disjoint bitfields, we can codegen this as an add
775    // (for better address arithmetic) if the LHS and RHS of the OR are provably
776    // disjoint.
777    APInt LHSKnownZero, LHSKnownOne;
778    APInt RHSKnownZero, RHSKnownOne;
779    DAG.ComputeMaskedBits(N.getOperand(0),
780                          APInt::getAllOnesValue(N.getOperand(0)
781                            .getValueSizeInBits()),
782                          LHSKnownZero, LHSKnownOne);
783
784    if (LHSKnownZero.getBoolValue()) {
785      DAG.ComputeMaskedBits(N.getOperand(1),
786                            APInt::getAllOnesValue(N.getOperand(1)
787                              .getValueSizeInBits()),
788                            RHSKnownZero, RHSKnownOne);
789      // If all of the bits are known zero on the LHS or RHS, the add won't
790      // carry.
791      if (~(LHSKnownZero | RHSKnownZero) == 0) {
792        Base = N.getOperand(0);
793        Index = N.getOperand(1);
794        return true;
795      }
796    }
797  }
798
799  return false;
800}
801
802/// Returns true if the address N can be represented by a base register plus
803/// a signed 16-bit displacement [r+imm], and if it is not better
804/// represented as reg+reg.
805bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
806                                            SDValue &Base, SelectionDAG &DAG){
807  // If this can be more profitably realized as r+r, fail.
808  if (SelectAddressRegReg(N, Disp, Base, DAG))
809    return false;
810
811  if (N.getOpcode() == ISD::ADD) {
812    short imm = 0;
813    if (isIntS16Immediate(N.getOperand(1), imm)) {
814      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
815      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
816        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
817      } else {
818        Base = N.getOperand(0);
819      }
820      return true; // [r+i]
821    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
822      // Match LOAD (ADD (X, Lo(G))).
823      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
824             && "Cannot handle constant offsets yet!");
825      Disp = N.getOperand(1).getOperand(0);  // The global address.
826      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
827             Disp.getOpcode() == ISD::TargetConstantPool ||
828             Disp.getOpcode() == ISD::TargetJumpTable);
829      Base = N.getOperand(0);
830      return true;  // [&g+r]
831    }
832  } else if (N.getOpcode() == ISD::OR) {
833    short imm = 0;
834    if (isIntS16Immediate(N.getOperand(1), imm)) {
835      // If this is an or of disjoint bitfields, we can codegen this as an add
836      // (for better address arithmetic) if the LHS and RHS of the OR are
837      // provably disjoint.
838      APInt LHSKnownZero, LHSKnownOne;
839      DAG.ComputeMaskedBits(N.getOperand(0),
840                            APInt::getAllOnesValue(N.getOperand(0)
841                                                   .getValueSizeInBits()),
842                            LHSKnownZero, LHSKnownOne);
843
844      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
845        // If all of the bits are known zero on the LHS or RHS, the add won't
846        // carry.
847        Base = N.getOperand(0);
848        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
849        return true;
850      }
851    }
852  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
853    // Loading from a constant address.
854
855    // If this address fits entirely in a 16-bit sext immediate field, codegen
856    // this as "d, 0"
857    short Imm;
858    if (isIntS16Immediate(CN, Imm)) {
859      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
860      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
861      return true;
862    }
863
864    // Handle 32-bit sext immediates with LIS + addr mode.
865    if (CN->getValueType(0) == MVT::i32 ||
866        (int64_t)CN->getValue() == (int)CN->getValue()) {
867      int Addr = (int)CN->getValue();
868
869      // Otherwise, break this down into an LIS + disp.
870      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
871
872      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
873      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
874      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
875      return true;
876    }
877  }
878
879  Disp = DAG.getTargetConstant(0, getPointerTy());
880  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
881    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
882  else
883    Base = N;
884  return true;      // [r+0]
885}
886
887/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
888/// represented as an indexed [r+r] operation.
889bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
890                                                SDValue &Index,
891                                                SelectionDAG &DAG) {
892  // Check to see if we can easily represent this as an [r+r] address.  This
893  // will fail if it thinks that the address is more profitably represented as
894  // reg+imm, e.g. where imm = 0.
895  if (SelectAddressRegReg(N, Base, Index, DAG))
896    return true;
897
898  // If the operand is an addition, always emit this as [r+r], since this is
899  // better (for code size, and execution, as the memop does the add for free)
900  // than emitting an explicit add.
901  if (N.getOpcode() == ISD::ADD) {
902    Base = N.getOperand(0);
903    Index = N.getOperand(1);
904    return true;
905  }
906
907  // Otherwise, do it the hard way, using R0 as the base register.
908  Base = DAG.getRegister(PPC::R0, N.getValueType());
909  Index = N;
910  return true;
911}
912
913/// SelectAddressRegImmShift - Returns true if the address N can be
914/// represented by a base register plus a signed 14-bit displacement
915/// [r+imm*4].  Suitable for use by STD and friends.
916bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
917                                                 SDValue &Base,
918                                                 SelectionDAG &DAG) {
919  // If this can be more profitably realized as r+r, fail.
920  if (SelectAddressRegReg(N, Disp, Base, DAG))
921    return false;
922
923  if (N.getOpcode() == ISD::ADD) {
924    short imm = 0;
925    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
926      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
927      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
928        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
929      } else {
930        Base = N.getOperand(0);
931      }
932      return true; // [r+i]
933    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
934      // Match LOAD (ADD (X, Lo(G))).
935      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
936             && "Cannot handle constant offsets yet!");
937      Disp = N.getOperand(1).getOperand(0);  // The global address.
938      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
939             Disp.getOpcode() == ISD::TargetConstantPool ||
940             Disp.getOpcode() == ISD::TargetJumpTable);
941      Base = N.getOperand(0);
942      return true;  // [&g+r]
943    }
944  } else if (N.getOpcode() == ISD::OR) {
945    short imm = 0;
946    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
947      // If this is an or of disjoint bitfields, we can codegen this as an add
948      // (for better address arithmetic) if the LHS and RHS of the OR are
949      // provably disjoint.
950      APInt LHSKnownZero, LHSKnownOne;
951      DAG.ComputeMaskedBits(N.getOperand(0),
952                            APInt::getAllOnesValue(N.getOperand(0)
953                                                   .getValueSizeInBits()),
954                            LHSKnownZero, LHSKnownOne);
955      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
956        // If all of the bits are known zero on the LHS or RHS, the add won't
957        // carry.
958        Base = N.getOperand(0);
959        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
960        return true;
961      }
962    }
963  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
964    // Loading from a constant address.  Verify low two bits are clear.
965    if ((CN->getValue() & 3) == 0) {
966      // If this address fits entirely in a 14-bit sext immediate field, codegen
967      // this as "d, 0"
968      short Imm;
969      if (isIntS16Immediate(CN, Imm)) {
970        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
971        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
972        return true;
973      }
974
975      // Fold the low-part of 32-bit absolute addresses into addr mode.
976      if (CN->getValueType(0) == MVT::i32 ||
977          (int64_t)CN->getValue() == (int)CN->getValue()) {
978        int Addr = (int)CN->getValue();
979
980        // Otherwise, break this down into an LIS + disp.
981        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
982
983        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
984        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
985        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
986        return true;
987      }
988    }
989  }
990
991  Disp = DAG.getTargetConstant(0, getPointerTy());
992  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
993    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
994  else
995    Base = N;
996  return true;      // [r+0]
997}
998
999
1000/// getPreIndexedAddressParts - returns true by value, base pointer and
1001/// offset pointer and addressing mode by reference if the node's address
1002/// can be legally represented as pre-indexed load / store address.
1003bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1004                                                  SDValue &Offset,
1005                                                  ISD::MemIndexedMode &AM,
1006                                                  SelectionDAG &DAG) {
1007  // Disabled by default for now.
1008  if (!EnablePPCPreinc) return false;
1009
1010  SDValue Ptr;
1011  MVT VT;
1012  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1013    Ptr = LD->getBasePtr();
1014    VT = LD->getMemoryVT();
1015
1016  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1017    ST = ST;
1018    Ptr = ST->getBasePtr();
1019    VT  = ST->getMemoryVT();
1020  } else
1021    return false;
1022
1023  // PowerPC doesn't have preinc load/store instructions for vectors.
1024  if (VT.isVector())
1025    return false;
1026
1027  // TODO: Check reg+reg first.
1028
1029  // LDU/STU use reg+imm*4, others use reg+imm.
1030  if (VT != MVT::i64) {
1031    // reg + imm
1032    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1033      return false;
1034  } else {
1035    // reg + imm * 4.
1036    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1037      return false;
1038  }
1039
1040  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1041    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1042    // sext i32 to i64 when addr mode is r+i.
1043    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1044        LD->getExtensionType() == ISD::SEXTLOAD &&
1045        isa<ConstantSDNode>(Offset))
1046      return false;
1047  }
1048
1049  AM = ISD::PRE_INC;
1050  return true;
1051}
1052
1053//===----------------------------------------------------------------------===//
1054//  LowerOperation implementation
1055//===----------------------------------------------------------------------===//
1056
1057SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1058                                             SelectionDAG &DAG) {
1059  MVT PtrVT = Op.getValueType();
1060  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1061  Constant *C = CP->getConstVal();
1062  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1063  SDValue Zero = DAG.getConstant(0, PtrVT);
1064
1065  const TargetMachine &TM = DAG.getTarget();
1066
1067  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1068  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1069
1070  // If this is a non-darwin platform, we don't support non-static relo models
1071  // yet.
1072  if (TM.getRelocationModel() == Reloc::Static ||
1073      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1074    // Generate non-pic code that has direct accesses to the constant pool.
1075    // The address of the global is just (hi(&g)+lo(&g)).
1076    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1077  }
1078
1079  if (TM.getRelocationModel() == Reloc::PIC_) {
1080    // With PIC, the first instruction is actually "GR+hi(&G)".
1081    Hi = DAG.getNode(ISD::ADD, PtrVT,
1082                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1083  }
1084
1085  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1086  return Lo;
1087}
1088
1089SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1090  MVT PtrVT = Op.getValueType();
1091  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1092  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1093  SDValue Zero = DAG.getConstant(0, PtrVT);
1094
1095  const TargetMachine &TM = DAG.getTarget();
1096
1097  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1098  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1099
1100  // If this is a non-darwin platform, we don't support non-static relo models
1101  // yet.
1102  if (TM.getRelocationModel() == Reloc::Static ||
1103      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1104    // Generate non-pic code that has direct accesses to the constant pool.
1105    // The address of the global is just (hi(&g)+lo(&g)).
1106    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1107  }
1108
1109  if (TM.getRelocationModel() == Reloc::PIC_) {
1110    // With PIC, the first instruction is actually "GR+hi(&G)".
1111    Hi = DAG.getNode(ISD::ADD, PtrVT,
1112                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1113  }
1114
1115  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1116  return Lo;
1117}
1118
1119SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1120                                                   SelectionDAG &DAG) {
1121  assert(0 && "TLS not implemented for PPC.");
1122  return SDValue(); // Not reached
1123}
1124
1125SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1126                                                SelectionDAG &DAG) {
1127  MVT PtrVT = Op.getValueType();
1128  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1129  GlobalValue *GV = GSDN->getGlobal();
1130  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1131  // If it's a debug information descriptor, don't mess with it.
1132  if (DAG.isVerifiedDebugInfoDesc(Op))
1133    return GA;
1134  SDValue Zero = DAG.getConstant(0, PtrVT);
1135
1136  const TargetMachine &TM = DAG.getTarget();
1137
1138  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1139  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1140
1141  // If this is a non-darwin platform, we don't support non-static relo models
1142  // yet.
1143  if (TM.getRelocationModel() == Reloc::Static ||
1144      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1145    // Generate non-pic code that has direct accesses to globals.
1146    // The address of the global is just (hi(&g)+lo(&g)).
1147    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1148  }
1149
1150  if (TM.getRelocationModel() == Reloc::PIC_) {
1151    // With PIC, the first instruction is actually "GR+hi(&G)".
1152    Hi = DAG.getNode(ISD::ADD, PtrVT,
1153                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1154  }
1155
1156  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1157
1158  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1159    return Lo;
1160
1161  // If the global is weak or external, we have to go through the lazy
1162  // resolution stub.
1163  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1164}
1165
1166SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1167  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1168
1169  // If we're comparing for equality to zero, expose the fact that this is
1170  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1171  // fold the new nodes.
1172  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1173    if (C->isNullValue() && CC == ISD::SETEQ) {
1174      MVT VT = Op.getOperand(0).getValueType();
1175      SDValue Zext = Op.getOperand(0);
1176      if (VT.bitsLT(MVT::i32)) {
1177        VT = MVT::i32;
1178        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1179      }
1180      unsigned Log2b = Log2_32(VT.getSizeInBits());
1181      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1182      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1183                                  DAG.getConstant(Log2b, MVT::i32));
1184      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1185    }
1186    // Leave comparisons against 0 and -1 alone for now, since they're usually
1187    // optimized.  FIXME: revisit this when we can custom lower all setcc
1188    // optimizations.
1189    if (C->isAllOnesValue() || C->isNullValue())
1190      return SDValue();
1191  }
1192
1193  // If we have an integer seteq/setne, turn it into a compare against zero
1194  // by xor'ing the rhs with the lhs, which is faster than setting a
1195  // condition register, reading it back out, and masking the correct bit.  The
1196  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1197  // the result to other bit-twiddling opportunities.
1198  MVT LHSVT = Op.getOperand(0).getValueType();
1199  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1200    MVT VT = Op.getValueType();
1201    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1202                                Op.getOperand(1));
1203    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1204  }
1205  return SDValue();
1206}
1207
1208SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1209                              int VarArgsFrameIndex,
1210                              int VarArgsStackOffset,
1211                              unsigned VarArgsNumGPR,
1212                              unsigned VarArgsNumFPR,
1213                              const PPCSubtarget &Subtarget) {
1214
1215  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1216  return SDValue(); // Not reached
1217}
1218
1219SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1220                              int VarArgsFrameIndex,
1221                              int VarArgsStackOffset,
1222                              unsigned VarArgsNumGPR,
1223                              unsigned VarArgsNumFPR,
1224                              const PPCSubtarget &Subtarget) {
1225
1226  if (Subtarget.isMachoABI()) {
1227    // vastart just stores the address of the VarArgsFrameIndex slot into the
1228    // memory location argument.
1229    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1230    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1231    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1232    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1233  }
1234
1235  // For ELF 32 ABI we follow the layout of the va_list struct.
1236  // We suppose the given va_list is already allocated.
1237  //
1238  // typedef struct {
1239  //  char gpr;     /* index into the array of 8 GPRs
1240  //                 * stored in the register save area
1241  //                 * gpr=0 corresponds to r3,
1242  //                 * gpr=1 to r4, etc.
1243  //                 */
1244  //  char fpr;     /* index into the array of 8 FPRs
1245  //                 * stored in the register save area
1246  //                 * fpr=0 corresponds to f1,
1247  //                 * fpr=1 to f2, etc.
1248  //                 */
1249  //  char *overflow_arg_area;
1250  //                /* location on stack that holds
1251  //                 * the next overflow argument
1252  //                 */
1253  //  char *reg_save_area;
1254  //               /* where r3:r10 and f1:f8 (if saved)
1255  //                * are stored
1256  //                */
1257  // } va_list[1];
1258
1259
1260  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1261  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1262
1263
1264  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1265
1266  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1267  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1268
1269  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1270  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1271
1272  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1273  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1274
1275  uint64_t FPROffset = 1;
1276  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1277
1278  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1279
1280  // Store first byte : number of int regs
1281  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1282                                      Op.getOperand(1), SV, 0);
1283  uint64_t nextOffset = FPROffset;
1284  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1285                                  ConstFPROffset);
1286
1287  // Store second byte : number of float regs
1288  SDValue secondStore =
1289    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1290  nextOffset += StackOffset;
1291  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1292
1293  // Store second word : arguments given on stack
1294  SDValue thirdStore =
1295    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1296  nextOffset += FrameOffset;
1297  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1298
1299  // Store third word : arguments given in registers
1300  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1301
1302}
1303
1304#include "PPCGenCallingConv.inc"
1305
1306/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1307/// depending on which subtarget is selected.
1308static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1309  if (Subtarget.isMachoABI()) {
1310    static const unsigned FPR[] = {
1311      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1312      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1313    };
1314    return FPR;
1315  }
1316
1317
1318  static const unsigned FPR[] = {
1319    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1320    PPC::F8
1321  };
1322  return FPR;
1323}
1324
1325/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1326/// the stack.
1327static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag,
1328                                       bool isVarArg, unsigned PtrByteSize) {
1329  MVT ArgVT = Arg.getValueType();
1330  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
1331  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1332  if (Flags.isByVal())
1333    ArgSize = Flags.getByValSize();
1334  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1335
1336  return ArgSize;
1337}
1338
1339SDValue
1340PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1341                                         SelectionDAG &DAG,
1342                                         int &VarArgsFrameIndex,
1343                                         int &VarArgsStackOffset,
1344                                         unsigned &VarArgsNumGPR,
1345                                         unsigned &VarArgsNumFPR,
1346                                         const PPCSubtarget &Subtarget) {
1347  // TODO: add description of PPC stack frame format, or at least some docs.
1348  //
1349  MachineFunction &MF = DAG.getMachineFunction();
1350  MachineFrameInfo *MFI = MF.getFrameInfo();
1351  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1352  SmallVector<SDValue, 8> ArgValues;
1353  SDValue Root = Op.getOperand(0);
1354  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1355
1356  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1357  bool isPPC64 = PtrVT == MVT::i64;
1358  bool isMachoABI = Subtarget.isMachoABI();
1359  bool isELF32_ABI = Subtarget.isELF32_ABI();
1360  // Potential tail calls could cause overwriting of argument stack slots.
1361  unsigned CC = MF.getFunction()->getCallingConv();
1362  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1363  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1364
1365  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1366  // Area that is at least reserved in caller of this function.
1367  unsigned MinReservedArea = ArgOffset;
1368
1369  static const unsigned GPR_32[] = {           // 32-bit registers.
1370    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1371    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1372  };
1373  static const unsigned GPR_64[] = {           // 64-bit registers.
1374    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1375    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1376  };
1377
1378  static const unsigned *FPR = GetFPR(Subtarget);
1379
1380  static const unsigned VR[] = {
1381    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1382    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1383  };
1384
1385  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1386  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1387  const unsigned Num_VR_Regs  = array_lengthof( VR);
1388
1389  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1390
1391  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1392
1393  // In 32-bit non-varargs functions, the stack space for vectors is after the
1394  // stack space for non-vectors.  We do not use this space unless we have
1395  // too many vectors to fit in registers, something that only occurs in
1396  // constructed examples:), but we have to walk the arglist to figure
1397  // that out...for the pathological case, compute VecArgOffset as the
1398  // start of the vector parameter area.  Computing VecArgOffset is the
1399  // entire point of the following loop.
1400  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1401  // to handle Elf here.
1402  unsigned VecArgOffset = ArgOffset;
1403  if (!isVarArg && !isPPC64) {
1404    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1405         ++ArgNo) {
1406      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1407      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1408      ISD::ArgFlagsTy Flags =
1409        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1410
1411      if (Flags.isByVal()) {
1412        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1413        ObjSize = Flags.getByValSize();
1414        unsigned ArgSize =
1415                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1416        VecArgOffset += ArgSize;
1417        continue;
1418      }
1419
1420      switch(ObjectVT.getSimpleVT()) {
1421      default: assert(0 && "Unhandled argument type!");
1422      case MVT::i32:
1423      case MVT::f32:
1424        VecArgOffset += isPPC64 ? 8 : 4;
1425        break;
1426      case MVT::i64:  // PPC64
1427      case MVT::f64:
1428        VecArgOffset += 8;
1429        break;
1430      case MVT::v4f32:
1431      case MVT::v4i32:
1432      case MVT::v8i16:
1433      case MVT::v16i8:
1434        // Nothing to do, we're only looking at Nonvector args here.
1435        break;
1436      }
1437    }
1438  }
1439  // We've found where the vector parameter area in memory is.  Skip the
1440  // first 12 parameters; these don't use that memory.
1441  VecArgOffset = ((VecArgOffset+15)/16)*16;
1442  VecArgOffset += 12*16;
1443
1444  // Add DAG nodes to load the arguments or copy them out of registers.  On
1445  // entry to a function on PPC, the arguments start after the linkage area,
1446  // although the first ones are often in registers.
1447  //
1448  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1449  // represented with two words (long long or double) must be copied to an
1450  // even GPR_idx value or to an even ArgOffset value.
1451
1452  SmallVector<SDValue, 8> MemOps;
1453  unsigned nAltivecParamsAtEnd = 0;
1454  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1455    SDValue ArgVal;
1456    bool needsLoad = false;
1457    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1458    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1459    unsigned ArgSize = ObjSize;
1460    ISD::ArgFlagsTy Flags =
1461      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1462    // See if next argument requires stack alignment in ELF
1463    bool Align = Flags.isSplit();
1464
1465    unsigned CurArgOffset = ArgOffset;
1466
1467    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1468    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1469        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1470      if (isVarArg || isPPC64) {
1471        MinReservedArea = ((MinReservedArea+15)/16)*16;
1472        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1473                                                  Op.getOperand(ArgNo+3),
1474                                                  isVarArg,
1475                                                  PtrByteSize);
1476      } else  nAltivecParamsAtEnd++;
1477    } else
1478      // Calculate min reserved area.
1479      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1480                                                Op.getOperand(ArgNo+3),
1481                                                isVarArg,
1482                                                PtrByteSize);
1483
1484    // FIXME alignment for ELF may not be right
1485    // FIXME the codegen can be much improved in some cases.
1486    // We do not have to keep everything in memory.
1487    if (Flags.isByVal()) {
1488      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1489      ObjSize = Flags.getByValSize();
1490      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1491      // Double word align in ELF
1492      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1493      // Objects of size 1 and 2 are right justified, everything else is
1494      // left justified.  This means the memory address is adjusted forwards.
1495      if (ObjSize==1 || ObjSize==2) {
1496        CurArgOffset = CurArgOffset + (4 - ObjSize);
1497      }
1498      // The value of the object is its address.
1499      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1500      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1501      ArgValues.push_back(FIN);
1502      if (ObjSize==1 || ObjSize==2) {
1503        if (GPR_idx != Num_GPR_Regs) {
1504          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1505          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1506          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1507          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1508                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1509          MemOps.push_back(Store);
1510          ++GPR_idx;
1511          if (isMachoABI) ArgOffset += PtrByteSize;
1512        } else {
1513          ArgOffset += PtrByteSize;
1514        }
1515        continue;
1516      }
1517      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1518        // Store whatever pieces of the object are in registers
1519        // to memory.  ArgVal will be address of the beginning of
1520        // the object.
1521        if (GPR_idx != Num_GPR_Regs) {
1522          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1523          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1524          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1525          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1526          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1527          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1528          MemOps.push_back(Store);
1529          ++GPR_idx;
1530          if (isMachoABI) ArgOffset += PtrByteSize;
1531        } else {
1532          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1533          break;
1534        }
1535      }
1536      continue;
1537    }
1538
1539    switch (ObjectVT.getSimpleVT()) {
1540    default: assert(0 && "Unhandled argument type!");
1541    case MVT::i32:
1542      if (!isPPC64) {
1543        // Double word align in ELF
1544        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1545
1546        if (GPR_idx != Num_GPR_Regs) {
1547          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1548          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1549          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1550          ++GPR_idx;
1551        } else {
1552          needsLoad = true;
1553          ArgSize = PtrByteSize;
1554        }
1555        // Stack align in ELF
1556        if (needsLoad && Align && isELF32_ABI)
1557          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1558        // All int arguments reserve stack space in Macho ABI.
1559        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1560        break;
1561      }
1562      // FALLTHROUGH
1563    case MVT::i64:  // PPC64
1564      if (GPR_idx != Num_GPR_Regs) {
1565        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1566        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1567        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1568
1569        if (ObjectVT == MVT::i32) {
1570          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1571          // value to MVT::i64 and then truncate to the correct register size.
1572          if (Flags.isSExt())
1573            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1574                                 DAG.getValueType(ObjectVT));
1575          else if (Flags.isZExt())
1576            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1577                                 DAG.getValueType(ObjectVT));
1578
1579          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1580        }
1581
1582        ++GPR_idx;
1583      } else {
1584        needsLoad = true;
1585        ArgSize = PtrByteSize;
1586      }
1587      // All int arguments reserve stack space in Macho ABI.
1588      if (isMachoABI || needsLoad) ArgOffset += 8;
1589      break;
1590
1591    case MVT::f32:
1592    case MVT::f64:
1593      // Every 4 bytes of argument space consumes one of the GPRs available for
1594      // argument passing.
1595      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1596        ++GPR_idx;
1597        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1598          ++GPR_idx;
1599      }
1600      if (FPR_idx != Num_FPR_Regs) {
1601        unsigned VReg;
1602        if (ObjectVT == MVT::f32)
1603          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1604        else
1605          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1606        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1607        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1608        ++FPR_idx;
1609      } else {
1610        needsLoad = true;
1611      }
1612
1613      // Stack align in ELF
1614      if (needsLoad && Align && isELF32_ABI)
1615        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1616      // All FP arguments reserve stack space in Macho ABI.
1617      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1618      break;
1619    case MVT::v4f32:
1620    case MVT::v4i32:
1621    case MVT::v8i16:
1622    case MVT::v16i8:
1623      // Note that vector arguments in registers don't reserve stack space,
1624      // except in varargs functions.
1625      if (VR_idx != Num_VR_Regs) {
1626        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1627        RegInfo.addLiveIn(VR[VR_idx], VReg);
1628        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1629        if (isVarArg) {
1630          while ((ArgOffset % 16) != 0) {
1631            ArgOffset += PtrByteSize;
1632            if (GPR_idx != Num_GPR_Regs)
1633              GPR_idx++;
1634          }
1635          ArgOffset += 16;
1636          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1637        }
1638        ++VR_idx;
1639      } else {
1640        if (!isVarArg && !isPPC64) {
1641          // Vectors go after all the nonvectors.
1642          CurArgOffset = VecArgOffset;
1643          VecArgOffset += 16;
1644        } else {
1645          // Vectors are aligned.
1646          ArgOffset = ((ArgOffset+15)/16)*16;
1647          CurArgOffset = ArgOffset;
1648          ArgOffset += 16;
1649        }
1650        needsLoad = true;
1651      }
1652      break;
1653    }
1654
1655    // We need to load the argument to a virtual register if we determined above
1656    // that we ran out of physical registers of the appropriate type.
1657    if (needsLoad) {
1658      int FI = MFI->CreateFixedObject(ObjSize,
1659                                      CurArgOffset + (ArgSize - ObjSize),
1660                                      isImmutable);
1661      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1662      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1663    }
1664
1665    ArgValues.push_back(ArgVal);
1666  }
1667
1668  // Set the size that is at least reserved in caller of this function.  Tail
1669  // call optimized function's reserved stack space needs to be aligned so that
1670  // taking the difference between two stack areas will result in an aligned
1671  // stack.
1672  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1673  // Add the Altivec parameters at the end, if needed.
1674  if (nAltivecParamsAtEnd) {
1675    MinReservedArea = ((MinReservedArea+15)/16)*16;
1676    MinReservedArea += 16*nAltivecParamsAtEnd;
1677  }
1678  MinReservedArea =
1679    std::max(MinReservedArea,
1680             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1681  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1682    getStackAlignment();
1683  unsigned AlignMask = TargetAlign-1;
1684  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1685  FI->setMinReservedArea(MinReservedArea);
1686
1687  // If the function takes variable number of arguments, make a frame index for
1688  // the start of the first vararg value... for expansion of llvm.va_start.
1689  if (isVarArg) {
1690
1691    int depth;
1692    if (isELF32_ABI) {
1693      VarArgsNumGPR = GPR_idx;
1694      VarArgsNumFPR = FPR_idx;
1695
1696      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1697      // pointer.
1698      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1699                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1700                PtrVT.getSizeInBits()/8);
1701
1702      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1703                                                  ArgOffset);
1704
1705    }
1706    else
1707      depth = ArgOffset;
1708
1709    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1710                                               depth);
1711    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1712
1713    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1714    // stored to the VarArgsFrameIndex on the stack.
1715    if (isELF32_ABI) {
1716      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1717        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1718        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1719        MemOps.push_back(Store);
1720        // Increment the address by four for the next argument to store
1721        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1722        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1723      }
1724    }
1725
1726    // If this function is vararg, store any remaining integer argument regs
1727    // to their spots on the stack so that they may be loaded by deferencing the
1728    // result of va_next.
1729    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1730      unsigned VReg;
1731      if (isPPC64)
1732        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1733      else
1734        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1735
1736      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1737      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1738      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1739      MemOps.push_back(Store);
1740      // Increment the address by four for the next argument to store
1741      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1742      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1743    }
1744
1745    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1746    // on the stack.
1747    if (isELF32_ABI) {
1748      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1749        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1750        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1751        MemOps.push_back(Store);
1752        // Increment the address by eight for the next argument to store
1753        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1754                                           PtrVT);
1755        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1756      }
1757
1758      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1759        unsigned VReg;
1760        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1761
1762        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1763        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1764        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1765        MemOps.push_back(Store);
1766        // Increment the address by eight for the next argument to store
1767        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1768                                           PtrVT);
1769        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1770      }
1771    }
1772  }
1773
1774  if (!MemOps.empty())
1775    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1776
1777  ArgValues.push_back(Root);
1778
1779  // Return the new list of results.
1780  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1781                            ArgValues.size());
1782}
1783
1784/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1785/// linkage area.
1786static unsigned
1787CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1788                                     bool isPPC64,
1789                                     bool isMachoABI,
1790                                     bool isVarArg,
1791                                     unsigned CC,
1792                                     SDValue Call,
1793                                     unsigned &nAltivecParamsAtEnd) {
1794  // Count how many bytes are to be pushed on the stack, including the linkage
1795  // area, and parameter passing area.  We start with 24/48 bytes, which is
1796  // prereserved space for [SP][CR][LR][3 x unused].
1797  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1798  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
1799  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1800
1801  // Add up all the space actually used.
1802  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1803  // they all go in registers, but we must reserve stack space for them for
1804  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1805  // assigned stack space in order, with padding so Altivec parameters are
1806  // 16-byte aligned.
1807  nAltivecParamsAtEnd = 0;
1808  for (unsigned i = 0; i != NumOps; ++i) {
1809    SDValue Arg = Call.getOperand(5+2*i);
1810    SDValue Flag = Call.getOperand(5+2*i+1);
1811    MVT ArgVT = Arg.getValueType();
1812    // Varargs Altivec parameters are padded to a 16 byte boundary.
1813    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1814        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1815      if (!isVarArg && !isPPC64) {
1816        // Non-varargs Altivec parameters go after all the non-Altivec
1817        // parameters; handle those later so we know how much padding we need.
1818        nAltivecParamsAtEnd++;
1819        continue;
1820      }
1821      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1822      NumBytes = ((NumBytes+15)/16)*16;
1823    }
1824    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
1825  }
1826
1827   // Allow for Altivec parameters at the end, if needed.
1828  if (nAltivecParamsAtEnd) {
1829    NumBytes = ((NumBytes+15)/16)*16;
1830    NumBytes += 16*nAltivecParamsAtEnd;
1831  }
1832
1833  // The prolog code of the callee may store up to 8 GPR argument registers to
1834  // the stack, allowing va_start to index over them in memory if its varargs.
1835  // Because we cannot tell if this is needed on the caller side, we have to
1836  // conservatively assume that it is needed.  As such, make sure we have at
1837  // least enough stack space for the caller to store the 8 GPRs.
1838  NumBytes = std::max(NumBytes,
1839                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1840
1841  // Tail call needs the stack to be aligned.
1842  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1843    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1844      getStackAlignment();
1845    unsigned AlignMask = TargetAlign-1;
1846    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1847  }
1848
1849  return NumBytes;
1850}
1851
1852/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1853/// adjusted to accomodate the arguments for the tailcall.
1854static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1855                                   unsigned ParamSize) {
1856
1857  if (!IsTailCall) return 0;
1858
1859  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1860  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1861  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1862  // Remember only if the new adjustement is bigger.
1863  if (SPDiff < FI->getTailCallSPDelta())
1864    FI->setTailCallSPDelta(SPDiff);
1865
1866  return SPDiff;
1867}
1868
1869/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1870/// following the call is a return. A function is eligible if caller/callee
1871/// calling conventions match, currently only fastcc supports tail calls, and
1872/// the function CALL is immediatly followed by a RET.
1873bool
1874PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1875                                                     SDValue Ret,
1876                                                     SelectionDAG& DAG) const {
1877  // Variable argument functions are not supported.
1878  if (!PerformTailCallOpt ||
1879      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
1880
1881  if (CheckTailCallReturnConstraints(Call, Ret)) {
1882    MachineFunction &MF = DAG.getMachineFunction();
1883    unsigned CallerCC = MF.getFunction()->getCallingConv();
1884    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1885    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1886      // Functions containing by val parameters are not supported.
1887      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
1888         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
1889           ->getArgFlags();
1890         if (Flags.isByVal()) return false;
1891      }
1892
1893      SDValue Callee = Call.getOperand(4);
1894      // Non PIC/GOT  tail calls are supported.
1895      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1896        return true;
1897
1898      // At the moment we can only do local tail calls (in same module, hidden
1899      // or protected) if we are generating PIC.
1900      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1901        return G->getGlobal()->hasHiddenVisibility()
1902            || G->getGlobal()->hasProtectedVisibility();
1903    }
1904  }
1905
1906  return false;
1907}
1908
1909/// isCallCompatibleAddress - Return the immediate to use if the specified
1910/// 32-bit value is representable in the immediate field of a BxA instruction.
1911static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1912  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1913  if (!C) return 0;
1914
1915  int Addr = C->getValue();
1916  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1917      (Addr << 6 >> 6) != Addr)
1918    return 0;  // Top 6 bits have to be sext of immediate.
1919
1920  return DAG.getConstant((int)C->getValue() >> 2,
1921                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1922}
1923
1924namespace {
1925
1926struct TailCallArgumentInfo {
1927  SDValue Arg;
1928  SDValue FrameIdxOp;
1929  int       FrameIdx;
1930
1931  TailCallArgumentInfo() : FrameIdx(0) {}
1932};
1933
1934}
1935
1936/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1937static void
1938StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1939                                           SDValue Chain,
1940                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1941                   SmallVector<SDValue, 8> &MemOpChains) {
1942  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1943    SDValue Arg = TailCallArgs[i].Arg;
1944    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1945    int FI = TailCallArgs[i].FrameIdx;
1946    // Store relative to framepointer.
1947    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1948                                       PseudoSourceValue::getFixedStack(FI),
1949                                       0));
1950  }
1951}
1952
1953/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1954/// the appropriate stack slot for the tail call optimized function call.
1955static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1956                                               MachineFunction &MF,
1957                                               SDValue Chain,
1958                                               SDValue OldRetAddr,
1959                                               SDValue OldFP,
1960                                               int SPDiff,
1961                                               bool isPPC64,
1962                                               bool isMachoABI) {
1963  if (SPDiff) {
1964    // Calculate the new stack slot for the return address.
1965    int SlotSize = isPPC64 ? 8 : 4;
1966    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1967                                                                   isMachoABI);
1968    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1969                                                          NewRetAddrLoc);
1970    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1971                                                                    isMachoABI);
1972    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1973
1974    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1975    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1976    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1977                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
1978    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1979    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1980                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
1981  }
1982  return Chain;
1983}
1984
1985/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1986/// the position of the argument.
1987static void
1988CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1989                         SDValue Arg, int SPDiff, unsigned ArgOffset,
1990                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1991  int Offset = ArgOffset + SPDiff;
1992  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1993  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1994  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1995  SDValue FIN = DAG.getFrameIndex(FI, VT);
1996  TailCallArgumentInfo Info;
1997  Info.Arg = Arg;
1998  Info.FrameIdxOp = FIN;
1999  Info.FrameIdx = FI;
2000  TailCallArguments.push_back(Info);
2001}
2002
2003/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2004/// stack slot. Returns the chain as result and the loaded frame pointers in
2005/// LROpOut/FPOpout. Used when tail calling.
2006SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2007                                                          int SPDiff,
2008                                                          SDValue Chain,
2009                                                          SDValue &LROpOut,
2010                                                          SDValue &FPOpOut) {
2011  if (SPDiff) {
2012    // Load the LR and FP stack slot for later adjusting.
2013    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2014    LROpOut = getReturnAddrFrameIndex(DAG);
2015    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2016    Chain = SDValue(LROpOut.Val, 1);
2017    FPOpOut = getFramePointerFrameIndex(DAG);
2018    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2019    Chain = SDValue(FPOpOut.Val, 1);
2020  }
2021  return Chain;
2022}
2023
2024/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2025/// by "Src" to address "Dst" of size "Size".  Alignment information is
2026/// specified by the specific parameter attribute. The copy will be passed as
2027/// a byval function parameter.
2028/// Sometimes what we are copying is the end of a larger object, the part that
2029/// does not fit in registers.
2030static SDValue
2031CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2032                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2033                          unsigned Size) {
2034  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2035  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2036                       NULL, 0, NULL, 0);
2037}
2038
2039/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2040/// tail calls.
2041static void
2042LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2043                 SDValue Arg, SDValue PtrOff, int SPDiff,
2044                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2045                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2046                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2047  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2048  if (!isTailCall) {
2049    if (isVector) {
2050      SDValue StackPtr;
2051      if (isPPC64)
2052        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2053      else
2054        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2055      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2056                           DAG.getConstant(ArgOffset, PtrVT));
2057    }
2058    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2059  // Calculate and remember argument location.
2060  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2061                                  TailCallArguments);
2062}
2063
2064SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2065                                       const PPCSubtarget &Subtarget,
2066                                       TargetMachine &TM) {
2067  SDValue Chain  = Op.getOperand(0);
2068  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
2069  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2070  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
2071                     CC == CallingConv::Fast && PerformTailCallOpt;
2072  SDValue Callee = Op.getOperand(4);
2073  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
2074
2075  bool isMachoABI = Subtarget.isMachoABI();
2076  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2077
2078  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2079  bool isPPC64 = PtrVT == MVT::i64;
2080  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2081
2082  MachineFunction &MF = DAG.getMachineFunction();
2083
2084  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2085  // SelectExpr to use to put the arguments in the appropriate registers.
2086  std::vector<SDValue> args_to_use;
2087
2088  // Mark this function as potentially containing a function that contains a
2089  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2090  // and restoring the callers stack pointer in this functions epilog. This is
2091  // done because by tail calling the called function might overwrite the value
2092  // in this function's (MF) stack pointer stack slot 0(SP).
2093  if (PerformTailCallOpt && CC==CallingConv::Fast)
2094    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2095
2096  unsigned nAltivecParamsAtEnd = 0;
2097
2098  // Count how many bytes are to be pushed on the stack, including the linkage
2099  // area, and parameter passing area.  We start with 24/48 bytes, which is
2100  // prereserved space for [SP][CR][LR][3 x unused].
2101  unsigned NumBytes =
2102    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2103                                         Op, nAltivecParamsAtEnd);
2104
2105  // Calculate by how many bytes the stack has to be adjusted in case of tail
2106  // call optimization.
2107  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2108
2109  // Adjust the stack pointer for the new arguments...
2110  // These operations are automatically eliminated by the prolog/epilog pass
2111  Chain = DAG.getCALLSEQ_START(Chain,
2112                               DAG.getConstant(NumBytes, PtrVT));
2113  SDValue CallSeqStart = Chain;
2114
2115  // Load the return address and frame pointer so it can be move somewhere else
2116  // later.
2117  SDValue LROp, FPOp;
2118  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2119
2120  // Set up a copy of the stack pointer for use loading and storing any
2121  // arguments that may not fit in the registers available for argument
2122  // passing.
2123  SDValue StackPtr;
2124  if (isPPC64)
2125    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2126  else
2127    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2128
2129  // Figure out which arguments are going to go in registers, and which in
2130  // memory.  Also, if this is a vararg function, floating point operations
2131  // must be stored to our stack, and loaded into integer regs as well, if
2132  // any integer regs are available for argument passing.
2133  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2134  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2135
2136  static const unsigned GPR_32[] = {           // 32-bit registers.
2137    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2138    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2139  };
2140  static const unsigned GPR_64[] = {           // 64-bit registers.
2141    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2142    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2143  };
2144  static const unsigned *FPR = GetFPR(Subtarget);
2145
2146  static const unsigned VR[] = {
2147    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2148    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2149  };
2150  const unsigned NumGPRs = array_lengthof(GPR_32);
2151  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2152  const unsigned NumVRs  = array_lengthof( VR);
2153
2154  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2155
2156  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2157  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2158
2159  SmallVector<SDValue, 8> MemOpChains;
2160  for (unsigned i = 0; i != NumOps; ++i) {
2161    bool inMem = false;
2162    SDValue Arg = Op.getOperand(5+2*i);
2163    ISD::ArgFlagsTy Flags =
2164      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
2165    // See if next argument requires stack alignment in ELF
2166    bool Align = Flags.isSplit();
2167
2168    // PtrOff will be used to store the current argument to the stack if a
2169    // register cannot be found for it.
2170    SDValue PtrOff;
2171
2172    // Stack align in ELF 32
2173    if (isELF32_ABI && Align)
2174      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2175                               StackPtr.getValueType());
2176    else
2177      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2178
2179    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2180
2181    // On PPC64, promote integers to 64-bit values.
2182    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2183      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2184      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2185      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2186    }
2187
2188    // FIXME Elf untested, what are alignment rules?
2189    // FIXME memcpy is used way more than necessary.  Correctness first.
2190    if (Flags.isByVal()) {
2191      unsigned Size = Flags.getByValSize();
2192      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2193      if (Size==1 || Size==2) {
2194        // Very small objects are passed right-justified.
2195        // Everything else is passed left-justified.
2196        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2197        if (GPR_idx != NumGPRs) {
2198          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2199                                          NULL, 0, VT);
2200          MemOpChains.push_back(Load.getValue(1));
2201          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2202          if (isMachoABI)
2203            ArgOffset += PtrByteSize;
2204        } else {
2205          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2206          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2207          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2208                                CallSeqStart.Val->getOperand(0),
2209                                Flags, DAG, Size);
2210          // This must go outside the CALLSEQ_START..END.
2211          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2212                               CallSeqStart.Val->getOperand(1));
2213          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2214          Chain = CallSeqStart = NewCallSeqStart;
2215          ArgOffset += PtrByteSize;
2216        }
2217        continue;
2218      }
2219      // Copy entire object into memory.  There are cases where gcc-generated
2220      // code assumes it is there, even if it could be put entirely into
2221      // registers.  (This is not what the doc says.)
2222      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2223                            CallSeqStart.Val->getOperand(0),
2224                            Flags, DAG, Size);
2225      // This must go outside the CALLSEQ_START..END.
2226      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2227                           CallSeqStart.Val->getOperand(1));
2228      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2229      Chain = CallSeqStart = NewCallSeqStart;
2230      // And copy the pieces of it that fit into registers.
2231      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2232        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2233        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2234        if (GPR_idx != NumGPRs) {
2235          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2236          MemOpChains.push_back(Load.getValue(1));
2237          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2238          if (isMachoABI)
2239            ArgOffset += PtrByteSize;
2240        } else {
2241          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2242          break;
2243        }
2244      }
2245      continue;
2246    }
2247
2248    switch (Arg.getValueType().getSimpleVT()) {
2249    default: assert(0 && "Unexpected ValueType for argument!");
2250    case MVT::i32:
2251    case MVT::i64:
2252      // Double word align in ELF
2253      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2254      if (GPR_idx != NumGPRs) {
2255        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2256      } else {
2257        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2258                         isPPC64, isTailCall, false, MemOpChains,
2259                         TailCallArguments);
2260        inMem = true;
2261      }
2262      if (inMem || isMachoABI) {
2263        // Stack align in ELF
2264        if (isELF32_ABI && Align)
2265          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2266
2267        ArgOffset += PtrByteSize;
2268      }
2269      break;
2270    case MVT::f32:
2271    case MVT::f64:
2272      if (FPR_idx != NumFPRs) {
2273        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2274
2275        if (isVarArg) {
2276          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2277          MemOpChains.push_back(Store);
2278
2279          // Float varargs are always shadowed in available integer registers
2280          if (GPR_idx != NumGPRs) {
2281            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2282            MemOpChains.push_back(Load.getValue(1));
2283            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2284                                                                Load));
2285          }
2286          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2287            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2288            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2289            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2290            MemOpChains.push_back(Load.getValue(1));
2291            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2292                                                                Load));
2293          }
2294        } else {
2295          // If we have any FPRs remaining, we may also have GPRs remaining.
2296          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2297          // GPRs.
2298          if (isMachoABI) {
2299            if (GPR_idx != NumGPRs)
2300              ++GPR_idx;
2301            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2302                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2303              ++GPR_idx;
2304          }
2305        }
2306      } else {
2307        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2308                         isPPC64, isTailCall, false, MemOpChains,
2309                         TailCallArguments);
2310        inMem = true;
2311      }
2312      if (inMem || isMachoABI) {
2313        // Stack align in ELF
2314        if (isELF32_ABI && Align)
2315          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2316        if (isPPC64)
2317          ArgOffset += 8;
2318        else
2319          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2320      }
2321      break;
2322    case MVT::v4f32:
2323    case MVT::v4i32:
2324    case MVT::v8i16:
2325    case MVT::v16i8:
2326      if (isVarArg) {
2327        // These go aligned on the stack, or in the corresponding R registers
2328        // when within range.  The Darwin PPC ABI doc claims they also go in
2329        // V registers; in fact gcc does this only for arguments that are
2330        // prototyped, not for those that match the ...  We do it for all
2331        // arguments, seems to work.
2332        while (ArgOffset % 16 !=0) {
2333          ArgOffset += PtrByteSize;
2334          if (GPR_idx != NumGPRs)
2335            GPR_idx++;
2336        }
2337        // We could elide this store in the case where the object fits
2338        // entirely in R registers.  Maybe later.
2339        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2340                            DAG.getConstant(ArgOffset, PtrVT));
2341        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2342        MemOpChains.push_back(Store);
2343        if (VR_idx != NumVRs) {
2344          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2345          MemOpChains.push_back(Load.getValue(1));
2346          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2347        }
2348        ArgOffset += 16;
2349        for (unsigned i=0; i<16; i+=PtrByteSize) {
2350          if (GPR_idx == NumGPRs)
2351            break;
2352          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2353                                  DAG.getConstant(i, PtrVT));
2354          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2355          MemOpChains.push_back(Load.getValue(1));
2356          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2357        }
2358        break;
2359      }
2360
2361      // Non-varargs Altivec params generally go in registers, but have
2362      // stack space allocated at the end.
2363      if (VR_idx != NumVRs) {
2364        // Doesn't have GPR space allocated.
2365        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2366      } else if (nAltivecParamsAtEnd==0) {
2367        // We are emitting Altivec params in order.
2368        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2369                         isPPC64, isTailCall, true, MemOpChains,
2370                         TailCallArguments);
2371        ArgOffset += 16;
2372      }
2373      break;
2374    }
2375  }
2376  // If all Altivec parameters fit in registers, as they usually do,
2377  // they get stack space following the non-Altivec parameters.  We
2378  // don't track this here because nobody below needs it.
2379  // If there are more Altivec parameters than fit in registers emit
2380  // the stores here.
2381  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2382    unsigned j = 0;
2383    // Offset is aligned; skip 1st 12 params which go in V registers.
2384    ArgOffset = ((ArgOffset+15)/16)*16;
2385    ArgOffset += 12*16;
2386    for (unsigned i = 0; i != NumOps; ++i) {
2387      SDValue Arg = Op.getOperand(5+2*i);
2388      MVT ArgType = Arg.getValueType();
2389      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2390          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2391        if (++j > NumVRs) {
2392          SDValue PtrOff;
2393          // We are emitting Altivec params in order.
2394          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2395                           isPPC64, isTailCall, true, MemOpChains,
2396                           TailCallArguments);
2397          ArgOffset += 16;
2398        }
2399      }
2400    }
2401  }
2402
2403  if (!MemOpChains.empty())
2404    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2405                        &MemOpChains[0], MemOpChains.size());
2406
2407  // Build a sequence of copy-to-reg nodes chained together with token chain
2408  // and flag operands which copy the outgoing args into the appropriate regs.
2409  SDValue InFlag;
2410  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2411    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2412                             InFlag);
2413    InFlag = Chain.getValue(1);
2414  }
2415
2416  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2417  if (isVarArg && isELF32_ABI) {
2418    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2419    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2420    InFlag = Chain.getValue(1);
2421  }
2422
2423  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2424  // might overwrite each other in case of tail call optimization.
2425  if (isTailCall) {
2426    SmallVector<SDValue, 8> MemOpChains2;
2427    // Do not flag preceeding copytoreg stuff together with the following stuff.
2428    InFlag = SDValue();
2429    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2430                                      MemOpChains2);
2431    if (!MemOpChains2.empty())
2432      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2433                          &MemOpChains2[0], MemOpChains2.size());
2434
2435    // Store the return address to the appropriate stack slot.
2436    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2437                                          isPPC64, isMachoABI);
2438  }
2439
2440  // Emit callseq_end just before tailcall node.
2441  if (isTailCall) {
2442    SmallVector<SDValue, 8> CallSeqOps;
2443    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2444    CallSeqOps.push_back(Chain);
2445    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2446    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2447    if (InFlag.Val)
2448      CallSeqOps.push_back(InFlag);
2449    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2450                        CallSeqOps.size());
2451    InFlag = Chain.getValue(1);
2452  }
2453
2454  std::vector<MVT> NodeTys;
2455  NodeTys.push_back(MVT::Other);   // Returns a chain
2456  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2457
2458  SmallVector<SDValue, 8> Ops;
2459  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2460
2461  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2462  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2463  // node so that legalize doesn't hack it.
2464  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2465    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2466  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2467    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2468  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2469    // If this is an absolute destination address, use the munged value.
2470    Callee = SDValue(Dest, 0);
2471  else {
2472    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2473    // to do the call, we can't use PPCISD::CALL.
2474    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2475    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2476    InFlag = Chain.getValue(1);
2477
2478    // Copy the callee address into R12/X12 on darwin.
2479    if (isMachoABI) {
2480      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2481      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2482      InFlag = Chain.getValue(1);
2483    }
2484
2485    NodeTys.clear();
2486    NodeTys.push_back(MVT::Other);
2487    NodeTys.push_back(MVT::Flag);
2488    Ops.push_back(Chain);
2489    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2490    Callee.Val = 0;
2491    // Add CTR register as callee so a bctr can be emitted later.
2492    if (isTailCall)
2493      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2494  }
2495
2496  // If this is a direct call, pass the chain and the callee.
2497  if (Callee.Val) {
2498    Ops.push_back(Chain);
2499    Ops.push_back(Callee);
2500  }
2501  // If this is a tail call add stack pointer delta.
2502  if (isTailCall)
2503    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2504
2505  // Add argument registers to the end of the list so that they are known live
2506  // into the call.
2507  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509                                  RegsToPass[i].second.getValueType()));
2510
2511  // When performing tail call optimization the callee pops its arguments off
2512  // the stack. Account for this here so these bytes can be pushed back on in
2513  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2514  int BytesCalleePops =
2515    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2516
2517  if (InFlag.Val)
2518    Ops.push_back(InFlag);
2519
2520  // Emit tail call.
2521  if (isTailCall) {
2522    assert(InFlag.Val &&
2523           "Flag must be set. Depend on flag being set in LowerRET");
2524    Chain = DAG.getNode(PPCISD::TAILCALL,
2525                        Op.Val->getVTList(), &Ops[0], Ops.size());
2526    return SDValue(Chain.Val, Op.ResNo);
2527  }
2528
2529  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2530  InFlag = Chain.getValue(1);
2531
2532  Chain = DAG.getCALLSEQ_END(Chain,
2533                             DAG.getConstant(NumBytes, PtrVT),
2534                             DAG.getConstant(BytesCalleePops, PtrVT),
2535                             InFlag);
2536  if (Op.Val->getValueType(0) != MVT::Other)
2537    InFlag = Chain.getValue(1);
2538
2539  SmallVector<SDValue, 16> ResultVals;
2540  SmallVector<CCValAssign, 16> RVLocs;
2541  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2542  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2543  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2544
2545  // Copy all of the result registers out of their specified physreg.
2546  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2547    CCValAssign &VA = RVLocs[i];
2548    MVT VT = VA.getValVT();
2549    assert(VA.isRegLoc() && "Can only return in registers!");
2550    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2551    ResultVals.push_back(Chain.getValue(0));
2552    InFlag = Chain.getValue(2);
2553  }
2554
2555  // If the function returns void, just return the chain.
2556  if (RVLocs.empty())
2557    return Chain;
2558
2559  // Otherwise, merge everything together with a MERGE_VALUES node.
2560  ResultVals.push_back(Chain);
2561  SDValue Res = DAG.getMergeValues(Op.Val->getVTList(), &ResultVals[0],
2562                                     ResultVals.size());
2563  return Res.getValue(Op.ResNo);
2564}
2565
2566SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2567                                      TargetMachine &TM) {
2568  SmallVector<CCValAssign, 16> RVLocs;
2569  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2570  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2571  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2572  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2573
2574  // If this is the first return lowered for this function, add the regs to the
2575  // liveout set for the function.
2576  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2577    for (unsigned i = 0; i != RVLocs.size(); ++i)
2578      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2579  }
2580
2581  SDValue Chain = Op.getOperand(0);
2582
2583  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2584  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2585    SDValue TailCall = Chain;
2586    SDValue TargetAddress = TailCall.getOperand(1);
2587    SDValue StackAdjustment = TailCall.getOperand(2);
2588
2589    assert(((TargetAddress.getOpcode() == ISD::Register &&
2590             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2591            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2592            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2593            isa<ConstantSDNode>(TargetAddress)) &&
2594    "Expecting an global address, external symbol, absolute value or register");
2595
2596    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2597           "Expecting a const value");
2598
2599    SmallVector<SDValue,8> Operands;
2600    Operands.push_back(Chain.getOperand(0));
2601    Operands.push_back(TargetAddress);
2602    Operands.push_back(StackAdjustment);
2603    // Copy registers used by the call. Last operand is a flag so it is not
2604    // copied.
2605    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2606      Operands.push_back(Chain.getOperand(i));
2607    }
2608    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2609                       Operands.size());
2610  }
2611
2612  SDValue Flag;
2613
2614  // Copy the result values into the output registers.
2615  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2616    CCValAssign &VA = RVLocs[i];
2617    assert(VA.isRegLoc() && "Can only return in registers!");
2618    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2619    Flag = Chain.getValue(1);
2620  }
2621
2622  if (Flag.Val)
2623    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2624  else
2625    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2626}
2627
2628SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2629                                   const PPCSubtarget &Subtarget) {
2630  // When we pop the dynamic allocation we need to restore the SP link.
2631
2632  // Get the corect type for pointers.
2633  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2634
2635  // Construct the stack pointer operand.
2636  bool IsPPC64 = Subtarget.isPPC64();
2637  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2638  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2639
2640  // Get the operands for the STACKRESTORE.
2641  SDValue Chain = Op.getOperand(0);
2642  SDValue SaveSP = Op.getOperand(1);
2643
2644  // Load the old link SP.
2645  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2646
2647  // Restore the stack pointer.
2648  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2649
2650  // Store the old link SP.
2651  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2652}
2653
2654
2655
2656SDValue
2657PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2658  MachineFunction &MF = DAG.getMachineFunction();
2659  bool IsPPC64 = PPCSubTarget.isPPC64();
2660  bool isMachoABI = PPCSubTarget.isMachoABI();
2661  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2662
2663  // Get current frame pointer save index.  The users of this index will be
2664  // primarily DYNALLOC instructions.
2665  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2666  int RASI = FI->getReturnAddrSaveIndex();
2667
2668  // If the frame pointer save index hasn't been defined yet.
2669  if (!RASI) {
2670    // Find out what the fix offset of the frame pointer save area.
2671    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2672    // Allocate the frame index for frame pointer save area.
2673    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2674    // Save the result.
2675    FI->setReturnAddrSaveIndex(RASI);
2676  }
2677  return DAG.getFrameIndex(RASI, PtrVT);
2678}
2679
2680SDValue
2681PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2682  MachineFunction &MF = DAG.getMachineFunction();
2683  bool IsPPC64 = PPCSubTarget.isPPC64();
2684  bool isMachoABI = PPCSubTarget.isMachoABI();
2685  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2686
2687  // Get current frame pointer save index.  The users of this index will be
2688  // primarily DYNALLOC instructions.
2689  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2690  int FPSI = FI->getFramePointerSaveIndex();
2691
2692  // If the frame pointer save index hasn't been defined yet.
2693  if (!FPSI) {
2694    // Find out what the fix offset of the frame pointer save area.
2695    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2696
2697    // Allocate the frame index for frame pointer save area.
2698    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2699    // Save the result.
2700    FI->setFramePointerSaveIndex(FPSI);
2701  }
2702  return DAG.getFrameIndex(FPSI, PtrVT);
2703}
2704
2705SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2706                                         SelectionDAG &DAG,
2707                                         const PPCSubtarget &Subtarget) {
2708  // Get the inputs.
2709  SDValue Chain = Op.getOperand(0);
2710  SDValue Size  = Op.getOperand(1);
2711
2712  // Get the corect type for pointers.
2713  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2714  // Negate the size.
2715  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2716                                  DAG.getConstant(0, PtrVT), Size);
2717  // Construct a node for the frame pointer save index.
2718  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2719  // Build a DYNALLOC node.
2720  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2721  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2722  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2723}
2724
2725SDValue PPCTargetLowering::LowerAtomicLOAD_ADD(SDValue Op, SelectionDAG &DAG) {
2726  MVT VT = Op.Val->getValueType(0);
2727  SDValue Chain   = Op.getOperand(0);
2728  SDValue Ptr     = Op.getOperand(1);
2729  SDValue Incr    = Op.getOperand(2);
2730
2731  SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2732  SDValue Ops[] = {
2733    Chain,
2734    Ptr,
2735    Incr,
2736  };
2737  return DAG.getNode(PPCISD::ATOMIC_LOAD_ADD, VTs, Ops, 3);
2738}
2739
2740SDValue PPCTargetLowering::LowerAtomicCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
2741  MVT VT = Op.Val->getValueType(0);
2742  SDValue Chain   = Op.getOperand(0);
2743  SDValue Ptr     = Op.getOperand(1);
2744  SDValue NewVal  = Op.getOperand(2);
2745  SDValue OldVal  = Op.getOperand(3);
2746
2747  SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2748  SDValue Ops[] = {
2749    Chain,
2750    Ptr,
2751    OldVal,
2752    NewVal,
2753  };
2754  return DAG.getNode(PPCISD::ATOMIC_CMP_SWAP, VTs, Ops, 4);
2755}
2756
2757SDValue PPCTargetLowering::LowerAtomicSWAP(SDValue Op, SelectionDAG &DAG) {
2758  MVT VT = Op.Val->getValueType(0);
2759  SDValue Chain   = Op.getOperand(0);
2760  SDValue Ptr     = Op.getOperand(1);
2761  SDValue NewVal  = Op.getOperand(2);
2762
2763  SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2764  SDValue Ops[] = {
2765    Chain,
2766    Ptr,
2767    NewVal,
2768  };
2769  return DAG.getNode(PPCISD::ATOMIC_SWAP, VTs, Ops, 3);
2770}
2771
2772/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2773/// possible.
2774SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2775  // Not FP? Not a fsel.
2776  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2777      !Op.getOperand(2).getValueType().isFloatingPoint())
2778    return SDValue();
2779
2780  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2781
2782  // Cannot handle SETEQ/SETNE.
2783  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2784
2785  MVT ResVT = Op.getValueType();
2786  MVT CmpVT = Op.getOperand(0).getValueType();
2787  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2788  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2789
2790  // If the RHS of the comparison is a 0.0, we don't need to do the
2791  // subtraction at all.
2792  if (isFloatingPointZero(RHS))
2793    switch (CC) {
2794    default: break;       // SETUO etc aren't handled by fsel.
2795    case ISD::SETULT:
2796    case ISD::SETOLT:
2797    case ISD::SETLT:
2798      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2799    case ISD::SETUGE:
2800    case ISD::SETOGE:
2801    case ISD::SETGE:
2802      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2803        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2804      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2805    case ISD::SETUGT:
2806    case ISD::SETOGT:
2807    case ISD::SETGT:
2808      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2809    case ISD::SETULE:
2810    case ISD::SETOLE:
2811    case ISD::SETLE:
2812      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2813        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2814      return DAG.getNode(PPCISD::FSEL, ResVT,
2815                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2816    }
2817
2818  SDValue Cmp;
2819  switch (CC) {
2820  default: break;       // SETUO etc aren't handled by fsel.
2821  case ISD::SETULT:
2822  case ISD::SETOLT:
2823  case ISD::SETLT:
2824    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2825    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2826      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2827      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2828  case ISD::SETUGE:
2829  case ISD::SETOGE:
2830  case ISD::SETGE:
2831    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2832    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2833      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2834      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2835  case ISD::SETUGT:
2836  case ISD::SETOGT:
2837  case ISD::SETGT:
2838    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2839    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2840      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2841      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2842  case ISD::SETULE:
2843  case ISD::SETOLE:
2844  case ISD::SETLE:
2845    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2846    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2847      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2848      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2849  }
2850  return SDValue();
2851}
2852
2853// FIXME: Split this code up when LegalizeDAGTypes lands.
2854SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2855  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2856  SDValue Src = Op.getOperand(0);
2857  if (Src.getValueType() == MVT::f32)
2858    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2859
2860  SDValue Tmp;
2861  switch (Op.getValueType().getSimpleVT()) {
2862  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2863  case MVT::i32:
2864    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2865    break;
2866  case MVT::i64:
2867    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2868    break;
2869  }
2870
2871  // Convert the FP value to an int value through memory.
2872  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2873
2874  // Emit a store to the stack slot.
2875  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2876
2877  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2878  // add in a bias.
2879  if (Op.getValueType() == MVT::i32)
2880    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2881                        DAG.getConstant(4, FIPtr.getValueType()));
2882  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2883}
2884
2885SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2886                                                 SelectionDAG &DAG) {
2887  assert(Op.getValueType() == MVT::ppcf128);
2888  SDNode *Node = Op.Val;
2889  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2890  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2891  SDValue Lo = Node->getOperand(0).Val->getOperand(0);
2892  SDValue Hi = Node->getOperand(0).Val->getOperand(1);
2893
2894  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2895  // of the long double, and puts FPSCR back the way it was.  We do not
2896  // actually model FPSCR.
2897  std::vector<MVT> NodeTys;
2898  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2899
2900  NodeTys.push_back(MVT::f64);   // Return register
2901  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2902  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2903  MFFSreg = Result.getValue(0);
2904  InFlag = Result.getValue(1);
2905
2906  NodeTys.clear();
2907  NodeTys.push_back(MVT::Flag);   // Returns a flag
2908  Ops[0] = DAG.getConstant(31, MVT::i32);
2909  Ops[1] = InFlag;
2910  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2911  InFlag = Result.getValue(0);
2912
2913  NodeTys.clear();
2914  NodeTys.push_back(MVT::Flag);   // Returns a flag
2915  Ops[0] = DAG.getConstant(30, MVT::i32);
2916  Ops[1] = InFlag;
2917  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2918  InFlag = Result.getValue(0);
2919
2920  NodeTys.clear();
2921  NodeTys.push_back(MVT::f64);    // result of add
2922  NodeTys.push_back(MVT::Flag);   // Returns a flag
2923  Ops[0] = Lo;
2924  Ops[1] = Hi;
2925  Ops[2] = InFlag;
2926  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2927  FPreg = Result.getValue(0);
2928  InFlag = Result.getValue(1);
2929
2930  NodeTys.clear();
2931  NodeTys.push_back(MVT::f64);
2932  Ops[0] = DAG.getConstant(1, MVT::i32);
2933  Ops[1] = MFFSreg;
2934  Ops[2] = FPreg;
2935  Ops[3] = InFlag;
2936  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2937  FPreg = Result.getValue(0);
2938
2939  // We know the low half is about to be thrown away, so just use something
2940  // convenient.
2941  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2942}
2943
2944SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2945  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2946  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2947    return SDValue();
2948
2949  if (Op.getOperand(0).getValueType() == MVT::i64) {
2950    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2951    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2952    if (Op.getValueType() == MVT::f32)
2953      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2954    return FP;
2955  }
2956
2957  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2958         "Unhandled SINT_TO_FP type in custom expander!");
2959  // Since we only generate this in 64-bit mode, we can take advantage of
2960  // 64-bit registers.  In particular, sign extend the input value into the
2961  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2962  // then lfd it and fcfid it.
2963  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2964  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2965  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2966  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2967
2968  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2969                                Op.getOperand(0));
2970
2971  // STD the extended value into the stack slot.
2972  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2973                       MachineMemOperand::MOStore, 0, 8, 8);
2974  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2975                                DAG.getEntryNode(), Ext64, FIdx,
2976                                DAG.getMemOperand(MO));
2977  // Load the value as a double.
2978  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2979
2980  // FCFID it and return it.
2981  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2982  if (Op.getValueType() == MVT::f32)
2983    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2984  return FP;
2985}
2986
2987SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2988  /*
2989   The rounding mode is in bits 30:31 of FPSR, and has the following
2990   settings:
2991     00 Round to nearest
2992     01 Round to 0
2993     10 Round to +inf
2994     11 Round to -inf
2995
2996  FLT_ROUNDS, on the other hand, expects the following:
2997    -1 Undefined
2998     0 Round to 0
2999     1 Round to nearest
3000     2 Round to +inf
3001     3 Round to -inf
3002
3003  To perform the conversion, we do:
3004    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3005  */
3006
3007  MachineFunction &MF = DAG.getMachineFunction();
3008  MVT VT = Op.getValueType();
3009  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3010  std::vector<MVT> NodeTys;
3011  SDValue MFFSreg, InFlag;
3012
3013  // Save FP Control Word to register
3014  NodeTys.push_back(MVT::f64);    // return register
3015  NodeTys.push_back(MVT::Flag);   // unused in this context
3016  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
3017
3018  // Save FP register to stack slot
3019  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3020  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3021  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
3022                                 StackSlot, NULL, 0);
3023
3024  // Load FP Control Word from low 32 bits of stack slot.
3025  SDValue Four = DAG.getConstant(4, PtrVT);
3026  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
3027  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
3028
3029  // Transform as necessary
3030  SDValue CWD1 =
3031    DAG.getNode(ISD::AND, MVT::i32,
3032                CWD, DAG.getConstant(3, MVT::i32));
3033  SDValue CWD2 =
3034    DAG.getNode(ISD::SRL, MVT::i32,
3035                DAG.getNode(ISD::AND, MVT::i32,
3036                            DAG.getNode(ISD::XOR, MVT::i32,
3037                                        CWD, DAG.getConstant(3, MVT::i32)),
3038                            DAG.getConstant(3, MVT::i32)),
3039                DAG.getConstant(1, MVT::i8));
3040
3041  SDValue RetVal =
3042    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
3043
3044  return DAG.getNode((VT.getSizeInBits() < 16 ?
3045                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
3046}
3047
3048SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3049  MVT VT = Op.getValueType();
3050  unsigned BitWidth = VT.getSizeInBits();
3051  assert(Op.getNumOperands() == 3 &&
3052         VT == Op.getOperand(1).getValueType() &&
3053         "Unexpected SHL!");
3054
3055  // Expand into a bunch of logical ops.  Note that these ops
3056  // depend on the PPC behavior for oversized shift amounts.
3057  SDValue Lo = Op.getOperand(0);
3058  SDValue Hi = Op.getOperand(1);
3059  SDValue Amt = Op.getOperand(2);
3060  MVT AmtVT = Amt.getValueType();
3061
3062  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3063                               DAG.getConstant(BitWidth, AmtVT), Amt);
3064  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3065  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3066  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3067  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3068                               DAG.getConstant(-BitWidth, AmtVT));
3069  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3070  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3071  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3072  SDValue OutOps[] = { OutLo, OutHi };
3073  return DAG.getMergeValues(OutOps, 2);
3074}
3075
3076SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3077  MVT VT = Op.getValueType();
3078  unsigned BitWidth = VT.getSizeInBits();
3079  assert(Op.getNumOperands() == 3 &&
3080         VT == Op.getOperand(1).getValueType() &&
3081         "Unexpected SRL!");
3082
3083  // Expand into a bunch of logical ops.  Note that these ops
3084  // depend on the PPC behavior for oversized shift amounts.
3085  SDValue Lo = Op.getOperand(0);
3086  SDValue Hi = Op.getOperand(1);
3087  SDValue Amt = Op.getOperand(2);
3088  MVT AmtVT = Amt.getValueType();
3089
3090  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3091                               DAG.getConstant(BitWidth, AmtVT), Amt);
3092  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3093  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3094  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3095  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3096                               DAG.getConstant(-BitWidth, AmtVT));
3097  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3098  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3099  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3100  SDValue OutOps[] = { OutLo, OutHi };
3101  return DAG.getMergeValues(OutOps, 2);
3102}
3103
3104SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3105  MVT VT = Op.getValueType();
3106  unsigned BitWidth = VT.getSizeInBits();
3107  assert(Op.getNumOperands() == 3 &&
3108         VT == Op.getOperand(1).getValueType() &&
3109         "Unexpected SRA!");
3110
3111  // Expand into a bunch of logical ops, followed by a select_cc.
3112  SDValue Lo = Op.getOperand(0);
3113  SDValue Hi = Op.getOperand(1);
3114  SDValue Amt = Op.getOperand(2);
3115  MVT AmtVT = Amt.getValueType();
3116
3117  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3118                               DAG.getConstant(BitWidth, AmtVT), Amt);
3119  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3120  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3121  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3122  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3123                               DAG.getConstant(-BitWidth, AmtVT));
3124  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3125  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3126  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3127                                    Tmp4, Tmp6, ISD::SETLE);
3128  SDValue OutOps[] = { OutLo, OutHi };
3129  return DAG.getMergeValues(OutOps, 2);
3130}
3131
3132//===----------------------------------------------------------------------===//
3133// Vector related lowering.
3134//
3135
3136// If this is a vector of constants or undefs, get the bits.  A bit in
3137// UndefBits is set if the corresponding element of the vector is an
3138// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3139// zero.   Return true if this is not an array of constants, false if it is.
3140//
3141static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3142                                       uint64_t UndefBits[2]) {
3143  // Start with zero'd results.
3144  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3145
3146  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3147  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3148    SDValue OpVal = BV->getOperand(i);
3149
3150    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3151    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3152
3153    uint64_t EltBits = 0;
3154    if (OpVal.getOpcode() == ISD::UNDEF) {
3155      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3156      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3157      continue;
3158    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3159      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
3160    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3161      assert(CN->getValueType(0) == MVT::f32 &&
3162             "Only one legal FP vector type!");
3163      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3164    } else {
3165      // Nonconstant element.
3166      return true;
3167    }
3168
3169    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3170  }
3171
3172  //printf("%llx %llx  %llx %llx\n",
3173  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3174  return false;
3175}
3176
3177// If this is a splat (repetition) of a value across the whole vector, return
3178// the smallest size that splats it.  For example, "0x01010101010101..." is a
3179// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3180// SplatSize = 1 byte.
3181static bool isConstantSplat(const uint64_t Bits128[2],
3182                            const uint64_t Undef128[2],
3183                            unsigned &SplatBits, unsigned &SplatUndef,
3184                            unsigned &SplatSize) {
3185
3186  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3187  // the same as the lower 64-bits, ignoring undefs.
3188  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3189    return false;  // Can't be a splat if two pieces don't match.
3190
3191  uint64_t Bits64  = Bits128[0] | Bits128[1];
3192  uint64_t Undef64 = Undef128[0] & Undef128[1];
3193
3194  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3195  // undefs.
3196  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3197    return false;  // Can't be a splat if two pieces don't match.
3198
3199  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3200  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3201
3202  // If the top 16-bits are different than the lower 16-bits, ignoring
3203  // undefs, we have an i32 splat.
3204  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3205    SplatBits = Bits32;
3206    SplatUndef = Undef32;
3207    SplatSize = 4;
3208    return true;
3209  }
3210
3211  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3212  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3213
3214  // If the top 8-bits are different than the lower 8-bits, ignoring
3215  // undefs, we have an i16 splat.
3216  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3217    SplatBits = Bits16;
3218    SplatUndef = Undef16;
3219    SplatSize = 2;
3220    return true;
3221  }
3222
3223  // Otherwise, we have an 8-bit splat.
3224  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3225  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3226  SplatSize = 1;
3227  return true;
3228}
3229
3230/// BuildSplatI - Build a canonical splati of Val with an element size of
3231/// SplatSize.  Cast the result to VT.
3232static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3233                             SelectionDAG &DAG) {
3234  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3235
3236  static const MVT VTys[] = { // canonical VT to use for each size.
3237    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3238  };
3239
3240  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3241
3242  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3243  if (Val == -1)
3244    SplatSize = 1;
3245
3246  MVT CanonicalVT = VTys[SplatSize-1];
3247
3248  // Build a canonical splat for this value.
3249  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3250  SmallVector<SDValue, 8> Ops;
3251  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3252  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3253                              &Ops[0], Ops.size());
3254  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3255}
3256
3257/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3258/// specified intrinsic ID.
3259static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3260                                  SelectionDAG &DAG,
3261                                  MVT DestVT = MVT::Other) {
3262  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3263  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3264                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3265}
3266
3267/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3268/// specified intrinsic ID.
3269static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3270                                  SDValue Op2, SelectionDAG &DAG,
3271                                  MVT DestVT = MVT::Other) {
3272  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3273  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3274                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3275}
3276
3277
3278/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3279/// amount.  The result has the specified value type.
3280static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3281                             MVT VT, SelectionDAG &DAG) {
3282  // Force LHS/RHS to be the right type.
3283  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3284  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3285
3286  SDValue Ops[16];
3287  for (unsigned i = 0; i != 16; ++i)
3288    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3289  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3290                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3291  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3292}
3293
3294// If this is a case we can't handle, return null and let the default
3295// expansion code take care of it.  If we CAN select this case, and if it
3296// selects to a single instruction, return Op.  Otherwise, if we can codegen
3297// this case more efficiently than a constant pool load, lower it to the
3298// sequence of ops that should be used.
3299SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3300                                               SelectionDAG &DAG) {
3301  // If this is a vector of constants or undefs, get the bits.  A bit in
3302  // UndefBits is set if the corresponding element of the vector is an
3303  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3304  // zero.
3305  uint64_t VectorBits[2];
3306  uint64_t UndefBits[2];
3307  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
3308    return SDValue();   // Not a constant vector.
3309
3310  // If this is a splat (repetition) of a value across the whole vector, return
3311  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3312  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3313  // SplatSize = 1 byte.
3314  unsigned SplatBits, SplatUndef, SplatSize;
3315  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3316    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3317
3318    // First, handle single instruction cases.
3319
3320    // All zeros?
3321    if (SplatBits == 0) {
3322      // Canonicalize all zero vectors to be v4i32.
3323      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3324        SDValue Z = DAG.getConstant(0, MVT::i32);
3325        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3326        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3327      }
3328      return Op;
3329    }
3330
3331    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3332    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3333    if (SextVal >= -16 && SextVal <= 15)
3334      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3335
3336
3337    // Two instruction sequences.
3338
3339    // If this value is in the range [-32,30] and is even, use:
3340    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3341    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3342      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3343      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3344      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3345    }
3346
3347    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3348    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3349    // for fneg/fabs.
3350    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3351      // Make -1 and vspltisw -1:
3352      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3353
3354      // Make the VSLW intrinsic, computing 0x8000_0000.
3355      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3356                                       OnesV, DAG);
3357
3358      // xor by OnesV to invert it.
3359      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3360      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3361    }
3362
3363    // Check to see if this is a wide variety of vsplti*, binop self cases.
3364    unsigned SplatBitSize = SplatSize*8;
3365    static const signed char SplatCsts[] = {
3366      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3367      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3368    };
3369
3370    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3371      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3372      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3373      int i = SplatCsts[idx];
3374
3375      // Figure out what shift amount will be used by altivec if shifted by i in
3376      // this splat size.
3377      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3378
3379      // vsplti + shl self.
3380      if (SextVal == (i << (int)TypeShiftAmt)) {
3381        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3382        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3383          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3384          Intrinsic::ppc_altivec_vslw
3385        };
3386        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3387        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3388      }
3389
3390      // vsplti + srl self.
3391      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3392        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3393        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3394          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3395          Intrinsic::ppc_altivec_vsrw
3396        };
3397        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3398        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3399      }
3400
3401      // vsplti + sra self.
3402      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3403        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3404        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3405          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3406          Intrinsic::ppc_altivec_vsraw
3407        };
3408        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3409        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3410      }
3411
3412      // vsplti + rol self.
3413      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3414                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3415        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3416        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3417          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3418          Intrinsic::ppc_altivec_vrlw
3419        };
3420        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3421        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3422      }
3423
3424      // t = vsplti c, result = vsldoi t, t, 1
3425      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3426        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3427        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3428      }
3429      // t = vsplti c, result = vsldoi t, t, 2
3430      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3431        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3432        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3433      }
3434      // t = vsplti c, result = vsldoi t, t, 3
3435      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3436        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3437        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3438      }
3439    }
3440
3441    // Three instruction sequences.
3442
3443    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3444    if (SextVal >= 0 && SextVal <= 31) {
3445      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3446      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3447      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3448      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3449    }
3450    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3451    if (SextVal >= -31 && SextVal <= 0) {
3452      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3453      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3454      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3455      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3456    }
3457  }
3458
3459  return SDValue();
3460}
3461
3462/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3463/// the specified operations to build the shuffle.
3464static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3465                                        SDValue RHS, SelectionDAG &DAG) {
3466  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3467  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3468  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3469
3470  enum {
3471    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3472    OP_VMRGHW,
3473    OP_VMRGLW,
3474    OP_VSPLTISW0,
3475    OP_VSPLTISW1,
3476    OP_VSPLTISW2,
3477    OP_VSPLTISW3,
3478    OP_VSLDOI4,
3479    OP_VSLDOI8,
3480    OP_VSLDOI12
3481  };
3482
3483  if (OpNum == OP_COPY) {
3484    if (LHSID == (1*9+2)*9+3) return LHS;
3485    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3486    return RHS;
3487  }
3488
3489  SDValue OpLHS, OpRHS;
3490  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3491  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3492
3493  unsigned ShufIdxs[16];
3494  switch (OpNum) {
3495  default: assert(0 && "Unknown i32 permute!");
3496  case OP_VMRGHW:
3497    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3498    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3499    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3500    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3501    break;
3502  case OP_VMRGLW:
3503    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3504    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3505    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3506    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3507    break;
3508  case OP_VSPLTISW0:
3509    for (unsigned i = 0; i != 16; ++i)
3510      ShufIdxs[i] = (i&3)+0;
3511    break;
3512  case OP_VSPLTISW1:
3513    for (unsigned i = 0; i != 16; ++i)
3514      ShufIdxs[i] = (i&3)+4;
3515    break;
3516  case OP_VSPLTISW2:
3517    for (unsigned i = 0; i != 16; ++i)
3518      ShufIdxs[i] = (i&3)+8;
3519    break;
3520  case OP_VSPLTISW3:
3521    for (unsigned i = 0; i != 16; ++i)
3522      ShufIdxs[i] = (i&3)+12;
3523    break;
3524  case OP_VSLDOI4:
3525    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3526  case OP_VSLDOI8:
3527    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3528  case OP_VSLDOI12:
3529    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3530  }
3531  SDValue Ops[16];
3532  for (unsigned i = 0; i != 16; ++i)
3533    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3534
3535  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3536                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3537}
3538
3539/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3540/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3541/// return the code it can be lowered into.  Worst case, it can always be
3542/// lowered into a vperm.
3543SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3544                                                 SelectionDAG &DAG) {
3545  SDValue V1 = Op.getOperand(0);
3546  SDValue V2 = Op.getOperand(1);
3547  SDValue PermMask = Op.getOperand(2);
3548
3549  // Cases that are handled by instructions that take permute immediates
3550  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3551  // selected by the instruction selector.
3552  if (V2.getOpcode() == ISD::UNDEF) {
3553    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3554        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3555        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3556        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3557        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3558        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3559        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3560        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3561        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3562        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3563        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3564        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3565      return Op;
3566    }
3567  }
3568
3569  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3570  // and produce a fixed permutation.  If any of these match, do not lower to
3571  // VPERM.
3572  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3573      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3574      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3575      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3576      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3577      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3578      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3579      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3580      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3581    return Op;
3582
3583  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3584  // perfect shuffle table to emit an optimal matching sequence.
3585  unsigned PFIndexes[4];
3586  bool isFourElementShuffle = true;
3587  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3588    unsigned EltNo = 8;   // Start out undef.
3589    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3590      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3591        continue;   // Undef, ignore it.
3592
3593      unsigned ByteSource =
3594        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3595      if ((ByteSource & 3) != j) {
3596        isFourElementShuffle = false;
3597        break;
3598      }
3599
3600      if (EltNo == 8) {
3601        EltNo = ByteSource/4;
3602      } else if (EltNo != ByteSource/4) {
3603        isFourElementShuffle = false;
3604        break;
3605      }
3606    }
3607    PFIndexes[i] = EltNo;
3608  }
3609
3610  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3611  // perfect shuffle vector to determine if it is cost effective to do this as
3612  // discrete instructions, or whether we should use a vperm.
3613  if (isFourElementShuffle) {
3614    // Compute the index in the perfect shuffle table.
3615    unsigned PFTableIndex =
3616      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3617
3618    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3619    unsigned Cost  = (PFEntry >> 30);
3620
3621    // Determining when to avoid vperm is tricky.  Many things affect the cost
3622    // of vperm, particularly how many times the perm mask needs to be computed.
3623    // For example, if the perm mask can be hoisted out of a loop or is already
3624    // used (perhaps because there are multiple permutes with the same shuffle
3625    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3626    // the loop requires an extra register.
3627    //
3628    // As a compromise, we only emit discrete instructions if the shuffle can be
3629    // generated in 3 or fewer operations.  When we have loop information
3630    // available, if this block is within a loop, we should avoid using vperm
3631    // for 3-operation perms and use a constant pool load instead.
3632    if (Cost < 3)
3633      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3634  }
3635
3636  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3637  // vector that will get spilled to the constant pool.
3638  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3639
3640  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3641  // that it is in input element units, not in bytes.  Convert now.
3642  MVT EltVT = V1.getValueType().getVectorElementType();
3643  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3644
3645  SmallVector<SDValue, 16> ResultMask;
3646  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3647    unsigned SrcElt;
3648    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3649      SrcElt = 0;
3650    else
3651      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3652
3653    for (unsigned j = 0; j != BytesPerElement; ++j)
3654      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3655                                           MVT::i8));
3656  }
3657
3658  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3659                                    &ResultMask[0], ResultMask.size());
3660  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3661}
3662
3663/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3664/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3665/// information about the intrinsic.
3666static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3667                                  bool &isDot) {
3668  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3669  CompareOpc = -1;
3670  isDot = false;
3671  switch (IntrinsicID) {
3672  default: return false;
3673    // Comparison predicates.
3674  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3675  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3676  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3677  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3678  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3679  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3680  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3681  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3682  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3683  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3684  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3685  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3686  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3687
3688    // Normal Comparisons.
3689  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3690  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3691  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3692  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3693  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3694  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3695  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3696  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3697  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3698  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3699  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3700  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3701  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3702  }
3703  return true;
3704}
3705
3706/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3707/// lower, do it, otherwise return null.
3708SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3709                                                     SelectionDAG &DAG) {
3710  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3711  // opcode number of the comparison.
3712  int CompareOpc;
3713  bool isDot;
3714  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3715    return SDValue();    // Don't custom lower most intrinsics.
3716
3717  // If this is a non-dot comparison, make the VCMP node and we are done.
3718  if (!isDot) {
3719    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3720                                Op.getOperand(1), Op.getOperand(2),
3721                                DAG.getConstant(CompareOpc, MVT::i32));
3722    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3723  }
3724
3725  // Create the PPCISD altivec 'dot' comparison node.
3726  SDValue Ops[] = {
3727    Op.getOperand(2),  // LHS
3728    Op.getOperand(3),  // RHS
3729    DAG.getConstant(CompareOpc, MVT::i32)
3730  };
3731  std::vector<MVT> VTs;
3732  VTs.push_back(Op.getOperand(2).getValueType());
3733  VTs.push_back(MVT::Flag);
3734  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3735
3736  // Now that we have the comparison, emit a copy from the CR to a GPR.
3737  // This is flagged to the above dot comparison.
3738  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3739                                DAG.getRegister(PPC::CR6, MVT::i32),
3740                                CompNode.getValue(1));
3741
3742  // Unpack the result based on how the target uses it.
3743  unsigned BitNo;   // Bit # of CR6.
3744  bool InvertBit;   // Invert result?
3745  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3746  default:  // Can't happen, don't crash on invalid number though.
3747  case 0:   // Return the value of the EQ bit of CR6.
3748    BitNo = 0; InvertBit = false;
3749    break;
3750  case 1:   // Return the inverted value of the EQ bit of CR6.
3751    BitNo = 0; InvertBit = true;
3752    break;
3753  case 2:   // Return the value of the LT bit of CR6.
3754    BitNo = 2; InvertBit = false;
3755    break;
3756  case 3:   // Return the inverted value of the LT bit of CR6.
3757    BitNo = 2; InvertBit = true;
3758    break;
3759  }
3760
3761  // Shift the bit into the low position.
3762  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3763                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3764  // Isolate the bit.
3765  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3766                      DAG.getConstant(1, MVT::i32));
3767
3768  // If we are supposed to, toggle the bit.
3769  if (InvertBit)
3770    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3771                        DAG.getConstant(1, MVT::i32));
3772  return Flags;
3773}
3774
3775SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3776                                                   SelectionDAG &DAG) {
3777  // Create a stack slot that is 16-byte aligned.
3778  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3779  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3780  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3781  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3782
3783  // Store the input value into Value#0 of the stack slot.
3784  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3785                                 Op.getOperand(0), FIdx, NULL, 0);
3786  // Load it out.
3787  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3788}
3789
3790SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3791  if (Op.getValueType() == MVT::v4i32) {
3792    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3793
3794    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3795    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3796
3797    SDValue RHSSwap =   // = vrlw RHS, 16
3798      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3799
3800    // Shrinkify inputs to v8i16.
3801    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3802    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3803    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3804
3805    // Low parts multiplied together, generating 32-bit results (we ignore the
3806    // top parts).
3807    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3808                                        LHS, RHS, DAG, MVT::v4i32);
3809
3810    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3811                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3812    // Shift the high parts up 16 bits.
3813    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3814    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3815  } else if (Op.getValueType() == MVT::v8i16) {
3816    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3817
3818    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3819
3820    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3821                            LHS, RHS, Zero, DAG);
3822  } else if (Op.getValueType() == MVT::v16i8) {
3823    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3824
3825    // Multiply the even 8-bit parts, producing 16-bit sums.
3826    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3827                                           LHS, RHS, DAG, MVT::v8i16);
3828    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3829
3830    // Multiply the odd 8-bit parts, producing 16-bit sums.
3831    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3832                                          LHS, RHS, DAG, MVT::v8i16);
3833    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3834
3835    // Merge the results together.
3836    SDValue Ops[16];
3837    for (unsigned i = 0; i != 8; ++i) {
3838      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3839      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3840    }
3841    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3842                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3843  } else {
3844    assert(0 && "Unknown mul to lower!");
3845    abort();
3846  }
3847}
3848
3849/// LowerOperation - Provide custom lowering hooks for some operations.
3850///
3851SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3852  switch (Op.getOpcode()) {
3853  default: assert(0 && "Wasn't expecting to be able to lower this!");
3854  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3855  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3856  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3857  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3858  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3859  case ISD::VASTART:
3860    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3861                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3862
3863  case ISD::VAARG:
3864    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3865                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3866
3867  case ISD::FORMAL_ARGUMENTS:
3868    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3869                                 VarArgsStackOffset, VarArgsNumGPR,
3870                                 VarArgsNumFPR, PPCSubTarget);
3871
3872  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3873                                                 getTargetMachine());
3874  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3875  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3876  case ISD::DYNAMIC_STACKALLOC:
3877    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3878
3879  case ISD::ATOMIC_LOAD_ADD:    return LowerAtomicLOAD_ADD(Op, DAG);
3880  case ISD::ATOMIC_CMP_SWAP:    return LowerAtomicCMP_SWAP(Op, DAG);
3881  case ISD::ATOMIC_SWAP:        return LowerAtomicSWAP(Op, DAG);
3882
3883  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3884  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3885  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3886  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3887  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3888
3889  // Lower 64-bit shifts.
3890  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3891  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3892  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3893
3894  // Vector-related lowering.
3895  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3896  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3897  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3898  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3899  case ISD::MUL:                return LowerMUL(Op, DAG);
3900
3901  // Frame & Return address.
3902  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3903  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3904  }
3905  return SDValue();
3906}
3907
3908SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3909  switch (N->getOpcode()) {
3910  default: assert(0 && "Wasn't expecting to be able to lower this!");
3911  case ISD::FP_TO_SINT: {
3912    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3913    // Use MERGE_VALUES to drop the chain result value and get a node with one
3914    // result.  This requires turning off getMergeValues simplification, since
3915    // otherwise it will give us Res back.
3916    return DAG.getMergeValues(&Res, 1, false).Val;
3917  }
3918  }
3919}
3920
3921
3922//===----------------------------------------------------------------------===//
3923//  Other Lowering Code
3924//===----------------------------------------------------------------------===//
3925
3926MachineBasicBlock *
3927PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3928                                               MachineBasicBlock *BB) {
3929  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3930
3931  // To "insert" these instructions we actually have to insert their
3932  // control-flow patterns.
3933  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3934  MachineFunction::iterator It = BB;
3935  ++It;
3936
3937  MachineFunction *F = BB->getParent();
3938
3939  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
3940      MI->getOpcode() == PPC::SELECT_CC_I8 ||
3941      MI->getOpcode() == PPC::SELECT_CC_F4 ||
3942      MI->getOpcode() == PPC::SELECT_CC_F8 ||
3943      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
3944
3945    // The incoming instruction knows the destination vreg to set, the
3946    // condition code register to branch on, the true/false values to
3947    // select between, and a branch opcode to use.
3948
3949    //  thisMBB:
3950    //  ...
3951    //   TrueVal = ...
3952    //   cmpTY ccX, r1, r2
3953    //   bCC copy1MBB
3954    //   fallthrough --> copy0MBB
3955    MachineBasicBlock *thisMBB = BB;
3956    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3957    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3958    unsigned SelectPred = MI->getOperand(4).getImm();
3959    BuildMI(BB, TII->get(PPC::BCC))
3960      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3961    F->insert(It, copy0MBB);
3962    F->insert(It, sinkMBB);
3963    // Update machine-CFG edges by transferring all successors of the current
3964    // block to the new block which will contain the Phi node for the select.
3965    sinkMBB->transferSuccessors(BB);
3966    // Next, add the true and fallthrough blocks as its successors.
3967    BB->addSuccessor(copy0MBB);
3968    BB->addSuccessor(sinkMBB);
3969
3970    //  copy0MBB:
3971    //   %FalseValue = ...
3972    //   # fallthrough to sinkMBB
3973    BB = copy0MBB;
3974
3975    // Update machine-CFG edges
3976    BB->addSuccessor(sinkMBB);
3977
3978    //  sinkMBB:
3979    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3980    //  ...
3981    BB = sinkMBB;
3982    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3983      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3984      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3985  }
3986  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32 ||
3987           MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) {
3988    bool is64bit = MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64;
3989
3990    unsigned dest = MI->getOperand(0).getReg();
3991    unsigned ptrA = MI->getOperand(1).getReg();
3992    unsigned ptrB = MI->getOperand(2).getReg();
3993    unsigned incr = MI->getOperand(3).getReg();
3994
3995    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3996    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3997    F->insert(It, loopMBB);
3998    F->insert(It, exitMBB);
3999    exitMBB->transferSuccessors(BB);
4000
4001    MachineRegisterInfo &RegInfo = F->getRegInfo();
4002    unsigned TmpReg = RegInfo.createVirtualRegister(
4003      is64bit ? (const TargetRegisterClass *) &PPC::GPRCRegClass :
4004                (const TargetRegisterClass *) &PPC::G8RCRegClass);
4005
4006    //  thisMBB:
4007    //   ...
4008    //   fallthrough --> loopMBB
4009    BB->addSuccessor(loopMBB);
4010
4011    //  loopMBB:
4012    //   l[wd]arx dest, ptr
4013    //   add r0, dest, incr
4014    //   st[wd]cx. r0, ptr
4015    //   bne- loopMBB
4016    //   fallthrough --> exitMBB
4017    BB = loopMBB;
4018    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4019      .addReg(ptrA).addReg(ptrB);
4020    BuildMI(BB, TII->get(is64bit ? PPC::ADD4 : PPC::ADD8), TmpReg)
4021      .addReg(incr).addReg(dest);
4022    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4023      .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4024    BuildMI(BB, TII->get(PPC::BCC))
4025      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4026    BB->addSuccessor(loopMBB);
4027    BB->addSuccessor(exitMBB);
4028
4029    //  exitMBB:
4030    //   ...
4031    BB = exitMBB;
4032  }
4033  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4034           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4035    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4036
4037    unsigned dest   = MI->getOperand(0).getReg();
4038    unsigned ptrA   = MI->getOperand(1).getReg();
4039    unsigned ptrB   = MI->getOperand(2).getReg();
4040    unsigned oldval = MI->getOperand(3).getReg();
4041    unsigned newval = MI->getOperand(4).getReg();
4042
4043    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4044    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4045    F->insert(It, loopMBB);
4046    F->insert(It, exitMBB);
4047    exitMBB->transferSuccessors(BB);
4048
4049    //  thisMBB:
4050    //   ...
4051    //   fallthrough --> loopMBB
4052    BB->addSuccessor(loopMBB);
4053
4054    //  loopMBB:
4055    //   l[wd]arx dest, ptr
4056    //   cmp[wd] dest, oldval
4057    //   bne- exitMBB
4058    //   st[wd]cx. newval, ptr
4059    //   bne- loopMBB
4060    //   fallthrough --> exitMBB
4061    BB = loopMBB;
4062    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4063      .addReg(ptrA).addReg(ptrB);
4064    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4065      .addReg(oldval).addReg(dest);
4066    BuildMI(BB, TII->get(PPC::BCC))
4067      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(exitMBB);
4068    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4069      .addReg(newval).addReg(ptrA).addReg(ptrB);
4070    BuildMI(BB, TII->get(PPC::BCC))
4071      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4072    BB->addSuccessor(loopMBB);
4073    BB->addSuccessor(exitMBB);
4074
4075    //  exitMBB:
4076    //   ...
4077    BB = exitMBB;
4078  }
4079  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32 ||
4080           MI->getOpcode() == PPC::ATOMIC_SWAP_I64) {
4081    bool is64bit = MI->getOpcode() == PPC::ATOMIC_SWAP_I64;
4082
4083    unsigned dest   = MI->getOperand(0).getReg();
4084    unsigned ptrA   = MI->getOperand(1).getReg();
4085    unsigned ptrB   = MI->getOperand(2).getReg();
4086    unsigned newval = MI->getOperand(3).getReg();
4087
4088    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4089    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4090    F->insert(It, loopMBB);
4091    F->insert(It, exitMBB);
4092    exitMBB->transferSuccessors(BB);
4093
4094    //  thisMBB:
4095    //   ...
4096    //   fallthrough --> loopMBB
4097    BB->addSuccessor(loopMBB);
4098
4099    //  loopMBB:
4100    //   l[wd]arx dest, ptr
4101    //   st[wd]cx. newval, ptr
4102    //   bne- loopMBB
4103    //   fallthrough --> exitMBB
4104    BB = loopMBB;
4105    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4106      .addReg(ptrA).addReg(ptrB);
4107    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4108      .addReg(newval).addReg(ptrA).addReg(ptrB);
4109    BuildMI(BB, TII->get(PPC::BCC))
4110      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4111    BB->addSuccessor(loopMBB);
4112    BB->addSuccessor(exitMBB);
4113
4114    //  exitMBB:
4115    //   ...
4116    BB = exitMBB;
4117  }
4118  else {
4119    assert(0 && "Unexpected instr type to insert");
4120  }
4121
4122  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4123  return BB;
4124}
4125
4126//===----------------------------------------------------------------------===//
4127// Target Optimization Hooks
4128//===----------------------------------------------------------------------===//
4129
4130SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4131                                               DAGCombinerInfo &DCI) const {
4132  TargetMachine &TM = getTargetMachine();
4133  SelectionDAG &DAG = DCI.DAG;
4134  switch (N->getOpcode()) {
4135  default: break;
4136  case PPCISD::SHL:
4137    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4138      if (C->getValue() == 0)   // 0 << V -> 0.
4139        return N->getOperand(0);
4140    }
4141    break;
4142  case PPCISD::SRL:
4143    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4144      if (C->getValue() == 0)   // 0 >>u V -> 0.
4145        return N->getOperand(0);
4146    }
4147    break;
4148  case PPCISD::SRA:
4149    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4150      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
4151          C->isAllOnesValue())    // -1 >>s V -> -1.
4152        return N->getOperand(0);
4153    }
4154    break;
4155
4156  case ISD::SINT_TO_FP:
4157    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4158      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4159        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4160        // We allow the src/dst to be either f32/f64, but the intermediate
4161        // type must be i64.
4162        if (N->getOperand(0).getValueType() == MVT::i64 &&
4163            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4164          SDValue Val = N->getOperand(0).getOperand(0);
4165          if (Val.getValueType() == MVT::f32) {
4166            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4167            DCI.AddToWorklist(Val.Val);
4168          }
4169
4170          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4171          DCI.AddToWorklist(Val.Val);
4172          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4173          DCI.AddToWorklist(Val.Val);
4174          if (N->getValueType(0) == MVT::f32) {
4175            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4176                              DAG.getIntPtrConstant(0));
4177            DCI.AddToWorklist(Val.Val);
4178          }
4179          return Val;
4180        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4181          // If the intermediate type is i32, we can avoid the load/store here
4182          // too.
4183        }
4184      }
4185    }
4186    break;
4187  case ISD::STORE:
4188    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4189    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4190        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4191        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4192        N->getOperand(1).getValueType() == MVT::i32 &&
4193        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4194      SDValue Val = N->getOperand(1).getOperand(0);
4195      if (Val.getValueType() == MVT::f32) {
4196        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4197        DCI.AddToWorklist(Val.Val);
4198      }
4199      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4200      DCI.AddToWorklist(Val.Val);
4201
4202      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4203                        N->getOperand(2), N->getOperand(3));
4204      DCI.AddToWorklist(Val.Val);
4205      return Val;
4206    }
4207
4208    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4209    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4210        N->getOperand(1).Val->hasOneUse() &&
4211        (N->getOperand(1).getValueType() == MVT::i32 ||
4212         N->getOperand(1).getValueType() == MVT::i16)) {
4213      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4214      // Do an any-extend to 32-bits if this is a half-word input.
4215      if (BSwapOp.getValueType() == MVT::i16)
4216        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4217
4218      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4219                         N->getOperand(2), N->getOperand(3),
4220                         DAG.getValueType(N->getOperand(1).getValueType()));
4221    }
4222    break;
4223  case ISD::BSWAP:
4224    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4225    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
4226        N->getOperand(0).hasOneUse() &&
4227        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4228      SDValue Load = N->getOperand(0);
4229      LoadSDNode *LD = cast<LoadSDNode>(Load);
4230      // Create the byte-swapping load.
4231      std::vector<MVT> VTs;
4232      VTs.push_back(MVT::i32);
4233      VTs.push_back(MVT::Other);
4234      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4235      SDValue Ops[] = {
4236        LD->getChain(),    // Chain
4237        LD->getBasePtr(),  // Ptr
4238        MO,                // MemOperand
4239        DAG.getValueType(N->getValueType(0)) // VT
4240      };
4241      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4242
4243      // If this is an i16 load, insert the truncate.
4244      SDValue ResVal = BSLoad;
4245      if (N->getValueType(0) == MVT::i16)
4246        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4247
4248      // First, combine the bswap away.  This makes the value produced by the
4249      // load dead.
4250      DCI.CombineTo(N, ResVal);
4251
4252      // Next, combine the load away, we give it a bogus result value but a real
4253      // chain result.  The result value is dead because the bswap is dead.
4254      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
4255
4256      // Return N so it doesn't get rechecked!
4257      return SDValue(N, 0);
4258    }
4259
4260    break;
4261  case PPCISD::VCMP: {
4262    // If a VCMPo node already exists with exactly the same operands as this
4263    // node, use its result instead of this node (VCMPo computes both a CR6 and
4264    // a normal output).
4265    //
4266    if (!N->getOperand(0).hasOneUse() &&
4267        !N->getOperand(1).hasOneUse() &&
4268        !N->getOperand(2).hasOneUse()) {
4269
4270      // Scan all of the users of the LHS, looking for VCMPo's that match.
4271      SDNode *VCMPoNode = 0;
4272
4273      SDNode *LHSN = N->getOperand(0).Val;
4274      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4275           UI != E; ++UI)
4276        if (UI->getOpcode() == PPCISD::VCMPo &&
4277            UI->getOperand(1) == N->getOperand(1) &&
4278            UI->getOperand(2) == N->getOperand(2) &&
4279            UI->getOperand(0) == N->getOperand(0)) {
4280          VCMPoNode = *UI;
4281          break;
4282        }
4283
4284      // If there is no VCMPo node, or if the flag value has a single use, don't
4285      // transform this.
4286      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4287        break;
4288
4289      // Look at the (necessarily single) use of the flag value.  If it has a
4290      // chain, this transformation is more complex.  Note that multiple things
4291      // could use the value result, which we should ignore.
4292      SDNode *FlagUser = 0;
4293      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4294           FlagUser == 0; ++UI) {
4295        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4296        SDNode *User = *UI;
4297        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4298          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4299            FlagUser = User;
4300            break;
4301          }
4302        }
4303      }
4304
4305      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4306      // give up for right now.
4307      if (FlagUser->getOpcode() == PPCISD::MFCR)
4308        return SDValue(VCMPoNode, 0);
4309    }
4310    break;
4311  }
4312  case ISD::BR_CC: {
4313    // If this is a branch on an altivec predicate comparison, lower this so
4314    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4315    // lowering is done pre-legalize, because the legalizer lowers the predicate
4316    // compare down to code that is difficult to reassemble.
4317    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4318    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4319    int CompareOpc;
4320    bool isDot;
4321
4322    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4323        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4324        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4325      assert(isDot && "Can't compare against a vector result!");
4326
4327      // If this is a comparison against something other than 0/1, then we know
4328      // that the condition is never/always true.
4329      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
4330      if (Val != 0 && Val != 1) {
4331        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4332          return N->getOperand(0);
4333        // Always !=, turn it into an unconditional branch.
4334        return DAG.getNode(ISD::BR, MVT::Other,
4335                           N->getOperand(0), N->getOperand(4));
4336      }
4337
4338      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4339
4340      // Create the PPCISD altivec 'dot' comparison node.
4341      std::vector<MVT> VTs;
4342      SDValue Ops[] = {
4343        LHS.getOperand(2),  // LHS of compare
4344        LHS.getOperand(3),  // RHS of compare
4345        DAG.getConstant(CompareOpc, MVT::i32)
4346      };
4347      VTs.push_back(LHS.getOperand(2).getValueType());
4348      VTs.push_back(MVT::Flag);
4349      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4350
4351      // Unpack the result based on how the target uses it.
4352      PPC::Predicate CompOpc;
4353      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
4354      default:  // Can't happen, don't crash on invalid number though.
4355      case 0:   // Branch on the value of the EQ bit of CR6.
4356        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4357        break;
4358      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4359        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4360        break;
4361      case 2:   // Branch on the value of the LT bit of CR6.
4362        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4363        break;
4364      case 3:   // Branch on the inverted value of the LT bit of CR6.
4365        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4366        break;
4367      }
4368
4369      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4370                         DAG.getConstant(CompOpc, MVT::i32),
4371                         DAG.getRegister(PPC::CR6, MVT::i32),
4372                         N->getOperand(4), CompNode.getValue(1));
4373    }
4374    break;
4375  }
4376  }
4377
4378  return SDValue();
4379}
4380
4381//===----------------------------------------------------------------------===//
4382// Inline Assembly Support
4383//===----------------------------------------------------------------------===//
4384
4385void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4386                                                       const APInt &Mask,
4387                                                       APInt &KnownZero,
4388                                                       APInt &KnownOne,
4389                                                       const SelectionDAG &DAG,
4390                                                       unsigned Depth) const {
4391  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4392  switch (Op.getOpcode()) {
4393  default: break;
4394  case PPCISD::LBRX: {
4395    // lhbrx is known to have the top bits cleared out.
4396    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4397      KnownZero = 0xFFFF0000;
4398    break;
4399  }
4400  case ISD::INTRINSIC_WO_CHAIN: {
4401    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
4402    default: break;
4403    case Intrinsic::ppc_altivec_vcmpbfp_p:
4404    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4405    case Intrinsic::ppc_altivec_vcmpequb_p:
4406    case Intrinsic::ppc_altivec_vcmpequh_p:
4407    case Intrinsic::ppc_altivec_vcmpequw_p:
4408    case Intrinsic::ppc_altivec_vcmpgefp_p:
4409    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4410    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4411    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4412    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4413    case Intrinsic::ppc_altivec_vcmpgtub_p:
4414    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4415    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4416      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4417      break;
4418    }
4419  }
4420  }
4421}
4422
4423
4424/// getConstraintType - Given a constraint, return the type of
4425/// constraint it is for this target.
4426PPCTargetLowering::ConstraintType
4427PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4428  if (Constraint.size() == 1) {
4429    switch (Constraint[0]) {
4430    default: break;
4431    case 'b':
4432    case 'r':
4433    case 'f':
4434    case 'v':
4435    case 'y':
4436      return C_RegisterClass;
4437    }
4438  }
4439  return TargetLowering::getConstraintType(Constraint);
4440}
4441
4442std::pair<unsigned, const TargetRegisterClass*>
4443PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4444                                                MVT VT) const {
4445  if (Constraint.size() == 1) {
4446    // GCC RS6000 Constraint Letters
4447    switch (Constraint[0]) {
4448    case 'b':   // R1-R31
4449    case 'r':   // R0-R31
4450      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4451        return std::make_pair(0U, PPC::G8RCRegisterClass);
4452      return std::make_pair(0U, PPC::GPRCRegisterClass);
4453    case 'f':
4454      if (VT == MVT::f32)
4455        return std::make_pair(0U, PPC::F4RCRegisterClass);
4456      else if (VT == MVT::f64)
4457        return std::make_pair(0U, PPC::F8RCRegisterClass);
4458      break;
4459    case 'v':
4460      return std::make_pair(0U, PPC::VRRCRegisterClass);
4461    case 'y':   // crrc
4462      return std::make_pair(0U, PPC::CRRCRegisterClass);
4463    }
4464  }
4465
4466  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4467}
4468
4469
4470/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4471/// vector.  If it is invalid, don't add anything to Ops.
4472void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4473                                                     std::vector<SDValue>&Ops,
4474                                                     SelectionDAG &DAG) const {
4475  SDValue Result(0,0);
4476  switch (Letter) {
4477  default: break;
4478  case 'I':
4479  case 'J':
4480  case 'K':
4481  case 'L':
4482  case 'M':
4483  case 'N':
4484  case 'O':
4485  case 'P': {
4486    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4487    if (!CST) return; // Must be an immediate to match.
4488    unsigned Value = CST->getValue();
4489    switch (Letter) {
4490    default: assert(0 && "Unknown constraint letter!");
4491    case 'I':  // "I" is a signed 16-bit constant.
4492      if ((short)Value == (int)Value)
4493        Result = DAG.getTargetConstant(Value, Op.getValueType());
4494      break;
4495    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4496    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4497      if ((short)Value == 0)
4498        Result = DAG.getTargetConstant(Value, Op.getValueType());
4499      break;
4500    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4501      if ((Value >> 16) == 0)
4502        Result = DAG.getTargetConstant(Value, Op.getValueType());
4503      break;
4504    case 'M':  // "M" is a constant that is greater than 31.
4505      if (Value > 31)
4506        Result = DAG.getTargetConstant(Value, Op.getValueType());
4507      break;
4508    case 'N':  // "N" is a positive constant that is an exact power of two.
4509      if ((int)Value > 0 && isPowerOf2_32(Value))
4510        Result = DAG.getTargetConstant(Value, Op.getValueType());
4511      break;
4512    case 'O':  // "O" is the constant zero.
4513      if (Value == 0)
4514        Result = DAG.getTargetConstant(Value, Op.getValueType());
4515      break;
4516    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4517      if ((short)-Value == (int)-Value)
4518        Result = DAG.getTargetConstant(Value, Op.getValueType());
4519      break;
4520    }
4521    break;
4522  }
4523  }
4524
4525  if (Result.Val) {
4526    Ops.push_back(Result);
4527    return;
4528  }
4529
4530  // Handle standard constraint letters.
4531  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4532}
4533
4534// isLegalAddressingMode - Return true if the addressing mode represented
4535// by AM is legal for this target, for a load/store of the specified type.
4536bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4537                                              const Type *Ty) const {
4538  // FIXME: PPC does not allow r+i addressing modes for vectors!
4539
4540  // PPC allows a sign-extended 16-bit immediate field.
4541  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4542    return false;
4543
4544  // No global is ever allowed as a base.
4545  if (AM.BaseGV)
4546    return false;
4547
4548  // PPC only support r+r,
4549  switch (AM.Scale) {
4550  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4551    break;
4552  case 1:
4553    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4554      return false;
4555    // Otherwise we have r+r or r+i.
4556    break;
4557  case 2:
4558    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4559      return false;
4560    // Allow 2*r as r+r.
4561    break;
4562  default:
4563    // No other scales are supported.
4564    return false;
4565  }
4566
4567  return true;
4568}
4569
4570/// isLegalAddressImmediate - Return true if the integer value can be used
4571/// as the offset of the target addressing mode for load / store of the
4572/// given type.
4573bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4574  // PPC allows a sign-extended 16-bit immediate field.
4575  return (V > -(1 << 16) && V < (1 << 16)-1);
4576}
4577
4578bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4579  return false;
4580}
4581
4582SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4583  // Depths > 0 not supported yet!
4584  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4585    return SDValue();
4586
4587  MachineFunction &MF = DAG.getMachineFunction();
4588  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4589
4590  // Just load the return address off the stack.
4591  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4592
4593  // Make sure the function really does not optimize away the store of the RA
4594  // to the stack.
4595  FuncInfo->setLRStoreRequired();
4596  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4597}
4598
4599SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4600  // Depths > 0 not supported yet!
4601  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4602    return SDValue();
4603
4604  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4605  bool isPPC64 = PtrVT == MVT::i64;
4606
4607  MachineFunction &MF = DAG.getMachineFunction();
4608  MachineFrameInfo *MFI = MF.getFrameInfo();
4609  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4610                  && MFI->getStackSize();
4611
4612  if (isPPC64)
4613    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4614      MVT::i64);
4615  else
4616    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4617      MVT::i32);
4618}
4619