PPCISelLowering.cpp revision 4f9af2ef65febd20e73ef00d868d3fb94db7afd9
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FSIN , MVT::f32, Expand);
129  setOperationAction(ISD::FCOS , MVT::f32, Expand);
130  setOperationAction(ISD::FREM , MVT::f32, Expand);
131  setOperationAction(ISD::FPOW , MVT::f32, Expand);
132
133  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134
135  // If we're enabling GP optimizations, use hardware square root
136  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139  }
140
141  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143
144  // PowerPC does not have BSWAP, CTPOP or CTTZ
145  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151
152  // PowerPC does not have ROTR
153  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155
156  // PowerPC does not have Select
157  setOperationAction(ISD::SELECT, MVT::i32, Expand);
158  setOperationAction(ISD::SELECT, MVT::i64, Expand);
159  setOperationAction(ISD::SELECT, MVT::f32, Expand);
160  setOperationAction(ISD::SELECT, MVT::f64, Expand);
161
162  // PowerPC wants to turn select_cc of FP into fsel when possible.
163  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165
166  // PowerPC wants to optimize integer setcc a bit
167  setOperationAction(ISD::SETCC, MVT::i32, Custom);
168
169  // PowerPC does not have BRCOND which requires SetCC
170  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173
174  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176
177  // PowerPC does not have [U|S]INT_TO_FP
178  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180
181  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
182  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
183  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
184  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
185
186  // We cannot sextinreg(i1).  Expand to shifts.
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setShiftAmountType(MVT::i32);
366  setBooleanContents(ZeroOrOneBooleanContent);
367
368  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
369    setStackPointerRegisterToSaveRestore(PPC::X1);
370    setExceptionPointerRegister(PPC::X3);
371    setExceptionSelectorRegister(PPC::X4);
372  } else {
373    setStackPointerRegisterToSaveRestore(PPC::R1);
374    setExceptionPointerRegister(PPC::R3);
375    setExceptionSelectorRegister(PPC::R4);
376  }
377
378  // We have target-specific dag combine patterns for the following nodes:
379  setTargetDAGCombine(ISD::SINT_TO_FP);
380  setTargetDAGCombine(ISD::STORE);
381  setTargetDAGCombine(ISD::BR_CC);
382  setTargetDAGCombine(ISD::BSWAP);
383
384  // Darwin long double math library functions have $LDBL128 appended.
385  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
386    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
387    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
388    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
389    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
390    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
391    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
392    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
393    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
394    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
395    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
396  }
397
398  computeRegisterProperties();
399}
400
401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402/// function arguments in the caller parameter area.
403unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
404  const TargetMachine &TM = getTargetMachine();
405  // Darwin passes everything on 4 byte boundary.
406  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
407    return 4;
408  // FIXME SVR4 TBD
409  return 4;
410}
411
412const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
413  switch (Opcode) {
414  default: return 0;
415  case PPCISD::FSEL:            return "PPCISD::FSEL";
416  case PPCISD::FCFID:           return "PPCISD::FCFID";
417  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
418  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
419  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
420  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
421  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
422  case PPCISD::VPERM:           return "PPCISD::VPERM";
423  case PPCISD::Hi:              return "PPCISD::Hi";
424  case PPCISD::Lo:              return "PPCISD::Lo";
425  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
426  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
427  case PPCISD::LOAD:            return "PPCISD::LOAD";
428  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
429  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
430  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
431  case PPCISD::SRL:             return "PPCISD::SRL";
432  case PPCISD::SRA:             return "PPCISD::SRA";
433  case PPCISD::SHL:             return "PPCISD::SHL";
434  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
435  case PPCISD::STD_32:          return "PPCISD::STD_32";
436  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
437  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
438  case PPCISD::NOP:             return "PPCISD::NOP";
439  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
440  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
441  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
442  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
443  case PPCISD::MFCR:            return "PPCISD::MFCR";
444  case PPCISD::VCMP:            return "PPCISD::VCMP";
445  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
446  case PPCISD::LBRX:            return "PPCISD::LBRX";
447  case PPCISD::STBRX:           return "PPCISD::STBRX";
448  case PPCISD::LARX:            return "PPCISD::LARX";
449  case PPCISD::STCX:            return "PPCISD::STCX";
450  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
451  case PPCISD::MFFS:            return "PPCISD::MFFS";
452  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
453  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
454  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
455  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
456  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
457  }
458}
459
460MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
461  return MVT::i32;
462}
463
464/// getFunctionAlignment - Return the Log2 alignment of this function.
465unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
466  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
467    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
468  else
469    return 2;
470}
471
472//===----------------------------------------------------------------------===//
473// Node matching predicates, for use by the tblgen matching code.
474//===----------------------------------------------------------------------===//
475
476/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
477static bool isFloatingPointZero(SDValue Op) {
478  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
479    return CFP->getValueAPF().isZero();
480  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
481    // Maybe this has already been legalized into the constant pool?
482    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
483      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
484        return CFP->getValueAPF().isZero();
485  }
486  return false;
487}
488
489/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
490/// true if Op is undef or if it matches the specified value.
491static bool isConstantOrUndef(int Op, int Val) {
492  return Op < 0 || Op == Val;
493}
494
495/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
496/// VPKUHUM instruction.
497bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
498  if (!isUnary) {
499    for (unsigned i = 0; i != 16; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
501        return false;
502  } else {
503    for (unsigned i = 0; i != 8; ++i)
504      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
505          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
506        return false;
507  }
508  return true;
509}
510
511/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
512/// VPKUWUM instruction.
513bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
514  if (!isUnary) {
515    for (unsigned i = 0; i != 16; i += 2)
516      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
518        return false;
519  } else {
520    for (unsigned i = 0; i != 8; i += 2)
521      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
522          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
523          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
524          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
525        return false;
526  }
527  return true;
528}
529
530/// isVMerge - Common function, used to match vmrg* shuffles.
531///
532static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
533                     unsigned LHSStart, unsigned RHSStart) {
534  assert(N->getValueType(0) == MVT::v16i8 &&
535         "PPC only supports shuffles by bytes!");
536  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
537         "Unsupported merge size!");
538
539  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
540    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
541      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
542                             LHSStart+j+i*UnitSize) ||
543          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
544                             RHSStart+j+i*UnitSize))
545        return false;
546    }
547  return true;
548}
549
550/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
551/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
552bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
553                             bool isUnary) {
554  if (!isUnary)
555    return isVMerge(N, UnitSize, 8, 24);
556  return isVMerge(N, UnitSize, 8, 8);
557}
558
559/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
560/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
561bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
562                             bool isUnary) {
563  if (!isUnary)
564    return isVMerge(N, UnitSize, 0, 16);
565  return isVMerge(N, UnitSize, 0, 0);
566}
567
568
569/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
570/// amount, otherwise return -1.
571int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
572  assert(N->getValueType(0) == MVT::v16i8 &&
573         "PPC only supports shuffles by bytes!");
574
575  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
576
577  // Find the first non-undef value in the shuffle mask.
578  unsigned i;
579  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
580    /*search*/;
581
582  if (i == 16) return -1;  // all undef.
583
584  // Otherwise, check to see if the rest of the elements are consecutively
585  // numbered from this value.
586  unsigned ShiftAmt = SVOp->getMaskElt(i);
587  if (ShiftAmt < i) return -1;
588  ShiftAmt -= i;
589
590  if (!isUnary) {
591    // Check the rest of the elements to see if they are consecutive.
592    for (++i; i != 16; ++i)
593      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
594        return -1;
595  } else {
596    // Check the rest of the elements to see if they are consecutive.
597    for (++i; i != 16; ++i)
598      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
599        return -1;
600  }
601  return ShiftAmt;
602}
603
604/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
605/// specifies a splat of a single element that is suitable for input to
606/// VSPLTB/VSPLTH/VSPLTW.
607bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
608  assert(N->getValueType(0) == MVT::v16i8 &&
609         (EltSize == 1 || EltSize == 2 || EltSize == 4));
610
611  // This is a splat operation if each element of the permute is the same, and
612  // if the value doesn't reference the second vector.
613  unsigned ElementBase = N->getMaskElt(0);
614
615  // FIXME: Handle UNDEF elements too!
616  if (ElementBase >= 16)
617    return false;
618
619  // Check that the indices are consecutive, in the case of a multi-byte element
620  // splatted with a v16i8 mask.
621  for (unsigned i = 1; i != EltSize; ++i)
622    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
623      return false;
624
625  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
626    if (N->getMaskElt(i) < 0) continue;
627    for (unsigned j = 0; j != EltSize; ++j)
628      if (N->getMaskElt(i+j) != N->getMaskElt(j))
629        return false;
630  }
631  return true;
632}
633
634/// isAllNegativeZeroVector - Returns true if all elements of build_vector
635/// are -0.0.
636bool PPC::isAllNegativeZeroVector(SDNode *N) {
637  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
638
639  APInt APVal, APUndef;
640  unsigned BitSize;
641  bool HasAnyUndefs;
642
643  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
644    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
645      return CFP->getValueAPF().isNegZero();
646
647  return false;
648}
649
650/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
651/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
652unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
653  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
654  assert(isSplatShuffleMask(SVOp, EltSize));
655  return SVOp->getMaskElt(0) / EltSize;
656}
657
658/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
659/// by using a vspltis[bhw] instruction of the specified element size, return
660/// the constant being splatted.  The ByteSize field indicates the number of
661/// bytes of each element [124] -> [bhw].
662SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
663  SDValue OpVal(0, 0);
664
665  // If ByteSize of the splat is bigger than the element size of the
666  // build_vector, then we have a case where we are checking for a splat where
667  // multiple elements of the buildvector are folded together into a single
668  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
669  unsigned EltSize = 16/N->getNumOperands();
670  if (EltSize < ByteSize) {
671    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
672    SDValue UniquedVals[4];
673    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
674
675    // See if all of the elements in the buildvector agree across.
676    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
677      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
678      // If the element isn't a constant, bail fully out.
679      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
680
681
682      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
683        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
684      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
685        return SDValue();  // no match.
686    }
687
688    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
689    // either constant or undef values that are identical for each chunk.  See
690    // if these chunks can form into a larger vspltis*.
691
692    // Check to see if all of the leading entries are either 0 or -1.  If
693    // neither, then this won't fit into the immediate field.
694    bool LeadingZero = true;
695    bool LeadingOnes = true;
696    for (unsigned i = 0; i != Multiple-1; ++i) {
697      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
698
699      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
700      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
701    }
702    // Finally, check the least significant entry.
703    if (LeadingZero) {
704      if (UniquedVals[Multiple-1].getNode() == 0)
705        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
706      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
707      if (Val < 16)
708        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
709    }
710    if (LeadingOnes) {
711      if (UniquedVals[Multiple-1].getNode() == 0)
712        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
713      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
714      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
715        return DAG.getTargetConstant(Val, MVT::i32);
716    }
717
718    return SDValue();
719  }
720
721  // Check to see if this buildvec has a single non-undef value in its elements.
722  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
723    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
724    if (OpVal.getNode() == 0)
725      OpVal = N->getOperand(i);
726    else if (OpVal != N->getOperand(i))
727      return SDValue();
728  }
729
730  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
731
732  unsigned ValSizeInBytes = EltSize;
733  uint64_t Value = 0;
734  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
735    Value = CN->getZExtValue();
736  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
737    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
738    Value = FloatToBits(CN->getValueAPF().convertToFloat());
739  }
740
741  // If the splat value is larger than the element value, then we can never do
742  // this splat.  The only case that we could fit the replicated bits into our
743  // immediate field for would be zero, and we prefer to use vxor for it.
744  if (ValSizeInBytes < ByteSize) return SDValue();
745
746  // If the element value is larger than the splat value, cut it in half and
747  // check to see if the two halves are equal.  Continue doing this until we
748  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
749  while (ValSizeInBytes > ByteSize) {
750    ValSizeInBytes >>= 1;
751
752    // If the top half equals the bottom half, we're still ok.
753    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
754         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
755      return SDValue();
756  }
757
758  // Properly sign extend the value.
759  int ShAmt = (4-ByteSize)*8;
760  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
761
762  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
763  if (MaskVal == 0) return SDValue();
764
765  // Finally, if this value fits in a 5 bit sext field, return it
766  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
767    return DAG.getTargetConstant(MaskVal, MVT::i32);
768  return SDValue();
769}
770
771//===----------------------------------------------------------------------===//
772//  Addressing Mode Selection
773//===----------------------------------------------------------------------===//
774
775/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
776/// or 64-bit immediate, and if the value can be accurately represented as a
777/// sign extension from a 16-bit value.  If so, this returns true and the
778/// immediate.
779static bool isIntS16Immediate(SDNode *N, short &Imm) {
780  if (N->getOpcode() != ISD::Constant)
781    return false;
782
783  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
784  if (N->getValueType(0) == MVT::i32)
785    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
786  else
787    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
788}
789static bool isIntS16Immediate(SDValue Op, short &Imm) {
790  return isIntS16Immediate(Op.getNode(), Imm);
791}
792
793
794/// SelectAddressRegReg - Given the specified addressed, check to see if it
795/// can be represented as an indexed [r+r] operation.  Returns false if it
796/// can be more efficiently represented with [r+imm].
797bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
798                                            SDValue &Index,
799                                            SelectionDAG &DAG) const {
800  short imm = 0;
801  if (N.getOpcode() == ISD::ADD) {
802    if (isIntS16Immediate(N.getOperand(1), imm))
803      return false;    // r+i
804    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
805      return false;    // r+i
806
807    Base = N.getOperand(0);
808    Index = N.getOperand(1);
809    return true;
810  } else if (N.getOpcode() == ISD::OR) {
811    if (isIntS16Immediate(N.getOperand(1), imm))
812      return false;    // r+i can fold it if we can.
813
814    // If this is an or of disjoint bitfields, we can codegen this as an add
815    // (for better address arithmetic) if the LHS and RHS of the OR are provably
816    // disjoint.
817    APInt LHSKnownZero, LHSKnownOne;
818    APInt RHSKnownZero, RHSKnownOne;
819    DAG.ComputeMaskedBits(N.getOperand(0),
820                          APInt::getAllOnesValue(N.getOperand(0)
821                            .getValueSizeInBits()),
822                          LHSKnownZero, LHSKnownOne);
823
824    if (LHSKnownZero.getBoolValue()) {
825      DAG.ComputeMaskedBits(N.getOperand(1),
826                            APInt::getAllOnesValue(N.getOperand(1)
827                              .getValueSizeInBits()),
828                            RHSKnownZero, RHSKnownOne);
829      // If all of the bits are known zero on the LHS or RHS, the add won't
830      // carry.
831      if (~(LHSKnownZero | RHSKnownZero) == 0) {
832        Base = N.getOperand(0);
833        Index = N.getOperand(1);
834        return true;
835      }
836    }
837  }
838
839  return false;
840}
841
842/// Returns true if the address N can be represented by a base register plus
843/// a signed 16-bit displacement [r+imm], and if it is not better
844/// represented as reg+reg.
845bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
846                                            SDValue &Base,
847                                            SelectionDAG &DAG) const {
848  // FIXME dl should come from parent load or store, not from address
849  DebugLoc dl = N.getDebugLoc();
850  // If this can be more profitably realized as r+r, fail.
851  if (SelectAddressRegReg(N, Disp, Base, DAG))
852    return false;
853
854  if (N.getOpcode() == ISD::ADD) {
855    short imm = 0;
856    if (isIntS16Immediate(N.getOperand(1), imm)) {
857      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
858      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
859        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860      } else {
861        Base = N.getOperand(0);
862      }
863      return true; // [r+i]
864    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
865      // Match LOAD (ADD (X, Lo(G))).
866     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
867             && "Cannot handle constant offsets yet!");
868      Disp = N.getOperand(1).getOperand(0);  // The global address.
869      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
870             Disp.getOpcode() == ISD::TargetConstantPool ||
871             Disp.getOpcode() == ISD::TargetJumpTable);
872      Base = N.getOperand(0);
873      return true;  // [&g+r]
874    }
875  } else if (N.getOpcode() == ISD::OR) {
876    short imm = 0;
877    if (isIntS16Immediate(N.getOperand(1), imm)) {
878      // If this is an or of disjoint bitfields, we can codegen this as an add
879      // (for better address arithmetic) if the LHS and RHS of the OR are
880      // provably disjoint.
881      APInt LHSKnownZero, LHSKnownOne;
882      DAG.ComputeMaskedBits(N.getOperand(0),
883                            APInt::getAllOnesValue(N.getOperand(0)
884                                                   .getValueSizeInBits()),
885                            LHSKnownZero, LHSKnownOne);
886
887      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
888        // If all of the bits are known zero on the LHS or RHS, the add won't
889        // carry.
890        Base = N.getOperand(0);
891        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
892        return true;
893      }
894    }
895  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
896    // Loading from a constant address.
897
898    // If this address fits entirely in a 16-bit sext immediate field, codegen
899    // this as "d, 0"
900    short Imm;
901    if (isIntS16Immediate(CN, Imm)) {
902      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
903      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
904      return true;
905    }
906
907    // Handle 32-bit sext immediates with LIS + addr mode.
908    if (CN->getValueType(0) == MVT::i32 ||
909        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
910      int Addr = (int)CN->getZExtValue();
911
912      // Otherwise, break this down into an LIS + disp.
913      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
914
915      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
916      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
917      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
918      return true;
919    }
920  }
921
922  Disp = DAG.getTargetConstant(0, getPointerTy());
923  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
924    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925  else
926    Base = N;
927  return true;      // [r+0]
928}
929
930/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
931/// represented as an indexed [r+r] operation.
932bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
933                                                SDValue &Index,
934                                                SelectionDAG &DAG) const {
935  // Check to see if we can easily represent this as an [r+r] address.  This
936  // will fail if it thinks that the address is more profitably represented as
937  // reg+imm, e.g. where imm = 0.
938  if (SelectAddressRegReg(N, Base, Index, DAG))
939    return true;
940
941  // If the operand is an addition, always emit this as [r+r], since this is
942  // better (for code size, and execution, as the memop does the add for free)
943  // than emitting an explicit add.
944  if (N.getOpcode() == ISD::ADD) {
945    Base = N.getOperand(0);
946    Index = N.getOperand(1);
947    return true;
948  }
949
950  // Otherwise, do it the hard way, using R0 as the base register.
951  Base = DAG.getRegister(PPC::R0, N.getValueType());
952  Index = N;
953  return true;
954}
955
956/// SelectAddressRegImmShift - Returns true if the address N can be
957/// represented by a base register plus a signed 14-bit displacement
958/// [r+imm*4].  Suitable for use by STD and friends.
959bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
960                                                 SDValue &Base,
961                                                 SelectionDAG &DAG) const {
962  // FIXME dl should come from the parent load or store, not the address
963  DebugLoc dl = N.getDebugLoc();
964  // If this can be more profitably realized as r+r, fail.
965  if (SelectAddressRegReg(N, Disp, Base, DAG))
966    return false;
967
968  if (N.getOpcode() == ISD::ADD) {
969    short imm = 0;
970    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
971      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
972      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
973        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
974      } else {
975        Base = N.getOperand(0);
976      }
977      return true; // [r+i]
978    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
979      // Match LOAD (ADD (X, Lo(G))).
980     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
981             && "Cannot handle constant offsets yet!");
982      Disp = N.getOperand(1).getOperand(0);  // The global address.
983      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
984             Disp.getOpcode() == ISD::TargetConstantPool ||
985             Disp.getOpcode() == ISD::TargetJumpTable);
986      Base = N.getOperand(0);
987      return true;  // [&g+r]
988    }
989  } else if (N.getOpcode() == ISD::OR) {
990    short imm = 0;
991    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
992      // If this is an or of disjoint bitfields, we can codegen this as an add
993      // (for better address arithmetic) if the LHS and RHS of the OR are
994      // provably disjoint.
995      APInt LHSKnownZero, LHSKnownOne;
996      DAG.ComputeMaskedBits(N.getOperand(0),
997                            APInt::getAllOnesValue(N.getOperand(0)
998                                                   .getValueSizeInBits()),
999                            LHSKnownZero, LHSKnownOne);
1000      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1001        // If all of the bits are known zero on the LHS or RHS, the add won't
1002        // carry.
1003        Base = N.getOperand(0);
1004        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1005        return true;
1006      }
1007    }
1008  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1009    // Loading from a constant address.  Verify low two bits are clear.
1010    if ((CN->getZExtValue() & 3) == 0) {
1011      // If this address fits entirely in a 14-bit sext immediate field, codegen
1012      // this as "d, 0"
1013      short Imm;
1014      if (isIntS16Immediate(CN, Imm)) {
1015        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1016        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1017        return true;
1018      }
1019
1020      // Fold the low-part of 32-bit absolute addresses into addr mode.
1021      if (CN->getValueType(0) == MVT::i32 ||
1022          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1023        int Addr = (int)CN->getZExtValue();
1024
1025        // Otherwise, break this down into an LIS + disp.
1026        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1027        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1028        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1029        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1030        return true;
1031      }
1032    }
1033  }
1034
1035  Disp = DAG.getTargetConstant(0, getPointerTy());
1036  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1037    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1038  else
1039    Base = N;
1040  return true;      // [r+0]
1041}
1042
1043
1044/// getPreIndexedAddressParts - returns true by value, base pointer and
1045/// offset pointer and addressing mode by reference if the node's address
1046/// can be legally represented as pre-indexed load / store address.
1047bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1048                                                  SDValue &Offset,
1049                                                  ISD::MemIndexedMode &AM,
1050                                                  SelectionDAG &DAG) const {
1051  // Disabled by default for now.
1052  if (!EnablePPCPreinc) return false;
1053
1054  SDValue Ptr;
1055  EVT VT;
1056  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1057    Ptr = LD->getBasePtr();
1058    VT = LD->getMemoryVT();
1059
1060  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1061    ST = ST;
1062    Ptr = ST->getBasePtr();
1063    VT  = ST->getMemoryVT();
1064  } else
1065    return false;
1066
1067  // PowerPC doesn't have preinc load/store instructions for vectors.
1068  if (VT.isVector())
1069    return false;
1070
1071  // TODO: Check reg+reg first.
1072
1073  // LDU/STU use reg+imm*4, others use reg+imm.
1074  if (VT != MVT::i64) {
1075    // reg + imm
1076    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1077      return false;
1078  } else {
1079    // reg + imm * 4.
1080    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1081      return false;
1082  }
1083
1084  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1085    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1086    // sext i32 to i64 when addr mode is r+i.
1087    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1088        LD->getExtensionType() == ISD::SEXTLOAD &&
1089        isa<ConstantSDNode>(Offset))
1090      return false;
1091  }
1092
1093  AM = ISD::PRE_INC;
1094  return true;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098//  LowerOperation implementation
1099//===----------------------------------------------------------------------===//
1100
1101SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1102                                             SelectionDAG &DAG) const {
1103  EVT PtrVT = Op.getValueType();
1104  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1105  const Constant *C = CP->getConstVal();
1106  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1107  SDValue Zero = DAG.getConstant(0, PtrVT);
1108  // FIXME there isn't really any debug info here
1109  DebugLoc dl = Op.getDebugLoc();
1110
1111  const TargetMachine &TM = DAG.getTarget();
1112
1113  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1114  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1115
1116  // If this is a non-darwin platform, we don't support non-static relo models
1117  // yet.
1118  if (TM.getRelocationModel() == Reloc::Static ||
1119      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1120    // Generate non-pic code that has direct accesses to the constant pool.
1121    // The address of the global is just (hi(&g)+lo(&g)).
1122    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1123  }
1124
1125  if (TM.getRelocationModel() == Reloc::PIC_) {
1126    // With PIC, the first instruction is actually "GR+hi(&G)".
1127    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1128                     DAG.getNode(PPCISD::GlobalBaseReg,
1129                                 DebugLoc(), PtrVT), Hi);
1130  }
1131
1132  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1133  return Lo;
1134}
1135
1136SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1137  EVT PtrVT = Op.getValueType();
1138  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1139  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1140  SDValue Zero = DAG.getConstant(0, PtrVT);
1141  // FIXME there isn't really any debug loc here
1142  DebugLoc dl = Op.getDebugLoc();
1143
1144  const TargetMachine &TM = DAG.getTarget();
1145
1146  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1147  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1148
1149  // If this is a non-darwin platform, we don't support non-static relo models
1150  // yet.
1151  if (TM.getRelocationModel() == Reloc::Static ||
1152      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1153    // Generate non-pic code that has direct accesses to the constant pool.
1154    // The address of the global is just (hi(&g)+lo(&g)).
1155    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1156  }
1157
1158  if (TM.getRelocationModel() == Reloc::PIC_) {
1159    // With PIC, the first instruction is actually "GR+hi(&G)".
1160    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1161                     DAG.getNode(PPCISD::GlobalBaseReg,
1162                                 DebugLoc(), PtrVT), Hi);
1163  }
1164
1165  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1166  return Lo;
1167}
1168
1169SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1170                                                 SelectionDAG &DAG) const {
1171  llvm_unreachable("TLS not implemented for PPC.");
1172  return SDValue(); // Not reached
1173}
1174
1175SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1176                                             SelectionDAG &DAG) const {
1177  EVT PtrVT = Op.getValueType();
1178  DebugLoc DL = Op.getDebugLoc();
1179
1180  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1181  SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1182  SDValue Zero = DAG.getConstant(0, PtrVT);
1183  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1184  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1185
1186  // If this is a non-darwin platform, we don't support non-static relo models
1187  // yet.
1188  const TargetMachine &TM = DAG.getTarget();
1189  if (TM.getRelocationModel() == Reloc::Static ||
1190      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1191    // Generate non-pic code that has direct accesses to globals.
1192    // The address of the global is just (hi(&g)+lo(&g)).
1193    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1194  }
1195
1196  if (TM.getRelocationModel() == Reloc::PIC_) {
1197    // With PIC, the first instruction is actually "GR+hi(&G)".
1198    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1199                     DAG.getNode(PPCISD::GlobalBaseReg,
1200                                 DebugLoc(), PtrVT), Hi);
1201  }
1202
1203  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1204}
1205
1206SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1207                                              SelectionDAG &DAG) const {
1208  EVT PtrVT = Op.getValueType();
1209  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1210  // FIXME there isn't really any debug info here
1211  DebugLoc dl = GSDN->getDebugLoc();
1212  const GlobalValue *GV = GSDN->getGlobal();
1213  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, GSDN->getOffset());
1214  SDValue Zero = DAG.getConstant(0, PtrVT);
1215
1216  const TargetMachine &TM = DAG.getTarget();
1217
1218  // 64-bit SVR4 ABI code is always position-independent.
1219  // The actual address of the GlobalValue is stored in the TOC.
1220  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1221    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1222                       DAG.getRegister(PPC::X2, MVT::i64));
1223  }
1224
1225  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1226  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1227
1228  // If this is a non-darwin platform, we don't support non-static relo models
1229  // yet.
1230  if (TM.getRelocationModel() == Reloc::Static ||
1231      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1232    // Generate non-pic code that has direct accesses to globals.
1233    // The address of the global is just (hi(&g)+lo(&g)).
1234    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1235  }
1236
1237  if (TM.getRelocationModel() == Reloc::PIC_) {
1238    // With PIC, the first instruction is actually "GR+hi(&G)".
1239    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1240                     DAG.getNode(PPCISD::GlobalBaseReg,
1241                                 DebugLoc(), PtrVT), Hi);
1242  }
1243
1244  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1245
1246  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1247    return Lo;
1248
1249  // If the global is weak or external, we have to go through the lazy
1250  // resolution stub.
1251  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, MachinePointerInfo(),
1252                     false, false, 0);
1253}
1254
1255SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1256  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1257  DebugLoc dl = Op.getDebugLoc();
1258
1259  // If we're comparing for equality to zero, expose the fact that this is
1260  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1261  // fold the new nodes.
1262  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1263    if (C->isNullValue() && CC == ISD::SETEQ) {
1264      EVT VT = Op.getOperand(0).getValueType();
1265      SDValue Zext = Op.getOperand(0);
1266      if (VT.bitsLT(MVT::i32)) {
1267        VT = MVT::i32;
1268        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1269      }
1270      unsigned Log2b = Log2_32(VT.getSizeInBits());
1271      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1272      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1273                                DAG.getConstant(Log2b, MVT::i32));
1274      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1275    }
1276    // Leave comparisons against 0 and -1 alone for now, since they're usually
1277    // optimized.  FIXME: revisit this when we can custom lower all setcc
1278    // optimizations.
1279    if (C->isAllOnesValue() || C->isNullValue())
1280      return SDValue();
1281  }
1282
1283  // If we have an integer seteq/setne, turn it into a compare against zero
1284  // by xor'ing the rhs with the lhs, which is faster than setting a
1285  // condition register, reading it back out, and masking the correct bit.  The
1286  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1287  // the result to other bit-twiddling opportunities.
1288  EVT LHSVT = Op.getOperand(0).getValueType();
1289  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1290    EVT VT = Op.getValueType();
1291    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1292                                Op.getOperand(1));
1293    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1294  }
1295  return SDValue();
1296}
1297
1298SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1299                                      const PPCSubtarget &Subtarget) const {
1300
1301  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1302  return SDValue(); // Not reached
1303}
1304
1305SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1306                                           SelectionDAG &DAG) const {
1307  SDValue Chain = Op.getOperand(0);
1308  SDValue Trmp = Op.getOperand(1); // trampoline
1309  SDValue FPtr = Op.getOperand(2); // nested function
1310  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1311  DebugLoc dl = Op.getDebugLoc();
1312
1313  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1314  bool isPPC64 = (PtrVT == MVT::i64);
1315  const Type *IntPtrTy =
1316    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1317                                                             *DAG.getContext());
1318
1319  TargetLowering::ArgListTy Args;
1320  TargetLowering::ArgListEntry Entry;
1321
1322  Entry.Ty = IntPtrTy;
1323  Entry.Node = Trmp; Args.push_back(Entry);
1324
1325  // TrampSize == (isPPC64 ? 48 : 40);
1326  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1327                               isPPC64 ? MVT::i64 : MVT::i32);
1328  Args.push_back(Entry);
1329
1330  Entry.Node = FPtr; Args.push_back(Entry);
1331  Entry.Node = Nest; Args.push_back(Entry);
1332
1333  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1334  std::pair<SDValue, SDValue> CallResult =
1335    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1336                false, false, false, false, 0, CallingConv::C, false,
1337                /*isReturnValueUsed=*/true,
1338                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1339                Args, DAG, dl);
1340
1341  SDValue Ops[] =
1342    { CallResult.first, CallResult.second };
1343
1344  return DAG.getMergeValues(Ops, 2, dl);
1345}
1346
1347SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1348                                        const PPCSubtarget &Subtarget) const {
1349  MachineFunction &MF = DAG.getMachineFunction();
1350  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1351
1352  DebugLoc dl = Op.getDebugLoc();
1353
1354  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1355    // vastart just stores the address of the VarArgsFrameIndex slot into the
1356    // memory location argument.
1357    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1358    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1359    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1360    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1361                        MachinePointerInfo(SV),
1362                        false, false, 0);
1363  }
1364
1365  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1366  // We suppose the given va_list is already allocated.
1367  //
1368  // typedef struct {
1369  //  char gpr;     /* index into the array of 8 GPRs
1370  //                 * stored in the register save area
1371  //                 * gpr=0 corresponds to r3,
1372  //                 * gpr=1 to r4, etc.
1373  //                 */
1374  //  char fpr;     /* index into the array of 8 FPRs
1375  //                 * stored in the register save area
1376  //                 * fpr=0 corresponds to f1,
1377  //                 * fpr=1 to f2, etc.
1378  //                 */
1379  //  char *overflow_arg_area;
1380  //                /* location on stack that holds
1381  //                 * the next overflow argument
1382  //                 */
1383  //  char *reg_save_area;
1384  //               /* where r3:r10 and f1:f8 (if saved)
1385  //                * are stored
1386  //                */
1387  // } va_list[1];
1388
1389
1390  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1391  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1392
1393
1394  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1395
1396  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1397                                            PtrVT);
1398  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1399                                 PtrVT);
1400
1401  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1402  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1403
1404  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1405  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1406
1407  uint64_t FPROffset = 1;
1408  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1409
1410  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1411
1412  // Store first byte : number of int regs
1413  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1414                                         Op.getOperand(1),
1415                                         MachinePointerInfo(SV),
1416                                         MVT::i8, false, false, 0);
1417  uint64_t nextOffset = FPROffset;
1418  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1419                                  ConstFPROffset);
1420
1421  // Store second byte : number of float regs
1422  SDValue secondStore =
1423    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1424                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1425                      false, false, 0);
1426  nextOffset += StackOffset;
1427  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1428
1429  // Store second word : arguments given on stack
1430  SDValue thirdStore =
1431    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1432                 MachinePointerInfo(SV, nextOffset),
1433                 false, false, 0);
1434  nextOffset += FrameOffset;
1435  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1436
1437  // Store third word : arguments given in registers
1438  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1439                      MachinePointerInfo(SV, nextOffset),
1440                      false, false, 0);
1441
1442}
1443
1444#include "PPCGenCallingConv.inc"
1445
1446static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1447                                     CCValAssign::LocInfo &LocInfo,
1448                                     ISD::ArgFlagsTy &ArgFlags,
1449                                     CCState &State) {
1450  return true;
1451}
1452
1453static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1454                                            EVT &LocVT,
1455                                            CCValAssign::LocInfo &LocInfo,
1456                                            ISD::ArgFlagsTy &ArgFlags,
1457                                            CCState &State) {
1458  static const unsigned ArgRegs[] = {
1459    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1460    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1461  };
1462  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1463
1464  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1465
1466  // Skip one register if the first unallocated register has an even register
1467  // number and there are still argument registers available which have not been
1468  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1469  // need to skip a register if RegNum is odd.
1470  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1471    State.AllocateReg(ArgRegs[RegNum]);
1472  }
1473
1474  // Always return false here, as this function only makes sure that the first
1475  // unallocated register has an odd register number and does not actually
1476  // allocate a register for the current argument.
1477  return false;
1478}
1479
1480static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1481                                              EVT &LocVT,
1482                                              CCValAssign::LocInfo &LocInfo,
1483                                              ISD::ArgFlagsTy &ArgFlags,
1484                                              CCState &State) {
1485  static const unsigned ArgRegs[] = {
1486    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1487    PPC::F8
1488  };
1489
1490  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1491
1492  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1493
1494  // If there is only one Floating-point register left we need to put both f64
1495  // values of a split ppc_fp128 value on the stack.
1496  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1497    State.AllocateReg(ArgRegs[RegNum]);
1498  }
1499
1500  // Always return false here, as this function only makes sure that the two f64
1501  // values a ppc_fp128 value is split into are both passed in registers or both
1502  // passed on the stack and does not actually allocate a register for the
1503  // current argument.
1504  return false;
1505}
1506
1507/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1508/// on Darwin.
1509static const unsigned *GetFPR() {
1510  static const unsigned FPR[] = {
1511    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1512    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1513  };
1514
1515  return FPR;
1516}
1517
1518/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1519/// the stack.
1520static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1521                                       unsigned PtrByteSize) {
1522  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1523  if (Flags.isByVal())
1524    ArgSize = Flags.getByValSize();
1525  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1526
1527  return ArgSize;
1528}
1529
1530SDValue
1531PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1532                                        CallingConv::ID CallConv, bool isVarArg,
1533                                        const SmallVectorImpl<ISD::InputArg>
1534                                          &Ins,
1535                                        DebugLoc dl, SelectionDAG &DAG,
1536                                        SmallVectorImpl<SDValue> &InVals)
1537                                          const {
1538  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1539    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1540                                     dl, DAG, InVals);
1541  } else {
1542    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1543                                       dl, DAG, InVals);
1544  }
1545}
1546
1547SDValue
1548PPCTargetLowering::LowerFormalArguments_SVR4(
1549                                      SDValue Chain,
1550                                      CallingConv::ID CallConv, bool isVarArg,
1551                                      const SmallVectorImpl<ISD::InputArg>
1552                                        &Ins,
1553                                      DebugLoc dl, SelectionDAG &DAG,
1554                                      SmallVectorImpl<SDValue> &InVals) const {
1555
1556  // 32-bit SVR4 ABI Stack Frame Layout:
1557  //              +-----------------------------------+
1558  //        +-->  |            Back chain             |
1559  //        |     +-----------------------------------+
1560  //        |     | Floating-point register save area |
1561  //        |     +-----------------------------------+
1562  //        |     |    General register save area     |
1563  //        |     +-----------------------------------+
1564  //        |     |          CR save word             |
1565  //        |     +-----------------------------------+
1566  //        |     |         VRSAVE save word          |
1567  //        |     +-----------------------------------+
1568  //        |     |         Alignment padding         |
1569  //        |     +-----------------------------------+
1570  //        |     |     Vector register save area     |
1571  //        |     +-----------------------------------+
1572  //        |     |       Local variable space        |
1573  //        |     +-----------------------------------+
1574  //        |     |        Parameter list area        |
1575  //        |     +-----------------------------------+
1576  //        |     |           LR save word            |
1577  //        |     +-----------------------------------+
1578  // SP-->  +---  |            Back chain             |
1579  //              +-----------------------------------+
1580  //
1581  // Specifications:
1582  //   System V Application Binary Interface PowerPC Processor Supplement
1583  //   AltiVec Technology Programming Interface Manual
1584
1585  MachineFunction &MF = DAG.getMachineFunction();
1586  MachineFrameInfo *MFI = MF.getFrameInfo();
1587  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1588
1589  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1590  // Potential tail calls could cause overwriting of argument stack slots.
1591  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1592  unsigned PtrByteSize = 4;
1593
1594  // Assign locations to all of the incoming arguments.
1595  SmallVector<CCValAssign, 16> ArgLocs;
1596  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1597                 *DAG.getContext());
1598
1599  // Reserve space for the linkage area on the stack.
1600  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1601
1602  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1603
1604  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1605    CCValAssign &VA = ArgLocs[i];
1606
1607    // Arguments stored in registers.
1608    if (VA.isRegLoc()) {
1609      TargetRegisterClass *RC;
1610      EVT ValVT = VA.getValVT();
1611
1612      switch (ValVT.getSimpleVT().SimpleTy) {
1613        default:
1614          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1615        case MVT::i32:
1616          RC = PPC::GPRCRegisterClass;
1617          break;
1618        case MVT::f32:
1619          RC = PPC::F4RCRegisterClass;
1620          break;
1621        case MVT::f64:
1622          RC = PPC::F8RCRegisterClass;
1623          break;
1624        case MVT::v16i8:
1625        case MVT::v8i16:
1626        case MVT::v4i32:
1627        case MVT::v4f32:
1628          RC = PPC::VRRCRegisterClass;
1629          break;
1630      }
1631
1632      // Transform the arguments stored in physical registers into virtual ones.
1633      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1634      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1635
1636      InVals.push_back(ArgValue);
1637    } else {
1638      // Argument stored in memory.
1639      assert(VA.isMemLoc());
1640
1641      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1642      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1643                                      isImmutable);
1644
1645      // Create load nodes to retrieve arguments from the stack.
1646      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1647      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1648                                   MachinePointerInfo(),
1649                                   false, false, 0));
1650    }
1651  }
1652
1653  // Assign locations to all of the incoming aggregate by value arguments.
1654  // Aggregates passed by value are stored in the local variable space of the
1655  // caller's stack frame, right above the parameter list area.
1656  SmallVector<CCValAssign, 16> ByValArgLocs;
1657  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1658                      ByValArgLocs, *DAG.getContext());
1659
1660  // Reserve stack space for the allocations in CCInfo.
1661  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1662
1663  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1664
1665  // Area that is at least reserved in the caller of this function.
1666  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1667
1668  // Set the size that is at least reserved in caller of this function.  Tail
1669  // call optimized function's reserved stack space needs to be aligned so that
1670  // taking the difference between two stack areas will result in an aligned
1671  // stack.
1672  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1673
1674  MinReservedArea =
1675    std::max(MinReservedArea,
1676             PPCFrameInfo::getMinCallFrameSize(false, false));
1677
1678  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1679    getStackAlignment();
1680  unsigned AlignMask = TargetAlign-1;
1681  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1682
1683  FI->setMinReservedArea(MinReservedArea);
1684
1685  SmallVector<SDValue, 8> MemOps;
1686
1687  // If the function takes variable number of arguments, make a frame index for
1688  // the start of the first vararg value... for expansion of llvm.va_start.
1689  if (isVarArg) {
1690    static const unsigned GPArgRegs[] = {
1691      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1692      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1693    };
1694    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1695
1696    static const unsigned FPArgRegs[] = {
1697      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1698      PPC::F8
1699    };
1700    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1701
1702    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1703                                                          NumGPArgRegs));
1704    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1705                                                          NumFPArgRegs));
1706
1707    // Make room for NumGPArgRegs and NumFPArgRegs.
1708    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1709                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1710
1711    FuncInfo->setVarArgsStackOffset(
1712      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1713                             CCInfo.getNextStackOffset(), true));
1714
1715    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1716    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1717
1718    // The fixed integer arguments of a variadic function are stored to the
1719    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1720    // the result of va_next.
1721    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1722      // Get an existing live-in vreg, or add a new one.
1723      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1724      if (!VReg)
1725        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1726
1727      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1728      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1729                                   MachinePointerInfo(), false, false, 0);
1730      MemOps.push_back(Store);
1731      // Increment the address by four for the next argument to store
1732      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1733      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1734    }
1735
1736    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1737    // is set.
1738    // The double arguments are stored to the VarArgsFrameIndex
1739    // on the stack.
1740    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1741      // Get an existing live-in vreg, or add a new one.
1742      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1743      if (!VReg)
1744        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1745
1746      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1747      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1748                                   MachinePointerInfo(), false, false, 0);
1749      MemOps.push_back(Store);
1750      // Increment the address by eight for the next argument to store
1751      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1752                                         PtrVT);
1753      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1754    }
1755  }
1756
1757  if (!MemOps.empty())
1758    Chain = DAG.getNode(ISD::TokenFactor, dl,
1759                        MVT::Other, &MemOps[0], MemOps.size());
1760
1761  return Chain;
1762}
1763
1764SDValue
1765PPCTargetLowering::LowerFormalArguments_Darwin(
1766                                      SDValue Chain,
1767                                      CallingConv::ID CallConv, bool isVarArg,
1768                                      const SmallVectorImpl<ISD::InputArg>
1769                                        &Ins,
1770                                      DebugLoc dl, SelectionDAG &DAG,
1771                                      SmallVectorImpl<SDValue> &InVals) const {
1772  // TODO: add description of PPC stack frame format, or at least some docs.
1773  //
1774  MachineFunction &MF = DAG.getMachineFunction();
1775  MachineFrameInfo *MFI = MF.getFrameInfo();
1776  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1777
1778  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1779  bool isPPC64 = PtrVT == MVT::i64;
1780  // Potential tail calls could cause overwriting of argument stack slots.
1781  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1782  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1783
1784  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1785  // Area that is at least reserved in caller of this function.
1786  unsigned MinReservedArea = ArgOffset;
1787
1788  static const unsigned GPR_32[] = {           // 32-bit registers.
1789    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1790    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1791  };
1792  static const unsigned GPR_64[] = {           // 64-bit registers.
1793    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1794    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1795  };
1796
1797  static const unsigned *FPR = GetFPR();
1798
1799  static const unsigned VR[] = {
1800    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1801    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1802  };
1803
1804  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1805  const unsigned Num_FPR_Regs = 13;
1806  const unsigned Num_VR_Regs  = array_lengthof( VR);
1807
1808  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1809
1810  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1811
1812  // In 32-bit non-varargs functions, the stack space for vectors is after the
1813  // stack space for non-vectors.  We do not use this space unless we have
1814  // too many vectors to fit in registers, something that only occurs in
1815  // constructed examples:), but we have to walk the arglist to figure
1816  // that out...for the pathological case, compute VecArgOffset as the
1817  // start of the vector parameter area.  Computing VecArgOffset is the
1818  // entire point of the following loop.
1819  unsigned VecArgOffset = ArgOffset;
1820  if (!isVarArg && !isPPC64) {
1821    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1822         ++ArgNo) {
1823      EVT ObjectVT = Ins[ArgNo].VT;
1824      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1825      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1826
1827      if (Flags.isByVal()) {
1828        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1829        ObjSize = Flags.getByValSize();
1830        unsigned ArgSize =
1831                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1832        VecArgOffset += ArgSize;
1833        continue;
1834      }
1835
1836      switch(ObjectVT.getSimpleVT().SimpleTy) {
1837      default: llvm_unreachable("Unhandled argument type!");
1838      case MVT::i32:
1839      case MVT::f32:
1840        VecArgOffset += isPPC64 ? 8 : 4;
1841        break;
1842      case MVT::i64:  // PPC64
1843      case MVT::f64:
1844        VecArgOffset += 8;
1845        break;
1846      case MVT::v4f32:
1847      case MVT::v4i32:
1848      case MVT::v8i16:
1849      case MVT::v16i8:
1850        // Nothing to do, we're only looking at Nonvector args here.
1851        break;
1852      }
1853    }
1854  }
1855  // We've found where the vector parameter area in memory is.  Skip the
1856  // first 12 parameters; these don't use that memory.
1857  VecArgOffset = ((VecArgOffset+15)/16)*16;
1858  VecArgOffset += 12*16;
1859
1860  // Add DAG nodes to load the arguments or copy them out of registers.  On
1861  // entry to a function on PPC, the arguments start after the linkage area,
1862  // although the first ones are often in registers.
1863
1864  SmallVector<SDValue, 8> MemOps;
1865  unsigned nAltivecParamsAtEnd = 0;
1866  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1867    SDValue ArgVal;
1868    bool needsLoad = false;
1869    EVT ObjectVT = Ins[ArgNo].VT;
1870    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1871    unsigned ArgSize = ObjSize;
1872    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1873
1874    unsigned CurArgOffset = ArgOffset;
1875
1876    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1877    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1878        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1879      if (isVarArg || isPPC64) {
1880        MinReservedArea = ((MinReservedArea+15)/16)*16;
1881        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1882                                                  Flags,
1883                                                  PtrByteSize);
1884      } else  nAltivecParamsAtEnd++;
1885    } else
1886      // Calculate min reserved area.
1887      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1888                                                Flags,
1889                                                PtrByteSize);
1890
1891    // FIXME the codegen can be much improved in some cases.
1892    // We do not have to keep everything in memory.
1893    if (Flags.isByVal()) {
1894      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1895      ObjSize = Flags.getByValSize();
1896      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1897      // Objects of size 1 and 2 are right justified, everything else is
1898      // left justified.  This means the memory address is adjusted forwards.
1899      if (ObjSize==1 || ObjSize==2) {
1900        CurArgOffset = CurArgOffset + (4 - ObjSize);
1901      }
1902      // The value of the object is its address.
1903      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1904      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1905      InVals.push_back(FIN);
1906      if (ObjSize==1 || ObjSize==2) {
1907        if (GPR_idx != Num_GPR_Regs) {
1908          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1909          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1910          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1911                                            MachinePointerInfo(),
1912                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1913                                            false, false, 0);
1914          MemOps.push_back(Store);
1915          ++GPR_idx;
1916        }
1917
1918        ArgOffset += PtrByteSize;
1919
1920        continue;
1921      }
1922      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1923        // Store whatever pieces of the object are in registers
1924        // to memory.  ArgVal will be address of the beginning of
1925        // the object.
1926        if (GPR_idx != Num_GPR_Regs) {
1927          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1928          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1929          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1930          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1931          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1932                                       MachinePointerInfo(),
1933                                       false, false, 0);
1934          MemOps.push_back(Store);
1935          ++GPR_idx;
1936          ArgOffset += PtrByteSize;
1937        } else {
1938          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1939          break;
1940        }
1941      }
1942      continue;
1943    }
1944
1945    switch (ObjectVT.getSimpleVT().SimpleTy) {
1946    default: llvm_unreachable("Unhandled argument type!");
1947    case MVT::i32:
1948      if (!isPPC64) {
1949        if (GPR_idx != Num_GPR_Regs) {
1950          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1951          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1952          ++GPR_idx;
1953        } else {
1954          needsLoad = true;
1955          ArgSize = PtrByteSize;
1956        }
1957        // All int arguments reserve stack space in the Darwin ABI.
1958        ArgOffset += PtrByteSize;
1959        break;
1960      }
1961      // FALLTHROUGH
1962    case MVT::i64:  // PPC64
1963      if (GPR_idx != Num_GPR_Regs) {
1964        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1965        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1966
1967        if (ObjectVT == MVT::i32) {
1968          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1969          // value to MVT::i64 and then truncate to the correct register size.
1970          if (Flags.isSExt())
1971            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1972                                 DAG.getValueType(ObjectVT));
1973          else if (Flags.isZExt())
1974            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1975                                 DAG.getValueType(ObjectVT));
1976
1977          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1978        }
1979
1980        ++GPR_idx;
1981      } else {
1982        needsLoad = true;
1983        ArgSize = PtrByteSize;
1984      }
1985      // All int arguments reserve stack space in the Darwin ABI.
1986      ArgOffset += 8;
1987      break;
1988
1989    case MVT::f32:
1990    case MVT::f64:
1991      // Every 4 bytes of argument space consumes one of the GPRs available for
1992      // argument passing.
1993      if (GPR_idx != Num_GPR_Regs) {
1994        ++GPR_idx;
1995        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1996          ++GPR_idx;
1997      }
1998      if (FPR_idx != Num_FPR_Regs) {
1999        unsigned VReg;
2000
2001        if (ObjectVT == MVT::f32)
2002          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2003        else
2004          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2005
2006        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2007        ++FPR_idx;
2008      } else {
2009        needsLoad = true;
2010      }
2011
2012      // All FP arguments reserve stack space in the Darwin ABI.
2013      ArgOffset += isPPC64 ? 8 : ObjSize;
2014      break;
2015    case MVT::v4f32:
2016    case MVT::v4i32:
2017    case MVT::v8i16:
2018    case MVT::v16i8:
2019      // Note that vector arguments in registers don't reserve stack space,
2020      // except in varargs functions.
2021      if (VR_idx != Num_VR_Regs) {
2022        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2023        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2024        if (isVarArg) {
2025          while ((ArgOffset % 16) != 0) {
2026            ArgOffset += PtrByteSize;
2027            if (GPR_idx != Num_GPR_Regs)
2028              GPR_idx++;
2029          }
2030          ArgOffset += 16;
2031          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2032        }
2033        ++VR_idx;
2034      } else {
2035        if (!isVarArg && !isPPC64) {
2036          // Vectors go after all the nonvectors.
2037          CurArgOffset = VecArgOffset;
2038          VecArgOffset += 16;
2039        } else {
2040          // Vectors are aligned.
2041          ArgOffset = ((ArgOffset+15)/16)*16;
2042          CurArgOffset = ArgOffset;
2043          ArgOffset += 16;
2044        }
2045        needsLoad = true;
2046      }
2047      break;
2048    }
2049
2050    // We need to load the argument to a virtual register if we determined above
2051    // that we ran out of physical registers of the appropriate type.
2052    if (needsLoad) {
2053      int FI = MFI->CreateFixedObject(ObjSize,
2054                                      CurArgOffset + (ArgSize - ObjSize),
2055                                      isImmutable);
2056      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2057      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2058                           false, false, 0);
2059    }
2060
2061    InVals.push_back(ArgVal);
2062  }
2063
2064  // Set the size that is at least reserved in caller of this function.  Tail
2065  // call optimized function's reserved stack space needs to be aligned so that
2066  // taking the difference between two stack areas will result in an aligned
2067  // stack.
2068  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2069  // Add the Altivec parameters at the end, if needed.
2070  if (nAltivecParamsAtEnd) {
2071    MinReservedArea = ((MinReservedArea+15)/16)*16;
2072    MinReservedArea += 16*nAltivecParamsAtEnd;
2073  }
2074  MinReservedArea =
2075    std::max(MinReservedArea,
2076             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2077  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2078    getStackAlignment();
2079  unsigned AlignMask = TargetAlign-1;
2080  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2081  FI->setMinReservedArea(MinReservedArea);
2082
2083  // If the function takes variable number of arguments, make a frame index for
2084  // the start of the first vararg value... for expansion of llvm.va_start.
2085  if (isVarArg) {
2086    int Depth = ArgOffset;
2087
2088    FuncInfo->setVarArgsFrameIndex(
2089      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2090                             Depth, true));
2091    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2092
2093    // If this function is vararg, store any remaining integer argument regs
2094    // to their spots on the stack so that they may be loaded by deferencing the
2095    // result of va_next.
2096    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2097      unsigned VReg;
2098
2099      if (isPPC64)
2100        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2101      else
2102        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2103
2104      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2105      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2106                                   MachinePointerInfo(), false, false, 0);
2107      MemOps.push_back(Store);
2108      // Increment the address by four for the next argument to store
2109      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2110      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2111    }
2112  }
2113
2114  if (!MemOps.empty())
2115    Chain = DAG.getNode(ISD::TokenFactor, dl,
2116                        MVT::Other, &MemOps[0], MemOps.size());
2117
2118  return Chain;
2119}
2120
2121/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2122/// linkage area for the Darwin ABI.
2123static unsigned
2124CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2125                                     bool isPPC64,
2126                                     bool isVarArg,
2127                                     unsigned CC,
2128                                     const SmallVectorImpl<ISD::OutputArg>
2129                                       &Outs,
2130                                     const SmallVectorImpl<SDValue> &OutVals,
2131                                     unsigned &nAltivecParamsAtEnd) {
2132  // Count how many bytes are to be pushed on the stack, including the linkage
2133  // area, and parameter passing area.  We start with 24/48 bytes, which is
2134  // prereserved space for [SP][CR][LR][3 x unused].
2135  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2136  unsigned NumOps = Outs.size();
2137  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2138
2139  // Add up all the space actually used.
2140  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2141  // they all go in registers, but we must reserve stack space for them for
2142  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2143  // assigned stack space in order, with padding so Altivec parameters are
2144  // 16-byte aligned.
2145  nAltivecParamsAtEnd = 0;
2146  for (unsigned i = 0; i != NumOps; ++i) {
2147    SDValue Arg = OutVals[i];
2148    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2149    EVT ArgVT = Outs[i].VT;
2150    // Varargs Altivec parameters are padded to a 16 byte boundary.
2151    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2152        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2153      if (!isVarArg && !isPPC64) {
2154        // Non-varargs Altivec parameters go after all the non-Altivec
2155        // parameters; handle those later so we know how much padding we need.
2156        nAltivecParamsAtEnd++;
2157        continue;
2158      }
2159      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2160      NumBytes = ((NumBytes+15)/16)*16;
2161    }
2162    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2163  }
2164
2165   // Allow for Altivec parameters at the end, if needed.
2166  if (nAltivecParamsAtEnd) {
2167    NumBytes = ((NumBytes+15)/16)*16;
2168    NumBytes += 16*nAltivecParamsAtEnd;
2169  }
2170
2171  // The prolog code of the callee may store up to 8 GPR argument registers to
2172  // the stack, allowing va_start to index over them in memory if its varargs.
2173  // Because we cannot tell if this is needed on the caller side, we have to
2174  // conservatively assume that it is needed.  As such, make sure we have at
2175  // least enough stack space for the caller to store the 8 GPRs.
2176  NumBytes = std::max(NumBytes,
2177                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2178
2179  // Tail call needs the stack to be aligned.
2180  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2181    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2182      getStackAlignment();
2183    unsigned AlignMask = TargetAlign-1;
2184    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2185  }
2186
2187  return NumBytes;
2188}
2189
2190/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2191/// adjusted to accomodate the arguments for the tailcall.
2192static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2193                                   unsigned ParamSize) {
2194
2195  if (!isTailCall) return 0;
2196
2197  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2198  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2199  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2200  // Remember only if the new adjustement is bigger.
2201  if (SPDiff < FI->getTailCallSPDelta())
2202    FI->setTailCallSPDelta(SPDiff);
2203
2204  return SPDiff;
2205}
2206
2207/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2208/// for tail call optimization. Targets which want to do tail call
2209/// optimization should implement this function.
2210bool
2211PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2212                                                     CallingConv::ID CalleeCC,
2213                                                     bool isVarArg,
2214                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2215                                                     SelectionDAG& DAG) const {
2216  if (!GuaranteedTailCallOpt)
2217    return false;
2218
2219  // Variable argument functions are not supported.
2220  if (isVarArg)
2221    return false;
2222
2223  MachineFunction &MF = DAG.getMachineFunction();
2224  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2225  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2226    // Functions containing by val parameters are not supported.
2227    for (unsigned i = 0; i != Ins.size(); i++) {
2228       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2229       if (Flags.isByVal()) return false;
2230    }
2231
2232    // Non PIC/GOT  tail calls are supported.
2233    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2234      return true;
2235
2236    // At the moment we can only do local tail calls (in same module, hidden
2237    // or protected) if we are generating PIC.
2238    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2239      return G->getGlobal()->hasHiddenVisibility()
2240          || G->getGlobal()->hasProtectedVisibility();
2241  }
2242
2243  return false;
2244}
2245
2246/// isCallCompatibleAddress - Return the immediate to use if the specified
2247/// 32-bit value is representable in the immediate field of a BxA instruction.
2248static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2249  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2250  if (!C) return 0;
2251
2252  int Addr = C->getZExtValue();
2253  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2254      (Addr << 6 >> 6) != Addr)
2255    return 0;  // Top 6 bits have to be sext of immediate.
2256
2257  return DAG.getConstant((int)C->getZExtValue() >> 2,
2258                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2259}
2260
2261namespace {
2262
2263struct TailCallArgumentInfo {
2264  SDValue Arg;
2265  SDValue FrameIdxOp;
2266  int       FrameIdx;
2267
2268  TailCallArgumentInfo() : FrameIdx(0) {}
2269};
2270
2271}
2272
2273/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2274static void
2275StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2276                                           SDValue Chain,
2277                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2278                   SmallVector<SDValue, 8> &MemOpChains,
2279                   DebugLoc dl) {
2280  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2281    SDValue Arg = TailCallArgs[i].Arg;
2282    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2283    int FI = TailCallArgs[i].FrameIdx;
2284    // Store relative to framepointer.
2285    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2286                                       MachinePointerInfo::getFixedStack(FI),
2287                                       false, false, 0));
2288  }
2289}
2290
2291/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2292/// the appropriate stack slot for the tail call optimized function call.
2293static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2294                                               MachineFunction &MF,
2295                                               SDValue Chain,
2296                                               SDValue OldRetAddr,
2297                                               SDValue OldFP,
2298                                               int SPDiff,
2299                                               bool isPPC64,
2300                                               bool isDarwinABI,
2301                                               DebugLoc dl) {
2302  if (SPDiff) {
2303    // Calculate the new stack slot for the return address.
2304    int SlotSize = isPPC64 ? 8 : 4;
2305    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2306                                                                   isDarwinABI);
2307    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2308                                                          NewRetAddrLoc, true);
2309    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2310    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2311    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2312                         MachinePointerInfo::getFixedStack(NewRetAddr),
2313                         false, false, 0);
2314
2315    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2316    // slot as the FP is never overwritten.
2317    if (isDarwinABI) {
2318      int NewFPLoc =
2319        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2320      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2321                                                          true);
2322      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2323      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2324                           MachinePointerInfo::getFixedStack(NewFPIdx),
2325                           false, false, 0);
2326    }
2327  }
2328  return Chain;
2329}
2330
2331/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2332/// the position of the argument.
2333static void
2334CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2335                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2336                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2337  int Offset = ArgOffset + SPDiff;
2338  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2339  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2340  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2341  SDValue FIN = DAG.getFrameIndex(FI, VT);
2342  TailCallArgumentInfo Info;
2343  Info.Arg = Arg;
2344  Info.FrameIdxOp = FIN;
2345  Info.FrameIdx = FI;
2346  TailCallArguments.push_back(Info);
2347}
2348
2349/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2350/// stack slot. Returns the chain as result and the loaded frame pointers in
2351/// LROpOut/FPOpout. Used when tail calling.
2352SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2353                                                        int SPDiff,
2354                                                        SDValue Chain,
2355                                                        SDValue &LROpOut,
2356                                                        SDValue &FPOpOut,
2357                                                        bool isDarwinABI,
2358                                                        DebugLoc dl) const {
2359  if (SPDiff) {
2360    // Load the LR and FP stack slot for later adjusting.
2361    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2362    LROpOut = getReturnAddrFrameIndex(DAG);
2363    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2364                          false, false, 0);
2365    Chain = SDValue(LROpOut.getNode(), 1);
2366
2367    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2368    // slot as the FP is never overwritten.
2369    if (isDarwinABI) {
2370      FPOpOut = getFramePointerFrameIndex(DAG);
2371      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2372                            false, false, 0);
2373      Chain = SDValue(FPOpOut.getNode(), 1);
2374    }
2375  }
2376  return Chain;
2377}
2378
2379/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2380/// by "Src" to address "Dst" of size "Size".  Alignment information is
2381/// specified by the specific parameter attribute. The copy will be passed as
2382/// a byval function parameter.
2383/// Sometimes what we are copying is the end of a larger object, the part that
2384/// does not fit in registers.
2385static SDValue
2386CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2387                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2388                          DebugLoc dl) {
2389  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2390  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2391                       false, false, MachinePointerInfo(0),
2392                       MachinePointerInfo(0));
2393}
2394
2395/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2396/// tail calls.
2397static void
2398LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2399                 SDValue Arg, SDValue PtrOff, int SPDiff,
2400                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2401                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2402                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2403                 DebugLoc dl) {
2404  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2405  if (!isTailCall) {
2406    if (isVector) {
2407      SDValue StackPtr;
2408      if (isPPC64)
2409        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2410      else
2411        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2412      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2413                           DAG.getConstant(ArgOffset, PtrVT));
2414    }
2415    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2416                                       MachinePointerInfo(), false, false, 0));
2417  // Calculate and remember argument location.
2418  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2419                                  TailCallArguments);
2420}
2421
2422static
2423void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2424                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2425                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2426                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2427  MachineFunction &MF = DAG.getMachineFunction();
2428
2429  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2430  // might overwrite each other in case of tail call optimization.
2431  SmallVector<SDValue, 8> MemOpChains2;
2432  // Do not flag preceeding copytoreg stuff together with the following stuff.
2433  InFlag = SDValue();
2434  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2435                                    MemOpChains2, dl);
2436  if (!MemOpChains2.empty())
2437    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2438                        &MemOpChains2[0], MemOpChains2.size());
2439
2440  // Store the return address to the appropriate stack slot.
2441  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2442                                        isPPC64, isDarwinABI, dl);
2443
2444  // Emit callseq_end just before tailcall node.
2445  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2446                             DAG.getIntPtrConstant(0, true), InFlag);
2447  InFlag = Chain.getValue(1);
2448}
2449
2450static
2451unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2452                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2453                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2454                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2455                     bool isPPC64, bool isSVR4ABI) {
2456  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2457  NodeTys.push_back(MVT::Other);   // Returns a chain
2458  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2459
2460  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2461
2462  bool needIndirectCall = true;
2463  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2464    // If this is an absolute destination address, use the munged value.
2465    Callee = SDValue(Dest, 0);
2466    needIndirectCall = false;
2467  }
2468  // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2469  // Use indirect calls for ALL functions calls in JIT mode, since the
2470  // far-call stubs may be outside relocation limits for a BL instruction.
2471  if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2472    // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2473    // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2474    // node so that legalize doesn't hack it.
2475    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2476      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2477					  Callee.getValueType());
2478      needIndirectCall = false;
2479    }
2480  }
2481  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2482      Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
2483					   Callee.getValueType());
2484      needIndirectCall = false;
2485  }
2486  if (needIndirectCall) {
2487    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2488    // to do the call, we can't use PPCISD::CALL.
2489    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2490
2491    if (isSVR4ABI && isPPC64) {
2492      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2493      // entry point, but to the function descriptor (the function entry point
2494      // address is part of the function descriptor though).
2495      // The function descriptor is a three doubleword structure with the
2496      // following fields: function entry point, TOC base address and
2497      // environment pointer.
2498      // Thus for a call through a function pointer, the following actions need
2499      // to be performed:
2500      //   1. Save the TOC of the caller in the TOC save area of its stack
2501      //      frame (this is done in LowerCall_Darwin()).
2502      //   2. Load the address of the function entry point from the function
2503      //      descriptor.
2504      //   3. Load the TOC of the callee from the function descriptor into r2.
2505      //   4. Load the environment pointer from the function descriptor into
2506      //      r11.
2507      //   5. Branch to the function entry point address.
2508      //   6. On return of the callee, the TOC of the caller needs to be
2509      //      restored (this is done in FinishCall()).
2510      //
2511      // All those operations are flagged together to ensure that no other
2512      // operations can be scheduled in between. E.g. without flagging the
2513      // operations together, a TOC access in the caller could be scheduled
2514      // between the load of the callee TOC and the branch to the callee, which
2515      // results in the TOC access going through the TOC of the callee instead
2516      // of going through the TOC of the caller, which leads to incorrect code.
2517
2518      // Load the address of the function entry point from the function
2519      // descriptor.
2520      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2521      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2522                                        InFlag.getNode() ? 3 : 2);
2523      Chain = LoadFuncPtr.getValue(1);
2524      InFlag = LoadFuncPtr.getValue(2);
2525
2526      // Load environment pointer into r11.
2527      // Offset of the environment pointer within the function descriptor.
2528      SDValue PtrOff = DAG.getIntPtrConstant(16);
2529
2530      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2531      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2532                                       InFlag);
2533      Chain = LoadEnvPtr.getValue(1);
2534      InFlag = LoadEnvPtr.getValue(2);
2535
2536      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2537                                        InFlag);
2538      Chain = EnvVal.getValue(0);
2539      InFlag = EnvVal.getValue(1);
2540
2541      // Load TOC of the callee into r2. We are using a target-specific load
2542      // with r2 hard coded, because the result of a target-independent load
2543      // would never go directly into r2, since r2 is a reserved register (which
2544      // prevents the register allocator from allocating it), resulting in an
2545      // additional register being allocated and an unnecessary move instruction
2546      // being generated.
2547      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2548      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2549                                       Callee, InFlag);
2550      Chain = LoadTOCPtr.getValue(0);
2551      InFlag = LoadTOCPtr.getValue(1);
2552
2553      MTCTROps[0] = Chain;
2554      MTCTROps[1] = LoadFuncPtr;
2555      MTCTROps[2] = InFlag;
2556    }
2557
2558    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2559                        2 + (InFlag.getNode() != 0));
2560    InFlag = Chain.getValue(1);
2561
2562    NodeTys.clear();
2563    NodeTys.push_back(MVT::Other);
2564    NodeTys.push_back(MVT::Flag);
2565    Ops.push_back(Chain);
2566    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2567    Callee.setNode(0);
2568    // Add CTR register as callee so a bctr can be emitted later.
2569    if (isTailCall)
2570      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2571  }
2572
2573  // If this is a direct call, pass the chain and the callee.
2574  if (Callee.getNode()) {
2575    Ops.push_back(Chain);
2576    Ops.push_back(Callee);
2577  }
2578  // If this is a tail call add stack pointer delta.
2579  if (isTailCall)
2580    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2581
2582  // Add argument registers to the end of the list so that they are known live
2583  // into the call.
2584  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2585    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2586                                  RegsToPass[i].second.getValueType()));
2587
2588  return CallOpc;
2589}
2590
2591SDValue
2592PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2593                                   CallingConv::ID CallConv, bool isVarArg,
2594                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2595                                   DebugLoc dl, SelectionDAG &DAG,
2596                                   SmallVectorImpl<SDValue> &InVals) const {
2597
2598  SmallVector<CCValAssign, 16> RVLocs;
2599  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2600                    RVLocs, *DAG.getContext());
2601  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2602
2603  // Copy all of the result registers out of their specified physreg.
2604  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2605    CCValAssign &VA = RVLocs[i];
2606    EVT VT = VA.getValVT();
2607    assert(VA.isRegLoc() && "Can only return in registers!");
2608    Chain = DAG.getCopyFromReg(Chain, dl,
2609                               VA.getLocReg(), VT, InFlag).getValue(1);
2610    InVals.push_back(Chain.getValue(0));
2611    InFlag = Chain.getValue(2);
2612  }
2613
2614  return Chain;
2615}
2616
2617SDValue
2618PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2619                              bool isTailCall, bool isVarArg,
2620                              SelectionDAG &DAG,
2621                              SmallVector<std::pair<unsigned, SDValue>, 8>
2622                                &RegsToPass,
2623                              SDValue InFlag, SDValue Chain,
2624                              SDValue &Callee,
2625                              int SPDiff, unsigned NumBytes,
2626                              const SmallVectorImpl<ISD::InputArg> &Ins,
2627                              SmallVectorImpl<SDValue> &InVals) const {
2628  std::vector<EVT> NodeTys;
2629  SmallVector<SDValue, 8> Ops;
2630  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2631                                 isTailCall, RegsToPass, Ops, NodeTys,
2632                                 PPCSubTarget.isPPC64(),
2633                                 PPCSubTarget.isSVR4ABI());
2634
2635  // When performing tail call optimization the callee pops its arguments off
2636  // the stack. Account for this here so these bytes can be pushed back on in
2637  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2638  int BytesCalleePops =
2639    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2640
2641  if (InFlag.getNode())
2642    Ops.push_back(InFlag);
2643
2644  // Emit tail call.
2645  if (isTailCall) {
2646    // If this is the first return lowered for this function, add the regs
2647    // to the liveout set for the function.
2648    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2649      SmallVector<CCValAssign, 16> RVLocs;
2650      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2651                     *DAG.getContext());
2652      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2653      for (unsigned i = 0; i != RVLocs.size(); ++i)
2654        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2655    }
2656
2657    assert(((Callee.getOpcode() == ISD::Register &&
2658             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2659            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2660            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2661            isa<ConstantSDNode>(Callee)) &&
2662    "Expecting an global address, external symbol, absolute value or register");
2663
2664    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2665  }
2666
2667  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2668  InFlag = Chain.getValue(1);
2669
2670  // Add a NOP immediately after the branch instruction when using the 64-bit
2671  // SVR4 ABI. At link time, if caller and callee are in a different module and
2672  // thus have a different TOC, the call will be replaced with a call to a stub
2673  // function which saves the current TOC, loads the TOC of the callee and
2674  // branches to the callee. The NOP will be replaced with a load instruction
2675  // which restores the TOC of the caller from the TOC save slot of the current
2676  // stack frame. If caller and callee belong to the same module (and have the
2677  // same TOC), the NOP will remain unchanged.
2678  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2679    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2680    if (CallOpc == PPCISD::BCTRL_SVR4) {
2681      // This is a call through a function pointer.
2682      // Restore the caller TOC from the save area into R2.
2683      // See PrepareCall() for more information about calls through function
2684      // pointers in the 64-bit SVR4 ABI.
2685      // We are using a target-specific load with r2 hard coded, because the
2686      // result of a target-independent load would never go directly into r2,
2687      // since r2 is a reserved register (which prevents the register allocator
2688      // from allocating it), resulting in an additional register being
2689      // allocated and an unnecessary move instruction being generated.
2690      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2691      InFlag = Chain.getValue(1);
2692    } else {
2693      // Otherwise insert NOP.
2694      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2695    }
2696  }
2697
2698  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2699                             DAG.getIntPtrConstant(BytesCalleePops, true),
2700                             InFlag);
2701  if (!Ins.empty())
2702    InFlag = Chain.getValue(1);
2703
2704  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2705                         Ins, dl, DAG, InVals);
2706}
2707
2708SDValue
2709PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2710                             CallingConv::ID CallConv, bool isVarArg,
2711                             bool &isTailCall,
2712                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2713                             const SmallVectorImpl<SDValue> &OutVals,
2714                             const SmallVectorImpl<ISD::InputArg> &Ins,
2715                             DebugLoc dl, SelectionDAG &DAG,
2716                             SmallVectorImpl<SDValue> &InVals) const {
2717  if (isTailCall)
2718    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2719                                                   Ins, DAG);
2720
2721  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2722    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2723                          isTailCall, Outs, OutVals, Ins,
2724                          dl, DAG, InVals);
2725  } else {
2726    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2727                            isTailCall, Outs, OutVals, Ins,
2728                            dl, DAG, InVals);
2729  }
2730}
2731
2732SDValue
2733PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2734                                  CallingConv::ID CallConv, bool isVarArg,
2735                                  bool isTailCall,
2736                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2737                                  const SmallVectorImpl<SDValue> &OutVals,
2738                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2739                                  DebugLoc dl, SelectionDAG &DAG,
2740                                  SmallVectorImpl<SDValue> &InVals) const {
2741  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2742  // of the 32-bit SVR4 ABI stack frame layout.
2743
2744  assert((CallConv == CallingConv::C ||
2745          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2746
2747  unsigned PtrByteSize = 4;
2748
2749  MachineFunction &MF = DAG.getMachineFunction();
2750
2751  // Mark this function as potentially containing a function that contains a
2752  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2753  // and restoring the callers stack pointer in this functions epilog. This is
2754  // done because by tail calling the called function might overwrite the value
2755  // in this function's (MF) stack pointer stack slot 0(SP).
2756  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2757    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2758
2759  // Count how many bytes are to be pushed on the stack, including the linkage
2760  // area, parameter list area and the part of the local variable space which
2761  // contains copies of aggregates which are passed by value.
2762
2763  // Assign locations to all of the outgoing arguments.
2764  SmallVector<CCValAssign, 16> ArgLocs;
2765  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2766                 ArgLocs, *DAG.getContext());
2767
2768  // Reserve space for the linkage area on the stack.
2769  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2770
2771  if (isVarArg) {
2772    // Handle fixed and variable vector arguments differently.
2773    // Fixed vector arguments go into registers as long as registers are
2774    // available. Variable vector arguments always go into memory.
2775    unsigned NumArgs = Outs.size();
2776
2777    for (unsigned i = 0; i != NumArgs; ++i) {
2778      EVT ArgVT = Outs[i].VT;
2779      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2780      bool Result;
2781
2782      if (Outs[i].IsFixed) {
2783        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2784                             CCInfo);
2785      } else {
2786        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2787                                    ArgFlags, CCInfo);
2788      }
2789
2790      if (Result) {
2791#ifndef NDEBUG
2792        errs() << "Call operand #" << i << " has unhandled type "
2793             << ArgVT.getEVTString() << "\n";
2794#endif
2795        llvm_unreachable(0);
2796      }
2797    }
2798  } else {
2799    // All arguments are treated the same.
2800    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2801  }
2802
2803  // Assign locations to all of the outgoing aggregate by value arguments.
2804  SmallVector<CCValAssign, 16> ByValArgLocs;
2805  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2806                      *DAG.getContext());
2807
2808  // Reserve stack space for the allocations in CCInfo.
2809  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2810
2811  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2812
2813  // Size of the linkage area, parameter list area and the part of the local
2814  // space variable where copies of aggregates which are passed by value are
2815  // stored.
2816  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2817
2818  // Calculate by how many bytes the stack has to be adjusted in case of tail
2819  // call optimization.
2820  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2821
2822  // Adjust the stack pointer for the new arguments...
2823  // These operations are automatically eliminated by the prolog/epilog pass
2824  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2825  SDValue CallSeqStart = Chain;
2826
2827  // Load the return address and frame pointer so it can be moved somewhere else
2828  // later.
2829  SDValue LROp, FPOp;
2830  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2831                                       dl);
2832
2833  // Set up a copy of the stack pointer for use loading and storing any
2834  // arguments that may not fit in the registers available for argument
2835  // passing.
2836  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2837
2838  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2839  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2840  SmallVector<SDValue, 8> MemOpChains;
2841
2842  // Walk the register/memloc assignments, inserting copies/loads.
2843  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2844       i != e;
2845       ++i) {
2846    CCValAssign &VA = ArgLocs[i];
2847    SDValue Arg = OutVals[i];
2848    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2849
2850    if (Flags.isByVal()) {
2851      // Argument is an aggregate which is passed by value, thus we need to
2852      // create a copy of it in the local variable space of the current stack
2853      // frame (which is the stack frame of the caller) and pass the address of
2854      // this copy to the callee.
2855      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2856      CCValAssign &ByValVA = ByValArgLocs[j++];
2857      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2858
2859      // Memory reserved in the local variable space of the callers stack frame.
2860      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2861
2862      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2863      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2864
2865      // Create a copy of the argument in the local area of the current
2866      // stack frame.
2867      SDValue MemcpyCall =
2868        CreateCopyOfByValArgument(Arg, PtrOff,
2869                                  CallSeqStart.getNode()->getOperand(0),
2870                                  Flags, DAG, dl);
2871
2872      // This must go outside the CALLSEQ_START..END.
2873      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2874                           CallSeqStart.getNode()->getOperand(1));
2875      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2876                             NewCallSeqStart.getNode());
2877      Chain = CallSeqStart = NewCallSeqStart;
2878
2879      // Pass the address of the aggregate copy on the stack either in a
2880      // physical register or in the parameter list area of the current stack
2881      // frame to the callee.
2882      Arg = PtrOff;
2883    }
2884
2885    if (VA.isRegLoc()) {
2886      // Put argument in a physical register.
2887      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2888    } else {
2889      // Put argument in the parameter list area of the current stack frame.
2890      assert(VA.isMemLoc());
2891      unsigned LocMemOffset = VA.getLocMemOffset();
2892
2893      if (!isTailCall) {
2894        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2895        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2896
2897        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2898                                           MachinePointerInfo(),
2899                                           false, false, 0));
2900      } else {
2901        // Calculate and remember argument location.
2902        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2903                                 TailCallArguments);
2904      }
2905    }
2906  }
2907
2908  if (!MemOpChains.empty())
2909    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2910                        &MemOpChains[0], MemOpChains.size());
2911
2912  // Build a sequence of copy-to-reg nodes chained together with token chain
2913  // and flag operands which copy the outgoing args into the appropriate regs.
2914  SDValue InFlag;
2915  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2916    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2917                             RegsToPass[i].second, InFlag);
2918    InFlag = Chain.getValue(1);
2919  }
2920
2921  // Set CR6 to true if this is a vararg call.
2922  if (isVarArg) {
2923    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2924    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2925    InFlag = Chain.getValue(1);
2926  }
2927
2928  if (isTailCall) {
2929    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2930                    false, TailCallArguments);
2931  }
2932
2933  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2934                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2935                    Ins, InVals);
2936}
2937
2938SDValue
2939PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2940                                    CallingConv::ID CallConv, bool isVarArg,
2941                                    bool isTailCall,
2942                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2943                                    const SmallVectorImpl<SDValue> &OutVals,
2944                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2945                                    DebugLoc dl, SelectionDAG &DAG,
2946                                    SmallVectorImpl<SDValue> &InVals) const {
2947
2948  unsigned NumOps  = Outs.size();
2949
2950  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2951  bool isPPC64 = PtrVT == MVT::i64;
2952  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2953
2954  MachineFunction &MF = DAG.getMachineFunction();
2955
2956  // Mark this function as potentially containing a function that contains a
2957  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2958  // and restoring the callers stack pointer in this functions epilog. This is
2959  // done because by tail calling the called function might overwrite the value
2960  // in this function's (MF) stack pointer stack slot 0(SP).
2961  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2962    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2963
2964  unsigned nAltivecParamsAtEnd = 0;
2965
2966  // Count how many bytes are to be pushed on the stack, including the linkage
2967  // area, and parameter passing area.  We start with 24/48 bytes, which is
2968  // prereserved space for [SP][CR][LR][3 x unused].
2969  unsigned NumBytes =
2970    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2971                                         Outs, OutVals,
2972                                         nAltivecParamsAtEnd);
2973
2974  // Calculate by how many bytes the stack has to be adjusted in case of tail
2975  // call optimization.
2976  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2977
2978  // To protect arguments on the stack from being clobbered in a tail call,
2979  // force all the loads to happen before doing any other lowering.
2980  if (isTailCall)
2981    Chain = DAG.getStackArgumentTokenFactor(Chain);
2982
2983  // Adjust the stack pointer for the new arguments...
2984  // These operations are automatically eliminated by the prolog/epilog pass
2985  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2986  SDValue CallSeqStart = Chain;
2987
2988  // Load the return address and frame pointer so it can be move somewhere else
2989  // later.
2990  SDValue LROp, FPOp;
2991  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2992                                       dl);
2993
2994  // Set up a copy of the stack pointer for use loading and storing any
2995  // arguments that may not fit in the registers available for argument
2996  // passing.
2997  SDValue StackPtr;
2998  if (isPPC64)
2999    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3000  else
3001    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3002
3003  // Figure out which arguments are going to go in registers, and which in
3004  // memory.  Also, if this is a vararg function, floating point operations
3005  // must be stored to our stack, and loaded into integer regs as well, if
3006  // any integer regs are available for argument passing.
3007  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
3008  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3009
3010  static const unsigned GPR_32[] = {           // 32-bit registers.
3011    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3012    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3013  };
3014  static const unsigned GPR_64[] = {           // 64-bit registers.
3015    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3016    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3017  };
3018  static const unsigned *FPR = GetFPR();
3019
3020  static const unsigned VR[] = {
3021    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3022    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3023  };
3024  const unsigned NumGPRs = array_lengthof(GPR_32);
3025  const unsigned NumFPRs = 13;
3026  const unsigned NumVRs  = array_lengthof(VR);
3027
3028  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3029
3030  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3031  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3032
3033  SmallVector<SDValue, 8> MemOpChains;
3034  for (unsigned i = 0; i != NumOps; ++i) {
3035    SDValue Arg = OutVals[i];
3036    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3037
3038    // PtrOff will be used to store the current argument to the stack if a
3039    // register cannot be found for it.
3040    SDValue PtrOff;
3041
3042    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3043
3044    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3045
3046    // On PPC64, promote integers to 64-bit values.
3047    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3048      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3049      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3050      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3051    }
3052
3053    // FIXME memcpy is used way more than necessary.  Correctness first.
3054    if (Flags.isByVal()) {
3055      unsigned Size = Flags.getByValSize();
3056      if (Size==1 || Size==2) {
3057        // Very small objects are passed right-justified.
3058        // Everything else is passed left-justified.
3059        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3060        if (GPR_idx != NumGPRs) {
3061          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, dl, Chain, Arg,
3062                                        MachinePointerInfo(), VT,
3063                                        false, false, 0);
3064          MemOpChains.push_back(Load.getValue(1));
3065          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3066
3067          ArgOffset += PtrByteSize;
3068        } else {
3069          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3070          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3071          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3072                                CallSeqStart.getNode()->getOperand(0),
3073                                Flags, DAG, dl);
3074          // This must go outside the CALLSEQ_START..END.
3075          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3076                               CallSeqStart.getNode()->getOperand(1));
3077          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3078                                 NewCallSeqStart.getNode());
3079          Chain = CallSeqStart = NewCallSeqStart;
3080          ArgOffset += PtrByteSize;
3081        }
3082        continue;
3083      }
3084      // Copy entire object into memory.  There are cases where gcc-generated
3085      // code assumes it is there, even if it could be put entirely into
3086      // registers.  (This is not what the doc says.)
3087      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3088                            CallSeqStart.getNode()->getOperand(0),
3089                            Flags, DAG, dl);
3090      // This must go outside the CALLSEQ_START..END.
3091      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3092                           CallSeqStart.getNode()->getOperand(1));
3093      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3094      Chain = CallSeqStart = NewCallSeqStart;
3095      // And copy the pieces of it that fit into registers.
3096      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3097        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3098        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3099        if (GPR_idx != NumGPRs) {
3100          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3101                                     MachinePointerInfo(),
3102                                     false, false, 0);
3103          MemOpChains.push_back(Load.getValue(1));
3104          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3105          ArgOffset += PtrByteSize;
3106        } else {
3107          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3108          break;
3109        }
3110      }
3111      continue;
3112    }
3113
3114    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3115    default: llvm_unreachable("Unexpected ValueType for argument!");
3116    case MVT::i32:
3117    case MVT::i64:
3118      if (GPR_idx != NumGPRs) {
3119        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3120      } else {
3121        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3122                         isPPC64, isTailCall, false, MemOpChains,
3123                         TailCallArguments, dl);
3124      }
3125      ArgOffset += PtrByteSize;
3126      break;
3127    case MVT::f32:
3128    case MVT::f64:
3129      if (FPR_idx != NumFPRs) {
3130        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3131
3132        if (isVarArg) {
3133          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3134                                       MachinePointerInfo(), false, false, 0);
3135          MemOpChains.push_back(Store);
3136
3137          // Float varargs are always shadowed in available integer registers
3138          if (GPR_idx != NumGPRs) {
3139            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3140                                       MachinePointerInfo(), false, false, 0);
3141            MemOpChains.push_back(Load.getValue(1));
3142            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3143          }
3144          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3145            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3146            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3147            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3148                                       MachinePointerInfo(),
3149                                       false, false, 0);
3150            MemOpChains.push_back(Load.getValue(1));
3151            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3152          }
3153        } else {
3154          // If we have any FPRs remaining, we may also have GPRs remaining.
3155          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3156          // GPRs.
3157          if (GPR_idx != NumGPRs)
3158            ++GPR_idx;
3159          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3160              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3161            ++GPR_idx;
3162        }
3163      } else {
3164        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3165                         isPPC64, isTailCall, false, MemOpChains,
3166                         TailCallArguments, dl);
3167      }
3168      if (isPPC64)
3169        ArgOffset += 8;
3170      else
3171        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3172      break;
3173    case MVT::v4f32:
3174    case MVT::v4i32:
3175    case MVT::v8i16:
3176    case MVT::v16i8:
3177      if (isVarArg) {
3178        // These go aligned on the stack, or in the corresponding R registers
3179        // when within range.  The Darwin PPC ABI doc claims they also go in
3180        // V registers; in fact gcc does this only for arguments that are
3181        // prototyped, not for those that match the ...  We do it for all
3182        // arguments, seems to work.
3183        while (ArgOffset % 16 !=0) {
3184          ArgOffset += PtrByteSize;
3185          if (GPR_idx != NumGPRs)
3186            GPR_idx++;
3187        }
3188        // We could elide this store in the case where the object fits
3189        // entirely in R registers.  Maybe later.
3190        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3191                            DAG.getConstant(ArgOffset, PtrVT));
3192        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3193                                     MachinePointerInfo(), false, false, 0);
3194        MemOpChains.push_back(Store);
3195        if (VR_idx != NumVRs) {
3196          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3197                                     MachinePointerInfo(),
3198                                     false, false, 0);
3199          MemOpChains.push_back(Load.getValue(1));
3200          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3201        }
3202        ArgOffset += 16;
3203        for (unsigned i=0; i<16; i+=PtrByteSize) {
3204          if (GPR_idx == NumGPRs)
3205            break;
3206          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3207                                  DAG.getConstant(i, PtrVT));
3208          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3209                                     false, false, 0);
3210          MemOpChains.push_back(Load.getValue(1));
3211          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3212        }
3213        break;
3214      }
3215
3216      // Non-varargs Altivec params generally go in registers, but have
3217      // stack space allocated at the end.
3218      if (VR_idx != NumVRs) {
3219        // Doesn't have GPR space allocated.
3220        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3221      } else if (nAltivecParamsAtEnd==0) {
3222        // We are emitting Altivec params in order.
3223        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3224                         isPPC64, isTailCall, true, MemOpChains,
3225                         TailCallArguments, dl);
3226        ArgOffset += 16;
3227      }
3228      break;
3229    }
3230  }
3231  // If all Altivec parameters fit in registers, as they usually do,
3232  // they get stack space following the non-Altivec parameters.  We
3233  // don't track this here because nobody below needs it.
3234  // If there are more Altivec parameters than fit in registers emit
3235  // the stores here.
3236  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3237    unsigned j = 0;
3238    // Offset is aligned; skip 1st 12 params which go in V registers.
3239    ArgOffset = ((ArgOffset+15)/16)*16;
3240    ArgOffset += 12*16;
3241    for (unsigned i = 0; i != NumOps; ++i) {
3242      SDValue Arg = OutVals[i];
3243      EVT ArgType = Outs[i].VT;
3244      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3245          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3246        if (++j > NumVRs) {
3247          SDValue PtrOff;
3248          // We are emitting Altivec params in order.
3249          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3250                           isPPC64, isTailCall, true, MemOpChains,
3251                           TailCallArguments, dl);
3252          ArgOffset += 16;
3253        }
3254      }
3255    }
3256  }
3257
3258  if (!MemOpChains.empty())
3259    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3260                        &MemOpChains[0], MemOpChains.size());
3261
3262  // Check if this is an indirect call (MTCTR/BCTRL).
3263  // See PrepareCall() for more information about calls through function
3264  // pointers in the 64-bit SVR4 ABI.
3265  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3266      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3267      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3268      !isBLACompatibleAddress(Callee, DAG)) {
3269    // Load r2 into a virtual register and store it to the TOC save area.
3270    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3271    // TOC save area offset.
3272    SDValue PtrOff = DAG.getIntPtrConstant(40);
3273    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3274    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3275                         false, false, 0);
3276  }
3277
3278  // On Darwin, R12 must contain the address of an indirect callee.  This does
3279  // not mean the MTCTR instruction must use R12; it's easier to model this as
3280  // an extra parameter, so do that.
3281  if (!isTailCall &&
3282      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3283      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3284      !isBLACompatibleAddress(Callee, DAG))
3285    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3286                                                   PPC::R12), Callee));
3287
3288  // Build a sequence of copy-to-reg nodes chained together with token chain
3289  // and flag operands which copy the outgoing args into the appropriate regs.
3290  SDValue InFlag;
3291  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3292    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3293                             RegsToPass[i].second, InFlag);
3294    InFlag = Chain.getValue(1);
3295  }
3296
3297  if (isTailCall) {
3298    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3299                    FPOp, true, TailCallArguments);
3300  }
3301
3302  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3303                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3304                    Ins, InVals);
3305}
3306
3307SDValue
3308PPCTargetLowering::LowerReturn(SDValue Chain,
3309                               CallingConv::ID CallConv, bool isVarArg,
3310                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3311                               const SmallVectorImpl<SDValue> &OutVals,
3312                               DebugLoc dl, SelectionDAG &DAG) const {
3313
3314  SmallVector<CCValAssign, 16> RVLocs;
3315  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3316                 RVLocs, *DAG.getContext());
3317  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3318
3319  // If this is the first return lowered for this function, add the regs to the
3320  // liveout set for the function.
3321  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3322    for (unsigned i = 0; i != RVLocs.size(); ++i)
3323      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3324  }
3325
3326  SDValue Flag;
3327
3328  // Copy the result values into the output registers.
3329  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3330    CCValAssign &VA = RVLocs[i];
3331    assert(VA.isRegLoc() && "Can only return in registers!");
3332    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3333                             OutVals[i], Flag);
3334    Flag = Chain.getValue(1);
3335  }
3336
3337  if (Flag.getNode())
3338    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3339  else
3340    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3341}
3342
3343SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3344                                   const PPCSubtarget &Subtarget) const {
3345  // When we pop the dynamic allocation we need to restore the SP link.
3346  DebugLoc dl = Op.getDebugLoc();
3347
3348  // Get the corect type for pointers.
3349  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3350
3351  // Construct the stack pointer operand.
3352  bool isPPC64 = Subtarget.isPPC64();
3353  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3354  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3355
3356  // Get the operands for the STACKRESTORE.
3357  SDValue Chain = Op.getOperand(0);
3358  SDValue SaveSP = Op.getOperand(1);
3359
3360  // Load the old link SP.
3361  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3362                                   MachinePointerInfo(),
3363                                   false, false, 0);
3364
3365  // Restore the stack pointer.
3366  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3367
3368  // Store the old link SP.
3369  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3370                      false, false, 0);
3371}
3372
3373
3374
3375SDValue
3376PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3377  MachineFunction &MF = DAG.getMachineFunction();
3378  bool isPPC64 = PPCSubTarget.isPPC64();
3379  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3380  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3381
3382  // Get current frame pointer save index.  The users of this index will be
3383  // primarily DYNALLOC instructions.
3384  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3385  int RASI = FI->getReturnAddrSaveIndex();
3386
3387  // If the frame pointer save index hasn't been defined yet.
3388  if (!RASI) {
3389    // Find out what the fix offset of the frame pointer save area.
3390    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3391    // Allocate the frame index for frame pointer save area.
3392    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3393    // Save the result.
3394    FI->setReturnAddrSaveIndex(RASI);
3395  }
3396  return DAG.getFrameIndex(RASI, PtrVT);
3397}
3398
3399SDValue
3400PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3401  MachineFunction &MF = DAG.getMachineFunction();
3402  bool isPPC64 = PPCSubTarget.isPPC64();
3403  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3404  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3405
3406  // Get current frame pointer save index.  The users of this index will be
3407  // primarily DYNALLOC instructions.
3408  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3409  int FPSI = FI->getFramePointerSaveIndex();
3410
3411  // If the frame pointer save index hasn't been defined yet.
3412  if (!FPSI) {
3413    // Find out what the fix offset of the frame pointer save area.
3414    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3415                                                           isDarwinABI);
3416
3417    // Allocate the frame index for frame pointer save area.
3418    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3419    // Save the result.
3420    FI->setFramePointerSaveIndex(FPSI);
3421  }
3422  return DAG.getFrameIndex(FPSI, PtrVT);
3423}
3424
3425SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3426                                         SelectionDAG &DAG,
3427                                         const PPCSubtarget &Subtarget) const {
3428  // Get the inputs.
3429  SDValue Chain = Op.getOperand(0);
3430  SDValue Size  = Op.getOperand(1);
3431  DebugLoc dl = Op.getDebugLoc();
3432
3433  // Get the corect type for pointers.
3434  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3435  // Negate the size.
3436  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3437                                  DAG.getConstant(0, PtrVT), Size);
3438  // Construct a node for the frame pointer save index.
3439  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3440  // Build a DYNALLOC node.
3441  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3442  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3443  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3444}
3445
3446/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3447/// possible.
3448SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3449  // Not FP? Not a fsel.
3450  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3451      !Op.getOperand(2).getValueType().isFloatingPoint())
3452    return Op;
3453
3454  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3455
3456  // Cannot handle SETEQ/SETNE.
3457  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3458
3459  EVT ResVT = Op.getValueType();
3460  EVT CmpVT = Op.getOperand(0).getValueType();
3461  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3462  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3463  DebugLoc dl = Op.getDebugLoc();
3464
3465  // If the RHS of the comparison is a 0.0, we don't need to do the
3466  // subtraction at all.
3467  if (isFloatingPointZero(RHS))
3468    switch (CC) {
3469    default: break;       // SETUO etc aren't handled by fsel.
3470    case ISD::SETULT:
3471    case ISD::SETLT:
3472      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3473    case ISD::SETOGE:
3474    case ISD::SETGE:
3475      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3476        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3477      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3478    case ISD::SETUGT:
3479    case ISD::SETGT:
3480      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3481    case ISD::SETOLE:
3482    case ISD::SETLE:
3483      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3484        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3485      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3486                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3487    }
3488
3489  SDValue Cmp;
3490  switch (CC) {
3491  default: break;       // SETUO etc aren't handled by fsel.
3492  case ISD::SETULT:
3493  case ISD::SETLT:
3494    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3495    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3496      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3497      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3498  case ISD::SETOGE:
3499  case ISD::SETGE:
3500    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3501    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3502      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3503      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3504  case ISD::SETUGT:
3505  case ISD::SETGT:
3506    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3507    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3508      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3509      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3510  case ISD::SETOLE:
3511  case ISD::SETLE:
3512    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3513    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3514      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3515      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3516  }
3517  return Op;
3518}
3519
3520// FIXME: Split this code up when LegalizeDAGTypes lands.
3521SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3522                                           DebugLoc dl) const {
3523  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3524  SDValue Src = Op.getOperand(0);
3525  if (Src.getValueType() == MVT::f32)
3526    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3527
3528  SDValue Tmp;
3529  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3530  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3531  case MVT::i32:
3532    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3533                                                         PPCISD::FCTIDZ,
3534                      dl, MVT::f64, Src);
3535    break;
3536  case MVT::i64:
3537    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3538    break;
3539  }
3540
3541  // Convert the FP value to an int value through memory.
3542  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3543
3544  // Emit a store to the stack slot.
3545  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3546                               MachinePointerInfo(), false, false, 0);
3547
3548  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3549  // add in a bias.
3550  if (Op.getValueType() == MVT::i32)
3551    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3552                        DAG.getConstant(4, FIPtr.getValueType()));
3553  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3554                     false, false, 0);
3555}
3556
3557SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3558                                           SelectionDAG &DAG) const {
3559  DebugLoc dl = Op.getDebugLoc();
3560  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3561  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3562    return SDValue();
3563
3564  if (Op.getOperand(0).getValueType() == MVT::i64) {
3565    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3566                               MVT::f64, Op.getOperand(0));
3567    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3568    if (Op.getValueType() == MVT::f32)
3569      FP = DAG.getNode(ISD::FP_ROUND, dl,
3570                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3571    return FP;
3572  }
3573
3574  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3575         "Unhandled SINT_TO_FP type in custom expander!");
3576  // Since we only generate this in 64-bit mode, we can take advantage of
3577  // 64-bit registers.  In particular, sign extend the input value into the
3578  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3579  // then lfd it and fcfid it.
3580  MachineFunction &MF = DAG.getMachineFunction();
3581  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3582  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3583  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3584  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3585
3586  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3587                                Op.getOperand(0));
3588
3589  // STD the extended value into the stack slot.
3590  MachineMemOperand *MMO =
3591    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3592                            MachineMemOperand::MOStore, 8, 8);
3593  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3594  SDValue Store =
3595    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3596                            Ops, 4, MVT::i64, MMO);
3597  // Load the value as a double.
3598  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3599                           false, false, 0);
3600
3601  // FCFID it and return it.
3602  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3603  if (Op.getValueType() == MVT::f32)
3604    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3605  return FP;
3606}
3607
3608SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3609                                            SelectionDAG &DAG) const {
3610  DebugLoc dl = Op.getDebugLoc();
3611  /*
3612   The rounding mode is in bits 30:31 of FPSR, and has the following
3613   settings:
3614     00 Round to nearest
3615     01 Round to 0
3616     10 Round to +inf
3617     11 Round to -inf
3618
3619  FLT_ROUNDS, on the other hand, expects the following:
3620    -1 Undefined
3621     0 Round to 0
3622     1 Round to nearest
3623     2 Round to +inf
3624     3 Round to -inf
3625
3626  To perform the conversion, we do:
3627    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3628  */
3629
3630  MachineFunction &MF = DAG.getMachineFunction();
3631  EVT VT = Op.getValueType();
3632  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3633  std::vector<EVT> NodeTys;
3634  SDValue MFFSreg, InFlag;
3635
3636  // Save FP Control Word to register
3637  NodeTys.push_back(MVT::f64);    // return register
3638  NodeTys.push_back(MVT::Flag);   // unused in this context
3639  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3640
3641  // Save FP register to stack slot
3642  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3643  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3644  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3645                               StackSlot, MachinePointerInfo(), false, false,0);
3646
3647  // Load FP Control Word from low 32 bits of stack slot.
3648  SDValue Four = DAG.getConstant(4, PtrVT);
3649  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3650  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3651                            false, false, 0);
3652
3653  // Transform as necessary
3654  SDValue CWD1 =
3655    DAG.getNode(ISD::AND, dl, MVT::i32,
3656                CWD, DAG.getConstant(3, MVT::i32));
3657  SDValue CWD2 =
3658    DAG.getNode(ISD::SRL, dl, MVT::i32,
3659                DAG.getNode(ISD::AND, dl, MVT::i32,
3660                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3661                                        CWD, DAG.getConstant(3, MVT::i32)),
3662                            DAG.getConstant(3, MVT::i32)),
3663                DAG.getConstant(1, MVT::i32));
3664
3665  SDValue RetVal =
3666    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3667
3668  return DAG.getNode((VT.getSizeInBits() < 16 ?
3669                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3670}
3671
3672SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3673  EVT VT = Op.getValueType();
3674  unsigned BitWidth = VT.getSizeInBits();
3675  DebugLoc dl = Op.getDebugLoc();
3676  assert(Op.getNumOperands() == 3 &&
3677         VT == Op.getOperand(1).getValueType() &&
3678         "Unexpected SHL!");
3679
3680  // Expand into a bunch of logical ops.  Note that these ops
3681  // depend on the PPC behavior for oversized shift amounts.
3682  SDValue Lo = Op.getOperand(0);
3683  SDValue Hi = Op.getOperand(1);
3684  SDValue Amt = Op.getOperand(2);
3685  EVT AmtVT = Amt.getValueType();
3686
3687  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3688                             DAG.getConstant(BitWidth, AmtVT), Amt);
3689  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3690  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3691  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3692  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3693                             DAG.getConstant(-BitWidth, AmtVT));
3694  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3695  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3696  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3697  SDValue OutOps[] = { OutLo, OutHi };
3698  return DAG.getMergeValues(OutOps, 2, dl);
3699}
3700
3701SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3702  EVT VT = Op.getValueType();
3703  DebugLoc dl = Op.getDebugLoc();
3704  unsigned BitWidth = VT.getSizeInBits();
3705  assert(Op.getNumOperands() == 3 &&
3706         VT == Op.getOperand(1).getValueType() &&
3707         "Unexpected SRL!");
3708
3709  // Expand into a bunch of logical ops.  Note that these ops
3710  // depend on the PPC behavior for oversized shift amounts.
3711  SDValue Lo = Op.getOperand(0);
3712  SDValue Hi = Op.getOperand(1);
3713  SDValue Amt = Op.getOperand(2);
3714  EVT AmtVT = Amt.getValueType();
3715
3716  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3717                             DAG.getConstant(BitWidth, AmtVT), Amt);
3718  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3719  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3720  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3721  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3722                             DAG.getConstant(-BitWidth, AmtVT));
3723  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3724  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3725  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3726  SDValue OutOps[] = { OutLo, OutHi };
3727  return DAG.getMergeValues(OutOps, 2, dl);
3728}
3729
3730SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3731  DebugLoc dl = Op.getDebugLoc();
3732  EVT VT = Op.getValueType();
3733  unsigned BitWidth = VT.getSizeInBits();
3734  assert(Op.getNumOperands() == 3 &&
3735         VT == Op.getOperand(1).getValueType() &&
3736         "Unexpected SRA!");
3737
3738  // Expand into a bunch of logical ops, followed by a select_cc.
3739  SDValue Lo = Op.getOperand(0);
3740  SDValue Hi = Op.getOperand(1);
3741  SDValue Amt = Op.getOperand(2);
3742  EVT AmtVT = Amt.getValueType();
3743
3744  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3745                             DAG.getConstant(BitWidth, AmtVT), Amt);
3746  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3747  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3748  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3749  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3750                             DAG.getConstant(-BitWidth, AmtVT));
3751  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3752  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3753  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3754                                  Tmp4, Tmp6, ISD::SETLE);
3755  SDValue OutOps[] = { OutLo, OutHi };
3756  return DAG.getMergeValues(OutOps, 2, dl);
3757}
3758
3759//===----------------------------------------------------------------------===//
3760// Vector related lowering.
3761//
3762
3763/// BuildSplatI - Build a canonical splati of Val with an element size of
3764/// SplatSize.  Cast the result to VT.
3765static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3766                             SelectionDAG &DAG, DebugLoc dl) {
3767  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3768
3769  static const EVT VTys[] = { // canonical VT to use for each size.
3770    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3771  };
3772
3773  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3774
3775  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3776  if (Val == -1)
3777    SplatSize = 1;
3778
3779  EVT CanonicalVT = VTys[SplatSize-1];
3780
3781  // Build a canonical splat for this value.
3782  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3783  SmallVector<SDValue, 8> Ops;
3784  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3785  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3786                              &Ops[0], Ops.size());
3787  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3788}
3789
3790/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3791/// specified intrinsic ID.
3792static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3793                                SelectionDAG &DAG, DebugLoc dl,
3794                                EVT DestVT = MVT::Other) {
3795  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3796  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3797                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3798}
3799
3800/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3801/// specified intrinsic ID.
3802static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3803                                SDValue Op2, SelectionDAG &DAG,
3804                                DebugLoc dl, EVT DestVT = MVT::Other) {
3805  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3806  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3807                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3808}
3809
3810
3811/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3812/// amount.  The result has the specified value type.
3813static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3814                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3815  // Force LHS/RHS to be the right type.
3816  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3817  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3818
3819  int Ops[16];
3820  for (unsigned i = 0; i != 16; ++i)
3821    Ops[i] = i + Amt;
3822  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3823  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3824}
3825
3826// If this is a case we can't handle, return null and let the default
3827// expansion code take care of it.  If we CAN select this case, and if it
3828// selects to a single instruction, return Op.  Otherwise, if we can codegen
3829// this case more efficiently than a constant pool load, lower it to the
3830// sequence of ops that should be used.
3831SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3832                                             SelectionDAG &DAG) const {
3833  DebugLoc dl = Op.getDebugLoc();
3834  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3835  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3836
3837  // Check if this is a splat of a constant value.
3838  APInt APSplatBits, APSplatUndef;
3839  unsigned SplatBitSize;
3840  bool HasAnyUndefs;
3841  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3842                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3843    return SDValue();
3844
3845  unsigned SplatBits = APSplatBits.getZExtValue();
3846  unsigned SplatUndef = APSplatUndef.getZExtValue();
3847  unsigned SplatSize = SplatBitSize / 8;
3848
3849  // First, handle single instruction cases.
3850
3851  // All zeros?
3852  if (SplatBits == 0) {
3853    // Canonicalize all zero vectors to be v4i32.
3854    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3855      SDValue Z = DAG.getConstant(0, MVT::i32);
3856      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3857      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3858    }
3859    return Op;
3860  }
3861
3862  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3863  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3864                    (32-SplatBitSize));
3865  if (SextVal >= -16 && SextVal <= 15)
3866    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3867
3868
3869  // Two instruction sequences.
3870
3871  // If this value is in the range [-32,30] and is even, use:
3872  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3873  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3874    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3875    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3876    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3877  }
3878
3879  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3880  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3881  // for fneg/fabs.
3882  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3883    // Make -1 and vspltisw -1:
3884    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3885
3886    // Make the VSLW intrinsic, computing 0x8000_0000.
3887    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3888                                   OnesV, DAG, dl);
3889
3890    // xor by OnesV to invert it.
3891    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3892    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3893  }
3894
3895  // Check to see if this is a wide variety of vsplti*, binop self cases.
3896  static const signed char SplatCsts[] = {
3897    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3898    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3899  };
3900
3901  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3902    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3903    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3904    int i = SplatCsts[idx];
3905
3906    // Figure out what shift amount will be used by altivec if shifted by i in
3907    // this splat size.
3908    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3909
3910    // vsplti + shl self.
3911    if (SextVal == (i << (int)TypeShiftAmt)) {
3912      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3913      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3914        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3915        Intrinsic::ppc_altivec_vslw
3916      };
3917      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3918      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3919    }
3920
3921    // vsplti + srl self.
3922    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3923      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3924      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3925        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3926        Intrinsic::ppc_altivec_vsrw
3927      };
3928      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3929      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3930    }
3931
3932    // vsplti + sra self.
3933    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3934      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3935      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3936        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3937        Intrinsic::ppc_altivec_vsraw
3938      };
3939      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3940      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3941    }
3942
3943    // vsplti + rol self.
3944    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3945                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3946      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3947      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3948        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3949        Intrinsic::ppc_altivec_vrlw
3950      };
3951      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3952      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3953    }
3954
3955    // t = vsplti c, result = vsldoi t, t, 1
3956    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3957      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3958      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3959    }
3960    // t = vsplti c, result = vsldoi t, t, 2
3961    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3962      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3963      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3964    }
3965    // t = vsplti c, result = vsldoi t, t, 3
3966    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3967      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3968      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3969    }
3970  }
3971
3972  // Three instruction sequences.
3973
3974  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3975  if (SextVal >= 0 && SextVal <= 31) {
3976    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3977    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3978    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3979    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3980  }
3981  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3982  if (SextVal >= -31 && SextVal <= 0) {
3983    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3984    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3985    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3986    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3987  }
3988
3989  return SDValue();
3990}
3991
3992/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3993/// the specified operations to build the shuffle.
3994static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3995                                      SDValue RHS, SelectionDAG &DAG,
3996                                      DebugLoc dl) {
3997  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3998  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3999  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4000
4001  enum {
4002    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4003    OP_VMRGHW,
4004    OP_VMRGLW,
4005    OP_VSPLTISW0,
4006    OP_VSPLTISW1,
4007    OP_VSPLTISW2,
4008    OP_VSPLTISW3,
4009    OP_VSLDOI4,
4010    OP_VSLDOI8,
4011    OP_VSLDOI12
4012  };
4013
4014  if (OpNum == OP_COPY) {
4015    if (LHSID == (1*9+2)*9+3) return LHS;
4016    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4017    return RHS;
4018  }
4019
4020  SDValue OpLHS, OpRHS;
4021  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4022  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4023
4024  int ShufIdxs[16];
4025  switch (OpNum) {
4026  default: llvm_unreachable("Unknown i32 permute!");
4027  case OP_VMRGHW:
4028    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4029    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4030    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4031    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4032    break;
4033  case OP_VMRGLW:
4034    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4035    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4036    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4037    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4038    break;
4039  case OP_VSPLTISW0:
4040    for (unsigned i = 0; i != 16; ++i)
4041      ShufIdxs[i] = (i&3)+0;
4042    break;
4043  case OP_VSPLTISW1:
4044    for (unsigned i = 0; i != 16; ++i)
4045      ShufIdxs[i] = (i&3)+4;
4046    break;
4047  case OP_VSPLTISW2:
4048    for (unsigned i = 0; i != 16; ++i)
4049      ShufIdxs[i] = (i&3)+8;
4050    break;
4051  case OP_VSPLTISW3:
4052    for (unsigned i = 0; i != 16; ++i)
4053      ShufIdxs[i] = (i&3)+12;
4054    break;
4055  case OP_VSLDOI4:
4056    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4057  case OP_VSLDOI8:
4058    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4059  case OP_VSLDOI12:
4060    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4061  }
4062  EVT VT = OpLHS.getValueType();
4063  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
4064  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
4065  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4066  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4067}
4068
4069/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4070/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4071/// return the code it can be lowered into.  Worst case, it can always be
4072/// lowered into a vperm.
4073SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4074                                               SelectionDAG &DAG) const {
4075  DebugLoc dl = Op.getDebugLoc();
4076  SDValue V1 = Op.getOperand(0);
4077  SDValue V2 = Op.getOperand(1);
4078  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4079  EVT VT = Op.getValueType();
4080
4081  // Cases that are handled by instructions that take permute immediates
4082  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4083  // selected by the instruction selector.
4084  if (V2.getOpcode() == ISD::UNDEF) {
4085    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4086        PPC::isSplatShuffleMask(SVOp, 2) ||
4087        PPC::isSplatShuffleMask(SVOp, 4) ||
4088        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4089        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4090        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4091        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4092        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4093        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4094        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4095        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4096        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4097      return Op;
4098    }
4099  }
4100
4101  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4102  // and produce a fixed permutation.  If any of these match, do not lower to
4103  // VPERM.
4104  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4105      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4106      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4107      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4108      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4109      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4110      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4111      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4112      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4113    return Op;
4114
4115  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4116  // perfect shuffle table to emit an optimal matching sequence.
4117  SmallVector<int, 16> PermMask;
4118  SVOp->getMask(PermMask);
4119
4120  unsigned PFIndexes[4];
4121  bool isFourElementShuffle = true;
4122  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4123    unsigned EltNo = 8;   // Start out undef.
4124    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4125      if (PermMask[i*4+j] < 0)
4126        continue;   // Undef, ignore it.
4127
4128      unsigned ByteSource = PermMask[i*4+j];
4129      if ((ByteSource & 3) != j) {
4130        isFourElementShuffle = false;
4131        break;
4132      }
4133
4134      if (EltNo == 8) {
4135        EltNo = ByteSource/4;
4136      } else if (EltNo != ByteSource/4) {
4137        isFourElementShuffle = false;
4138        break;
4139      }
4140    }
4141    PFIndexes[i] = EltNo;
4142  }
4143
4144  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4145  // perfect shuffle vector to determine if it is cost effective to do this as
4146  // discrete instructions, or whether we should use a vperm.
4147  if (isFourElementShuffle) {
4148    // Compute the index in the perfect shuffle table.
4149    unsigned PFTableIndex =
4150      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4151
4152    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4153    unsigned Cost  = (PFEntry >> 30);
4154
4155    // Determining when to avoid vperm is tricky.  Many things affect the cost
4156    // of vperm, particularly how many times the perm mask needs to be computed.
4157    // For example, if the perm mask can be hoisted out of a loop or is already
4158    // used (perhaps because there are multiple permutes with the same shuffle
4159    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4160    // the loop requires an extra register.
4161    //
4162    // As a compromise, we only emit discrete instructions if the shuffle can be
4163    // generated in 3 or fewer operations.  When we have loop information
4164    // available, if this block is within a loop, we should avoid using vperm
4165    // for 3-operation perms and use a constant pool load instead.
4166    if (Cost < 3)
4167      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4168  }
4169
4170  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4171  // vector that will get spilled to the constant pool.
4172  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4173
4174  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4175  // that it is in input element units, not in bytes.  Convert now.
4176  EVT EltVT = V1.getValueType().getVectorElementType();
4177  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4178
4179  SmallVector<SDValue, 16> ResultMask;
4180  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4181    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4182
4183    for (unsigned j = 0; j != BytesPerElement; ++j)
4184      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4185                                           MVT::i32));
4186  }
4187
4188  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4189                                    &ResultMask[0], ResultMask.size());
4190  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4191}
4192
4193/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4194/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4195/// information about the intrinsic.
4196static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4197                                  bool &isDot) {
4198  unsigned IntrinsicID =
4199    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4200  CompareOpc = -1;
4201  isDot = false;
4202  switch (IntrinsicID) {
4203  default: return false;
4204    // Comparison predicates.
4205  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4206  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4207  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4208  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4209  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4210  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4211  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4212  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4213  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4214  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4215  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4216  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4217  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4218
4219    // Normal Comparisons.
4220  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4221  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4222  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4223  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4224  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4225  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4226  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4227  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4228  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4229  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4230  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4231  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4232  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4233  }
4234  return true;
4235}
4236
4237/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4238/// lower, do it, otherwise return null.
4239SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4240                                                   SelectionDAG &DAG) const {
4241  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4242  // opcode number of the comparison.
4243  DebugLoc dl = Op.getDebugLoc();
4244  int CompareOpc;
4245  bool isDot;
4246  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4247    return SDValue();    // Don't custom lower most intrinsics.
4248
4249  // If this is a non-dot comparison, make the VCMP node and we are done.
4250  if (!isDot) {
4251    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4252                              Op.getOperand(1), Op.getOperand(2),
4253                              DAG.getConstant(CompareOpc, MVT::i32));
4254    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4255  }
4256
4257  // Create the PPCISD altivec 'dot' comparison node.
4258  SDValue Ops[] = {
4259    Op.getOperand(2),  // LHS
4260    Op.getOperand(3),  // RHS
4261    DAG.getConstant(CompareOpc, MVT::i32)
4262  };
4263  std::vector<EVT> VTs;
4264  VTs.push_back(Op.getOperand(2).getValueType());
4265  VTs.push_back(MVT::Flag);
4266  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4267
4268  // Now that we have the comparison, emit a copy from the CR to a GPR.
4269  // This is flagged to the above dot comparison.
4270  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4271                                DAG.getRegister(PPC::CR6, MVT::i32),
4272                                CompNode.getValue(1));
4273
4274  // Unpack the result based on how the target uses it.
4275  unsigned BitNo;   // Bit # of CR6.
4276  bool InvertBit;   // Invert result?
4277  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4278  default:  // Can't happen, don't crash on invalid number though.
4279  case 0:   // Return the value of the EQ bit of CR6.
4280    BitNo = 0; InvertBit = false;
4281    break;
4282  case 1:   // Return the inverted value of the EQ bit of CR6.
4283    BitNo = 0; InvertBit = true;
4284    break;
4285  case 2:   // Return the value of the LT bit of CR6.
4286    BitNo = 2; InvertBit = false;
4287    break;
4288  case 3:   // Return the inverted value of the LT bit of CR6.
4289    BitNo = 2; InvertBit = true;
4290    break;
4291  }
4292
4293  // Shift the bit into the low position.
4294  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4295                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4296  // Isolate the bit.
4297  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4298                      DAG.getConstant(1, MVT::i32));
4299
4300  // If we are supposed to, toggle the bit.
4301  if (InvertBit)
4302    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4303                        DAG.getConstant(1, MVT::i32));
4304  return Flags;
4305}
4306
4307SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4308                                                   SelectionDAG &DAG) const {
4309  DebugLoc dl = Op.getDebugLoc();
4310  // Create a stack slot that is 16-byte aligned.
4311  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4312  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4313  EVT PtrVT = getPointerTy();
4314  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4315
4316  // Store the input value into Value#0 of the stack slot.
4317  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4318                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4319                               false, false, 0);
4320  // Load it out.
4321  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4322                     false, false, 0);
4323}
4324
4325SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4326  DebugLoc dl = Op.getDebugLoc();
4327  if (Op.getValueType() == MVT::v4i32) {
4328    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4329
4330    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4331    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4332
4333    SDValue RHSSwap =   // = vrlw RHS, 16
4334      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4335
4336    // Shrinkify inputs to v8i16.
4337    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4338    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4339    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4340
4341    // Low parts multiplied together, generating 32-bit results (we ignore the
4342    // top parts).
4343    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4344                                        LHS, RHS, DAG, dl, MVT::v4i32);
4345
4346    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4347                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4348    // Shift the high parts up 16 bits.
4349    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4350                              Neg16, DAG, dl);
4351    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4352  } else if (Op.getValueType() == MVT::v8i16) {
4353    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4354
4355    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4356
4357    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4358                            LHS, RHS, Zero, DAG, dl);
4359  } else if (Op.getValueType() == MVT::v16i8) {
4360    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4361
4362    // Multiply the even 8-bit parts, producing 16-bit sums.
4363    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4364                                           LHS, RHS, DAG, dl, MVT::v8i16);
4365    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4366
4367    // Multiply the odd 8-bit parts, producing 16-bit sums.
4368    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4369                                          LHS, RHS, DAG, dl, MVT::v8i16);
4370    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4371
4372    // Merge the results together.
4373    int Ops[16];
4374    for (unsigned i = 0; i != 8; ++i) {
4375      Ops[i*2  ] = 2*i+1;
4376      Ops[i*2+1] = 2*i+1+16;
4377    }
4378    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4379  } else {
4380    llvm_unreachable("Unknown mul to lower!");
4381  }
4382}
4383
4384/// LowerOperation - Provide custom lowering hooks for some operations.
4385///
4386SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4387  switch (Op.getOpcode()) {
4388  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4389  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4390  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4391  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4392  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4393  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4394  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4395  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4396  case ISD::VASTART:
4397    return LowerVASTART(Op, DAG, PPCSubTarget);
4398
4399  case ISD::VAARG:
4400    return LowerVAARG(Op, DAG, PPCSubTarget);
4401
4402  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4403  case ISD::DYNAMIC_STACKALLOC:
4404    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4405
4406  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4407  case ISD::FP_TO_UINT:
4408  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4409                                                       Op.getDebugLoc());
4410  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4411  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4412
4413  // Lower 64-bit shifts.
4414  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4415  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4416  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4417
4418  // Vector-related lowering.
4419  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4420  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4421  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4422  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4423  case ISD::MUL:                return LowerMUL(Op, DAG);
4424
4425  // Frame & Return address.
4426  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4427  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4428  }
4429  return SDValue();
4430}
4431
4432void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4433                                           SmallVectorImpl<SDValue>&Results,
4434                                           SelectionDAG &DAG) const {
4435  DebugLoc dl = N->getDebugLoc();
4436  switch (N->getOpcode()) {
4437  default:
4438    assert(false && "Do not know how to custom type legalize this operation!");
4439    return;
4440  case ISD::FP_ROUND_INREG: {
4441    assert(N->getValueType(0) == MVT::ppcf128);
4442    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4443    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4444                             MVT::f64, N->getOperand(0),
4445                             DAG.getIntPtrConstant(0));
4446    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4447                             MVT::f64, N->getOperand(0),
4448                             DAG.getIntPtrConstant(1));
4449
4450    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4451    // of the long double, and puts FPSCR back the way it was.  We do not
4452    // actually model FPSCR.
4453    std::vector<EVT> NodeTys;
4454    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4455
4456    NodeTys.push_back(MVT::f64);   // Return register
4457    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4458    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4459    MFFSreg = Result.getValue(0);
4460    InFlag = Result.getValue(1);
4461
4462    NodeTys.clear();
4463    NodeTys.push_back(MVT::Flag);   // Returns a flag
4464    Ops[0] = DAG.getConstant(31, MVT::i32);
4465    Ops[1] = InFlag;
4466    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4467    InFlag = Result.getValue(0);
4468
4469    NodeTys.clear();
4470    NodeTys.push_back(MVT::Flag);   // Returns a flag
4471    Ops[0] = DAG.getConstant(30, MVT::i32);
4472    Ops[1] = InFlag;
4473    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4474    InFlag = Result.getValue(0);
4475
4476    NodeTys.clear();
4477    NodeTys.push_back(MVT::f64);    // result of add
4478    NodeTys.push_back(MVT::Flag);   // Returns a flag
4479    Ops[0] = Lo;
4480    Ops[1] = Hi;
4481    Ops[2] = InFlag;
4482    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4483    FPreg = Result.getValue(0);
4484    InFlag = Result.getValue(1);
4485
4486    NodeTys.clear();
4487    NodeTys.push_back(MVT::f64);
4488    Ops[0] = DAG.getConstant(1, MVT::i32);
4489    Ops[1] = MFFSreg;
4490    Ops[2] = FPreg;
4491    Ops[3] = InFlag;
4492    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4493    FPreg = Result.getValue(0);
4494
4495    // We know the low half is about to be thrown away, so just use something
4496    // convenient.
4497    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4498                                FPreg, FPreg));
4499    return;
4500  }
4501  case ISD::FP_TO_SINT:
4502    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4503    return;
4504  }
4505}
4506
4507
4508//===----------------------------------------------------------------------===//
4509//  Other Lowering Code
4510//===----------------------------------------------------------------------===//
4511
4512MachineBasicBlock *
4513PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4514                                    bool is64bit, unsigned BinOpcode) const {
4515  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4516  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4517
4518  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4519  MachineFunction *F = BB->getParent();
4520  MachineFunction::iterator It = BB;
4521  ++It;
4522
4523  unsigned dest = MI->getOperand(0).getReg();
4524  unsigned ptrA = MI->getOperand(1).getReg();
4525  unsigned ptrB = MI->getOperand(2).getReg();
4526  unsigned incr = MI->getOperand(3).getReg();
4527  DebugLoc dl = MI->getDebugLoc();
4528
4529  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4530  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4531  F->insert(It, loopMBB);
4532  F->insert(It, exitMBB);
4533  exitMBB->splice(exitMBB->begin(), BB,
4534                  llvm::next(MachineBasicBlock::iterator(MI)),
4535                  BB->end());
4536  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4537
4538  MachineRegisterInfo &RegInfo = F->getRegInfo();
4539  unsigned TmpReg = (!BinOpcode) ? incr :
4540    RegInfo.createVirtualRegister(
4541       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4542                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4543
4544  //  thisMBB:
4545  //   ...
4546  //   fallthrough --> loopMBB
4547  BB->addSuccessor(loopMBB);
4548
4549  //  loopMBB:
4550  //   l[wd]arx dest, ptr
4551  //   add r0, dest, incr
4552  //   st[wd]cx. r0, ptr
4553  //   bne- loopMBB
4554  //   fallthrough --> exitMBB
4555  BB = loopMBB;
4556  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4557    .addReg(ptrA).addReg(ptrB);
4558  if (BinOpcode)
4559    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4560  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4561    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4562  BuildMI(BB, dl, TII->get(PPC::BCC))
4563    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4564  BB->addSuccessor(loopMBB);
4565  BB->addSuccessor(exitMBB);
4566
4567  //  exitMBB:
4568  //   ...
4569  BB = exitMBB;
4570  return BB;
4571}
4572
4573MachineBasicBlock *
4574PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4575                                            MachineBasicBlock *BB,
4576                                            bool is8bit,    // operation
4577                                            unsigned BinOpcode) const {
4578  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4579  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4580  // In 64 bit mode we have to use 64 bits for addresses, even though the
4581  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4582  // registers without caring whether they're 32 or 64, but here we're
4583  // doing actual arithmetic on the addresses.
4584  bool is64bit = PPCSubTarget.isPPC64();
4585
4586  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4587  MachineFunction *F = BB->getParent();
4588  MachineFunction::iterator It = BB;
4589  ++It;
4590
4591  unsigned dest = MI->getOperand(0).getReg();
4592  unsigned ptrA = MI->getOperand(1).getReg();
4593  unsigned ptrB = MI->getOperand(2).getReg();
4594  unsigned incr = MI->getOperand(3).getReg();
4595  DebugLoc dl = MI->getDebugLoc();
4596
4597  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4598  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4599  F->insert(It, loopMBB);
4600  F->insert(It, exitMBB);
4601  exitMBB->splice(exitMBB->begin(), BB,
4602                  llvm::next(MachineBasicBlock::iterator(MI)),
4603                  BB->end());
4604  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4605
4606  MachineRegisterInfo &RegInfo = F->getRegInfo();
4607  const TargetRegisterClass *RC =
4608    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4609              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4610  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4611  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4612  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4613  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4614  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4615  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4616  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4617  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4618  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4619  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4620  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4621  unsigned Ptr1Reg;
4622  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4623
4624  //  thisMBB:
4625  //   ...
4626  //   fallthrough --> loopMBB
4627  BB->addSuccessor(loopMBB);
4628
4629  // The 4-byte load must be aligned, while a char or short may be
4630  // anywhere in the word.  Hence all this nasty bookkeeping code.
4631  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4632  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4633  //   xori shift, shift1, 24 [16]
4634  //   rlwinm ptr, ptr1, 0, 0, 29
4635  //   slw incr2, incr, shift
4636  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4637  //   slw mask, mask2, shift
4638  //  loopMBB:
4639  //   lwarx tmpDest, ptr
4640  //   add tmp, tmpDest, incr2
4641  //   andc tmp2, tmpDest, mask
4642  //   and tmp3, tmp, mask
4643  //   or tmp4, tmp3, tmp2
4644  //   stwcx. tmp4, ptr
4645  //   bne- loopMBB
4646  //   fallthrough --> exitMBB
4647  //   srw dest, tmpDest, shift
4648
4649  if (ptrA!=PPC::R0) {
4650    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4651    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4652      .addReg(ptrA).addReg(ptrB);
4653  } else {
4654    Ptr1Reg = ptrB;
4655  }
4656  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4657      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4658  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4659      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4660  if (is64bit)
4661    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4662      .addReg(Ptr1Reg).addImm(0).addImm(61);
4663  else
4664    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4665      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4666  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4667      .addReg(incr).addReg(ShiftReg);
4668  if (is8bit)
4669    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4670  else {
4671    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4672    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4673  }
4674  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4675      .addReg(Mask2Reg).addReg(ShiftReg);
4676
4677  BB = loopMBB;
4678  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4679    .addReg(PPC::R0).addReg(PtrReg);
4680  if (BinOpcode)
4681    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4682      .addReg(Incr2Reg).addReg(TmpDestReg);
4683  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4684    .addReg(TmpDestReg).addReg(MaskReg);
4685  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4686    .addReg(TmpReg).addReg(MaskReg);
4687  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4688    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4689  BuildMI(BB, dl, TII->get(PPC::STWCX))
4690    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4691  BuildMI(BB, dl, TII->get(PPC::BCC))
4692    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4693  BB->addSuccessor(loopMBB);
4694  BB->addSuccessor(exitMBB);
4695
4696  //  exitMBB:
4697  //   ...
4698  BB = exitMBB;
4699  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4700  return BB;
4701}
4702
4703MachineBasicBlock *
4704PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4705                                               MachineBasicBlock *BB) const {
4706  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4707
4708  // To "insert" these instructions we actually have to insert their
4709  // control-flow patterns.
4710  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4711  MachineFunction::iterator It = BB;
4712  ++It;
4713
4714  MachineFunction *F = BB->getParent();
4715
4716  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4717      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4718      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4719      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4720      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4721
4722    // The incoming instruction knows the destination vreg to set, the
4723    // condition code register to branch on, the true/false values to
4724    // select between, and a branch opcode to use.
4725
4726    //  thisMBB:
4727    //  ...
4728    //   TrueVal = ...
4729    //   cmpTY ccX, r1, r2
4730    //   bCC copy1MBB
4731    //   fallthrough --> copy0MBB
4732    MachineBasicBlock *thisMBB = BB;
4733    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4734    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4735    unsigned SelectPred = MI->getOperand(4).getImm();
4736    DebugLoc dl = MI->getDebugLoc();
4737    F->insert(It, copy0MBB);
4738    F->insert(It, sinkMBB);
4739
4740    // Transfer the remainder of BB and its successor edges to sinkMBB.
4741    sinkMBB->splice(sinkMBB->begin(), BB,
4742                    llvm::next(MachineBasicBlock::iterator(MI)),
4743                    BB->end());
4744    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4745
4746    // Next, add the true and fallthrough blocks as its successors.
4747    BB->addSuccessor(copy0MBB);
4748    BB->addSuccessor(sinkMBB);
4749
4750    BuildMI(BB, dl, TII->get(PPC::BCC))
4751      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4752
4753    //  copy0MBB:
4754    //   %FalseValue = ...
4755    //   # fallthrough to sinkMBB
4756    BB = copy0MBB;
4757
4758    // Update machine-CFG edges
4759    BB->addSuccessor(sinkMBB);
4760
4761    //  sinkMBB:
4762    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4763    //  ...
4764    BB = sinkMBB;
4765    BuildMI(*BB, BB->begin(), dl,
4766            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4767      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4768      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4769  }
4770  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4771    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4772  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4773    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4774  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4775    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4776  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4777    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4778
4779  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4780    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4781  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4782    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4783  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4784    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4785  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4786    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4787
4788  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4789    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4790  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4791    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4792  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4793    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4794  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4795    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4796
4797  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4798    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4799  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4800    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4801  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4802    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4803  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4804    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4805
4806  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4807    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4808  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4809    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4810  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4811    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4812  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4813    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4814
4815  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4816    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4817  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4818    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4819  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4820    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4821  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4822    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4823
4824  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4825    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4826  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4827    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4828  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4829    BB = EmitAtomicBinary(MI, BB, false, 0);
4830  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4831    BB = EmitAtomicBinary(MI, BB, true, 0);
4832
4833  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4834           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4835    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4836
4837    unsigned dest   = MI->getOperand(0).getReg();
4838    unsigned ptrA   = MI->getOperand(1).getReg();
4839    unsigned ptrB   = MI->getOperand(2).getReg();
4840    unsigned oldval = MI->getOperand(3).getReg();
4841    unsigned newval = MI->getOperand(4).getReg();
4842    DebugLoc dl     = MI->getDebugLoc();
4843
4844    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4845    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4846    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4847    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4848    F->insert(It, loop1MBB);
4849    F->insert(It, loop2MBB);
4850    F->insert(It, midMBB);
4851    F->insert(It, exitMBB);
4852    exitMBB->splice(exitMBB->begin(), BB,
4853                    llvm::next(MachineBasicBlock::iterator(MI)),
4854                    BB->end());
4855    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4856
4857    //  thisMBB:
4858    //   ...
4859    //   fallthrough --> loopMBB
4860    BB->addSuccessor(loop1MBB);
4861
4862    // loop1MBB:
4863    //   l[wd]arx dest, ptr
4864    //   cmp[wd] dest, oldval
4865    //   bne- midMBB
4866    // loop2MBB:
4867    //   st[wd]cx. newval, ptr
4868    //   bne- loopMBB
4869    //   b exitBB
4870    // midMBB:
4871    //   st[wd]cx. dest, ptr
4872    // exitBB:
4873    BB = loop1MBB;
4874    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4875      .addReg(ptrA).addReg(ptrB);
4876    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4877      .addReg(oldval).addReg(dest);
4878    BuildMI(BB, dl, TII->get(PPC::BCC))
4879      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4880    BB->addSuccessor(loop2MBB);
4881    BB->addSuccessor(midMBB);
4882
4883    BB = loop2MBB;
4884    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4885      .addReg(newval).addReg(ptrA).addReg(ptrB);
4886    BuildMI(BB, dl, TII->get(PPC::BCC))
4887      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4888    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4889    BB->addSuccessor(loop1MBB);
4890    BB->addSuccessor(exitMBB);
4891
4892    BB = midMBB;
4893    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4894      .addReg(dest).addReg(ptrA).addReg(ptrB);
4895    BB->addSuccessor(exitMBB);
4896
4897    //  exitMBB:
4898    //   ...
4899    BB = exitMBB;
4900  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4901             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4902    // We must use 64-bit registers for addresses when targeting 64-bit,
4903    // since we're actually doing arithmetic on them.  Other registers
4904    // can be 32-bit.
4905    bool is64bit = PPCSubTarget.isPPC64();
4906    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4907
4908    unsigned dest   = MI->getOperand(0).getReg();
4909    unsigned ptrA   = MI->getOperand(1).getReg();
4910    unsigned ptrB   = MI->getOperand(2).getReg();
4911    unsigned oldval = MI->getOperand(3).getReg();
4912    unsigned newval = MI->getOperand(4).getReg();
4913    DebugLoc dl     = MI->getDebugLoc();
4914
4915    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4916    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4917    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4918    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4919    F->insert(It, loop1MBB);
4920    F->insert(It, loop2MBB);
4921    F->insert(It, midMBB);
4922    F->insert(It, exitMBB);
4923    exitMBB->splice(exitMBB->begin(), BB,
4924                    llvm::next(MachineBasicBlock::iterator(MI)),
4925                    BB->end());
4926    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4927
4928    MachineRegisterInfo &RegInfo = F->getRegInfo();
4929    const TargetRegisterClass *RC =
4930      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4931                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4932    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4933    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4934    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4935    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4936    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4937    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4938    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4939    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4940    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4941    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4942    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4943    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4944    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4945    unsigned Ptr1Reg;
4946    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4947    //  thisMBB:
4948    //   ...
4949    //   fallthrough --> loopMBB
4950    BB->addSuccessor(loop1MBB);
4951
4952    // The 4-byte load must be aligned, while a char or short may be
4953    // anywhere in the word.  Hence all this nasty bookkeeping code.
4954    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4955    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4956    //   xori shift, shift1, 24 [16]
4957    //   rlwinm ptr, ptr1, 0, 0, 29
4958    //   slw newval2, newval, shift
4959    //   slw oldval2, oldval,shift
4960    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4961    //   slw mask, mask2, shift
4962    //   and newval3, newval2, mask
4963    //   and oldval3, oldval2, mask
4964    // loop1MBB:
4965    //   lwarx tmpDest, ptr
4966    //   and tmp, tmpDest, mask
4967    //   cmpw tmp, oldval3
4968    //   bne- midMBB
4969    // loop2MBB:
4970    //   andc tmp2, tmpDest, mask
4971    //   or tmp4, tmp2, newval3
4972    //   stwcx. tmp4, ptr
4973    //   bne- loop1MBB
4974    //   b exitBB
4975    // midMBB:
4976    //   stwcx. tmpDest, ptr
4977    // exitBB:
4978    //   srw dest, tmpDest, shift
4979    if (ptrA!=PPC::R0) {
4980      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4981      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4982        .addReg(ptrA).addReg(ptrB);
4983    } else {
4984      Ptr1Reg = ptrB;
4985    }
4986    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4987        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4988    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4989        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4990    if (is64bit)
4991      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4992        .addReg(Ptr1Reg).addImm(0).addImm(61);
4993    else
4994      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4995        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4996    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4997        .addReg(newval).addReg(ShiftReg);
4998    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4999        .addReg(oldval).addReg(ShiftReg);
5000    if (is8bit)
5001      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5002    else {
5003      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5004      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5005        .addReg(Mask3Reg).addImm(65535);
5006    }
5007    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5008        .addReg(Mask2Reg).addReg(ShiftReg);
5009    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5010        .addReg(NewVal2Reg).addReg(MaskReg);
5011    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5012        .addReg(OldVal2Reg).addReg(MaskReg);
5013
5014    BB = loop1MBB;
5015    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5016        .addReg(PPC::R0).addReg(PtrReg);
5017    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5018        .addReg(TmpDestReg).addReg(MaskReg);
5019    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5020        .addReg(TmpReg).addReg(OldVal3Reg);
5021    BuildMI(BB, dl, TII->get(PPC::BCC))
5022        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5023    BB->addSuccessor(loop2MBB);
5024    BB->addSuccessor(midMBB);
5025
5026    BB = loop2MBB;
5027    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5028        .addReg(TmpDestReg).addReg(MaskReg);
5029    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5030        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5031    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5032        .addReg(PPC::R0).addReg(PtrReg);
5033    BuildMI(BB, dl, TII->get(PPC::BCC))
5034      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5035    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5036    BB->addSuccessor(loop1MBB);
5037    BB->addSuccessor(exitMBB);
5038
5039    BB = midMBB;
5040    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5041      .addReg(PPC::R0).addReg(PtrReg);
5042    BB->addSuccessor(exitMBB);
5043
5044    //  exitMBB:
5045    //   ...
5046    BB = exitMBB;
5047    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5048  } else {
5049    llvm_unreachable("Unexpected instr type to insert");
5050  }
5051
5052  MI->eraseFromParent();   // The pseudo instruction is gone now.
5053  return BB;
5054}
5055
5056//===----------------------------------------------------------------------===//
5057// Target Optimization Hooks
5058//===----------------------------------------------------------------------===//
5059
5060SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5061                                             DAGCombinerInfo &DCI) const {
5062  const TargetMachine &TM = getTargetMachine();
5063  SelectionDAG &DAG = DCI.DAG;
5064  DebugLoc dl = N->getDebugLoc();
5065  switch (N->getOpcode()) {
5066  default: break;
5067  case PPCISD::SHL:
5068    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5069      if (C->isNullValue())   // 0 << V -> 0.
5070        return N->getOperand(0);
5071    }
5072    break;
5073  case PPCISD::SRL:
5074    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5075      if (C->isNullValue())   // 0 >>u V -> 0.
5076        return N->getOperand(0);
5077    }
5078    break;
5079  case PPCISD::SRA:
5080    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5081      if (C->isNullValue() ||   //  0 >>s V -> 0.
5082          C->isAllOnesValue())    // -1 >>s V -> -1.
5083        return N->getOperand(0);
5084    }
5085    break;
5086
5087  case ISD::SINT_TO_FP:
5088    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5089      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5090        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5091        // We allow the src/dst to be either f32/f64, but the intermediate
5092        // type must be i64.
5093        if (N->getOperand(0).getValueType() == MVT::i64 &&
5094            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5095          SDValue Val = N->getOperand(0).getOperand(0);
5096          if (Val.getValueType() == MVT::f32) {
5097            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5098            DCI.AddToWorklist(Val.getNode());
5099          }
5100
5101          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5102          DCI.AddToWorklist(Val.getNode());
5103          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5104          DCI.AddToWorklist(Val.getNode());
5105          if (N->getValueType(0) == MVT::f32) {
5106            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5107                              DAG.getIntPtrConstant(0));
5108            DCI.AddToWorklist(Val.getNode());
5109          }
5110          return Val;
5111        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5112          // If the intermediate type is i32, we can avoid the load/store here
5113          // too.
5114        }
5115      }
5116    }
5117    break;
5118  case ISD::STORE:
5119    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5120    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5121        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5122        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5123        N->getOperand(1).getValueType() == MVT::i32 &&
5124        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5125      SDValue Val = N->getOperand(1).getOperand(0);
5126      if (Val.getValueType() == MVT::f32) {
5127        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5128        DCI.AddToWorklist(Val.getNode());
5129      }
5130      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5131      DCI.AddToWorklist(Val.getNode());
5132
5133      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5134                        N->getOperand(2), N->getOperand(3));
5135      DCI.AddToWorklist(Val.getNode());
5136      return Val;
5137    }
5138
5139    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5140    if (cast<StoreSDNode>(N)->isUnindexed() &&
5141        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5142        N->getOperand(1).getNode()->hasOneUse() &&
5143        (N->getOperand(1).getValueType() == MVT::i32 ||
5144         N->getOperand(1).getValueType() == MVT::i16)) {
5145      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5146      // Do an any-extend to 32-bits if this is a half-word input.
5147      if (BSwapOp.getValueType() == MVT::i16)
5148        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5149
5150      SDValue Ops[] = {
5151        N->getOperand(0), BSwapOp, N->getOperand(2),
5152        DAG.getValueType(N->getOperand(1).getValueType())
5153      };
5154      return
5155        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5156                                Ops, array_lengthof(Ops),
5157                                cast<StoreSDNode>(N)->getMemoryVT(),
5158                                cast<StoreSDNode>(N)->getMemOperand());
5159    }
5160    break;
5161  case ISD::BSWAP:
5162    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5163    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5164        N->getOperand(0).hasOneUse() &&
5165        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5166      SDValue Load = N->getOperand(0);
5167      LoadSDNode *LD = cast<LoadSDNode>(Load);
5168      // Create the byte-swapping load.
5169      SDValue Ops[] = {
5170        LD->getChain(),    // Chain
5171        LD->getBasePtr(),  // Ptr
5172        DAG.getValueType(N->getValueType(0)) // VT
5173      };
5174      SDValue BSLoad =
5175        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5176                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5177                                LD->getMemoryVT(), LD->getMemOperand());
5178
5179      // If this is an i16 load, insert the truncate.
5180      SDValue ResVal = BSLoad;
5181      if (N->getValueType(0) == MVT::i16)
5182        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5183
5184      // First, combine the bswap away.  This makes the value produced by the
5185      // load dead.
5186      DCI.CombineTo(N, ResVal);
5187
5188      // Next, combine the load away, we give it a bogus result value but a real
5189      // chain result.  The result value is dead because the bswap is dead.
5190      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5191
5192      // Return N so it doesn't get rechecked!
5193      return SDValue(N, 0);
5194    }
5195
5196    break;
5197  case PPCISD::VCMP: {
5198    // If a VCMPo node already exists with exactly the same operands as this
5199    // node, use its result instead of this node (VCMPo computes both a CR6 and
5200    // a normal output).
5201    //
5202    if (!N->getOperand(0).hasOneUse() &&
5203        !N->getOperand(1).hasOneUse() &&
5204        !N->getOperand(2).hasOneUse()) {
5205
5206      // Scan all of the users of the LHS, looking for VCMPo's that match.
5207      SDNode *VCMPoNode = 0;
5208
5209      SDNode *LHSN = N->getOperand(0).getNode();
5210      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5211           UI != E; ++UI)
5212        if (UI->getOpcode() == PPCISD::VCMPo &&
5213            UI->getOperand(1) == N->getOperand(1) &&
5214            UI->getOperand(2) == N->getOperand(2) &&
5215            UI->getOperand(0) == N->getOperand(0)) {
5216          VCMPoNode = *UI;
5217          break;
5218        }
5219
5220      // If there is no VCMPo node, or if the flag value has a single use, don't
5221      // transform this.
5222      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5223        break;
5224
5225      // Look at the (necessarily single) use of the flag value.  If it has a
5226      // chain, this transformation is more complex.  Note that multiple things
5227      // could use the value result, which we should ignore.
5228      SDNode *FlagUser = 0;
5229      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5230           FlagUser == 0; ++UI) {
5231        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5232        SDNode *User = *UI;
5233        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5234          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5235            FlagUser = User;
5236            break;
5237          }
5238        }
5239      }
5240
5241      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5242      // give up for right now.
5243      if (FlagUser->getOpcode() == PPCISD::MFCR)
5244        return SDValue(VCMPoNode, 0);
5245    }
5246    break;
5247  }
5248  case ISD::BR_CC: {
5249    // If this is a branch on an altivec predicate comparison, lower this so
5250    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5251    // lowering is done pre-legalize, because the legalizer lowers the predicate
5252    // compare down to code that is difficult to reassemble.
5253    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5254    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5255    int CompareOpc;
5256    bool isDot;
5257
5258    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5259        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5260        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5261      assert(isDot && "Can't compare against a vector result!");
5262
5263      // If this is a comparison against something other than 0/1, then we know
5264      // that the condition is never/always true.
5265      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5266      if (Val != 0 && Val != 1) {
5267        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5268          return N->getOperand(0);
5269        // Always !=, turn it into an unconditional branch.
5270        return DAG.getNode(ISD::BR, dl, MVT::Other,
5271                           N->getOperand(0), N->getOperand(4));
5272      }
5273
5274      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5275
5276      // Create the PPCISD altivec 'dot' comparison node.
5277      std::vector<EVT> VTs;
5278      SDValue Ops[] = {
5279        LHS.getOperand(2),  // LHS of compare
5280        LHS.getOperand(3),  // RHS of compare
5281        DAG.getConstant(CompareOpc, MVT::i32)
5282      };
5283      VTs.push_back(LHS.getOperand(2).getValueType());
5284      VTs.push_back(MVT::Flag);
5285      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5286
5287      // Unpack the result based on how the target uses it.
5288      PPC::Predicate CompOpc;
5289      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5290      default:  // Can't happen, don't crash on invalid number though.
5291      case 0:   // Branch on the value of the EQ bit of CR6.
5292        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5293        break;
5294      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5295        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5296        break;
5297      case 2:   // Branch on the value of the LT bit of CR6.
5298        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5299        break;
5300      case 3:   // Branch on the inverted value of the LT bit of CR6.
5301        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5302        break;
5303      }
5304
5305      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5306                         DAG.getConstant(CompOpc, MVT::i32),
5307                         DAG.getRegister(PPC::CR6, MVT::i32),
5308                         N->getOperand(4), CompNode.getValue(1));
5309    }
5310    break;
5311  }
5312  }
5313
5314  return SDValue();
5315}
5316
5317//===----------------------------------------------------------------------===//
5318// Inline Assembly Support
5319//===----------------------------------------------------------------------===//
5320
5321void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5322                                                       const APInt &Mask,
5323                                                       APInt &KnownZero,
5324                                                       APInt &KnownOne,
5325                                                       const SelectionDAG &DAG,
5326                                                       unsigned Depth) const {
5327  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5328  switch (Op.getOpcode()) {
5329  default: break;
5330  case PPCISD::LBRX: {
5331    // lhbrx is known to have the top bits cleared out.
5332    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5333      KnownZero = 0xFFFF0000;
5334    break;
5335  }
5336  case ISD::INTRINSIC_WO_CHAIN: {
5337    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5338    default: break;
5339    case Intrinsic::ppc_altivec_vcmpbfp_p:
5340    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5341    case Intrinsic::ppc_altivec_vcmpequb_p:
5342    case Intrinsic::ppc_altivec_vcmpequh_p:
5343    case Intrinsic::ppc_altivec_vcmpequw_p:
5344    case Intrinsic::ppc_altivec_vcmpgefp_p:
5345    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5346    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5347    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5348    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5349    case Intrinsic::ppc_altivec_vcmpgtub_p:
5350    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5351    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5352      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5353      break;
5354    }
5355  }
5356  }
5357}
5358
5359
5360/// getConstraintType - Given a constraint, return the type of
5361/// constraint it is for this target.
5362PPCTargetLowering::ConstraintType
5363PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5364  if (Constraint.size() == 1) {
5365    switch (Constraint[0]) {
5366    default: break;
5367    case 'b':
5368    case 'r':
5369    case 'f':
5370    case 'v':
5371    case 'y':
5372      return C_RegisterClass;
5373    }
5374  }
5375  return TargetLowering::getConstraintType(Constraint);
5376}
5377
5378std::pair<unsigned, const TargetRegisterClass*>
5379PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5380                                                EVT VT) const {
5381  if (Constraint.size() == 1) {
5382    // GCC RS6000 Constraint Letters
5383    switch (Constraint[0]) {
5384    case 'b':   // R1-R31
5385    case 'r':   // R0-R31
5386      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5387        return std::make_pair(0U, PPC::G8RCRegisterClass);
5388      return std::make_pair(0U, PPC::GPRCRegisterClass);
5389    case 'f':
5390      if (VT == MVT::f32)
5391        return std::make_pair(0U, PPC::F4RCRegisterClass);
5392      else if (VT == MVT::f64)
5393        return std::make_pair(0U, PPC::F8RCRegisterClass);
5394      break;
5395    case 'v':
5396      return std::make_pair(0U, PPC::VRRCRegisterClass);
5397    case 'y':   // crrc
5398      return std::make_pair(0U, PPC::CRRCRegisterClass);
5399    }
5400  }
5401
5402  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5403}
5404
5405
5406/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5407/// vector.  If it is invalid, don't add anything to Ops.
5408void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5409                                                     std::vector<SDValue>&Ops,
5410                                                     SelectionDAG &DAG) const {
5411  SDValue Result(0,0);
5412  switch (Letter) {
5413  default: break;
5414  case 'I':
5415  case 'J':
5416  case 'K':
5417  case 'L':
5418  case 'M':
5419  case 'N':
5420  case 'O':
5421  case 'P': {
5422    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5423    if (!CST) return; // Must be an immediate to match.
5424    unsigned Value = CST->getZExtValue();
5425    switch (Letter) {
5426    default: llvm_unreachable("Unknown constraint letter!");
5427    case 'I':  // "I" is a signed 16-bit constant.
5428      if ((short)Value == (int)Value)
5429        Result = DAG.getTargetConstant(Value, Op.getValueType());
5430      break;
5431    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5432    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5433      if ((short)Value == 0)
5434        Result = DAG.getTargetConstant(Value, Op.getValueType());
5435      break;
5436    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5437      if ((Value >> 16) == 0)
5438        Result = DAG.getTargetConstant(Value, Op.getValueType());
5439      break;
5440    case 'M':  // "M" is a constant that is greater than 31.
5441      if (Value > 31)
5442        Result = DAG.getTargetConstant(Value, Op.getValueType());
5443      break;
5444    case 'N':  // "N" is a positive constant that is an exact power of two.
5445      if ((int)Value > 0 && isPowerOf2_32(Value))
5446        Result = DAG.getTargetConstant(Value, Op.getValueType());
5447      break;
5448    case 'O':  // "O" is the constant zero.
5449      if (Value == 0)
5450        Result = DAG.getTargetConstant(Value, Op.getValueType());
5451      break;
5452    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5453      if ((short)-Value == (int)-Value)
5454        Result = DAG.getTargetConstant(Value, Op.getValueType());
5455      break;
5456    }
5457    break;
5458  }
5459  }
5460
5461  if (Result.getNode()) {
5462    Ops.push_back(Result);
5463    return;
5464  }
5465
5466  // Handle standard constraint letters.
5467  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
5468}
5469
5470// isLegalAddressingMode - Return true if the addressing mode represented
5471// by AM is legal for this target, for a load/store of the specified type.
5472bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5473                                              const Type *Ty) const {
5474  // FIXME: PPC does not allow r+i addressing modes for vectors!
5475
5476  // PPC allows a sign-extended 16-bit immediate field.
5477  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5478    return false;
5479
5480  // No global is ever allowed as a base.
5481  if (AM.BaseGV)
5482    return false;
5483
5484  // PPC only support r+r,
5485  switch (AM.Scale) {
5486  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5487    break;
5488  case 1:
5489    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5490      return false;
5491    // Otherwise we have r+r or r+i.
5492    break;
5493  case 2:
5494    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5495      return false;
5496    // Allow 2*r as r+r.
5497    break;
5498  default:
5499    // No other scales are supported.
5500    return false;
5501  }
5502
5503  return true;
5504}
5505
5506/// isLegalAddressImmediate - Return true if the integer value can be used
5507/// as the offset of the target addressing mode for load / store of the
5508/// given type.
5509bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5510  // PPC allows a sign-extended 16-bit immediate field.
5511  return (V > -(1 << 16) && V < (1 << 16)-1);
5512}
5513
5514bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5515  return false;
5516}
5517
5518SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5519                                           SelectionDAG &DAG) const {
5520  MachineFunction &MF = DAG.getMachineFunction();
5521  MachineFrameInfo *MFI = MF.getFrameInfo();
5522  MFI->setReturnAddressIsTaken(true);
5523
5524  DebugLoc dl = Op.getDebugLoc();
5525  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5526
5527  // Make sure the function does not optimize away the store of the RA to
5528  // the stack.
5529  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5530  FuncInfo->setLRStoreRequired();
5531  bool isPPC64 = PPCSubTarget.isPPC64();
5532  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5533
5534  if (Depth > 0) {
5535    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5536    SDValue Offset =
5537
5538      DAG.getConstant(PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI),
5539                      isPPC64? MVT::i64 : MVT::i32);
5540    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5541                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5542                                   FrameAddr, Offset),
5543                       MachinePointerInfo(), false, false, 0);
5544  }
5545
5546  // Just load the return address off the stack.
5547  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5548  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5549                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5550}
5551
5552SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5553                                          SelectionDAG &DAG) const {
5554  DebugLoc dl = Op.getDebugLoc();
5555  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5556
5557  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5558  bool isPPC64 = PtrVT == MVT::i64;
5559
5560  MachineFunction &MF = DAG.getMachineFunction();
5561  MachineFrameInfo *MFI = MF.getFrameInfo();
5562  MFI->setFrameAddressIsTaken(true);
5563  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5564                  MFI->getStackSize() &&
5565                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5566  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5567                                (is31 ? PPC::R31 : PPC::R1);
5568  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5569                                         PtrVT);
5570  while (Depth--)
5571    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5572                            FrameAddr, MachinePointerInfo(), false, false, 0);
5573  return FrameAddr;
5574}
5575
5576bool
5577PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5578  // The PowerPC target isn't yet aware of offsets.
5579  return false;
5580}
5581
5582/// getOptimalMemOpType - Returns the target specific optimal type for load
5583/// and store operations as a result of memset, memcpy, and memmove
5584/// lowering. If DstAlign is zero that means it's safe to destination
5585/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5586/// means there isn't a need to check it against alignment requirement,
5587/// probably because the source does not need to be loaded. If
5588/// 'NonScalarIntSafe' is true, that means it's safe to return a
5589/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5590/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5591/// constant so it does not need to be loaded.
5592/// It returns EVT::Other if the type should be determined using generic
5593/// target-independent logic.
5594EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5595                                           unsigned DstAlign, unsigned SrcAlign,
5596                                           bool NonScalarIntSafe,
5597                                           bool MemcpyStrSrc,
5598                                           MachineFunction &MF) const {
5599  if (this->PPCSubTarget.isPPC64()) {
5600    return MVT::i64;
5601  } else {
5602    return MVT::i32;
5603  }
5604}
5605