PPCISelLowering.cpp revision 619965d32e2cb961cc315aaece2e32f53f236784
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Support/CommandLine.h"
32using namespace llvm;
33
34static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
35
36PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
37  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
38
39  // Fold away setcc operations if possible.
40  setSetCCIsExpensive();
41  setPow2DivIsCheap();
42
43  // Use _setjmp/_longjmp instead of setjmp/longjmp.
44  setUseUnderscoreSetJmpLongJmp(true);
45
46  // Set up the register classes.
47  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
48  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
49  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
50
51  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
52  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
53  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
54
55  // PowerPC does not have truncstore for i1.
56  setStoreXAction(MVT::i1, Promote);
57
58  // PowerPC has pre-inc load and store's.
59  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
64  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
69
70  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
71  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
72
73  // PowerPC has no intrinsics for these particular operations
74  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
75  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
76  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
77
78  // PowerPC has no SREM/UREM instructions
79  setOperationAction(ISD::SREM, MVT::i32, Expand);
80  setOperationAction(ISD::UREM, MVT::i32, Expand);
81  setOperationAction(ISD::SREM, MVT::i64, Expand);
82  setOperationAction(ISD::UREM, MVT::i64, Expand);
83
84  // We don't support sin/cos/sqrt/fmod
85  setOperationAction(ISD::FSIN , MVT::f64, Expand);
86  setOperationAction(ISD::FCOS , MVT::f64, Expand);
87  setOperationAction(ISD::FREM , MVT::f64, Expand);
88  setOperationAction(ISD::FSIN , MVT::f32, Expand);
89  setOperationAction(ISD::FCOS , MVT::f32, Expand);
90  setOperationAction(ISD::FREM , MVT::f32, Expand);
91
92  // If we're enabling GP optimizations, use hardware square root
93  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
94    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
95    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
96  }
97
98  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
99  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
100
101  // PowerPC does not have BSWAP, CTPOP or CTTZ
102  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
103  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
104  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
105  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
106  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
107  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
108
109  // PowerPC does not have ROTR
110  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
111
112  // PowerPC does not have Select
113  setOperationAction(ISD::SELECT, MVT::i32, Expand);
114  setOperationAction(ISD::SELECT, MVT::i64, Expand);
115  setOperationAction(ISD::SELECT, MVT::f32, Expand);
116  setOperationAction(ISD::SELECT, MVT::f64, Expand);
117
118  // PowerPC wants to turn select_cc of FP into fsel when possible.
119  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
120  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
121
122  // PowerPC wants to optimize integer setcc a bit
123  setOperationAction(ISD::SETCC, MVT::i32, Custom);
124
125  // PowerPC does not have BRCOND which requires SetCC
126  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
127
128  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
129
130  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
131  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
132
133  // PowerPC does not have [U|S]INT_TO_FP
134  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
135  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
136
137  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
138  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
139  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
140  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
141
142  // We cannot sextinreg(i1).  Expand to shifts.
143  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
144
145
146  // Support label based line numbers.
147  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
148  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
149  // FIXME - use subtarget debug flags
150  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
151    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
152
153  // We want to legalize GlobalAddress and ConstantPool nodes into the
154  // appropriate instructions to materialize the address.
155  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
156  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
157  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
158  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
159  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
160  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
161
162  // RET must be custom lowered, to meet ABI requirements
163  setOperationAction(ISD::RET               , MVT::Other, Custom);
164
165  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
166  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
167
168  // Use the default implementation.
169  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
170  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
171  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
172  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
173  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
174  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
175  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
176
177  // We want to custom lower some of our intrinsics.
178  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
179
180  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
181    // They also have instructions for converting between i64 and fp.
182    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
183    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
184
185    // FIXME: disable this lowered code.  This generates 64-bit register values,
186    // and we don't model the fact that the top part is clobbered by calls.  We
187    // need to flag these together so that the value isn't live across a call.
188    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
189
190    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
191    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
192  } else {
193    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
194    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
195  }
196
197  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
198    // 64 bit PowerPC implementations can support i64 types directly
199    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
200    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
201    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
202  } else {
203    // 32 bit PowerPC wants to expand i64 shifts itself.
204    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
205    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
206    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
207  }
208
209  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
210    // First set operation action for all vector types to expand. Then we
211    // will selectively turn on ones that can be effectively codegen'd.
212    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
213         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
214      // add/sub are legal for all supported vector VT's.
215      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
216      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
217
218      // We promote all shuffles to v16i8.
219      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
220      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
221
222      // We promote all non-typed operations to v4i32.
223      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
224      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
225      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
226      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
227      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
228      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
229      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
230      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
231      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
233      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
234      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
235
236      // No other operations are legal.
237      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
238      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
239      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
240      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
241      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
242      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
243      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
244      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
245      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
246
247      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
248    }
249
250    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
251    // with merges, splats, etc.
252    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
253
254    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
255    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
256    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
257    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
258    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
259    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
260
261    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
262    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
263    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
264    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
265
266    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
267    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
268    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
269    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
270
271    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
272    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
273
274    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
275    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
276    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
277    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
278  }
279
280  setSetCCResultType(MVT::i32);
281  setShiftAmountType(MVT::i32);
282  setSetCCResultContents(ZeroOrOneSetCCResult);
283
284  if (TM.getSubtarget<PPCSubtarget>().isPPC64())
285    setStackPointerRegisterToSaveRestore(PPC::X1);
286  else
287    setStackPointerRegisterToSaveRestore(PPC::R1);
288
289  // We have target-specific dag combine patterns for the following nodes:
290  setTargetDAGCombine(ISD::SINT_TO_FP);
291  setTargetDAGCombine(ISD::STORE);
292  setTargetDAGCombine(ISD::BR_CC);
293  setTargetDAGCombine(ISD::BSWAP);
294
295  computeRegisterProperties();
296}
297
298const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
299  switch (Opcode) {
300  default: return 0;
301  case PPCISD::FSEL:          return "PPCISD::FSEL";
302  case PPCISD::FCFID:         return "PPCISD::FCFID";
303  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
304  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
305  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
306  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
307  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
308  case PPCISD::VPERM:         return "PPCISD::VPERM";
309  case PPCISD::Hi:            return "PPCISD::Hi";
310  case PPCISD::Lo:            return "PPCISD::Lo";
311  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
312  case PPCISD::SRL:           return "PPCISD::SRL";
313  case PPCISD::SRA:           return "PPCISD::SRA";
314  case PPCISD::SHL:           return "PPCISD::SHL";
315  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
316  case PPCISD::STD_32:        return "PPCISD::STD_32";
317  case PPCISD::CALL:          return "PPCISD::CALL";
318  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
319  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
320  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
321  case PPCISD::MFCR:          return "PPCISD::MFCR";
322  case PPCISD::VCMP:          return "PPCISD::VCMP";
323  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
324  case PPCISD::LBRX:          return "PPCISD::LBRX";
325  case PPCISD::STBRX:         return "PPCISD::STBRX";
326  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
327  }
328}
329
330//===----------------------------------------------------------------------===//
331// Node matching predicates, for use by the tblgen matching code.
332//===----------------------------------------------------------------------===//
333
334/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
335static bool isFloatingPointZero(SDOperand Op) {
336  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
337    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
338  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
339    // Maybe this has already been legalized into the constant pool?
340    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
341      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
342        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
343  }
344  return false;
345}
346
347/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
348/// true if Op is undef or if it matches the specified value.
349static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
350  return Op.getOpcode() == ISD::UNDEF ||
351         cast<ConstantSDNode>(Op)->getValue() == Val;
352}
353
354/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
355/// VPKUHUM instruction.
356bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
357  if (!isUnary) {
358    for (unsigned i = 0; i != 16; ++i)
359      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
360        return false;
361  } else {
362    for (unsigned i = 0; i != 8; ++i)
363      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
364          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
365        return false;
366  }
367  return true;
368}
369
370/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
371/// VPKUWUM instruction.
372bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
373  if (!isUnary) {
374    for (unsigned i = 0; i != 16; i += 2)
375      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
376          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
377        return false;
378  } else {
379    for (unsigned i = 0; i != 8; i += 2)
380      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
381          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
382          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
383          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
384        return false;
385  }
386  return true;
387}
388
389/// isVMerge - Common function, used to match vmrg* shuffles.
390///
391static bool isVMerge(SDNode *N, unsigned UnitSize,
392                     unsigned LHSStart, unsigned RHSStart) {
393  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
394         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
395  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
396         "Unsupported merge size!");
397
398  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
399    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
400      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
401                             LHSStart+j+i*UnitSize) ||
402          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
403                             RHSStart+j+i*UnitSize))
404        return false;
405    }
406      return true;
407}
408
409/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
410/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
411bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
412  if (!isUnary)
413    return isVMerge(N, UnitSize, 8, 24);
414  return isVMerge(N, UnitSize, 8, 8);
415}
416
417/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
418/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
419bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
420  if (!isUnary)
421    return isVMerge(N, UnitSize, 0, 16);
422  return isVMerge(N, UnitSize, 0, 0);
423}
424
425
426/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
427/// amount, otherwise return -1.
428int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
429  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
430         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
431  // Find the first non-undef value in the shuffle mask.
432  unsigned i;
433  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
434    /*search*/;
435
436  if (i == 16) return -1;  // all undef.
437
438  // Otherwise, check to see if the rest of the elements are consequtively
439  // numbered from this value.
440  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
441  if (ShiftAmt < i) return -1;
442  ShiftAmt -= i;
443
444  if (!isUnary) {
445    // Check the rest of the elements to see if they are consequtive.
446    for (++i; i != 16; ++i)
447      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
448        return -1;
449  } else {
450    // Check the rest of the elements to see if they are consequtive.
451    for (++i; i != 16; ++i)
452      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
453        return -1;
454  }
455
456  return ShiftAmt;
457}
458
459/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
460/// specifies a splat of a single element that is suitable for input to
461/// VSPLTB/VSPLTH/VSPLTW.
462bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
463  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
464         N->getNumOperands() == 16 &&
465         (EltSize == 1 || EltSize == 2 || EltSize == 4));
466
467  // This is a splat operation if each element of the permute is the same, and
468  // if the value doesn't reference the second vector.
469  unsigned ElementBase = 0;
470  SDOperand Elt = N->getOperand(0);
471  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
472    ElementBase = EltV->getValue();
473  else
474    return false;   // FIXME: Handle UNDEF elements too!
475
476  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
477    return false;
478
479  // Check that they are consequtive.
480  for (unsigned i = 1; i != EltSize; ++i) {
481    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
482        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
483      return false;
484  }
485
486  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
487  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
488    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
489    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
490           "Invalid VECTOR_SHUFFLE mask!");
491    for (unsigned j = 0; j != EltSize; ++j)
492      if (N->getOperand(i+j) != N->getOperand(j))
493        return false;
494  }
495
496  return true;
497}
498
499/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
500/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
501unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
502  assert(isSplatShuffleMask(N, EltSize));
503  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
504}
505
506/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
507/// by using a vspltis[bhw] instruction of the specified element size, return
508/// the constant being splatted.  The ByteSize field indicates the number of
509/// bytes of each element [124] -> [bhw].
510SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
511  SDOperand OpVal(0, 0);
512
513  // If ByteSize of the splat is bigger than the element size of the
514  // build_vector, then we have a case where we are checking for a splat where
515  // multiple elements of the buildvector are folded together into a single
516  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
517  unsigned EltSize = 16/N->getNumOperands();
518  if (EltSize < ByteSize) {
519    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
520    SDOperand UniquedVals[4];
521    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
522
523    // See if all of the elements in the buildvector agree across.
524    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
525      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
526      // If the element isn't a constant, bail fully out.
527      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
528
529
530      if (UniquedVals[i&(Multiple-1)].Val == 0)
531        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
532      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
533        return SDOperand();  // no match.
534    }
535
536    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
537    // either constant or undef values that are identical for each chunk.  See
538    // if these chunks can form into a larger vspltis*.
539
540    // Check to see if all of the leading entries are either 0 or -1.  If
541    // neither, then this won't fit into the immediate field.
542    bool LeadingZero = true;
543    bool LeadingOnes = true;
544    for (unsigned i = 0; i != Multiple-1; ++i) {
545      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
546
547      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
548      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
549    }
550    // Finally, check the least significant entry.
551    if (LeadingZero) {
552      if (UniquedVals[Multiple-1].Val == 0)
553        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
554      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
555      if (Val < 16)
556        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
557    }
558    if (LeadingOnes) {
559      if (UniquedVals[Multiple-1].Val == 0)
560        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
561      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
562      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
563        return DAG.getTargetConstant(Val, MVT::i32);
564    }
565
566    return SDOperand();
567  }
568
569  // Check to see if this buildvec has a single non-undef value in its elements.
570  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
571    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
572    if (OpVal.Val == 0)
573      OpVal = N->getOperand(i);
574    else if (OpVal != N->getOperand(i))
575      return SDOperand();
576  }
577
578  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
579
580  unsigned ValSizeInBytes = 0;
581  uint64_t Value = 0;
582  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
583    Value = CN->getValue();
584    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
585  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
586    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
587    Value = FloatToBits(CN->getValue());
588    ValSizeInBytes = 4;
589  }
590
591  // If the splat value is larger than the element value, then we can never do
592  // this splat.  The only case that we could fit the replicated bits into our
593  // immediate field for would be zero, and we prefer to use vxor for it.
594  if (ValSizeInBytes < ByteSize) return SDOperand();
595
596  // If the element value is larger than the splat value, cut it in half and
597  // check to see if the two halves are equal.  Continue doing this until we
598  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
599  while (ValSizeInBytes > ByteSize) {
600    ValSizeInBytes >>= 1;
601
602    // If the top half equals the bottom half, we're still ok.
603    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
604         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
605      return SDOperand();
606  }
607
608  // Properly sign extend the value.
609  int ShAmt = (4-ByteSize)*8;
610  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
611
612  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
613  if (MaskVal == 0) return SDOperand();
614
615  // Finally, if this value fits in a 5 bit sext field, return it
616  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
617    return DAG.getTargetConstant(MaskVal, MVT::i32);
618  return SDOperand();
619}
620
621//===----------------------------------------------------------------------===//
622//  Addressing Mode Selection
623//===----------------------------------------------------------------------===//
624
625/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
626/// or 64-bit immediate, and if the value can be accurately represented as a
627/// sign extension from a 16-bit value.  If so, this returns true and the
628/// immediate.
629static bool isIntS16Immediate(SDNode *N, short &Imm) {
630  if (N->getOpcode() != ISD::Constant)
631    return false;
632
633  Imm = (short)cast<ConstantSDNode>(N)->getValue();
634  if (N->getValueType(0) == MVT::i32)
635    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
636  else
637    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
638}
639static bool isIntS16Immediate(SDOperand Op, short &Imm) {
640  return isIntS16Immediate(Op.Val, Imm);
641}
642
643
644/// SelectAddressRegReg - Given the specified addressed, check to see if it
645/// can be represented as an indexed [r+r] operation.  Returns false if it
646/// can be more efficiently represented with [r+imm].
647bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
648                                            SDOperand &Index,
649                                            SelectionDAG &DAG) {
650  short imm = 0;
651  if (N.getOpcode() == ISD::ADD) {
652    if (isIntS16Immediate(N.getOperand(1), imm))
653      return false;    // r+i
654    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
655      return false;    // r+i
656
657    Base = N.getOperand(0);
658    Index = N.getOperand(1);
659    return true;
660  } else if (N.getOpcode() == ISD::OR) {
661    if (isIntS16Immediate(N.getOperand(1), imm))
662      return false;    // r+i can fold it if we can.
663
664    // If this is an or of disjoint bitfields, we can codegen this as an add
665    // (for better address arithmetic) if the LHS and RHS of the OR are provably
666    // disjoint.
667    uint64_t LHSKnownZero, LHSKnownOne;
668    uint64_t RHSKnownZero, RHSKnownOne;
669    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
670
671    if (LHSKnownZero) {
672      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
673      // If all of the bits are known zero on the LHS or RHS, the add won't
674      // carry.
675      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
676        Base = N.getOperand(0);
677        Index = N.getOperand(1);
678        return true;
679      }
680    }
681  }
682
683  return false;
684}
685
686/// Returns true if the address N can be represented by a base register plus
687/// a signed 16-bit displacement [r+imm], and if it is not better
688/// represented as reg+reg.
689bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
690                                            SDOperand &Base, SelectionDAG &DAG){
691  // If this can be more profitably realized as r+r, fail.
692  if (SelectAddressRegReg(N, Disp, Base, DAG))
693    return false;
694
695  if (N.getOpcode() == ISD::ADD) {
696    short imm = 0;
697    if (isIntS16Immediate(N.getOperand(1), imm)) {
698      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
699      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
700        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
701      } else {
702        Base = N.getOperand(0);
703      }
704      return true; // [r+i]
705    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
706      // Match LOAD (ADD (X, Lo(G))).
707      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
708             && "Cannot handle constant offsets yet!");
709      Disp = N.getOperand(1).getOperand(0);  // The global address.
710      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
711             Disp.getOpcode() == ISD::TargetConstantPool ||
712             Disp.getOpcode() == ISD::TargetJumpTable);
713      Base = N.getOperand(0);
714      return true;  // [&g+r]
715    }
716  } else if (N.getOpcode() == ISD::OR) {
717    short imm = 0;
718    if (isIntS16Immediate(N.getOperand(1), imm)) {
719      // If this is an or of disjoint bitfields, we can codegen this as an add
720      // (for better address arithmetic) if the LHS and RHS of the OR are
721      // provably disjoint.
722      uint64_t LHSKnownZero, LHSKnownOne;
723      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
724      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
725        // If all of the bits are known zero on the LHS or RHS, the add won't
726        // carry.
727        Base = N.getOperand(0);
728        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
729        return true;
730      }
731    }
732  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
733    // Loading from a constant address.
734
735    // If this address fits entirely in a 16-bit sext immediate field, codegen
736    // this as "d, 0"
737    short Imm;
738    if (isIntS16Immediate(CN, Imm)) {
739      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
740      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
741      return true;
742    }
743
744    // FIXME: Handle small sext constant offsets in PPC64 mode also!
745    if (CN->getValueType(0) == MVT::i32) {
746      int Addr = (int)CN->getValue();
747
748      // Otherwise, break this down into an LIS + disp.
749      Disp =  DAG.getTargetConstant((short)Addr, MVT::i32);
750      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
751      return true;
752    }
753  }
754
755  Disp = DAG.getTargetConstant(0, getPointerTy());
756  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
757    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
758  else
759    Base = N;
760  return true;      // [r+0]
761}
762
763/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
764/// represented as an indexed [r+r] operation.
765bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
766                                                SDOperand &Index,
767                                                SelectionDAG &DAG) {
768  // Check to see if we can easily represent this as an [r+r] address.  This
769  // will fail if it thinks that the address is more profitably represented as
770  // reg+imm, e.g. where imm = 0.
771  if (SelectAddressRegReg(N, Base, Index, DAG))
772    return true;
773
774  // If the operand is an addition, always emit this as [r+r], since this is
775  // better (for code size, and execution, as the memop does the add for free)
776  // than emitting an explicit add.
777  if (N.getOpcode() == ISD::ADD) {
778    Base = N.getOperand(0);
779    Index = N.getOperand(1);
780    return true;
781  }
782
783  // Otherwise, do it the hard way, using R0 as the base register.
784  Base = DAG.getRegister(PPC::R0, N.getValueType());
785  Index = N;
786  return true;
787}
788
789/// SelectAddressRegImmShift - Returns true if the address N can be
790/// represented by a base register plus a signed 14-bit displacement
791/// [r+imm*4].  Suitable for use by STD and friends.
792bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
793                                                 SDOperand &Base,
794                                                 SelectionDAG &DAG) {
795  // If this can be more profitably realized as r+r, fail.
796  if (SelectAddressRegReg(N, Disp, Base, DAG))
797    return false;
798
799  if (N.getOpcode() == ISD::ADD) {
800    short imm = 0;
801    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
802      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
803      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
804        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
805      } else {
806        Base = N.getOperand(0);
807      }
808      return true; // [r+i]
809    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
810      // Match LOAD (ADD (X, Lo(G))).
811      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
812             && "Cannot handle constant offsets yet!");
813      Disp = N.getOperand(1).getOperand(0);  // The global address.
814      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
815             Disp.getOpcode() == ISD::TargetConstantPool ||
816             Disp.getOpcode() == ISD::TargetJumpTable);
817      Base = N.getOperand(0);
818      return true;  // [&g+r]
819    }
820  } else if (N.getOpcode() == ISD::OR) {
821    short imm = 0;
822    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
823      // If this is an or of disjoint bitfields, we can codegen this as an add
824      // (for better address arithmetic) if the LHS and RHS of the OR are
825      // provably disjoint.
826      uint64_t LHSKnownZero, LHSKnownOne;
827      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
828      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
829        // If all of the bits are known zero on the LHS or RHS, the add won't
830        // carry.
831        Base = N.getOperand(0);
832        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
833        return true;
834      }
835    }
836  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
837    // Loading from a constant address.
838
839    // If this address fits entirely in a 14-bit sext immediate field, codegen
840    // this as "d, 0"
841    short Imm;
842    if (isIntS16Immediate(CN, Imm)) {
843      Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
844      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
845      return true;
846    }
847
848    // FIXME: Handle small sext constant offsets in PPC64 mode also!
849    if (CN->getValueType(0) == MVT::i32) {
850      int Addr = (int)CN->getValue();
851
852      // Otherwise, break this down into an LIS + disp.
853      Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
854      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
855      return true;
856    }
857  }
858
859  Disp = DAG.getTargetConstant(0, getPointerTy());
860  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
861    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
862  else
863    Base = N;
864  return true;      // [r+0]
865}
866
867
868/// getPreIndexedAddressParts - returns true by value, base pointer and
869/// offset pointer and addressing mode by reference if the node's address
870/// can be legally represented as pre-indexed load / store address.
871bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
872                                                  SDOperand &Offset,
873                                                  ISD::MemIndexedMode &AM,
874                                                  SelectionDAG &DAG) {
875  // Disabled by default for now.
876  if (!EnablePPCPreinc) return false;
877
878  SDOperand Ptr;
879  MVT::ValueType VT;
880  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
881    Ptr = LD->getBasePtr();
882    VT = LD->getLoadedVT();
883
884  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
885    ST = ST;
886    Ptr = ST->getBasePtr();
887    VT  = ST->getStoredVT();
888  } else
889    return false;
890
891  // PowerPC doesn't have preinc load/store instructions for vectors.
892  if (MVT::isVector(VT))
893    return false;
894
895  // TODO: Check reg+reg first.
896
897  // LDU/STU use reg+imm*4, others use reg+imm.
898  if (VT != MVT::i64) {
899    // reg + imm
900    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
901      return false;
902  } else {
903    // reg + imm * 4.
904    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
905      return false;
906  }
907
908  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
909    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
910    // sext i32 to i64 when addr mode is r+i.
911    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
912        LD->getExtensionType() == ISD::SEXTLOAD &&
913        isa<ConstantSDNode>(Offset))
914      return false;
915  }
916
917  AM = ISD::PRE_INC;
918  return true;
919}
920
921//===----------------------------------------------------------------------===//
922//  LowerOperation implementation
923//===----------------------------------------------------------------------===//
924
925static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
926  MVT::ValueType PtrVT = Op.getValueType();
927  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
928  Constant *C = CP->getConstVal();
929  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
930  SDOperand Zero = DAG.getConstant(0, PtrVT);
931
932  const TargetMachine &TM = DAG.getTarget();
933
934  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
935  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
936
937  // If this is a non-darwin platform, we don't support non-static relo models
938  // yet.
939  if (TM.getRelocationModel() == Reloc::Static ||
940      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
941    // Generate non-pic code that has direct accesses to the constant pool.
942    // The address of the global is just (hi(&g)+lo(&g)).
943    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
944  }
945
946  if (TM.getRelocationModel() == Reloc::PIC_) {
947    // With PIC, the first instruction is actually "GR+hi(&G)".
948    Hi = DAG.getNode(ISD::ADD, PtrVT,
949                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
950  }
951
952  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
953  return Lo;
954}
955
956static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
957  MVT::ValueType PtrVT = Op.getValueType();
958  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
959  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
960  SDOperand Zero = DAG.getConstant(0, PtrVT);
961
962  const TargetMachine &TM = DAG.getTarget();
963
964  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
965  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
966
967  // If this is a non-darwin platform, we don't support non-static relo models
968  // yet.
969  if (TM.getRelocationModel() == Reloc::Static ||
970      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
971    // Generate non-pic code that has direct accesses to the constant pool.
972    // The address of the global is just (hi(&g)+lo(&g)).
973    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
974  }
975
976  if (TM.getRelocationModel() == Reloc::PIC_) {
977    // With PIC, the first instruction is actually "GR+hi(&G)".
978    Hi = DAG.getNode(ISD::ADD, PtrVT,
979                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
980  }
981
982  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
983  return Lo;
984}
985
986static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
987  MVT::ValueType PtrVT = Op.getValueType();
988  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
989  GlobalValue *GV = GSDN->getGlobal();
990  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
991  SDOperand Zero = DAG.getConstant(0, PtrVT);
992
993  const TargetMachine &TM = DAG.getTarget();
994
995  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
996  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
997
998  // If this is a non-darwin platform, we don't support non-static relo models
999  // yet.
1000  if (TM.getRelocationModel() == Reloc::Static ||
1001      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1002    // Generate non-pic code that has direct accesses to globals.
1003    // The address of the global is just (hi(&g)+lo(&g)).
1004    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1005  }
1006
1007  if (TM.getRelocationModel() == Reloc::PIC_) {
1008    // With PIC, the first instruction is actually "GR+hi(&G)".
1009    Hi = DAG.getNode(ISD::ADD, PtrVT,
1010                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1011  }
1012
1013  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1014
1015  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
1016      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
1017    return Lo;
1018
1019  // If the global is weak or external, we have to go through the lazy
1020  // resolution stub.
1021  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1022}
1023
1024static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1025  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1026
1027  // If we're comparing for equality to zero, expose the fact that this is
1028  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1029  // fold the new nodes.
1030  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1031    if (C->isNullValue() && CC == ISD::SETEQ) {
1032      MVT::ValueType VT = Op.getOperand(0).getValueType();
1033      SDOperand Zext = Op.getOperand(0);
1034      if (VT < MVT::i32) {
1035        VT = MVT::i32;
1036        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1037      }
1038      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1039      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1040      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1041                                  DAG.getConstant(Log2b, MVT::i32));
1042      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1043    }
1044    // Leave comparisons against 0 and -1 alone for now, since they're usually
1045    // optimized.  FIXME: revisit this when we can custom lower all setcc
1046    // optimizations.
1047    if (C->isAllOnesValue() || C->isNullValue())
1048      return SDOperand();
1049  }
1050
1051  // If we have an integer seteq/setne, turn it into a compare against zero
1052  // by xor'ing the rhs with the lhs, which is faster than setting a
1053  // condition register, reading it back out, and masking the correct bit.  The
1054  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1055  // the result to other bit-twiddling opportunities.
1056  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1057  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1058    MVT::ValueType VT = Op.getValueType();
1059    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1060                                Op.getOperand(1));
1061    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1062  }
1063  return SDOperand();
1064}
1065
1066static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1067                              unsigned VarArgsFrameIndex) {
1068  // vastart just stores the address of the VarArgsFrameIndex slot into the
1069  // memory location argument.
1070  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1071  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1072  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1073  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1074                      SV->getOffset());
1075}
1076
1077static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1078                                       int &VarArgsFrameIndex) {
1079  // TODO: add description of PPC stack frame format, or at least some docs.
1080  //
1081  MachineFunction &MF = DAG.getMachineFunction();
1082  MachineFrameInfo *MFI = MF.getFrameInfo();
1083  SSARegMap *RegMap = MF.getSSARegMap();
1084  SmallVector<SDOperand, 8> ArgValues;
1085  SDOperand Root = Op.getOperand(0);
1086
1087  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1088  bool isPPC64 = PtrVT == MVT::i64;
1089  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1090
1091  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1092
1093  static const unsigned GPR_32[] = {           // 32-bit registers.
1094    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1095    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1096  };
1097  static const unsigned GPR_64[] = {           // 64-bit registers.
1098    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1099    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1100  };
1101  static const unsigned FPR[] = {
1102    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1103    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1104  };
1105  static const unsigned VR[] = {
1106    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1107    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1108  };
1109
1110  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1111  const unsigned Num_FPR_Regs = sizeof(FPR)/sizeof(FPR[0]);
1112  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1113
1114  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1115
1116  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1117
1118  // Add DAG nodes to load the arguments or copy them out of registers.  On
1119  // entry to a function on PPC, the arguments start after the linkage area,
1120  // although the first ones are often in registers.
1121  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1122    SDOperand ArgVal;
1123    bool needsLoad = false;
1124    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1125    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1126    unsigned ArgSize = ObjSize;
1127
1128    unsigned CurArgOffset = ArgOffset;
1129    switch (ObjectVT) {
1130    default: assert(0 && "Unhandled argument type!");
1131    case MVT::i32:
1132      // All int arguments reserve stack space.
1133      ArgOffset += PtrByteSize;
1134
1135      if (GPR_idx != Num_GPR_Regs) {
1136        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1137        MF.addLiveIn(GPR[GPR_idx], VReg);
1138        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1139        ++GPR_idx;
1140      } else {
1141        needsLoad = true;
1142        ArgSize = PtrByteSize;
1143      }
1144      break;
1145    case MVT::i64:  // PPC64
1146      // All int arguments reserve stack space.
1147      ArgOffset += 8;
1148
1149      if (GPR_idx != Num_GPR_Regs) {
1150        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1151        MF.addLiveIn(GPR[GPR_idx], VReg);
1152        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1153        ++GPR_idx;
1154      } else {
1155        needsLoad = true;
1156      }
1157      break;
1158    case MVT::f32:
1159    case MVT::f64:
1160      // All FP arguments reserve stack space.
1161      ArgOffset += isPPC64 ? 8 : ObjSize;
1162
1163      // Every 4 bytes of argument space consumes one of the GPRs available for
1164      // argument passing.
1165      if (GPR_idx != Num_GPR_Regs) {
1166        ++GPR_idx;
1167        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1168          ++GPR_idx;
1169      }
1170      if (FPR_idx != Num_FPR_Regs) {
1171        unsigned VReg;
1172        if (ObjectVT == MVT::f32)
1173          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1174        else
1175          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1176        MF.addLiveIn(FPR[FPR_idx], VReg);
1177        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1178        ++FPR_idx;
1179      } else {
1180        needsLoad = true;
1181      }
1182      break;
1183    case MVT::v4f32:
1184    case MVT::v4i32:
1185    case MVT::v8i16:
1186    case MVT::v16i8:
1187      // Note that vector arguments in registers don't reserve stack space.
1188      if (VR_idx != Num_VR_Regs) {
1189        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1190        MF.addLiveIn(VR[VR_idx], VReg);
1191        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1192        ++VR_idx;
1193      } else {
1194        // This should be simple, but requires getting 16-byte aligned stack
1195        // values.
1196        assert(0 && "Loading VR argument not implemented yet!");
1197        needsLoad = true;
1198      }
1199      break;
1200    }
1201
1202    // We need to load the argument to a virtual register if we determined above
1203    // that we ran out of physical registers of the appropriate type
1204    if (needsLoad) {
1205      // If the argument is actually used, emit a load from the right stack
1206      // slot.
1207      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1208        int FI = MFI->CreateFixedObject(ObjSize,
1209                                        CurArgOffset + (ArgSize - ObjSize));
1210        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1211        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1212      } else {
1213        // Don't emit a dead load.
1214        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1215      }
1216    }
1217
1218    ArgValues.push_back(ArgVal);
1219  }
1220
1221  // If the function takes variable number of arguments, make a frame index for
1222  // the start of the first vararg value... for expansion of llvm.va_start.
1223  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1224  if (isVarArg) {
1225    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1226                                               ArgOffset);
1227    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1228    // If this function is vararg, store any remaining integer argument regs
1229    // to their spots on the stack so that they may be loaded by deferencing the
1230    // result of va_next.
1231    SmallVector<SDOperand, 8> MemOps;
1232    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1233      unsigned VReg;
1234      if (isPPC64)
1235        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1236      else
1237        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1238
1239      MF.addLiveIn(GPR[GPR_idx], VReg);
1240      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1241      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1242      MemOps.push_back(Store);
1243      // Increment the address by four for the next argument to store
1244      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1245      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1246    }
1247    if (!MemOps.empty())
1248      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1249  }
1250
1251  ArgValues.push_back(Root);
1252
1253  // Return the new list of results.
1254  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1255                                    Op.Val->value_end());
1256  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1257}
1258
1259/// isCallCompatibleAddress - Return the immediate to use if the specified
1260/// 32-bit value is representable in the immediate field of a BxA instruction.
1261static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1262  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1263  if (!C) return 0;
1264
1265  int Addr = C->getValue();
1266  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1267      (Addr << 6 >> 6) != Addr)
1268    return 0;  // Top 6 bits have to be sext of immediate.
1269
1270  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1271}
1272
1273static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1274  SDOperand Chain = Op.getOperand(0);
1275  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1276  SDOperand Callee    = Op.getOperand(4);
1277  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1278
1279  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1280  bool isPPC64 = PtrVT == MVT::i64;
1281  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1282
1283  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1284  // SelectExpr to use to put the arguments in the appropriate registers.
1285  std::vector<SDOperand> args_to_use;
1286
1287  // Count how many bytes are to be pushed on the stack, including the linkage
1288  // area, and parameter passing area.  We start with 24/48 bytes, which is
1289  // prereserved space for [SP][CR][LR][3 x unused].
1290  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64);
1291
1292  // Add up all the space actually used.
1293  for (unsigned i = 0; i != NumOps; ++i) {
1294    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1295    ArgSize = std::max(ArgSize, PtrByteSize);
1296    NumBytes += ArgSize;
1297  }
1298
1299  // The prolog code of the callee may store up to 8 GPR argument registers to
1300  // the stack, allowing va_start to index over them in memory if its varargs.
1301  // Because we cannot tell if this is needed on the caller side, we have to
1302  // conservatively assume that it is needed.  As such, make sure we have at
1303  // least enough stack space for the caller to store the 8 GPRs.
1304  NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64));
1305
1306  // Adjust the stack pointer for the new arguments...
1307  // These operations are automatically eliminated by the prolog/epilog pass
1308  Chain = DAG.getCALLSEQ_START(Chain,
1309                               DAG.getConstant(NumBytes, PtrVT));
1310
1311  // Set up a copy of the stack pointer for use loading and storing any
1312  // arguments that may not fit in the registers available for argument
1313  // passing.
1314  SDOperand StackPtr;
1315  if (isPPC64)
1316    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1317  else
1318    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1319
1320  // Figure out which arguments are going to go in registers, and which in
1321  // memory.  Also, if this is a vararg function, floating point operations
1322  // must be stored to our stack, and loaded into integer regs as well, if
1323  // any integer regs are available for argument passing.
1324  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1325  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1326
1327  static const unsigned GPR_32[] = {           // 32-bit registers.
1328    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1329    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1330  };
1331  static const unsigned GPR_64[] = {           // 64-bit registers.
1332    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1333    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1334  };
1335  static const unsigned FPR[] = {
1336    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1337    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1338  };
1339  static const unsigned VR[] = {
1340    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1341    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1342  };
1343  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1344  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1345  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1346
1347  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1348
1349  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1350  SmallVector<SDOperand, 8> MemOpChains;
1351  for (unsigned i = 0; i != NumOps; ++i) {
1352    SDOperand Arg = Op.getOperand(5+2*i);
1353
1354    // PtrOff will be used to store the current argument to the stack if a
1355    // register cannot be found for it.
1356    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1357    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1358
1359    // On PPC64, promote integers to 64-bit values.
1360    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1361      unsigned ExtOp = ISD::ZERO_EXTEND;
1362      if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1363        ExtOp = ISD::SIGN_EXTEND;
1364      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1365    }
1366
1367    switch (Arg.getValueType()) {
1368    default: assert(0 && "Unexpected ValueType for argument!");
1369    case MVT::i32:
1370    case MVT::i64:
1371      if (GPR_idx != NumGPRs) {
1372        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1373      } else {
1374        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1375      }
1376      ArgOffset += PtrByteSize;
1377      break;
1378    case MVT::f32:
1379    case MVT::f64:
1380      if (FPR_idx != NumFPRs) {
1381        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1382
1383        if (isVarArg) {
1384          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1385          MemOpChains.push_back(Store);
1386
1387          // Float varargs are always shadowed in available integer registers
1388          if (GPR_idx != NumGPRs) {
1389            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1390            MemOpChains.push_back(Load.getValue(1));
1391            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1392          }
1393          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
1394            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1395            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1396            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1397            MemOpChains.push_back(Load.getValue(1));
1398            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1399          }
1400        } else {
1401          // If we have any FPRs remaining, we may also have GPRs remaining.
1402          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1403          // GPRs.
1404          if (GPR_idx != NumGPRs)
1405            ++GPR_idx;
1406          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1407            ++GPR_idx;
1408        }
1409      } else {
1410        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1411      }
1412      if (isPPC64)
1413        ArgOffset += 8;
1414      else
1415        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1416      break;
1417    case MVT::v4f32:
1418    case MVT::v4i32:
1419    case MVT::v8i16:
1420    case MVT::v16i8:
1421      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1422      assert(VR_idx != NumVRs &&
1423             "Don't support passing more than 12 vector args yet!");
1424      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1425      break;
1426    }
1427  }
1428  if (!MemOpChains.empty())
1429    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1430                        &MemOpChains[0], MemOpChains.size());
1431
1432  // Build a sequence of copy-to-reg nodes chained together with token chain
1433  // and flag operands which copy the outgoing args into the appropriate regs.
1434  SDOperand InFlag;
1435  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1436    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1437                             InFlag);
1438    InFlag = Chain.getValue(1);
1439  }
1440
1441  std::vector<MVT::ValueType> NodeTys;
1442  NodeTys.push_back(MVT::Other);   // Returns a chain
1443  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1444
1445  SmallVector<SDOperand, 8> Ops;
1446  unsigned CallOpc = PPCISD::CALL;
1447
1448  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1449  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1450  // node so that legalize doesn't hack it.
1451  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1452    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1453  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1454    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1455  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1456    // If this is an absolute destination address, use the munged value.
1457    Callee = SDOperand(Dest, 0);
1458  else {
1459    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1460    // to do the call, we can't use PPCISD::CALL.
1461    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1462    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1463    InFlag = Chain.getValue(1);
1464
1465    // Copy the callee address into R12 on darwin.
1466    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1467    InFlag = Chain.getValue(1);
1468
1469    NodeTys.clear();
1470    NodeTys.push_back(MVT::Other);
1471    NodeTys.push_back(MVT::Flag);
1472    Ops.push_back(Chain);
1473    CallOpc = PPCISD::BCTRL;
1474    Callee.Val = 0;
1475  }
1476
1477  // If this is a direct call, pass the chain and the callee.
1478  if (Callee.Val) {
1479    Ops.push_back(Chain);
1480    Ops.push_back(Callee);
1481  }
1482
1483  // Add argument registers to the end of the list so that they are known live
1484  // into the call.
1485  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1486    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1487                                  RegsToPass[i].second.getValueType()));
1488
1489  if (InFlag.Val)
1490    Ops.push_back(InFlag);
1491  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1492  InFlag = Chain.getValue(1);
1493
1494  SDOperand ResultVals[3];
1495  unsigned NumResults = 0;
1496  NodeTys.clear();
1497
1498  // If the call has results, copy the values out of the ret val registers.
1499  switch (Op.Val->getValueType(0)) {
1500  default: assert(0 && "Unexpected ret value!");
1501  case MVT::Other: break;
1502  case MVT::i32:
1503    if (Op.Val->getValueType(1) == MVT::i32) {
1504      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1505      ResultVals[0] = Chain.getValue(0);
1506      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1507                                 Chain.getValue(2)).getValue(1);
1508      ResultVals[1] = Chain.getValue(0);
1509      NumResults = 2;
1510      NodeTys.push_back(MVT::i32);
1511    } else {
1512      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1513      ResultVals[0] = Chain.getValue(0);
1514      NumResults = 1;
1515    }
1516    NodeTys.push_back(MVT::i32);
1517    break;
1518  case MVT::i64:
1519    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1520    ResultVals[0] = Chain.getValue(0);
1521    NumResults = 1;
1522    NodeTys.push_back(MVT::i64);
1523    break;
1524  case MVT::f32:
1525  case MVT::f64:
1526    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1527                               InFlag).getValue(1);
1528    ResultVals[0] = Chain.getValue(0);
1529    NumResults = 1;
1530    NodeTys.push_back(Op.Val->getValueType(0));
1531    break;
1532  case MVT::v4f32:
1533  case MVT::v4i32:
1534  case MVT::v8i16:
1535  case MVT::v16i8:
1536    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1537                                   InFlag).getValue(1);
1538    ResultVals[0] = Chain.getValue(0);
1539    NumResults = 1;
1540    NodeTys.push_back(Op.Val->getValueType(0));
1541    break;
1542  }
1543
1544  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1545                      DAG.getConstant(NumBytes, PtrVT));
1546  NodeTys.push_back(MVT::Other);
1547
1548  // If the function returns void, just return the chain.
1549  if (NumResults == 0)
1550    return Chain;
1551
1552  // Otherwise, merge everything together with a MERGE_VALUES node.
1553  ResultVals[NumResults++] = Chain;
1554  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1555                              ResultVals, NumResults);
1556  return Res.getValue(Op.ResNo);
1557}
1558
1559static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1560  SDOperand Copy;
1561  switch(Op.getNumOperands()) {
1562  default:
1563    assert(0 && "Do not know how to return this many arguments!");
1564    abort();
1565  case 1:
1566    return SDOperand(); // ret void is legal
1567  case 3: {
1568    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1569    unsigned ArgReg;
1570    if (ArgVT == MVT::i32) {
1571      ArgReg = PPC::R3;
1572    } else if (ArgVT == MVT::i64) {
1573      ArgReg = PPC::X3;
1574    } else if (MVT::isVector(ArgVT)) {
1575      ArgReg = PPC::V2;
1576    } else {
1577      assert(MVT::isFloatingPoint(ArgVT));
1578      ArgReg = PPC::F1;
1579    }
1580
1581    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1582                            SDOperand());
1583
1584    // If we haven't noted the R3/F1 are live out, do so now.
1585    if (DAG.getMachineFunction().liveout_empty())
1586      DAG.getMachineFunction().addLiveOut(ArgReg);
1587    break;
1588  }
1589  case 5:
1590    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1591                            SDOperand());
1592    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1593    // If we haven't noted the R3+R4 are live out, do so now.
1594    if (DAG.getMachineFunction().liveout_empty()) {
1595      DAG.getMachineFunction().addLiveOut(PPC::R3);
1596      DAG.getMachineFunction().addLiveOut(PPC::R4);
1597    }
1598    break;
1599  }
1600  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1601}
1602
1603static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1604                                         const PPCSubtarget &Subtarget) {
1605  MachineFunction &MF = DAG.getMachineFunction();
1606  bool IsPPC64 = Subtarget.isPPC64();
1607
1608  // Get current frame pointer save index.  The users of this index will be
1609  // primarily DYNALLOC instructions.
1610  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1611  int FPSI = FI->getFramePointerSaveIndex();
1612
1613  // If the frame pointer save index hasn't been defined yet.
1614  if (!FPSI) {
1615    // Find out what the fix offset of the frame pointer save area.
1616    int Offset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64);
1617    // Allocate the frame index for frame pointer save area.
1618    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, Offset);
1619    // Save the result.
1620    FI->setFramePointerSaveIndex(FPSI);
1621  }
1622
1623  // Get the inputs.
1624  SDOperand Chain = Op.getOperand(0);
1625  SDOperand Size  = Op.getOperand(1);
1626
1627  // Get the corect type for pointers.
1628  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1629  // Negate the size.
1630  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1631                                  DAG.getConstant(0, PtrVT), Size);
1632  // Construct a node for the frame pointer save index.
1633  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1634  // Build a DYNALLOC node.
1635  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1636  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1637  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1638}
1639
1640
1641/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1642/// possible.
1643static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1644  // Not FP? Not a fsel.
1645  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1646      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1647    return SDOperand();
1648
1649  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1650
1651  // Cannot handle SETEQ/SETNE.
1652  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1653
1654  MVT::ValueType ResVT = Op.getValueType();
1655  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1656  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1657  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1658
1659  // If the RHS of the comparison is a 0.0, we don't need to do the
1660  // subtraction at all.
1661  if (isFloatingPointZero(RHS))
1662    switch (CC) {
1663    default: break;       // SETUO etc aren't handled by fsel.
1664    case ISD::SETULT:
1665    case ISD::SETOLT:
1666    case ISD::SETLT:
1667      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1668    case ISD::SETUGE:
1669    case ISD::SETOGE:
1670    case ISD::SETGE:
1671      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1672        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1673      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1674    case ISD::SETUGT:
1675    case ISD::SETOGT:
1676    case ISD::SETGT:
1677      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1678    case ISD::SETULE:
1679    case ISD::SETOLE:
1680    case ISD::SETLE:
1681      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1682        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1683      return DAG.getNode(PPCISD::FSEL, ResVT,
1684                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1685    }
1686
1687      SDOperand Cmp;
1688  switch (CC) {
1689  default: break;       // SETUO etc aren't handled by fsel.
1690  case ISD::SETULT:
1691  case ISD::SETOLT:
1692  case ISD::SETLT:
1693    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1694    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1695      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1696      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1697  case ISD::SETUGE:
1698  case ISD::SETOGE:
1699  case ISD::SETGE:
1700    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1701    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1702      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1703      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1704  case ISD::SETUGT:
1705  case ISD::SETOGT:
1706  case ISD::SETGT:
1707    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1708    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1709      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1710      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1711  case ISD::SETULE:
1712  case ISD::SETOLE:
1713  case ISD::SETLE:
1714    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1715    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1716      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1717      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1718  }
1719  return SDOperand();
1720}
1721
1722static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1723  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1724  SDOperand Src = Op.getOperand(0);
1725  if (Src.getValueType() == MVT::f32)
1726    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1727
1728  SDOperand Tmp;
1729  switch (Op.getValueType()) {
1730  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1731  case MVT::i32:
1732    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1733    break;
1734  case MVT::i64:
1735    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1736    break;
1737  }
1738
1739  // Convert the FP value to an int value through memory.
1740  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1741  if (Op.getValueType() == MVT::i32)
1742    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1743  return Bits;
1744}
1745
1746static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1747  if (Op.getOperand(0).getValueType() == MVT::i64) {
1748    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1749    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1750    if (Op.getValueType() == MVT::f32)
1751      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1752    return FP;
1753  }
1754
1755  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1756         "Unhandled SINT_TO_FP type in custom expander!");
1757  // Since we only generate this in 64-bit mode, we can take advantage of
1758  // 64-bit registers.  In particular, sign extend the input value into the
1759  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1760  // then lfd it and fcfid it.
1761  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1762  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1763  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1764  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1765
1766  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1767                                Op.getOperand(0));
1768
1769  // STD the extended value into the stack slot.
1770  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1771                                DAG.getEntryNode(), Ext64, FIdx,
1772                                DAG.getSrcValue(NULL));
1773  // Load the value as a double.
1774  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1775
1776  // FCFID it and return it.
1777  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1778  if (Op.getValueType() == MVT::f32)
1779    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1780  return FP;
1781}
1782
1783static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1784  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1785         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1786
1787  // Expand into a bunch of logical ops.  Note that these ops
1788  // depend on the PPC behavior for oversized shift amounts.
1789  SDOperand Lo = Op.getOperand(0);
1790  SDOperand Hi = Op.getOperand(1);
1791  SDOperand Amt = Op.getOperand(2);
1792
1793  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1794                               DAG.getConstant(32, MVT::i32), Amt);
1795  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1796  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1797  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1798  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1799                               DAG.getConstant(-32U, MVT::i32));
1800  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1801  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1802  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1803  SDOperand OutOps[] = { OutLo, OutHi };
1804  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1805                     OutOps, 2);
1806}
1807
1808static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1809  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1810         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1811
1812  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1813  // depend on the PPC behavior for oversized shift amounts.
1814  SDOperand Lo = Op.getOperand(0);
1815  SDOperand Hi = Op.getOperand(1);
1816  SDOperand Amt = Op.getOperand(2);
1817
1818  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1819                               DAG.getConstant(32, MVT::i32), Amt);
1820  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1821  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1822  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1823  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1824                               DAG.getConstant(-32U, MVT::i32));
1825  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1826  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1827  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1828  SDOperand OutOps[] = { OutLo, OutHi };
1829  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1830                     OutOps, 2);
1831}
1832
1833static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1834  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1835         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1836
1837  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1838  SDOperand Lo = Op.getOperand(0);
1839  SDOperand Hi = Op.getOperand(1);
1840  SDOperand Amt = Op.getOperand(2);
1841
1842  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1843                               DAG.getConstant(32, MVT::i32), Amt);
1844  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1845  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1846  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1847  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1848                               DAG.getConstant(-32U, MVT::i32));
1849  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1850  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1851  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1852                                    Tmp4, Tmp6, ISD::SETLE);
1853  SDOperand OutOps[] = { OutLo, OutHi };
1854  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1855                     OutOps, 2);
1856}
1857
1858//===----------------------------------------------------------------------===//
1859// Vector related lowering.
1860//
1861
1862// If this is a vector of constants or undefs, get the bits.  A bit in
1863// UndefBits is set if the corresponding element of the vector is an
1864// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1865// zero.   Return true if this is not an array of constants, false if it is.
1866//
1867static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1868                                       uint64_t UndefBits[2]) {
1869  // Start with zero'd results.
1870  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1871
1872  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1873  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1874    SDOperand OpVal = BV->getOperand(i);
1875
1876    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1877    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1878
1879    uint64_t EltBits = 0;
1880    if (OpVal.getOpcode() == ISD::UNDEF) {
1881      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1882      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1883      continue;
1884    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1885      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1886    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1887      assert(CN->getValueType(0) == MVT::f32 &&
1888             "Only one legal FP vector type!");
1889      EltBits = FloatToBits(CN->getValue());
1890    } else {
1891      // Nonconstant element.
1892      return true;
1893    }
1894
1895    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1896  }
1897
1898  //printf("%llx %llx  %llx %llx\n",
1899  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1900  return false;
1901}
1902
1903// If this is a splat (repetition) of a value across the whole vector, return
1904// the smallest size that splats it.  For example, "0x01010101010101..." is a
1905// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1906// SplatSize = 1 byte.
1907static bool isConstantSplat(const uint64_t Bits128[2],
1908                            const uint64_t Undef128[2],
1909                            unsigned &SplatBits, unsigned &SplatUndef,
1910                            unsigned &SplatSize) {
1911
1912  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1913  // the same as the lower 64-bits, ignoring undefs.
1914  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1915    return false;  // Can't be a splat if two pieces don't match.
1916
1917  uint64_t Bits64  = Bits128[0] | Bits128[1];
1918  uint64_t Undef64 = Undef128[0] & Undef128[1];
1919
1920  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1921  // undefs.
1922  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1923    return false;  // Can't be a splat if two pieces don't match.
1924
1925  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1926  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1927
1928  // If the top 16-bits are different than the lower 16-bits, ignoring
1929  // undefs, we have an i32 splat.
1930  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1931    SplatBits = Bits32;
1932    SplatUndef = Undef32;
1933    SplatSize = 4;
1934    return true;
1935  }
1936
1937  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1938  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1939
1940  // If the top 8-bits are different than the lower 8-bits, ignoring
1941  // undefs, we have an i16 splat.
1942  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1943    SplatBits = Bits16;
1944    SplatUndef = Undef16;
1945    SplatSize = 2;
1946    return true;
1947  }
1948
1949  // Otherwise, we have an 8-bit splat.
1950  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1951  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1952  SplatSize = 1;
1953  return true;
1954}
1955
1956/// BuildSplatI - Build a canonical splati of Val with an element size of
1957/// SplatSize.  Cast the result to VT.
1958static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1959                             SelectionDAG &DAG) {
1960  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1961
1962  // Force vspltis[hw] -1 to vspltisb -1.
1963  if (Val == -1) SplatSize = 1;
1964
1965  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1966    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1967  };
1968  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1969
1970  // Build a canonical splat for this value.
1971  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1972  SmallVector<SDOperand, 8> Ops;
1973  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
1974  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
1975                              &Ops[0], Ops.size());
1976  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1977}
1978
1979/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1980/// specified intrinsic ID.
1981static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1982                                  SelectionDAG &DAG,
1983                                  MVT::ValueType DestVT = MVT::Other) {
1984  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1985  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1986                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1987}
1988
1989/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1990/// specified intrinsic ID.
1991static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1992                                  SDOperand Op2, SelectionDAG &DAG,
1993                                  MVT::ValueType DestVT = MVT::Other) {
1994  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1995  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1996                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1997}
1998
1999
2000/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2001/// amount.  The result has the specified value type.
2002static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2003                             MVT::ValueType VT, SelectionDAG &DAG) {
2004  // Force LHS/RHS to be the right type.
2005  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2006  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2007
2008  SDOperand Ops[16];
2009  for (unsigned i = 0; i != 16; ++i)
2010    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2011  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2012                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2013  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2014}
2015
2016// If this is a case we can't handle, return null and let the default
2017// expansion code take care of it.  If we CAN select this case, and if it
2018// selects to a single instruction, return Op.  Otherwise, if we can codegen
2019// this case more efficiently than a constant pool load, lower it to the
2020// sequence of ops that should be used.
2021static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2022  // If this is a vector of constants or undefs, get the bits.  A bit in
2023  // UndefBits is set if the corresponding element of the vector is an
2024  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2025  // zero.
2026  uint64_t VectorBits[2];
2027  uint64_t UndefBits[2];
2028  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2029    return SDOperand();   // Not a constant vector.
2030
2031  // If this is a splat (repetition) of a value across the whole vector, return
2032  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2033  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2034  // SplatSize = 1 byte.
2035  unsigned SplatBits, SplatUndef, SplatSize;
2036  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2037    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2038
2039    // First, handle single instruction cases.
2040
2041    // All zeros?
2042    if (SplatBits == 0) {
2043      // Canonicalize all zero vectors to be v4i32.
2044      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2045        SDOperand Z = DAG.getConstant(0, MVT::i32);
2046        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2047        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2048      }
2049      return Op;
2050    }
2051
2052    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2053    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2054    if (SextVal >= -16 && SextVal <= 15)
2055      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2056
2057
2058    // Two instruction sequences.
2059
2060    // If this value is in the range [-32,30] and is even, use:
2061    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2062    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2063      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2064      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2065    }
2066
2067    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2068    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2069    // for fneg/fabs.
2070    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2071      // Make -1 and vspltisw -1:
2072      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2073
2074      // Make the VSLW intrinsic, computing 0x8000_0000.
2075      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2076                                       OnesV, DAG);
2077
2078      // xor by OnesV to invert it.
2079      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2080      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2081    }
2082
2083    // Check to see if this is a wide variety of vsplti*, binop self cases.
2084    unsigned SplatBitSize = SplatSize*8;
2085    static const char SplatCsts[] = {
2086      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2087      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2088    };
2089    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2090      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2091      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2092      int i = SplatCsts[idx];
2093
2094      // Figure out what shift amount will be used by altivec if shifted by i in
2095      // this splat size.
2096      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2097
2098      // vsplti + shl self.
2099      if (SextVal == (i << (int)TypeShiftAmt)) {
2100        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2101        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2102          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2103          Intrinsic::ppc_altivec_vslw
2104        };
2105        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2106      }
2107
2108      // vsplti + srl self.
2109      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2110        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2111        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2112          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2113          Intrinsic::ppc_altivec_vsrw
2114        };
2115        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2116      }
2117
2118      // vsplti + sra self.
2119      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2120        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2121        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2122          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2123          Intrinsic::ppc_altivec_vsraw
2124        };
2125        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2126      }
2127
2128      // vsplti + rol self.
2129      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2130                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2131        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2132        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2133          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2134          Intrinsic::ppc_altivec_vrlw
2135        };
2136        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2137      }
2138
2139      // t = vsplti c, result = vsldoi t, t, 1
2140      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2141        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2142        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2143      }
2144      // t = vsplti c, result = vsldoi t, t, 2
2145      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2146        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2147        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2148      }
2149      // t = vsplti c, result = vsldoi t, t, 3
2150      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2151        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2152        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2153      }
2154    }
2155
2156    // Three instruction sequences.
2157
2158    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2159    if (SextVal >= 0 && SextVal <= 31) {
2160      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
2161      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
2162      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2163    }
2164    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2165    if (SextVal >= -31 && SextVal <= 0) {
2166      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
2167      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
2168      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2169    }
2170  }
2171
2172  return SDOperand();
2173}
2174
2175/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2176/// the specified operations to build the shuffle.
2177static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2178                                        SDOperand RHS, SelectionDAG &DAG) {
2179  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2180  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2181  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2182
2183  enum {
2184    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2185    OP_VMRGHW,
2186    OP_VMRGLW,
2187    OP_VSPLTISW0,
2188    OP_VSPLTISW1,
2189    OP_VSPLTISW2,
2190    OP_VSPLTISW3,
2191    OP_VSLDOI4,
2192    OP_VSLDOI8,
2193    OP_VSLDOI12
2194  };
2195
2196  if (OpNum == OP_COPY) {
2197    if (LHSID == (1*9+2)*9+3) return LHS;
2198    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2199    return RHS;
2200  }
2201
2202  SDOperand OpLHS, OpRHS;
2203  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2204  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2205
2206  unsigned ShufIdxs[16];
2207  switch (OpNum) {
2208  default: assert(0 && "Unknown i32 permute!");
2209  case OP_VMRGHW:
2210    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2211    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2212    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2213    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2214    break;
2215  case OP_VMRGLW:
2216    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2217    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2218    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2219    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2220    break;
2221  case OP_VSPLTISW0:
2222    for (unsigned i = 0; i != 16; ++i)
2223      ShufIdxs[i] = (i&3)+0;
2224    break;
2225  case OP_VSPLTISW1:
2226    for (unsigned i = 0; i != 16; ++i)
2227      ShufIdxs[i] = (i&3)+4;
2228    break;
2229  case OP_VSPLTISW2:
2230    for (unsigned i = 0; i != 16; ++i)
2231      ShufIdxs[i] = (i&3)+8;
2232    break;
2233  case OP_VSPLTISW3:
2234    for (unsigned i = 0; i != 16; ++i)
2235      ShufIdxs[i] = (i&3)+12;
2236    break;
2237  case OP_VSLDOI4:
2238    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2239  case OP_VSLDOI8:
2240    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2241  case OP_VSLDOI12:
2242    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2243  }
2244  SDOperand Ops[16];
2245  for (unsigned i = 0; i != 16; ++i)
2246    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2247
2248  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2249                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2250}
2251
2252/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2253/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2254/// return the code it can be lowered into.  Worst case, it can always be
2255/// lowered into a vperm.
2256static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2257  SDOperand V1 = Op.getOperand(0);
2258  SDOperand V2 = Op.getOperand(1);
2259  SDOperand PermMask = Op.getOperand(2);
2260
2261  // Cases that are handled by instructions that take permute immediates
2262  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2263  // selected by the instruction selector.
2264  if (V2.getOpcode() == ISD::UNDEF) {
2265    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2266        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2267        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2268        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2269        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2270        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2271        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2272        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2273        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2274        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2275        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2276        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2277      return Op;
2278    }
2279  }
2280
2281  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2282  // and produce a fixed permutation.  If any of these match, do not lower to
2283  // VPERM.
2284  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2285      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2286      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2287      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2288      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2289      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2290      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2291      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2292      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2293    return Op;
2294
2295  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2296  // perfect shuffle table to emit an optimal matching sequence.
2297  unsigned PFIndexes[4];
2298  bool isFourElementShuffle = true;
2299  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2300    unsigned EltNo = 8;   // Start out undef.
2301    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2302      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2303        continue;   // Undef, ignore it.
2304
2305      unsigned ByteSource =
2306        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2307      if ((ByteSource & 3) != j) {
2308        isFourElementShuffle = false;
2309        break;
2310      }
2311
2312      if (EltNo == 8) {
2313        EltNo = ByteSource/4;
2314      } else if (EltNo != ByteSource/4) {
2315        isFourElementShuffle = false;
2316        break;
2317      }
2318    }
2319    PFIndexes[i] = EltNo;
2320  }
2321
2322  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2323  // perfect shuffle vector to determine if it is cost effective to do this as
2324  // discrete instructions, or whether we should use a vperm.
2325  if (isFourElementShuffle) {
2326    // Compute the index in the perfect shuffle table.
2327    unsigned PFTableIndex =
2328      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2329
2330    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2331    unsigned Cost  = (PFEntry >> 30);
2332
2333    // Determining when to avoid vperm is tricky.  Many things affect the cost
2334    // of vperm, particularly how many times the perm mask needs to be computed.
2335    // For example, if the perm mask can be hoisted out of a loop or is already
2336    // used (perhaps because there are multiple permutes with the same shuffle
2337    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2338    // the loop requires an extra register.
2339    //
2340    // As a compromise, we only emit discrete instructions if the shuffle can be
2341    // generated in 3 or fewer operations.  When we have loop information
2342    // available, if this block is within a loop, we should avoid using vperm
2343    // for 3-operation perms and use a constant pool load instead.
2344    if (Cost < 3)
2345      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2346  }
2347
2348  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2349  // vector that will get spilled to the constant pool.
2350  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2351
2352  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2353  // that it is in input element units, not in bytes.  Convert now.
2354  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2355  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2356
2357  SmallVector<SDOperand, 16> ResultMask;
2358  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2359    unsigned SrcElt;
2360    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2361      SrcElt = 0;
2362    else
2363      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2364
2365    for (unsigned j = 0; j != BytesPerElement; ++j)
2366      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2367                                           MVT::i8));
2368  }
2369
2370  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2371                                    &ResultMask[0], ResultMask.size());
2372  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2373}
2374
2375/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2376/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2377/// information about the intrinsic.
2378static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2379                                  bool &isDot) {
2380  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2381  CompareOpc = -1;
2382  isDot = false;
2383  switch (IntrinsicID) {
2384  default: return false;
2385    // Comparison predicates.
2386  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2387  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2388  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2389  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2390  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2391  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2392  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2393  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2394  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2395  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2396  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2397  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2398  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2399
2400    // Normal Comparisons.
2401  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2402  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2403  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2404  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2405  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2406  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2407  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2408  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2409  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2410  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2411  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2412  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2413  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2414  }
2415  return true;
2416}
2417
2418/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2419/// lower, do it, otherwise return null.
2420static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2421  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2422  // opcode number of the comparison.
2423  int CompareOpc;
2424  bool isDot;
2425  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2426    return SDOperand();    // Don't custom lower most intrinsics.
2427
2428  // If this is a non-dot comparison, make the VCMP node and we are done.
2429  if (!isDot) {
2430    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2431                                Op.getOperand(1), Op.getOperand(2),
2432                                DAG.getConstant(CompareOpc, MVT::i32));
2433    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2434  }
2435
2436  // Create the PPCISD altivec 'dot' comparison node.
2437  SDOperand Ops[] = {
2438    Op.getOperand(2),  // LHS
2439    Op.getOperand(3),  // RHS
2440    DAG.getConstant(CompareOpc, MVT::i32)
2441  };
2442  std::vector<MVT::ValueType> VTs;
2443  VTs.push_back(Op.getOperand(2).getValueType());
2444  VTs.push_back(MVT::Flag);
2445  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2446
2447  // Now that we have the comparison, emit a copy from the CR to a GPR.
2448  // This is flagged to the above dot comparison.
2449  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2450                                DAG.getRegister(PPC::CR6, MVT::i32),
2451                                CompNode.getValue(1));
2452
2453  // Unpack the result based on how the target uses it.
2454  unsigned BitNo;   // Bit # of CR6.
2455  bool InvertBit;   // Invert result?
2456  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2457  default:  // Can't happen, don't crash on invalid number though.
2458  case 0:   // Return the value of the EQ bit of CR6.
2459    BitNo = 0; InvertBit = false;
2460    break;
2461  case 1:   // Return the inverted value of the EQ bit of CR6.
2462    BitNo = 0; InvertBit = true;
2463    break;
2464  case 2:   // Return the value of the LT bit of CR6.
2465    BitNo = 2; InvertBit = false;
2466    break;
2467  case 3:   // Return the inverted value of the LT bit of CR6.
2468    BitNo = 2; InvertBit = true;
2469    break;
2470  }
2471
2472  // Shift the bit into the low position.
2473  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2474                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2475  // Isolate the bit.
2476  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2477                      DAG.getConstant(1, MVT::i32));
2478
2479  // If we are supposed to, toggle the bit.
2480  if (InvertBit)
2481    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2482                        DAG.getConstant(1, MVT::i32));
2483  return Flags;
2484}
2485
2486static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2487  // Create a stack slot that is 16-byte aligned.
2488  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2489  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2490  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2491  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2492
2493  // Store the input value into Value#0 of the stack slot.
2494  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2495                                 Op.getOperand(0), FIdx, NULL, 0);
2496  // Load it out.
2497  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2498}
2499
2500static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2501  if (Op.getValueType() == MVT::v4i32) {
2502    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2503
2504    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2505    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2506
2507    SDOperand RHSSwap =   // = vrlw RHS, 16
2508      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2509
2510    // Shrinkify inputs to v8i16.
2511    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2512    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2513    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2514
2515    // Low parts multiplied together, generating 32-bit results (we ignore the
2516    // top parts).
2517    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2518                                        LHS, RHS, DAG, MVT::v4i32);
2519
2520    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2521                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2522    // Shift the high parts up 16 bits.
2523    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2524    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2525  } else if (Op.getValueType() == MVT::v8i16) {
2526    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2527
2528    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2529
2530    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2531                            LHS, RHS, Zero, DAG);
2532  } else if (Op.getValueType() == MVT::v16i8) {
2533    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2534
2535    // Multiply the even 8-bit parts, producing 16-bit sums.
2536    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2537                                           LHS, RHS, DAG, MVT::v8i16);
2538    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2539
2540    // Multiply the odd 8-bit parts, producing 16-bit sums.
2541    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2542                                          LHS, RHS, DAG, MVT::v8i16);
2543    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2544
2545    // Merge the results together.
2546    SDOperand Ops[16];
2547    for (unsigned i = 0; i != 8; ++i) {
2548      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2549      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2550    }
2551    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2552                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2553  } else {
2554    assert(0 && "Unknown mul to lower!");
2555    abort();
2556  }
2557}
2558
2559/// LowerOperation - Provide custom lowering hooks for some operations.
2560///
2561SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2562  switch (Op.getOpcode()) {
2563  default: assert(0 && "Wasn't expecting to be able to lower this!");
2564  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2565  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2566  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2567  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2568  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2569  case ISD::FORMAL_ARGUMENTS:
2570      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2571  case ISD::CALL:               return LowerCALL(Op, DAG);
2572  case ISD::RET:                return LowerRET(Op, DAG);
2573  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
2574                                                               PPCSubTarget);
2575
2576  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2577  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2578  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2579
2580  // Lower 64-bit shifts.
2581  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2582  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2583  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2584
2585  // Vector-related lowering.
2586  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2587  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2588  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2589  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2590  case ISD::MUL:                return LowerMUL(Op, DAG);
2591  }
2592  return SDOperand();
2593}
2594
2595//===----------------------------------------------------------------------===//
2596//  Other Lowering Code
2597//===----------------------------------------------------------------------===//
2598
2599MachineBasicBlock *
2600PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2601                                           MachineBasicBlock *BB) {
2602  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2603  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2604          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2605          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2606          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2607          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2608         "Unexpected instr type to insert");
2609
2610  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2611  // control-flow pattern.  The incoming instruction knows the destination vreg
2612  // to set, the condition code register to branch on, the true/false values to
2613  // select between, and a branch opcode to use.
2614  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2615  ilist<MachineBasicBlock>::iterator It = BB;
2616  ++It;
2617
2618  //  thisMBB:
2619  //  ...
2620  //   TrueVal = ...
2621  //   cmpTY ccX, r1, r2
2622  //   bCC copy1MBB
2623  //   fallthrough --> copy0MBB
2624  MachineBasicBlock *thisMBB = BB;
2625  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2626  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2627  unsigned SelectPred = MI->getOperand(4).getImm();
2628  BuildMI(BB, TII->get(PPC::BCC))
2629    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2630  MachineFunction *F = BB->getParent();
2631  F->getBasicBlockList().insert(It, copy0MBB);
2632  F->getBasicBlockList().insert(It, sinkMBB);
2633  // Update machine-CFG edges by first adding all successors of the current
2634  // block to the new block which will contain the Phi node for the select.
2635  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2636      e = BB->succ_end(); i != e; ++i)
2637    sinkMBB->addSuccessor(*i);
2638  // Next, remove all successors of the current block, and add the true
2639  // and fallthrough blocks as its successors.
2640  while(!BB->succ_empty())
2641    BB->removeSuccessor(BB->succ_begin());
2642  BB->addSuccessor(copy0MBB);
2643  BB->addSuccessor(sinkMBB);
2644
2645  //  copy0MBB:
2646  //   %FalseValue = ...
2647  //   # fallthrough to sinkMBB
2648  BB = copy0MBB;
2649
2650  // Update machine-CFG edges
2651  BB->addSuccessor(sinkMBB);
2652
2653  //  sinkMBB:
2654  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2655  //  ...
2656  BB = sinkMBB;
2657  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2658    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2659    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2660
2661  delete MI;   // The pseudo instruction is gone now.
2662  return BB;
2663}
2664
2665//===----------------------------------------------------------------------===//
2666// Target Optimization Hooks
2667//===----------------------------------------------------------------------===//
2668
2669SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2670                                               DAGCombinerInfo &DCI) const {
2671  TargetMachine &TM = getTargetMachine();
2672  SelectionDAG &DAG = DCI.DAG;
2673  switch (N->getOpcode()) {
2674  default: break;
2675  case PPCISD::SHL:
2676    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2677      if (C->getValue() == 0)   // 0 << V -> 0.
2678        return N->getOperand(0);
2679    }
2680    break;
2681  case PPCISD::SRL:
2682    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2683      if (C->getValue() == 0)   // 0 >>u V -> 0.
2684        return N->getOperand(0);
2685    }
2686    break;
2687  case PPCISD::SRA:
2688    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2689      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2690          C->isAllOnesValue())    // -1 >>s V -> -1.
2691        return N->getOperand(0);
2692    }
2693    break;
2694
2695  case ISD::SINT_TO_FP:
2696    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2697      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2698        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2699        // We allow the src/dst to be either f32/f64, but the intermediate
2700        // type must be i64.
2701        if (N->getOperand(0).getValueType() == MVT::i64) {
2702          SDOperand Val = N->getOperand(0).getOperand(0);
2703          if (Val.getValueType() == MVT::f32) {
2704            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2705            DCI.AddToWorklist(Val.Val);
2706          }
2707
2708          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2709          DCI.AddToWorklist(Val.Val);
2710          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2711          DCI.AddToWorklist(Val.Val);
2712          if (N->getValueType(0) == MVT::f32) {
2713            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2714            DCI.AddToWorklist(Val.Val);
2715          }
2716          return Val;
2717        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2718          // If the intermediate type is i32, we can avoid the load/store here
2719          // too.
2720        }
2721      }
2722    }
2723    break;
2724  case ISD::STORE:
2725    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2726    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2727        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2728        N->getOperand(1).getValueType() == MVT::i32) {
2729      SDOperand Val = N->getOperand(1).getOperand(0);
2730      if (Val.getValueType() == MVT::f32) {
2731        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2732        DCI.AddToWorklist(Val.Val);
2733      }
2734      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2735      DCI.AddToWorklist(Val.Val);
2736
2737      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2738                        N->getOperand(2), N->getOperand(3));
2739      DCI.AddToWorklist(Val.Val);
2740      return Val;
2741    }
2742
2743    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2744    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2745        N->getOperand(1).Val->hasOneUse() &&
2746        (N->getOperand(1).getValueType() == MVT::i32 ||
2747         N->getOperand(1).getValueType() == MVT::i16)) {
2748      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2749      // Do an any-extend to 32-bits if this is a half-word input.
2750      if (BSwapOp.getValueType() == MVT::i16)
2751        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2752
2753      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2754                         N->getOperand(2), N->getOperand(3),
2755                         DAG.getValueType(N->getOperand(1).getValueType()));
2756    }
2757    break;
2758  case ISD::BSWAP:
2759    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2760    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2761        N->getOperand(0).hasOneUse() &&
2762        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2763      SDOperand Load = N->getOperand(0);
2764      LoadSDNode *LD = cast<LoadSDNode>(Load);
2765      // Create the byte-swapping load.
2766      std::vector<MVT::ValueType> VTs;
2767      VTs.push_back(MVT::i32);
2768      VTs.push_back(MVT::Other);
2769      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2770      SDOperand Ops[] = {
2771        LD->getChain(),    // Chain
2772        LD->getBasePtr(),  // Ptr
2773        SV,                // SrcValue
2774        DAG.getValueType(N->getValueType(0)) // VT
2775      };
2776      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2777
2778      // If this is an i16 load, insert the truncate.
2779      SDOperand ResVal = BSLoad;
2780      if (N->getValueType(0) == MVT::i16)
2781        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2782
2783      // First, combine the bswap away.  This makes the value produced by the
2784      // load dead.
2785      DCI.CombineTo(N, ResVal);
2786
2787      // Next, combine the load away, we give it a bogus result value but a real
2788      // chain result.  The result value is dead because the bswap is dead.
2789      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2790
2791      // Return N so it doesn't get rechecked!
2792      return SDOperand(N, 0);
2793    }
2794
2795    break;
2796  case PPCISD::VCMP: {
2797    // If a VCMPo node already exists with exactly the same operands as this
2798    // node, use its result instead of this node (VCMPo computes both a CR6 and
2799    // a normal output).
2800    //
2801    if (!N->getOperand(0).hasOneUse() &&
2802        !N->getOperand(1).hasOneUse() &&
2803        !N->getOperand(2).hasOneUse()) {
2804
2805      // Scan all of the users of the LHS, looking for VCMPo's that match.
2806      SDNode *VCMPoNode = 0;
2807
2808      SDNode *LHSN = N->getOperand(0).Val;
2809      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2810           UI != E; ++UI)
2811        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2812            (*UI)->getOperand(1) == N->getOperand(1) &&
2813            (*UI)->getOperand(2) == N->getOperand(2) &&
2814            (*UI)->getOperand(0) == N->getOperand(0)) {
2815          VCMPoNode = *UI;
2816          break;
2817        }
2818
2819      // If there is no VCMPo node, or if the flag value has a single use, don't
2820      // transform this.
2821      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2822        break;
2823
2824      // Look at the (necessarily single) use of the flag value.  If it has a
2825      // chain, this transformation is more complex.  Note that multiple things
2826      // could use the value result, which we should ignore.
2827      SDNode *FlagUser = 0;
2828      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2829           FlagUser == 0; ++UI) {
2830        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2831        SDNode *User = *UI;
2832        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2833          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2834            FlagUser = User;
2835            break;
2836          }
2837        }
2838      }
2839
2840      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2841      // give up for right now.
2842      if (FlagUser->getOpcode() == PPCISD::MFCR)
2843        return SDOperand(VCMPoNode, 0);
2844    }
2845    break;
2846  }
2847  case ISD::BR_CC: {
2848    // If this is a branch on an altivec predicate comparison, lower this so
2849    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2850    // lowering is done pre-legalize, because the legalizer lowers the predicate
2851    // compare down to code that is difficult to reassemble.
2852    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2853    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2854    int CompareOpc;
2855    bool isDot;
2856
2857    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2858        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2859        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2860      assert(isDot && "Can't compare against a vector result!");
2861
2862      // If this is a comparison against something other than 0/1, then we know
2863      // that the condition is never/always true.
2864      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2865      if (Val != 0 && Val != 1) {
2866        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2867          return N->getOperand(0);
2868        // Always !=, turn it into an unconditional branch.
2869        return DAG.getNode(ISD::BR, MVT::Other,
2870                           N->getOperand(0), N->getOperand(4));
2871      }
2872
2873      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2874
2875      // Create the PPCISD altivec 'dot' comparison node.
2876      std::vector<MVT::ValueType> VTs;
2877      SDOperand Ops[] = {
2878        LHS.getOperand(2),  // LHS of compare
2879        LHS.getOperand(3),  // RHS of compare
2880        DAG.getConstant(CompareOpc, MVT::i32)
2881      };
2882      VTs.push_back(LHS.getOperand(2).getValueType());
2883      VTs.push_back(MVT::Flag);
2884      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2885
2886      // Unpack the result based on how the target uses it.
2887      PPC::Predicate CompOpc;
2888      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2889      default:  // Can't happen, don't crash on invalid number though.
2890      case 0:   // Branch on the value of the EQ bit of CR6.
2891        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
2892        break;
2893      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2894        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
2895        break;
2896      case 2:   // Branch on the value of the LT bit of CR6.
2897        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
2898        break;
2899      case 3:   // Branch on the inverted value of the LT bit of CR6.
2900        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
2901        break;
2902      }
2903
2904      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2905                         DAG.getConstant(CompOpc, MVT::i32),
2906                         DAG.getRegister(PPC::CR6, MVT::i32),
2907                         N->getOperand(4), CompNode.getValue(1));
2908    }
2909    break;
2910  }
2911  }
2912
2913  return SDOperand();
2914}
2915
2916//===----------------------------------------------------------------------===//
2917// Inline Assembly Support
2918//===----------------------------------------------------------------------===//
2919
2920void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2921                                                       uint64_t Mask,
2922                                                       uint64_t &KnownZero,
2923                                                       uint64_t &KnownOne,
2924                                                       unsigned Depth) const {
2925  KnownZero = 0;
2926  KnownOne = 0;
2927  switch (Op.getOpcode()) {
2928  default: break;
2929  case PPCISD::LBRX: {
2930    // lhbrx is known to have the top bits cleared out.
2931    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
2932      KnownZero = 0xFFFF0000;
2933    break;
2934  }
2935  case ISD::INTRINSIC_WO_CHAIN: {
2936    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2937    default: break;
2938    case Intrinsic::ppc_altivec_vcmpbfp_p:
2939    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2940    case Intrinsic::ppc_altivec_vcmpequb_p:
2941    case Intrinsic::ppc_altivec_vcmpequh_p:
2942    case Intrinsic::ppc_altivec_vcmpequw_p:
2943    case Intrinsic::ppc_altivec_vcmpgefp_p:
2944    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2945    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2946    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2947    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2948    case Intrinsic::ppc_altivec_vcmpgtub_p:
2949    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2950    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2951      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2952      break;
2953    }
2954  }
2955  }
2956}
2957
2958
2959/// getConstraintType - Given a constraint letter, return the type of
2960/// constraint it is for this target.
2961PPCTargetLowering::ConstraintType
2962PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2963  switch (ConstraintLetter) {
2964  default: break;
2965  case 'b':
2966  case 'r':
2967  case 'f':
2968  case 'v':
2969  case 'y':
2970    return C_RegisterClass;
2971  }
2972  return TargetLowering::getConstraintType(ConstraintLetter);
2973}
2974
2975std::pair<unsigned, const TargetRegisterClass*>
2976PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
2977                                                MVT::ValueType VT) const {
2978  if (Constraint.size() == 1) {
2979    // GCC RS6000 Constraint Letters
2980    switch (Constraint[0]) {
2981    case 'b':   // R1-R31
2982    case 'r':   // R0-R31
2983      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
2984        return std::make_pair(0U, PPC::G8RCRegisterClass);
2985      return std::make_pair(0U, PPC::GPRCRegisterClass);
2986    case 'f':
2987      if (VT == MVT::f32)
2988        return std::make_pair(0U, PPC::F4RCRegisterClass);
2989      else if (VT == MVT::f64)
2990        return std::make_pair(0U, PPC::F8RCRegisterClass);
2991      break;
2992    case 'v':
2993      return std::make_pair(0U, PPC::VRRCRegisterClass);
2994    case 'y':   // crrc
2995      return std::make_pair(0U, PPC::CRRCRegisterClass);
2996    }
2997  }
2998
2999  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3000}
3001
3002
3003// isOperandValidForConstraint
3004SDOperand PPCTargetLowering::
3005isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3006  switch (Letter) {
3007  default: break;
3008  case 'I':
3009  case 'J':
3010  case 'K':
3011  case 'L':
3012  case 'M':
3013  case 'N':
3014  case 'O':
3015  case 'P': {
3016    if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate.
3017    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
3018    switch (Letter) {
3019    default: assert(0 && "Unknown constraint letter!");
3020    case 'I':  // "I" is a signed 16-bit constant.
3021      if ((short)Value == (int)Value) return Op;
3022      break;
3023    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3024    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3025      if ((short)Value == 0) return Op;
3026      break;
3027    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3028      if ((Value >> 16) == 0) return Op;
3029      break;
3030    case 'M':  // "M" is a constant that is greater than 31.
3031      if (Value > 31) return Op;
3032      break;
3033    case 'N':  // "N" is a positive constant that is an exact power of two.
3034      if ((int)Value > 0 && isPowerOf2_32(Value)) return Op;
3035      break;
3036    case 'O':  // "O" is the constant zero.
3037      if (Value == 0) return Op;
3038      break;
3039    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3040      if ((short)-Value == (int)-Value) return Op;
3041      break;
3042    }
3043    break;
3044  }
3045  }
3046
3047  // Handle standard constraint letters.
3048  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3049}
3050
3051/// isLegalAddressImmediate - Return true if the integer value can be used
3052/// as the offset of the target addressing mode.
3053bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
3054  // PPC allows a sign-extended 16-bit immediate field.
3055  return (V > -(1 << 16) && V < (1 << 16)-1);
3056}
3057
3058bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3059  return TargetLowering::isLegalAddressImmediate(GV);
3060}
3061