PPCISelLowering.cpp revision 4db5acaf48c119b2bb7ad93b10dfcfe8b58dcfdb
1cf5933a716e7eb6bd5ff49aa62f3e76379ebaf51Chris Lattner//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman//
3b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell//                     The LLVM Compiler Infrastructure
4b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell//
54ee451de366474b9c228b4e5fa573795a715216dChris Lattner// This file is distributed under the University of Illinois Open Source
64ee451de366474b9c228b4e5fa573795a715216dChris Lattner// License. See LICENSE.TXT for details.
7fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman//
8b576c94c15af9a440f69d9d03c2afead7971118cJohn Criswell//===----------------------------------------------------------------------===//
9237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner//
10befa499d45ffcc32bd9902518aec18589464e47cChris Lattner// This file implements the PPCISelLowering class.
11befa499d45ffcc32bd9902518aec18589464e47cChris Lattner//
12befa499d45ffcc32bd9902518aec18589464e47cChris Lattner//===----------------------------------------------------------------------===//
13237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner
14237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner#include "PPCISelLowering.h"
15237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner#include "PPCMachineFunctionInfo.h"
1686453c52ba02e743d29c08456e51006500041456Chris Lattner#include "PPCPerfectShuffle.h"
17237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner#include "PPCTargetMachine.h"
1847b14a4a6a455c7be169cfd312fcbe796f0ad426Misha Brukman#include "MCTargetDesc/PPCPredicates.h"
191f67ce4aa3f65619f54c8a3072539da5b0022841Dale Johannesen#include "llvm/ADT/STLExtras.h"
20237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner#include "llvm/ADT/VectorExtras.h"
21237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner#include "llvm/CodeGen/CallingConvLower.h"
22ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner#include "llvm/CodeGen/MachineFrameInfo.h"
236f7426ec2e46bb19cc9f9e75f1c355b35cf12d7dTanya Lattner#include "llvm/CodeGen/MachineFunction.h"
2412f0babca4459c253675700e1d707652d5b6ba17Chris Lattner#include "llvm/CodeGen/MachineInstrBuilder.h"
25237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner#include "llvm/CodeGen/MachineRegisterInfo.h"
26551ccae044b0ff658fe629dd67edd5ffe75d10e8Reid Spencer#include "llvm/CodeGen/PseudoSourceValue.h"
27551ccae044b0ff658fe629dd67edd5ffe75d10e8Reid Spencer#include "llvm/CodeGen/SelectionDAG.h"
28ce63ffb52f249b62cdf2d250c128007b13f27e71Daniel Dunbar#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
2912f0babca4459c253675700e1d707652d5b6ba17Chris Lattner#include "llvm/CallingConv.h"
30551ccae044b0ff658fe629dd67edd5ffe75d10e8Reid Spencer#include "llvm/Constants.h"
31befa499d45ffcc32bd9902518aec18589464e47cChris Lattner#include "llvm/Function.h"
32a51bcb50b0c74adc741361824ef81dbefb715c53Chris Lattner#include "llvm/Intrinsics.h"
33d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke#include "llvm/Support/MathExtras.h"
3486453c52ba02e743d29c08456e51006500041456Chris Lattner#include "llvm/Target/TargetOptions.h"
3586453c52ba02e743d29c08456e51006500041456Chris Lattner#include "llvm/Support/CommandLine.h"
3686453c52ba02e743d29c08456e51006500041456Chris Lattner#include "llvm/Support/ErrorHandling.h"
37844731a7f1909f55935e3514c9e713a62d67662eDan Gohman#include "llvm/Support/raw_ostream.h"
385fee49eff92c2ae2f70eb84d136c31a706560750Dale Johannesen#include "llvm/DerivedTypes.h"
39cbfdf9644ce38fd3404469c26ac3c8466c940b6eDale Johannesenusing namespace llvm;
40237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner
41ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohmanstatic bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohman                                     CCValAssign::LocInfo &LocInfo,
43237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner                                     ISD::ArgFlagsTy &ArgFlags,
44ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohman                                     CCState &State);
45ae73dc1448d25b02cabc7c64c86c64371453dda8Dan Gohmanstatic bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46120d053e3ba810b44047fbcb719824bed5673ca9Chris Lattner                                            MVT &LocVT,
47ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner                                            CCValAssign::LocInfo &LocInfo,
48ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner                                            ISD::ArgFlagsTy &ArgFlags,
49ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner                                            CCState &State);
50ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattnerstatic bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner                                              MVT &LocVT,
52ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner                                              CCValAssign::LocInfo &LocInfo,
53ff2dad312883e5da91fb9f4e3619b7d095867f3bChris Lattner                                              ISD::ArgFlagsTy &ArgFlags,
54befa499d45ffcc32bd9902518aec18589464e47cChris Lattner                                              CCState &State);
55befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
561f67ce4aa3f65619f54c8a3072539da5b0022841Dale Johannesenstatic cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
5716581bf931c0ccf2f8993397acfa4e1d509a68dcDale Johannesencl::desc("enable preincrement load/store generation on PPC (experimental)"),
5802a436c48ecff9e34d50ce0a2f861e5acdd9bf3fDan Gohman                                     cl::Hidden);
59befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
6066c75aaa028683c389c55b377ee2411b61081677Bill Wendlingstatic TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
6166c75aaa028683c389c55b377ee2411b61081677Bill Wendling  if (TM.getSubtargetImpl()->isDarwin())
6212f0babca4459c253675700e1d707652d5b6ba17Chris Lattner    return new TargetLoweringObjectFileMachO();
6312f0babca4459c253675700e1d707652d5b6ba17Chris Lattner
64fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman  return new TargetLoweringObjectFileELF();
658c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling}
668c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling
678c1604e7d617622cb391f1c679ddf70ea03baedcBill WendlingPPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
688c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
698c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling
708c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling  setPow2DivIsCheap();
718c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling
728c1604e7d617622cb391f1c679ddf70ea03baedcBill Wendling  // Use _setjmp/_longjmp instead of setjmp/longjmp.
7354970c032815edadb1b2988ea33f5a1173e5b29cChris Lattner  setUseUnderscoreSetJmp(true);
7454970c032815edadb1b2988ea33f5a1173e5b29cChris Lattner  setUseUnderscoreLongJmp(true);
75135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
76135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // arguments are at least 4/8 bytes aligned.
78ce63ffb52f249b62cdf2d250c128007b13f27e71Daniel Dunbar  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79ce63ffb52f249b62cdf2d250c128007b13f27e71Daniel Dunbar
806f0a7687ab9a0509e847279fae27554ce7da0ba1Duncan Sands  // Set up the register classes.
81fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
836f0a7687ab9a0509e847279fae27554ce7da0ba1Duncan Sands  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman
851f67ce4aa3f65619f54c8a3072539da5b0022841Dale Johannesen  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
861f67ce4aa3f65619f54c8a3072539da5b0022841Dale Johannesen  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
89befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
91befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // PowerPC has pre-inc load and store's.
92237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
931a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
941a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
951a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
961a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
981a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
10084a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
10184a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar
103c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  // This is used in the ppcf128->int sequence.  Note it has different semantics
104c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
10684a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling
10784a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  // PowerPC has no SREM/UREM instructions
108c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setOperationAction(ISD::SREM, MVT::i32, Expand);
109c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setOperationAction(ISD::UREM, MVT::i32, Expand);
110c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setOperationAction(ISD::SREM, MVT::i64, Expand);
111c5e1ec47c719806fcc882470595960512edc7441Daniel Dunbar  setOperationAction(ISD::UREM, MVT::i64, Expand);
1121a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar
1131a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
11484a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
11584a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
11684a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1171a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1181a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1201a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
12184a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
12284a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling
1231a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  // We don't support sin/cos/sqrt/fmod/pow
1241a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::FREM , MVT::f64, Expand);
127135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::FMA  , MVT::f64, Expand);
1291a99dbfe3b70c83d3f3e4648b5868c04697cd77cDaniel Dunbar  setOperationAction(ISD::FSIN , MVT::f32, Expand);
130237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  setOperationAction(ISD::FCOS , MVT::f32, Expand);
131237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  setOperationAction(ISD::FREM , MVT::f32, Expand);
132237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  setOperationAction(ISD::FPOW , MVT::f32, Expand);
13302a436c48ecff9e34d50ce0a2f861e5acdd9bf3fDan Gohman  setOperationAction(ISD::FMA  , MVT::f32, Expand);
134237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner
13516581bf931c0ccf2f8993397acfa4e1d509a68dcDale Johannesen  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
13684a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling
137237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  // If we're enabling GP optimizations, use hardware square root
138befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
139befa499d45ffcc32bd9902518aec18589464e47cChris Lattner    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
140ce63ffb52f249b62cdf2d250c128007b13f27e71Daniel Dunbar    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
141237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  }
142237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner
143befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
144befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
145befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
146befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // PowerPC does not have BSWAP, CTPOP or CTTZ
147befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
148135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
149135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
150135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
151135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
152135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
153135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
154135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // PowerPC does not have ROTR
155135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
156135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
157135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
158135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // PowerPC does not have Select
159135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::SELECT, MVT::i32, Expand);
160135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::SELECT, MVT::i64, Expand);
161135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::SELECT, MVT::f32, Expand);
162135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::SELECT, MVT::f64, Expand);
163237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner
16484a832f9272ed7f1a47c3e019c770b62e373cc6cBill Wendling  // PowerPC wants to turn select_cc of FP into fsel when possible.
165fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
166befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
167befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
168befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // PowerPC wants to optimize integer setcc a bit
169befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::SETCC, MVT::i32, Custom);
170befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
171befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // PowerPC does not have BRCOND which requires SetCC
172befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
173fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman
174befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
175befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
176befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
177befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
178befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
179befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  // PowerPC does not have [U|S]INT_TO_FP
180befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
181befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
182135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
183135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
184135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
185135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
186135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
187135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
188135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // We cannot sextinreg(i1).  Expand to shifts.
189135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
190135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
191135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
192135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
193135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
194135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
195befa499d45ffcc32bd9902518aec18589464e47cChris Lattner
196135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
197135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // We want to legalize GlobalAddress and ConstantPool nodes into the
198135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // appropriate instructions to materialize the address.
199befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
200135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
201135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
202135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
203135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
204135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
205135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
206135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
207135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
208135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
209135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
210135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // TRAP is legal.
211135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::TRAP, MVT::Other, Legal);
212135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
213135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // TRAMPOLINE is custom lowered.
214135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
215135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
216135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
217135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
218135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
219135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // VAARG is custom lowered with the 32-bit SVR4 ABI.
220135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
221135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner      && !TM.getSubtarget<PPCSubtarget>().isPPC64()) {
222135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::VAARG, MVT::Other, Custom);
223135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::VAARG, MVT::i64, Custom);
224135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  } else
225237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner    setOperationAction(ISD::VAARG, MVT::Other, Expand);
226135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
227135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  // Use the default implementation.
228135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
229135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
230135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
231135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
232befa499d45ffcc32bd9902518aec18589464e47cChris Lattner  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
233237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
234775cbdd51a3b33dd5eb343689f65ab5cc8ac7118Chris Lattner
235237ef567f6764f24a47c63121cc0a599ddc8f56dChris Lattner  // We want to custom lower some of our intrinsics.
236d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
23768d57e7ae80044401efd889270a12c71b3efb9abChris Lattner
23868d57e7ae80044401efd889270a12c71b3efb9abChris Lattner  // Comparisons that require checking two conditions.
23968d57e7ae80044401efd889270a12c71b3efb9abChris Lattner  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
240b7c6bf1e073088635951435acedff793add1cefdDevang Patel  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
241b7c6bf1e073088635951435acedff793add1cefdDevang Patel  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
242b7c6bf1e073088635951435acedff793add1cefdDevang Patel  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
243135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
244135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
245b7c6bf1e073088635951435acedff793add1cefdDevang Patel  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
246135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
247135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
2483e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
2493e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
2503e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
2513e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner
2523e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
253135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // They also have instructions for converting between i64 and fp.
254135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
255135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
256135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
257135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
258135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // This is just the low 32 bits of a (signed) fp->i64 conversion.
259135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // We cannot do this with Promote because i64 is not a legal type.
260135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
261135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
262135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // FIXME: disable this lowered code.  This generates 64-bit register values,
263135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // and we don't model the fact that the top part is clobbered by calls.  We
264135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // need to flag these together so that the value isn't live across a call.
265135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
266135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  } else {
267135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
268135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
269135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  }
270135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
271135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
272135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // 64-bit PowerPC implementations can support i64 types directly
273135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
274135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
275135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
276fd93908ae8b9684fe71c239e3c6cfe13ff6a2663Misha Brukman    // 64-bit PowerPC wants to expand i128 shifts itself.
277135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
278135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
27968d57e7ae80044401efd889270a12c71b3efb9abChris Lattner    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
2803e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner  } else {
2813e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner    // 32-bit PowerPC wants to expand i64 shifts itself.
2823e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
2833e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
284135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
285135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  }
286135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner
287135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
2883e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner    // First set operation action for all vector types to expand. Then we
289135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    // will selectively turn on ones that can be effectively codegen'd.
290135755dae4c3fa8003b76150689d5064aa4612eeChris Lattner    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
2911f67ce4aa3f65619f54c8a3072539da5b0022841Dale Johannesen         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
2923e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
2933e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner
2943e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner      // add/sub are legal for all supported vector VT's.
2953e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner      setOperationAction(ISD::ADD , VT, Legal);
2963e1358a9fa1ebd3f51c94eb69da55d693895fe7cChris Lattner      setOperationAction(ISD::SUB , VT, Legal);
29768d57e7ae80044401efd889270a12c71b3efb9abChris Lattner
29868d57e7ae80044401efd889270a12c71b3efb9abChris Lattner      // We promote all shuffles to v16i8.
299      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
300      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
301
302      // We promote all non-typed operations to v4i32.
303      setOperationAction(ISD::AND   , VT, Promote);
304      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
305      setOperationAction(ISD::OR    , VT, Promote);
306      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
307      setOperationAction(ISD::XOR   , VT, Promote);
308      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
309      setOperationAction(ISD::LOAD  , VT, Promote);
310      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
311      setOperationAction(ISD::SELECT, VT, Promote);
312      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
313      setOperationAction(ISD::STORE, VT, Promote);
314      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
315
316      // No other operations are legal.
317      setOperationAction(ISD::MUL , VT, Expand);
318      setOperationAction(ISD::SDIV, VT, Expand);
319      setOperationAction(ISD::SREM, VT, Expand);
320      setOperationAction(ISD::UDIV, VT, Expand);
321      setOperationAction(ISD::UREM, VT, Expand);
322      setOperationAction(ISD::FDIV, VT, Expand);
323      setOperationAction(ISD::FNEG, VT, Expand);
324      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
325      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
326      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
327      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
328      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
329      setOperationAction(ISD::UDIVREM, VT, Expand);
330      setOperationAction(ISD::SDIVREM, VT, Expand);
331      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
332      setOperationAction(ISD::FPOW, VT, Expand);
333      setOperationAction(ISD::CTPOP, VT, Expand);
334      setOperationAction(ISD::CTLZ, VT, Expand);
335      setOperationAction(ISD::CTTZ, VT, Expand);
336    }
337
338    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
339    // with merges, splats, etc.
340    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
341
342    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
343    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
344    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
345    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
346    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
347    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
348
349    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
350    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
351    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
352    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
353
354    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
355    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
356    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
357    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
358
359    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
360    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
361
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
363    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
364    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
365    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
366  }
367
368  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
369  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
370
371  setBooleanContents(ZeroOrOneBooleanContent);
372
373  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
374    setStackPointerRegisterToSaveRestore(PPC::X1);
375    setExceptionPointerRegister(PPC::X3);
376    setExceptionSelectorRegister(PPC::X4);
377  } else {
378    setStackPointerRegisterToSaveRestore(PPC::R1);
379    setExceptionPointerRegister(PPC::R3);
380    setExceptionSelectorRegister(PPC::R4);
381  }
382
383  // We have target-specific dag combine patterns for the following nodes:
384  setTargetDAGCombine(ISD::SINT_TO_FP);
385  setTargetDAGCombine(ISD::STORE);
386  setTargetDAGCombine(ISD::BR_CC);
387  setTargetDAGCombine(ISD::BSWAP);
388
389  // Darwin long double math library functions have $LDBL128 appended.
390  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
391    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
392    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
393    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
394    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
395    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
396    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
397    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
398    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
399    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
400    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
401  }
402
403  setMinFunctionAlignment(2);
404  if (PPCSubTarget.isDarwin())
405    setPrefFunctionAlignment(4);
406
407  setInsertFencesForAtomic(true);
408
409  computeRegisterProperties();
410}
411
412/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
413/// function arguments in the caller parameter area.
414unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
415  const TargetMachine &TM = getTargetMachine();
416  // Darwin passes everything on 4 byte boundary.
417  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
418    return 4;
419  // FIXME SVR4 TBD
420  return 4;
421}
422
423const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
424  switch (Opcode) {
425  default: return 0;
426  case PPCISD::FSEL:            return "PPCISD::FSEL";
427  case PPCISD::FCFID:           return "PPCISD::FCFID";
428  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
429  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
430  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
431  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
432  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
433  case PPCISD::VPERM:           return "PPCISD::VPERM";
434  case PPCISD::Hi:              return "PPCISD::Hi";
435  case PPCISD::Lo:              return "PPCISD::Lo";
436  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
437  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
438  case PPCISD::LOAD:            return "PPCISD::LOAD";
439  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
440  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
441  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
442  case PPCISD::SRL:             return "PPCISD::SRL";
443  case PPCISD::SRA:             return "PPCISD::SRA";
444  case PPCISD::SHL:             return "PPCISD::SHL";
445  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
446  case PPCISD::STD_32:          return "PPCISD::STD_32";
447  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
448  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
449  case PPCISD::NOP:             return "PPCISD::NOP";
450  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
451  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
452  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
453  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
454  case PPCISD::MFCR:            return "PPCISD::MFCR";
455  case PPCISD::VCMP:            return "PPCISD::VCMP";
456  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
457  case PPCISD::LBRX:            return "PPCISD::LBRX";
458  case PPCISD::STBRX:           return "PPCISD::STBRX";
459  case PPCISD::LARX:            return "PPCISD::LARX";
460  case PPCISD::STCX:            return "PPCISD::STCX";
461  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
462  case PPCISD::MFFS:            return "PPCISD::MFFS";
463  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
464  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
465  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
466  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
467  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
468  }
469}
470
471MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
472  return MVT::i32;
473}
474
475//===----------------------------------------------------------------------===//
476// Node matching predicates, for use by the tblgen matching code.
477//===----------------------------------------------------------------------===//
478
479/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
480static bool isFloatingPointZero(SDValue Op) {
481  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
482    return CFP->getValueAPF().isZero();
483  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
484    // Maybe this has already been legalized into the constant pool?
485    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
486      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
487        return CFP->getValueAPF().isZero();
488  }
489  return false;
490}
491
492/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
493/// true if Op is undef or if it matches the specified value.
494static bool isConstantOrUndef(int Op, int Val) {
495  return Op < 0 || Op == Val;
496}
497
498/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
499/// VPKUHUM instruction.
500bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
501  if (!isUnary) {
502    for (unsigned i = 0; i != 16; ++i)
503      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
504        return false;
505  } else {
506    for (unsigned i = 0; i != 8; ++i)
507      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
508          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
509        return false;
510  }
511  return true;
512}
513
514/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
515/// VPKUWUM instruction.
516bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
517  if (!isUnary) {
518    for (unsigned i = 0; i != 16; i += 2)
519      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
520          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
521        return false;
522  } else {
523    for (unsigned i = 0; i != 8; i += 2)
524      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
525          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
526          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
527          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
528        return false;
529  }
530  return true;
531}
532
533/// isVMerge - Common function, used to match vmrg* shuffles.
534///
535static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
536                     unsigned LHSStart, unsigned RHSStart) {
537  assert(N->getValueType(0) == MVT::v16i8 &&
538         "PPC only supports shuffles by bytes!");
539  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
540         "Unsupported merge size!");
541
542  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
543    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
544      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
545                             LHSStart+j+i*UnitSize) ||
546          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
547                             RHSStart+j+i*UnitSize))
548        return false;
549    }
550  return true;
551}
552
553/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
554/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
555bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
556                             bool isUnary) {
557  if (!isUnary)
558    return isVMerge(N, UnitSize, 8, 24);
559  return isVMerge(N, UnitSize, 8, 8);
560}
561
562/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
563/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
564bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
565                             bool isUnary) {
566  if (!isUnary)
567    return isVMerge(N, UnitSize, 0, 16);
568  return isVMerge(N, UnitSize, 0, 0);
569}
570
571
572/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
573/// amount, otherwise return -1.
574int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
575  assert(N->getValueType(0) == MVT::v16i8 &&
576         "PPC only supports shuffles by bytes!");
577
578  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
579
580  // Find the first non-undef value in the shuffle mask.
581  unsigned i;
582  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
583    /*search*/;
584
585  if (i == 16) return -1;  // all undef.
586
587  // Otherwise, check to see if the rest of the elements are consecutively
588  // numbered from this value.
589  unsigned ShiftAmt = SVOp->getMaskElt(i);
590  if (ShiftAmt < i) return -1;
591  ShiftAmt -= i;
592
593  if (!isUnary) {
594    // Check the rest of the elements to see if they are consecutive.
595    for (++i; i != 16; ++i)
596      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
597        return -1;
598  } else {
599    // Check the rest of the elements to see if they are consecutive.
600    for (++i; i != 16; ++i)
601      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
602        return -1;
603  }
604  return ShiftAmt;
605}
606
607/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
608/// specifies a splat of a single element that is suitable for input to
609/// VSPLTB/VSPLTH/VSPLTW.
610bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
611  assert(N->getValueType(0) == MVT::v16i8 &&
612         (EltSize == 1 || EltSize == 2 || EltSize == 4));
613
614  // This is a splat operation if each element of the permute is the same, and
615  // if the value doesn't reference the second vector.
616  unsigned ElementBase = N->getMaskElt(0);
617
618  // FIXME: Handle UNDEF elements too!
619  if (ElementBase >= 16)
620    return false;
621
622  // Check that the indices are consecutive, in the case of a multi-byte element
623  // splatted with a v16i8 mask.
624  for (unsigned i = 1; i != EltSize; ++i)
625    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
626      return false;
627
628  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
629    if (N->getMaskElt(i) < 0) continue;
630    for (unsigned j = 0; j != EltSize; ++j)
631      if (N->getMaskElt(i+j) != N->getMaskElt(j))
632        return false;
633  }
634  return true;
635}
636
637/// isAllNegativeZeroVector - Returns true if all elements of build_vector
638/// are -0.0.
639bool PPC::isAllNegativeZeroVector(SDNode *N) {
640  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
641
642  APInt APVal, APUndef;
643  unsigned BitSize;
644  bool HasAnyUndefs;
645
646  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
647    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
648      return CFP->getValueAPF().isNegZero();
649
650  return false;
651}
652
653/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
654/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
655unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
656  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
657  assert(isSplatShuffleMask(SVOp, EltSize));
658  return SVOp->getMaskElt(0) / EltSize;
659}
660
661/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
662/// by using a vspltis[bhw] instruction of the specified element size, return
663/// the constant being splatted.  The ByteSize field indicates the number of
664/// bytes of each element [124] -> [bhw].
665SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
666  SDValue OpVal(0, 0);
667
668  // If ByteSize of the splat is bigger than the element size of the
669  // build_vector, then we have a case where we are checking for a splat where
670  // multiple elements of the buildvector are folded together into a single
671  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
672  unsigned EltSize = 16/N->getNumOperands();
673  if (EltSize < ByteSize) {
674    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
675    SDValue UniquedVals[4];
676    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
677
678    // See if all of the elements in the buildvector agree across.
679    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
680      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
681      // If the element isn't a constant, bail fully out.
682      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
683
684
685      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
686        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
687      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
688        return SDValue();  // no match.
689    }
690
691    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
692    // either constant or undef values that are identical for each chunk.  See
693    // if these chunks can form into a larger vspltis*.
694
695    // Check to see if all of the leading entries are either 0 or -1.  If
696    // neither, then this won't fit into the immediate field.
697    bool LeadingZero = true;
698    bool LeadingOnes = true;
699    for (unsigned i = 0; i != Multiple-1; ++i) {
700      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
701
702      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
703      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
704    }
705    // Finally, check the least significant entry.
706    if (LeadingZero) {
707      if (UniquedVals[Multiple-1].getNode() == 0)
708        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
709      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
710      if (Val < 16)
711        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
712    }
713    if (LeadingOnes) {
714      if (UniquedVals[Multiple-1].getNode() == 0)
715        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
716      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
717      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
718        return DAG.getTargetConstant(Val, MVT::i32);
719    }
720
721    return SDValue();
722  }
723
724  // Check to see if this buildvec has a single non-undef value in its elements.
725  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
726    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
727    if (OpVal.getNode() == 0)
728      OpVal = N->getOperand(i);
729    else if (OpVal != N->getOperand(i))
730      return SDValue();
731  }
732
733  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
734
735  unsigned ValSizeInBytes = EltSize;
736  uint64_t Value = 0;
737  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
738    Value = CN->getZExtValue();
739  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
740    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
741    Value = FloatToBits(CN->getValueAPF().convertToFloat());
742  }
743
744  // If the splat value is larger than the element value, then we can never do
745  // this splat.  The only case that we could fit the replicated bits into our
746  // immediate field for would be zero, and we prefer to use vxor for it.
747  if (ValSizeInBytes < ByteSize) return SDValue();
748
749  // If the element value is larger than the splat value, cut it in half and
750  // check to see if the two halves are equal.  Continue doing this until we
751  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
752  while (ValSizeInBytes > ByteSize) {
753    ValSizeInBytes >>= 1;
754
755    // If the top half equals the bottom half, we're still ok.
756    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
757         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
758      return SDValue();
759  }
760
761  // Properly sign extend the value.
762  int ShAmt = (4-ByteSize)*8;
763  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
764
765  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
766  if (MaskVal == 0) return SDValue();
767
768  // Finally, if this value fits in a 5 bit sext field, return it
769  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
770    return DAG.getTargetConstant(MaskVal, MVT::i32);
771  return SDValue();
772}
773
774//===----------------------------------------------------------------------===//
775//  Addressing Mode Selection
776//===----------------------------------------------------------------------===//
777
778/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
779/// or 64-bit immediate, and if the value can be accurately represented as a
780/// sign extension from a 16-bit value.  If so, this returns true and the
781/// immediate.
782static bool isIntS16Immediate(SDNode *N, short &Imm) {
783  if (N->getOpcode() != ISD::Constant)
784    return false;
785
786  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
787  if (N->getValueType(0) == MVT::i32)
788    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
789  else
790    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
791}
792static bool isIntS16Immediate(SDValue Op, short &Imm) {
793  return isIntS16Immediate(Op.getNode(), Imm);
794}
795
796
797/// SelectAddressRegReg - Given the specified addressed, check to see if it
798/// can be represented as an indexed [r+r] operation.  Returns false if it
799/// can be more efficiently represented with [r+imm].
800bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
801                                            SDValue &Index,
802                                            SelectionDAG &DAG) const {
803  short imm = 0;
804  if (N.getOpcode() == ISD::ADD) {
805    if (isIntS16Immediate(N.getOperand(1), imm))
806      return false;    // r+i
807    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
808      return false;    // r+i
809
810    Base = N.getOperand(0);
811    Index = N.getOperand(1);
812    return true;
813  } else if (N.getOpcode() == ISD::OR) {
814    if (isIntS16Immediate(N.getOperand(1), imm))
815      return false;    // r+i can fold it if we can.
816
817    // If this is an or of disjoint bitfields, we can codegen this as an add
818    // (for better address arithmetic) if the LHS and RHS of the OR are provably
819    // disjoint.
820    APInt LHSKnownZero, LHSKnownOne;
821    APInt RHSKnownZero, RHSKnownOne;
822    DAG.ComputeMaskedBits(N.getOperand(0),
823                          APInt::getAllOnesValue(N.getOperand(0)
824                            .getValueSizeInBits()),
825                          LHSKnownZero, LHSKnownOne);
826
827    if (LHSKnownZero.getBoolValue()) {
828      DAG.ComputeMaskedBits(N.getOperand(1),
829                            APInt::getAllOnesValue(N.getOperand(1)
830                              .getValueSizeInBits()),
831                            RHSKnownZero, RHSKnownOne);
832      // If all of the bits are known zero on the LHS or RHS, the add won't
833      // carry.
834      if (~(LHSKnownZero | RHSKnownZero) == 0) {
835        Base = N.getOperand(0);
836        Index = N.getOperand(1);
837        return true;
838      }
839    }
840  }
841
842  return false;
843}
844
845/// Returns true if the address N can be represented by a base register plus
846/// a signed 16-bit displacement [r+imm], and if it is not better
847/// represented as reg+reg.
848bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
849                                            SDValue &Base,
850                                            SelectionDAG &DAG) const {
851  // FIXME dl should come from parent load or store, not from address
852  DebugLoc dl = N.getDebugLoc();
853  // If this can be more profitably realized as r+r, fail.
854  if (SelectAddressRegReg(N, Disp, Base, DAG))
855    return false;
856
857  if (N.getOpcode() == ISD::ADD) {
858    short imm = 0;
859    if (isIntS16Immediate(N.getOperand(1), imm)) {
860      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
861      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
862        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
863      } else {
864        Base = N.getOperand(0);
865      }
866      return true; // [r+i]
867    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
868      // Match LOAD (ADD (X, Lo(G))).
869     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
870             && "Cannot handle constant offsets yet!");
871      Disp = N.getOperand(1).getOperand(0);  // The global address.
872      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
873             Disp.getOpcode() == ISD::TargetConstantPool ||
874             Disp.getOpcode() == ISD::TargetJumpTable);
875      Base = N.getOperand(0);
876      return true;  // [&g+r]
877    }
878  } else if (N.getOpcode() == ISD::OR) {
879    short imm = 0;
880    if (isIntS16Immediate(N.getOperand(1), imm)) {
881      // If this is an or of disjoint bitfields, we can codegen this as an add
882      // (for better address arithmetic) if the LHS and RHS of the OR are
883      // provably disjoint.
884      APInt LHSKnownZero, LHSKnownOne;
885      DAG.ComputeMaskedBits(N.getOperand(0),
886                            APInt::getAllOnesValue(N.getOperand(0)
887                                                   .getValueSizeInBits()),
888                            LHSKnownZero, LHSKnownOne);
889
890      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
891        // If all of the bits are known zero on the LHS or RHS, the add won't
892        // carry.
893        Base = N.getOperand(0);
894        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
895        return true;
896      }
897    }
898  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
899    // Loading from a constant address.
900
901    // If this address fits entirely in a 16-bit sext immediate field, codegen
902    // this as "d, 0"
903    short Imm;
904    if (isIntS16Immediate(CN, Imm)) {
905      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
906      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
907                             CN->getValueType(0));
908      return true;
909    }
910
911    // Handle 32-bit sext immediates with LIS + addr mode.
912    if (CN->getValueType(0) == MVT::i32 ||
913        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
914      int Addr = (int)CN->getZExtValue();
915
916      // Otherwise, break this down into an LIS + disp.
917      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
918
919      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
920      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
921      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
922      return true;
923    }
924  }
925
926  Disp = DAG.getTargetConstant(0, getPointerTy());
927  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
928    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
929  else
930    Base = N;
931  return true;      // [r+0]
932}
933
934/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
935/// represented as an indexed [r+r] operation.
936bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
937                                                SDValue &Index,
938                                                SelectionDAG &DAG) const {
939  // Check to see if we can easily represent this as an [r+r] address.  This
940  // will fail if it thinks that the address is more profitably represented as
941  // reg+imm, e.g. where imm = 0.
942  if (SelectAddressRegReg(N, Base, Index, DAG))
943    return true;
944
945  // If the operand is an addition, always emit this as [r+r], since this is
946  // better (for code size, and execution, as the memop does the add for free)
947  // than emitting an explicit add.
948  if (N.getOpcode() == ISD::ADD) {
949    Base = N.getOperand(0);
950    Index = N.getOperand(1);
951    return true;
952  }
953
954  // Otherwise, do it the hard way, using R0 as the base register.
955  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
956                         N.getValueType());
957  Index = N;
958  return true;
959}
960
961/// SelectAddressRegImmShift - Returns true if the address N can be
962/// represented by a base register plus a signed 14-bit displacement
963/// [r+imm*4].  Suitable for use by STD and friends.
964bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
965                                                 SDValue &Base,
966                                                 SelectionDAG &DAG) const {
967  // FIXME dl should come from the parent load or store, not the address
968  DebugLoc dl = N.getDebugLoc();
969  // If this can be more profitably realized as r+r, fail.
970  if (SelectAddressRegReg(N, Disp, Base, DAG))
971    return false;
972
973  if (N.getOpcode() == ISD::ADD) {
974    short imm = 0;
975    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
976      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
977      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
978        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
979      } else {
980        Base = N.getOperand(0);
981      }
982      return true; // [r+i]
983    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
984      // Match LOAD (ADD (X, Lo(G))).
985     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
986             && "Cannot handle constant offsets yet!");
987      Disp = N.getOperand(1).getOperand(0);  // The global address.
988      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
989             Disp.getOpcode() == ISD::TargetConstantPool ||
990             Disp.getOpcode() == ISD::TargetJumpTable);
991      Base = N.getOperand(0);
992      return true;  // [&g+r]
993    }
994  } else if (N.getOpcode() == ISD::OR) {
995    short imm = 0;
996    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
997      // If this is an or of disjoint bitfields, we can codegen this as an add
998      // (for better address arithmetic) if the LHS and RHS of the OR are
999      // provably disjoint.
1000      APInt LHSKnownZero, LHSKnownOne;
1001      DAG.ComputeMaskedBits(N.getOperand(0),
1002                            APInt::getAllOnesValue(N.getOperand(0)
1003                                                   .getValueSizeInBits()),
1004                            LHSKnownZero, LHSKnownOne);
1005      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1006        // If all of the bits are known zero on the LHS or RHS, the add won't
1007        // carry.
1008        Base = N.getOperand(0);
1009        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1010        return true;
1011      }
1012    }
1013  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1014    // Loading from a constant address.  Verify low two bits are clear.
1015    if ((CN->getZExtValue() & 3) == 0) {
1016      // If this address fits entirely in a 14-bit sext immediate field, codegen
1017      // this as "d, 0"
1018      short Imm;
1019      if (isIntS16Immediate(CN, Imm)) {
1020        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1021        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1022                               CN->getValueType(0));
1023        return true;
1024      }
1025
1026      // Fold the low-part of 32-bit absolute addresses into addr mode.
1027      if (CN->getValueType(0) == MVT::i32 ||
1028          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1029        int Addr = (int)CN->getZExtValue();
1030
1031        // Otherwise, break this down into an LIS + disp.
1032        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1033        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1034        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1035        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1036        return true;
1037      }
1038    }
1039  }
1040
1041  Disp = DAG.getTargetConstant(0, getPointerTy());
1042  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1043    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1044  else
1045    Base = N;
1046  return true;      // [r+0]
1047}
1048
1049
1050/// getPreIndexedAddressParts - returns true by value, base pointer and
1051/// offset pointer and addressing mode by reference if the node's address
1052/// can be legally represented as pre-indexed load / store address.
1053bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1054                                                  SDValue &Offset,
1055                                                  ISD::MemIndexedMode &AM,
1056                                                  SelectionDAG &DAG) const {
1057  // Disabled by default for now.
1058  if (!EnablePPCPreinc) return false;
1059
1060  SDValue Ptr;
1061  EVT VT;
1062  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1063    Ptr = LD->getBasePtr();
1064    VT = LD->getMemoryVT();
1065
1066  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1067    Ptr = ST->getBasePtr();
1068    VT  = ST->getMemoryVT();
1069  } else
1070    return false;
1071
1072  // PowerPC doesn't have preinc load/store instructions for vectors.
1073  if (VT.isVector())
1074    return false;
1075
1076  // TODO: Check reg+reg first.
1077
1078  // LDU/STU use reg+imm*4, others use reg+imm.
1079  if (VT != MVT::i64) {
1080    // reg + imm
1081    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1082      return false;
1083  } else {
1084    // reg + imm * 4.
1085    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1086      return false;
1087  }
1088
1089  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1090    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1091    // sext i32 to i64 when addr mode is r+i.
1092    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1093        LD->getExtensionType() == ISD::SEXTLOAD &&
1094        isa<ConstantSDNode>(Offset))
1095      return false;
1096  }
1097
1098  AM = ISD::PRE_INC;
1099  return true;
1100}
1101
1102//===----------------------------------------------------------------------===//
1103//  LowerOperation implementation
1104//===----------------------------------------------------------------------===//
1105
1106/// GetLabelAccessInfo - Return true if we should reference labels using a
1107/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1108static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1109                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1110  HiOpFlags = PPCII::MO_HA16;
1111  LoOpFlags = PPCII::MO_LO16;
1112
1113  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1114  // non-darwin platform.  We don't support PIC on other platforms yet.
1115  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1116               TM.getSubtarget<PPCSubtarget>().isDarwin();
1117  if (isPIC) {
1118    HiOpFlags |= PPCII::MO_PIC_FLAG;
1119    LoOpFlags |= PPCII::MO_PIC_FLAG;
1120  }
1121
1122  // If this is a reference to a global value that requires a non-lazy-ptr, make
1123  // sure that instruction lowering adds it.
1124  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1125    HiOpFlags |= PPCII::MO_NLP_FLAG;
1126    LoOpFlags |= PPCII::MO_NLP_FLAG;
1127
1128    if (GV->hasHiddenVisibility()) {
1129      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1130      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1131    }
1132  }
1133
1134  return isPIC;
1135}
1136
1137static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1138                             SelectionDAG &DAG) {
1139  EVT PtrVT = HiPart.getValueType();
1140  SDValue Zero = DAG.getConstant(0, PtrVT);
1141  DebugLoc DL = HiPart.getDebugLoc();
1142
1143  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1144  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1145
1146  // With PIC, the first instruction is actually "GR+hi(&G)".
1147  if (isPIC)
1148    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1149                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1150
1151  // Generate non-pic code that has direct accesses to the constant pool.
1152  // The address of the global is just (hi(&g)+lo(&g)).
1153  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1154}
1155
1156SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1157                                             SelectionDAG &DAG) const {
1158  EVT PtrVT = Op.getValueType();
1159  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1160  const Constant *C = CP->getConstVal();
1161
1162  unsigned MOHiFlag, MOLoFlag;
1163  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1164  SDValue CPIHi =
1165    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1166  SDValue CPILo =
1167    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1168  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1169}
1170
1171SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1172  EVT PtrVT = Op.getValueType();
1173  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1174
1175  unsigned MOHiFlag, MOLoFlag;
1176  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1177  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1178  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1179  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1180}
1181
1182SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1183                                             SelectionDAG &DAG) const {
1184  EVT PtrVT = Op.getValueType();
1185
1186  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1187
1188  unsigned MOHiFlag, MOLoFlag;
1189  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1190  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1191  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1192  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1193}
1194
1195SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1196                                              SelectionDAG &DAG) const {
1197  EVT PtrVT = Op.getValueType();
1198  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1199  DebugLoc DL = GSDN->getDebugLoc();
1200  const GlobalValue *GV = GSDN->getGlobal();
1201
1202  // 64-bit SVR4 ABI code is always position-independent.
1203  // The actual address of the GlobalValue is stored in the TOC.
1204  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1205    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1206    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1207                       DAG.getRegister(PPC::X2, MVT::i64));
1208  }
1209
1210  unsigned MOHiFlag, MOLoFlag;
1211  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1212
1213  SDValue GAHi =
1214    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1215  SDValue GALo =
1216    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1217
1218  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1219
1220  // If the global reference is actually to a non-lazy-pointer, we have to do an
1221  // extra load to get the address of the global.
1222  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1223    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1224                      false, false, 0);
1225  return Ptr;
1226}
1227
1228SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1229  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1230  DebugLoc dl = Op.getDebugLoc();
1231
1232  // If we're comparing for equality to zero, expose the fact that this is
1233  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1234  // fold the new nodes.
1235  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1236    if (C->isNullValue() && CC == ISD::SETEQ) {
1237      EVT VT = Op.getOperand(0).getValueType();
1238      SDValue Zext = Op.getOperand(0);
1239      if (VT.bitsLT(MVT::i32)) {
1240        VT = MVT::i32;
1241        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1242      }
1243      unsigned Log2b = Log2_32(VT.getSizeInBits());
1244      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1245      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1246                                DAG.getConstant(Log2b, MVT::i32));
1247      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1248    }
1249    // Leave comparisons against 0 and -1 alone for now, since they're usually
1250    // optimized.  FIXME: revisit this when we can custom lower all setcc
1251    // optimizations.
1252    if (C->isAllOnesValue() || C->isNullValue())
1253      return SDValue();
1254  }
1255
1256  // If we have an integer seteq/setne, turn it into a compare against zero
1257  // by xor'ing the rhs with the lhs, which is faster than setting a
1258  // condition register, reading it back out, and masking the correct bit.  The
1259  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1260  // the result to other bit-twiddling opportunities.
1261  EVT LHSVT = Op.getOperand(0).getValueType();
1262  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1263    EVT VT = Op.getValueType();
1264    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1265                                Op.getOperand(1));
1266    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1267  }
1268  return SDValue();
1269}
1270
1271SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1272                                      const PPCSubtarget &Subtarget) const {
1273  SDNode *Node = Op.getNode();
1274  EVT VT = Node->getValueType(0);
1275  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1276  SDValue InChain = Node->getOperand(0);
1277  SDValue VAListPtr = Node->getOperand(1);
1278  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1279  DebugLoc dl = Node->getDebugLoc();
1280
1281  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1282
1283  // gpr_index
1284  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1285                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1286                                    false, false, 0);
1287  InChain = GprIndex.getValue(1);
1288
1289  if (VT == MVT::i64) {
1290    // Check if GprIndex is even
1291    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1292                                 DAG.getConstant(1, MVT::i32));
1293    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1294                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1295    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1296                                          DAG.getConstant(1, MVT::i32));
1297    // Align GprIndex to be even if it isn't
1298    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1299                           GprIndex);
1300  }
1301
1302  // fpr index is 1 byte after gpr
1303  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1304                               DAG.getConstant(1, MVT::i32));
1305
1306  // fpr
1307  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1308                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1309                                    false, false, 0);
1310  InChain = FprIndex.getValue(1);
1311
1312  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1313                                       DAG.getConstant(8, MVT::i32));
1314
1315  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1316                                        DAG.getConstant(4, MVT::i32));
1317
1318  // areas
1319  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1320                                     MachinePointerInfo(), false, false, 0);
1321  InChain = OverflowArea.getValue(1);
1322
1323  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1324                                    MachinePointerInfo(), false, false, 0);
1325  InChain = RegSaveArea.getValue(1);
1326
1327  // select overflow_area if index > 8
1328  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1329                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1330
1331  // adjustment constant gpr_index * 4/8
1332  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1333                                    VT.isInteger() ? GprIndex : FprIndex,
1334                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1335                                                    MVT::i32));
1336
1337  // OurReg = RegSaveArea + RegConstant
1338  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1339                               RegConstant);
1340
1341  // Floating types are 32 bytes into RegSaveArea
1342  if (VT.isFloatingPoint())
1343    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1344                         DAG.getConstant(32, MVT::i32));
1345
1346  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1347  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1348                                   VT.isInteger() ? GprIndex : FprIndex,
1349                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1350                                                   MVT::i32));
1351
1352  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1353                              VT.isInteger() ? VAListPtr : FprPtr,
1354                              MachinePointerInfo(SV),
1355                              MVT::i8, false, false, 0);
1356
1357  // determine if we should load from reg_save_area or overflow_area
1358  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1359
1360  // increase overflow_area by 4/8 if gpr/fpr > 8
1361  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1362                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1363                                          MVT::i32));
1364
1365  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1366                             OverflowAreaPlusN);
1367
1368  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1369                              OverflowAreaPtr,
1370                              MachinePointerInfo(),
1371                              MVT::i32, false, false, 0);
1372
1373  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0);
1374}
1375
1376SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1377                                           SelectionDAG &DAG) const {
1378  SDValue Chain = Op.getOperand(0);
1379  SDValue Trmp = Op.getOperand(1); // trampoline
1380  SDValue FPtr = Op.getOperand(2); // nested function
1381  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1382  DebugLoc dl = Op.getDebugLoc();
1383
1384  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1385  bool isPPC64 = (PtrVT == MVT::i64);
1386  Type *IntPtrTy =
1387    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1388                                                             *DAG.getContext());
1389
1390  TargetLowering::ArgListTy Args;
1391  TargetLowering::ArgListEntry Entry;
1392
1393  Entry.Ty = IntPtrTy;
1394  Entry.Node = Trmp; Args.push_back(Entry);
1395
1396  // TrampSize == (isPPC64 ? 48 : 40);
1397  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1398                               isPPC64 ? MVT::i64 : MVT::i32);
1399  Args.push_back(Entry);
1400
1401  Entry.Node = FPtr; Args.push_back(Entry);
1402  Entry.Node = Nest; Args.push_back(Entry);
1403
1404  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1405  std::pair<SDValue, SDValue> CallResult =
1406    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1407                false, false, false, false, 0, CallingConv::C, false,
1408                /*isReturnValueUsed=*/true,
1409                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1410                Args, DAG, dl);
1411
1412  SDValue Ops[] =
1413    { CallResult.first, CallResult.second };
1414
1415  return DAG.getMergeValues(Ops, 2, dl);
1416}
1417
1418SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1419                                        const PPCSubtarget &Subtarget) const {
1420  MachineFunction &MF = DAG.getMachineFunction();
1421  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1422
1423  DebugLoc dl = Op.getDebugLoc();
1424
1425  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1426    // vastart just stores the address of the VarArgsFrameIndex slot into the
1427    // memory location argument.
1428    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1429    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1430    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1431    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1432                        MachinePointerInfo(SV),
1433                        false, false, 0);
1434  }
1435
1436  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1437  // We suppose the given va_list is already allocated.
1438  //
1439  // typedef struct {
1440  //  char gpr;     /* index into the array of 8 GPRs
1441  //                 * stored in the register save area
1442  //                 * gpr=0 corresponds to r3,
1443  //                 * gpr=1 to r4, etc.
1444  //                 */
1445  //  char fpr;     /* index into the array of 8 FPRs
1446  //                 * stored in the register save area
1447  //                 * fpr=0 corresponds to f1,
1448  //                 * fpr=1 to f2, etc.
1449  //                 */
1450  //  char *overflow_arg_area;
1451  //                /* location on stack that holds
1452  //                 * the next overflow argument
1453  //                 */
1454  //  char *reg_save_area;
1455  //               /* where r3:r10 and f1:f8 (if saved)
1456  //                * are stored
1457  //                */
1458  // } va_list[1];
1459
1460
1461  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1462  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1463
1464
1465  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1466
1467  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1468                                            PtrVT);
1469  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1470                                 PtrVT);
1471
1472  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1473  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1474
1475  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1476  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1477
1478  uint64_t FPROffset = 1;
1479  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1480
1481  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1482
1483  // Store first byte : number of int regs
1484  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1485                                         Op.getOperand(1),
1486                                         MachinePointerInfo(SV),
1487                                         MVT::i8, false, false, 0);
1488  uint64_t nextOffset = FPROffset;
1489  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1490                                  ConstFPROffset);
1491
1492  // Store second byte : number of float regs
1493  SDValue secondStore =
1494    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1495                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1496                      false, false, 0);
1497  nextOffset += StackOffset;
1498  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1499
1500  // Store second word : arguments given on stack
1501  SDValue thirdStore =
1502    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1503                 MachinePointerInfo(SV, nextOffset),
1504                 false, false, 0);
1505  nextOffset += FrameOffset;
1506  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1507
1508  // Store third word : arguments given in registers
1509  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1510                      MachinePointerInfo(SV, nextOffset),
1511                      false, false, 0);
1512
1513}
1514
1515#include "PPCGenCallingConv.inc"
1516
1517static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1518                                     CCValAssign::LocInfo &LocInfo,
1519                                     ISD::ArgFlagsTy &ArgFlags,
1520                                     CCState &State) {
1521  return true;
1522}
1523
1524static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1525                                            MVT &LocVT,
1526                                            CCValAssign::LocInfo &LocInfo,
1527                                            ISD::ArgFlagsTy &ArgFlags,
1528                                            CCState &State) {
1529  static const unsigned ArgRegs[] = {
1530    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1531    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1532  };
1533  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1534
1535  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1536
1537  // Skip one register if the first unallocated register has an even register
1538  // number and there are still argument registers available which have not been
1539  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1540  // need to skip a register if RegNum is odd.
1541  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1542    State.AllocateReg(ArgRegs[RegNum]);
1543  }
1544
1545  // Always return false here, as this function only makes sure that the first
1546  // unallocated register has an odd register number and does not actually
1547  // allocate a register for the current argument.
1548  return false;
1549}
1550
1551static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1552                                              MVT &LocVT,
1553                                              CCValAssign::LocInfo &LocInfo,
1554                                              ISD::ArgFlagsTy &ArgFlags,
1555                                              CCState &State) {
1556  static const unsigned ArgRegs[] = {
1557    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1558    PPC::F8
1559  };
1560
1561  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1562
1563  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1564
1565  // If there is only one Floating-point register left we need to put both f64
1566  // values of a split ppc_fp128 value on the stack.
1567  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1568    State.AllocateReg(ArgRegs[RegNum]);
1569  }
1570
1571  // Always return false here, as this function only makes sure that the two f64
1572  // values a ppc_fp128 value is split into are both passed in registers or both
1573  // passed on the stack and does not actually allocate a register for the
1574  // current argument.
1575  return false;
1576}
1577
1578/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1579/// on Darwin.
1580static const unsigned *GetFPR() {
1581  static const unsigned FPR[] = {
1582    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1583    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1584  };
1585
1586  return FPR;
1587}
1588
1589/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1590/// the stack.
1591static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1592                                       unsigned PtrByteSize) {
1593  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1594  if (Flags.isByVal())
1595    ArgSize = Flags.getByValSize();
1596  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1597
1598  return ArgSize;
1599}
1600
1601SDValue
1602PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1603                                        CallingConv::ID CallConv, bool isVarArg,
1604                                        const SmallVectorImpl<ISD::InputArg>
1605                                          &Ins,
1606                                        DebugLoc dl, SelectionDAG &DAG,
1607                                        SmallVectorImpl<SDValue> &InVals)
1608                                          const {
1609  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1610    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1611                                     dl, DAG, InVals);
1612  } else {
1613    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1614                                       dl, DAG, InVals);
1615  }
1616}
1617
1618SDValue
1619PPCTargetLowering::LowerFormalArguments_SVR4(
1620                                      SDValue Chain,
1621                                      CallingConv::ID CallConv, bool isVarArg,
1622                                      const SmallVectorImpl<ISD::InputArg>
1623                                        &Ins,
1624                                      DebugLoc dl, SelectionDAG &DAG,
1625                                      SmallVectorImpl<SDValue> &InVals) const {
1626
1627  // 32-bit SVR4 ABI Stack Frame Layout:
1628  //              +-----------------------------------+
1629  //        +-->  |            Back chain             |
1630  //        |     +-----------------------------------+
1631  //        |     | Floating-point register save area |
1632  //        |     +-----------------------------------+
1633  //        |     |    General register save area     |
1634  //        |     +-----------------------------------+
1635  //        |     |          CR save word             |
1636  //        |     +-----------------------------------+
1637  //        |     |         VRSAVE save word          |
1638  //        |     +-----------------------------------+
1639  //        |     |         Alignment padding         |
1640  //        |     +-----------------------------------+
1641  //        |     |     Vector register save area     |
1642  //        |     +-----------------------------------+
1643  //        |     |       Local variable space        |
1644  //        |     +-----------------------------------+
1645  //        |     |        Parameter list area        |
1646  //        |     +-----------------------------------+
1647  //        |     |           LR save word            |
1648  //        |     +-----------------------------------+
1649  // SP-->  +---  |            Back chain             |
1650  //              +-----------------------------------+
1651  //
1652  // Specifications:
1653  //   System V Application Binary Interface PowerPC Processor Supplement
1654  //   AltiVec Technology Programming Interface Manual
1655
1656  MachineFunction &MF = DAG.getMachineFunction();
1657  MachineFrameInfo *MFI = MF.getFrameInfo();
1658  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1659
1660  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1661  // Potential tail calls could cause overwriting of argument stack slots.
1662  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1663  unsigned PtrByteSize = 4;
1664
1665  // Assign locations to all of the incoming arguments.
1666  SmallVector<CCValAssign, 16> ArgLocs;
1667  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1668		 getTargetMachine(), ArgLocs, *DAG.getContext());
1669
1670  // Reserve space for the linkage area on the stack.
1671  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1672
1673  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1674
1675  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1676    CCValAssign &VA = ArgLocs[i];
1677
1678    // Arguments stored in registers.
1679    if (VA.isRegLoc()) {
1680      TargetRegisterClass *RC;
1681      EVT ValVT = VA.getValVT();
1682
1683      switch (ValVT.getSimpleVT().SimpleTy) {
1684        default:
1685          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1686        case MVT::i32:
1687          RC = PPC::GPRCRegisterClass;
1688          break;
1689        case MVT::f32:
1690          RC = PPC::F4RCRegisterClass;
1691          break;
1692        case MVT::f64:
1693          RC = PPC::F8RCRegisterClass;
1694          break;
1695        case MVT::v16i8:
1696        case MVT::v8i16:
1697        case MVT::v4i32:
1698        case MVT::v4f32:
1699          RC = PPC::VRRCRegisterClass;
1700          break;
1701      }
1702
1703      // Transform the arguments stored in physical registers into virtual ones.
1704      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1705      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1706
1707      InVals.push_back(ArgValue);
1708    } else {
1709      // Argument stored in memory.
1710      assert(VA.isMemLoc());
1711
1712      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1713      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1714                                      isImmutable);
1715
1716      // Create load nodes to retrieve arguments from the stack.
1717      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1718      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1719                                   MachinePointerInfo(),
1720                                   false, false, 0));
1721    }
1722  }
1723
1724  // Assign locations to all of the incoming aggregate by value arguments.
1725  // Aggregates passed by value are stored in the local variable space of the
1726  // caller's stack frame, right above the parameter list area.
1727  SmallVector<CCValAssign, 16> ByValArgLocs;
1728  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1729		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1730
1731  // Reserve stack space for the allocations in CCInfo.
1732  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1733
1734  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1735
1736  // Area that is at least reserved in the caller of this function.
1737  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1738
1739  // Set the size that is at least reserved in caller of this function.  Tail
1740  // call optimized function's reserved stack space needs to be aligned so that
1741  // taking the difference between two stack areas will result in an aligned
1742  // stack.
1743  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1744
1745  MinReservedArea =
1746    std::max(MinReservedArea,
1747             PPCFrameLowering::getMinCallFrameSize(false, false));
1748
1749  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1750    getStackAlignment();
1751  unsigned AlignMask = TargetAlign-1;
1752  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1753
1754  FI->setMinReservedArea(MinReservedArea);
1755
1756  SmallVector<SDValue, 8> MemOps;
1757
1758  // If the function takes variable number of arguments, make a frame index for
1759  // the start of the first vararg value... for expansion of llvm.va_start.
1760  if (isVarArg) {
1761    static const unsigned GPArgRegs[] = {
1762      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1763      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1764    };
1765    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1766
1767    static const unsigned FPArgRegs[] = {
1768      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1769      PPC::F8
1770    };
1771    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1772
1773    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1774                                                          NumGPArgRegs));
1775    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1776                                                          NumFPArgRegs));
1777
1778    // Make room for NumGPArgRegs and NumFPArgRegs.
1779    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1780                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1781
1782    FuncInfo->setVarArgsStackOffset(
1783      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1784                             CCInfo.getNextStackOffset(), true));
1785
1786    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1787    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1788
1789    // The fixed integer arguments of a variadic function are stored to the
1790    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1791    // the result of va_next.
1792    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1793      // Get an existing live-in vreg, or add a new one.
1794      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1795      if (!VReg)
1796        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1797
1798      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1799      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1800                                   MachinePointerInfo(), false, false, 0);
1801      MemOps.push_back(Store);
1802      // Increment the address by four for the next argument to store
1803      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1804      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1805    }
1806
1807    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1808    // is set.
1809    // The double arguments are stored to the VarArgsFrameIndex
1810    // on the stack.
1811    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1812      // Get an existing live-in vreg, or add a new one.
1813      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1814      if (!VReg)
1815        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1816
1817      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1818      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1819                                   MachinePointerInfo(), false, false, 0);
1820      MemOps.push_back(Store);
1821      // Increment the address by eight for the next argument to store
1822      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1823                                         PtrVT);
1824      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1825    }
1826  }
1827
1828  if (!MemOps.empty())
1829    Chain = DAG.getNode(ISD::TokenFactor, dl,
1830                        MVT::Other, &MemOps[0], MemOps.size());
1831
1832  return Chain;
1833}
1834
1835SDValue
1836PPCTargetLowering::LowerFormalArguments_Darwin(
1837                                      SDValue Chain,
1838                                      CallingConv::ID CallConv, bool isVarArg,
1839                                      const SmallVectorImpl<ISD::InputArg>
1840                                        &Ins,
1841                                      DebugLoc dl, SelectionDAG &DAG,
1842                                      SmallVectorImpl<SDValue> &InVals) const {
1843  // TODO: add description of PPC stack frame format, or at least some docs.
1844  //
1845  MachineFunction &MF = DAG.getMachineFunction();
1846  MachineFrameInfo *MFI = MF.getFrameInfo();
1847  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1848
1849  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1850  bool isPPC64 = PtrVT == MVT::i64;
1851  // Potential tail calls could cause overwriting of argument stack slots.
1852  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1853  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1854
1855  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1856  // Area that is at least reserved in caller of this function.
1857  unsigned MinReservedArea = ArgOffset;
1858
1859  static const unsigned GPR_32[] = {           // 32-bit registers.
1860    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1861    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1862  };
1863  static const unsigned GPR_64[] = {           // 64-bit registers.
1864    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1865    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1866  };
1867
1868  static const unsigned *FPR = GetFPR();
1869
1870  static const unsigned VR[] = {
1871    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1872    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1873  };
1874
1875  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1876  const unsigned Num_FPR_Regs = 13;
1877  const unsigned Num_VR_Regs  = array_lengthof( VR);
1878
1879  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1880
1881  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1882
1883  // In 32-bit non-varargs functions, the stack space for vectors is after the
1884  // stack space for non-vectors.  We do not use this space unless we have
1885  // too many vectors to fit in registers, something that only occurs in
1886  // constructed examples:), but we have to walk the arglist to figure
1887  // that out...for the pathological case, compute VecArgOffset as the
1888  // start of the vector parameter area.  Computing VecArgOffset is the
1889  // entire point of the following loop.
1890  unsigned VecArgOffset = ArgOffset;
1891  if (!isVarArg && !isPPC64) {
1892    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1893         ++ArgNo) {
1894      EVT ObjectVT = Ins[ArgNo].VT;
1895      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1896      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1897
1898      if (Flags.isByVal()) {
1899        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1900        ObjSize = Flags.getByValSize();
1901        unsigned ArgSize =
1902                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1903        VecArgOffset += ArgSize;
1904        continue;
1905      }
1906
1907      switch(ObjectVT.getSimpleVT().SimpleTy) {
1908      default: llvm_unreachable("Unhandled argument type!");
1909      case MVT::i32:
1910      case MVT::f32:
1911        VecArgOffset += isPPC64 ? 8 : 4;
1912        break;
1913      case MVT::i64:  // PPC64
1914      case MVT::f64:
1915        VecArgOffset += 8;
1916        break;
1917      case MVT::v4f32:
1918      case MVT::v4i32:
1919      case MVT::v8i16:
1920      case MVT::v16i8:
1921        // Nothing to do, we're only looking at Nonvector args here.
1922        break;
1923      }
1924    }
1925  }
1926  // We've found where the vector parameter area in memory is.  Skip the
1927  // first 12 parameters; these don't use that memory.
1928  VecArgOffset = ((VecArgOffset+15)/16)*16;
1929  VecArgOffset += 12*16;
1930
1931  // Add DAG nodes to load the arguments or copy them out of registers.  On
1932  // entry to a function on PPC, the arguments start after the linkage area,
1933  // although the first ones are often in registers.
1934
1935  SmallVector<SDValue, 8> MemOps;
1936  unsigned nAltivecParamsAtEnd = 0;
1937  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1938    SDValue ArgVal;
1939    bool needsLoad = false;
1940    EVT ObjectVT = Ins[ArgNo].VT;
1941    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1942    unsigned ArgSize = ObjSize;
1943    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1944
1945    unsigned CurArgOffset = ArgOffset;
1946
1947    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1948    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1949        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1950      if (isVarArg || isPPC64) {
1951        MinReservedArea = ((MinReservedArea+15)/16)*16;
1952        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1953                                                  Flags,
1954                                                  PtrByteSize);
1955      } else  nAltivecParamsAtEnd++;
1956    } else
1957      // Calculate min reserved area.
1958      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1959                                                Flags,
1960                                                PtrByteSize);
1961
1962    // FIXME the codegen can be much improved in some cases.
1963    // We do not have to keep everything in memory.
1964    if (Flags.isByVal()) {
1965      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1966      ObjSize = Flags.getByValSize();
1967      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1968      // Objects of size 1 and 2 are right justified, everything else is
1969      // left justified.  This means the memory address is adjusted forwards.
1970      if (ObjSize==1 || ObjSize==2) {
1971        CurArgOffset = CurArgOffset + (4 - ObjSize);
1972      }
1973      // The value of the object is its address.
1974      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1975      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1976      InVals.push_back(FIN);
1977      if (ObjSize==1 || ObjSize==2) {
1978        if (GPR_idx != Num_GPR_Regs) {
1979          unsigned VReg;
1980          if (isPPC64)
1981            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1982          else
1983            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1984          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1985          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1986                                            MachinePointerInfo(),
1987                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1988                                            false, false, 0);
1989          MemOps.push_back(Store);
1990          ++GPR_idx;
1991        }
1992
1993        ArgOffset += PtrByteSize;
1994
1995        continue;
1996      }
1997      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1998        // Store whatever pieces of the object are in registers
1999        // to memory.  ArgVal will be address of the beginning of
2000        // the object.
2001        if (GPR_idx != Num_GPR_Regs) {
2002          unsigned VReg;
2003          if (isPPC64)
2004            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2005          else
2006            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2007          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2008          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2009          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2010          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                                       MachinePointerInfo(),
2012                                       false, false, 0);
2013          MemOps.push_back(Store);
2014          ++GPR_idx;
2015          ArgOffset += PtrByteSize;
2016        } else {
2017          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2018          break;
2019        }
2020      }
2021      continue;
2022    }
2023
2024    switch (ObjectVT.getSimpleVT().SimpleTy) {
2025    default: llvm_unreachable("Unhandled argument type!");
2026    case MVT::i32:
2027      if (!isPPC64) {
2028        if (GPR_idx != Num_GPR_Regs) {
2029          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2030          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2031          ++GPR_idx;
2032        } else {
2033          needsLoad = true;
2034          ArgSize = PtrByteSize;
2035        }
2036        // All int arguments reserve stack space in the Darwin ABI.
2037        ArgOffset += PtrByteSize;
2038        break;
2039      }
2040      // FALLTHROUGH
2041    case MVT::i64:  // PPC64
2042      if (GPR_idx != Num_GPR_Regs) {
2043        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2044        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2045
2046        if (ObjectVT == MVT::i32) {
2047          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2048          // value to MVT::i64 and then truncate to the correct register size.
2049          if (Flags.isSExt())
2050            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2051                                 DAG.getValueType(ObjectVT));
2052          else if (Flags.isZExt())
2053            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2054                                 DAG.getValueType(ObjectVT));
2055
2056          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2057        }
2058
2059        ++GPR_idx;
2060      } else {
2061        needsLoad = true;
2062        ArgSize = PtrByteSize;
2063      }
2064      // All int arguments reserve stack space in the Darwin ABI.
2065      ArgOffset += 8;
2066      break;
2067
2068    case MVT::f32:
2069    case MVT::f64:
2070      // Every 4 bytes of argument space consumes one of the GPRs available for
2071      // argument passing.
2072      if (GPR_idx != Num_GPR_Regs) {
2073        ++GPR_idx;
2074        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2075          ++GPR_idx;
2076      }
2077      if (FPR_idx != Num_FPR_Regs) {
2078        unsigned VReg;
2079
2080        if (ObjectVT == MVT::f32)
2081          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2082        else
2083          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2084
2085        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2086        ++FPR_idx;
2087      } else {
2088        needsLoad = true;
2089      }
2090
2091      // All FP arguments reserve stack space in the Darwin ABI.
2092      ArgOffset += isPPC64 ? 8 : ObjSize;
2093      break;
2094    case MVT::v4f32:
2095    case MVT::v4i32:
2096    case MVT::v8i16:
2097    case MVT::v16i8:
2098      // Note that vector arguments in registers don't reserve stack space,
2099      // except in varargs functions.
2100      if (VR_idx != Num_VR_Regs) {
2101        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2102        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2103        if (isVarArg) {
2104          while ((ArgOffset % 16) != 0) {
2105            ArgOffset += PtrByteSize;
2106            if (GPR_idx != Num_GPR_Regs)
2107              GPR_idx++;
2108          }
2109          ArgOffset += 16;
2110          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2111        }
2112        ++VR_idx;
2113      } else {
2114        if (!isVarArg && !isPPC64) {
2115          // Vectors go after all the nonvectors.
2116          CurArgOffset = VecArgOffset;
2117          VecArgOffset += 16;
2118        } else {
2119          // Vectors are aligned.
2120          ArgOffset = ((ArgOffset+15)/16)*16;
2121          CurArgOffset = ArgOffset;
2122          ArgOffset += 16;
2123        }
2124        needsLoad = true;
2125      }
2126      break;
2127    }
2128
2129    // We need to load the argument to a virtual register if we determined above
2130    // that we ran out of physical registers of the appropriate type.
2131    if (needsLoad) {
2132      int FI = MFI->CreateFixedObject(ObjSize,
2133                                      CurArgOffset + (ArgSize - ObjSize),
2134                                      isImmutable);
2135      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2136      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2137                           false, false, 0);
2138    }
2139
2140    InVals.push_back(ArgVal);
2141  }
2142
2143  // Set the size that is at least reserved in caller of this function.  Tail
2144  // call optimized function's reserved stack space needs to be aligned so that
2145  // taking the difference between two stack areas will result in an aligned
2146  // stack.
2147  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2148  // Add the Altivec parameters at the end, if needed.
2149  if (nAltivecParamsAtEnd) {
2150    MinReservedArea = ((MinReservedArea+15)/16)*16;
2151    MinReservedArea += 16*nAltivecParamsAtEnd;
2152  }
2153  MinReservedArea =
2154    std::max(MinReservedArea,
2155             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2156  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2157    getStackAlignment();
2158  unsigned AlignMask = TargetAlign-1;
2159  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2160  FI->setMinReservedArea(MinReservedArea);
2161
2162  // If the function takes variable number of arguments, make a frame index for
2163  // the start of the first vararg value... for expansion of llvm.va_start.
2164  if (isVarArg) {
2165    int Depth = ArgOffset;
2166
2167    FuncInfo->setVarArgsFrameIndex(
2168      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2169                             Depth, true));
2170    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2171
2172    // If this function is vararg, store any remaining integer argument regs
2173    // to their spots on the stack so that they may be loaded by deferencing the
2174    // result of va_next.
2175    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2176      unsigned VReg;
2177
2178      if (isPPC64)
2179        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2180      else
2181        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2182
2183      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2184      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2185                                   MachinePointerInfo(), false, false, 0);
2186      MemOps.push_back(Store);
2187      // Increment the address by four for the next argument to store
2188      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2189      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2190    }
2191  }
2192
2193  if (!MemOps.empty())
2194    Chain = DAG.getNode(ISD::TokenFactor, dl,
2195                        MVT::Other, &MemOps[0], MemOps.size());
2196
2197  return Chain;
2198}
2199
2200/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2201/// linkage area for the Darwin ABI.
2202static unsigned
2203CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2204                                     bool isPPC64,
2205                                     bool isVarArg,
2206                                     unsigned CC,
2207                                     const SmallVectorImpl<ISD::OutputArg>
2208                                       &Outs,
2209                                     const SmallVectorImpl<SDValue> &OutVals,
2210                                     unsigned &nAltivecParamsAtEnd) {
2211  // Count how many bytes are to be pushed on the stack, including the linkage
2212  // area, and parameter passing area.  We start with 24/48 bytes, which is
2213  // prereserved space for [SP][CR][LR][3 x unused].
2214  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2215  unsigned NumOps = Outs.size();
2216  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2217
2218  // Add up all the space actually used.
2219  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2220  // they all go in registers, but we must reserve stack space for them for
2221  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2222  // assigned stack space in order, with padding so Altivec parameters are
2223  // 16-byte aligned.
2224  nAltivecParamsAtEnd = 0;
2225  for (unsigned i = 0; i != NumOps; ++i) {
2226    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2227    EVT ArgVT = Outs[i].VT;
2228    // Varargs Altivec parameters are padded to a 16 byte boundary.
2229    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2230        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2231      if (!isVarArg && !isPPC64) {
2232        // Non-varargs Altivec parameters go after all the non-Altivec
2233        // parameters; handle those later so we know how much padding we need.
2234        nAltivecParamsAtEnd++;
2235        continue;
2236      }
2237      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2238      NumBytes = ((NumBytes+15)/16)*16;
2239    }
2240    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2241  }
2242
2243   // Allow for Altivec parameters at the end, if needed.
2244  if (nAltivecParamsAtEnd) {
2245    NumBytes = ((NumBytes+15)/16)*16;
2246    NumBytes += 16*nAltivecParamsAtEnd;
2247  }
2248
2249  // The prolog code of the callee may store up to 8 GPR argument registers to
2250  // the stack, allowing va_start to index over them in memory if its varargs.
2251  // Because we cannot tell if this is needed on the caller side, we have to
2252  // conservatively assume that it is needed.  As such, make sure we have at
2253  // least enough stack space for the caller to store the 8 GPRs.
2254  NumBytes = std::max(NumBytes,
2255                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2256
2257  // Tail call needs the stack to be aligned.
2258  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2259    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2260      getStackAlignment();
2261    unsigned AlignMask = TargetAlign-1;
2262    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2263  }
2264
2265  return NumBytes;
2266}
2267
2268/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2269/// adjusted to accommodate the arguments for the tailcall.
2270static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2271                                   unsigned ParamSize) {
2272
2273  if (!isTailCall) return 0;
2274
2275  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2276  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2277  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2278  // Remember only if the new adjustement is bigger.
2279  if (SPDiff < FI->getTailCallSPDelta())
2280    FI->setTailCallSPDelta(SPDiff);
2281
2282  return SPDiff;
2283}
2284
2285/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2286/// for tail call optimization. Targets which want to do tail call
2287/// optimization should implement this function.
2288bool
2289PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2290                                                     CallingConv::ID CalleeCC,
2291                                                     bool isVarArg,
2292                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2293                                                     SelectionDAG& DAG) const {
2294  if (!GuaranteedTailCallOpt)
2295    return false;
2296
2297  // Variable argument functions are not supported.
2298  if (isVarArg)
2299    return false;
2300
2301  MachineFunction &MF = DAG.getMachineFunction();
2302  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2303  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2304    // Functions containing by val parameters are not supported.
2305    for (unsigned i = 0; i != Ins.size(); i++) {
2306       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2307       if (Flags.isByVal()) return false;
2308    }
2309
2310    // Non PIC/GOT  tail calls are supported.
2311    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2312      return true;
2313
2314    // At the moment we can only do local tail calls (in same module, hidden
2315    // or protected) if we are generating PIC.
2316    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2317      return G->getGlobal()->hasHiddenVisibility()
2318          || G->getGlobal()->hasProtectedVisibility();
2319  }
2320
2321  return false;
2322}
2323
2324/// isCallCompatibleAddress - Return the immediate to use if the specified
2325/// 32-bit value is representable in the immediate field of a BxA instruction.
2326static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2327  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2328  if (!C) return 0;
2329
2330  int Addr = C->getZExtValue();
2331  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2332      (Addr << 6 >> 6) != Addr)
2333    return 0;  // Top 6 bits have to be sext of immediate.
2334
2335  return DAG.getConstant((int)C->getZExtValue() >> 2,
2336                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2337}
2338
2339namespace {
2340
2341struct TailCallArgumentInfo {
2342  SDValue Arg;
2343  SDValue FrameIdxOp;
2344  int       FrameIdx;
2345
2346  TailCallArgumentInfo() : FrameIdx(0) {}
2347};
2348
2349}
2350
2351/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2352static void
2353StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2354                                           SDValue Chain,
2355                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2356                   SmallVector<SDValue, 8> &MemOpChains,
2357                   DebugLoc dl) {
2358  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2359    SDValue Arg = TailCallArgs[i].Arg;
2360    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2361    int FI = TailCallArgs[i].FrameIdx;
2362    // Store relative to framepointer.
2363    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2364                                       MachinePointerInfo::getFixedStack(FI),
2365                                       false, false, 0));
2366  }
2367}
2368
2369/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2370/// the appropriate stack slot for the tail call optimized function call.
2371static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2372                                               MachineFunction &MF,
2373                                               SDValue Chain,
2374                                               SDValue OldRetAddr,
2375                                               SDValue OldFP,
2376                                               int SPDiff,
2377                                               bool isPPC64,
2378                                               bool isDarwinABI,
2379                                               DebugLoc dl) {
2380  if (SPDiff) {
2381    // Calculate the new stack slot for the return address.
2382    int SlotSize = isPPC64 ? 8 : 4;
2383    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2384                                                                   isDarwinABI);
2385    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2386                                                          NewRetAddrLoc, true);
2387    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2388    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2389    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2390                         MachinePointerInfo::getFixedStack(NewRetAddr),
2391                         false, false, 0);
2392
2393    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2394    // slot as the FP is never overwritten.
2395    if (isDarwinABI) {
2396      int NewFPLoc =
2397        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2398      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2399                                                          true);
2400      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2401      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2402                           MachinePointerInfo::getFixedStack(NewFPIdx),
2403                           false, false, 0);
2404    }
2405  }
2406  return Chain;
2407}
2408
2409/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2410/// the position of the argument.
2411static void
2412CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2413                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2414                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2415  int Offset = ArgOffset + SPDiff;
2416  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2417  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2418  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2419  SDValue FIN = DAG.getFrameIndex(FI, VT);
2420  TailCallArgumentInfo Info;
2421  Info.Arg = Arg;
2422  Info.FrameIdxOp = FIN;
2423  Info.FrameIdx = FI;
2424  TailCallArguments.push_back(Info);
2425}
2426
2427/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2428/// stack slot. Returns the chain as result and the loaded frame pointers in
2429/// LROpOut/FPOpout. Used when tail calling.
2430SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2431                                                        int SPDiff,
2432                                                        SDValue Chain,
2433                                                        SDValue &LROpOut,
2434                                                        SDValue &FPOpOut,
2435                                                        bool isDarwinABI,
2436                                                        DebugLoc dl) const {
2437  if (SPDiff) {
2438    // Load the LR and FP stack slot for later adjusting.
2439    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2440    LROpOut = getReturnAddrFrameIndex(DAG);
2441    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2442                          false, false, 0);
2443    Chain = SDValue(LROpOut.getNode(), 1);
2444
2445    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2446    // slot as the FP is never overwritten.
2447    if (isDarwinABI) {
2448      FPOpOut = getFramePointerFrameIndex(DAG);
2449      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2450                            false, false, 0);
2451      Chain = SDValue(FPOpOut.getNode(), 1);
2452    }
2453  }
2454  return Chain;
2455}
2456
2457/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2458/// by "Src" to address "Dst" of size "Size".  Alignment information is
2459/// specified by the specific parameter attribute. The copy will be passed as
2460/// a byval function parameter.
2461/// Sometimes what we are copying is the end of a larger object, the part that
2462/// does not fit in registers.
2463static SDValue
2464CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2465                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2466                          DebugLoc dl) {
2467  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2468  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2469                       false, false, MachinePointerInfo(0),
2470                       MachinePointerInfo(0));
2471}
2472
2473/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2474/// tail calls.
2475static void
2476LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2477                 SDValue Arg, SDValue PtrOff, int SPDiff,
2478                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2479                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2480                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2481                 DebugLoc dl) {
2482  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2483  if (!isTailCall) {
2484    if (isVector) {
2485      SDValue StackPtr;
2486      if (isPPC64)
2487        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2488      else
2489        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2490      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2491                           DAG.getConstant(ArgOffset, PtrVT));
2492    }
2493    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2494                                       MachinePointerInfo(), false, false, 0));
2495  // Calculate and remember argument location.
2496  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2497                                  TailCallArguments);
2498}
2499
2500static
2501void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2502                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2503                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2504                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2505  MachineFunction &MF = DAG.getMachineFunction();
2506
2507  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2508  // might overwrite each other in case of tail call optimization.
2509  SmallVector<SDValue, 8> MemOpChains2;
2510  // Do not flag preceding copytoreg stuff together with the following stuff.
2511  InFlag = SDValue();
2512  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2513                                    MemOpChains2, dl);
2514  if (!MemOpChains2.empty())
2515    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2516                        &MemOpChains2[0], MemOpChains2.size());
2517
2518  // Store the return address to the appropriate stack slot.
2519  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2520                                        isPPC64, isDarwinABI, dl);
2521
2522  // Emit callseq_end just before tailcall node.
2523  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2524                             DAG.getIntPtrConstant(0, true), InFlag);
2525  InFlag = Chain.getValue(1);
2526}
2527
2528static
2529unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2530                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2531                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2532                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2533                     const PPCSubtarget &PPCSubTarget) {
2534
2535  bool isPPC64 = PPCSubTarget.isPPC64();
2536  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2537
2538  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2539  NodeTys.push_back(MVT::Other);   // Returns a chain
2540  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2541
2542  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2543
2544  bool needIndirectCall = true;
2545  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2546    // If this is an absolute destination address, use the munged value.
2547    Callee = SDValue(Dest, 0);
2548    needIndirectCall = false;
2549  }
2550
2551  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2552    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2553    // Use indirect calls for ALL functions calls in JIT mode, since the
2554    // far-call stubs may be outside relocation limits for a BL instruction.
2555    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2556      unsigned OpFlags = 0;
2557      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2558          (PPCSubTarget.getTargetTriple().isMacOSX() &&
2559           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2560          (G->getGlobal()->isDeclaration() ||
2561           G->getGlobal()->isWeakForLinker())) {
2562        // PC-relative references to external symbols should go through $stub,
2563        // unless we're building with the leopard linker or later, which
2564        // automatically synthesizes these stubs.
2565        OpFlags = PPCII::MO_DARWIN_STUB;
2566      }
2567
2568      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2569      // every direct call is) turn it into a TargetGlobalAddress /
2570      // TargetExternalSymbol node so that legalize doesn't hack it.
2571      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2572                                          Callee.getValueType(),
2573                                          0, OpFlags);
2574      needIndirectCall = false;
2575    }
2576  }
2577
2578  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2579    unsigned char OpFlags = 0;
2580
2581    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2582        (PPCSubTarget.getTargetTriple().isMacOSX() &&
2583         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2584      // PC-relative references to external symbols should go through $stub,
2585      // unless we're building with the leopard linker or later, which
2586      // automatically synthesizes these stubs.
2587      OpFlags = PPCII::MO_DARWIN_STUB;
2588    }
2589
2590    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2591                                         OpFlags);
2592    needIndirectCall = false;
2593  }
2594
2595  if (needIndirectCall) {
2596    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2597    // to do the call, we can't use PPCISD::CALL.
2598    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2599
2600    if (isSVR4ABI && isPPC64) {
2601      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2602      // entry point, but to the function descriptor (the function entry point
2603      // address is part of the function descriptor though).
2604      // The function descriptor is a three doubleword structure with the
2605      // following fields: function entry point, TOC base address and
2606      // environment pointer.
2607      // Thus for a call through a function pointer, the following actions need
2608      // to be performed:
2609      //   1. Save the TOC of the caller in the TOC save area of its stack
2610      //      frame (this is done in LowerCall_Darwin()).
2611      //   2. Load the address of the function entry point from the function
2612      //      descriptor.
2613      //   3. Load the TOC of the callee from the function descriptor into r2.
2614      //   4. Load the environment pointer from the function descriptor into
2615      //      r11.
2616      //   5. Branch to the function entry point address.
2617      //   6. On return of the callee, the TOC of the caller needs to be
2618      //      restored (this is done in FinishCall()).
2619      //
2620      // All those operations are flagged together to ensure that no other
2621      // operations can be scheduled in between. E.g. without flagging the
2622      // operations together, a TOC access in the caller could be scheduled
2623      // between the load of the callee TOC and the branch to the callee, which
2624      // results in the TOC access going through the TOC of the callee instead
2625      // of going through the TOC of the caller, which leads to incorrect code.
2626
2627      // Load the address of the function entry point from the function
2628      // descriptor.
2629      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2630      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2631                                        InFlag.getNode() ? 3 : 2);
2632      Chain = LoadFuncPtr.getValue(1);
2633      InFlag = LoadFuncPtr.getValue(2);
2634
2635      // Load environment pointer into r11.
2636      // Offset of the environment pointer within the function descriptor.
2637      SDValue PtrOff = DAG.getIntPtrConstant(16);
2638
2639      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2640      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2641                                       InFlag);
2642      Chain = LoadEnvPtr.getValue(1);
2643      InFlag = LoadEnvPtr.getValue(2);
2644
2645      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2646                                        InFlag);
2647      Chain = EnvVal.getValue(0);
2648      InFlag = EnvVal.getValue(1);
2649
2650      // Load TOC of the callee into r2. We are using a target-specific load
2651      // with r2 hard coded, because the result of a target-independent load
2652      // would never go directly into r2, since r2 is a reserved register (which
2653      // prevents the register allocator from allocating it), resulting in an
2654      // additional register being allocated and an unnecessary move instruction
2655      // being generated.
2656      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2657      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2658                                       Callee, InFlag);
2659      Chain = LoadTOCPtr.getValue(0);
2660      InFlag = LoadTOCPtr.getValue(1);
2661
2662      MTCTROps[0] = Chain;
2663      MTCTROps[1] = LoadFuncPtr;
2664      MTCTROps[2] = InFlag;
2665    }
2666
2667    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2668                        2 + (InFlag.getNode() != 0));
2669    InFlag = Chain.getValue(1);
2670
2671    NodeTys.clear();
2672    NodeTys.push_back(MVT::Other);
2673    NodeTys.push_back(MVT::Glue);
2674    Ops.push_back(Chain);
2675    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2676    Callee.setNode(0);
2677    // Add CTR register as callee so a bctr can be emitted later.
2678    if (isTailCall)
2679      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2680  }
2681
2682  // If this is a direct call, pass the chain and the callee.
2683  if (Callee.getNode()) {
2684    Ops.push_back(Chain);
2685    Ops.push_back(Callee);
2686  }
2687  // If this is a tail call add stack pointer delta.
2688  if (isTailCall)
2689    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2690
2691  // Add argument registers to the end of the list so that they are known live
2692  // into the call.
2693  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2694    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2695                                  RegsToPass[i].second.getValueType()));
2696
2697  return CallOpc;
2698}
2699
2700SDValue
2701PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2702                                   CallingConv::ID CallConv, bool isVarArg,
2703                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2704                                   DebugLoc dl, SelectionDAG &DAG,
2705                                   SmallVectorImpl<SDValue> &InVals) const {
2706
2707  SmallVector<CCValAssign, 16> RVLocs;
2708  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2709		    getTargetMachine(), RVLocs, *DAG.getContext());
2710  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2711
2712  // Copy all of the result registers out of their specified physreg.
2713  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2714    CCValAssign &VA = RVLocs[i];
2715    EVT VT = VA.getValVT();
2716    assert(VA.isRegLoc() && "Can only return in registers!");
2717    Chain = DAG.getCopyFromReg(Chain, dl,
2718                               VA.getLocReg(), VT, InFlag).getValue(1);
2719    InVals.push_back(Chain.getValue(0));
2720    InFlag = Chain.getValue(2);
2721  }
2722
2723  return Chain;
2724}
2725
2726SDValue
2727PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2728                              bool isTailCall, bool isVarArg,
2729                              SelectionDAG &DAG,
2730                              SmallVector<std::pair<unsigned, SDValue>, 8>
2731                                &RegsToPass,
2732                              SDValue InFlag, SDValue Chain,
2733                              SDValue &Callee,
2734                              int SPDiff, unsigned NumBytes,
2735                              const SmallVectorImpl<ISD::InputArg> &Ins,
2736                              SmallVectorImpl<SDValue> &InVals) const {
2737  std::vector<EVT> NodeTys;
2738  SmallVector<SDValue, 8> Ops;
2739  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2740                                 isTailCall, RegsToPass, Ops, NodeTys,
2741                                 PPCSubTarget);
2742
2743  // When performing tail call optimization the callee pops its arguments off
2744  // the stack. Account for this here so these bytes can be pushed back on in
2745  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2746  int BytesCalleePops =
2747    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2748
2749  if (InFlag.getNode())
2750    Ops.push_back(InFlag);
2751
2752  // Emit tail call.
2753  if (isTailCall) {
2754    // If this is the first return lowered for this function, add the regs
2755    // to the liveout set for the function.
2756    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2757      SmallVector<CCValAssign, 16> RVLocs;
2758      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2759		     getTargetMachine(), RVLocs, *DAG.getContext());
2760      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2761      for (unsigned i = 0; i != RVLocs.size(); ++i)
2762        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2763    }
2764
2765    assert(((Callee.getOpcode() == ISD::Register &&
2766             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2767            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2768            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2769            isa<ConstantSDNode>(Callee)) &&
2770    "Expecting an global address, external symbol, absolute value or register");
2771
2772    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2773  }
2774
2775  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2776  InFlag = Chain.getValue(1);
2777
2778  // Add a NOP immediately after the branch instruction when using the 64-bit
2779  // SVR4 ABI. At link time, if caller and callee are in a different module and
2780  // thus have a different TOC, the call will be replaced with a call to a stub
2781  // function which saves the current TOC, loads the TOC of the callee and
2782  // branches to the callee. The NOP will be replaced with a load instruction
2783  // which restores the TOC of the caller from the TOC save slot of the current
2784  // stack frame. If caller and callee belong to the same module (and have the
2785  // same TOC), the NOP will remain unchanged.
2786  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2787    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2788    if (CallOpc == PPCISD::BCTRL_SVR4) {
2789      // This is a call through a function pointer.
2790      // Restore the caller TOC from the save area into R2.
2791      // See PrepareCall() for more information about calls through function
2792      // pointers in the 64-bit SVR4 ABI.
2793      // We are using a target-specific load with r2 hard coded, because the
2794      // result of a target-independent load would never go directly into r2,
2795      // since r2 is a reserved register (which prevents the register allocator
2796      // from allocating it), resulting in an additional register being
2797      // allocated and an unnecessary move instruction being generated.
2798      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2799      InFlag = Chain.getValue(1);
2800    } else {
2801      // Otherwise insert NOP.
2802      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2803    }
2804  }
2805
2806  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2807                             DAG.getIntPtrConstant(BytesCalleePops, true),
2808                             InFlag);
2809  if (!Ins.empty())
2810    InFlag = Chain.getValue(1);
2811
2812  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2813                         Ins, dl, DAG, InVals);
2814}
2815
2816SDValue
2817PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2818                             CallingConv::ID CallConv, bool isVarArg,
2819                             bool &isTailCall,
2820                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2821                             const SmallVectorImpl<SDValue> &OutVals,
2822                             const SmallVectorImpl<ISD::InputArg> &Ins,
2823                             DebugLoc dl, SelectionDAG &DAG,
2824                             SmallVectorImpl<SDValue> &InVals) const {
2825  if (isTailCall)
2826    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2827                                                   Ins, DAG);
2828
2829  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2830    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2831                          isTailCall, Outs, OutVals, Ins,
2832                          dl, DAG, InVals);
2833
2834  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2835                          isTailCall, Outs, OutVals, Ins,
2836                          dl, DAG, InVals);
2837}
2838
2839SDValue
2840PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2841                                  CallingConv::ID CallConv, bool isVarArg,
2842                                  bool isTailCall,
2843                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2844                                  const SmallVectorImpl<SDValue> &OutVals,
2845                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2846                                  DebugLoc dl, SelectionDAG &DAG,
2847                                  SmallVectorImpl<SDValue> &InVals) const {
2848  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2849  // of the 32-bit SVR4 ABI stack frame layout.
2850
2851  assert((CallConv == CallingConv::C ||
2852          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2853
2854  unsigned PtrByteSize = 4;
2855
2856  MachineFunction &MF = DAG.getMachineFunction();
2857
2858  // Mark this function as potentially containing a function that contains a
2859  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2860  // and restoring the callers stack pointer in this functions epilog. This is
2861  // done because by tail calling the called function might overwrite the value
2862  // in this function's (MF) stack pointer stack slot 0(SP).
2863  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2864    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2865
2866  // Count how many bytes are to be pushed on the stack, including the linkage
2867  // area, parameter list area and the part of the local variable space which
2868  // contains copies of aggregates which are passed by value.
2869
2870  // Assign locations to all of the outgoing arguments.
2871  SmallVector<CCValAssign, 16> ArgLocs;
2872  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2873		 getTargetMachine(), ArgLocs, *DAG.getContext());
2874
2875  // Reserve space for the linkage area on the stack.
2876  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2877
2878  if (isVarArg) {
2879    // Handle fixed and variable vector arguments differently.
2880    // Fixed vector arguments go into registers as long as registers are
2881    // available. Variable vector arguments always go into memory.
2882    unsigned NumArgs = Outs.size();
2883
2884    for (unsigned i = 0; i != NumArgs; ++i) {
2885      MVT ArgVT = Outs[i].VT;
2886      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2887      bool Result;
2888
2889      if (Outs[i].IsFixed) {
2890        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2891                             CCInfo);
2892      } else {
2893        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2894                                    ArgFlags, CCInfo);
2895      }
2896
2897      if (Result) {
2898#ifndef NDEBUG
2899        errs() << "Call operand #" << i << " has unhandled type "
2900             << EVT(ArgVT).getEVTString() << "\n";
2901#endif
2902        llvm_unreachable(0);
2903      }
2904    }
2905  } else {
2906    // All arguments are treated the same.
2907    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2908  }
2909
2910  // Assign locations to all of the outgoing aggregate by value arguments.
2911  SmallVector<CCValAssign, 16> ByValArgLocs;
2912  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2913		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2914
2915  // Reserve stack space for the allocations in CCInfo.
2916  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2917
2918  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2919
2920  // Size of the linkage area, parameter list area and the part of the local
2921  // space variable where copies of aggregates which are passed by value are
2922  // stored.
2923  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2924
2925  // Calculate by how many bytes the stack has to be adjusted in case of tail
2926  // call optimization.
2927  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2928
2929  // Adjust the stack pointer for the new arguments...
2930  // These operations are automatically eliminated by the prolog/epilog pass
2931  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2932  SDValue CallSeqStart = Chain;
2933
2934  // Load the return address and frame pointer so it can be moved somewhere else
2935  // later.
2936  SDValue LROp, FPOp;
2937  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2938                                       dl);
2939
2940  // Set up a copy of the stack pointer for use loading and storing any
2941  // arguments that may not fit in the registers available for argument
2942  // passing.
2943  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2944
2945  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2946  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2947  SmallVector<SDValue, 8> MemOpChains;
2948
2949  // Walk the register/memloc assignments, inserting copies/loads.
2950  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2951       i != e;
2952       ++i) {
2953    CCValAssign &VA = ArgLocs[i];
2954    SDValue Arg = OutVals[i];
2955    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2956
2957    if (Flags.isByVal()) {
2958      // Argument is an aggregate which is passed by value, thus we need to
2959      // create a copy of it in the local variable space of the current stack
2960      // frame (which is the stack frame of the caller) and pass the address of
2961      // this copy to the callee.
2962      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2963      CCValAssign &ByValVA = ByValArgLocs[j++];
2964      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2965
2966      // Memory reserved in the local variable space of the callers stack frame.
2967      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2968
2969      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2970      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2971
2972      // Create a copy of the argument in the local area of the current
2973      // stack frame.
2974      SDValue MemcpyCall =
2975        CreateCopyOfByValArgument(Arg, PtrOff,
2976                                  CallSeqStart.getNode()->getOperand(0),
2977                                  Flags, DAG, dl);
2978
2979      // This must go outside the CALLSEQ_START..END.
2980      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2981                           CallSeqStart.getNode()->getOperand(1));
2982      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2983                             NewCallSeqStart.getNode());
2984      Chain = CallSeqStart = NewCallSeqStart;
2985
2986      // Pass the address of the aggregate copy on the stack either in a
2987      // physical register or in the parameter list area of the current stack
2988      // frame to the callee.
2989      Arg = PtrOff;
2990    }
2991
2992    if (VA.isRegLoc()) {
2993      // Put argument in a physical register.
2994      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2995    } else {
2996      // Put argument in the parameter list area of the current stack frame.
2997      assert(VA.isMemLoc());
2998      unsigned LocMemOffset = VA.getLocMemOffset();
2999
3000      if (!isTailCall) {
3001        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3002        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3003
3004        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3005                                           MachinePointerInfo(),
3006                                           false, false, 0));
3007      } else {
3008        // Calculate and remember argument location.
3009        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3010                                 TailCallArguments);
3011      }
3012    }
3013  }
3014
3015  if (!MemOpChains.empty())
3016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3017                        &MemOpChains[0], MemOpChains.size());
3018
3019  // Set CR6 to true if this is a vararg call.
3020  if (isVarArg) {
3021    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
3022    RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3023  }
3024
3025  // Build a sequence of copy-to-reg nodes chained together with token chain
3026  // and flag operands which copy the outgoing args into the appropriate regs.
3027  SDValue InFlag;
3028  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3029    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3030                             RegsToPass[i].second, InFlag);
3031    InFlag = Chain.getValue(1);
3032  }
3033
3034  if (isTailCall)
3035    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3036                    false, TailCallArguments);
3037
3038  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3039                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3040                    Ins, InVals);
3041}
3042
3043SDValue
3044PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3045                                    CallingConv::ID CallConv, bool isVarArg,
3046                                    bool isTailCall,
3047                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3048                                    const SmallVectorImpl<SDValue> &OutVals,
3049                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3050                                    DebugLoc dl, SelectionDAG &DAG,
3051                                    SmallVectorImpl<SDValue> &InVals) const {
3052
3053  unsigned NumOps  = Outs.size();
3054
3055  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3056  bool isPPC64 = PtrVT == MVT::i64;
3057  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3058
3059  MachineFunction &MF = DAG.getMachineFunction();
3060
3061  // Mark this function as potentially containing a function that contains a
3062  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3063  // and restoring the callers stack pointer in this functions epilog. This is
3064  // done because by tail calling the called function might overwrite the value
3065  // in this function's (MF) stack pointer stack slot 0(SP).
3066  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
3067    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3068
3069  unsigned nAltivecParamsAtEnd = 0;
3070
3071  // Count how many bytes are to be pushed on the stack, including the linkage
3072  // area, and parameter passing area.  We start with 24/48 bytes, which is
3073  // prereserved space for [SP][CR][LR][3 x unused].
3074  unsigned NumBytes =
3075    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3076                                         Outs, OutVals,
3077                                         nAltivecParamsAtEnd);
3078
3079  // Calculate by how many bytes the stack has to be adjusted in case of tail
3080  // call optimization.
3081  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3082
3083  // To protect arguments on the stack from being clobbered in a tail call,
3084  // force all the loads to happen before doing any other lowering.
3085  if (isTailCall)
3086    Chain = DAG.getStackArgumentTokenFactor(Chain);
3087
3088  // Adjust the stack pointer for the new arguments...
3089  // These operations are automatically eliminated by the prolog/epilog pass
3090  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3091  SDValue CallSeqStart = Chain;
3092
3093  // Load the return address and frame pointer so it can be move somewhere else
3094  // later.
3095  SDValue LROp, FPOp;
3096  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3097                                       dl);
3098
3099  // Set up a copy of the stack pointer for use loading and storing any
3100  // arguments that may not fit in the registers available for argument
3101  // passing.
3102  SDValue StackPtr;
3103  if (isPPC64)
3104    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3105  else
3106    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3107
3108  // Figure out which arguments are going to go in registers, and which in
3109  // memory.  Also, if this is a vararg function, floating point operations
3110  // must be stored to our stack, and loaded into integer regs as well, if
3111  // any integer regs are available for argument passing.
3112  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3113  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3114
3115  static const unsigned GPR_32[] = {           // 32-bit registers.
3116    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3117    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3118  };
3119  static const unsigned GPR_64[] = {           // 64-bit registers.
3120    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3121    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3122  };
3123  static const unsigned *FPR = GetFPR();
3124
3125  static const unsigned VR[] = {
3126    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3127    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3128  };
3129  const unsigned NumGPRs = array_lengthof(GPR_32);
3130  const unsigned NumFPRs = 13;
3131  const unsigned NumVRs  = array_lengthof(VR);
3132
3133  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3134
3135  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3136  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3137
3138  SmallVector<SDValue, 8> MemOpChains;
3139  for (unsigned i = 0; i != NumOps; ++i) {
3140    SDValue Arg = OutVals[i];
3141    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3142
3143    // PtrOff will be used to store the current argument to the stack if a
3144    // register cannot be found for it.
3145    SDValue PtrOff;
3146
3147    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3148
3149    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3150
3151    // On PPC64, promote integers to 64-bit values.
3152    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3153      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3154      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3155      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3156    }
3157
3158    // FIXME memcpy is used way more than necessary.  Correctness first.
3159    if (Flags.isByVal()) {
3160      unsigned Size = Flags.getByValSize();
3161      if (Size==1 || Size==2) {
3162        // Very small objects are passed right-justified.
3163        // Everything else is passed left-justified.
3164        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3165        if (GPR_idx != NumGPRs) {
3166          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3167                                        MachinePointerInfo(), VT,
3168                                        false, false, 0);
3169          MemOpChains.push_back(Load.getValue(1));
3170          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3171
3172          ArgOffset += PtrByteSize;
3173        } else {
3174          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3175          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3176          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3177                                CallSeqStart.getNode()->getOperand(0),
3178                                Flags, DAG, dl);
3179          // This must go outside the CALLSEQ_START..END.
3180          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3181                               CallSeqStart.getNode()->getOperand(1));
3182          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3183                                 NewCallSeqStart.getNode());
3184          Chain = CallSeqStart = NewCallSeqStart;
3185          ArgOffset += PtrByteSize;
3186        }
3187        continue;
3188      }
3189      // Copy entire object into memory.  There are cases where gcc-generated
3190      // code assumes it is there, even if it could be put entirely into
3191      // registers.  (This is not what the doc says.)
3192      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3193                            CallSeqStart.getNode()->getOperand(0),
3194                            Flags, DAG, dl);
3195      // This must go outside the CALLSEQ_START..END.
3196      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3197                           CallSeqStart.getNode()->getOperand(1));
3198      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3199      Chain = CallSeqStart = NewCallSeqStart;
3200      // And copy the pieces of it that fit into registers.
3201      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3202        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3203        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3204        if (GPR_idx != NumGPRs) {
3205          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3206                                     MachinePointerInfo(),
3207                                     false, false, 0);
3208          MemOpChains.push_back(Load.getValue(1));
3209          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3210          ArgOffset += PtrByteSize;
3211        } else {
3212          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3213          break;
3214        }
3215      }
3216      continue;
3217    }
3218
3219    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3220    default: llvm_unreachable("Unexpected ValueType for argument!");
3221    case MVT::i32:
3222    case MVT::i64:
3223      if (GPR_idx != NumGPRs) {
3224        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3225      } else {
3226        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3227                         isPPC64, isTailCall, false, MemOpChains,
3228                         TailCallArguments, dl);
3229      }
3230      ArgOffset += PtrByteSize;
3231      break;
3232    case MVT::f32:
3233    case MVT::f64:
3234      if (FPR_idx != NumFPRs) {
3235        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3236
3237        if (isVarArg) {
3238          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3239                                       MachinePointerInfo(), false, false, 0);
3240          MemOpChains.push_back(Store);
3241
3242          // Float varargs are always shadowed in available integer registers
3243          if (GPR_idx != NumGPRs) {
3244            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3245                                       MachinePointerInfo(), false, false, 0);
3246            MemOpChains.push_back(Load.getValue(1));
3247            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3248          }
3249          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3250            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3251            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3252            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3253                                       MachinePointerInfo(),
3254                                       false, false, 0);
3255            MemOpChains.push_back(Load.getValue(1));
3256            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3257          }
3258        } else {
3259          // If we have any FPRs remaining, we may also have GPRs remaining.
3260          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3261          // GPRs.
3262          if (GPR_idx != NumGPRs)
3263            ++GPR_idx;
3264          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3265              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3266            ++GPR_idx;
3267        }
3268      } else {
3269        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3270                         isPPC64, isTailCall, false, MemOpChains,
3271                         TailCallArguments, dl);
3272      }
3273      if (isPPC64)
3274        ArgOffset += 8;
3275      else
3276        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3277      break;
3278    case MVT::v4f32:
3279    case MVT::v4i32:
3280    case MVT::v8i16:
3281    case MVT::v16i8:
3282      if (isVarArg) {
3283        // These go aligned on the stack, or in the corresponding R registers
3284        // when within range.  The Darwin PPC ABI doc claims they also go in
3285        // V registers; in fact gcc does this only for arguments that are
3286        // prototyped, not for those that match the ...  We do it for all
3287        // arguments, seems to work.
3288        while (ArgOffset % 16 !=0) {
3289          ArgOffset += PtrByteSize;
3290          if (GPR_idx != NumGPRs)
3291            GPR_idx++;
3292        }
3293        // We could elide this store in the case where the object fits
3294        // entirely in R registers.  Maybe later.
3295        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3296                            DAG.getConstant(ArgOffset, PtrVT));
3297        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3298                                     MachinePointerInfo(), false, false, 0);
3299        MemOpChains.push_back(Store);
3300        if (VR_idx != NumVRs) {
3301          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3302                                     MachinePointerInfo(),
3303                                     false, false, 0);
3304          MemOpChains.push_back(Load.getValue(1));
3305          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3306        }
3307        ArgOffset += 16;
3308        for (unsigned i=0; i<16; i+=PtrByteSize) {
3309          if (GPR_idx == NumGPRs)
3310            break;
3311          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3312                                  DAG.getConstant(i, PtrVT));
3313          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3314                                     false, false, 0);
3315          MemOpChains.push_back(Load.getValue(1));
3316          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3317        }
3318        break;
3319      }
3320
3321      // Non-varargs Altivec params generally go in registers, but have
3322      // stack space allocated at the end.
3323      if (VR_idx != NumVRs) {
3324        // Doesn't have GPR space allocated.
3325        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3326      } else if (nAltivecParamsAtEnd==0) {
3327        // We are emitting Altivec params in order.
3328        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3329                         isPPC64, isTailCall, true, MemOpChains,
3330                         TailCallArguments, dl);
3331        ArgOffset += 16;
3332      }
3333      break;
3334    }
3335  }
3336  // If all Altivec parameters fit in registers, as they usually do,
3337  // they get stack space following the non-Altivec parameters.  We
3338  // don't track this here because nobody below needs it.
3339  // If there are more Altivec parameters than fit in registers emit
3340  // the stores here.
3341  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3342    unsigned j = 0;
3343    // Offset is aligned; skip 1st 12 params which go in V registers.
3344    ArgOffset = ((ArgOffset+15)/16)*16;
3345    ArgOffset += 12*16;
3346    for (unsigned i = 0; i != NumOps; ++i) {
3347      SDValue Arg = OutVals[i];
3348      EVT ArgType = Outs[i].VT;
3349      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3350          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3351        if (++j > NumVRs) {
3352          SDValue PtrOff;
3353          // We are emitting Altivec params in order.
3354          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3355                           isPPC64, isTailCall, true, MemOpChains,
3356                           TailCallArguments, dl);
3357          ArgOffset += 16;
3358        }
3359      }
3360    }
3361  }
3362
3363  if (!MemOpChains.empty())
3364    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3365                        &MemOpChains[0], MemOpChains.size());
3366
3367  // Check if this is an indirect call (MTCTR/BCTRL).
3368  // See PrepareCall() for more information about calls through function
3369  // pointers in the 64-bit SVR4 ABI.
3370  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3371      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3372      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3373      !isBLACompatibleAddress(Callee, DAG)) {
3374    // Load r2 into a virtual register and store it to the TOC save area.
3375    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3376    // TOC save area offset.
3377    SDValue PtrOff = DAG.getIntPtrConstant(40);
3378    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3379    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3380                         false, false, 0);
3381  }
3382
3383  // On Darwin, R12 must contain the address of an indirect callee.  This does
3384  // not mean the MTCTR instruction must use R12; it's easier to model this as
3385  // an extra parameter, so do that.
3386  if (!isTailCall &&
3387      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3388      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3389      !isBLACompatibleAddress(Callee, DAG))
3390    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3391                                                   PPC::R12), Callee));
3392
3393  // Build a sequence of copy-to-reg nodes chained together with token chain
3394  // and flag operands which copy the outgoing args into the appropriate regs.
3395  SDValue InFlag;
3396  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3397    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3398                             RegsToPass[i].second, InFlag);
3399    InFlag = Chain.getValue(1);
3400  }
3401
3402  if (isTailCall)
3403    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3404                    FPOp, true, TailCallArguments);
3405
3406  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3407                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3408                    Ins, InVals);
3409}
3410
3411SDValue
3412PPCTargetLowering::LowerReturn(SDValue Chain,
3413                               CallingConv::ID CallConv, bool isVarArg,
3414                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3415                               const SmallVectorImpl<SDValue> &OutVals,
3416                               DebugLoc dl, SelectionDAG &DAG) const {
3417
3418  SmallVector<CCValAssign, 16> RVLocs;
3419  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3420		 getTargetMachine(), RVLocs, *DAG.getContext());
3421  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3422
3423  // If this is the first return lowered for this function, add the regs to the
3424  // liveout set for the function.
3425  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3426    for (unsigned i = 0; i != RVLocs.size(); ++i)
3427      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3428  }
3429
3430  SDValue Flag;
3431
3432  // Copy the result values into the output registers.
3433  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3434    CCValAssign &VA = RVLocs[i];
3435    assert(VA.isRegLoc() && "Can only return in registers!");
3436    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3437                             OutVals[i], Flag);
3438    Flag = Chain.getValue(1);
3439  }
3440
3441  if (Flag.getNode())
3442    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3443  else
3444    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3445}
3446
3447SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3448                                   const PPCSubtarget &Subtarget) const {
3449  // When we pop the dynamic allocation we need to restore the SP link.
3450  DebugLoc dl = Op.getDebugLoc();
3451
3452  // Get the corect type for pointers.
3453  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3454
3455  // Construct the stack pointer operand.
3456  bool isPPC64 = Subtarget.isPPC64();
3457  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3458  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3459
3460  // Get the operands for the STACKRESTORE.
3461  SDValue Chain = Op.getOperand(0);
3462  SDValue SaveSP = Op.getOperand(1);
3463
3464  // Load the old link SP.
3465  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3466                                   MachinePointerInfo(),
3467                                   false, false, 0);
3468
3469  // Restore the stack pointer.
3470  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3471
3472  // Store the old link SP.
3473  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3474                      false, false, 0);
3475}
3476
3477
3478
3479SDValue
3480PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3481  MachineFunction &MF = DAG.getMachineFunction();
3482  bool isPPC64 = PPCSubTarget.isPPC64();
3483  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3484  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3485
3486  // Get current frame pointer save index.  The users of this index will be
3487  // primarily DYNALLOC instructions.
3488  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3489  int RASI = FI->getReturnAddrSaveIndex();
3490
3491  // If the frame pointer save index hasn't been defined yet.
3492  if (!RASI) {
3493    // Find out what the fix offset of the frame pointer save area.
3494    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3495    // Allocate the frame index for frame pointer save area.
3496    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3497    // Save the result.
3498    FI->setReturnAddrSaveIndex(RASI);
3499  }
3500  return DAG.getFrameIndex(RASI, PtrVT);
3501}
3502
3503SDValue
3504PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3505  MachineFunction &MF = DAG.getMachineFunction();
3506  bool isPPC64 = PPCSubTarget.isPPC64();
3507  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3508  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3509
3510  // Get current frame pointer save index.  The users of this index will be
3511  // primarily DYNALLOC instructions.
3512  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3513  int FPSI = FI->getFramePointerSaveIndex();
3514
3515  // If the frame pointer save index hasn't been defined yet.
3516  if (!FPSI) {
3517    // Find out what the fix offset of the frame pointer save area.
3518    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3519                                                           isDarwinABI);
3520
3521    // Allocate the frame index for frame pointer save area.
3522    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3523    // Save the result.
3524    FI->setFramePointerSaveIndex(FPSI);
3525  }
3526  return DAG.getFrameIndex(FPSI, PtrVT);
3527}
3528
3529SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3530                                         SelectionDAG &DAG,
3531                                         const PPCSubtarget &Subtarget) const {
3532  // Get the inputs.
3533  SDValue Chain = Op.getOperand(0);
3534  SDValue Size  = Op.getOperand(1);
3535  DebugLoc dl = Op.getDebugLoc();
3536
3537  // Get the corect type for pointers.
3538  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3539  // Negate the size.
3540  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3541                                  DAG.getConstant(0, PtrVT), Size);
3542  // Construct a node for the frame pointer save index.
3543  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3544  // Build a DYNALLOC node.
3545  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3546  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3547  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3548}
3549
3550/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3551/// possible.
3552SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3553  // Not FP? Not a fsel.
3554  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3555      !Op.getOperand(2).getValueType().isFloatingPoint())
3556    return Op;
3557
3558  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3559
3560  // Cannot handle SETEQ/SETNE.
3561  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3562
3563  EVT ResVT = Op.getValueType();
3564  EVT CmpVT = Op.getOperand(0).getValueType();
3565  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3566  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3567  DebugLoc dl = Op.getDebugLoc();
3568
3569  // If the RHS of the comparison is a 0.0, we don't need to do the
3570  // subtraction at all.
3571  if (isFloatingPointZero(RHS))
3572    switch (CC) {
3573    default: break;       // SETUO etc aren't handled by fsel.
3574    case ISD::SETULT:
3575    case ISD::SETLT:
3576      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3577    case ISD::SETOGE:
3578    case ISD::SETGE:
3579      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3580        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3581      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3582    case ISD::SETUGT:
3583    case ISD::SETGT:
3584      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3585    case ISD::SETOLE:
3586    case ISD::SETLE:
3587      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3588        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3589      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3590                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3591    }
3592
3593  SDValue Cmp;
3594  switch (CC) {
3595  default: break;       // SETUO etc aren't handled by fsel.
3596  case ISD::SETULT:
3597  case ISD::SETLT:
3598    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3599    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3600      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3601      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3602  case ISD::SETOGE:
3603  case ISD::SETGE:
3604    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3605    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3606      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3607      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3608  case ISD::SETUGT:
3609  case ISD::SETGT:
3610    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3611    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3612      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3613      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3614  case ISD::SETOLE:
3615  case ISD::SETLE:
3616    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3617    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3618      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3619      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3620  }
3621  return Op;
3622}
3623
3624// FIXME: Split this code up when LegalizeDAGTypes lands.
3625SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3626                                           DebugLoc dl) const {
3627  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3628  SDValue Src = Op.getOperand(0);
3629  if (Src.getValueType() == MVT::f32)
3630    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3631
3632  SDValue Tmp;
3633  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3634  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3635  case MVT::i32:
3636    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3637                                                         PPCISD::FCTIDZ,
3638                      dl, MVT::f64, Src);
3639    break;
3640  case MVT::i64:
3641    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3642    break;
3643  }
3644
3645  // Convert the FP value to an int value through memory.
3646  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3647
3648  // Emit a store to the stack slot.
3649  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3650                               MachinePointerInfo(), false, false, 0);
3651
3652  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3653  // add in a bias.
3654  if (Op.getValueType() == MVT::i32)
3655    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3656                        DAG.getConstant(4, FIPtr.getValueType()));
3657  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3658                     false, false, 0);
3659}
3660
3661SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3662                                           SelectionDAG &DAG) const {
3663  DebugLoc dl = Op.getDebugLoc();
3664  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3665  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3666    return SDValue();
3667
3668  if (Op.getOperand(0).getValueType() == MVT::i64) {
3669    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3670    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3671    if (Op.getValueType() == MVT::f32)
3672      FP = DAG.getNode(ISD::FP_ROUND, dl,
3673                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3674    return FP;
3675  }
3676
3677  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3678         "Unhandled SINT_TO_FP type in custom expander!");
3679  // Since we only generate this in 64-bit mode, we can take advantage of
3680  // 64-bit registers.  In particular, sign extend the input value into the
3681  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3682  // then lfd it and fcfid it.
3683  MachineFunction &MF = DAG.getMachineFunction();
3684  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3685  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3686  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3687  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3688
3689  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3690                                Op.getOperand(0));
3691
3692  // STD the extended value into the stack slot.
3693  MachineMemOperand *MMO =
3694    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3695                            MachineMemOperand::MOStore, 8, 8);
3696  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3697  SDValue Store =
3698    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3699                            Ops, 4, MVT::i64, MMO);
3700  // Load the value as a double.
3701  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3702                           false, false, 0);
3703
3704  // FCFID it and return it.
3705  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3706  if (Op.getValueType() == MVT::f32)
3707    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3708  return FP;
3709}
3710
3711SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3712                                            SelectionDAG &DAG) const {
3713  DebugLoc dl = Op.getDebugLoc();
3714  /*
3715   The rounding mode is in bits 30:31 of FPSR, and has the following
3716   settings:
3717     00 Round to nearest
3718     01 Round to 0
3719     10 Round to +inf
3720     11 Round to -inf
3721
3722  FLT_ROUNDS, on the other hand, expects the following:
3723    -1 Undefined
3724     0 Round to 0
3725     1 Round to nearest
3726     2 Round to +inf
3727     3 Round to -inf
3728
3729  To perform the conversion, we do:
3730    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3731  */
3732
3733  MachineFunction &MF = DAG.getMachineFunction();
3734  EVT VT = Op.getValueType();
3735  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3736  std::vector<EVT> NodeTys;
3737  SDValue MFFSreg, InFlag;
3738
3739  // Save FP Control Word to register
3740  NodeTys.push_back(MVT::f64);    // return register
3741  NodeTys.push_back(MVT::Glue);   // unused in this context
3742  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3743
3744  // Save FP register to stack slot
3745  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3746  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3747  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3748                               StackSlot, MachinePointerInfo(), false, false,0);
3749
3750  // Load FP Control Word from low 32 bits of stack slot.
3751  SDValue Four = DAG.getConstant(4, PtrVT);
3752  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3753  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3754                            false, false, 0);
3755
3756  // Transform as necessary
3757  SDValue CWD1 =
3758    DAG.getNode(ISD::AND, dl, MVT::i32,
3759                CWD, DAG.getConstant(3, MVT::i32));
3760  SDValue CWD2 =
3761    DAG.getNode(ISD::SRL, dl, MVT::i32,
3762                DAG.getNode(ISD::AND, dl, MVT::i32,
3763                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3764                                        CWD, DAG.getConstant(3, MVT::i32)),
3765                            DAG.getConstant(3, MVT::i32)),
3766                DAG.getConstant(1, MVT::i32));
3767
3768  SDValue RetVal =
3769    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3770
3771  return DAG.getNode((VT.getSizeInBits() < 16 ?
3772                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3773}
3774
3775SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3776  EVT VT = Op.getValueType();
3777  unsigned BitWidth = VT.getSizeInBits();
3778  DebugLoc dl = Op.getDebugLoc();
3779  assert(Op.getNumOperands() == 3 &&
3780         VT == Op.getOperand(1).getValueType() &&
3781         "Unexpected SHL!");
3782
3783  // Expand into a bunch of logical ops.  Note that these ops
3784  // depend on the PPC behavior for oversized shift amounts.
3785  SDValue Lo = Op.getOperand(0);
3786  SDValue Hi = Op.getOperand(1);
3787  SDValue Amt = Op.getOperand(2);
3788  EVT AmtVT = Amt.getValueType();
3789
3790  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3791                             DAG.getConstant(BitWidth, AmtVT), Amt);
3792  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3793  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3794  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3795  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3796                             DAG.getConstant(-BitWidth, AmtVT));
3797  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3798  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3799  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3800  SDValue OutOps[] = { OutLo, OutHi };
3801  return DAG.getMergeValues(OutOps, 2, dl);
3802}
3803
3804SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3805  EVT VT = Op.getValueType();
3806  DebugLoc dl = Op.getDebugLoc();
3807  unsigned BitWidth = VT.getSizeInBits();
3808  assert(Op.getNumOperands() == 3 &&
3809         VT == Op.getOperand(1).getValueType() &&
3810         "Unexpected SRL!");
3811
3812  // Expand into a bunch of logical ops.  Note that these ops
3813  // depend on the PPC behavior for oversized shift amounts.
3814  SDValue Lo = Op.getOperand(0);
3815  SDValue Hi = Op.getOperand(1);
3816  SDValue Amt = Op.getOperand(2);
3817  EVT AmtVT = Amt.getValueType();
3818
3819  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3820                             DAG.getConstant(BitWidth, AmtVT), Amt);
3821  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3822  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3823  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3824  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3825                             DAG.getConstant(-BitWidth, AmtVT));
3826  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3827  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3828  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3829  SDValue OutOps[] = { OutLo, OutHi };
3830  return DAG.getMergeValues(OutOps, 2, dl);
3831}
3832
3833SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3834  DebugLoc dl = Op.getDebugLoc();
3835  EVT VT = Op.getValueType();
3836  unsigned BitWidth = VT.getSizeInBits();
3837  assert(Op.getNumOperands() == 3 &&
3838         VT == Op.getOperand(1).getValueType() &&
3839         "Unexpected SRA!");
3840
3841  // Expand into a bunch of logical ops, followed by a select_cc.
3842  SDValue Lo = Op.getOperand(0);
3843  SDValue Hi = Op.getOperand(1);
3844  SDValue Amt = Op.getOperand(2);
3845  EVT AmtVT = Amt.getValueType();
3846
3847  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3848                             DAG.getConstant(BitWidth, AmtVT), Amt);
3849  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3850  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3851  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3852  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3853                             DAG.getConstant(-BitWidth, AmtVT));
3854  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3855  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3856  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3857                                  Tmp4, Tmp6, ISD::SETLE);
3858  SDValue OutOps[] = { OutLo, OutHi };
3859  return DAG.getMergeValues(OutOps, 2, dl);
3860}
3861
3862//===----------------------------------------------------------------------===//
3863// Vector related lowering.
3864//
3865
3866/// BuildSplatI - Build a canonical splati of Val with an element size of
3867/// SplatSize.  Cast the result to VT.
3868static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3869                             SelectionDAG &DAG, DebugLoc dl) {
3870  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3871
3872  static const EVT VTys[] = { // canonical VT to use for each size.
3873    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3874  };
3875
3876  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3877
3878  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3879  if (Val == -1)
3880    SplatSize = 1;
3881
3882  EVT CanonicalVT = VTys[SplatSize-1];
3883
3884  // Build a canonical splat for this value.
3885  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3886  SmallVector<SDValue, 8> Ops;
3887  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3888  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3889                              &Ops[0], Ops.size());
3890  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3891}
3892
3893/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3894/// specified intrinsic ID.
3895static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3896                                SelectionDAG &DAG, DebugLoc dl,
3897                                EVT DestVT = MVT::Other) {
3898  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3899  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3900                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3901}
3902
3903/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3904/// specified intrinsic ID.
3905static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3906                                SDValue Op2, SelectionDAG &DAG,
3907                                DebugLoc dl, EVT DestVT = MVT::Other) {
3908  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3909  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3910                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3911}
3912
3913
3914/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3915/// amount.  The result has the specified value type.
3916static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3917                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3918  // Force LHS/RHS to be the right type.
3919  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3920  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3921
3922  int Ops[16];
3923  for (unsigned i = 0; i != 16; ++i)
3924    Ops[i] = i + Amt;
3925  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3926  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3927}
3928
3929// If this is a case we can't handle, return null and let the default
3930// expansion code take care of it.  If we CAN select this case, and if it
3931// selects to a single instruction, return Op.  Otherwise, if we can codegen
3932// this case more efficiently than a constant pool load, lower it to the
3933// sequence of ops that should be used.
3934SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3935                                             SelectionDAG &DAG) const {
3936  DebugLoc dl = Op.getDebugLoc();
3937  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3938  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3939
3940  // Check if this is a splat of a constant value.
3941  APInt APSplatBits, APSplatUndef;
3942  unsigned SplatBitSize;
3943  bool HasAnyUndefs;
3944  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3945                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3946    return SDValue();
3947
3948  unsigned SplatBits = APSplatBits.getZExtValue();
3949  unsigned SplatUndef = APSplatUndef.getZExtValue();
3950  unsigned SplatSize = SplatBitSize / 8;
3951
3952  // First, handle single instruction cases.
3953
3954  // All zeros?
3955  if (SplatBits == 0) {
3956    // Canonicalize all zero vectors to be v4i32.
3957    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3958      SDValue Z = DAG.getConstant(0, MVT::i32);
3959      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3960      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3961    }
3962    return Op;
3963  }
3964
3965  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3966  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3967                    (32-SplatBitSize));
3968  if (SextVal >= -16 && SextVal <= 15)
3969    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3970
3971
3972  // Two instruction sequences.
3973
3974  // If this value is in the range [-32,30] and is even, use:
3975  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3976  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3977    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3978    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3979    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3980  }
3981
3982  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3983  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3984  // for fneg/fabs.
3985  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3986    // Make -1 and vspltisw -1:
3987    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3988
3989    // Make the VSLW intrinsic, computing 0x8000_0000.
3990    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3991                                   OnesV, DAG, dl);
3992
3993    // xor by OnesV to invert it.
3994    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3995    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3996  }
3997
3998  // Check to see if this is a wide variety of vsplti*, binop self cases.
3999  static const signed char SplatCsts[] = {
4000    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4001    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4002  };
4003
4004  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4005    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4006    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4007    int i = SplatCsts[idx];
4008
4009    // Figure out what shift amount will be used by altivec if shifted by i in
4010    // this splat size.
4011    unsigned TypeShiftAmt = i & (SplatBitSize-1);
4012
4013    // vsplti + shl self.
4014    if (SextVal == (i << (int)TypeShiftAmt)) {
4015      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4016      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4017        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4018        Intrinsic::ppc_altivec_vslw
4019      };
4020      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4021      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4022    }
4023
4024    // vsplti + srl self.
4025    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4026      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4027      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4028        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4029        Intrinsic::ppc_altivec_vsrw
4030      };
4031      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4032      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4033    }
4034
4035    // vsplti + sra self.
4036    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4037      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4038      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4039        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4040        Intrinsic::ppc_altivec_vsraw
4041      };
4042      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4043      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4044    }
4045
4046    // vsplti + rol self.
4047    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4048                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4049      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4050      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4051        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4052        Intrinsic::ppc_altivec_vrlw
4053      };
4054      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4055      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4056    }
4057
4058    // t = vsplti c, result = vsldoi t, t, 1
4059    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4060      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4061      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4062    }
4063    // t = vsplti c, result = vsldoi t, t, 2
4064    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4065      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4066      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4067    }
4068    // t = vsplti c, result = vsldoi t, t, 3
4069    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4070      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4071      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4072    }
4073  }
4074
4075  // Three instruction sequences.
4076
4077  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4078  if (SextVal >= 0 && SextVal <= 31) {
4079    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4080    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4081    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4082    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4083  }
4084  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4085  if (SextVal >= -31 && SextVal <= 0) {
4086    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4087    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4088    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4089    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4090  }
4091
4092  return SDValue();
4093}
4094
4095/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4096/// the specified operations to build the shuffle.
4097static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4098                                      SDValue RHS, SelectionDAG &DAG,
4099                                      DebugLoc dl) {
4100  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4101  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4102  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4103
4104  enum {
4105    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4106    OP_VMRGHW,
4107    OP_VMRGLW,
4108    OP_VSPLTISW0,
4109    OP_VSPLTISW1,
4110    OP_VSPLTISW2,
4111    OP_VSPLTISW3,
4112    OP_VSLDOI4,
4113    OP_VSLDOI8,
4114    OP_VSLDOI12
4115  };
4116
4117  if (OpNum == OP_COPY) {
4118    if (LHSID == (1*9+2)*9+3) return LHS;
4119    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4120    return RHS;
4121  }
4122
4123  SDValue OpLHS, OpRHS;
4124  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4125  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4126
4127  int ShufIdxs[16];
4128  switch (OpNum) {
4129  default: llvm_unreachable("Unknown i32 permute!");
4130  case OP_VMRGHW:
4131    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4132    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4133    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4134    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4135    break;
4136  case OP_VMRGLW:
4137    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4138    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4139    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4140    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4141    break;
4142  case OP_VSPLTISW0:
4143    for (unsigned i = 0; i != 16; ++i)
4144      ShufIdxs[i] = (i&3)+0;
4145    break;
4146  case OP_VSPLTISW1:
4147    for (unsigned i = 0; i != 16; ++i)
4148      ShufIdxs[i] = (i&3)+4;
4149    break;
4150  case OP_VSPLTISW2:
4151    for (unsigned i = 0; i != 16; ++i)
4152      ShufIdxs[i] = (i&3)+8;
4153    break;
4154  case OP_VSPLTISW3:
4155    for (unsigned i = 0; i != 16; ++i)
4156      ShufIdxs[i] = (i&3)+12;
4157    break;
4158  case OP_VSLDOI4:
4159    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4160  case OP_VSLDOI8:
4161    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4162  case OP_VSLDOI12:
4163    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4164  }
4165  EVT VT = OpLHS.getValueType();
4166  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4167  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4168  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4169  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4170}
4171
4172/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4173/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4174/// return the code it can be lowered into.  Worst case, it can always be
4175/// lowered into a vperm.
4176SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4177                                               SelectionDAG &DAG) const {
4178  DebugLoc dl = Op.getDebugLoc();
4179  SDValue V1 = Op.getOperand(0);
4180  SDValue V2 = Op.getOperand(1);
4181  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4182  EVT VT = Op.getValueType();
4183
4184  // Cases that are handled by instructions that take permute immediates
4185  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4186  // selected by the instruction selector.
4187  if (V2.getOpcode() == ISD::UNDEF) {
4188    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4189        PPC::isSplatShuffleMask(SVOp, 2) ||
4190        PPC::isSplatShuffleMask(SVOp, 4) ||
4191        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4192        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4193        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4194        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4195        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4196        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4197        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4198        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4199        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4200      return Op;
4201    }
4202  }
4203
4204  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4205  // and produce a fixed permutation.  If any of these match, do not lower to
4206  // VPERM.
4207  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4208      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4209      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4210      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4211      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4212      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4213      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4214      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4215      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4216    return Op;
4217
4218  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4219  // perfect shuffle table to emit an optimal matching sequence.
4220  SmallVector<int, 16> PermMask;
4221  SVOp->getMask(PermMask);
4222
4223  unsigned PFIndexes[4];
4224  bool isFourElementShuffle = true;
4225  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4226    unsigned EltNo = 8;   // Start out undef.
4227    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4228      if (PermMask[i*4+j] < 0)
4229        continue;   // Undef, ignore it.
4230
4231      unsigned ByteSource = PermMask[i*4+j];
4232      if ((ByteSource & 3) != j) {
4233        isFourElementShuffle = false;
4234        break;
4235      }
4236
4237      if (EltNo == 8) {
4238        EltNo = ByteSource/4;
4239      } else if (EltNo != ByteSource/4) {
4240        isFourElementShuffle = false;
4241        break;
4242      }
4243    }
4244    PFIndexes[i] = EltNo;
4245  }
4246
4247  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4248  // perfect shuffle vector to determine if it is cost effective to do this as
4249  // discrete instructions, or whether we should use a vperm.
4250  if (isFourElementShuffle) {
4251    // Compute the index in the perfect shuffle table.
4252    unsigned PFTableIndex =
4253      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4254
4255    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4256    unsigned Cost  = (PFEntry >> 30);
4257
4258    // Determining when to avoid vperm is tricky.  Many things affect the cost
4259    // of vperm, particularly how many times the perm mask needs to be computed.
4260    // For example, if the perm mask can be hoisted out of a loop or is already
4261    // used (perhaps because there are multiple permutes with the same shuffle
4262    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4263    // the loop requires an extra register.
4264    //
4265    // As a compromise, we only emit discrete instructions if the shuffle can be
4266    // generated in 3 or fewer operations.  When we have loop information
4267    // available, if this block is within a loop, we should avoid using vperm
4268    // for 3-operation perms and use a constant pool load instead.
4269    if (Cost < 3)
4270      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4271  }
4272
4273  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4274  // vector that will get spilled to the constant pool.
4275  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4276
4277  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4278  // that it is in input element units, not in bytes.  Convert now.
4279  EVT EltVT = V1.getValueType().getVectorElementType();
4280  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4281
4282  SmallVector<SDValue, 16> ResultMask;
4283  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4284    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4285
4286    for (unsigned j = 0; j != BytesPerElement; ++j)
4287      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4288                                           MVT::i32));
4289  }
4290
4291  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4292                                    &ResultMask[0], ResultMask.size());
4293  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4294}
4295
4296/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4297/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4298/// information about the intrinsic.
4299static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4300                                  bool &isDot) {
4301  unsigned IntrinsicID =
4302    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4303  CompareOpc = -1;
4304  isDot = false;
4305  switch (IntrinsicID) {
4306  default: return false;
4307    // Comparison predicates.
4308  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4309  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4310  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4311  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4312  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4313  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4314  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4315  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4316  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4317  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4318  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4319  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4320  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4321
4322    // Normal Comparisons.
4323  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4324  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4325  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4326  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4327  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4328  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4329  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4330  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4331  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4332  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4333  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4334  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4335  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4336  }
4337  return true;
4338}
4339
4340/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4341/// lower, do it, otherwise return null.
4342SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4343                                                   SelectionDAG &DAG) const {
4344  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4345  // opcode number of the comparison.
4346  DebugLoc dl = Op.getDebugLoc();
4347  int CompareOpc;
4348  bool isDot;
4349  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4350    return SDValue();    // Don't custom lower most intrinsics.
4351
4352  // If this is a non-dot comparison, make the VCMP node and we are done.
4353  if (!isDot) {
4354    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4355                              Op.getOperand(1), Op.getOperand(2),
4356                              DAG.getConstant(CompareOpc, MVT::i32));
4357    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4358  }
4359
4360  // Create the PPCISD altivec 'dot' comparison node.
4361  SDValue Ops[] = {
4362    Op.getOperand(2),  // LHS
4363    Op.getOperand(3),  // RHS
4364    DAG.getConstant(CompareOpc, MVT::i32)
4365  };
4366  std::vector<EVT> VTs;
4367  VTs.push_back(Op.getOperand(2).getValueType());
4368  VTs.push_back(MVT::Glue);
4369  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4370
4371  // Now that we have the comparison, emit a copy from the CR to a GPR.
4372  // This is flagged to the above dot comparison.
4373  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4374                                DAG.getRegister(PPC::CR6, MVT::i32),
4375                                CompNode.getValue(1));
4376
4377  // Unpack the result based on how the target uses it.
4378  unsigned BitNo;   // Bit # of CR6.
4379  bool InvertBit;   // Invert result?
4380  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4381  default:  // Can't happen, don't crash on invalid number though.
4382  case 0:   // Return the value of the EQ bit of CR6.
4383    BitNo = 0; InvertBit = false;
4384    break;
4385  case 1:   // Return the inverted value of the EQ bit of CR6.
4386    BitNo = 0; InvertBit = true;
4387    break;
4388  case 2:   // Return the value of the LT bit of CR6.
4389    BitNo = 2; InvertBit = false;
4390    break;
4391  case 3:   // Return the inverted value of the LT bit of CR6.
4392    BitNo = 2; InvertBit = true;
4393    break;
4394  }
4395
4396  // Shift the bit into the low position.
4397  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4398                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4399  // Isolate the bit.
4400  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4401                      DAG.getConstant(1, MVT::i32));
4402
4403  // If we are supposed to, toggle the bit.
4404  if (InvertBit)
4405    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4406                        DAG.getConstant(1, MVT::i32));
4407  return Flags;
4408}
4409
4410SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4411                                                   SelectionDAG &DAG) const {
4412  DebugLoc dl = Op.getDebugLoc();
4413  // Create a stack slot that is 16-byte aligned.
4414  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4415  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4416  EVT PtrVT = getPointerTy();
4417  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4418
4419  // Store the input value into Value#0 of the stack slot.
4420  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4421                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4422                               false, false, 0);
4423  // Load it out.
4424  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4425                     false, false, 0);
4426}
4427
4428SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4429  DebugLoc dl = Op.getDebugLoc();
4430  if (Op.getValueType() == MVT::v4i32) {
4431    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4432
4433    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4434    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4435
4436    SDValue RHSSwap =   // = vrlw RHS, 16
4437      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4438
4439    // Shrinkify inputs to v8i16.
4440    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4441    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4442    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4443
4444    // Low parts multiplied together, generating 32-bit results (we ignore the
4445    // top parts).
4446    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4447                                        LHS, RHS, DAG, dl, MVT::v4i32);
4448
4449    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4450                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4451    // Shift the high parts up 16 bits.
4452    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4453                              Neg16, DAG, dl);
4454    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4455  } else if (Op.getValueType() == MVT::v8i16) {
4456    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4457
4458    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4459
4460    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4461                            LHS, RHS, Zero, DAG, dl);
4462  } else if (Op.getValueType() == MVT::v16i8) {
4463    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4464
4465    // Multiply the even 8-bit parts, producing 16-bit sums.
4466    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4467                                           LHS, RHS, DAG, dl, MVT::v8i16);
4468    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4469
4470    // Multiply the odd 8-bit parts, producing 16-bit sums.
4471    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4472                                          LHS, RHS, DAG, dl, MVT::v8i16);
4473    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4474
4475    // Merge the results together.
4476    int Ops[16];
4477    for (unsigned i = 0; i != 8; ++i) {
4478      Ops[i*2  ] = 2*i+1;
4479      Ops[i*2+1] = 2*i+1+16;
4480    }
4481    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4482  } else {
4483    llvm_unreachable("Unknown mul to lower!");
4484  }
4485}
4486
4487/// LowerOperation - Provide custom lowering hooks for some operations.
4488///
4489SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4490  switch (Op.getOpcode()) {
4491  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4492  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4493  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4494  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4495  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4496  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4497  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4498  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4499  case ISD::VASTART:
4500    return LowerVASTART(Op, DAG, PPCSubTarget);
4501
4502  case ISD::VAARG:
4503    return LowerVAARG(Op, DAG, PPCSubTarget);
4504
4505  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4506  case ISD::DYNAMIC_STACKALLOC:
4507    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4508
4509  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4510  case ISD::FP_TO_UINT:
4511  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4512                                                       Op.getDebugLoc());
4513  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4514  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4515
4516  // Lower 64-bit shifts.
4517  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4518  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4519  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4520
4521  // Vector-related lowering.
4522  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4523  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4524  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4525  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4526  case ISD::MUL:                return LowerMUL(Op, DAG);
4527
4528  // Frame & Return address.
4529  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4530  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4531  }
4532  return SDValue();
4533}
4534
4535void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4536                                           SmallVectorImpl<SDValue>&Results,
4537                                           SelectionDAG &DAG) const {
4538  const TargetMachine &TM = getTargetMachine();
4539  DebugLoc dl = N->getDebugLoc();
4540  switch (N->getOpcode()) {
4541  default:
4542    assert(false && "Do not know how to custom type legalize this operation!");
4543    return;
4544  case ISD::VAARG: {
4545    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4546        || TM.getSubtarget<PPCSubtarget>().isPPC64())
4547      return;
4548
4549    EVT VT = N->getValueType(0);
4550
4551    if (VT == MVT::i64) {
4552      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4553
4554      Results.push_back(NewNode);
4555      Results.push_back(NewNode.getValue(1));
4556    }
4557    return;
4558  }
4559  case ISD::FP_ROUND_INREG: {
4560    assert(N->getValueType(0) == MVT::ppcf128);
4561    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4562    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4563                             MVT::f64, N->getOperand(0),
4564                             DAG.getIntPtrConstant(0));
4565    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4566                             MVT::f64, N->getOperand(0),
4567                             DAG.getIntPtrConstant(1));
4568
4569    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4570    // of the long double, and puts FPSCR back the way it was.  We do not
4571    // actually model FPSCR.
4572    std::vector<EVT> NodeTys;
4573    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4574
4575    NodeTys.push_back(MVT::f64);   // Return register
4576    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4577    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4578    MFFSreg = Result.getValue(0);
4579    InFlag = Result.getValue(1);
4580
4581    NodeTys.clear();
4582    NodeTys.push_back(MVT::Glue);   // Returns a flag
4583    Ops[0] = DAG.getConstant(31, MVT::i32);
4584    Ops[1] = InFlag;
4585    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4586    InFlag = Result.getValue(0);
4587
4588    NodeTys.clear();
4589    NodeTys.push_back(MVT::Glue);   // Returns a flag
4590    Ops[0] = DAG.getConstant(30, MVT::i32);
4591    Ops[1] = InFlag;
4592    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4593    InFlag = Result.getValue(0);
4594
4595    NodeTys.clear();
4596    NodeTys.push_back(MVT::f64);    // result of add
4597    NodeTys.push_back(MVT::Glue);   // Returns a flag
4598    Ops[0] = Lo;
4599    Ops[1] = Hi;
4600    Ops[2] = InFlag;
4601    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4602    FPreg = Result.getValue(0);
4603    InFlag = Result.getValue(1);
4604
4605    NodeTys.clear();
4606    NodeTys.push_back(MVT::f64);
4607    Ops[0] = DAG.getConstant(1, MVT::i32);
4608    Ops[1] = MFFSreg;
4609    Ops[2] = FPreg;
4610    Ops[3] = InFlag;
4611    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4612    FPreg = Result.getValue(0);
4613
4614    // We know the low half is about to be thrown away, so just use something
4615    // convenient.
4616    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4617                                FPreg, FPreg));
4618    return;
4619  }
4620  case ISD::FP_TO_SINT:
4621    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4622    return;
4623  }
4624}
4625
4626
4627//===----------------------------------------------------------------------===//
4628//  Other Lowering Code
4629//===----------------------------------------------------------------------===//
4630
4631MachineBasicBlock *
4632PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4633                                    bool is64bit, unsigned BinOpcode) const {
4634  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4635  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4636
4637  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4638  MachineFunction *F = BB->getParent();
4639  MachineFunction::iterator It = BB;
4640  ++It;
4641
4642  unsigned dest = MI->getOperand(0).getReg();
4643  unsigned ptrA = MI->getOperand(1).getReg();
4644  unsigned ptrB = MI->getOperand(2).getReg();
4645  unsigned incr = MI->getOperand(3).getReg();
4646  DebugLoc dl = MI->getDebugLoc();
4647
4648  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4649  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4650  F->insert(It, loopMBB);
4651  F->insert(It, exitMBB);
4652  exitMBB->splice(exitMBB->begin(), BB,
4653                  llvm::next(MachineBasicBlock::iterator(MI)),
4654                  BB->end());
4655  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4656
4657  MachineRegisterInfo &RegInfo = F->getRegInfo();
4658  unsigned TmpReg = (!BinOpcode) ? incr :
4659    RegInfo.createVirtualRegister(
4660       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4661                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4662
4663  //  thisMBB:
4664  //   ...
4665  //   fallthrough --> loopMBB
4666  BB->addSuccessor(loopMBB);
4667
4668  //  loopMBB:
4669  //   l[wd]arx dest, ptr
4670  //   add r0, dest, incr
4671  //   st[wd]cx. r0, ptr
4672  //   bne- loopMBB
4673  //   fallthrough --> exitMBB
4674  BB = loopMBB;
4675  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4676    .addReg(ptrA).addReg(ptrB);
4677  if (BinOpcode)
4678    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4679  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4680    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4681  BuildMI(BB, dl, TII->get(PPC::BCC))
4682    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4683  BB->addSuccessor(loopMBB);
4684  BB->addSuccessor(exitMBB);
4685
4686  //  exitMBB:
4687  //   ...
4688  BB = exitMBB;
4689  return BB;
4690}
4691
4692MachineBasicBlock *
4693PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4694                                            MachineBasicBlock *BB,
4695                                            bool is8bit,    // operation
4696                                            unsigned BinOpcode) const {
4697  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4698  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4699  // In 64 bit mode we have to use 64 bits for addresses, even though the
4700  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4701  // registers without caring whether they're 32 or 64, but here we're
4702  // doing actual arithmetic on the addresses.
4703  bool is64bit = PPCSubTarget.isPPC64();
4704  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4705
4706  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4707  MachineFunction *F = BB->getParent();
4708  MachineFunction::iterator It = BB;
4709  ++It;
4710
4711  unsigned dest = MI->getOperand(0).getReg();
4712  unsigned ptrA = MI->getOperand(1).getReg();
4713  unsigned ptrB = MI->getOperand(2).getReg();
4714  unsigned incr = MI->getOperand(3).getReg();
4715  DebugLoc dl = MI->getDebugLoc();
4716
4717  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4718  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4719  F->insert(It, loopMBB);
4720  F->insert(It, exitMBB);
4721  exitMBB->splice(exitMBB->begin(), BB,
4722                  llvm::next(MachineBasicBlock::iterator(MI)),
4723                  BB->end());
4724  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4725
4726  MachineRegisterInfo &RegInfo = F->getRegInfo();
4727  const TargetRegisterClass *RC =
4728    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4729              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4730  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4731  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4732  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4733  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4734  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4735  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4736  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4737  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4738  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4739  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4740  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4741  unsigned Ptr1Reg;
4742  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4743
4744  //  thisMBB:
4745  //   ...
4746  //   fallthrough --> loopMBB
4747  BB->addSuccessor(loopMBB);
4748
4749  // The 4-byte load must be aligned, while a char or short may be
4750  // anywhere in the word.  Hence all this nasty bookkeeping code.
4751  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4752  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4753  //   xori shift, shift1, 24 [16]
4754  //   rlwinm ptr, ptr1, 0, 0, 29
4755  //   slw incr2, incr, shift
4756  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4757  //   slw mask, mask2, shift
4758  //  loopMBB:
4759  //   lwarx tmpDest, ptr
4760  //   add tmp, tmpDest, incr2
4761  //   andc tmp2, tmpDest, mask
4762  //   and tmp3, tmp, mask
4763  //   or tmp4, tmp3, tmp2
4764  //   stwcx. tmp4, ptr
4765  //   bne- loopMBB
4766  //   fallthrough --> exitMBB
4767  //   srw dest, tmpDest, shift
4768  if (ptrA != ZeroReg) {
4769    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4770    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4771      .addReg(ptrA).addReg(ptrB);
4772  } else {
4773    Ptr1Reg = ptrB;
4774  }
4775  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4776      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4777  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4778      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4779  if (is64bit)
4780    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4781      .addReg(Ptr1Reg).addImm(0).addImm(61);
4782  else
4783    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4784      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4785  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4786      .addReg(incr).addReg(ShiftReg);
4787  if (is8bit)
4788    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4789  else {
4790    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4791    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4792  }
4793  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4794      .addReg(Mask2Reg).addReg(ShiftReg);
4795
4796  BB = loopMBB;
4797  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4798    .addReg(ZeroReg).addReg(PtrReg);
4799  if (BinOpcode)
4800    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4801      .addReg(Incr2Reg).addReg(TmpDestReg);
4802  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4803    .addReg(TmpDestReg).addReg(MaskReg);
4804  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4805    .addReg(TmpReg).addReg(MaskReg);
4806  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4807    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4808  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4809    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4810  BuildMI(BB, dl, TII->get(PPC::BCC))
4811    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4812  BB->addSuccessor(loopMBB);
4813  BB->addSuccessor(exitMBB);
4814
4815  //  exitMBB:
4816  //   ...
4817  BB = exitMBB;
4818  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4819    .addReg(ShiftReg);
4820  return BB;
4821}
4822
4823MachineBasicBlock *
4824PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4825                                               MachineBasicBlock *BB) const {
4826  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4827
4828  // To "insert" these instructions we actually have to insert their
4829  // control-flow patterns.
4830  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4831  MachineFunction::iterator It = BB;
4832  ++It;
4833
4834  MachineFunction *F = BB->getParent();
4835
4836  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4837      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4838      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4839      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4840      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4841
4842    // The incoming instruction knows the destination vreg to set, the
4843    // condition code register to branch on, the true/false values to
4844    // select between, and a branch opcode to use.
4845
4846    //  thisMBB:
4847    //  ...
4848    //   TrueVal = ...
4849    //   cmpTY ccX, r1, r2
4850    //   bCC copy1MBB
4851    //   fallthrough --> copy0MBB
4852    MachineBasicBlock *thisMBB = BB;
4853    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4854    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4855    unsigned SelectPred = MI->getOperand(4).getImm();
4856    DebugLoc dl = MI->getDebugLoc();
4857    F->insert(It, copy0MBB);
4858    F->insert(It, sinkMBB);
4859
4860    // Transfer the remainder of BB and its successor edges to sinkMBB.
4861    sinkMBB->splice(sinkMBB->begin(), BB,
4862                    llvm::next(MachineBasicBlock::iterator(MI)),
4863                    BB->end());
4864    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4865
4866    // Next, add the true and fallthrough blocks as its successors.
4867    BB->addSuccessor(copy0MBB);
4868    BB->addSuccessor(sinkMBB);
4869
4870    BuildMI(BB, dl, TII->get(PPC::BCC))
4871      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4872
4873    //  copy0MBB:
4874    //   %FalseValue = ...
4875    //   # fallthrough to sinkMBB
4876    BB = copy0MBB;
4877
4878    // Update machine-CFG edges
4879    BB->addSuccessor(sinkMBB);
4880
4881    //  sinkMBB:
4882    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4883    //  ...
4884    BB = sinkMBB;
4885    BuildMI(*BB, BB->begin(), dl,
4886            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4887      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4888      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4889  }
4890  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4891    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4892  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4893    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4894  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4895    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4896  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4897    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4898
4899  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4900    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4901  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4902    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4903  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4904    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4905  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4906    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4907
4908  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4909    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4910  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4911    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4912  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4913    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4914  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4915    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4916
4917  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4918    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4919  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4920    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4921  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4922    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4923  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4924    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4925
4926  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4927    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4928  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4929    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4930  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4931    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4932  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4933    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4934
4935  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4936    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4937  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4938    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4939  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4940    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4941  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4942    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4943
4944  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4945    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4946  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4947    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4948  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4949    BB = EmitAtomicBinary(MI, BB, false, 0);
4950  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4951    BB = EmitAtomicBinary(MI, BB, true, 0);
4952
4953  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4954           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4955    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4956
4957    unsigned dest   = MI->getOperand(0).getReg();
4958    unsigned ptrA   = MI->getOperand(1).getReg();
4959    unsigned ptrB   = MI->getOperand(2).getReg();
4960    unsigned oldval = MI->getOperand(3).getReg();
4961    unsigned newval = MI->getOperand(4).getReg();
4962    DebugLoc dl     = MI->getDebugLoc();
4963
4964    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4965    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4966    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4967    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4968    F->insert(It, loop1MBB);
4969    F->insert(It, loop2MBB);
4970    F->insert(It, midMBB);
4971    F->insert(It, exitMBB);
4972    exitMBB->splice(exitMBB->begin(), BB,
4973                    llvm::next(MachineBasicBlock::iterator(MI)),
4974                    BB->end());
4975    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4976
4977    //  thisMBB:
4978    //   ...
4979    //   fallthrough --> loopMBB
4980    BB->addSuccessor(loop1MBB);
4981
4982    // loop1MBB:
4983    //   l[wd]arx dest, ptr
4984    //   cmp[wd] dest, oldval
4985    //   bne- midMBB
4986    // loop2MBB:
4987    //   st[wd]cx. newval, ptr
4988    //   bne- loopMBB
4989    //   b exitBB
4990    // midMBB:
4991    //   st[wd]cx. dest, ptr
4992    // exitBB:
4993    BB = loop1MBB;
4994    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4995      .addReg(ptrA).addReg(ptrB);
4996    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4997      .addReg(oldval).addReg(dest);
4998    BuildMI(BB, dl, TII->get(PPC::BCC))
4999      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5000    BB->addSuccessor(loop2MBB);
5001    BB->addSuccessor(midMBB);
5002
5003    BB = loop2MBB;
5004    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5005      .addReg(newval).addReg(ptrA).addReg(ptrB);
5006    BuildMI(BB, dl, TII->get(PPC::BCC))
5007      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5008    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5009    BB->addSuccessor(loop1MBB);
5010    BB->addSuccessor(exitMBB);
5011
5012    BB = midMBB;
5013    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5014      .addReg(dest).addReg(ptrA).addReg(ptrB);
5015    BB->addSuccessor(exitMBB);
5016
5017    //  exitMBB:
5018    //   ...
5019    BB = exitMBB;
5020  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5021             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5022    // We must use 64-bit registers for addresses when targeting 64-bit,
5023    // since we're actually doing arithmetic on them.  Other registers
5024    // can be 32-bit.
5025    bool is64bit = PPCSubTarget.isPPC64();
5026    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5027
5028    unsigned dest   = MI->getOperand(0).getReg();
5029    unsigned ptrA   = MI->getOperand(1).getReg();
5030    unsigned ptrB   = MI->getOperand(2).getReg();
5031    unsigned oldval = MI->getOperand(3).getReg();
5032    unsigned newval = MI->getOperand(4).getReg();
5033    DebugLoc dl     = MI->getDebugLoc();
5034
5035    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5036    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5037    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5038    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5039    F->insert(It, loop1MBB);
5040    F->insert(It, loop2MBB);
5041    F->insert(It, midMBB);
5042    F->insert(It, exitMBB);
5043    exitMBB->splice(exitMBB->begin(), BB,
5044                    llvm::next(MachineBasicBlock::iterator(MI)),
5045                    BB->end());
5046    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5047
5048    MachineRegisterInfo &RegInfo = F->getRegInfo();
5049    const TargetRegisterClass *RC =
5050      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5051                (const TargetRegisterClass *) &PPC::GPRCRegClass;
5052    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5053    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5054    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5055    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5056    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5057    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5058    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5059    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5060    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5061    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5062    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5063    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5064    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5065    unsigned Ptr1Reg;
5066    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5067    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5068    //  thisMBB:
5069    //   ...
5070    //   fallthrough --> loopMBB
5071    BB->addSuccessor(loop1MBB);
5072
5073    // The 4-byte load must be aligned, while a char or short may be
5074    // anywhere in the word.  Hence all this nasty bookkeeping code.
5075    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5076    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5077    //   xori shift, shift1, 24 [16]
5078    //   rlwinm ptr, ptr1, 0, 0, 29
5079    //   slw newval2, newval, shift
5080    //   slw oldval2, oldval,shift
5081    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5082    //   slw mask, mask2, shift
5083    //   and newval3, newval2, mask
5084    //   and oldval3, oldval2, mask
5085    // loop1MBB:
5086    //   lwarx tmpDest, ptr
5087    //   and tmp, tmpDest, mask
5088    //   cmpw tmp, oldval3
5089    //   bne- midMBB
5090    // loop2MBB:
5091    //   andc tmp2, tmpDest, mask
5092    //   or tmp4, tmp2, newval3
5093    //   stwcx. tmp4, ptr
5094    //   bne- loop1MBB
5095    //   b exitBB
5096    // midMBB:
5097    //   stwcx. tmpDest, ptr
5098    // exitBB:
5099    //   srw dest, tmpDest, shift
5100    if (ptrA != ZeroReg) {
5101      Ptr1Reg = RegInfo.createVirtualRegister(RC);
5102      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5103        .addReg(ptrA).addReg(ptrB);
5104    } else {
5105      Ptr1Reg = ptrB;
5106    }
5107    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5108        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5109    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5110        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5111    if (is64bit)
5112      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5113        .addReg(Ptr1Reg).addImm(0).addImm(61);
5114    else
5115      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5116        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5117    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5118        .addReg(newval).addReg(ShiftReg);
5119    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5120        .addReg(oldval).addReg(ShiftReg);
5121    if (is8bit)
5122      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5123    else {
5124      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5125      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5126        .addReg(Mask3Reg).addImm(65535);
5127    }
5128    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5129        .addReg(Mask2Reg).addReg(ShiftReg);
5130    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5131        .addReg(NewVal2Reg).addReg(MaskReg);
5132    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5133        .addReg(OldVal2Reg).addReg(MaskReg);
5134
5135    BB = loop1MBB;
5136    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5137        .addReg(ZeroReg).addReg(PtrReg);
5138    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5139        .addReg(TmpDestReg).addReg(MaskReg);
5140    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5141        .addReg(TmpReg).addReg(OldVal3Reg);
5142    BuildMI(BB, dl, TII->get(PPC::BCC))
5143        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5144    BB->addSuccessor(loop2MBB);
5145    BB->addSuccessor(midMBB);
5146
5147    BB = loop2MBB;
5148    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5149        .addReg(TmpDestReg).addReg(MaskReg);
5150    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5151        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5152    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5153        .addReg(ZeroReg).addReg(PtrReg);
5154    BuildMI(BB, dl, TII->get(PPC::BCC))
5155      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5156    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5157    BB->addSuccessor(loop1MBB);
5158    BB->addSuccessor(exitMBB);
5159
5160    BB = midMBB;
5161    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5162      .addReg(ZeroReg).addReg(PtrReg);
5163    BB->addSuccessor(exitMBB);
5164
5165    //  exitMBB:
5166    //   ...
5167    BB = exitMBB;
5168    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5169      .addReg(ShiftReg);
5170  } else {
5171    llvm_unreachable("Unexpected instr type to insert");
5172  }
5173
5174  MI->eraseFromParent();   // The pseudo instruction is gone now.
5175  return BB;
5176}
5177
5178//===----------------------------------------------------------------------===//
5179// Target Optimization Hooks
5180//===----------------------------------------------------------------------===//
5181
5182SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5183                                             DAGCombinerInfo &DCI) const {
5184  const TargetMachine &TM = getTargetMachine();
5185  SelectionDAG &DAG = DCI.DAG;
5186  DebugLoc dl = N->getDebugLoc();
5187  switch (N->getOpcode()) {
5188  default: break;
5189  case PPCISD::SHL:
5190    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5191      if (C->isNullValue())   // 0 << V -> 0.
5192        return N->getOperand(0);
5193    }
5194    break;
5195  case PPCISD::SRL:
5196    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5197      if (C->isNullValue())   // 0 >>u V -> 0.
5198        return N->getOperand(0);
5199    }
5200    break;
5201  case PPCISD::SRA:
5202    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5203      if (C->isNullValue() ||   //  0 >>s V -> 0.
5204          C->isAllOnesValue())    // -1 >>s V -> -1.
5205        return N->getOperand(0);
5206    }
5207    break;
5208
5209  case ISD::SINT_TO_FP:
5210    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5211      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5212        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5213        // We allow the src/dst to be either f32/f64, but the intermediate
5214        // type must be i64.
5215        if (N->getOperand(0).getValueType() == MVT::i64 &&
5216            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5217          SDValue Val = N->getOperand(0).getOperand(0);
5218          if (Val.getValueType() == MVT::f32) {
5219            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5220            DCI.AddToWorklist(Val.getNode());
5221          }
5222
5223          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5224          DCI.AddToWorklist(Val.getNode());
5225          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5226          DCI.AddToWorklist(Val.getNode());
5227          if (N->getValueType(0) == MVT::f32) {
5228            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5229                              DAG.getIntPtrConstant(0));
5230            DCI.AddToWorklist(Val.getNode());
5231          }
5232          return Val;
5233        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5234          // If the intermediate type is i32, we can avoid the load/store here
5235          // too.
5236        }
5237      }
5238    }
5239    break;
5240  case ISD::STORE:
5241    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5242    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5243        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5244        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5245        N->getOperand(1).getValueType() == MVT::i32 &&
5246        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5247      SDValue Val = N->getOperand(1).getOperand(0);
5248      if (Val.getValueType() == MVT::f32) {
5249        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5250        DCI.AddToWorklist(Val.getNode());
5251      }
5252      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5253      DCI.AddToWorklist(Val.getNode());
5254
5255      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5256                        N->getOperand(2), N->getOperand(3));
5257      DCI.AddToWorklist(Val.getNode());
5258      return Val;
5259    }
5260
5261    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5262    if (cast<StoreSDNode>(N)->isUnindexed() &&
5263        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5264        N->getOperand(1).getNode()->hasOneUse() &&
5265        (N->getOperand(1).getValueType() == MVT::i32 ||
5266         N->getOperand(1).getValueType() == MVT::i16)) {
5267      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5268      // Do an any-extend to 32-bits if this is a half-word input.
5269      if (BSwapOp.getValueType() == MVT::i16)
5270        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5271
5272      SDValue Ops[] = {
5273        N->getOperand(0), BSwapOp, N->getOperand(2),
5274        DAG.getValueType(N->getOperand(1).getValueType())
5275      };
5276      return
5277        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5278                                Ops, array_lengthof(Ops),
5279                                cast<StoreSDNode>(N)->getMemoryVT(),
5280                                cast<StoreSDNode>(N)->getMemOperand());
5281    }
5282    break;
5283  case ISD::BSWAP:
5284    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5285    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5286        N->getOperand(0).hasOneUse() &&
5287        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5288      SDValue Load = N->getOperand(0);
5289      LoadSDNode *LD = cast<LoadSDNode>(Load);
5290      // Create the byte-swapping load.
5291      SDValue Ops[] = {
5292        LD->getChain(),    // Chain
5293        LD->getBasePtr(),  // Ptr
5294        DAG.getValueType(N->getValueType(0)) // VT
5295      };
5296      SDValue BSLoad =
5297        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5298                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5299                                LD->getMemoryVT(), LD->getMemOperand());
5300
5301      // If this is an i16 load, insert the truncate.
5302      SDValue ResVal = BSLoad;
5303      if (N->getValueType(0) == MVT::i16)
5304        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5305
5306      // First, combine the bswap away.  This makes the value produced by the
5307      // load dead.
5308      DCI.CombineTo(N, ResVal);
5309
5310      // Next, combine the load away, we give it a bogus result value but a real
5311      // chain result.  The result value is dead because the bswap is dead.
5312      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5313
5314      // Return N so it doesn't get rechecked!
5315      return SDValue(N, 0);
5316    }
5317
5318    break;
5319  case PPCISD::VCMP: {
5320    // If a VCMPo node already exists with exactly the same operands as this
5321    // node, use its result instead of this node (VCMPo computes both a CR6 and
5322    // a normal output).
5323    //
5324    if (!N->getOperand(0).hasOneUse() &&
5325        !N->getOperand(1).hasOneUse() &&
5326        !N->getOperand(2).hasOneUse()) {
5327
5328      // Scan all of the users of the LHS, looking for VCMPo's that match.
5329      SDNode *VCMPoNode = 0;
5330
5331      SDNode *LHSN = N->getOperand(0).getNode();
5332      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5333           UI != E; ++UI)
5334        if (UI->getOpcode() == PPCISD::VCMPo &&
5335            UI->getOperand(1) == N->getOperand(1) &&
5336            UI->getOperand(2) == N->getOperand(2) &&
5337            UI->getOperand(0) == N->getOperand(0)) {
5338          VCMPoNode = *UI;
5339          break;
5340        }
5341
5342      // If there is no VCMPo node, or if the flag value has a single use, don't
5343      // transform this.
5344      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5345        break;
5346
5347      // Look at the (necessarily single) use of the flag value.  If it has a
5348      // chain, this transformation is more complex.  Note that multiple things
5349      // could use the value result, which we should ignore.
5350      SDNode *FlagUser = 0;
5351      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5352           FlagUser == 0; ++UI) {
5353        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5354        SDNode *User = *UI;
5355        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5356          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5357            FlagUser = User;
5358            break;
5359          }
5360        }
5361      }
5362
5363      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5364      // give up for right now.
5365      if (FlagUser->getOpcode() == PPCISD::MFCR)
5366        return SDValue(VCMPoNode, 0);
5367    }
5368    break;
5369  }
5370  case ISD::BR_CC: {
5371    // If this is a branch on an altivec predicate comparison, lower this so
5372    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5373    // lowering is done pre-legalize, because the legalizer lowers the predicate
5374    // compare down to code that is difficult to reassemble.
5375    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5376    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5377    int CompareOpc;
5378    bool isDot;
5379
5380    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5381        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5382        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5383      assert(isDot && "Can't compare against a vector result!");
5384
5385      // If this is a comparison against something other than 0/1, then we know
5386      // that the condition is never/always true.
5387      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5388      if (Val != 0 && Val != 1) {
5389        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5390          return N->getOperand(0);
5391        // Always !=, turn it into an unconditional branch.
5392        return DAG.getNode(ISD::BR, dl, MVT::Other,
5393                           N->getOperand(0), N->getOperand(4));
5394      }
5395
5396      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5397
5398      // Create the PPCISD altivec 'dot' comparison node.
5399      std::vector<EVT> VTs;
5400      SDValue Ops[] = {
5401        LHS.getOperand(2),  // LHS of compare
5402        LHS.getOperand(3),  // RHS of compare
5403        DAG.getConstant(CompareOpc, MVT::i32)
5404      };
5405      VTs.push_back(LHS.getOperand(2).getValueType());
5406      VTs.push_back(MVT::Glue);
5407      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5408
5409      // Unpack the result based on how the target uses it.
5410      PPC::Predicate CompOpc;
5411      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5412      default:  // Can't happen, don't crash on invalid number though.
5413      case 0:   // Branch on the value of the EQ bit of CR6.
5414        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5415        break;
5416      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5417        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5418        break;
5419      case 2:   // Branch on the value of the LT bit of CR6.
5420        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5421        break;
5422      case 3:   // Branch on the inverted value of the LT bit of CR6.
5423        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5424        break;
5425      }
5426
5427      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5428                         DAG.getConstant(CompOpc, MVT::i32),
5429                         DAG.getRegister(PPC::CR6, MVT::i32),
5430                         N->getOperand(4), CompNode.getValue(1));
5431    }
5432    break;
5433  }
5434  }
5435
5436  return SDValue();
5437}
5438
5439//===----------------------------------------------------------------------===//
5440// Inline Assembly Support
5441//===----------------------------------------------------------------------===//
5442
5443void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5444                                                       const APInt &Mask,
5445                                                       APInt &KnownZero,
5446                                                       APInt &KnownOne,
5447                                                       const SelectionDAG &DAG,
5448                                                       unsigned Depth) const {
5449  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5450  switch (Op.getOpcode()) {
5451  default: break;
5452  case PPCISD::LBRX: {
5453    // lhbrx is known to have the top bits cleared out.
5454    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5455      KnownZero = 0xFFFF0000;
5456    break;
5457  }
5458  case ISD::INTRINSIC_WO_CHAIN: {
5459    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5460    default: break;
5461    case Intrinsic::ppc_altivec_vcmpbfp_p:
5462    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5463    case Intrinsic::ppc_altivec_vcmpequb_p:
5464    case Intrinsic::ppc_altivec_vcmpequh_p:
5465    case Intrinsic::ppc_altivec_vcmpequw_p:
5466    case Intrinsic::ppc_altivec_vcmpgefp_p:
5467    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5468    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5469    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5470    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5471    case Intrinsic::ppc_altivec_vcmpgtub_p:
5472    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5473    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5474      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5475      break;
5476    }
5477  }
5478  }
5479}
5480
5481
5482/// getConstraintType - Given a constraint, return the type of
5483/// constraint it is for this target.
5484PPCTargetLowering::ConstraintType
5485PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5486  if (Constraint.size() == 1) {
5487    switch (Constraint[0]) {
5488    default: break;
5489    case 'b':
5490    case 'r':
5491    case 'f':
5492    case 'v':
5493    case 'y':
5494      return C_RegisterClass;
5495    }
5496  }
5497  return TargetLowering::getConstraintType(Constraint);
5498}
5499
5500/// Examine constraint type and operand type and determine a weight value.
5501/// This object must already have been set up with the operand type
5502/// and the current alternative constraint selected.
5503TargetLowering::ConstraintWeight
5504PPCTargetLowering::getSingleConstraintMatchWeight(
5505    AsmOperandInfo &info, const char *constraint) const {
5506  ConstraintWeight weight = CW_Invalid;
5507  Value *CallOperandVal = info.CallOperandVal;
5508    // If we don't have a value, we can't do a match,
5509    // but allow it at the lowest weight.
5510  if (CallOperandVal == NULL)
5511    return CW_Default;
5512  Type *type = CallOperandVal->getType();
5513  // Look at the constraint type.
5514  switch (*constraint) {
5515  default:
5516    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5517    break;
5518  case 'b':
5519    if (type->isIntegerTy())
5520      weight = CW_Register;
5521    break;
5522  case 'f':
5523    if (type->isFloatTy())
5524      weight = CW_Register;
5525    break;
5526  case 'd':
5527    if (type->isDoubleTy())
5528      weight = CW_Register;
5529    break;
5530  case 'v':
5531    if (type->isVectorTy())
5532      weight = CW_Register;
5533    break;
5534  case 'y':
5535    weight = CW_Register;
5536    break;
5537  }
5538  return weight;
5539}
5540
5541std::pair<unsigned, const TargetRegisterClass*>
5542PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5543                                                EVT VT) const {
5544  if (Constraint.size() == 1) {
5545    // GCC RS6000 Constraint Letters
5546    switch (Constraint[0]) {
5547    case 'b':   // R1-R31
5548    case 'r':   // R0-R31
5549      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5550        return std::make_pair(0U, PPC::G8RCRegisterClass);
5551      return std::make_pair(0U, PPC::GPRCRegisterClass);
5552    case 'f':
5553      if (VT == MVT::f32)
5554        return std::make_pair(0U, PPC::F4RCRegisterClass);
5555      else if (VT == MVT::f64)
5556        return std::make_pair(0U, PPC::F8RCRegisterClass);
5557      break;
5558    case 'v':
5559      return std::make_pair(0U, PPC::VRRCRegisterClass);
5560    case 'y':   // crrc
5561      return std::make_pair(0U, PPC::CRRCRegisterClass);
5562    }
5563  }
5564
5565  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5566}
5567
5568
5569/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5570/// vector.  If it is invalid, don't add anything to Ops.
5571void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5572                                                     std::string &Constraint,
5573                                                     std::vector<SDValue>&Ops,
5574                                                     SelectionDAG &DAG) const {
5575  SDValue Result(0,0);
5576
5577  // Only support length 1 constraints.
5578  if (Constraint.length() > 1) return;
5579
5580  char Letter = Constraint[0];
5581  switch (Letter) {
5582  default: break;
5583  case 'I':
5584  case 'J':
5585  case 'K':
5586  case 'L':
5587  case 'M':
5588  case 'N':
5589  case 'O':
5590  case 'P': {
5591    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5592    if (!CST) return; // Must be an immediate to match.
5593    unsigned Value = CST->getZExtValue();
5594    switch (Letter) {
5595    default: llvm_unreachable("Unknown constraint letter!");
5596    case 'I':  // "I" is a signed 16-bit constant.
5597      if ((short)Value == (int)Value)
5598        Result = DAG.getTargetConstant(Value, Op.getValueType());
5599      break;
5600    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5601    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5602      if ((short)Value == 0)
5603        Result = DAG.getTargetConstant(Value, Op.getValueType());
5604      break;
5605    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5606      if ((Value >> 16) == 0)
5607        Result = DAG.getTargetConstant(Value, Op.getValueType());
5608      break;
5609    case 'M':  // "M" is a constant that is greater than 31.
5610      if (Value > 31)
5611        Result = DAG.getTargetConstant(Value, Op.getValueType());
5612      break;
5613    case 'N':  // "N" is a positive constant that is an exact power of two.
5614      if ((int)Value > 0 && isPowerOf2_32(Value))
5615        Result = DAG.getTargetConstant(Value, Op.getValueType());
5616      break;
5617    case 'O':  // "O" is the constant zero.
5618      if (Value == 0)
5619        Result = DAG.getTargetConstant(Value, Op.getValueType());
5620      break;
5621    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5622      if ((short)-Value == (int)-Value)
5623        Result = DAG.getTargetConstant(Value, Op.getValueType());
5624      break;
5625    }
5626    break;
5627  }
5628  }
5629
5630  if (Result.getNode()) {
5631    Ops.push_back(Result);
5632    return;
5633  }
5634
5635  // Handle standard constraint letters.
5636  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5637}
5638
5639// isLegalAddressingMode - Return true if the addressing mode represented
5640// by AM is legal for this target, for a load/store of the specified type.
5641bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5642                                              Type *Ty) const {
5643  // FIXME: PPC does not allow r+i addressing modes for vectors!
5644
5645  // PPC allows a sign-extended 16-bit immediate field.
5646  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5647    return false;
5648
5649  // No global is ever allowed as a base.
5650  if (AM.BaseGV)
5651    return false;
5652
5653  // PPC only support r+r,
5654  switch (AM.Scale) {
5655  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5656    break;
5657  case 1:
5658    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5659      return false;
5660    // Otherwise we have r+r or r+i.
5661    break;
5662  case 2:
5663    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5664      return false;
5665    // Allow 2*r as r+r.
5666    break;
5667  default:
5668    // No other scales are supported.
5669    return false;
5670  }
5671
5672  return true;
5673}
5674
5675/// isLegalAddressImmediate - Return true if the integer value can be used
5676/// as the offset of the target addressing mode for load / store of the
5677/// given type.
5678bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5679  // PPC allows a sign-extended 16-bit immediate field.
5680  return (V > -(1 << 16) && V < (1 << 16)-1);
5681}
5682
5683bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5684  return false;
5685}
5686
5687SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5688                                           SelectionDAG &DAG) const {
5689  MachineFunction &MF = DAG.getMachineFunction();
5690  MachineFrameInfo *MFI = MF.getFrameInfo();
5691  MFI->setReturnAddressIsTaken(true);
5692
5693  DebugLoc dl = Op.getDebugLoc();
5694  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5695
5696  // Make sure the function does not optimize away the store of the RA to
5697  // the stack.
5698  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5699  FuncInfo->setLRStoreRequired();
5700  bool isPPC64 = PPCSubTarget.isPPC64();
5701  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5702
5703  if (Depth > 0) {
5704    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5705    SDValue Offset =
5706
5707      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5708                      isPPC64? MVT::i64 : MVT::i32);
5709    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5710                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5711                                   FrameAddr, Offset),
5712                       MachinePointerInfo(), false, false, 0);
5713  }
5714
5715  // Just load the return address off the stack.
5716  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5717  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5718                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5719}
5720
5721SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5722                                          SelectionDAG &DAG) const {
5723  DebugLoc dl = Op.getDebugLoc();
5724  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5725
5726  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5727  bool isPPC64 = PtrVT == MVT::i64;
5728
5729  MachineFunction &MF = DAG.getMachineFunction();
5730  MachineFrameInfo *MFI = MF.getFrameInfo();
5731  MFI->setFrameAddressIsTaken(true);
5732  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5733                  MFI->getStackSize() &&
5734                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5735  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5736                                (is31 ? PPC::R31 : PPC::R1);
5737  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5738                                         PtrVT);
5739  while (Depth--)
5740    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5741                            FrameAddr, MachinePointerInfo(), false, false, 0);
5742  return FrameAddr;
5743}
5744
5745bool
5746PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5747  // The PowerPC target isn't yet aware of offsets.
5748  return false;
5749}
5750
5751/// getOptimalMemOpType - Returns the target specific optimal type for load
5752/// and store operations as a result of memset, memcpy, and memmove
5753/// lowering. If DstAlign is zero that means it's safe to destination
5754/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5755/// means there isn't a need to check it against alignment requirement,
5756/// probably because the source does not need to be loaded. If
5757/// 'NonScalarIntSafe' is true, that means it's safe to return a
5758/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5759/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5760/// constant so it does not need to be loaded.
5761/// It returns EVT::Other if the type should be determined using generic
5762/// target-independent logic.
5763EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5764                                           unsigned DstAlign, unsigned SrcAlign,
5765                                           bool NonScalarIntSafe,
5766                                           bool MemcpyStrSrc,
5767                                           MachineFunction &MF) const {
5768  if (this->PPCSubTarget.isPPC64()) {
5769    return MVT::i64;
5770  } else {
5771    return MVT::i32;
5772  }
5773}
5774