PPCISelLowering.cpp revision 667ee3cb436029e55cc788a3648ddd9f94678744
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/DerivedTypes.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // This is used in the ppcf128->int sequence.  Note it has different semantics
75  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
76  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
77
78  // PowerPC has no SREM/UREM instructions
79  setOperationAction(ISD::SREM, MVT::i32, Expand);
80  setOperationAction(ISD::UREM, MVT::i32, Expand);
81  setOperationAction(ISD::SREM, MVT::i64, Expand);
82  setOperationAction(ISD::UREM, MVT::i64, Expand);
83
84  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
85  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
86  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
87  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
88  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
89  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
90  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
91  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
92  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
93
94  // We don't support sin/cos/sqrt/fmod/pow
95  setOperationAction(ISD::FSIN , MVT::f64, Expand);
96  setOperationAction(ISD::FCOS , MVT::f64, Expand);
97  setOperationAction(ISD::FREM , MVT::f64, Expand);
98  setOperationAction(ISD::FPOW , MVT::f64, Expand);
99  setOperationAction(ISD::FSIN , MVT::f32, Expand);
100  setOperationAction(ISD::FCOS , MVT::f32, Expand);
101  setOperationAction(ISD::FREM , MVT::f32, Expand);
102  setOperationAction(ISD::FPOW , MVT::f32, Expand);
103
104  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
105
106  // If we're enabling GP optimizations, use hardware square root
107  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
108    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
109    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
110  }
111
112  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
113  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
114
115  // PowerPC does not have BSWAP, CTPOP or CTTZ
116  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
117  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
118  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
119  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
120  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
121  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
122
123  // PowerPC does not have ROTR
124  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
125  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
126
127  // PowerPC does not have Select
128  setOperationAction(ISD::SELECT, MVT::i32, Expand);
129  setOperationAction(ISD::SELECT, MVT::i64, Expand);
130  setOperationAction(ISD::SELECT, MVT::f32, Expand);
131  setOperationAction(ISD::SELECT, MVT::f64, Expand);
132
133  // PowerPC wants to turn select_cc of FP into fsel when possible.
134  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
135  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
136
137  // PowerPC wants to optimize integer setcc a bit
138  setOperationAction(ISD::SETCC, MVT::i32, Custom);
139
140  // PowerPC does not have BRCOND which requires SetCC
141  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
144
145  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
146  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
147
148  // PowerPC does not have [U|S]INT_TO_FP
149  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
150  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
151
152  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
153  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
154  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
156
157  // We cannot sextinreg(i1).  Expand to shifts.
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
159
160  // Support label based line numbers.
161  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
162  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
163
164  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
165  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
166  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
167  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
168
169
170  // We want to legalize GlobalAddress and ConstantPool nodes into the
171  // appropriate instructions to materialize the address.
172  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
173  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
174  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
175  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
176  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
177  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
178  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
179  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
180
181  // RET must be custom lowered, to meet ABI requirements.
182  setOperationAction(ISD::RET               , MVT::Other, Custom);
183
184  // TRAP is legal.
185  setOperationAction(ISD::TRAP, MVT::Other, Legal);
186
187  // TRAMPOLINE is custom lowered.
188  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
189
190  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
191  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
192
193  // VAARG is custom lowered with ELF 32 ABI
194  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
195    setOperationAction(ISD::VAARG, MVT::Other, Custom);
196  else
197    setOperationAction(ISD::VAARG, MVT::Other, Expand);
198
199  // Use the default implementation.
200  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
201  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
202  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
203  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
206
207  // We want to custom lower some of our intrinsics.
208  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
209
210  // Comparisons that require checking two conditions.
211  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
212  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
213  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
214  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
215  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
216  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
217  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
218  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
219  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
220  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
221  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
222  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
223
224  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
225    // They also have instructions for converting between i64 and fp.
226    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
227    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
228    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
229    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
230    // This is just the low 32 bits of a (signed) fp->i64 conversion.
231    // We cannot do this with Promote because i64 is not a legal type.
232    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
233
234    // FIXME: disable this lowered code.  This generates 64-bit register values,
235    // and we don't model the fact that the top part is clobbered by calls.  We
236    // need to flag these together so that the value isn't live across a call.
237    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
238  } else {
239    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
240    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
241  }
242
243  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
244    // 64-bit PowerPC implementations can support i64 types directly
245    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
246    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
247    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
248    // 64-bit PowerPC wants to expand i128 shifts itself.
249    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
250    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
251    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
252  } else {
253    // 32-bit PowerPC wants to expand i64 shifts itself.
254    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
255    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
256    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
257  }
258
259  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
260    // First set operation action for all vector types to expand. Then we
261    // will selectively turn on ones that can be effectively codegen'd.
262    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
263         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
264      MVT VT = (MVT::SimpleValueType)i;
265
266      // add/sub are legal for all supported vector VT's.
267      setOperationAction(ISD::ADD , VT, Legal);
268      setOperationAction(ISD::SUB , VT, Legal);
269
270      // We promote all shuffles to v16i8.
271      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
272      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
273
274      // We promote all non-typed operations to v4i32.
275      setOperationAction(ISD::AND   , VT, Promote);
276      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
277      setOperationAction(ISD::OR    , VT, Promote);
278      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
279      setOperationAction(ISD::XOR   , VT, Promote);
280      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
281      setOperationAction(ISD::LOAD  , VT, Promote);
282      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
283      setOperationAction(ISD::SELECT, VT, Promote);
284      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
285      setOperationAction(ISD::STORE, VT, Promote);
286      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
287
288      // No other operations are legal.
289      setOperationAction(ISD::MUL , VT, Expand);
290      setOperationAction(ISD::SDIV, VT, Expand);
291      setOperationAction(ISD::SREM, VT, Expand);
292      setOperationAction(ISD::UDIV, VT, Expand);
293      setOperationAction(ISD::UREM, VT, Expand);
294      setOperationAction(ISD::FDIV, VT, Expand);
295      setOperationAction(ISD::FNEG, VT, Expand);
296      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
297      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
298      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
299      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
300      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
301      setOperationAction(ISD::UDIVREM, VT, Expand);
302      setOperationAction(ISD::SDIVREM, VT, Expand);
303      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
304      setOperationAction(ISD::FPOW, VT, Expand);
305      setOperationAction(ISD::CTPOP, VT, Expand);
306      setOperationAction(ISD::CTLZ, VT, Expand);
307      setOperationAction(ISD::CTTZ, VT, Expand);
308    }
309
310    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
311    // with merges, splats, etc.
312    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
313
314    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
315    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
316    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
317    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
318    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
319    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
320
321    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
322    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
323    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
324    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
325
326    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
327    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
328    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
329    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
330
331    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
332    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
333
334    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
335    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
336    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
337    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
338  }
339
340  setShiftAmountType(MVT::i32);
341  setBooleanContents(ZeroOrOneBooleanContent);
342
343  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
344    setStackPointerRegisterToSaveRestore(PPC::X1);
345    setExceptionPointerRegister(PPC::X3);
346    setExceptionSelectorRegister(PPC::X4);
347  } else {
348    setStackPointerRegisterToSaveRestore(PPC::R1);
349    setExceptionPointerRegister(PPC::R3);
350    setExceptionSelectorRegister(PPC::R4);
351  }
352
353  // We have target-specific dag combine patterns for the following nodes:
354  setTargetDAGCombine(ISD::SINT_TO_FP);
355  setTargetDAGCombine(ISD::STORE);
356  setTargetDAGCombine(ISD::BR_CC);
357  setTargetDAGCombine(ISD::BSWAP);
358
359  // Darwin long double math library functions have $LDBL128 appended.
360  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
361    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
362    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
363    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
364    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
365    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
366    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
367    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
368    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
369    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
370    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
371  }
372
373  computeRegisterProperties();
374}
375
376/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
377/// function arguments in the caller parameter area.
378unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
379  TargetMachine &TM = getTargetMachine();
380  // Darwin passes everything on 4 byte boundary.
381  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
382    return 4;
383  // FIXME Elf TBD
384  return 4;
385}
386
387const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
388  switch (Opcode) {
389  default: return 0;
390  case PPCISD::FSEL:            return "PPCISD::FSEL";
391  case PPCISD::FCFID:           return "PPCISD::FCFID";
392  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
393  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
394  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
395  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
396  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
397  case PPCISD::VPERM:           return "PPCISD::VPERM";
398  case PPCISD::Hi:              return "PPCISD::Hi";
399  case PPCISD::Lo:              return "PPCISD::Lo";
400  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
401  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
402  case PPCISD::SRL:             return "PPCISD::SRL";
403  case PPCISD::SRA:             return "PPCISD::SRA";
404  case PPCISD::SHL:             return "PPCISD::SHL";
405  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
406  case PPCISD::STD_32:          return "PPCISD::STD_32";
407  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
408  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
409  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
410  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
411  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
412  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
413  case PPCISD::MFCR:            return "PPCISD::MFCR";
414  case PPCISD::VCMP:            return "PPCISD::VCMP";
415  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
416  case PPCISD::LBRX:            return "PPCISD::LBRX";
417  case PPCISD::STBRX:           return "PPCISD::STBRX";
418  case PPCISD::LARX:            return "PPCISD::LARX";
419  case PPCISD::STCX:            return "PPCISD::STCX";
420  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
421  case PPCISD::MFFS:            return "PPCISD::MFFS";
422  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
423  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
424  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
425  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
426  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
427  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
428  }
429}
430
431MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
432  return MVT::i32;
433}
434
435/// getFunctionAlignment - Return the Log2 alignment of this function.
436unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
437  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
438    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
439  else
440    return 2;
441}
442
443//===----------------------------------------------------------------------===//
444// Node matching predicates, for use by the tblgen matching code.
445//===----------------------------------------------------------------------===//
446
447/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
448static bool isFloatingPointZero(SDValue Op) {
449  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
450    return CFP->getValueAPF().isZero();
451  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
452    // Maybe this has already been legalized into the constant pool?
453    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
454      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
455        return CFP->getValueAPF().isZero();
456  }
457  return false;
458}
459
460/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
461/// true if Op is undef or if it matches the specified value.
462static bool isConstantOrUndef(int Op, int Val) {
463  return Op < 0 || Op == Val;
464}
465
466/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
467/// VPKUHUM instruction.
468bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
469  if (!isUnary) {
470    for (unsigned i = 0; i != 16; ++i)
471      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
472        return false;
473  } else {
474    for (unsigned i = 0; i != 8; ++i)
475      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
476          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
477        return false;
478  }
479  return true;
480}
481
482/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
483/// VPKUWUM instruction.
484bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
485  if (!isUnary) {
486    for (unsigned i = 0; i != 16; i += 2)
487      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
488          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
489        return false;
490  } else {
491    for (unsigned i = 0; i != 8; i += 2)
492      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
493          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
494          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
495          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
496        return false;
497  }
498  return true;
499}
500
501/// isVMerge - Common function, used to match vmrg* shuffles.
502///
503static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
504                     unsigned LHSStart, unsigned RHSStart) {
505  assert(N->getValueType(0) == MVT::v16i8 &&
506         "PPC only supports shuffles by bytes!");
507  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
508         "Unsupported merge size!");
509
510  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
511    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
512      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
513                             LHSStart+j+i*UnitSize) ||
514          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
515                             RHSStart+j+i*UnitSize))
516        return false;
517    }
518  return true;
519}
520
521/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
522/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
523bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
524                             bool isUnary) {
525  if (!isUnary)
526    return isVMerge(N, UnitSize, 8, 24);
527  return isVMerge(N, UnitSize, 8, 8);
528}
529
530/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
531/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
532bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
533                             bool isUnary) {
534  if (!isUnary)
535    return isVMerge(N, UnitSize, 0, 16);
536  return isVMerge(N, UnitSize, 0, 0);
537}
538
539
540/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
541/// amount, otherwise return -1.
542int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
543  assert(N->getValueType(0) == MVT::v16i8 &&
544         "PPC only supports shuffles by bytes!");
545
546  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
547
548  // Find the first non-undef value in the shuffle mask.
549  unsigned i;
550  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
551    /*search*/;
552
553  if (i == 16) return -1;  // all undef.
554
555  // Otherwise, check to see if the rest of the elements are consecutively
556  // numbered from this value.
557  unsigned ShiftAmt = SVOp->getMaskElt(i);
558  if (ShiftAmt < i) return -1;
559  ShiftAmt -= i;
560
561  if (!isUnary) {
562    // Check the rest of the elements to see if they are consecutive.
563    for (++i; i != 16; ++i)
564      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
565        return -1;
566  } else {
567    // Check the rest of the elements to see if they are consecutive.
568    for (++i; i != 16; ++i)
569      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
570        return -1;
571  }
572  return ShiftAmt;
573}
574
575/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
576/// specifies a splat of a single element that is suitable for input to
577/// VSPLTB/VSPLTH/VSPLTW.
578bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
579  assert(N->getValueType(0) == MVT::v16i8 &&
580         (EltSize == 1 || EltSize == 2 || EltSize == 4));
581
582  // This is a splat operation if each element of the permute is the same, and
583  // if the value doesn't reference the second vector.
584  unsigned ElementBase = N->getMaskElt(0);
585
586  // FIXME: Handle UNDEF elements too!
587  if (ElementBase >= 16)
588    return false;
589
590  // Check that the indices are consecutive, in the case of a multi-byte element
591  // splatted with a v16i8 mask.
592  for (unsigned i = 1; i != EltSize; ++i)
593    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
594      return false;
595
596  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
597    if (N->getMaskElt(i) < 0) continue;
598    for (unsigned j = 0; j != EltSize; ++j)
599      if (N->getMaskElt(i+j) != N->getMaskElt(j))
600        return false;
601  }
602  return true;
603}
604
605/// isAllNegativeZeroVector - Returns true if all elements of build_vector
606/// are -0.0.
607bool PPC::isAllNegativeZeroVector(SDNode *N) {
608  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
609
610  APInt APVal, APUndef;
611  unsigned BitSize;
612  bool HasAnyUndefs;
613
614  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
615    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
616      return CFP->getValueAPF().isNegZero();
617
618  return false;
619}
620
621/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
622/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
623unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
624  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
625  assert(isSplatShuffleMask(SVOp, EltSize));
626  return SVOp->getMaskElt(0) / EltSize;
627}
628
629/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
630/// by using a vspltis[bhw] instruction of the specified element size, return
631/// the constant being splatted.  The ByteSize field indicates the number of
632/// bytes of each element [124] -> [bhw].
633SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
634  SDValue OpVal(0, 0);
635
636  // If ByteSize of the splat is bigger than the element size of the
637  // build_vector, then we have a case where we are checking for a splat where
638  // multiple elements of the buildvector are folded together into a single
639  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
640  unsigned EltSize = 16/N->getNumOperands();
641  if (EltSize < ByteSize) {
642    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
643    SDValue UniquedVals[4];
644    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
645
646    // See if all of the elements in the buildvector agree across.
647    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
648      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
649      // If the element isn't a constant, bail fully out.
650      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
651
652
653      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
654        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
655      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
656        return SDValue();  // no match.
657    }
658
659    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
660    // either constant or undef values that are identical for each chunk.  See
661    // if these chunks can form into a larger vspltis*.
662
663    // Check to see if all of the leading entries are either 0 or -1.  If
664    // neither, then this won't fit into the immediate field.
665    bool LeadingZero = true;
666    bool LeadingOnes = true;
667    for (unsigned i = 0; i != Multiple-1; ++i) {
668      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
669
670      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
671      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
672    }
673    // Finally, check the least significant entry.
674    if (LeadingZero) {
675      if (UniquedVals[Multiple-1].getNode() == 0)
676        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
677      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
678      if (Val < 16)
679        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
680    }
681    if (LeadingOnes) {
682      if (UniquedVals[Multiple-1].getNode() == 0)
683        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
684      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
685      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
686        return DAG.getTargetConstant(Val, MVT::i32);
687    }
688
689    return SDValue();
690  }
691
692  // Check to see if this buildvec has a single non-undef value in its elements.
693  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
694    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
695    if (OpVal.getNode() == 0)
696      OpVal = N->getOperand(i);
697    else if (OpVal != N->getOperand(i))
698      return SDValue();
699  }
700
701  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
702
703  unsigned ValSizeInBytes = EltSize;
704  uint64_t Value = 0;
705  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
706    Value = CN->getZExtValue();
707  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
708    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
709    Value = FloatToBits(CN->getValueAPF().convertToFloat());
710  }
711
712  // If the splat value is larger than the element value, then we can never do
713  // this splat.  The only case that we could fit the replicated bits into our
714  // immediate field for would be zero, and we prefer to use vxor for it.
715  if (ValSizeInBytes < ByteSize) return SDValue();
716
717  // If the element value is larger than the splat value, cut it in half and
718  // check to see if the two halves are equal.  Continue doing this until we
719  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
720  while (ValSizeInBytes > ByteSize) {
721    ValSizeInBytes >>= 1;
722
723    // If the top half equals the bottom half, we're still ok.
724    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
725         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
726      return SDValue();
727  }
728
729  // Properly sign extend the value.
730  int ShAmt = (4-ByteSize)*8;
731  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
732
733  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
734  if (MaskVal == 0) return SDValue();
735
736  // Finally, if this value fits in a 5 bit sext field, return it
737  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
738    return DAG.getTargetConstant(MaskVal, MVT::i32);
739  return SDValue();
740}
741
742//===----------------------------------------------------------------------===//
743//  Addressing Mode Selection
744//===----------------------------------------------------------------------===//
745
746/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
747/// or 64-bit immediate, and if the value can be accurately represented as a
748/// sign extension from a 16-bit value.  If so, this returns true and the
749/// immediate.
750static bool isIntS16Immediate(SDNode *N, short &Imm) {
751  if (N->getOpcode() != ISD::Constant)
752    return false;
753
754  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
755  if (N->getValueType(0) == MVT::i32)
756    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
757  else
758    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
759}
760static bool isIntS16Immediate(SDValue Op, short &Imm) {
761  return isIntS16Immediate(Op.getNode(), Imm);
762}
763
764
765/// SelectAddressRegReg - Given the specified addressed, check to see if it
766/// can be represented as an indexed [r+r] operation.  Returns false if it
767/// can be more efficiently represented with [r+imm].
768bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
769                                            SDValue &Index,
770                                            SelectionDAG &DAG) const {
771  short imm = 0;
772  if (N.getOpcode() == ISD::ADD) {
773    if (isIntS16Immediate(N.getOperand(1), imm))
774      return false;    // r+i
775    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
776      return false;    // r+i
777
778    Base = N.getOperand(0);
779    Index = N.getOperand(1);
780    return true;
781  } else if (N.getOpcode() == ISD::OR) {
782    if (isIntS16Immediate(N.getOperand(1), imm))
783      return false;    // r+i can fold it if we can.
784
785    // If this is an or of disjoint bitfields, we can codegen this as an add
786    // (for better address arithmetic) if the LHS and RHS of the OR are provably
787    // disjoint.
788    APInt LHSKnownZero, LHSKnownOne;
789    APInt RHSKnownZero, RHSKnownOne;
790    DAG.ComputeMaskedBits(N.getOperand(0),
791                          APInt::getAllOnesValue(N.getOperand(0)
792                            .getValueSizeInBits()),
793                          LHSKnownZero, LHSKnownOne);
794
795    if (LHSKnownZero.getBoolValue()) {
796      DAG.ComputeMaskedBits(N.getOperand(1),
797                            APInt::getAllOnesValue(N.getOperand(1)
798                              .getValueSizeInBits()),
799                            RHSKnownZero, RHSKnownOne);
800      // If all of the bits are known zero on the LHS or RHS, the add won't
801      // carry.
802      if (~(LHSKnownZero | RHSKnownZero) == 0) {
803        Base = N.getOperand(0);
804        Index = N.getOperand(1);
805        return true;
806      }
807    }
808  }
809
810  return false;
811}
812
813/// Returns true if the address N can be represented by a base register plus
814/// a signed 16-bit displacement [r+imm], and if it is not better
815/// represented as reg+reg.
816bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
817                                            SDValue &Base,
818                                            SelectionDAG &DAG) const {
819  // FIXME dl should come from parent load or store, not from address
820  DebugLoc dl = N.getDebugLoc();
821  // If this can be more profitably realized as r+r, fail.
822  if (SelectAddressRegReg(N, Disp, Base, DAG))
823    return false;
824
825  if (N.getOpcode() == ISD::ADD) {
826    short imm = 0;
827    if (isIntS16Immediate(N.getOperand(1), imm)) {
828      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
829      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
830        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
831      } else {
832        Base = N.getOperand(0);
833      }
834      return true; // [r+i]
835    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
836      // Match LOAD (ADD (X, Lo(G))).
837     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
838             && "Cannot handle constant offsets yet!");
839      Disp = N.getOperand(1).getOperand(0);  // The global address.
840      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
841             Disp.getOpcode() == ISD::TargetConstantPool ||
842             Disp.getOpcode() == ISD::TargetJumpTable);
843      Base = N.getOperand(0);
844      return true;  // [&g+r]
845    }
846  } else if (N.getOpcode() == ISD::OR) {
847    short imm = 0;
848    if (isIntS16Immediate(N.getOperand(1), imm)) {
849      // If this is an or of disjoint bitfields, we can codegen this as an add
850      // (for better address arithmetic) if the LHS and RHS of the OR are
851      // provably disjoint.
852      APInt LHSKnownZero, LHSKnownOne;
853      DAG.ComputeMaskedBits(N.getOperand(0),
854                            APInt::getAllOnesValue(N.getOperand(0)
855                                                   .getValueSizeInBits()),
856                            LHSKnownZero, LHSKnownOne);
857
858      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
859        // If all of the bits are known zero on the LHS or RHS, the add won't
860        // carry.
861        Base = N.getOperand(0);
862        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
863        return true;
864      }
865    }
866  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
867    // Loading from a constant address.
868
869    // If this address fits entirely in a 16-bit sext immediate field, codegen
870    // this as "d, 0"
871    short Imm;
872    if (isIntS16Immediate(CN, Imm)) {
873      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
874      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
875      return true;
876    }
877
878    // Handle 32-bit sext immediates with LIS + addr mode.
879    if (CN->getValueType(0) == MVT::i32 ||
880        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
881      int Addr = (int)CN->getZExtValue();
882
883      // Otherwise, break this down into an LIS + disp.
884      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
885
886      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
887      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
888      Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
889      return true;
890    }
891  }
892
893  Disp = DAG.getTargetConstant(0, getPointerTy());
894  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
895    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
896  else
897    Base = N;
898  return true;      // [r+0]
899}
900
901/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
902/// represented as an indexed [r+r] operation.
903bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
904                                                SDValue &Index,
905                                                SelectionDAG &DAG) const {
906  // Check to see if we can easily represent this as an [r+r] address.  This
907  // will fail if it thinks that the address is more profitably represented as
908  // reg+imm, e.g. where imm = 0.
909  if (SelectAddressRegReg(N, Base, Index, DAG))
910    return true;
911
912  // If the operand is an addition, always emit this as [r+r], since this is
913  // better (for code size, and execution, as the memop does the add for free)
914  // than emitting an explicit add.
915  if (N.getOpcode() == ISD::ADD) {
916    Base = N.getOperand(0);
917    Index = N.getOperand(1);
918    return true;
919  }
920
921  // Otherwise, do it the hard way, using R0 as the base register.
922  Base = DAG.getRegister(PPC::R0, N.getValueType());
923  Index = N;
924  return true;
925}
926
927/// SelectAddressRegImmShift - Returns true if the address N can be
928/// represented by a base register plus a signed 14-bit displacement
929/// [r+imm*4].  Suitable for use by STD and friends.
930bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
931                                                 SDValue &Base,
932                                                 SelectionDAG &DAG) const {
933  // FIXME dl should come from the parent load or store, not the address
934  DebugLoc dl = N.getDebugLoc();
935  // If this can be more profitably realized as r+r, fail.
936  if (SelectAddressRegReg(N, Disp, Base, DAG))
937    return false;
938
939  if (N.getOpcode() == ISD::ADD) {
940    short imm = 0;
941    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
942      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
943      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
944        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
945      } else {
946        Base = N.getOperand(0);
947      }
948      return true; // [r+i]
949    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
950      // Match LOAD (ADD (X, Lo(G))).
951     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
952             && "Cannot handle constant offsets yet!");
953      Disp = N.getOperand(1).getOperand(0);  // The global address.
954      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
955             Disp.getOpcode() == ISD::TargetConstantPool ||
956             Disp.getOpcode() == ISD::TargetJumpTable);
957      Base = N.getOperand(0);
958      return true;  // [&g+r]
959    }
960  } else if (N.getOpcode() == ISD::OR) {
961    short imm = 0;
962    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
963      // If this is an or of disjoint bitfields, we can codegen this as an add
964      // (for better address arithmetic) if the LHS and RHS of the OR are
965      // provably disjoint.
966      APInt LHSKnownZero, LHSKnownOne;
967      DAG.ComputeMaskedBits(N.getOperand(0),
968                            APInt::getAllOnesValue(N.getOperand(0)
969                                                   .getValueSizeInBits()),
970                            LHSKnownZero, LHSKnownOne);
971      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
972        // If all of the bits are known zero on the LHS or RHS, the add won't
973        // carry.
974        Base = N.getOperand(0);
975        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
976        return true;
977      }
978    }
979  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
980    // Loading from a constant address.  Verify low two bits are clear.
981    if ((CN->getZExtValue() & 3) == 0) {
982      // If this address fits entirely in a 14-bit sext immediate field, codegen
983      // this as "d, 0"
984      short Imm;
985      if (isIntS16Immediate(CN, Imm)) {
986        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
987        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
988        return true;
989      }
990
991      // Fold the low-part of 32-bit absolute addresses into addr mode.
992      if (CN->getValueType(0) == MVT::i32 ||
993          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
994        int Addr = (int)CN->getZExtValue();
995
996        // Otherwise, break this down into an LIS + disp.
997        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
998        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
999        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1000        Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1001        return true;
1002      }
1003    }
1004  }
1005
1006  Disp = DAG.getTargetConstant(0, getPointerTy());
1007  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1008    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1009  else
1010    Base = N;
1011  return true;      // [r+0]
1012}
1013
1014
1015/// getPreIndexedAddressParts - returns true by value, base pointer and
1016/// offset pointer and addressing mode by reference if the node's address
1017/// can be legally represented as pre-indexed load / store address.
1018bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1019                                                  SDValue &Offset,
1020                                                  ISD::MemIndexedMode &AM,
1021                                                  SelectionDAG &DAG) const {
1022  // Disabled by default for now.
1023  if (!EnablePPCPreinc) return false;
1024
1025  SDValue Ptr;
1026  MVT VT;
1027  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1028    Ptr = LD->getBasePtr();
1029    VT = LD->getMemoryVT();
1030
1031  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1032    ST = ST;
1033    Ptr = ST->getBasePtr();
1034    VT  = ST->getMemoryVT();
1035  } else
1036    return false;
1037
1038  // PowerPC doesn't have preinc load/store instructions for vectors.
1039  if (VT.isVector())
1040    return false;
1041
1042  // TODO: Check reg+reg first.
1043
1044  // LDU/STU use reg+imm*4, others use reg+imm.
1045  if (VT != MVT::i64) {
1046    // reg + imm
1047    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1048      return false;
1049  } else {
1050    // reg + imm * 4.
1051    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1052      return false;
1053  }
1054
1055  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1056    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1057    // sext i32 to i64 when addr mode is r+i.
1058    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1059        LD->getExtensionType() == ISD::SEXTLOAD &&
1060        isa<ConstantSDNode>(Offset))
1061      return false;
1062  }
1063
1064  AM = ISD::PRE_INC;
1065  return true;
1066}
1067
1068//===----------------------------------------------------------------------===//
1069//  LowerOperation implementation
1070//===----------------------------------------------------------------------===//
1071
1072SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1073                                             SelectionDAG &DAG) {
1074  MVT PtrVT = Op.getValueType();
1075  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1076  Constant *C = CP->getConstVal();
1077  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1078  SDValue Zero = DAG.getConstant(0, PtrVT);
1079  // FIXME there isn't really any debug info here
1080  DebugLoc dl = Op.getDebugLoc();
1081
1082  const TargetMachine &TM = DAG.getTarget();
1083
1084  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1085  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1086
1087  // If this is a non-darwin platform, we don't support non-static relo models
1088  // yet.
1089  if (TM.getRelocationModel() == Reloc::Static ||
1090      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1091    // Generate non-pic code that has direct accesses to the constant pool.
1092    // The address of the global is just (hi(&g)+lo(&g)).
1093    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1094  }
1095
1096  if (TM.getRelocationModel() == Reloc::PIC_) {
1097    // With PIC, the first instruction is actually "GR+hi(&G)".
1098    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1099                     DAG.getNode(PPCISD::GlobalBaseReg,
1100                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1101  }
1102
1103  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1104  return Lo;
1105}
1106
1107SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1108  MVT PtrVT = Op.getValueType();
1109  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1110  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1111  SDValue Zero = DAG.getConstant(0, PtrVT);
1112  // FIXME there isn't really any debug loc here
1113  DebugLoc dl = Op.getDebugLoc();
1114
1115  const TargetMachine &TM = DAG.getTarget();
1116
1117  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1118  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1119
1120  // If this is a non-darwin platform, we don't support non-static relo models
1121  // yet.
1122  if (TM.getRelocationModel() == Reloc::Static ||
1123      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1124    // Generate non-pic code that has direct accesses to the constant pool.
1125    // The address of the global is just (hi(&g)+lo(&g)).
1126    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1127  }
1128
1129  if (TM.getRelocationModel() == Reloc::PIC_) {
1130    // With PIC, the first instruction is actually "GR+hi(&G)".
1131    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1132                     DAG.getNode(PPCISD::GlobalBaseReg,
1133                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1134  }
1135
1136  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1137  return Lo;
1138}
1139
1140SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1141                                                   SelectionDAG &DAG) {
1142  assert(0 && "TLS not implemented for PPC.");
1143  return SDValue(); // Not reached
1144}
1145
1146SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1147                                              SelectionDAG &DAG) {
1148  MVT PtrVT = Op.getValueType();
1149  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1150  GlobalValue *GV = GSDN->getGlobal();
1151  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1152  SDValue Zero = DAG.getConstant(0, PtrVT);
1153  // FIXME there isn't really any debug info here
1154  DebugLoc dl = GSDN->getDebugLoc();
1155
1156  const TargetMachine &TM = DAG.getTarget();
1157
1158  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1159  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1160
1161  // If this is a non-darwin platform, we don't support non-static relo models
1162  // yet.
1163  if (TM.getRelocationModel() == Reloc::Static ||
1164      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1165    // Generate non-pic code that has direct accesses to globals.
1166    // The address of the global is just (hi(&g)+lo(&g)).
1167    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1168  }
1169
1170  if (TM.getRelocationModel() == Reloc::PIC_) {
1171    // With PIC, the first instruction is actually "GR+hi(&G)".
1172    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1173                     DAG.getNode(PPCISD::GlobalBaseReg,
1174                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1175  }
1176
1177  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1178
1179  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1180    return Lo;
1181
1182  // If the global is weak or external, we have to go through the lazy
1183  // resolution stub.
1184  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1185}
1186
1187SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1188  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1189  DebugLoc dl = Op.getDebugLoc();
1190
1191  // If we're comparing for equality to zero, expose the fact that this is
1192  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1193  // fold the new nodes.
1194  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1195    if (C->isNullValue() && CC == ISD::SETEQ) {
1196      MVT VT = Op.getOperand(0).getValueType();
1197      SDValue Zext = Op.getOperand(0);
1198      if (VT.bitsLT(MVT::i32)) {
1199        VT = MVT::i32;
1200        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1201      }
1202      unsigned Log2b = Log2_32(VT.getSizeInBits());
1203      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1204      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1205                                DAG.getConstant(Log2b, MVT::i32));
1206      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1207    }
1208    // Leave comparisons against 0 and -1 alone for now, since they're usually
1209    // optimized.  FIXME: revisit this when we can custom lower all setcc
1210    // optimizations.
1211    if (C->isAllOnesValue() || C->isNullValue())
1212      return SDValue();
1213  }
1214
1215  // If we have an integer seteq/setne, turn it into a compare against zero
1216  // by xor'ing the rhs with the lhs, which is faster than setting a
1217  // condition register, reading it back out, and masking the correct bit.  The
1218  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1219  // the result to other bit-twiddling opportunities.
1220  MVT LHSVT = Op.getOperand(0).getValueType();
1221  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1222    MVT VT = Op.getValueType();
1223    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1224                                Op.getOperand(1));
1225    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1226  }
1227  return SDValue();
1228}
1229
1230SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1231                              int VarArgsFrameIndex,
1232                              int VarArgsStackOffset,
1233                              unsigned VarArgsNumGPR,
1234                              unsigned VarArgsNumFPR,
1235                              const PPCSubtarget &Subtarget) {
1236
1237  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1238  return SDValue(); // Not reached
1239}
1240
1241SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1242  SDValue Chain = Op.getOperand(0);
1243  SDValue Trmp = Op.getOperand(1); // trampoline
1244  SDValue FPtr = Op.getOperand(2); // nested function
1245  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1246  DebugLoc dl = Op.getDebugLoc();
1247
1248  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1249  bool isPPC64 = (PtrVT == MVT::i64);
1250  const Type *IntPtrTy =
1251    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1252
1253  TargetLowering::ArgListTy Args;
1254  TargetLowering::ArgListEntry Entry;
1255
1256  Entry.Ty = IntPtrTy;
1257  Entry.Node = Trmp; Args.push_back(Entry);
1258
1259  // TrampSize == (isPPC64 ? 48 : 40);
1260  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1261                               isPPC64 ? MVT::i64 : MVT::i32);
1262  Args.push_back(Entry);
1263
1264  Entry.Node = FPtr; Args.push_back(Entry);
1265  Entry.Node = Nest; Args.push_back(Entry);
1266
1267  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1268  std::pair<SDValue, SDValue> CallResult =
1269    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
1270                false, false, CallingConv::C, false,
1271                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1272                Args, DAG, dl);
1273
1274  SDValue Ops[] =
1275    { CallResult.first, CallResult.second };
1276
1277  return DAG.getMergeValues(Ops, 2, dl);
1278}
1279
1280SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1281                                        int VarArgsFrameIndex,
1282                                        int VarArgsStackOffset,
1283                                        unsigned VarArgsNumGPR,
1284                                        unsigned VarArgsNumFPR,
1285                                        const PPCSubtarget &Subtarget) {
1286  DebugLoc dl = Op.getDebugLoc();
1287
1288  if (Subtarget.isMachoABI()) {
1289    // vastart just stores the address of the VarArgsFrameIndex slot into the
1290    // memory location argument.
1291    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1292    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1293    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1294    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1295  }
1296
1297  // For ELF 32 ABI we follow the layout of the va_list struct.
1298  // We suppose the given va_list is already allocated.
1299  //
1300  // typedef struct {
1301  //  char gpr;     /* index into the array of 8 GPRs
1302  //                 * stored in the register save area
1303  //                 * gpr=0 corresponds to r3,
1304  //                 * gpr=1 to r4, etc.
1305  //                 */
1306  //  char fpr;     /* index into the array of 8 FPRs
1307  //                 * stored in the register save area
1308  //                 * fpr=0 corresponds to f1,
1309  //                 * fpr=1 to f2, etc.
1310  //                 */
1311  //  char *overflow_arg_area;
1312  //                /* location on stack that holds
1313  //                 * the next overflow argument
1314  //                 */
1315  //  char *reg_save_area;
1316  //               /* where r3:r10 and f1:f8 (if saved)
1317  //                * are stored
1318  //                */
1319  // } va_list[1];
1320
1321
1322  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1323  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1324
1325
1326  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1327
1328  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1329  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1330
1331  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1332  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1333
1334  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1335  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1336
1337  uint64_t FPROffset = 1;
1338  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1339
1340  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1341
1342  // Store first byte : number of int regs
1343  SDValue firstStore = DAG.getStore(Op.getOperand(0), dl, ArgGPR,
1344                                      Op.getOperand(1), SV, 0);
1345  uint64_t nextOffset = FPROffset;
1346  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1347                                  ConstFPROffset);
1348
1349  // Store second byte : number of float regs
1350  SDValue secondStore =
1351    DAG.getStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset);
1352  nextOffset += StackOffset;
1353  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1354
1355  // Store second word : arguments given on stack
1356  SDValue thirdStore =
1357    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1358  nextOffset += FrameOffset;
1359  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1360
1361  // Store third word : arguments given in registers
1362  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1363
1364}
1365
1366#include "PPCGenCallingConv.inc"
1367
1368/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1369/// depending on which subtarget is selected.
1370static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1371  if (Subtarget.isMachoABI()) {
1372    static const unsigned FPR[] = {
1373      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1374      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1375    };
1376    return FPR;
1377  }
1378
1379
1380  static const unsigned FPR[] = {
1381    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1382    PPC::F8
1383  };
1384  return FPR;
1385}
1386
1387/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1388/// the stack.
1389static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1390                                       unsigned PtrByteSize) {
1391  MVT ArgVT = Arg.getValueType();
1392  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1393  if (Flags.isByVal())
1394    ArgSize = Flags.getByValSize();
1395  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1396
1397  return ArgSize;
1398}
1399
1400SDValue
1401PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1402                                         SelectionDAG &DAG,
1403                                         int &VarArgsFrameIndex,
1404                                         int &VarArgsStackOffset,
1405                                         unsigned &VarArgsNumGPR,
1406                                         unsigned &VarArgsNumFPR,
1407                                         const PPCSubtarget &Subtarget) {
1408  // TODO: add description of PPC stack frame format, or at least some docs.
1409  //
1410  MachineFunction &MF = DAG.getMachineFunction();
1411  MachineFrameInfo *MFI = MF.getFrameInfo();
1412  SmallVector<SDValue, 8> ArgValues;
1413  SDValue Root = Op.getOperand(0);
1414  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1415  DebugLoc dl = Op.getDebugLoc();
1416
1417  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1418  bool isPPC64 = PtrVT == MVT::i64;
1419  bool isMachoABI = Subtarget.isMachoABI();
1420  bool isELF32_ABI = Subtarget.isELF32_ABI();
1421  // Potential tail calls could cause overwriting of argument stack slots.
1422  unsigned CC = MF.getFunction()->getCallingConv();
1423  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1424  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1425
1426  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1427  // Area that is at least reserved in caller of this function.
1428  unsigned MinReservedArea = ArgOffset;
1429
1430  static const unsigned GPR_32[] = {           // 32-bit registers.
1431    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1432    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1433  };
1434  static const unsigned GPR_64[] = {           // 64-bit registers.
1435    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1436    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1437  };
1438
1439  static const unsigned *FPR = GetFPR(Subtarget);
1440
1441  static const unsigned VR[] = {
1442    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1443    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1444  };
1445
1446  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1447  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1448  const unsigned Num_VR_Regs  = array_lengthof( VR);
1449
1450  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1451
1452  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1453
1454  // In 32-bit non-varargs functions, the stack space for vectors is after the
1455  // stack space for non-vectors.  We do not use this space unless we have
1456  // too many vectors to fit in registers, something that only occurs in
1457  // constructed examples:), but we have to walk the arglist to figure
1458  // that out...for the pathological case, compute VecArgOffset as the
1459  // start of the vector parameter area.  Computing VecArgOffset is the
1460  // entire point of the following loop.
1461  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1462  // to handle Elf here.
1463  unsigned VecArgOffset = ArgOffset;
1464  if (!isVarArg && !isPPC64) {
1465    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1466         ++ArgNo) {
1467      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1468      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1469      ISD::ArgFlagsTy Flags =
1470        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1471
1472      if (Flags.isByVal()) {
1473        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1474        ObjSize = Flags.getByValSize();
1475        unsigned ArgSize =
1476                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1477        VecArgOffset += ArgSize;
1478        continue;
1479      }
1480
1481      switch(ObjectVT.getSimpleVT()) {
1482      default: assert(0 && "Unhandled argument type!");
1483      case MVT::i32:
1484      case MVT::f32:
1485        VecArgOffset += isPPC64 ? 8 : 4;
1486        break;
1487      case MVT::i64:  // PPC64
1488      case MVT::f64:
1489        VecArgOffset += 8;
1490        break;
1491      case MVT::v4f32:
1492      case MVT::v4i32:
1493      case MVT::v8i16:
1494      case MVT::v16i8:
1495        // Nothing to do, we're only looking at Nonvector args here.
1496        break;
1497      }
1498    }
1499  }
1500  // We've found where the vector parameter area in memory is.  Skip the
1501  // first 12 parameters; these don't use that memory.
1502  VecArgOffset = ((VecArgOffset+15)/16)*16;
1503  VecArgOffset += 12*16;
1504
1505  // Add DAG nodes to load the arguments or copy them out of registers.  On
1506  // entry to a function on PPC, the arguments start after the linkage area,
1507  // although the first ones are often in registers.
1508  //
1509  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1510  // represented with two words (long long or double) must be copied to an
1511  // even GPR_idx value or to an even ArgOffset value.
1512
1513  SmallVector<SDValue, 8> MemOps;
1514  unsigned nAltivecParamsAtEnd = 0;
1515  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1516       ArgNo != e; ++ArgNo) {
1517    SDValue ArgVal;
1518    bool needsLoad = false;
1519    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1520    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1521    unsigned ArgSize = ObjSize;
1522    ISD::ArgFlagsTy Flags =
1523      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1524    // See if next argument requires stack alignment in ELF
1525    bool Align = Flags.isSplit();
1526
1527    unsigned CurArgOffset = ArgOffset;
1528
1529    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1530    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1531        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1532      if (isVarArg || isPPC64) {
1533        MinReservedArea = ((MinReservedArea+15)/16)*16;
1534        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1535                                                  Flags,
1536                                                  PtrByteSize);
1537      } else  nAltivecParamsAtEnd++;
1538    } else
1539      // Calculate min reserved area.
1540      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1541                                                Flags,
1542                                                PtrByteSize);
1543
1544    // FIXME alignment for ELF may not be right
1545    // FIXME the codegen can be much improved in some cases.
1546    // We do not have to keep everything in memory.
1547    if (Flags.isByVal()) {
1548      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1549      ObjSize = Flags.getByValSize();
1550      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1551      // Double word align in ELF
1552      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1553      // Objects of size 1 and 2 are right justified, everything else is
1554      // left justified.  This means the memory address is adjusted forwards.
1555      if (ObjSize==1 || ObjSize==2) {
1556        CurArgOffset = CurArgOffset + (4 - ObjSize);
1557      }
1558      // The value of the object is its address.
1559      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1560      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1561      ArgValues.push_back(FIN);
1562      if (ObjSize==1 || ObjSize==2) {
1563        if (GPR_idx != Num_GPR_Regs) {
1564          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1565          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1566          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1567                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1568          MemOps.push_back(Store);
1569          ++GPR_idx;
1570          if (isMachoABI) ArgOffset += PtrByteSize;
1571        } else {
1572          ArgOffset += PtrByteSize;
1573        }
1574        continue;
1575      }
1576      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1577        // Store whatever pieces of the object are in registers
1578        // to memory.  ArgVal will be address of the beginning of
1579        // the object.
1580        if (GPR_idx != Num_GPR_Regs) {
1581          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1582          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1583          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1584          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1585          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1586          MemOps.push_back(Store);
1587          ++GPR_idx;
1588          if (isMachoABI) ArgOffset += PtrByteSize;
1589        } else {
1590          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1591          break;
1592        }
1593      }
1594      continue;
1595    }
1596
1597    switch (ObjectVT.getSimpleVT()) {
1598    default: assert(0 && "Unhandled argument type!");
1599    case MVT::i32:
1600      if (!isPPC64) {
1601        // Double word align in ELF
1602        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1603
1604        if (GPR_idx != Num_GPR_Regs) {
1605          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1606          ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1607          ++GPR_idx;
1608        } else {
1609          needsLoad = true;
1610          ArgSize = PtrByteSize;
1611        }
1612        // Stack align in ELF
1613        if (needsLoad && Align && isELF32_ABI)
1614          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1615        // All int arguments reserve stack space in Macho ABI.
1616        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1617        break;
1618      }
1619      // FALLTHROUGH
1620    case MVT::i64:  // PPC64
1621      if (GPR_idx != Num_GPR_Regs) {
1622        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1623        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1624
1625        if (ObjectVT == MVT::i32) {
1626          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1627          // value to MVT::i64 and then truncate to the correct register size.
1628          if (Flags.isSExt())
1629            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1630                                 DAG.getValueType(ObjectVT));
1631          else if (Flags.isZExt())
1632            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1633                                 DAG.getValueType(ObjectVT));
1634
1635          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1636        }
1637
1638        ++GPR_idx;
1639      } else {
1640        needsLoad = true;
1641        ArgSize = PtrByteSize;
1642      }
1643      // All int arguments reserve stack space in Macho ABI.
1644      if (isMachoABI || needsLoad) ArgOffset += 8;
1645      break;
1646
1647    case MVT::f32:
1648    case MVT::f64:
1649      // Every 4 bytes of argument space consumes one of the GPRs available for
1650      // argument passing.
1651      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1652        ++GPR_idx;
1653        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1654          ++GPR_idx;
1655      }
1656      if (FPR_idx != Num_FPR_Regs) {
1657        unsigned VReg;
1658
1659        if (ObjectVT == MVT::f32)
1660          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1661        else
1662          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1663
1664        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1665        ++FPR_idx;
1666      } else {
1667        needsLoad = true;
1668      }
1669
1670      // Stack align in ELF
1671      if (needsLoad && Align && isELF32_ABI)
1672        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1673      // All FP arguments reserve stack space in Macho ABI.
1674      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1675      break;
1676    case MVT::v4f32:
1677    case MVT::v4i32:
1678    case MVT::v8i16:
1679    case MVT::v16i8:
1680      // Note that vector arguments in registers don't reserve stack space,
1681      // except in varargs functions.
1682      if (VR_idx != Num_VR_Regs) {
1683        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1684        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1685        if (isVarArg) {
1686          while ((ArgOffset % 16) != 0) {
1687            ArgOffset += PtrByteSize;
1688            if (GPR_idx != Num_GPR_Regs)
1689              GPR_idx++;
1690          }
1691          ArgOffset += 16;
1692          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1693        }
1694        ++VR_idx;
1695      } else {
1696        if (!isVarArg && !isPPC64) {
1697          // Vectors go after all the nonvectors.
1698          CurArgOffset = VecArgOffset;
1699          VecArgOffset += 16;
1700        } else {
1701          // Vectors are aligned.
1702          ArgOffset = ((ArgOffset+15)/16)*16;
1703          CurArgOffset = ArgOffset;
1704          ArgOffset += 16;
1705        }
1706        needsLoad = true;
1707      }
1708      break;
1709    }
1710
1711    // We need to load the argument to a virtual register if we determined above
1712    // that we ran out of physical registers of the appropriate type.
1713    if (needsLoad) {
1714      int FI = MFI->CreateFixedObject(ObjSize,
1715                                      CurArgOffset + (ArgSize - ObjSize),
1716                                      isImmutable);
1717      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1718      ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
1719    }
1720
1721    ArgValues.push_back(ArgVal);
1722  }
1723
1724  // Set the size that is at least reserved in caller of this function.  Tail
1725  // call optimized function's reserved stack space needs to be aligned so that
1726  // taking the difference between two stack areas will result in an aligned
1727  // stack.
1728  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1729  // Add the Altivec parameters at the end, if needed.
1730  if (nAltivecParamsAtEnd) {
1731    MinReservedArea = ((MinReservedArea+15)/16)*16;
1732    MinReservedArea += 16*nAltivecParamsAtEnd;
1733  }
1734  MinReservedArea =
1735    std::max(MinReservedArea,
1736             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1737  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1738    getStackAlignment();
1739  unsigned AlignMask = TargetAlign-1;
1740  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1741  FI->setMinReservedArea(MinReservedArea);
1742
1743  // If the function takes variable number of arguments, make a frame index for
1744  // the start of the first vararg value... for expansion of llvm.va_start.
1745  if (isVarArg) {
1746
1747    int depth;
1748    if (isELF32_ABI) {
1749      VarArgsNumGPR = GPR_idx;
1750      VarArgsNumFPR = FPR_idx;
1751
1752      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1753      // pointer.
1754      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1755                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1756                PtrVT.getSizeInBits()/8);
1757
1758      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1759                                                  ArgOffset);
1760
1761    }
1762    else
1763      depth = ArgOffset;
1764
1765    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1766                                               depth);
1767    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1768
1769    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1770    // stored to the VarArgsFrameIndex on the stack.
1771    if (isELF32_ABI) {
1772      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1773        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1774        SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1775        MemOps.push_back(Store);
1776        // Increment the address by four for the next argument to store
1777        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1778        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1779      }
1780    }
1781
1782    // If this function is vararg, store any remaining integer argument regs
1783    // to their spots on the stack so that they may be loaded by deferencing the
1784    // result of va_next.
1785    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1786      unsigned VReg;
1787
1788      if (isPPC64)
1789        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1790      else
1791        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1792
1793      SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1794      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1795      MemOps.push_back(Store);
1796      // Increment the address by four for the next argument to store
1797      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1798      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1799    }
1800
1801    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1802    // on the stack.
1803    if (isELF32_ABI) {
1804      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1805        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1806        SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1807        MemOps.push_back(Store);
1808        // Increment the address by eight for the next argument to store
1809        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1810                                           PtrVT);
1811        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1812      }
1813
1814      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1815        unsigned VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1816
1817        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::f64);
1818        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1819        MemOps.push_back(Store);
1820        // Increment the address by eight for the next argument to store
1821        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1822                                           PtrVT);
1823        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1824      }
1825    }
1826  }
1827
1828  if (!MemOps.empty())
1829    Root = DAG.getNode(ISD::TokenFactor, dl,
1830                       MVT::Other, &MemOps[0], MemOps.size());
1831
1832  ArgValues.push_back(Root);
1833
1834  // Return the new list of results.
1835  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1836                     &ArgValues[0], ArgValues.size());
1837}
1838
1839/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1840/// linkage area.
1841static unsigned
1842CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1843                                     bool isPPC64,
1844                                     bool isMachoABI,
1845                                     bool isVarArg,
1846                                     unsigned CC,
1847                                     CallSDNode *TheCall,
1848                                     unsigned &nAltivecParamsAtEnd) {
1849  // Count how many bytes are to be pushed on the stack, including the linkage
1850  // area, and parameter passing area.  We start with 24/48 bytes, which is
1851  // prereserved space for [SP][CR][LR][3 x unused].
1852  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1853  unsigned NumOps = TheCall->getNumArgs();
1854  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1855
1856  // Add up all the space actually used.
1857  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1858  // they all go in registers, but we must reserve stack space for them for
1859  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1860  // assigned stack space in order, with padding so Altivec parameters are
1861  // 16-byte aligned.
1862  nAltivecParamsAtEnd = 0;
1863  for (unsigned i = 0; i != NumOps; ++i) {
1864    SDValue Arg = TheCall->getArg(i);
1865    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1866    MVT ArgVT = Arg.getValueType();
1867    // Varargs Altivec parameters are padded to a 16 byte boundary.
1868    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1869        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1870      if (!isVarArg && !isPPC64) {
1871        // Non-varargs Altivec parameters go after all the non-Altivec
1872        // parameters; handle those later so we know how much padding we need.
1873        nAltivecParamsAtEnd++;
1874        continue;
1875      }
1876      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1877      NumBytes = ((NumBytes+15)/16)*16;
1878    }
1879    NumBytes += CalculateStackSlotSize(Arg, Flags, PtrByteSize);
1880  }
1881
1882   // Allow for Altivec parameters at the end, if needed.
1883  if (nAltivecParamsAtEnd) {
1884    NumBytes = ((NumBytes+15)/16)*16;
1885    NumBytes += 16*nAltivecParamsAtEnd;
1886  }
1887
1888  // The prolog code of the callee may store up to 8 GPR argument registers to
1889  // the stack, allowing va_start to index over them in memory if its varargs.
1890  // Because we cannot tell if this is needed on the caller side, we have to
1891  // conservatively assume that it is needed.  As such, make sure we have at
1892  // least enough stack space for the caller to store the 8 GPRs.
1893  NumBytes = std::max(NumBytes,
1894                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1895
1896  // Tail call needs the stack to be aligned.
1897  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1898    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1899      getStackAlignment();
1900    unsigned AlignMask = TargetAlign-1;
1901    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1902  }
1903
1904  return NumBytes;
1905}
1906
1907/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1908/// adjusted to accomodate the arguments for the tailcall.
1909static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1910                                   unsigned ParamSize) {
1911
1912  if (!IsTailCall) return 0;
1913
1914  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1915  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1916  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1917  // Remember only if the new adjustement is bigger.
1918  if (SPDiff < FI->getTailCallSPDelta())
1919    FI->setTailCallSPDelta(SPDiff);
1920
1921  return SPDiff;
1922}
1923
1924/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1925/// following the call is a return. A function is eligible if caller/callee
1926/// calling conventions match, currently only fastcc supports tail calls, and
1927/// the function CALL is immediatly followed by a RET.
1928bool
1929PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1930                                                     SDValue Ret,
1931                                                     SelectionDAG& DAG) const {
1932  // Variable argument functions are not supported.
1933  if (!PerformTailCallOpt || TheCall->isVarArg())
1934    return false;
1935
1936  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1937    MachineFunction &MF = DAG.getMachineFunction();
1938    unsigned CallerCC = MF.getFunction()->getCallingConv();
1939    unsigned CalleeCC = TheCall->getCallingConv();
1940    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1941      // Functions containing by val parameters are not supported.
1942      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1943         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1944         if (Flags.isByVal()) return false;
1945      }
1946
1947      SDValue Callee = TheCall->getCallee();
1948      // Non PIC/GOT  tail calls are supported.
1949      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1950        return true;
1951
1952      // At the moment we can only do local tail calls (in same module, hidden
1953      // or protected) if we are generating PIC.
1954      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1955        return G->getGlobal()->hasHiddenVisibility()
1956            || G->getGlobal()->hasProtectedVisibility();
1957    }
1958  }
1959
1960  return false;
1961}
1962
1963/// isCallCompatibleAddress - Return the immediate to use if the specified
1964/// 32-bit value is representable in the immediate field of a BxA instruction.
1965static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1966  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1967  if (!C) return 0;
1968
1969  int Addr = C->getZExtValue();
1970  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1971      (Addr << 6 >> 6) != Addr)
1972    return 0;  // Top 6 bits have to be sext of immediate.
1973
1974  return DAG.getConstant((int)C->getZExtValue() >> 2,
1975                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1976}
1977
1978namespace {
1979
1980struct TailCallArgumentInfo {
1981  SDValue Arg;
1982  SDValue FrameIdxOp;
1983  int       FrameIdx;
1984
1985  TailCallArgumentInfo() : FrameIdx(0) {}
1986};
1987
1988}
1989
1990/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1991static void
1992StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1993                                           SDValue Chain,
1994                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1995                   SmallVector<SDValue, 8> &MemOpChains,
1996                   DebugLoc dl) {
1997  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1998    SDValue Arg = TailCallArgs[i].Arg;
1999    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2000    int FI = TailCallArgs[i].FrameIdx;
2001    // Store relative to framepointer.
2002    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2003                                       PseudoSourceValue::getFixedStack(FI),
2004                                       0));
2005  }
2006}
2007
2008/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2009/// the appropriate stack slot for the tail call optimized function call.
2010static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2011                                               MachineFunction &MF,
2012                                               SDValue Chain,
2013                                               SDValue OldRetAddr,
2014                                               SDValue OldFP,
2015                                               int SPDiff,
2016                                               bool isPPC64,
2017                                               bool isMachoABI,
2018                                               DebugLoc dl) {
2019  if (SPDiff) {
2020    // Calculate the new stack slot for the return address.
2021    int SlotSize = isPPC64 ? 8 : 4;
2022    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2023                                                                   isMachoABI);
2024    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2025                                                          NewRetAddrLoc);
2026    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
2027                                                                    isMachoABI);
2028    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2029
2030    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2031    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2032    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2033                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2034    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2035    Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2036                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2037  }
2038  return Chain;
2039}
2040
2041/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2042/// the position of the argument.
2043static void
2044CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2045                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2046                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2047  int Offset = ArgOffset + SPDiff;
2048  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2049  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2050  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2051  SDValue FIN = DAG.getFrameIndex(FI, VT);
2052  TailCallArgumentInfo Info;
2053  Info.Arg = Arg;
2054  Info.FrameIdxOp = FIN;
2055  Info.FrameIdx = FI;
2056  TailCallArguments.push_back(Info);
2057}
2058
2059/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2060/// stack slot. Returns the chain as result and the loaded frame pointers in
2061/// LROpOut/FPOpout. Used when tail calling.
2062SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2063                                                        int SPDiff,
2064                                                        SDValue Chain,
2065                                                        SDValue &LROpOut,
2066                                                        SDValue &FPOpOut,
2067                                                        DebugLoc dl) {
2068  if (SPDiff) {
2069    // Load the LR and FP stack slot for later adjusting.
2070    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2071    LROpOut = getReturnAddrFrameIndex(DAG);
2072    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2073    Chain = SDValue(LROpOut.getNode(), 1);
2074    FPOpOut = getFramePointerFrameIndex(DAG);
2075    FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2076    Chain = SDValue(FPOpOut.getNode(), 1);
2077  }
2078  return Chain;
2079}
2080
2081/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2082/// by "Src" to address "Dst" of size "Size".  Alignment information is
2083/// specified by the specific parameter attribute. The copy will be passed as
2084/// a byval function parameter.
2085/// Sometimes what we are copying is the end of a larger object, the part that
2086/// does not fit in registers.
2087static SDValue
2088CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2089                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2090                          DebugLoc dl) {
2091  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2092  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2093                       false, NULL, 0, NULL, 0);
2094}
2095
2096/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2097/// tail calls.
2098static void
2099LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2100                 SDValue Arg, SDValue PtrOff, int SPDiff,
2101                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2102                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2103                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2104                 DebugLoc dl) {
2105  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2106  if (!isTailCall) {
2107    if (isVector) {
2108      SDValue StackPtr;
2109      if (isPPC64)
2110        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2111      else
2112        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2113      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2114                           DAG.getConstant(ArgOffset, PtrVT));
2115    }
2116    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2117  // Calculate and remember argument location.
2118  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2119                                  TailCallArguments);
2120}
2121
2122SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2123                                       const PPCSubtarget &Subtarget,
2124                                       TargetMachine &TM) {
2125  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2126  SDValue Chain  = TheCall->getChain();
2127  bool isVarArg   = TheCall->isVarArg();
2128  unsigned CC     = TheCall->getCallingConv();
2129  bool isTailCall = TheCall->isTailCall()
2130                 && CC == CallingConv::Fast && PerformTailCallOpt;
2131  SDValue Callee = TheCall->getCallee();
2132  unsigned NumOps  = TheCall->getNumArgs();
2133  DebugLoc dl = TheCall->getDebugLoc();
2134
2135  bool isMachoABI = Subtarget.isMachoABI();
2136  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2137
2138  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2139  bool isPPC64 = PtrVT == MVT::i64;
2140  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2141
2142  MachineFunction &MF = DAG.getMachineFunction();
2143
2144  // Mark this function as potentially containing a function that contains a
2145  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2146  // and restoring the callers stack pointer in this functions epilog. This is
2147  // done because by tail calling the called function might overwrite the value
2148  // in this function's (MF) stack pointer stack slot 0(SP).
2149  if (PerformTailCallOpt && CC==CallingConv::Fast)
2150    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2151
2152  unsigned nAltivecParamsAtEnd = 0;
2153
2154  // Count how many bytes are to be pushed on the stack, including the linkage
2155  // area, and parameter passing area.  We start with 24/48 bytes, which is
2156  // prereserved space for [SP][CR][LR][3 x unused].
2157  unsigned NumBytes =
2158    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2159                                         TheCall, nAltivecParamsAtEnd);
2160
2161  // Calculate by how many bytes the stack has to be adjusted in case of tail
2162  // call optimization.
2163  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2164
2165  // Adjust the stack pointer for the new arguments...
2166  // These operations are automatically eliminated by the prolog/epilog pass
2167  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2168  SDValue CallSeqStart = Chain;
2169
2170  // Load the return address and frame pointer so it can be move somewhere else
2171  // later.
2172  SDValue LROp, FPOp;
2173  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
2174
2175  // Set up a copy of the stack pointer for use loading and storing any
2176  // arguments that may not fit in the registers available for argument
2177  // passing.
2178  SDValue StackPtr;
2179  if (isPPC64)
2180    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2181  else
2182    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2183
2184  // Figure out which arguments are going to go in registers, and which in
2185  // memory.  Also, if this is a vararg function, floating point operations
2186  // must be stored to our stack, and loaded into integer regs as well, if
2187  // any integer regs are available for argument passing.
2188  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2189  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2190
2191  static const unsigned GPR_32[] = {           // 32-bit registers.
2192    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2193    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2194  };
2195  static const unsigned GPR_64[] = {           // 64-bit registers.
2196    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2197    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2198  };
2199  static const unsigned *FPR = GetFPR(Subtarget);
2200
2201  static const unsigned VR[] = {
2202    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2203    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2204  };
2205  const unsigned NumGPRs = array_lengthof(GPR_32);
2206  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2207  const unsigned NumVRs  = array_lengthof(VR);
2208
2209  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2210
2211  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2212  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2213
2214  SmallVector<SDValue, 8> MemOpChains;
2215  for (unsigned i = 0; i != NumOps; ++i) {
2216    bool inMem = false;
2217    SDValue Arg = TheCall->getArg(i);
2218    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2219    // See if next argument requires stack alignment in ELF
2220    bool Align = Flags.isSplit();
2221
2222    // PtrOff will be used to store the current argument to the stack if a
2223    // register cannot be found for it.
2224    SDValue PtrOff;
2225
2226    // Stack align in ELF 32
2227    if (isELF32_ABI && Align)
2228      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2229                               StackPtr.getValueType());
2230    else
2231      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2232
2233    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2234
2235    // On PPC64, promote integers to 64-bit values.
2236    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2237      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2238      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2239      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2240    }
2241
2242    // FIXME Elf untested, what are alignment rules?
2243    // FIXME memcpy is used way more than necessary.  Correctness first.
2244    if (Flags.isByVal()) {
2245      unsigned Size = Flags.getByValSize();
2246      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2247      if (Size==1 || Size==2) {
2248        // Very small objects are passed right-justified.
2249        // Everything else is passed left-justified.
2250        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2251        if (GPR_idx != NumGPRs) {
2252          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2253                                          NULL, 0, VT);
2254          MemOpChains.push_back(Load.getValue(1));
2255          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2256          if (isMachoABI)
2257            ArgOffset += PtrByteSize;
2258        } else {
2259          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2260          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2261          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2262                                CallSeqStart.getNode()->getOperand(0),
2263                                Flags, DAG, dl);
2264          // This must go outside the CALLSEQ_START..END.
2265          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2266                               CallSeqStart.getNode()->getOperand(1));
2267          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2268                                 NewCallSeqStart.getNode());
2269          Chain = CallSeqStart = NewCallSeqStart;
2270          ArgOffset += PtrByteSize;
2271        }
2272        continue;
2273      }
2274      // Copy entire object into memory.  There are cases where gcc-generated
2275      // code assumes it is there, even if it could be put entirely into
2276      // registers.  (This is not what the doc says.)
2277      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2278                            CallSeqStart.getNode()->getOperand(0),
2279                            Flags, DAG, dl);
2280      // This must go outside the CALLSEQ_START..END.
2281      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2282                           CallSeqStart.getNode()->getOperand(1));
2283      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2284      Chain = CallSeqStart = NewCallSeqStart;
2285      // And copy the pieces of it that fit into registers.
2286      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2287        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2288        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2289        if (GPR_idx != NumGPRs) {
2290          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2291          MemOpChains.push_back(Load.getValue(1));
2292          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2293          if (isMachoABI)
2294            ArgOffset += PtrByteSize;
2295        } else {
2296          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2297          break;
2298        }
2299      }
2300      continue;
2301    }
2302
2303    switch (Arg.getValueType().getSimpleVT()) {
2304    default: assert(0 && "Unexpected ValueType for argument!");
2305    case MVT::i32:
2306    case MVT::i64:
2307      // Double word align in ELF
2308      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2309      if (GPR_idx != NumGPRs) {
2310        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2311      } else {
2312        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2313                         isPPC64, isTailCall, false, MemOpChains,
2314                         TailCallArguments, dl);
2315        inMem = true;
2316      }
2317      if (inMem || isMachoABI) {
2318        // Stack align in ELF
2319        if (isELF32_ABI && Align)
2320          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2321
2322        ArgOffset += PtrByteSize;
2323      }
2324      break;
2325    case MVT::f32:
2326    case MVT::f64:
2327      if (FPR_idx != NumFPRs) {
2328        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2329
2330        if (isVarArg) {
2331          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2332          MemOpChains.push_back(Store);
2333
2334          // Float varargs are always shadowed in available integer registers
2335          if (GPR_idx != NumGPRs) {
2336            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2337            MemOpChains.push_back(Load.getValue(1));
2338            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2339                                                                Load));
2340          }
2341          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2342            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2343            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2344            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2345            MemOpChains.push_back(Load.getValue(1));
2346            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2347                                                                Load));
2348          }
2349        } else {
2350          // If we have any FPRs remaining, we may also have GPRs remaining.
2351          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2352          // GPRs.
2353          if (isMachoABI) {
2354            if (GPR_idx != NumGPRs)
2355              ++GPR_idx;
2356            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2357                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2358              ++GPR_idx;
2359          }
2360        }
2361      } else {
2362        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2363                         isPPC64, isTailCall, false, MemOpChains,
2364                         TailCallArguments, dl);
2365        inMem = true;
2366      }
2367      if (inMem || isMachoABI) {
2368        // Stack align in ELF
2369        if (isELF32_ABI && Align)
2370          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2371        if (isPPC64)
2372          ArgOffset += 8;
2373        else
2374          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2375      }
2376      break;
2377    case MVT::v4f32:
2378    case MVT::v4i32:
2379    case MVT::v8i16:
2380    case MVT::v16i8:
2381      if (isVarArg) {
2382        // These go aligned on the stack, or in the corresponding R registers
2383        // when within range.  The Darwin PPC ABI doc claims they also go in
2384        // V registers; in fact gcc does this only for arguments that are
2385        // prototyped, not for those that match the ...  We do it for all
2386        // arguments, seems to work.
2387        while (ArgOffset % 16 !=0) {
2388          ArgOffset += PtrByteSize;
2389          if (GPR_idx != NumGPRs)
2390            GPR_idx++;
2391        }
2392        // We could elide this store in the case where the object fits
2393        // entirely in R registers.  Maybe later.
2394        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2395                            DAG.getConstant(ArgOffset, PtrVT));
2396        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2397        MemOpChains.push_back(Store);
2398        if (VR_idx != NumVRs) {
2399          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
2400          MemOpChains.push_back(Load.getValue(1));
2401          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2402        }
2403        ArgOffset += 16;
2404        for (unsigned i=0; i<16; i+=PtrByteSize) {
2405          if (GPR_idx == NumGPRs)
2406            break;
2407          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
2408                                  DAG.getConstant(i, PtrVT));
2409          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
2410          MemOpChains.push_back(Load.getValue(1));
2411          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2412        }
2413        break;
2414      }
2415
2416      // Non-varargs Altivec params generally go in registers, but have
2417      // stack space allocated at the end.
2418      if (VR_idx != NumVRs) {
2419        // Doesn't have GPR space allocated.
2420        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2421      } else if (nAltivecParamsAtEnd==0) {
2422        // We are emitting Altivec params in order.
2423        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2424                         isPPC64, isTailCall, true, MemOpChains,
2425                         TailCallArguments, dl);
2426        ArgOffset += 16;
2427      }
2428      break;
2429    }
2430  }
2431  // If all Altivec parameters fit in registers, as they usually do,
2432  // they get stack space following the non-Altivec parameters.  We
2433  // don't track this here because nobody below needs it.
2434  // If there are more Altivec parameters than fit in registers emit
2435  // the stores here.
2436  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2437    unsigned j = 0;
2438    // Offset is aligned; skip 1st 12 params which go in V registers.
2439    ArgOffset = ((ArgOffset+15)/16)*16;
2440    ArgOffset += 12*16;
2441    for (unsigned i = 0; i != NumOps; ++i) {
2442      SDValue Arg = TheCall->getArg(i);
2443      MVT ArgType = Arg.getValueType();
2444      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2445          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2446        if (++j > NumVRs) {
2447          SDValue PtrOff;
2448          // We are emitting Altivec params in order.
2449          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2450                           isPPC64, isTailCall, true, MemOpChains,
2451                           TailCallArguments, dl);
2452          ArgOffset += 16;
2453        }
2454      }
2455    }
2456  }
2457
2458  if (!MemOpChains.empty())
2459    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2460                        &MemOpChains[0], MemOpChains.size());
2461
2462  // Build a sequence of copy-to-reg nodes chained together with token chain
2463  // and flag operands which copy the outgoing args into the appropriate regs.
2464  SDValue InFlag;
2465  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2466    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2467                             RegsToPass[i].second, InFlag);
2468    InFlag = Chain.getValue(1);
2469  }
2470
2471  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2472  if (isVarArg && isELF32_ABI) {
2473    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2474    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2475    InFlag = Chain.getValue(1);
2476  }
2477
2478  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2479  // might overwrite each other in case of tail call optimization.
2480  if (isTailCall) {
2481    SmallVector<SDValue, 8> MemOpChains2;
2482    // Do not flag preceeding copytoreg stuff together with the following stuff.
2483    InFlag = SDValue();
2484    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2485                                      MemOpChains2, dl);
2486    if (!MemOpChains2.empty())
2487      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2488                          &MemOpChains2[0], MemOpChains2.size());
2489
2490    // Store the return address to the appropriate stack slot.
2491    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2492                                          isPPC64, isMachoABI, dl);
2493  }
2494
2495  // Emit callseq_end just before tailcall node.
2496  if (isTailCall) {
2497    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2498                               DAG.getIntPtrConstant(0, true), InFlag);
2499    InFlag = Chain.getValue(1);
2500  }
2501
2502  std::vector<MVT> NodeTys;
2503  NodeTys.push_back(MVT::Other);   // Returns a chain
2504  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2505
2506  SmallVector<SDValue, 8> Ops;
2507  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2508
2509  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2510  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2511  // node so that legalize doesn't hack it.
2512  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2513    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2514  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2515    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2516  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2517    // If this is an absolute destination address, use the munged value.
2518    Callee = SDValue(Dest, 0);
2519  else {
2520    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2521    // to do the call, we can't use PPCISD::CALL.
2522    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2523    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2524                        2 + (InFlag.getNode() != 0));
2525    InFlag = Chain.getValue(1);
2526
2527    // Copy the callee address into R12/X12 on darwin.
2528    if (isMachoABI) {
2529      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2530      Chain = DAG.getCopyToReg(Chain, dl, Reg, Callee, InFlag);
2531      InFlag = Chain.getValue(1);
2532    }
2533
2534    NodeTys.clear();
2535    NodeTys.push_back(MVT::Other);
2536    NodeTys.push_back(MVT::Flag);
2537    Ops.push_back(Chain);
2538    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2539    Callee.setNode(0);
2540    // Add CTR register as callee so a bctr can be emitted later.
2541    if (isTailCall)
2542      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2543  }
2544
2545  // If this is a direct call, pass the chain and the callee.
2546  if (Callee.getNode()) {
2547    Ops.push_back(Chain);
2548    Ops.push_back(Callee);
2549  }
2550  // If this is a tail call add stack pointer delta.
2551  if (isTailCall)
2552    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2553
2554  // Add argument registers to the end of the list so that they are known live
2555  // into the call.
2556  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2557    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2558                                  RegsToPass[i].second.getValueType()));
2559
2560  // When performing tail call optimization the callee pops its arguments off
2561  // the stack. Account for this here so these bytes can be pushed back on in
2562  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2563  int BytesCalleePops =
2564    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2565
2566  if (InFlag.getNode())
2567    Ops.push_back(InFlag);
2568
2569  // Emit tail call.
2570  if (isTailCall) {
2571    assert(InFlag.getNode() &&
2572           "Flag must be set. Depend on flag being set in LowerRET");
2573    Chain = DAG.getNode(PPCISD::TAILCALL, dl,
2574                        TheCall->getVTList(), &Ops[0], Ops.size());
2575    return SDValue(Chain.getNode(), Op.getResNo());
2576  }
2577
2578  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2579  InFlag = Chain.getValue(1);
2580
2581  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2582                             DAG.getIntPtrConstant(BytesCalleePops, true),
2583                             InFlag);
2584  if (TheCall->getValueType(0) != MVT::Other)
2585    InFlag = Chain.getValue(1);
2586
2587  SmallVector<SDValue, 16> ResultVals;
2588  SmallVector<CCValAssign, 16> RVLocs;
2589  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2590  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2591  CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2592
2593  // Copy all of the result registers out of their specified physreg.
2594  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2595    CCValAssign &VA = RVLocs[i];
2596    MVT VT = VA.getValVT();
2597    assert(VA.isRegLoc() && "Can only return in registers!");
2598    Chain = DAG.getCopyFromReg(Chain, dl,
2599                               VA.getLocReg(), VT, InFlag).getValue(1);
2600    ResultVals.push_back(Chain.getValue(0));
2601    InFlag = Chain.getValue(2);
2602  }
2603
2604  // If the function returns void, just return the chain.
2605  if (RVLocs.empty())
2606    return Chain;
2607
2608  // Otherwise, merge everything together with a MERGE_VALUES node.
2609  ResultVals.push_back(Chain);
2610  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
2611                            &ResultVals[0], ResultVals.size());
2612  return Res.getValue(Op.getResNo());
2613}
2614
2615SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2616                                      TargetMachine &TM) {
2617  SmallVector<CCValAssign, 16> RVLocs;
2618  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2619  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2620  DebugLoc dl = Op.getDebugLoc();
2621  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2622  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2623
2624  // If this is the first return lowered for this function, add the regs to the
2625  // liveout set for the function.
2626  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2627    for (unsigned i = 0; i != RVLocs.size(); ++i)
2628      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2629  }
2630
2631  SDValue Chain = Op.getOperand(0);
2632
2633  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2634  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2635    SDValue TailCall = Chain;
2636    SDValue TargetAddress = TailCall.getOperand(1);
2637    SDValue StackAdjustment = TailCall.getOperand(2);
2638
2639    assert(((TargetAddress.getOpcode() == ISD::Register &&
2640             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2641            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2642            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2643            isa<ConstantSDNode>(TargetAddress)) &&
2644    "Expecting an global address, external symbol, absolute value or register");
2645
2646    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2647           "Expecting a const value");
2648
2649    SmallVector<SDValue,8> Operands;
2650    Operands.push_back(Chain.getOperand(0));
2651    Operands.push_back(TargetAddress);
2652    Operands.push_back(StackAdjustment);
2653    // Copy registers used by the call. Last operand is a flag so it is not
2654    // copied.
2655    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2656      Operands.push_back(Chain.getOperand(i));
2657    }
2658    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Operands[0],
2659                       Operands.size());
2660  }
2661
2662  SDValue Flag;
2663
2664  // Copy the result values into the output registers.
2665  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2666    CCValAssign &VA = RVLocs[i];
2667    assert(VA.isRegLoc() && "Can only return in registers!");
2668    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2669                             Op.getOperand(i*2+1), Flag);
2670    Flag = Chain.getValue(1);
2671  }
2672
2673  if (Flag.getNode())
2674    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
2675  else
2676    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
2677}
2678
2679SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2680                                   const PPCSubtarget &Subtarget) {
2681  // When we pop the dynamic allocation we need to restore the SP link.
2682  DebugLoc dl = Op.getDebugLoc();
2683
2684  // Get the corect type for pointers.
2685  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2686
2687  // Construct the stack pointer operand.
2688  bool IsPPC64 = Subtarget.isPPC64();
2689  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2690  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2691
2692  // Get the operands for the STACKRESTORE.
2693  SDValue Chain = Op.getOperand(0);
2694  SDValue SaveSP = Op.getOperand(1);
2695
2696  // Load the old link SP.
2697  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
2698
2699  // Restore the stack pointer.
2700  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
2701
2702  // Store the old link SP.
2703  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
2704}
2705
2706
2707
2708SDValue
2709PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2710  MachineFunction &MF = DAG.getMachineFunction();
2711  bool IsPPC64 = PPCSubTarget.isPPC64();
2712  bool isMachoABI = PPCSubTarget.isMachoABI();
2713  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2714
2715  // Get current frame pointer save index.  The users of this index will be
2716  // primarily DYNALLOC instructions.
2717  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2718  int RASI = FI->getReturnAddrSaveIndex();
2719
2720  // If the frame pointer save index hasn't been defined yet.
2721  if (!RASI) {
2722    // Find out what the fix offset of the frame pointer save area.
2723    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2724    // Allocate the frame index for frame pointer save area.
2725    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2726    // Save the result.
2727    FI->setReturnAddrSaveIndex(RASI);
2728  }
2729  return DAG.getFrameIndex(RASI, PtrVT);
2730}
2731
2732SDValue
2733PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2734  MachineFunction &MF = DAG.getMachineFunction();
2735  bool IsPPC64 = PPCSubTarget.isPPC64();
2736  bool isMachoABI = PPCSubTarget.isMachoABI();
2737  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2738
2739  // Get current frame pointer save index.  The users of this index will be
2740  // primarily DYNALLOC instructions.
2741  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2742  int FPSI = FI->getFramePointerSaveIndex();
2743
2744  // If the frame pointer save index hasn't been defined yet.
2745  if (!FPSI) {
2746    // Find out what the fix offset of the frame pointer save area.
2747    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2748
2749    // Allocate the frame index for frame pointer save area.
2750    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2751    // Save the result.
2752    FI->setFramePointerSaveIndex(FPSI);
2753  }
2754  return DAG.getFrameIndex(FPSI, PtrVT);
2755}
2756
2757SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2758                                         SelectionDAG &DAG,
2759                                         const PPCSubtarget &Subtarget) {
2760  // Get the inputs.
2761  SDValue Chain = Op.getOperand(0);
2762  SDValue Size  = Op.getOperand(1);
2763  DebugLoc dl = Op.getDebugLoc();
2764
2765  // Get the corect type for pointers.
2766  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2767  // Negate the size.
2768  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
2769                                  DAG.getConstant(0, PtrVT), Size);
2770  // Construct a node for the frame pointer save index.
2771  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2772  // Build a DYNALLOC node.
2773  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2774  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2775  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
2776}
2777
2778/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2779/// possible.
2780SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2781  // Not FP? Not a fsel.
2782  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2783      !Op.getOperand(2).getValueType().isFloatingPoint())
2784    return Op;
2785
2786  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2787
2788  // Cannot handle SETEQ/SETNE.
2789  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
2790
2791  MVT ResVT = Op.getValueType();
2792  MVT CmpVT = Op.getOperand(0).getValueType();
2793  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2794  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2795  DebugLoc dl = Op.getDebugLoc();
2796
2797  // If the RHS of the comparison is a 0.0, we don't need to do the
2798  // subtraction at all.
2799  if (isFloatingPointZero(RHS))
2800    switch (CC) {
2801    default: break;       // SETUO etc aren't handled by fsel.
2802    case ISD::SETULT:
2803    case ISD::SETLT:
2804      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2805    case ISD::SETOGE:
2806    case ISD::SETGE:
2807      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2808        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
2809      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
2810    case ISD::SETUGT:
2811    case ISD::SETGT:
2812      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2813    case ISD::SETOLE:
2814    case ISD::SETLE:
2815      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2816        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
2817      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
2818                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
2819    }
2820
2821  SDValue Cmp;
2822  switch (CC) {
2823  default: break;       // SETUO etc aren't handled by fsel.
2824  case ISD::SETULT:
2825  case ISD::SETLT:
2826    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
2827    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2828      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2829      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
2830  case ISD::SETOGE:
2831  case ISD::SETGE:
2832    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
2833    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2834      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2835      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
2836  case ISD::SETUGT:
2837  case ISD::SETGT:
2838    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
2839    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2840      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2841      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
2842  case ISD::SETOLE:
2843  case ISD::SETLE:
2844    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
2845    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2846      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2847      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
2848  }
2849  return Op;
2850}
2851
2852// FIXME: Split this code up when LegalizeDAGTypes lands.
2853SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
2854                                           DebugLoc dl) {
2855  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2856  SDValue Src = Op.getOperand(0);
2857  if (Src.getValueType() == MVT::f32)
2858    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
2859
2860  SDValue Tmp;
2861  switch (Op.getValueType().getSimpleVT()) {
2862  default: assert(0 && "Unhandled FP_TO_INT type in custom expander!");
2863  case MVT::i32:
2864    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
2865                                                         PPCISD::FCTIDZ,
2866                      dl, MVT::f64, Src);
2867    break;
2868  case MVT::i64:
2869    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
2870    break;
2871  }
2872
2873  // Convert the FP value to an int value through memory.
2874  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2875
2876  // Emit a store to the stack slot.
2877  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
2878
2879  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2880  // add in a bias.
2881  if (Op.getValueType() == MVT::i32)
2882    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
2883                        DAG.getConstant(4, FIPtr.getValueType()));
2884  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
2885}
2886
2887SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2888  DebugLoc dl = Op.getDebugLoc();
2889  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2890  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2891    return SDValue();
2892
2893  if (Op.getOperand(0).getValueType() == MVT::i64) {
2894    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
2895                               MVT::f64, Op.getOperand(0));
2896    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
2897    if (Op.getValueType() == MVT::f32)
2898      FP = DAG.getNode(ISD::FP_ROUND, dl,
2899                       MVT::f32, FP, DAG.getIntPtrConstant(0));
2900    return FP;
2901  }
2902
2903  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2904         "Unhandled SINT_TO_FP type in custom expander!");
2905  // Since we only generate this in 64-bit mode, we can take advantage of
2906  // 64-bit registers.  In particular, sign extend the input value into the
2907  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2908  // then lfd it and fcfid it.
2909  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2910  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2911  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2912  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2913
2914  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
2915                                Op.getOperand(0));
2916
2917  // STD the extended value into the stack slot.
2918  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2919                       MachineMemOperand::MOStore, 0, 8, 8);
2920  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
2921                                DAG.getEntryNode(), Ext64, FIdx,
2922                                DAG.getMemOperand(MO));
2923  // Load the value as a double.
2924  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
2925
2926  // FCFID it and return it.
2927  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
2928  if (Op.getValueType() == MVT::f32)
2929    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
2930  return FP;
2931}
2932
2933SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2934  DebugLoc dl = Op.getDebugLoc();
2935  /*
2936   The rounding mode is in bits 30:31 of FPSR, and has the following
2937   settings:
2938     00 Round to nearest
2939     01 Round to 0
2940     10 Round to +inf
2941     11 Round to -inf
2942
2943  FLT_ROUNDS, on the other hand, expects the following:
2944    -1 Undefined
2945     0 Round to 0
2946     1 Round to nearest
2947     2 Round to +inf
2948     3 Round to -inf
2949
2950  To perform the conversion, we do:
2951    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2952  */
2953
2954  MachineFunction &MF = DAG.getMachineFunction();
2955  MVT VT = Op.getValueType();
2956  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2957  std::vector<MVT> NodeTys;
2958  SDValue MFFSreg, InFlag;
2959
2960  // Save FP Control Word to register
2961  NodeTys.push_back(MVT::f64);    // return register
2962  NodeTys.push_back(MVT::Flag);   // unused in this context
2963  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
2964
2965  // Save FP register to stack slot
2966  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2967  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2968  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
2969                                 StackSlot, NULL, 0);
2970
2971  // Load FP Control Word from low 32 bits of stack slot.
2972  SDValue Four = DAG.getConstant(4, PtrVT);
2973  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
2974  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
2975
2976  // Transform as necessary
2977  SDValue CWD1 =
2978    DAG.getNode(ISD::AND, dl, MVT::i32,
2979                CWD, DAG.getConstant(3, MVT::i32));
2980  SDValue CWD2 =
2981    DAG.getNode(ISD::SRL, dl, MVT::i32,
2982                DAG.getNode(ISD::AND, dl, MVT::i32,
2983                            DAG.getNode(ISD::XOR, dl, MVT::i32,
2984                                        CWD, DAG.getConstant(3, MVT::i32)),
2985                            DAG.getConstant(3, MVT::i32)),
2986                DAG.getConstant(1, MVT::i32));
2987
2988  SDValue RetVal =
2989    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
2990
2991  return DAG.getNode((VT.getSizeInBits() < 16 ?
2992                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
2993}
2994
2995SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
2996  MVT VT = Op.getValueType();
2997  unsigned BitWidth = VT.getSizeInBits();
2998  DebugLoc dl = Op.getDebugLoc();
2999  assert(Op.getNumOperands() == 3 &&
3000         VT == Op.getOperand(1).getValueType() &&
3001         "Unexpected SHL!");
3002
3003  // Expand into a bunch of logical ops.  Note that these ops
3004  // depend on the PPC behavior for oversized shift amounts.
3005  SDValue Lo = Op.getOperand(0);
3006  SDValue Hi = Op.getOperand(1);
3007  SDValue Amt = Op.getOperand(2);
3008  MVT AmtVT = Amt.getValueType();
3009
3010  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3011                             DAG.getConstant(BitWidth, AmtVT), Amt);
3012  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3013  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3014  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3015  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3016                             DAG.getConstant(-BitWidth, AmtVT));
3017  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3018  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3019  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3020  SDValue OutOps[] = { OutLo, OutHi };
3021  return DAG.getMergeValues(OutOps, 2, dl);
3022}
3023
3024SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3025  MVT VT = Op.getValueType();
3026  DebugLoc dl = Op.getDebugLoc();
3027  unsigned BitWidth = VT.getSizeInBits();
3028  assert(Op.getNumOperands() == 3 &&
3029         VT == Op.getOperand(1).getValueType() &&
3030         "Unexpected SRL!");
3031
3032  // Expand into a bunch of logical ops.  Note that these ops
3033  // depend on the PPC behavior for oversized shift amounts.
3034  SDValue Lo = Op.getOperand(0);
3035  SDValue Hi = Op.getOperand(1);
3036  SDValue Amt = Op.getOperand(2);
3037  MVT AmtVT = Amt.getValueType();
3038
3039  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3040                             DAG.getConstant(BitWidth, AmtVT), Amt);
3041  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3042  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3043  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3044  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3045                             DAG.getConstant(-BitWidth, AmtVT));
3046  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3047  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3048  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3049  SDValue OutOps[] = { OutLo, OutHi };
3050  return DAG.getMergeValues(OutOps, 2, dl);
3051}
3052
3053SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3054  DebugLoc dl = Op.getDebugLoc();
3055  MVT VT = Op.getValueType();
3056  unsigned BitWidth = VT.getSizeInBits();
3057  assert(Op.getNumOperands() == 3 &&
3058         VT == Op.getOperand(1).getValueType() &&
3059         "Unexpected SRA!");
3060
3061  // Expand into a bunch of logical ops, followed by a select_cc.
3062  SDValue Lo = Op.getOperand(0);
3063  SDValue Hi = Op.getOperand(1);
3064  SDValue Amt = Op.getOperand(2);
3065  MVT AmtVT = Amt.getValueType();
3066
3067  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3068                             DAG.getConstant(BitWidth, AmtVT), Amt);
3069  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3070  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3071  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3072  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3073                             DAG.getConstant(-BitWidth, AmtVT));
3074  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3075  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3076  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3077                                  Tmp4, Tmp6, ISD::SETLE);
3078  SDValue OutOps[] = { OutLo, OutHi };
3079  return DAG.getMergeValues(OutOps, 2, dl);
3080}
3081
3082//===----------------------------------------------------------------------===//
3083// Vector related lowering.
3084//
3085
3086/// BuildSplatI - Build a canonical splati of Val with an element size of
3087/// SplatSize.  Cast the result to VT.
3088static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3089                             SelectionDAG &DAG, DebugLoc dl) {
3090  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3091
3092  static const MVT VTys[] = { // canonical VT to use for each size.
3093    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3094  };
3095
3096  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3097
3098  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3099  if (Val == -1)
3100    SplatSize = 1;
3101
3102  MVT CanonicalVT = VTys[SplatSize-1];
3103
3104  // Build a canonical splat for this value.
3105  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3106  SmallVector<SDValue, 8> Ops;
3107  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3108  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3109                              &Ops[0], Ops.size());
3110  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3111}
3112
3113/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3114/// specified intrinsic ID.
3115static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3116                                SelectionDAG &DAG, DebugLoc dl,
3117                                MVT DestVT = MVT::Other) {
3118  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3119  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3120                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3121}
3122
3123/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3124/// specified intrinsic ID.
3125static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3126                                SDValue Op2, SelectionDAG &DAG,
3127                                DebugLoc dl, MVT DestVT = MVT::Other) {
3128  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3129  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3130                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3131}
3132
3133
3134/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3135/// amount.  The result has the specified value type.
3136static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3137                             MVT VT, SelectionDAG &DAG, DebugLoc dl) {
3138  // Force LHS/RHS to be the right type.
3139  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3140  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3141
3142  int Ops[16];
3143  for (unsigned i = 0; i != 16; ++i)
3144    Ops[i] = i + Amt;
3145  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3146  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3147}
3148
3149// If this is a case we can't handle, return null and let the default
3150// expansion code take care of it.  If we CAN select this case, and if it
3151// selects to a single instruction, return Op.  Otherwise, if we can codegen
3152// this case more efficiently than a constant pool load, lower it to the
3153// sequence of ops that should be used.
3154SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3155  DebugLoc dl = Op.getDebugLoc();
3156  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3157  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3158
3159  // Check if this is a splat of a constant value.
3160  APInt APSplatBits, APSplatUndef;
3161  unsigned SplatBitSize;
3162  bool HasAnyUndefs;
3163  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3164                             HasAnyUndefs) || SplatBitSize > 32)
3165    return SDValue();
3166
3167  unsigned SplatBits = APSplatBits.getZExtValue();
3168  unsigned SplatUndef = APSplatUndef.getZExtValue();
3169  unsigned SplatSize = SplatBitSize / 8;
3170
3171  // First, handle single instruction cases.
3172
3173  // All zeros?
3174  if (SplatBits == 0) {
3175    // Canonicalize all zero vectors to be v4i32.
3176    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3177      SDValue Z = DAG.getConstant(0, MVT::i32);
3178      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3179      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3180    }
3181    return Op;
3182  }
3183
3184  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3185  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3186                    (32-SplatBitSize));
3187  if (SextVal >= -16 && SextVal <= 15)
3188    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3189
3190
3191  // Two instruction sequences.
3192
3193  // If this value is in the range [-32,30] and is even, use:
3194  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3195  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3196    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3197    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3198    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3199  }
3200
3201  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3202  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3203  // for fneg/fabs.
3204  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3205    // Make -1 and vspltisw -1:
3206    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3207
3208    // Make the VSLW intrinsic, computing 0x8000_0000.
3209    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3210                                   OnesV, DAG, dl);
3211
3212    // xor by OnesV to invert it.
3213    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3214    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3215  }
3216
3217  // Check to see if this is a wide variety of vsplti*, binop self cases.
3218  static const signed char SplatCsts[] = {
3219    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3220    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3221  };
3222
3223  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3224    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3225    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3226    int i = SplatCsts[idx];
3227
3228    // Figure out what shift amount will be used by altivec if shifted by i in
3229    // this splat size.
3230    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3231
3232    // vsplti + shl self.
3233    if (SextVal == (i << (int)TypeShiftAmt)) {
3234      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3235      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3236        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3237        Intrinsic::ppc_altivec_vslw
3238      };
3239      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3240      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3241    }
3242
3243    // vsplti + srl self.
3244    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3245      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3246      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3247        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3248        Intrinsic::ppc_altivec_vsrw
3249      };
3250      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3251      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3252    }
3253
3254    // vsplti + sra self.
3255    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3256      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3257      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3258        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3259        Intrinsic::ppc_altivec_vsraw
3260      };
3261      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3262      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3263    }
3264
3265    // vsplti + rol self.
3266    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3267                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3268      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3269      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3270        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3271        Intrinsic::ppc_altivec_vrlw
3272      };
3273      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3274      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3275    }
3276
3277    // t = vsplti c, result = vsldoi t, t, 1
3278    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3279      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3280      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3281    }
3282    // t = vsplti c, result = vsldoi t, t, 2
3283    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3284      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3285      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3286    }
3287    // t = vsplti c, result = vsldoi t, t, 3
3288    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3289      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3290      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3291    }
3292  }
3293
3294  // Three instruction sequences.
3295
3296  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3297  if (SextVal >= 0 && SextVal <= 31) {
3298    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3299    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3300    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3301    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3302  }
3303  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3304  if (SextVal >= -31 && SextVal <= 0) {
3305    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3306    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3307    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3308    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3309  }
3310
3311  return SDValue();
3312}
3313
3314/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3315/// the specified operations to build the shuffle.
3316static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3317                                      SDValue RHS, SelectionDAG &DAG,
3318                                      DebugLoc dl) {
3319  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3320  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3321  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3322
3323  enum {
3324    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3325    OP_VMRGHW,
3326    OP_VMRGLW,
3327    OP_VSPLTISW0,
3328    OP_VSPLTISW1,
3329    OP_VSPLTISW2,
3330    OP_VSPLTISW3,
3331    OP_VSLDOI4,
3332    OP_VSLDOI8,
3333    OP_VSLDOI12
3334  };
3335
3336  if (OpNum == OP_COPY) {
3337    if (LHSID == (1*9+2)*9+3) return LHS;
3338    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3339    return RHS;
3340  }
3341
3342  SDValue OpLHS, OpRHS;
3343  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3344  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3345
3346  int ShufIdxs[16];
3347  switch (OpNum) {
3348  default: assert(0 && "Unknown i32 permute!");
3349  case OP_VMRGHW:
3350    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3351    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3352    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3353    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3354    break;
3355  case OP_VMRGLW:
3356    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3357    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3358    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3359    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3360    break;
3361  case OP_VSPLTISW0:
3362    for (unsigned i = 0; i != 16; ++i)
3363      ShufIdxs[i] = (i&3)+0;
3364    break;
3365  case OP_VSPLTISW1:
3366    for (unsigned i = 0; i != 16; ++i)
3367      ShufIdxs[i] = (i&3)+4;
3368    break;
3369  case OP_VSPLTISW2:
3370    for (unsigned i = 0; i != 16; ++i)
3371      ShufIdxs[i] = (i&3)+8;
3372    break;
3373  case OP_VSPLTISW3:
3374    for (unsigned i = 0; i != 16; ++i)
3375      ShufIdxs[i] = (i&3)+12;
3376    break;
3377  case OP_VSLDOI4:
3378    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3379  case OP_VSLDOI8:
3380    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3381  case OP_VSLDOI12:
3382    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3383  }
3384  MVT VT = OpLHS.getValueType();
3385  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3386  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3387  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3388  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3389}
3390
3391/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3392/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3393/// return the code it can be lowered into.  Worst case, it can always be
3394/// lowered into a vperm.
3395SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3396                                               SelectionDAG &DAG) {
3397  DebugLoc dl = Op.getDebugLoc();
3398  SDValue V1 = Op.getOperand(0);
3399  SDValue V2 = Op.getOperand(1);
3400  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3401  MVT VT = Op.getValueType();
3402
3403  // Cases that are handled by instructions that take permute immediates
3404  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3405  // selected by the instruction selector.
3406  if (V2.getOpcode() == ISD::UNDEF) {
3407    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3408        PPC::isSplatShuffleMask(SVOp, 2) ||
3409        PPC::isSplatShuffleMask(SVOp, 4) ||
3410        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3411        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3412        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3413        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3414        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3415        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3416        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3417        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3418        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3419      return Op;
3420    }
3421  }
3422
3423  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3424  // and produce a fixed permutation.  If any of these match, do not lower to
3425  // VPERM.
3426  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3427      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3428      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3429      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3430      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3431      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3432      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3433      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3434      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3435    return Op;
3436
3437  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3438  // perfect shuffle table to emit an optimal matching sequence.
3439  SmallVector<int, 16> PermMask;
3440  SVOp->getMask(PermMask);
3441
3442  unsigned PFIndexes[4];
3443  bool isFourElementShuffle = true;
3444  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3445    unsigned EltNo = 8;   // Start out undef.
3446    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3447      if (PermMask[i*4+j] < 0)
3448        continue;   // Undef, ignore it.
3449
3450      unsigned ByteSource = PermMask[i*4+j];
3451      if ((ByteSource & 3) != j) {
3452        isFourElementShuffle = false;
3453        break;
3454      }
3455
3456      if (EltNo == 8) {
3457        EltNo = ByteSource/4;
3458      } else if (EltNo != ByteSource/4) {
3459        isFourElementShuffle = false;
3460        break;
3461      }
3462    }
3463    PFIndexes[i] = EltNo;
3464  }
3465
3466  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3467  // perfect shuffle vector to determine if it is cost effective to do this as
3468  // discrete instructions, or whether we should use a vperm.
3469  if (isFourElementShuffle) {
3470    // Compute the index in the perfect shuffle table.
3471    unsigned PFTableIndex =
3472      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3473
3474    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3475    unsigned Cost  = (PFEntry >> 30);
3476
3477    // Determining when to avoid vperm is tricky.  Many things affect the cost
3478    // of vperm, particularly how many times the perm mask needs to be computed.
3479    // For example, if the perm mask can be hoisted out of a loop or is already
3480    // used (perhaps because there are multiple permutes with the same shuffle
3481    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3482    // the loop requires an extra register.
3483    //
3484    // As a compromise, we only emit discrete instructions if the shuffle can be
3485    // generated in 3 or fewer operations.  When we have loop information
3486    // available, if this block is within a loop, we should avoid using vperm
3487    // for 3-operation perms and use a constant pool load instead.
3488    if (Cost < 3)
3489      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3490  }
3491
3492  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3493  // vector that will get spilled to the constant pool.
3494  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3495
3496  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3497  // that it is in input element units, not in bytes.  Convert now.
3498  MVT EltVT = V1.getValueType().getVectorElementType();
3499  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3500
3501  SmallVector<SDValue, 16> ResultMask;
3502  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3503    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3504
3505    for (unsigned j = 0; j != BytesPerElement; ++j)
3506      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3507                                           MVT::i32));
3508  }
3509
3510  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3511                                    &ResultMask[0], ResultMask.size());
3512  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3513}
3514
3515/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3516/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3517/// information about the intrinsic.
3518static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3519                                  bool &isDot) {
3520  unsigned IntrinsicID =
3521    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3522  CompareOpc = -1;
3523  isDot = false;
3524  switch (IntrinsicID) {
3525  default: return false;
3526    // Comparison predicates.
3527  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3528  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3529  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3530  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3531  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3532  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3533  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3534  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3535  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3536  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3537  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3538  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3539  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3540
3541    // Normal Comparisons.
3542  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3543  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3544  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3545  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3546  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3547  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3548  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3549  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3550  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3551  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3552  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3553  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3554  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3555  }
3556  return true;
3557}
3558
3559/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3560/// lower, do it, otherwise return null.
3561SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3562                                                     SelectionDAG &DAG) {
3563  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3564  // opcode number of the comparison.
3565  DebugLoc dl = Op.getDebugLoc();
3566  int CompareOpc;
3567  bool isDot;
3568  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3569    return SDValue();    // Don't custom lower most intrinsics.
3570
3571  // If this is a non-dot comparison, make the VCMP node and we are done.
3572  if (!isDot) {
3573    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
3574                                Op.getOperand(1), Op.getOperand(2),
3575                                DAG.getConstant(CompareOpc, MVT::i32));
3576    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
3577  }
3578
3579  // Create the PPCISD altivec 'dot' comparison node.
3580  SDValue Ops[] = {
3581    Op.getOperand(2),  // LHS
3582    Op.getOperand(3),  // RHS
3583    DAG.getConstant(CompareOpc, MVT::i32)
3584  };
3585  std::vector<MVT> VTs;
3586  VTs.push_back(Op.getOperand(2).getValueType());
3587  VTs.push_back(MVT::Flag);
3588  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
3589
3590  // Now that we have the comparison, emit a copy from the CR to a GPR.
3591  // This is flagged to the above dot comparison.
3592  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
3593                                DAG.getRegister(PPC::CR6, MVT::i32),
3594                                CompNode.getValue(1));
3595
3596  // Unpack the result based on how the target uses it.
3597  unsigned BitNo;   // Bit # of CR6.
3598  bool InvertBit;   // Invert result?
3599  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3600  default:  // Can't happen, don't crash on invalid number though.
3601  case 0:   // Return the value of the EQ bit of CR6.
3602    BitNo = 0; InvertBit = false;
3603    break;
3604  case 1:   // Return the inverted value of the EQ bit of CR6.
3605    BitNo = 0; InvertBit = true;
3606    break;
3607  case 2:   // Return the value of the LT bit of CR6.
3608    BitNo = 2; InvertBit = false;
3609    break;
3610  case 3:   // Return the inverted value of the LT bit of CR6.
3611    BitNo = 2; InvertBit = true;
3612    break;
3613  }
3614
3615  // Shift the bit into the low position.
3616  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
3617                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3618  // Isolate the bit.
3619  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
3620                      DAG.getConstant(1, MVT::i32));
3621
3622  // If we are supposed to, toggle the bit.
3623  if (InvertBit)
3624    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
3625                        DAG.getConstant(1, MVT::i32));
3626  return Flags;
3627}
3628
3629SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3630                                                   SelectionDAG &DAG) {
3631  DebugLoc dl = Op.getDebugLoc();
3632  // Create a stack slot that is 16-byte aligned.
3633  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3634  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3635  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3636  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3637
3638  // Store the input value into Value#0 of the stack slot.
3639  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
3640                                 Op.getOperand(0), FIdx, NULL, 0);
3641  // Load it out.
3642  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
3643}
3644
3645SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3646  DebugLoc dl = Op.getDebugLoc();
3647  if (Op.getValueType() == MVT::v4i32) {
3648    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3649
3650    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
3651    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
3652
3653    SDValue RHSSwap =   // = vrlw RHS, 16
3654      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
3655
3656    // Shrinkify inputs to v8i16.
3657    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
3658    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
3659    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
3660
3661    // Low parts multiplied together, generating 32-bit results (we ignore the
3662    // top parts).
3663    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3664                                        LHS, RHS, DAG, dl, MVT::v4i32);
3665
3666    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3667                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
3668    // Shift the high parts up 16 bits.
3669    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
3670                              Neg16, DAG, dl);
3671    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
3672  } else if (Op.getValueType() == MVT::v8i16) {
3673    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3674
3675    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
3676
3677    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3678                            LHS, RHS, Zero, DAG, dl);
3679  } else if (Op.getValueType() == MVT::v16i8) {
3680    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3681
3682    // Multiply the even 8-bit parts, producing 16-bit sums.
3683    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3684                                           LHS, RHS, DAG, dl, MVT::v8i16);
3685    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
3686
3687    // Multiply the odd 8-bit parts, producing 16-bit sums.
3688    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3689                                          LHS, RHS, DAG, dl, MVT::v8i16);
3690    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
3691
3692    // Merge the results together.
3693    int Ops[16];
3694    for (unsigned i = 0; i != 8; ++i) {
3695      Ops[i*2  ] = 2*i+1;
3696      Ops[i*2+1] = 2*i+1+16;
3697    }
3698    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
3699  } else {
3700    assert(0 && "Unknown mul to lower!");
3701    abort();
3702  }
3703}
3704
3705/// LowerOperation - Provide custom lowering hooks for some operations.
3706///
3707SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3708  switch (Op.getOpcode()) {
3709  default: assert(0 && "Wasn't expecting to be able to lower this!");
3710  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3711  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3712  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3713  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3714  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3715  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
3716  case ISD::VASTART:
3717    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3718                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3719
3720  case ISD::VAARG:
3721    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3722                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3723
3724  case ISD::FORMAL_ARGUMENTS:
3725    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3726                                 VarArgsStackOffset, VarArgsNumGPR,
3727                                 VarArgsNumFPR, PPCSubTarget);
3728
3729  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3730                                                 getTargetMachine());
3731  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3732  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3733  case ISD::DYNAMIC_STACKALLOC:
3734    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3735
3736  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3737  case ISD::FP_TO_UINT:
3738  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
3739                                                       Op.getDebugLoc());
3740  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3741  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3742
3743  // Lower 64-bit shifts.
3744  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3745  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3746  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3747
3748  // Vector-related lowering.
3749  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3750  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3751  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3752  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3753  case ISD::MUL:                return LowerMUL(Op, DAG);
3754
3755  // Frame & Return address.
3756  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3757  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3758  }
3759  return SDValue();
3760}
3761
3762void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
3763                                           SmallVectorImpl<SDValue>&Results,
3764                                           SelectionDAG &DAG) {
3765  DebugLoc dl = N->getDebugLoc();
3766  switch (N->getOpcode()) {
3767  default:
3768    assert(false && "Do not know how to custom type legalize this operation!");
3769    return;
3770  case ISD::FP_ROUND_INREG: {
3771    assert(N->getValueType(0) == MVT::ppcf128);
3772    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
3773    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3774                             MVT::f64, N->getOperand(0),
3775                             DAG.getIntPtrConstant(0));
3776    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3777                             MVT::f64, N->getOperand(0),
3778                             DAG.getIntPtrConstant(1));
3779
3780    // This sequence changes FPSCR to do round-to-zero, adds the two halves
3781    // of the long double, and puts FPSCR back the way it was.  We do not
3782    // actually model FPSCR.
3783    std::vector<MVT> NodeTys;
3784    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
3785
3786    NodeTys.push_back(MVT::f64);   // Return register
3787    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
3788    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3789    MFFSreg = Result.getValue(0);
3790    InFlag = Result.getValue(1);
3791
3792    NodeTys.clear();
3793    NodeTys.push_back(MVT::Flag);   // Returns a flag
3794    Ops[0] = DAG.getConstant(31, MVT::i32);
3795    Ops[1] = InFlag;
3796    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
3797    InFlag = Result.getValue(0);
3798
3799    NodeTys.clear();
3800    NodeTys.push_back(MVT::Flag);   // Returns a flag
3801    Ops[0] = DAG.getConstant(30, MVT::i32);
3802    Ops[1] = InFlag;
3803    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
3804    InFlag = Result.getValue(0);
3805
3806    NodeTys.clear();
3807    NodeTys.push_back(MVT::f64);    // result of add
3808    NodeTys.push_back(MVT::Flag);   // Returns a flag
3809    Ops[0] = Lo;
3810    Ops[1] = Hi;
3811    Ops[2] = InFlag;
3812    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
3813    FPreg = Result.getValue(0);
3814    InFlag = Result.getValue(1);
3815
3816    NodeTys.clear();
3817    NodeTys.push_back(MVT::f64);
3818    Ops[0] = DAG.getConstant(1, MVT::i32);
3819    Ops[1] = MFFSreg;
3820    Ops[2] = FPreg;
3821    Ops[3] = InFlag;
3822    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
3823    FPreg = Result.getValue(0);
3824
3825    // We know the low half is about to be thrown away, so just use something
3826    // convenient.
3827    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
3828                                FPreg, FPreg));
3829    return;
3830  }
3831  case ISD::FP_TO_SINT:
3832    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
3833    return;
3834  }
3835}
3836
3837
3838//===----------------------------------------------------------------------===//
3839//  Other Lowering Code
3840//===----------------------------------------------------------------------===//
3841
3842MachineBasicBlock *
3843PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3844                                    bool is64bit, unsigned BinOpcode) const {
3845  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3846  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3847
3848  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3849  MachineFunction *F = BB->getParent();
3850  MachineFunction::iterator It = BB;
3851  ++It;
3852
3853  unsigned dest = MI->getOperand(0).getReg();
3854  unsigned ptrA = MI->getOperand(1).getReg();
3855  unsigned ptrB = MI->getOperand(2).getReg();
3856  unsigned incr = MI->getOperand(3).getReg();
3857  DebugLoc dl = MI->getDebugLoc();
3858
3859  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3860  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3861  F->insert(It, loopMBB);
3862  F->insert(It, exitMBB);
3863  exitMBB->transferSuccessors(BB);
3864
3865  MachineRegisterInfo &RegInfo = F->getRegInfo();
3866  unsigned TmpReg = (!BinOpcode) ? incr :
3867    RegInfo.createVirtualRegister(
3868       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3869                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3870
3871  //  thisMBB:
3872  //   ...
3873  //   fallthrough --> loopMBB
3874  BB->addSuccessor(loopMBB);
3875
3876  //  loopMBB:
3877  //   l[wd]arx dest, ptr
3878  //   add r0, dest, incr
3879  //   st[wd]cx. r0, ptr
3880  //   bne- loopMBB
3881  //   fallthrough --> exitMBB
3882  BB = loopMBB;
3883  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3884    .addReg(ptrA).addReg(ptrB);
3885  if (BinOpcode)
3886    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3887  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3888    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3889  BuildMI(BB, dl, TII->get(PPC::BCC))
3890    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3891  BB->addSuccessor(loopMBB);
3892  BB->addSuccessor(exitMBB);
3893
3894  //  exitMBB:
3895  //   ...
3896  BB = exitMBB;
3897  return BB;
3898}
3899
3900MachineBasicBlock *
3901PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3902                                            MachineBasicBlock *BB,
3903                                            bool is8bit,    // operation
3904                                            unsigned BinOpcode) const {
3905  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3906  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3907  // In 64 bit mode we have to use 64 bits for addresses, even though the
3908  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3909  // registers without caring whether they're 32 or 64, but here we're
3910  // doing actual arithmetic on the addresses.
3911  bool is64bit = PPCSubTarget.isPPC64();
3912
3913  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3914  MachineFunction *F = BB->getParent();
3915  MachineFunction::iterator It = BB;
3916  ++It;
3917
3918  unsigned dest = MI->getOperand(0).getReg();
3919  unsigned ptrA = MI->getOperand(1).getReg();
3920  unsigned ptrB = MI->getOperand(2).getReg();
3921  unsigned incr = MI->getOperand(3).getReg();
3922  DebugLoc dl = MI->getDebugLoc();
3923
3924  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3925  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3926  F->insert(It, loopMBB);
3927  F->insert(It, exitMBB);
3928  exitMBB->transferSuccessors(BB);
3929
3930  MachineRegisterInfo &RegInfo = F->getRegInfo();
3931  const TargetRegisterClass *RC =
3932    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3933              (const TargetRegisterClass *) &PPC::GPRCRegClass;
3934  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3935  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3936  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3937  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3938  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3939  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3940  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3941  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3942  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3943  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3944  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
3945  unsigned Ptr1Reg;
3946  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
3947
3948  //  thisMBB:
3949  //   ...
3950  //   fallthrough --> loopMBB
3951  BB->addSuccessor(loopMBB);
3952
3953  // The 4-byte load must be aligned, while a char or short may be
3954  // anywhere in the word.  Hence all this nasty bookkeeping code.
3955  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
3956  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3957  //   xori shift, shift1, 24 [16]
3958  //   rlwinm ptr, ptr1, 0, 0, 29
3959  //   slw incr2, incr, shift
3960  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3961  //   slw mask, mask2, shift
3962  //  loopMBB:
3963  //   lwarx tmpDest, ptr
3964  //   add tmp, tmpDest, incr2
3965  //   andc tmp2, tmpDest, mask
3966  //   and tmp3, tmp, mask
3967  //   or tmp4, tmp3, tmp2
3968  //   stwcx. tmp4, ptr
3969  //   bne- loopMBB
3970  //   fallthrough --> exitMBB
3971  //   srw dest, tmpDest, shift
3972
3973  if (ptrA!=PPC::R0) {
3974    Ptr1Reg = RegInfo.createVirtualRegister(RC);
3975    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
3976      .addReg(ptrA).addReg(ptrB);
3977  } else {
3978    Ptr1Reg = ptrB;
3979  }
3980  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
3981      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
3982  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
3983      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
3984  if (is64bit)
3985    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
3986      .addReg(Ptr1Reg).addImm(0).addImm(61);
3987  else
3988    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
3989      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
3990  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
3991      .addReg(incr).addReg(ShiftReg);
3992  if (is8bit)
3993    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
3994  else {
3995    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
3996    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
3997  }
3998  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
3999      .addReg(Mask2Reg).addReg(ShiftReg);
4000
4001  BB = loopMBB;
4002  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4003    .addReg(PPC::R0).addReg(PtrReg);
4004  if (BinOpcode)
4005    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4006      .addReg(Incr2Reg).addReg(TmpDestReg);
4007  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4008    .addReg(TmpDestReg).addReg(MaskReg);
4009  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4010    .addReg(TmpReg).addReg(MaskReg);
4011  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4012    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4013  BuildMI(BB, dl, TII->get(PPC::STWCX))
4014    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4015  BuildMI(BB, dl, TII->get(PPC::BCC))
4016    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4017  BB->addSuccessor(loopMBB);
4018  BB->addSuccessor(exitMBB);
4019
4020  //  exitMBB:
4021  //   ...
4022  BB = exitMBB;
4023  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4024  return BB;
4025}
4026
4027MachineBasicBlock *
4028PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4029                                               MachineBasicBlock *BB) const {
4030  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4031
4032  // To "insert" these instructions we actually have to insert their
4033  // control-flow patterns.
4034  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4035  MachineFunction::iterator It = BB;
4036  ++It;
4037
4038  MachineFunction *F = BB->getParent();
4039
4040  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4041      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4042      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4043      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4044      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4045
4046    // The incoming instruction knows the destination vreg to set, the
4047    // condition code register to branch on, the true/false values to
4048    // select between, and a branch opcode to use.
4049
4050    //  thisMBB:
4051    //  ...
4052    //   TrueVal = ...
4053    //   cmpTY ccX, r1, r2
4054    //   bCC copy1MBB
4055    //   fallthrough --> copy0MBB
4056    MachineBasicBlock *thisMBB = BB;
4057    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4058    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4059    unsigned SelectPred = MI->getOperand(4).getImm();
4060    DebugLoc dl = MI->getDebugLoc();
4061    BuildMI(BB, dl, TII->get(PPC::BCC))
4062      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4063    F->insert(It, copy0MBB);
4064    F->insert(It, sinkMBB);
4065    // Update machine-CFG edges by transferring all successors of the current
4066    // block to the new block which will contain the Phi node for the select.
4067    sinkMBB->transferSuccessors(BB);
4068    // Next, add the true and fallthrough blocks as its successors.
4069    BB->addSuccessor(copy0MBB);
4070    BB->addSuccessor(sinkMBB);
4071
4072    //  copy0MBB:
4073    //   %FalseValue = ...
4074    //   # fallthrough to sinkMBB
4075    BB = copy0MBB;
4076
4077    // Update machine-CFG edges
4078    BB->addSuccessor(sinkMBB);
4079
4080    //  sinkMBB:
4081    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4082    //  ...
4083    BB = sinkMBB;
4084    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4085      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4086      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4087  }
4088  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4089    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4090  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4091    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4092  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4093    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4094  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4095    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4096
4097  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4098    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4099  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4100    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4101  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4102    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4103  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4104    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4105
4106  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4107    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4108  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4109    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4110  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4111    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4112  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4113    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4114
4115  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4116    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4117  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4118    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4119  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4120    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4121  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4122    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4123
4124  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4125    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4126  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4127    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4128  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4129    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4130  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4131    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4132
4133  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4134    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4135  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4136    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4137  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4138    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4139  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4140    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4141
4142  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4143    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4144  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4145    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4146  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4147    BB = EmitAtomicBinary(MI, BB, false, 0);
4148  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4149    BB = EmitAtomicBinary(MI, BB, true, 0);
4150
4151  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4152           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4153    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4154
4155    unsigned dest   = MI->getOperand(0).getReg();
4156    unsigned ptrA   = MI->getOperand(1).getReg();
4157    unsigned ptrB   = MI->getOperand(2).getReg();
4158    unsigned oldval = MI->getOperand(3).getReg();
4159    unsigned newval = MI->getOperand(4).getReg();
4160    DebugLoc dl     = MI->getDebugLoc();
4161
4162    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4163    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4164    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4165    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4166    F->insert(It, loop1MBB);
4167    F->insert(It, loop2MBB);
4168    F->insert(It, midMBB);
4169    F->insert(It, exitMBB);
4170    exitMBB->transferSuccessors(BB);
4171
4172    //  thisMBB:
4173    //   ...
4174    //   fallthrough --> loopMBB
4175    BB->addSuccessor(loop1MBB);
4176
4177    // loop1MBB:
4178    //   l[wd]arx dest, ptr
4179    //   cmp[wd] dest, oldval
4180    //   bne- midMBB
4181    // loop2MBB:
4182    //   st[wd]cx. newval, ptr
4183    //   bne- loopMBB
4184    //   b exitBB
4185    // midMBB:
4186    //   st[wd]cx. dest, ptr
4187    // exitBB:
4188    BB = loop1MBB;
4189    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4190      .addReg(ptrA).addReg(ptrB);
4191    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4192      .addReg(oldval).addReg(dest);
4193    BuildMI(BB, dl, TII->get(PPC::BCC))
4194      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4195    BB->addSuccessor(loop2MBB);
4196    BB->addSuccessor(midMBB);
4197
4198    BB = loop2MBB;
4199    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4200      .addReg(newval).addReg(ptrA).addReg(ptrB);
4201    BuildMI(BB, dl, TII->get(PPC::BCC))
4202      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4203    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4204    BB->addSuccessor(loop1MBB);
4205    BB->addSuccessor(exitMBB);
4206
4207    BB = midMBB;
4208    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4209      .addReg(dest).addReg(ptrA).addReg(ptrB);
4210    BB->addSuccessor(exitMBB);
4211
4212    //  exitMBB:
4213    //   ...
4214    BB = exitMBB;
4215  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4216             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4217    // We must use 64-bit registers for addresses when targeting 64-bit,
4218    // since we're actually doing arithmetic on them.  Other registers
4219    // can be 32-bit.
4220    bool is64bit = PPCSubTarget.isPPC64();
4221    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4222
4223    unsigned dest   = MI->getOperand(0).getReg();
4224    unsigned ptrA   = MI->getOperand(1).getReg();
4225    unsigned ptrB   = MI->getOperand(2).getReg();
4226    unsigned oldval = MI->getOperand(3).getReg();
4227    unsigned newval = MI->getOperand(4).getReg();
4228    DebugLoc dl     = MI->getDebugLoc();
4229
4230    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4231    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4232    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4233    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4234    F->insert(It, loop1MBB);
4235    F->insert(It, loop2MBB);
4236    F->insert(It, midMBB);
4237    F->insert(It, exitMBB);
4238    exitMBB->transferSuccessors(BB);
4239
4240    MachineRegisterInfo &RegInfo = F->getRegInfo();
4241    const TargetRegisterClass *RC =
4242      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4243                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4244    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4245    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4246    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4247    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4248    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4249    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4250    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4251    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4252    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4253    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4254    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4255    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4256    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4257    unsigned Ptr1Reg;
4258    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4259    //  thisMBB:
4260    //   ...
4261    //   fallthrough --> loopMBB
4262    BB->addSuccessor(loop1MBB);
4263
4264    // The 4-byte load must be aligned, while a char or short may be
4265    // anywhere in the word.  Hence all this nasty bookkeeping code.
4266    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4267    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4268    //   xori shift, shift1, 24 [16]
4269    //   rlwinm ptr, ptr1, 0, 0, 29
4270    //   slw newval2, newval, shift
4271    //   slw oldval2, oldval,shift
4272    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4273    //   slw mask, mask2, shift
4274    //   and newval3, newval2, mask
4275    //   and oldval3, oldval2, mask
4276    // loop1MBB:
4277    //   lwarx tmpDest, ptr
4278    //   and tmp, tmpDest, mask
4279    //   cmpw tmp, oldval3
4280    //   bne- midMBB
4281    // loop2MBB:
4282    //   andc tmp2, tmpDest, mask
4283    //   or tmp4, tmp2, newval3
4284    //   stwcx. tmp4, ptr
4285    //   bne- loop1MBB
4286    //   b exitBB
4287    // midMBB:
4288    //   stwcx. tmpDest, ptr
4289    // exitBB:
4290    //   srw dest, tmpDest, shift
4291    if (ptrA!=PPC::R0) {
4292      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4293      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4294        .addReg(ptrA).addReg(ptrB);
4295    } else {
4296      Ptr1Reg = ptrB;
4297    }
4298    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4299        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4300    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4301        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4302    if (is64bit)
4303      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4304        .addReg(Ptr1Reg).addImm(0).addImm(61);
4305    else
4306      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4307        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4308    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4309        .addReg(newval).addReg(ShiftReg);
4310    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4311        .addReg(oldval).addReg(ShiftReg);
4312    if (is8bit)
4313      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4314    else {
4315      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4316      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4317        .addReg(Mask3Reg).addImm(65535);
4318    }
4319    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4320        .addReg(Mask2Reg).addReg(ShiftReg);
4321    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4322        .addReg(NewVal2Reg).addReg(MaskReg);
4323    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4324        .addReg(OldVal2Reg).addReg(MaskReg);
4325
4326    BB = loop1MBB;
4327    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4328        .addReg(PPC::R0).addReg(PtrReg);
4329    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4330        .addReg(TmpDestReg).addReg(MaskReg);
4331    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4332        .addReg(TmpReg).addReg(OldVal3Reg);
4333    BuildMI(BB, dl, TII->get(PPC::BCC))
4334        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4335    BB->addSuccessor(loop2MBB);
4336    BB->addSuccessor(midMBB);
4337
4338    BB = loop2MBB;
4339    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4340        .addReg(TmpDestReg).addReg(MaskReg);
4341    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4342        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4343    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4344        .addReg(PPC::R0).addReg(PtrReg);
4345    BuildMI(BB, dl, TII->get(PPC::BCC))
4346      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4347    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4348    BB->addSuccessor(loop1MBB);
4349    BB->addSuccessor(exitMBB);
4350
4351    BB = midMBB;
4352    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4353      .addReg(PPC::R0).addReg(PtrReg);
4354    BB->addSuccessor(exitMBB);
4355
4356    //  exitMBB:
4357    //   ...
4358    BB = exitMBB;
4359    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4360  } else {
4361    assert(0 && "Unexpected instr type to insert");
4362  }
4363
4364  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4365  return BB;
4366}
4367
4368//===----------------------------------------------------------------------===//
4369// Target Optimization Hooks
4370//===----------------------------------------------------------------------===//
4371
4372SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4373                                             DAGCombinerInfo &DCI) const {
4374  TargetMachine &TM = getTargetMachine();
4375  SelectionDAG &DAG = DCI.DAG;
4376  DebugLoc dl = N->getDebugLoc();
4377  switch (N->getOpcode()) {
4378  default: break;
4379  case PPCISD::SHL:
4380    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4381      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4382        return N->getOperand(0);
4383    }
4384    break;
4385  case PPCISD::SRL:
4386    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4387      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4388        return N->getOperand(0);
4389    }
4390    break;
4391  case PPCISD::SRA:
4392    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4393      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4394          C->isAllOnesValue())    // -1 >>s V -> -1.
4395        return N->getOperand(0);
4396    }
4397    break;
4398
4399  case ISD::SINT_TO_FP:
4400    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4401      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4402        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4403        // We allow the src/dst to be either f32/f64, but the intermediate
4404        // type must be i64.
4405        if (N->getOperand(0).getValueType() == MVT::i64 &&
4406            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4407          SDValue Val = N->getOperand(0).getOperand(0);
4408          if (Val.getValueType() == MVT::f32) {
4409            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4410            DCI.AddToWorklist(Val.getNode());
4411          }
4412
4413          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4414          DCI.AddToWorklist(Val.getNode());
4415          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4416          DCI.AddToWorklist(Val.getNode());
4417          if (N->getValueType(0) == MVT::f32) {
4418            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4419                              DAG.getIntPtrConstant(0));
4420            DCI.AddToWorklist(Val.getNode());
4421          }
4422          return Val;
4423        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4424          // If the intermediate type is i32, we can avoid the load/store here
4425          // too.
4426        }
4427      }
4428    }
4429    break;
4430  case ISD::STORE:
4431    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4432    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4433        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4434        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4435        N->getOperand(1).getValueType() == MVT::i32 &&
4436        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4437      SDValue Val = N->getOperand(1).getOperand(0);
4438      if (Val.getValueType() == MVT::f32) {
4439        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4440        DCI.AddToWorklist(Val.getNode());
4441      }
4442      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4443      DCI.AddToWorklist(Val.getNode());
4444
4445      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4446                        N->getOperand(2), N->getOperand(3));
4447      DCI.AddToWorklist(Val.getNode());
4448      return Val;
4449    }
4450
4451    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4452    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4453        N->getOperand(1).getNode()->hasOneUse() &&
4454        (N->getOperand(1).getValueType() == MVT::i32 ||
4455         N->getOperand(1).getValueType() == MVT::i16)) {
4456      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4457      // Do an any-extend to 32-bits if this is a half-word input.
4458      if (BSwapOp.getValueType() == MVT::i16)
4459        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4460
4461      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4462                         BSwapOp, N->getOperand(2), N->getOperand(3),
4463                         DAG.getValueType(N->getOperand(1).getValueType()));
4464    }
4465    break;
4466  case ISD::BSWAP:
4467    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4468    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4469        N->getOperand(0).hasOneUse() &&
4470        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4471      SDValue Load = N->getOperand(0);
4472      LoadSDNode *LD = cast<LoadSDNode>(Load);
4473      // Create the byte-swapping load.
4474      std::vector<MVT> VTs;
4475      VTs.push_back(MVT::i32);
4476      VTs.push_back(MVT::Other);
4477      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4478      SDValue Ops[] = {
4479        LD->getChain(),    // Chain
4480        LD->getBasePtr(),  // Ptr
4481        MO,                // MemOperand
4482        DAG.getValueType(N->getValueType(0)) // VT
4483      };
4484      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4485
4486      // If this is an i16 load, insert the truncate.
4487      SDValue ResVal = BSLoad;
4488      if (N->getValueType(0) == MVT::i16)
4489        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4490
4491      // First, combine the bswap away.  This makes the value produced by the
4492      // load dead.
4493      DCI.CombineTo(N, ResVal);
4494
4495      // Next, combine the load away, we give it a bogus result value but a real
4496      // chain result.  The result value is dead because the bswap is dead.
4497      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4498
4499      // Return N so it doesn't get rechecked!
4500      return SDValue(N, 0);
4501    }
4502
4503    break;
4504  case PPCISD::VCMP: {
4505    // If a VCMPo node already exists with exactly the same operands as this
4506    // node, use its result instead of this node (VCMPo computes both a CR6 and
4507    // a normal output).
4508    //
4509    if (!N->getOperand(0).hasOneUse() &&
4510        !N->getOperand(1).hasOneUse() &&
4511        !N->getOperand(2).hasOneUse()) {
4512
4513      // Scan all of the users of the LHS, looking for VCMPo's that match.
4514      SDNode *VCMPoNode = 0;
4515
4516      SDNode *LHSN = N->getOperand(0).getNode();
4517      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4518           UI != E; ++UI)
4519        if (UI->getOpcode() == PPCISD::VCMPo &&
4520            UI->getOperand(1) == N->getOperand(1) &&
4521            UI->getOperand(2) == N->getOperand(2) &&
4522            UI->getOperand(0) == N->getOperand(0)) {
4523          VCMPoNode = *UI;
4524          break;
4525        }
4526
4527      // If there is no VCMPo node, or if the flag value has a single use, don't
4528      // transform this.
4529      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4530        break;
4531
4532      // Look at the (necessarily single) use of the flag value.  If it has a
4533      // chain, this transformation is more complex.  Note that multiple things
4534      // could use the value result, which we should ignore.
4535      SDNode *FlagUser = 0;
4536      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4537           FlagUser == 0; ++UI) {
4538        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4539        SDNode *User = *UI;
4540        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4541          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4542            FlagUser = User;
4543            break;
4544          }
4545        }
4546      }
4547
4548      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4549      // give up for right now.
4550      if (FlagUser->getOpcode() == PPCISD::MFCR)
4551        return SDValue(VCMPoNode, 0);
4552    }
4553    break;
4554  }
4555  case ISD::BR_CC: {
4556    // If this is a branch on an altivec predicate comparison, lower this so
4557    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4558    // lowering is done pre-legalize, because the legalizer lowers the predicate
4559    // compare down to code that is difficult to reassemble.
4560    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4561    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4562    int CompareOpc;
4563    bool isDot;
4564
4565    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4566        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4567        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4568      assert(isDot && "Can't compare against a vector result!");
4569
4570      // If this is a comparison against something other than 0/1, then we know
4571      // that the condition is never/always true.
4572      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4573      if (Val != 0 && Val != 1) {
4574        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4575          return N->getOperand(0);
4576        // Always !=, turn it into an unconditional branch.
4577        return DAG.getNode(ISD::BR, dl, MVT::Other,
4578                           N->getOperand(0), N->getOperand(4));
4579      }
4580
4581      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4582
4583      // Create the PPCISD altivec 'dot' comparison node.
4584      std::vector<MVT> VTs;
4585      SDValue Ops[] = {
4586        LHS.getOperand(2),  // LHS of compare
4587        LHS.getOperand(3),  // RHS of compare
4588        DAG.getConstant(CompareOpc, MVT::i32)
4589      };
4590      VTs.push_back(LHS.getOperand(2).getValueType());
4591      VTs.push_back(MVT::Flag);
4592      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4593
4594      // Unpack the result based on how the target uses it.
4595      PPC::Predicate CompOpc;
4596      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4597      default:  // Can't happen, don't crash on invalid number though.
4598      case 0:   // Branch on the value of the EQ bit of CR6.
4599        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4600        break;
4601      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4602        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4603        break;
4604      case 2:   // Branch on the value of the LT bit of CR6.
4605        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4606        break;
4607      case 3:   // Branch on the inverted value of the LT bit of CR6.
4608        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4609        break;
4610      }
4611
4612      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
4613                         DAG.getConstant(CompOpc, MVT::i32),
4614                         DAG.getRegister(PPC::CR6, MVT::i32),
4615                         N->getOperand(4), CompNode.getValue(1));
4616    }
4617    break;
4618  }
4619  }
4620
4621  return SDValue();
4622}
4623
4624//===----------------------------------------------------------------------===//
4625// Inline Assembly Support
4626//===----------------------------------------------------------------------===//
4627
4628void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4629                                                       const APInt &Mask,
4630                                                       APInt &KnownZero,
4631                                                       APInt &KnownOne,
4632                                                       const SelectionDAG &DAG,
4633                                                       unsigned Depth) const {
4634  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4635  switch (Op.getOpcode()) {
4636  default: break;
4637  case PPCISD::LBRX: {
4638    // lhbrx is known to have the top bits cleared out.
4639    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4640      KnownZero = 0xFFFF0000;
4641    break;
4642  }
4643  case ISD::INTRINSIC_WO_CHAIN: {
4644    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4645    default: break;
4646    case Intrinsic::ppc_altivec_vcmpbfp_p:
4647    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4648    case Intrinsic::ppc_altivec_vcmpequb_p:
4649    case Intrinsic::ppc_altivec_vcmpequh_p:
4650    case Intrinsic::ppc_altivec_vcmpequw_p:
4651    case Intrinsic::ppc_altivec_vcmpgefp_p:
4652    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4653    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4654    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4655    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4656    case Intrinsic::ppc_altivec_vcmpgtub_p:
4657    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4658    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4659      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4660      break;
4661    }
4662  }
4663  }
4664}
4665
4666
4667/// getConstraintType - Given a constraint, return the type of
4668/// constraint it is for this target.
4669PPCTargetLowering::ConstraintType
4670PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4671  if (Constraint.size() == 1) {
4672    switch (Constraint[0]) {
4673    default: break;
4674    case 'b':
4675    case 'r':
4676    case 'f':
4677    case 'v':
4678    case 'y':
4679      return C_RegisterClass;
4680    }
4681  }
4682  return TargetLowering::getConstraintType(Constraint);
4683}
4684
4685std::pair<unsigned, const TargetRegisterClass*>
4686PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4687                                                MVT VT) const {
4688  if (Constraint.size() == 1) {
4689    // GCC RS6000 Constraint Letters
4690    switch (Constraint[0]) {
4691    case 'b':   // R1-R31
4692    case 'r':   // R0-R31
4693      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4694        return std::make_pair(0U, PPC::G8RCRegisterClass);
4695      return std::make_pair(0U, PPC::GPRCRegisterClass);
4696    case 'f':
4697      if (VT == MVT::f32)
4698        return std::make_pair(0U, PPC::F4RCRegisterClass);
4699      else if (VT == MVT::f64)
4700        return std::make_pair(0U, PPC::F8RCRegisterClass);
4701      break;
4702    case 'v':
4703      return std::make_pair(0U, PPC::VRRCRegisterClass);
4704    case 'y':   // crrc
4705      return std::make_pair(0U, PPC::CRRCRegisterClass);
4706    }
4707  }
4708
4709  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4710}
4711
4712
4713/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4714/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
4715/// it means one of the asm constraint of the inline asm instruction being
4716/// processed is 'm'.
4717void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4718                                                     bool hasMemory,
4719                                                     std::vector<SDValue>&Ops,
4720                                                     SelectionDAG &DAG) const {
4721  SDValue Result(0,0);
4722  switch (Letter) {
4723  default: break;
4724  case 'I':
4725  case 'J':
4726  case 'K':
4727  case 'L':
4728  case 'M':
4729  case 'N':
4730  case 'O':
4731  case 'P': {
4732    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4733    if (!CST) return; // Must be an immediate to match.
4734    unsigned Value = CST->getZExtValue();
4735    switch (Letter) {
4736    default: assert(0 && "Unknown constraint letter!");
4737    case 'I':  // "I" is a signed 16-bit constant.
4738      if ((short)Value == (int)Value)
4739        Result = DAG.getTargetConstant(Value, Op.getValueType());
4740      break;
4741    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4742    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4743      if ((short)Value == 0)
4744        Result = DAG.getTargetConstant(Value, Op.getValueType());
4745      break;
4746    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4747      if ((Value >> 16) == 0)
4748        Result = DAG.getTargetConstant(Value, Op.getValueType());
4749      break;
4750    case 'M':  // "M" is a constant that is greater than 31.
4751      if (Value > 31)
4752        Result = DAG.getTargetConstant(Value, Op.getValueType());
4753      break;
4754    case 'N':  // "N" is a positive constant that is an exact power of two.
4755      if ((int)Value > 0 && isPowerOf2_32(Value))
4756        Result = DAG.getTargetConstant(Value, Op.getValueType());
4757      break;
4758    case 'O':  // "O" is the constant zero.
4759      if (Value == 0)
4760        Result = DAG.getTargetConstant(Value, Op.getValueType());
4761      break;
4762    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4763      if ((short)-Value == (int)-Value)
4764        Result = DAG.getTargetConstant(Value, Op.getValueType());
4765      break;
4766    }
4767    break;
4768  }
4769  }
4770
4771  if (Result.getNode()) {
4772    Ops.push_back(Result);
4773    return;
4774  }
4775
4776  // Handle standard constraint letters.
4777  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
4778}
4779
4780// isLegalAddressingMode - Return true if the addressing mode represented
4781// by AM is legal for this target, for a load/store of the specified type.
4782bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4783                                              const Type *Ty) const {
4784  // FIXME: PPC does not allow r+i addressing modes for vectors!
4785
4786  // PPC allows a sign-extended 16-bit immediate field.
4787  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4788    return false;
4789
4790  // No global is ever allowed as a base.
4791  if (AM.BaseGV)
4792    return false;
4793
4794  // PPC only support r+r,
4795  switch (AM.Scale) {
4796  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4797    break;
4798  case 1:
4799    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4800      return false;
4801    // Otherwise we have r+r or r+i.
4802    break;
4803  case 2:
4804    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4805      return false;
4806    // Allow 2*r as r+r.
4807    break;
4808  default:
4809    // No other scales are supported.
4810    return false;
4811  }
4812
4813  return true;
4814}
4815
4816/// isLegalAddressImmediate - Return true if the integer value can be used
4817/// as the offset of the target addressing mode for load / store of the
4818/// given type.
4819bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4820  // PPC allows a sign-extended 16-bit immediate field.
4821  return (V > -(1 << 16) && V < (1 << 16)-1);
4822}
4823
4824bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4825  return false;
4826}
4827
4828SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4829  DebugLoc dl = Op.getDebugLoc();
4830  // Depths > 0 not supported yet!
4831  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4832    return SDValue();
4833
4834  MachineFunction &MF = DAG.getMachineFunction();
4835  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4836
4837  // Just load the return address off the stack.
4838  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4839
4840  // Make sure the function really does not optimize away the store of the RA
4841  // to the stack.
4842  FuncInfo->setLRStoreRequired();
4843  return DAG.getLoad(getPointerTy(), dl,
4844                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
4845}
4846
4847SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4848  DebugLoc dl = Op.getDebugLoc();
4849  // Depths > 0 not supported yet!
4850  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4851    return SDValue();
4852
4853  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4854  bool isPPC64 = PtrVT == MVT::i64;
4855
4856  MachineFunction &MF = DAG.getMachineFunction();
4857  MachineFrameInfo *MFI = MF.getFrameInfo();
4858  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4859                  && MFI->getStackSize();
4860
4861  if (isPPC64)
4862    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
4863      MVT::i64);
4864  else
4865    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
4866      MVT::i32);
4867}
4868
4869bool
4870PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4871  // The PowerPC target isn't yet aware of offsets.
4872  return false;
4873}
4874