PPCISelLowering.cpp revision 66ffe6be0c7b50100a00cb0cc87a5d4983818572
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/CommandLine.h"
33using namespace llvm;
34
35static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
36cl::desc("enable preincrement load/store generation on PPC (experimental)"),
37                                     cl::Hidden);
38
39PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
40  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
41
42  setPow2DivIsCheap();
43
44  // Use _setjmp/_longjmp instead of setjmp/longjmp.
45  setUseUnderscoreSetJmp(true);
46  setUseUnderscoreLongJmp(true);
47
48  // Set up the register classes.
49  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
50  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
51  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
52
53  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
54  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
55  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
56
57  // PowerPC does not have truncstore for i1.
58  setStoreXAction(MVT::i1, Promote);
59
60  // PowerPC has pre-inc load and store's.
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
71
72  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
73  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
74
75  // PowerPC has no intrinsics for these particular operations
76  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
77  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
78  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
79
80  // PowerPC has no SREM/UREM instructions
81  setOperationAction(ISD::SREM, MVT::i32, Expand);
82  setOperationAction(ISD::UREM, MVT::i32, Expand);
83  setOperationAction(ISD::SREM, MVT::i64, Expand);
84  setOperationAction(ISD::UREM, MVT::i64, Expand);
85
86  // We don't support sin/cos/sqrt/fmod
87  setOperationAction(ISD::FSIN , MVT::f64, Expand);
88  setOperationAction(ISD::FCOS , MVT::f64, Expand);
89  setOperationAction(ISD::FREM , MVT::f64, Expand);
90  setOperationAction(ISD::FSIN , MVT::f32, Expand);
91  setOperationAction(ISD::FCOS , MVT::f32, Expand);
92  setOperationAction(ISD::FREM , MVT::f32, Expand);
93
94  // If we're enabling GP optimizations, use hardware square root
95  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
96    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
97    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
98  }
99
100  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
101  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
102
103  // PowerPC does not have BSWAP, CTPOP or CTTZ
104  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
105  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
106  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
107  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
108  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
109  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
110
111  // PowerPC does not have ROTR
112  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
113
114  // PowerPC does not have Select
115  setOperationAction(ISD::SELECT, MVT::i32, Expand);
116  setOperationAction(ISD::SELECT, MVT::i64, Expand);
117  setOperationAction(ISD::SELECT, MVT::f32, Expand);
118  setOperationAction(ISD::SELECT, MVT::f64, Expand);
119
120  // PowerPC wants to turn select_cc of FP into fsel when possible.
121  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
122  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
123
124  // PowerPC wants to optimize integer setcc a bit
125  setOperationAction(ISD::SETCC, MVT::i32, Custom);
126
127  // PowerPC does not have BRCOND which requires SetCC
128  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
129
130  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
131
132  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
133  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
134
135  // PowerPC does not have [U|S]INT_TO_FP
136  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
137  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
138
139  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
140  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
141  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
142  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
143
144  // We cannot sextinreg(i1).  Expand to shifts.
145  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
146
147  // Support label based line numbers.
148  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
149  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
150  if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
151    setOperationAction(ISD::LABEL, MVT::Other, Expand);
152  } else {
153    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
154    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
155    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
156    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
157  }
158
159  // We want to legalize GlobalAddress and ConstantPool nodes into the
160  // appropriate instructions to materialize the address.
161  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
162  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
163  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
164  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
165  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
166  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
167  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
168  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
169
170  // RET must be custom lowered, to meet ABI requirements
171  setOperationAction(ISD::RET               , MVT::Other, Custom);
172
173  setOperationAction(ISD::ADJUST_TRAMP, MVT::i32, Expand);
174  setOperationAction(ISD::ADJUST_TRAMP, MVT::i64, Expand);
175
176  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
177  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
178
179  // VAARG is custom lowered with ELF 32 ABI
180  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
181    setOperationAction(ISD::VAARG, MVT::Other, Custom);
182  else
183    setOperationAction(ISD::VAARG, MVT::Other, Expand);
184
185  // Use the default implementation.
186  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
187  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
188  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
189  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
190  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
191  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
192
193  // We want to custom lower some of our intrinsics.
194  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
195
196  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
197    // They also have instructions for converting between i64 and fp.
198    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
199    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
200    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
201    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
202    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
203
204    // FIXME: disable this lowered code.  This generates 64-bit register values,
205    // and we don't model the fact that the top part is clobbered by calls.  We
206    // need to flag these together so that the value isn't live across a call.
207    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
208
209    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
210    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
211  } else {
212    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
213    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
214  }
215
216  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
217    // 64 bit PowerPC implementations can support i64 types directly
218    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
219    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
220    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
221  } else {
222    // 32 bit PowerPC wants to expand i64 shifts itself.
223    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
224    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
225    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
226  }
227
228  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
229    // First set operation action for all vector types to expand. Then we
230    // will selectively turn on ones that can be effectively codegen'd.
231    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
232         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
233      // add/sub are legal for all supported vector VT's.
234      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
235      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
236
237      // We promote all shuffles to v16i8.
238      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
239      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
240
241      // We promote all non-typed operations to v4i32.
242      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
243      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
244      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
245      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
246      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
247      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
248      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
249      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
250      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
251      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
252      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
253      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
254
255      // No other operations are legal.
256      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
257      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
258      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
259      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
260      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
261      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
262      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
263      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
264      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
265      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
266
267      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
268    }
269
270    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
271    // with merges, splats, etc.
272    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
273
274    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
275    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
276    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
277    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
278    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
279    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
280
281    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
282    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
283    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
284    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
285
286    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
287    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
288    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
289    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
290
291    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
292    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
293
294    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
295    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
296    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
297    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
298  }
299
300  setSetCCResultType(MVT::i32);
301  setShiftAmountType(MVT::i32);
302  setSetCCResultContents(ZeroOrOneSetCCResult);
303
304  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
305    setStackPointerRegisterToSaveRestore(PPC::X1);
306    setExceptionPointerRegister(PPC::X3);
307    setExceptionSelectorRegister(PPC::X4);
308  } else {
309    setStackPointerRegisterToSaveRestore(PPC::R1);
310    setExceptionPointerRegister(PPC::R3);
311    setExceptionSelectorRegister(PPC::R4);
312  }
313
314  // We have target-specific dag combine patterns for the following nodes:
315  setTargetDAGCombine(ISD::SINT_TO_FP);
316  setTargetDAGCombine(ISD::STORE);
317  setTargetDAGCombine(ISD::BR_CC);
318  setTargetDAGCombine(ISD::BSWAP);
319
320  computeRegisterProperties();
321}
322
323const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
324  switch (Opcode) {
325  default: return 0;
326  case PPCISD::FSEL:          return "PPCISD::FSEL";
327  case PPCISD::FCFID:         return "PPCISD::FCFID";
328  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
329  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
330  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
331  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
332  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
333  case PPCISD::VPERM:         return "PPCISD::VPERM";
334  case PPCISD::Hi:            return "PPCISD::Hi";
335  case PPCISD::Lo:            return "PPCISD::Lo";
336  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
337  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
338  case PPCISD::SRL:           return "PPCISD::SRL";
339  case PPCISD::SRA:           return "PPCISD::SRA";
340  case PPCISD::SHL:           return "PPCISD::SHL";
341  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
342  case PPCISD::STD_32:        return "PPCISD::STD_32";
343  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
344  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
345  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
346  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
347  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
348  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
349  case PPCISD::MFCR:          return "PPCISD::MFCR";
350  case PPCISD::VCMP:          return "PPCISD::VCMP";
351  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
352  case PPCISD::LBRX:          return "PPCISD::LBRX";
353  case PPCISD::STBRX:         return "PPCISD::STBRX";
354  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
355  }
356}
357
358//===----------------------------------------------------------------------===//
359// Node matching predicates, for use by the tblgen matching code.
360//===----------------------------------------------------------------------===//
361
362/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
363static bool isFloatingPointZero(SDOperand Op) {
364  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
365    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
366  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
367    // Maybe this has already been legalized into the constant pool?
368    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
369      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
370        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
371  }
372  return false;
373}
374
375/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
376/// true if Op is undef or if it matches the specified value.
377static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
378  return Op.getOpcode() == ISD::UNDEF ||
379         cast<ConstantSDNode>(Op)->getValue() == Val;
380}
381
382/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
383/// VPKUHUM instruction.
384bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
385  if (!isUnary) {
386    for (unsigned i = 0; i != 16; ++i)
387      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
388        return false;
389  } else {
390    for (unsigned i = 0; i != 8; ++i)
391      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
392          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
393        return false;
394  }
395  return true;
396}
397
398/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
399/// VPKUWUM instruction.
400bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
401  if (!isUnary) {
402    for (unsigned i = 0; i != 16; i += 2)
403      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
404          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
405        return false;
406  } else {
407    for (unsigned i = 0; i != 8; i += 2)
408      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
409          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
410          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
411          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
412        return false;
413  }
414  return true;
415}
416
417/// isVMerge - Common function, used to match vmrg* shuffles.
418///
419static bool isVMerge(SDNode *N, unsigned UnitSize,
420                     unsigned LHSStart, unsigned RHSStart) {
421  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
422         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
423  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
424         "Unsupported merge size!");
425
426  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
427    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
428      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
429                             LHSStart+j+i*UnitSize) ||
430          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
431                             RHSStart+j+i*UnitSize))
432        return false;
433    }
434      return true;
435}
436
437/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
438/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
439bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
440  if (!isUnary)
441    return isVMerge(N, UnitSize, 8, 24);
442  return isVMerge(N, UnitSize, 8, 8);
443}
444
445/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
446/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
447bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
448  if (!isUnary)
449    return isVMerge(N, UnitSize, 0, 16);
450  return isVMerge(N, UnitSize, 0, 0);
451}
452
453
454/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
455/// amount, otherwise return -1.
456int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
457  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
458         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
459  // Find the first non-undef value in the shuffle mask.
460  unsigned i;
461  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
462    /*search*/;
463
464  if (i == 16) return -1;  // all undef.
465
466  // Otherwise, check to see if the rest of the elements are consequtively
467  // numbered from this value.
468  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
469  if (ShiftAmt < i) return -1;
470  ShiftAmt -= i;
471
472  if (!isUnary) {
473    // Check the rest of the elements to see if they are consequtive.
474    for (++i; i != 16; ++i)
475      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
476        return -1;
477  } else {
478    // Check the rest of the elements to see if they are consequtive.
479    for (++i; i != 16; ++i)
480      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
481        return -1;
482  }
483
484  return ShiftAmt;
485}
486
487/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
488/// specifies a splat of a single element that is suitable for input to
489/// VSPLTB/VSPLTH/VSPLTW.
490bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
491  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
492         N->getNumOperands() == 16 &&
493         (EltSize == 1 || EltSize == 2 || EltSize == 4));
494
495  // This is a splat operation if each element of the permute is the same, and
496  // if the value doesn't reference the second vector.
497  unsigned ElementBase = 0;
498  SDOperand Elt = N->getOperand(0);
499  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
500    ElementBase = EltV->getValue();
501  else
502    return false;   // FIXME: Handle UNDEF elements too!
503
504  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
505    return false;
506
507  // Check that they are consequtive.
508  for (unsigned i = 1; i != EltSize; ++i) {
509    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
510        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
511      return false;
512  }
513
514  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
515  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
516    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
517    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
518           "Invalid VECTOR_SHUFFLE mask!");
519    for (unsigned j = 0; j != EltSize; ++j)
520      if (N->getOperand(i+j) != N->getOperand(j))
521        return false;
522  }
523
524  return true;
525}
526
527/// isAllNegativeZeroVector - Returns true if all elements of build_vector
528/// are -0.0.
529bool PPC::isAllNegativeZeroVector(SDNode *N) {
530  assert(N->getOpcode() == ISD::BUILD_VECTOR);
531  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
532    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
533      return CFP->isExactlyValue(-0.0);
534  return false;
535}
536
537/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
538/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
539unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
540  assert(isSplatShuffleMask(N, EltSize));
541  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
542}
543
544/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
545/// by using a vspltis[bhw] instruction of the specified element size, return
546/// the constant being splatted.  The ByteSize field indicates the number of
547/// bytes of each element [124] -> [bhw].
548SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
549  SDOperand OpVal(0, 0);
550
551  // If ByteSize of the splat is bigger than the element size of the
552  // build_vector, then we have a case where we are checking for a splat where
553  // multiple elements of the buildvector are folded together into a single
554  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
555  unsigned EltSize = 16/N->getNumOperands();
556  if (EltSize < ByteSize) {
557    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
558    SDOperand UniquedVals[4];
559    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
560
561    // See if all of the elements in the buildvector agree across.
562    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
563      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
564      // If the element isn't a constant, bail fully out.
565      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
566
567
568      if (UniquedVals[i&(Multiple-1)].Val == 0)
569        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
570      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
571        return SDOperand();  // no match.
572    }
573
574    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
575    // either constant or undef values that are identical for each chunk.  See
576    // if these chunks can form into a larger vspltis*.
577
578    // Check to see if all of the leading entries are either 0 or -1.  If
579    // neither, then this won't fit into the immediate field.
580    bool LeadingZero = true;
581    bool LeadingOnes = true;
582    for (unsigned i = 0; i != Multiple-1; ++i) {
583      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
584
585      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
586      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
587    }
588    // Finally, check the least significant entry.
589    if (LeadingZero) {
590      if (UniquedVals[Multiple-1].Val == 0)
591        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
592      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
593      if (Val < 16)
594        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
595    }
596    if (LeadingOnes) {
597      if (UniquedVals[Multiple-1].Val == 0)
598        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
599      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
600      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
601        return DAG.getTargetConstant(Val, MVT::i32);
602    }
603
604    return SDOperand();
605  }
606
607  // Check to see if this buildvec has a single non-undef value in its elements.
608  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
609    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
610    if (OpVal.Val == 0)
611      OpVal = N->getOperand(i);
612    else if (OpVal != N->getOperand(i))
613      return SDOperand();
614  }
615
616  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
617
618  unsigned ValSizeInBytes = 0;
619  uint64_t Value = 0;
620  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
621    Value = CN->getValue();
622    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
623  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
624    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
625    Value = FloatToBits(CN->getValue());
626    ValSizeInBytes = 4;
627  }
628
629  // If the splat value is larger than the element value, then we can never do
630  // this splat.  The only case that we could fit the replicated bits into our
631  // immediate field for would be zero, and we prefer to use vxor for it.
632  if (ValSizeInBytes < ByteSize) return SDOperand();
633
634  // If the element value is larger than the splat value, cut it in half and
635  // check to see if the two halves are equal.  Continue doing this until we
636  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
637  while (ValSizeInBytes > ByteSize) {
638    ValSizeInBytes >>= 1;
639
640    // If the top half equals the bottom half, we're still ok.
641    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
642         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
643      return SDOperand();
644  }
645
646  // Properly sign extend the value.
647  int ShAmt = (4-ByteSize)*8;
648  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
649
650  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
651  if (MaskVal == 0) return SDOperand();
652
653  // Finally, if this value fits in a 5 bit sext field, return it
654  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
655    return DAG.getTargetConstant(MaskVal, MVT::i32);
656  return SDOperand();
657}
658
659//===----------------------------------------------------------------------===//
660//  Addressing Mode Selection
661//===----------------------------------------------------------------------===//
662
663/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
664/// or 64-bit immediate, and if the value can be accurately represented as a
665/// sign extension from a 16-bit value.  If so, this returns true and the
666/// immediate.
667static bool isIntS16Immediate(SDNode *N, short &Imm) {
668  if (N->getOpcode() != ISD::Constant)
669    return false;
670
671  Imm = (short)cast<ConstantSDNode>(N)->getValue();
672  if (N->getValueType(0) == MVT::i32)
673    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
674  else
675    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
676}
677static bool isIntS16Immediate(SDOperand Op, short &Imm) {
678  return isIntS16Immediate(Op.Val, Imm);
679}
680
681
682/// SelectAddressRegReg - Given the specified addressed, check to see if it
683/// can be represented as an indexed [r+r] operation.  Returns false if it
684/// can be more efficiently represented with [r+imm].
685bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
686                                            SDOperand &Index,
687                                            SelectionDAG &DAG) {
688  short imm = 0;
689  if (N.getOpcode() == ISD::ADD) {
690    if (isIntS16Immediate(N.getOperand(1), imm))
691      return false;    // r+i
692    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
693      return false;    // r+i
694
695    Base = N.getOperand(0);
696    Index = N.getOperand(1);
697    return true;
698  } else if (N.getOpcode() == ISD::OR) {
699    if (isIntS16Immediate(N.getOperand(1), imm))
700      return false;    // r+i can fold it if we can.
701
702    // If this is an or of disjoint bitfields, we can codegen this as an add
703    // (for better address arithmetic) if the LHS and RHS of the OR are provably
704    // disjoint.
705    uint64_t LHSKnownZero, LHSKnownOne;
706    uint64_t RHSKnownZero, RHSKnownOne;
707    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
708
709    if (LHSKnownZero) {
710      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
711      // If all of the bits are known zero on the LHS or RHS, the add won't
712      // carry.
713      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
714        Base = N.getOperand(0);
715        Index = N.getOperand(1);
716        return true;
717      }
718    }
719  }
720
721  return false;
722}
723
724/// Returns true if the address N can be represented by a base register plus
725/// a signed 16-bit displacement [r+imm], and if it is not better
726/// represented as reg+reg.
727bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
728                                            SDOperand &Base, SelectionDAG &DAG){
729  // If this can be more profitably realized as r+r, fail.
730  if (SelectAddressRegReg(N, Disp, Base, DAG))
731    return false;
732
733  if (N.getOpcode() == ISD::ADD) {
734    short imm = 0;
735    if (isIntS16Immediate(N.getOperand(1), imm)) {
736      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
737      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
738        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
739      } else {
740        Base = N.getOperand(0);
741      }
742      return true; // [r+i]
743    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
744      // Match LOAD (ADD (X, Lo(G))).
745      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
746             && "Cannot handle constant offsets yet!");
747      Disp = N.getOperand(1).getOperand(0);  // The global address.
748      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
749             Disp.getOpcode() == ISD::TargetConstantPool ||
750             Disp.getOpcode() == ISD::TargetJumpTable);
751      Base = N.getOperand(0);
752      return true;  // [&g+r]
753    }
754  } else if (N.getOpcode() == ISD::OR) {
755    short imm = 0;
756    if (isIntS16Immediate(N.getOperand(1), imm)) {
757      // If this is an or of disjoint bitfields, we can codegen this as an add
758      // (for better address arithmetic) if the LHS and RHS of the OR are
759      // provably disjoint.
760      uint64_t LHSKnownZero, LHSKnownOne;
761      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
762      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
763        // If all of the bits are known zero on the LHS or RHS, the add won't
764        // carry.
765        Base = N.getOperand(0);
766        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
767        return true;
768      }
769    }
770  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
771    // Loading from a constant address.
772
773    // If this address fits entirely in a 16-bit sext immediate field, codegen
774    // this as "d, 0"
775    short Imm;
776    if (isIntS16Immediate(CN, Imm)) {
777      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
778      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
779      return true;
780    }
781
782    // Handle 32-bit sext immediates with LIS + addr mode.
783    if (CN->getValueType(0) == MVT::i32 ||
784        (int64_t)CN->getValue() == (int)CN->getValue()) {
785      int Addr = (int)CN->getValue();
786
787      // Otherwise, break this down into an LIS + disp.
788      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
789
790      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
791      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
792      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
793      return true;
794    }
795  }
796
797  Disp = DAG.getTargetConstant(0, getPointerTy());
798  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
799    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
800  else
801    Base = N;
802  return true;      // [r+0]
803}
804
805/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
806/// represented as an indexed [r+r] operation.
807bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
808                                                SDOperand &Index,
809                                                SelectionDAG &DAG) {
810  // Check to see if we can easily represent this as an [r+r] address.  This
811  // will fail if it thinks that the address is more profitably represented as
812  // reg+imm, e.g. where imm = 0.
813  if (SelectAddressRegReg(N, Base, Index, DAG))
814    return true;
815
816  // If the operand is an addition, always emit this as [r+r], since this is
817  // better (for code size, and execution, as the memop does the add for free)
818  // than emitting an explicit add.
819  if (N.getOpcode() == ISD::ADD) {
820    Base = N.getOperand(0);
821    Index = N.getOperand(1);
822    return true;
823  }
824
825  // Otherwise, do it the hard way, using R0 as the base register.
826  Base = DAG.getRegister(PPC::R0, N.getValueType());
827  Index = N;
828  return true;
829}
830
831/// SelectAddressRegImmShift - Returns true if the address N can be
832/// represented by a base register plus a signed 14-bit displacement
833/// [r+imm*4].  Suitable for use by STD and friends.
834bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
835                                                 SDOperand &Base,
836                                                 SelectionDAG &DAG) {
837  // If this can be more profitably realized as r+r, fail.
838  if (SelectAddressRegReg(N, Disp, Base, DAG))
839    return false;
840
841  if (N.getOpcode() == ISD::ADD) {
842    short imm = 0;
843    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
844      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
845      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
846        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
847      } else {
848        Base = N.getOperand(0);
849      }
850      return true; // [r+i]
851    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
852      // Match LOAD (ADD (X, Lo(G))).
853      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
854             && "Cannot handle constant offsets yet!");
855      Disp = N.getOperand(1).getOperand(0);  // The global address.
856      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
857             Disp.getOpcode() == ISD::TargetConstantPool ||
858             Disp.getOpcode() == ISD::TargetJumpTable);
859      Base = N.getOperand(0);
860      return true;  // [&g+r]
861    }
862  } else if (N.getOpcode() == ISD::OR) {
863    short imm = 0;
864    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
865      // If this is an or of disjoint bitfields, we can codegen this as an add
866      // (for better address arithmetic) if the LHS and RHS of the OR are
867      // provably disjoint.
868      uint64_t LHSKnownZero, LHSKnownOne;
869      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
870      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
871        // If all of the bits are known zero on the LHS or RHS, the add won't
872        // carry.
873        Base = N.getOperand(0);
874        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
875        return true;
876      }
877    }
878  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
879    // Loading from a constant address.  Verify low two bits are clear.
880    if ((CN->getValue() & 3) == 0) {
881      // If this address fits entirely in a 14-bit sext immediate field, codegen
882      // this as "d, 0"
883      short Imm;
884      if (isIntS16Immediate(CN, Imm)) {
885        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
886        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
887        return true;
888      }
889
890      // Fold the low-part of 32-bit absolute addresses into addr mode.
891      if (CN->getValueType(0) == MVT::i32 ||
892          (int64_t)CN->getValue() == (int)CN->getValue()) {
893        int Addr = (int)CN->getValue();
894
895        // Otherwise, break this down into an LIS + disp.
896        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
897
898        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
899        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
900        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
901        return true;
902      }
903    }
904  }
905
906  Disp = DAG.getTargetConstant(0, getPointerTy());
907  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
908    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
909  else
910    Base = N;
911  return true;      // [r+0]
912}
913
914
915/// getPreIndexedAddressParts - returns true by value, base pointer and
916/// offset pointer and addressing mode by reference if the node's address
917/// can be legally represented as pre-indexed load / store address.
918bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
919                                                  SDOperand &Offset,
920                                                  ISD::MemIndexedMode &AM,
921                                                  SelectionDAG &DAG) {
922  // Disabled by default for now.
923  if (!EnablePPCPreinc) return false;
924
925  SDOperand Ptr;
926  MVT::ValueType VT;
927  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
928    Ptr = LD->getBasePtr();
929    VT = LD->getLoadedVT();
930
931  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
932    ST = ST;
933    Ptr = ST->getBasePtr();
934    VT  = ST->getStoredVT();
935  } else
936    return false;
937
938  // PowerPC doesn't have preinc load/store instructions for vectors.
939  if (MVT::isVector(VT))
940    return false;
941
942  // TODO: Check reg+reg first.
943
944  // LDU/STU use reg+imm*4, others use reg+imm.
945  if (VT != MVT::i64) {
946    // reg + imm
947    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
948      return false;
949  } else {
950    // reg + imm * 4.
951    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
952      return false;
953  }
954
955  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
956    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
957    // sext i32 to i64 when addr mode is r+i.
958    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
959        LD->getExtensionType() == ISD::SEXTLOAD &&
960        isa<ConstantSDNode>(Offset))
961      return false;
962  }
963
964  AM = ISD::PRE_INC;
965  return true;
966}
967
968//===----------------------------------------------------------------------===//
969//  LowerOperation implementation
970//===----------------------------------------------------------------------===//
971
972static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
973  MVT::ValueType PtrVT = Op.getValueType();
974  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
975  Constant *C = CP->getConstVal();
976  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
977  SDOperand Zero = DAG.getConstant(0, PtrVT);
978
979  const TargetMachine &TM = DAG.getTarget();
980
981  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
982  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
983
984  // If this is a non-darwin platform, we don't support non-static relo models
985  // yet.
986  if (TM.getRelocationModel() == Reloc::Static ||
987      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
988    // Generate non-pic code that has direct accesses to the constant pool.
989    // The address of the global is just (hi(&g)+lo(&g)).
990    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
991  }
992
993  if (TM.getRelocationModel() == Reloc::PIC_) {
994    // With PIC, the first instruction is actually "GR+hi(&G)".
995    Hi = DAG.getNode(ISD::ADD, PtrVT,
996                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
997  }
998
999  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1000  return Lo;
1001}
1002
1003static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1004  MVT::ValueType PtrVT = Op.getValueType();
1005  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1006  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1007  SDOperand Zero = DAG.getConstant(0, PtrVT);
1008
1009  const TargetMachine &TM = DAG.getTarget();
1010
1011  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1012  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1013
1014  // If this is a non-darwin platform, we don't support non-static relo models
1015  // yet.
1016  if (TM.getRelocationModel() == Reloc::Static ||
1017      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1018    // Generate non-pic code that has direct accesses to the constant pool.
1019    // The address of the global is just (hi(&g)+lo(&g)).
1020    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1021  }
1022
1023  if (TM.getRelocationModel() == Reloc::PIC_) {
1024    // With PIC, the first instruction is actually "GR+hi(&G)".
1025    Hi = DAG.getNode(ISD::ADD, PtrVT,
1026                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1027  }
1028
1029  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1030  return Lo;
1031}
1032
1033static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1034  assert(0 && "TLS not implemented for PPC.");
1035}
1036
1037static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1038  MVT::ValueType PtrVT = Op.getValueType();
1039  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1040  GlobalValue *GV = GSDN->getGlobal();
1041  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1042  SDOperand Zero = DAG.getConstant(0, PtrVT);
1043
1044  const TargetMachine &TM = DAG.getTarget();
1045
1046  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1047  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1048
1049  // If this is a non-darwin platform, we don't support non-static relo models
1050  // yet.
1051  if (TM.getRelocationModel() == Reloc::Static ||
1052      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1053    // Generate non-pic code that has direct accesses to globals.
1054    // The address of the global is just (hi(&g)+lo(&g)).
1055    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1056  }
1057
1058  if (TM.getRelocationModel() == Reloc::PIC_) {
1059    // With PIC, the first instruction is actually "GR+hi(&G)".
1060    Hi = DAG.getNode(ISD::ADD, PtrVT,
1061                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1062  }
1063
1064  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1065
1066  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1067    return Lo;
1068
1069  // If the global is weak or external, we have to go through the lazy
1070  // resolution stub.
1071  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1072}
1073
1074static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1075  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1076
1077  // If we're comparing for equality to zero, expose the fact that this is
1078  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1079  // fold the new nodes.
1080  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1081    if (C->isNullValue() && CC == ISD::SETEQ) {
1082      MVT::ValueType VT = Op.getOperand(0).getValueType();
1083      SDOperand Zext = Op.getOperand(0);
1084      if (VT < MVT::i32) {
1085        VT = MVT::i32;
1086        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1087      }
1088      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1089      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1090      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1091                                  DAG.getConstant(Log2b, MVT::i32));
1092      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1093    }
1094    // Leave comparisons against 0 and -1 alone for now, since they're usually
1095    // optimized.  FIXME: revisit this when we can custom lower all setcc
1096    // optimizations.
1097    if (C->isAllOnesValue() || C->isNullValue())
1098      return SDOperand();
1099  }
1100
1101  // If we have an integer seteq/setne, turn it into a compare against zero
1102  // by xor'ing the rhs with the lhs, which is faster than setting a
1103  // condition register, reading it back out, and masking the correct bit.  The
1104  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1105  // the result to other bit-twiddling opportunities.
1106  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1107  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1108    MVT::ValueType VT = Op.getValueType();
1109    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1110                                Op.getOperand(1));
1111    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1112  }
1113  return SDOperand();
1114}
1115
1116static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1117                              int VarArgsFrameIndex,
1118                              int VarArgsStackOffset,
1119                              unsigned VarArgsNumGPR,
1120                              unsigned VarArgsNumFPR,
1121                              const PPCSubtarget &Subtarget) {
1122
1123  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1124}
1125
1126static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1127                              int VarArgsFrameIndex,
1128                              int VarArgsStackOffset,
1129                              unsigned VarArgsNumGPR,
1130                              unsigned VarArgsNumFPR,
1131                              const PPCSubtarget &Subtarget) {
1132
1133  if (Subtarget.isMachoABI()) {
1134    // vastart just stores the address of the VarArgsFrameIndex slot into the
1135    // memory location argument.
1136    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1137    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1138    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1139    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1140                        SV->getOffset());
1141  }
1142
1143  // For ELF 32 ABI we follow the layout of the va_list struct.
1144  // We suppose the given va_list is already allocated.
1145  //
1146  // typedef struct {
1147  //  char gpr;     /* index into the array of 8 GPRs
1148  //                 * stored in the register save area
1149  //                 * gpr=0 corresponds to r3,
1150  //                 * gpr=1 to r4, etc.
1151  //                 */
1152  //  char fpr;     /* index into the array of 8 FPRs
1153  //                 * stored in the register save area
1154  //                 * fpr=0 corresponds to f1,
1155  //                 * fpr=1 to f2, etc.
1156  //                 */
1157  //  char *overflow_arg_area;
1158  //                /* location on stack that holds
1159  //                 * the next overflow argument
1160  //                 */
1161  //  char *reg_save_area;
1162  //               /* where r3:r10 and f1:f8 (if saved)
1163  //                * are stored
1164  //                */
1165  // } va_list[1];
1166
1167
1168  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1169  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1170
1171
1172  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1173
1174  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1175  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1176
1177  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1178                                               PtrVT);
1179  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1180                                               PtrVT);
1181  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1182
1183  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1184
1185  // Store first byte : number of int regs
1186  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1187                                      Op.getOperand(1), SV->getValue(),
1188                                      SV->getOffset());
1189  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1190                                  ConstFPROffset);
1191
1192  // Store second byte : number of float regs
1193  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1194                                       SV->getValue(), SV->getOffset());
1195  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1196
1197  // Store second word : arguments given on stack
1198  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1199                                      SV->getValue(), SV->getOffset());
1200  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1201
1202  // Store third word : arguments given in registers
1203  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1204                      SV->getOffset());
1205
1206}
1207
1208#include "PPCGenCallingConv.inc"
1209
1210/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1211/// depending on which subtarget is selected.
1212static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1213  if (Subtarget.isMachoABI()) {
1214    static const unsigned FPR[] = {
1215      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1216      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1217    };
1218    return FPR;
1219  }
1220
1221
1222  static const unsigned FPR[] = {
1223    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1224    PPC::F8
1225  };
1226  return FPR;
1227}
1228
1229static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1230                                       int &VarArgsFrameIndex,
1231                                       int &VarArgsStackOffset,
1232                                       unsigned &VarArgsNumGPR,
1233                                       unsigned &VarArgsNumFPR,
1234                                       const PPCSubtarget &Subtarget) {
1235  // TODO: add description of PPC stack frame format, or at least some docs.
1236  //
1237  MachineFunction &MF = DAG.getMachineFunction();
1238  MachineFrameInfo *MFI = MF.getFrameInfo();
1239  SSARegMap *RegMap = MF.getSSARegMap();
1240  SmallVector<SDOperand, 8> ArgValues;
1241  SDOperand Root = Op.getOperand(0);
1242
1243  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1244  bool isPPC64 = PtrVT == MVT::i64;
1245  bool isMachoABI = Subtarget.isMachoABI();
1246  bool isELF32_ABI = Subtarget.isELF32_ABI();
1247  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1248
1249  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1250
1251  static const unsigned GPR_32[] = {           // 32-bit registers.
1252    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1253    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1254  };
1255  static const unsigned GPR_64[] = {           // 64-bit registers.
1256    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1257    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1258  };
1259
1260  static const unsigned *FPR = GetFPR(Subtarget);
1261
1262  static const unsigned VR[] = {
1263    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1264    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1265  };
1266
1267  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1268  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1269  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1270
1271  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1272
1273  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1274
1275  // Add DAG nodes to load the arguments or copy them out of registers.  On
1276  // entry to a function on PPC, the arguments start after the linkage area,
1277  // although the first ones are often in registers.
1278  //
1279  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1280  // represented with two words (long long or double) must be copied to an
1281  // even GPR_idx value or to an even ArgOffset value.
1282
1283  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1284    SDOperand ArgVal;
1285    bool needsLoad = false;
1286    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1287    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1288    unsigned ArgSize = ObjSize;
1289    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1290    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1291    // See if next argument requires stack alignment in ELF
1292    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1293      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1294      (!(Flags & AlignFlag)));
1295
1296    unsigned CurArgOffset = ArgOffset;
1297    switch (ObjectVT) {
1298    default: assert(0 && "Unhandled argument type!");
1299    case MVT::i32:
1300      // Double word align in ELF
1301      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1302      if (GPR_idx != Num_GPR_Regs) {
1303        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1304        MF.addLiveIn(GPR[GPR_idx], VReg);
1305        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1306        ++GPR_idx;
1307      } else {
1308        needsLoad = true;
1309        ArgSize = PtrByteSize;
1310      }
1311      // Stack align in ELF
1312      if (needsLoad && Expand && isELF32_ABI)
1313        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1314      // All int arguments reserve stack space in Macho ABI.
1315      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1316      break;
1317
1318    case MVT::i64:  // PPC64
1319      if (GPR_idx != Num_GPR_Regs) {
1320        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1321        MF.addLiveIn(GPR[GPR_idx], VReg);
1322        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1323        ++GPR_idx;
1324      } else {
1325        needsLoad = true;
1326      }
1327      // All int arguments reserve stack space in Macho ABI.
1328      if (isMachoABI || needsLoad) ArgOffset += 8;
1329      break;
1330
1331    case MVT::f32:
1332    case MVT::f64:
1333      // Every 4 bytes of argument space consumes one of the GPRs available for
1334      // argument passing.
1335      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1336        ++GPR_idx;
1337        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1338          ++GPR_idx;
1339      }
1340      if (FPR_idx != Num_FPR_Regs) {
1341        unsigned VReg;
1342        if (ObjectVT == MVT::f32)
1343          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1344        else
1345          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1346        MF.addLiveIn(FPR[FPR_idx], VReg);
1347        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1348        ++FPR_idx;
1349      } else {
1350        needsLoad = true;
1351      }
1352
1353      // Stack align in ELF
1354      if (needsLoad && Expand && isELF32_ABI)
1355        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1356      // All FP arguments reserve stack space in Macho ABI.
1357      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1358      break;
1359    case MVT::v4f32:
1360    case MVT::v4i32:
1361    case MVT::v8i16:
1362    case MVT::v16i8:
1363      // Note that vector arguments in registers don't reserve stack space.
1364      if (VR_idx != Num_VR_Regs) {
1365        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1366        MF.addLiveIn(VR[VR_idx], VReg);
1367        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1368        ++VR_idx;
1369      } else {
1370        // This should be simple, but requires getting 16-byte aligned stack
1371        // values.
1372        assert(0 && "Loading VR argument not implemented yet!");
1373        needsLoad = true;
1374      }
1375      break;
1376    }
1377
1378    // We need to load the argument to a virtual register if we determined above
1379    // that we ran out of physical registers of the appropriate type
1380    if (needsLoad) {
1381      // If the argument is actually used, emit a load from the right stack
1382      // slot.
1383      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1384        int FI = MFI->CreateFixedObject(ObjSize,
1385                                        CurArgOffset + (ArgSize - ObjSize));
1386        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1387        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1388      } else {
1389        // Don't emit a dead load.
1390        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1391      }
1392    }
1393
1394    ArgValues.push_back(ArgVal);
1395  }
1396
1397  // If the function takes variable number of arguments, make a frame index for
1398  // the start of the first vararg value... for expansion of llvm.va_start.
1399  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1400  if (isVarArg) {
1401
1402    int depth;
1403    if (isELF32_ABI) {
1404      VarArgsNumGPR = GPR_idx;
1405      VarArgsNumFPR = FPR_idx;
1406
1407      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1408      // pointer.
1409      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1410                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1411                MVT::getSizeInBits(PtrVT)/8);
1412
1413      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1414                                                  ArgOffset);
1415
1416    }
1417    else
1418      depth = ArgOffset;
1419
1420    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1421                                               depth);
1422    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1423
1424    SmallVector<SDOperand, 8> MemOps;
1425
1426    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1427    // stored to the VarArgsFrameIndex on the stack.
1428    if (isELF32_ABI) {
1429      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1430        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1431        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1432        MemOps.push_back(Store);
1433        // Increment the address by four for the next argument to store
1434        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1435        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1436      }
1437    }
1438
1439    // If this function is vararg, store any remaining integer argument regs
1440    // to their spots on the stack so that they may be loaded by deferencing the
1441    // result of va_next.
1442    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1443      unsigned VReg;
1444      if (isPPC64)
1445        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1446      else
1447        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1448
1449      MF.addLiveIn(GPR[GPR_idx], VReg);
1450      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1451      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1452      MemOps.push_back(Store);
1453      // Increment the address by four for the next argument to store
1454      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1455      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1456    }
1457
1458    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1459    // on the stack.
1460    if (isELF32_ABI) {
1461      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1462        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1463        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1464        MemOps.push_back(Store);
1465        // Increment the address by eight for the next argument to store
1466        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1467                                           PtrVT);
1468        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1469      }
1470
1471      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1472        unsigned VReg;
1473        VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1474
1475        MF.addLiveIn(FPR[FPR_idx], VReg);
1476        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1477        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1478        MemOps.push_back(Store);
1479        // Increment the address by eight for the next argument to store
1480        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1481                                           PtrVT);
1482        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1483      }
1484    }
1485
1486    if (!MemOps.empty())
1487      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1488  }
1489
1490  ArgValues.push_back(Root);
1491
1492  // Return the new list of results.
1493  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1494                                    Op.Val->value_end());
1495  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1496}
1497
1498/// isCallCompatibleAddress - Return the immediate to use if the specified
1499/// 32-bit value is representable in the immediate field of a BxA instruction.
1500static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1501  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1502  if (!C) return 0;
1503
1504  int Addr = C->getValue();
1505  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1506      (Addr << 6 >> 6) != Addr)
1507    return 0;  // Top 6 bits have to be sext of immediate.
1508
1509  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1510}
1511
1512
1513static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1514                           const PPCSubtarget &Subtarget) {
1515  SDOperand Chain  = Op.getOperand(0);
1516  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1517  SDOperand Callee = Op.getOperand(4);
1518  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1519
1520  bool isMachoABI = Subtarget.isMachoABI();
1521  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1522
1523  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1524  bool isPPC64 = PtrVT == MVT::i64;
1525  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1526
1527  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1528  // SelectExpr to use to put the arguments in the appropriate registers.
1529  std::vector<SDOperand> args_to_use;
1530
1531  // Count how many bytes are to be pushed on the stack, including the linkage
1532  // area, and parameter passing area.  We start with 24/48 bytes, which is
1533  // prereserved space for [SP][CR][LR][3 x unused].
1534  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1535
1536  // Add up all the space actually used.
1537  for (unsigned i = 0; i != NumOps; ++i) {
1538    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1539    ArgSize = std::max(ArgSize, PtrByteSize);
1540    NumBytes += ArgSize;
1541  }
1542
1543  // The prolog code of the callee may store up to 8 GPR argument registers to
1544  // the stack, allowing va_start to index over them in memory if its varargs.
1545  // Because we cannot tell if this is needed on the caller side, we have to
1546  // conservatively assume that it is needed.  As such, make sure we have at
1547  // least enough stack space for the caller to store the 8 GPRs.
1548  NumBytes = std::max(NumBytes,
1549                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1550
1551  // Adjust the stack pointer for the new arguments...
1552  // These operations are automatically eliminated by the prolog/epilog pass
1553  Chain = DAG.getCALLSEQ_START(Chain,
1554                               DAG.getConstant(NumBytes, PtrVT));
1555
1556  // Set up a copy of the stack pointer for use loading and storing any
1557  // arguments that may not fit in the registers available for argument
1558  // passing.
1559  SDOperand StackPtr;
1560  if (isPPC64)
1561    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1562  else
1563    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1564
1565  // Figure out which arguments are going to go in registers, and which in
1566  // memory.  Also, if this is a vararg function, floating point operations
1567  // must be stored to our stack, and loaded into integer regs as well, if
1568  // any integer regs are available for argument passing.
1569  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1570  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1571
1572  static const unsigned GPR_32[] = {           // 32-bit registers.
1573    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1574    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1575  };
1576  static const unsigned GPR_64[] = {           // 64-bit registers.
1577    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1578    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1579  };
1580  static const unsigned *FPR = GetFPR(Subtarget);
1581
1582  static const unsigned VR[] = {
1583    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1584    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1585  };
1586  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1587  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1588  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1589
1590  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1591
1592  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1593  SmallVector<SDOperand, 8> MemOpChains;
1594  for (unsigned i = 0; i != NumOps; ++i) {
1595    bool inMem = false;
1596    SDOperand Arg = Op.getOperand(5+2*i);
1597    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1598    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1599    // See if next argument requires stack alignment in ELF
1600    unsigned next = 5+2*(i+1)+1;
1601    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1602      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1603      (!(Flags & AlignFlag)));
1604
1605    // PtrOff will be used to store the current argument to the stack if a
1606    // register cannot be found for it.
1607    SDOperand PtrOff;
1608
1609    // Stack align in ELF 32
1610    if (isELF32_ABI && Expand)
1611      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1612                               StackPtr.getValueType());
1613    else
1614      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1615
1616    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1617
1618    // On PPC64, promote integers to 64-bit values.
1619    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1620      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1621
1622      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1623    }
1624
1625    switch (Arg.getValueType()) {
1626    default: assert(0 && "Unexpected ValueType for argument!");
1627    case MVT::i32:
1628    case MVT::i64:
1629      // Double word align in ELF
1630      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1631      if (GPR_idx != NumGPRs) {
1632        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1633      } else {
1634        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1635        inMem = true;
1636      }
1637      if (inMem || isMachoABI) {
1638        // Stack align in ELF
1639        if (isELF32_ABI && Expand)
1640          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1641
1642        ArgOffset += PtrByteSize;
1643      }
1644      break;
1645    case MVT::f32:
1646    case MVT::f64:
1647      if (isVarArg) {
1648        // Float varargs need to be promoted to double.
1649        if (Arg.getValueType() == MVT::f32)
1650          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1651      }
1652
1653      if (FPR_idx != NumFPRs) {
1654        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1655
1656        if (isVarArg) {
1657          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1658          MemOpChains.push_back(Store);
1659
1660          // Float varargs are always shadowed in available integer registers
1661          if (GPR_idx != NumGPRs) {
1662            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1663            MemOpChains.push_back(Load.getValue(1));
1664            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1665                                                                Load));
1666          }
1667          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1668            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1669            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1670            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1671            MemOpChains.push_back(Load.getValue(1));
1672            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1673                                                                Load));
1674          }
1675        } else {
1676          // If we have any FPRs remaining, we may also have GPRs remaining.
1677          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1678          // GPRs.
1679          if (isMachoABI) {
1680            if (GPR_idx != NumGPRs)
1681              ++GPR_idx;
1682            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1683                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1684              ++GPR_idx;
1685          }
1686        }
1687      } else {
1688        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1689        inMem = true;
1690      }
1691      if (inMem || isMachoABI) {
1692        // Stack align in ELF
1693        if (isELF32_ABI && Expand)
1694          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1695        if (isPPC64)
1696          ArgOffset += 8;
1697        else
1698          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1699      }
1700      break;
1701    case MVT::v4f32:
1702    case MVT::v4i32:
1703    case MVT::v8i16:
1704    case MVT::v16i8:
1705      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1706      assert(VR_idx != NumVRs &&
1707             "Don't support passing more than 12 vector args yet!");
1708      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1709      break;
1710    }
1711  }
1712  if (!MemOpChains.empty())
1713    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1714                        &MemOpChains[0], MemOpChains.size());
1715
1716  // Build a sequence of copy-to-reg nodes chained together with token chain
1717  // and flag operands which copy the outgoing args into the appropriate regs.
1718  SDOperand InFlag;
1719  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1720    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1721                             InFlag);
1722    InFlag = Chain.getValue(1);
1723  }
1724
1725  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1726  if (isVarArg && isELF32_ABI) {
1727    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1728    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1729    InFlag = Chain.getValue(1);
1730  }
1731
1732  std::vector<MVT::ValueType> NodeTys;
1733  NodeTys.push_back(MVT::Other);   // Returns a chain
1734  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1735
1736  SmallVector<SDOperand, 8> Ops;
1737  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1738
1739  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1740  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1741  // node so that legalize doesn't hack it.
1742  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1743    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1744  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1745    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1746  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1747    // If this is an absolute destination address, use the munged value.
1748    Callee = SDOperand(Dest, 0);
1749  else {
1750    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1751    // to do the call, we can't use PPCISD::CALL.
1752    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1753    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1754    InFlag = Chain.getValue(1);
1755
1756    // Copy the callee address into R12 on darwin.
1757    if (isMachoABI) {
1758      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1759      InFlag = Chain.getValue(1);
1760    }
1761
1762    NodeTys.clear();
1763    NodeTys.push_back(MVT::Other);
1764    NodeTys.push_back(MVT::Flag);
1765    Ops.push_back(Chain);
1766    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1767    Callee.Val = 0;
1768  }
1769
1770  // If this is a direct call, pass the chain and the callee.
1771  if (Callee.Val) {
1772    Ops.push_back(Chain);
1773    Ops.push_back(Callee);
1774  }
1775
1776  // Add argument registers to the end of the list so that they are known live
1777  // into the call.
1778  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1779    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1780                                  RegsToPass[i].second.getValueType()));
1781
1782  if (InFlag.Val)
1783    Ops.push_back(InFlag);
1784  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1785  InFlag = Chain.getValue(1);
1786
1787  SDOperand ResultVals[3];
1788  unsigned NumResults = 0;
1789  NodeTys.clear();
1790
1791  // If the call has results, copy the values out of the ret val registers.
1792  switch (Op.Val->getValueType(0)) {
1793  default: assert(0 && "Unexpected ret value!");
1794  case MVT::Other: break;
1795  case MVT::i32:
1796    if (Op.Val->getValueType(1) == MVT::i32) {
1797      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1798      ResultVals[0] = Chain.getValue(0);
1799      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1800                                 Chain.getValue(2)).getValue(1);
1801      ResultVals[1] = Chain.getValue(0);
1802      NumResults = 2;
1803      NodeTys.push_back(MVT::i32);
1804    } else {
1805      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1806      ResultVals[0] = Chain.getValue(0);
1807      NumResults = 1;
1808    }
1809    NodeTys.push_back(MVT::i32);
1810    break;
1811  case MVT::i64:
1812    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1813    ResultVals[0] = Chain.getValue(0);
1814    NumResults = 1;
1815    NodeTys.push_back(MVT::i64);
1816    break;
1817  case MVT::f32:
1818  case MVT::f64:
1819    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1820                               InFlag).getValue(1);
1821    ResultVals[0] = Chain.getValue(0);
1822    NumResults = 1;
1823    NodeTys.push_back(Op.Val->getValueType(0));
1824    break;
1825  case MVT::v4f32:
1826  case MVT::v4i32:
1827  case MVT::v8i16:
1828  case MVT::v16i8:
1829    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1830                                   InFlag).getValue(1);
1831    ResultVals[0] = Chain.getValue(0);
1832    NumResults = 1;
1833    NodeTys.push_back(Op.Val->getValueType(0));
1834    break;
1835  }
1836
1837  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1838                      DAG.getConstant(NumBytes, PtrVT));
1839  NodeTys.push_back(MVT::Other);
1840
1841  // If the function returns void, just return the chain.
1842  if (NumResults == 0)
1843    return Chain;
1844
1845  // Otherwise, merge everything together with a MERGE_VALUES node.
1846  ResultVals[NumResults++] = Chain;
1847  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1848                              ResultVals, NumResults);
1849  return Res.getValue(Op.ResNo);
1850}
1851
1852static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1853  SmallVector<CCValAssign, 16> RVLocs;
1854  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1855  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1856  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1857  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1858
1859  // If this is the first return lowered for this function, add the regs to the
1860  // liveout set for the function.
1861  if (DAG.getMachineFunction().liveout_empty()) {
1862    for (unsigned i = 0; i != RVLocs.size(); ++i)
1863      DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1864  }
1865
1866  SDOperand Chain = Op.getOperand(0);
1867  SDOperand Flag;
1868
1869  // Copy the result values into the output registers.
1870  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1871    CCValAssign &VA = RVLocs[i];
1872    assert(VA.isRegLoc() && "Can only return in registers!");
1873    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1874    Flag = Chain.getValue(1);
1875  }
1876
1877  if (Flag.Val)
1878    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1879  else
1880    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1881}
1882
1883static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1884                                   const PPCSubtarget &Subtarget) {
1885  // When we pop the dynamic allocation we need to restore the SP link.
1886
1887  // Get the corect type for pointers.
1888  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1889
1890  // Construct the stack pointer operand.
1891  bool IsPPC64 = Subtarget.isPPC64();
1892  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1893  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1894
1895  // Get the operands for the STACKRESTORE.
1896  SDOperand Chain = Op.getOperand(0);
1897  SDOperand SaveSP = Op.getOperand(1);
1898
1899  // Load the old link SP.
1900  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1901
1902  // Restore the stack pointer.
1903  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1904
1905  // Store the old link SP.
1906  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1907}
1908
1909static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1910                                         const PPCSubtarget &Subtarget) {
1911  MachineFunction &MF = DAG.getMachineFunction();
1912  bool IsPPC64 = Subtarget.isPPC64();
1913  bool isMachoABI = Subtarget.isMachoABI();
1914
1915  // Get current frame pointer save index.  The users of this index will be
1916  // primarily DYNALLOC instructions.
1917  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1918  int FPSI = FI->getFramePointerSaveIndex();
1919
1920  // If the frame pointer save index hasn't been defined yet.
1921  if (!FPSI) {
1922    // Find out what the fix offset of the frame pointer save area.
1923    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1924
1925    // Allocate the frame index for frame pointer save area.
1926    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1927    // Save the result.
1928    FI->setFramePointerSaveIndex(FPSI);
1929  }
1930
1931  // Get the inputs.
1932  SDOperand Chain = Op.getOperand(0);
1933  SDOperand Size  = Op.getOperand(1);
1934
1935  // Get the corect type for pointers.
1936  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1937  // Negate the size.
1938  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1939                                  DAG.getConstant(0, PtrVT), Size);
1940  // Construct a node for the frame pointer save index.
1941  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1942  // Build a DYNALLOC node.
1943  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1944  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1945  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1946}
1947
1948
1949/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1950/// possible.
1951static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1952  // Not FP? Not a fsel.
1953  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1954      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1955    return SDOperand();
1956
1957  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1958
1959  // Cannot handle SETEQ/SETNE.
1960  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1961
1962  MVT::ValueType ResVT = Op.getValueType();
1963  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1964  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1965  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1966
1967  // If the RHS of the comparison is a 0.0, we don't need to do the
1968  // subtraction at all.
1969  if (isFloatingPointZero(RHS))
1970    switch (CC) {
1971    default: break;       // SETUO etc aren't handled by fsel.
1972    case ISD::SETULT:
1973    case ISD::SETOLT:
1974    case ISD::SETLT:
1975      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1976    case ISD::SETUGE:
1977    case ISD::SETOGE:
1978    case ISD::SETGE:
1979      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1980        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1981      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1982    case ISD::SETUGT:
1983    case ISD::SETOGT:
1984    case ISD::SETGT:
1985      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1986    case ISD::SETULE:
1987    case ISD::SETOLE:
1988    case ISD::SETLE:
1989      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1990        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1991      return DAG.getNode(PPCISD::FSEL, ResVT,
1992                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1993    }
1994
1995      SDOperand Cmp;
1996  switch (CC) {
1997  default: break;       // SETUO etc aren't handled by fsel.
1998  case ISD::SETULT:
1999  case ISD::SETOLT:
2000  case ISD::SETLT:
2001    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2002    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2003      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2004      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2005  case ISD::SETUGE:
2006  case ISD::SETOGE:
2007  case ISD::SETGE:
2008    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2009    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2010      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2011      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2012  case ISD::SETUGT:
2013  case ISD::SETOGT:
2014  case ISD::SETGT:
2015    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2016    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2017      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2018      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2019  case ISD::SETULE:
2020  case ISD::SETOLE:
2021  case ISD::SETLE:
2022    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2023    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2024      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2025      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2026  }
2027  return SDOperand();
2028}
2029
2030static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2031  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2032  SDOperand Src = Op.getOperand(0);
2033  if (Src.getValueType() == MVT::f32)
2034    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2035
2036  SDOperand Tmp;
2037  switch (Op.getValueType()) {
2038  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2039  case MVT::i32:
2040    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2041    break;
2042  case MVT::i64:
2043    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2044    break;
2045  }
2046
2047  // Convert the FP value to an int value through memory.
2048  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2049  if (Op.getValueType() == MVT::i32)
2050    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2051  return Bits;
2052}
2053
2054static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2055  if (Op.getOperand(0).getValueType() == MVT::i64) {
2056    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2057    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2058    if (Op.getValueType() == MVT::f32)
2059      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2060    return FP;
2061  }
2062
2063  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2064         "Unhandled SINT_TO_FP type in custom expander!");
2065  // Since we only generate this in 64-bit mode, we can take advantage of
2066  // 64-bit registers.  In particular, sign extend the input value into the
2067  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2068  // then lfd it and fcfid it.
2069  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2070  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2071  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2072  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2073
2074  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2075                                Op.getOperand(0));
2076
2077  // STD the extended value into the stack slot.
2078  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2079                                DAG.getEntryNode(), Ext64, FIdx,
2080                                DAG.getSrcValue(NULL));
2081  // Load the value as a double.
2082  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2083
2084  // FCFID it and return it.
2085  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2086  if (Op.getValueType() == MVT::f32)
2087    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2088  return FP;
2089}
2090
2091static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2092  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2093         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2094
2095  // Expand into a bunch of logical ops.  Note that these ops
2096  // depend on the PPC behavior for oversized shift amounts.
2097  SDOperand Lo = Op.getOperand(0);
2098  SDOperand Hi = Op.getOperand(1);
2099  SDOperand Amt = Op.getOperand(2);
2100
2101  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2102                               DAG.getConstant(32, MVT::i32), Amt);
2103  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2104  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2105  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2106  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2107                               DAG.getConstant(-32U, MVT::i32));
2108  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2109  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2110  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2111  SDOperand OutOps[] = { OutLo, OutHi };
2112  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2113                     OutOps, 2);
2114}
2115
2116static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2117  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2118         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2119
2120  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2121  // depend on the PPC behavior for oversized shift amounts.
2122  SDOperand Lo = Op.getOperand(0);
2123  SDOperand Hi = Op.getOperand(1);
2124  SDOperand Amt = Op.getOperand(2);
2125
2126  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2127                               DAG.getConstant(32, MVT::i32), Amt);
2128  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2129  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2130  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2131  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2132                               DAG.getConstant(-32U, MVT::i32));
2133  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2134  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2135  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2136  SDOperand OutOps[] = { OutLo, OutHi };
2137  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2138                     OutOps, 2);
2139}
2140
2141static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2142  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2143         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2144
2145  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2146  SDOperand Lo = Op.getOperand(0);
2147  SDOperand Hi = Op.getOperand(1);
2148  SDOperand Amt = Op.getOperand(2);
2149
2150  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2151                               DAG.getConstant(32, MVT::i32), Amt);
2152  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2153  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2154  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2155  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2156                               DAG.getConstant(-32U, MVT::i32));
2157  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2158  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2159  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2160                                    Tmp4, Tmp6, ISD::SETLE);
2161  SDOperand OutOps[] = { OutLo, OutHi };
2162  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2163                     OutOps, 2);
2164}
2165
2166//===----------------------------------------------------------------------===//
2167// Vector related lowering.
2168//
2169
2170// If this is a vector of constants or undefs, get the bits.  A bit in
2171// UndefBits is set if the corresponding element of the vector is an
2172// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2173// zero.   Return true if this is not an array of constants, false if it is.
2174//
2175static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2176                                       uint64_t UndefBits[2]) {
2177  // Start with zero'd results.
2178  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2179
2180  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2181  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2182    SDOperand OpVal = BV->getOperand(i);
2183
2184    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2185    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2186
2187    uint64_t EltBits = 0;
2188    if (OpVal.getOpcode() == ISD::UNDEF) {
2189      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2190      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2191      continue;
2192    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2193      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2194    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2195      assert(CN->getValueType(0) == MVT::f32 &&
2196             "Only one legal FP vector type!");
2197      EltBits = FloatToBits(CN->getValue());
2198    } else {
2199      // Nonconstant element.
2200      return true;
2201    }
2202
2203    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2204  }
2205
2206  //printf("%llx %llx  %llx %llx\n",
2207  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2208  return false;
2209}
2210
2211// If this is a splat (repetition) of a value across the whole vector, return
2212// the smallest size that splats it.  For example, "0x01010101010101..." is a
2213// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2214// SplatSize = 1 byte.
2215static bool isConstantSplat(const uint64_t Bits128[2],
2216                            const uint64_t Undef128[2],
2217                            unsigned &SplatBits, unsigned &SplatUndef,
2218                            unsigned &SplatSize) {
2219
2220  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2221  // the same as the lower 64-bits, ignoring undefs.
2222  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2223    return false;  // Can't be a splat if two pieces don't match.
2224
2225  uint64_t Bits64  = Bits128[0] | Bits128[1];
2226  uint64_t Undef64 = Undef128[0] & Undef128[1];
2227
2228  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2229  // undefs.
2230  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2231    return false;  // Can't be a splat if two pieces don't match.
2232
2233  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2234  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2235
2236  // If the top 16-bits are different than the lower 16-bits, ignoring
2237  // undefs, we have an i32 splat.
2238  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2239    SplatBits = Bits32;
2240    SplatUndef = Undef32;
2241    SplatSize = 4;
2242    return true;
2243  }
2244
2245  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2246  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2247
2248  // If the top 8-bits are different than the lower 8-bits, ignoring
2249  // undefs, we have an i16 splat.
2250  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2251    SplatBits = Bits16;
2252    SplatUndef = Undef16;
2253    SplatSize = 2;
2254    return true;
2255  }
2256
2257  // Otherwise, we have an 8-bit splat.
2258  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2259  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2260  SplatSize = 1;
2261  return true;
2262}
2263
2264/// BuildSplatI - Build a canonical splati of Val with an element size of
2265/// SplatSize.  Cast the result to VT.
2266static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2267                             SelectionDAG &DAG) {
2268  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2269
2270  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2271    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2272  };
2273
2274  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2275
2276  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2277  if (Val == -1)
2278    SplatSize = 1;
2279
2280  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2281
2282  // Build a canonical splat for this value.
2283  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2284  SmallVector<SDOperand, 8> Ops;
2285  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2286  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2287                              &Ops[0], Ops.size());
2288  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2289}
2290
2291/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2292/// specified intrinsic ID.
2293static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2294                                  SelectionDAG &DAG,
2295                                  MVT::ValueType DestVT = MVT::Other) {
2296  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2297  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2298                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2299}
2300
2301/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2302/// specified intrinsic ID.
2303static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2304                                  SDOperand Op2, SelectionDAG &DAG,
2305                                  MVT::ValueType DestVT = MVT::Other) {
2306  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2307  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2308                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2309}
2310
2311
2312/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2313/// amount.  The result has the specified value type.
2314static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2315                             MVT::ValueType VT, SelectionDAG &DAG) {
2316  // Force LHS/RHS to be the right type.
2317  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2318  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2319
2320  SDOperand Ops[16];
2321  for (unsigned i = 0; i != 16; ++i)
2322    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2323  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2324                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2325  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2326}
2327
2328// If this is a case we can't handle, return null and let the default
2329// expansion code take care of it.  If we CAN select this case, and if it
2330// selects to a single instruction, return Op.  Otherwise, if we can codegen
2331// this case more efficiently than a constant pool load, lower it to the
2332// sequence of ops that should be used.
2333static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2334  // If this is a vector of constants or undefs, get the bits.  A bit in
2335  // UndefBits is set if the corresponding element of the vector is an
2336  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2337  // zero.
2338  uint64_t VectorBits[2];
2339  uint64_t UndefBits[2];
2340  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2341    return SDOperand();   // Not a constant vector.
2342
2343  // If this is a splat (repetition) of a value across the whole vector, return
2344  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2345  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2346  // SplatSize = 1 byte.
2347  unsigned SplatBits, SplatUndef, SplatSize;
2348  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2349    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2350
2351    // First, handle single instruction cases.
2352
2353    // All zeros?
2354    if (SplatBits == 0) {
2355      // Canonicalize all zero vectors to be v4i32.
2356      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2357        SDOperand Z = DAG.getConstant(0, MVT::i32);
2358        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2359        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2360      }
2361      return Op;
2362    }
2363
2364    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2365    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2366    if (SextVal >= -16 && SextVal <= 15)
2367      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2368
2369
2370    // Two instruction sequences.
2371
2372    // If this value is in the range [-32,30] and is even, use:
2373    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2374    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2375      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2376      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2377    }
2378
2379    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2380    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2381    // for fneg/fabs.
2382    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2383      // Make -1 and vspltisw -1:
2384      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2385
2386      // Make the VSLW intrinsic, computing 0x8000_0000.
2387      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2388                                       OnesV, DAG);
2389
2390      // xor by OnesV to invert it.
2391      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2392      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2393    }
2394
2395    // Check to see if this is a wide variety of vsplti*, binop self cases.
2396    unsigned SplatBitSize = SplatSize*8;
2397    static const signed char SplatCsts[] = {
2398      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2399      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2400    };
2401
2402    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2403      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2404      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2405      int i = SplatCsts[idx];
2406
2407      // Figure out what shift amount will be used by altivec if shifted by i in
2408      // this splat size.
2409      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2410
2411      // vsplti + shl self.
2412      if (SextVal == (i << (int)TypeShiftAmt)) {
2413        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2414        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2415          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2416          Intrinsic::ppc_altivec_vslw
2417        };
2418        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2419        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2420      }
2421
2422      // vsplti + srl self.
2423      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2424        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2425        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2426          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2427          Intrinsic::ppc_altivec_vsrw
2428        };
2429        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2430        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2431      }
2432
2433      // vsplti + sra self.
2434      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2435        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2436        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2437          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2438          Intrinsic::ppc_altivec_vsraw
2439        };
2440        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2441        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2442      }
2443
2444      // vsplti + rol self.
2445      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2446                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2447        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2448        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2449          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2450          Intrinsic::ppc_altivec_vrlw
2451        };
2452        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2453        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2454      }
2455
2456      // t = vsplti c, result = vsldoi t, t, 1
2457      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2458        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2459        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2460      }
2461      // t = vsplti c, result = vsldoi t, t, 2
2462      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2463        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2464        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2465      }
2466      // t = vsplti c, result = vsldoi t, t, 3
2467      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2468        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2469        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2470      }
2471    }
2472
2473    // Three instruction sequences.
2474
2475    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2476    if (SextVal >= 0 && SextVal <= 31) {
2477      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2478      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2479      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2480      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2481    }
2482    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2483    if (SextVal >= -31 && SextVal <= 0) {
2484      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2485      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2486      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2487      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2488    }
2489  }
2490
2491  return SDOperand();
2492}
2493
2494/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2495/// the specified operations to build the shuffle.
2496static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2497                                        SDOperand RHS, SelectionDAG &DAG) {
2498  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2499  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2500  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2501
2502  enum {
2503    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2504    OP_VMRGHW,
2505    OP_VMRGLW,
2506    OP_VSPLTISW0,
2507    OP_VSPLTISW1,
2508    OP_VSPLTISW2,
2509    OP_VSPLTISW3,
2510    OP_VSLDOI4,
2511    OP_VSLDOI8,
2512    OP_VSLDOI12
2513  };
2514
2515  if (OpNum == OP_COPY) {
2516    if (LHSID == (1*9+2)*9+3) return LHS;
2517    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2518    return RHS;
2519  }
2520
2521  SDOperand OpLHS, OpRHS;
2522  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2523  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2524
2525  unsigned ShufIdxs[16];
2526  switch (OpNum) {
2527  default: assert(0 && "Unknown i32 permute!");
2528  case OP_VMRGHW:
2529    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2530    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2531    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2532    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2533    break;
2534  case OP_VMRGLW:
2535    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2536    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2537    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2538    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2539    break;
2540  case OP_VSPLTISW0:
2541    for (unsigned i = 0; i != 16; ++i)
2542      ShufIdxs[i] = (i&3)+0;
2543    break;
2544  case OP_VSPLTISW1:
2545    for (unsigned i = 0; i != 16; ++i)
2546      ShufIdxs[i] = (i&3)+4;
2547    break;
2548  case OP_VSPLTISW2:
2549    for (unsigned i = 0; i != 16; ++i)
2550      ShufIdxs[i] = (i&3)+8;
2551    break;
2552  case OP_VSPLTISW3:
2553    for (unsigned i = 0; i != 16; ++i)
2554      ShufIdxs[i] = (i&3)+12;
2555    break;
2556  case OP_VSLDOI4:
2557    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2558  case OP_VSLDOI8:
2559    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2560  case OP_VSLDOI12:
2561    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2562  }
2563  SDOperand Ops[16];
2564  for (unsigned i = 0; i != 16; ++i)
2565    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2566
2567  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2568                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2569}
2570
2571/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2572/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2573/// return the code it can be lowered into.  Worst case, it can always be
2574/// lowered into a vperm.
2575static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2576  SDOperand V1 = Op.getOperand(0);
2577  SDOperand V2 = Op.getOperand(1);
2578  SDOperand PermMask = Op.getOperand(2);
2579
2580  // Cases that are handled by instructions that take permute immediates
2581  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2582  // selected by the instruction selector.
2583  if (V2.getOpcode() == ISD::UNDEF) {
2584    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2585        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2586        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2587        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2588        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2589        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2590        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2591        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2592        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2593        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2594        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2595        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2596      return Op;
2597    }
2598  }
2599
2600  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2601  // and produce a fixed permutation.  If any of these match, do not lower to
2602  // VPERM.
2603  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2604      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2605      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2606      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2607      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2608      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2609      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2610      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2611      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2612    return Op;
2613
2614  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2615  // perfect shuffle table to emit an optimal matching sequence.
2616  unsigned PFIndexes[4];
2617  bool isFourElementShuffle = true;
2618  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2619    unsigned EltNo = 8;   // Start out undef.
2620    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2621      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2622        continue;   // Undef, ignore it.
2623
2624      unsigned ByteSource =
2625        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2626      if ((ByteSource & 3) != j) {
2627        isFourElementShuffle = false;
2628        break;
2629      }
2630
2631      if (EltNo == 8) {
2632        EltNo = ByteSource/4;
2633      } else if (EltNo != ByteSource/4) {
2634        isFourElementShuffle = false;
2635        break;
2636      }
2637    }
2638    PFIndexes[i] = EltNo;
2639  }
2640
2641  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2642  // perfect shuffle vector to determine if it is cost effective to do this as
2643  // discrete instructions, or whether we should use a vperm.
2644  if (isFourElementShuffle) {
2645    // Compute the index in the perfect shuffle table.
2646    unsigned PFTableIndex =
2647      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2648
2649    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2650    unsigned Cost  = (PFEntry >> 30);
2651
2652    // Determining when to avoid vperm is tricky.  Many things affect the cost
2653    // of vperm, particularly how many times the perm mask needs to be computed.
2654    // For example, if the perm mask can be hoisted out of a loop or is already
2655    // used (perhaps because there are multiple permutes with the same shuffle
2656    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2657    // the loop requires an extra register.
2658    //
2659    // As a compromise, we only emit discrete instructions if the shuffle can be
2660    // generated in 3 or fewer operations.  When we have loop information
2661    // available, if this block is within a loop, we should avoid using vperm
2662    // for 3-operation perms and use a constant pool load instead.
2663    if (Cost < 3)
2664      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2665  }
2666
2667  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2668  // vector that will get spilled to the constant pool.
2669  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2670
2671  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2672  // that it is in input element units, not in bytes.  Convert now.
2673  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2674  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2675
2676  SmallVector<SDOperand, 16> ResultMask;
2677  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2678    unsigned SrcElt;
2679    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2680      SrcElt = 0;
2681    else
2682      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2683
2684    for (unsigned j = 0; j != BytesPerElement; ++j)
2685      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2686                                           MVT::i8));
2687  }
2688
2689  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2690                                    &ResultMask[0], ResultMask.size());
2691  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2692}
2693
2694/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2695/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2696/// information about the intrinsic.
2697static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2698                                  bool &isDot) {
2699  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2700  CompareOpc = -1;
2701  isDot = false;
2702  switch (IntrinsicID) {
2703  default: return false;
2704    // Comparison predicates.
2705  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2706  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2707  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2708  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2709  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2710  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2711  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2712  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2713  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2714  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2715  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2716  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2717  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2718
2719    // Normal Comparisons.
2720  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2721  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2722  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2723  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2724  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2725  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2726  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2727  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2728  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2729  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2730  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2731  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2732  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2733  }
2734  return true;
2735}
2736
2737/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2738/// lower, do it, otherwise return null.
2739static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2740  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2741  // opcode number of the comparison.
2742  int CompareOpc;
2743  bool isDot;
2744  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2745    return SDOperand();    // Don't custom lower most intrinsics.
2746
2747  // If this is a non-dot comparison, make the VCMP node and we are done.
2748  if (!isDot) {
2749    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2750                                Op.getOperand(1), Op.getOperand(2),
2751                                DAG.getConstant(CompareOpc, MVT::i32));
2752    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2753  }
2754
2755  // Create the PPCISD altivec 'dot' comparison node.
2756  SDOperand Ops[] = {
2757    Op.getOperand(2),  // LHS
2758    Op.getOperand(3),  // RHS
2759    DAG.getConstant(CompareOpc, MVT::i32)
2760  };
2761  std::vector<MVT::ValueType> VTs;
2762  VTs.push_back(Op.getOperand(2).getValueType());
2763  VTs.push_back(MVT::Flag);
2764  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2765
2766  // Now that we have the comparison, emit a copy from the CR to a GPR.
2767  // This is flagged to the above dot comparison.
2768  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2769                                DAG.getRegister(PPC::CR6, MVT::i32),
2770                                CompNode.getValue(1));
2771
2772  // Unpack the result based on how the target uses it.
2773  unsigned BitNo;   // Bit # of CR6.
2774  bool InvertBit;   // Invert result?
2775  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2776  default:  // Can't happen, don't crash on invalid number though.
2777  case 0:   // Return the value of the EQ bit of CR6.
2778    BitNo = 0; InvertBit = false;
2779    break;
2780  case 1:   // Return the inverted value of the EQ bit of CR6.
2781    BitNo = 0; InvertBit = true;
2782    break;
2783  case 2:   // Return the value of the LT bit of CR6.
2784    BitNo = 2; InvertBit = false;
2785    break;
2786  case 3:   // Return the inverted value of the LT bit of CR6.
2787    BitNo = 2; InvertBit = true;
2788    break;
2789  }
2790
2791  // Shift the bit into the low position.
2792  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2793                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2794  // Isolate the bit.
2795  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2796                      DAG.getConstant(1, MVT::i32));
2797
2798  // If we are supposed to, toggle the bit.
2799  if (InvertBit)
2800    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2801                        DAG.getConstant(1, MVT::i32));
2802  return Flags;
2803}
2804
2805static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2806  // Create a stack slot that is 16-byte aligned.
2807  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2808  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2809  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2810  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2811
2812  // Store the input value into Value#0 of the stack slot.
2813  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2814                                 Op.getOperand(0), FIdx, NULL, 0);
2815  // Load it out.
2816  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2817}
2818
2819static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2820  if (Op.getValueType() == MVT::v4i32) {
2821    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2822
2823    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2824    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2825
2826    SDOperand RHSSwap =   // = vrlw RHS, 16
2827      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2828
2829    // Shrinkify inputs to v8i16.
2830    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2831    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2832    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2833
2834    // Low parts multiplied together, generating 32-bit results (we ignore the
2835    // top parts).
2836    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2837                                        LHS, RHS, DAG, MVT::v4i32);
2838
2839    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2840                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2841    // Shift the high parts up 16 bits.
2842    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2843    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2844  } else if (Op.getValueType() == MVT::v8i16) {
2845    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2846
2847    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2848
2849    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2850                            LHS, RHS, Zero, DAG);
2851  } else if (Op.getValueType() == MVT::v16i8) {
2852    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2853
2854    // Multiply the even 8-bit parts, producing 16-bit sums.
2855    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2856                                           LHS, RHS, DAG, MVT::v8i16);
2857    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2858
2859    // Multiply the odd 8-bit parts, producing 16-bit sums.
2860    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2861                                          LHS, RHS, DAG, MVT::v8i16);
2862    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2863
2864    // Merge the results together.
2865    SDOperand Ops[16];
2866    for (unsigned i = 0; i != 8; ++i) {
2867      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2868      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2869    }
2870    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2871                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2872  } else {
2873    assert(0 && "Unknown mul to lower!");
2874    abort();
2875  }
2876}
2877
2878/// LowerOperation - Provide custom lowering hooks for some operations.
2879///
2880SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2881  switch (Op.getOpcode()) {
2882  default: assert(0 && "Wasn't expecting to be able to lower this!");
2883  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2884  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2885  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2886  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2887  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2888  case ISD::VASTART:
2889    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2890                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2891
2892  case ISD::VAARG:
2893    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2894                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2895
2896  case ISD::FORMAL_ARGUMENTS:
2897    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2898                                 VarArgsStackOffset, VarArgsNumGPR,
2899                                 VarArgsNumFPR, PPCSubTarget);
2900
2901  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
2902  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
2903  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2904  case ISD::DYNAMIC_STACKALLOC:
2905    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2906
2907  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2908  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2909  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2910
2911  // Lower 64-bit shifts.
2912  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2913  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2914  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2915
2916  // Vector-related lowering.
2917  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2918  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2919  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2920  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2921  case ISD::MUL:                return LowerMUL(Op, DAG);
2922
2923  // Frame & Return address.  Currently unimplemented
2924  case ISD::RETURNADDR:         break;
2925  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
2926  }
2927  return SDOperand();
2928}
2929
2930//===----------------------------------------------------------------------===//
2931//  Other Lowering Code
2932//===----------------------------------------------------------------------===//
2933
2934MachineBasicBlock *
2935PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2936                                           MachineBasicBlock *BB) {
2937  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2938  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2939          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2940          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2941          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2942          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2943         "Unexpected instr type to insert");
2944
2945  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2946  // control-flow pattern.  The incoming instruction knows the destination vreg
2947  // to set, the condition code register to branch on, the true/false values to
2948  // select between, and a branch opcode to use.
2949  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2950  ilist<MachineBasicBlock>::iterator It = BB;
2951  ++It;
2952
2953  //  thisMBB:
2954  //  ...
2955  //   TrueVal = ...
2956  //   cmpTY ccX, r1, r2
2957  //   bCC copy1MBB
2958  //   fallthrough --> copy0MBB
2959  MachineBasicBlock *thisMBB = BB;
2960  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2961  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2962  unsigned SelectPred = MI->getOperand(4).getImm();
2963  BuildMI(BB, TII->get(PPC::BCC))
2964    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2965  MachineFunction *F = BB->getParent();
2966  F->getBasicBlockList().insert(It, copy0MBB);
2967  F->getBasicBlockList().insert(It, sinkMBB);
2968  // Update machine-CFG edges by first adding all successors of the current
2969  // block to the new block which will contain the Phi node for the select.
2970  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2971      e = BB->succ_end(); i != e; ++i)
2972    sinkMBB->addSuccessor(*i);
2973  // Next, remove all successors of the current block, and add the true
2974  // and fallthrough blocks as its successors.
2975  while(!BB->succ_empty())
2976    BB->removeSuccessor(BB->succ_begin());
2977  BB->addSuccessor(copy0MBB);
2978  BB->addSuccessor(sinkMBB);
2979
2980  //  copy0MBB:
2981  //   %FalseValue = ...
2982  //   # fallthrough to sinkMBB
2983  BB = copy0MBB;
2984
2985  // Update machine-CFG edges
2986  BB->addSuccessor(sinkMBB);
2987
2988  //  sinkMBB:
2989  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2990  //  ...
2991  BB = sinkMBB;
2992  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2993    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2994    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2995
2996  delete MI;   // The pseudo instruction is gone now.
2997  return BB;
2998}
2999
3000//===----------------------------------------------------------------------===//
3001// Target Optimization Hooks
3002//===----------------------------------------------------------------------===//
3003
3004SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3005                                               DAGCombinerInfo &DCI) const {
3006  TargetMachine &TM = getTargetMachine();
3007  SelectionDAG &DAG = DCI.DAG;
3008  switch (N->getOpcode()) {
3009  default: break;
3010  case PPCISD::SHL:
3011    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3012      if (C->getValue() == 0)   // 0 << V -> 0.
3013        return N->getOperand(0);
3014    }
3015    break;
3016  case PPCISD::SRL:
3017    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3018      if (C->getValue() == 0)   // 0 >>u V -> 0.
3019        return N->getOperand(0);
3020    }
3021    break;
3022  case PPCISD::SRA:
3023    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3024      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3025          C->isAllOnesValue())    // -1 >>s V -> -1.
3026        return N->getOperand(0);
3027    }
3028    break;
3029
3030  case ISD::SINT_TO_FP:
3031    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3032      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3033        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3034        // We allow the src/dst to be either f32/f64, but the intermediate
3035        // type must be i64.
3036        if (N->getOperand(0).getValueType() == MVT::i64) {
3037          SDOperand Val = N->getOperand(0).getOperand(0);
3038          if (Val.getValueType() == MVT::f32) {
3039            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3040            DCI.AddToWorklist(Val.Val);
3041          }
3042
3043          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3044          DCI.AddToWorklist(Val.Val);
3045          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3046          DCI.AddToWorklist(Val.Val);
3047          if (N->getValueType(0) == MVT::f32) {
3048            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3049            DCI.AddToWorklist(Val.Val);
3050          }
3051          return Val;
3052        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3053          // If the intermediate type is i32, we can avoid the load/store here
3054          // too.
3055        }
3056      }
3057    }
3058    break;
3059  case ISD::STORE:
3060    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3061    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3062        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3063        N->getOperand(1).getValueType() == MVT::i32) {
3064      SDOperand Val = N->getOperand(1).getOperand(0);
3065      if (Val.getValueType() == MVT::f32) {
3066        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3067        DCI.AddToWorklist(Val.Val);
3068      }
3069      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3070      DCI.AddToWorklist(Val.Val);
3071
3072      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3073                        N->getOperand(2), N->getOperand(3));
3074      DCI.AddToWorklist(Val.Val);
3075      return Val;
3076    }
3077
3078    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3079    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3080        N->getOperand(1).Val->hasOneUse() &&
3081        (N->getOperand(1).getValueType() == MVT::i32 ||
3082         N->getOperand(1).getValueType() == MVT::i16)) {
3083      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3084      // Do an any-extend to 32-bits if this is a half-word input.
3085      if (BSwapOp.getValueType() == MVT::i16)
3086        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3087
3088      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3089                         N->getOperand(2), N->getOperand(3),
3090                         DAG.getValueType(N->getOperand(1).getValueType()));
3091    }
3092    break;
3093  case ISD::BSWAP:
3094    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3095    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3096        N->getOperand(0).hasOneUse() &&
3097        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3098      SDOperand Load = N->getOperand(0);
3099      LoadSDNode *LD = cast<LoadSDNode>(Load);
3100      // Create the byte-swapping load.
3101      std::vector<MVT::ValueType> VTs;
3102      VTs.push_back(MVT::i32);
3103      VTs.push_back(MVT::Other);
3104      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3105      SDOperand Ops[] = {
3106        LD->getChain(),    // Chain
3107        LD->getBasePtr(),  // Ptr
3108        SV,                // SrcValue
3109        DAG.getValueType(N->getValueType(0)) // VT
3110      };
3111      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3112
3113      // If this is an i16 load, insert the truncate.
3114      SDOperand ResVal = BSLoad;
3115      if (N->getValueType(0) == MVT::i16)
3116        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3117
3118      // First, combine the bswap away.  This makes the value produced by the
3119      // load dead.
3120      DCI.CombineTo(N, ResVal);
3121
3122      // Next, combine the load away, we give it a bogus result value but a real
3123      // chain result.  The result value is dead because the bswap is dead.
3124      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3125
3126      // Return N so it doesn't get rechecked!
3127      return SDOperand(N, 0);
3128    }
3129
3130    break;
3131  case PPCISD::VCMP: {
3132    // If a VCMPo node already exists with exactly the same operands as this
3133    // node, use its result instead of this node (VCMPo computes both a CR6 and
3134    // a normal output).
3135    //
3136    if (!N->getOperand(0).hasOneUse() &&
3137        !N->getOperand(1).hasOneUse() &&
3138        !N->getOperand(2).hasOneUse()) {
3139
3140      // Scan all of the users of the LHS, looking for VCMPo's that match.
3141      SDNode *VCMPoNode = 0;
3142
3143      SDNode *LHSN = N->getOperand(0).Val;
3144      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3145           UI != E; ++UI)
3146        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3147            (*UI)->getOperand(1) == N->getOperand(1) &&
3148            (*UI)->getOperand(2) == N->getOperand(2) &&
3149            (*UI)->getOperand(0) == N->getOperand(0)) {
3150          VCMPoNode = *UI;
3151          break;
3152        }
3153
3154      // If there is no VCMPo node, or if the flag value has a single use, don't
3155      // transform this.
3156      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3157        break;
3158
3159      // Look at the (necessarily single) use of the flag value.  If it has a
3160      // chain, this transformation is more complex.  Note that multiple things
3161      // could use the value result, which we should ignore.
3162      SDNode *FlagUser = 0;
3163      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3164           FlagUser == 0; ++UI) {
3165        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3166        SDNode *User = *UI;
3167        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3168          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3169            FlagUser = User;
3170            break;
3171          }
3172        }
3173      }
3174
3175      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3176      // give up for right now.
3177      if (FlagUser->getOpcode() == PPCISD::MFCR)
3178        return SDOperand(VCMPoNode, 0);
3179    }
3180    break;
3181  }
3182  case ISD::BR_CC: {
3183    // If this is a branch on an altivec predicate comparison, lower this so
3184    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3185    // lowering is done pre-legalize, because the legalizer lowers the predicate
3186    // compare down to code that is difficult to reassemble.
3187    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3188    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3189    int CompareOpc;
3190    bool isDot;
3191
3192    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3193        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3194        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3195      assert(isDot && "Can't compare against a vector result!");
3196
3197      // If this is a comparison against something other than 0/1, then we know
3198      // that the condition is never/always true.
3199      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3200      if (Val != 0 && Val != 1) {
3201        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3202          return N->getOperand(0);
3203        // Always !=, turn it into an unconditional branch.
3204        return DAG.getNode(ISD::BR, MVT::Other,
3205                           N->getOperand(0), N->getOperand(4));
3206      }
3207
3208      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3209
3210      // Create the PPCISD altivec 'dot' comparison node.
3211      std::vector<MVT::ValueType> VTs;
3212      SDOperand Ops[] = {
3213        LHS.getOperand(2),  // LHS of compare
3214        LHS.getOperand(3),  // RHS of compare
3215        DAG.getConstant(CompareOpc, MVT::i32)
3216      };
3217      VTs.push_back(LHS.getOperand(2).getValueType());
3218      VTs.push_back(MVT::Flag);
3219      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3220
3221      // Unpack the result based on how the target uses it.
3222      PPC::Predicate CompOpc;
3223      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3224      default:  // Can't happen, don't crash on invalid number though.
3225      case 0:   // Branch on the value of the EQ bit of CR6.
3226        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3227        break;
3228      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3229        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3230        break;
3231      case 2:   // Branch on the value of the LT bit of CR6.
3232        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3233        break;
3234      case 3:   // Branch on the inverted value of the LT bit of CR6.
3235        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3236        break;
3237      }
3238
3239      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3240                         DAG.getConstant(CompOpc, MVT::i32),
3241                         DAG.getRegister(PPC::CR6, MVT::i32),
3242                         N->getOperand(4), CompNode.getValue(1));
3243    }
3244    break;
3245  }
3246  }
3247
3248  return SDOperand();
3249}
3250
3251//===----------------------------------------------------------------------===//
3252// Inline Assembly Support
3253//===----------------------------------------------------------------------===//
3254
3255void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3256                                                       uint64_t Mask,
3257                                                       uint64_t &KnownZero,
3258                                                       uint64_t &KnownOne,
3259                                                       const SelectionDAG &DAG,
3260                                                       unsigned Depth) const {
3261  KnownZero = 0;
3262  KnownOne = 0;
3263  switch (Op.getOpcode()) {
3264  default: break;
3265  case PPCISD::LBRX: {
3266    // lhbrx is known to have the top bits cleared out.
3267    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3268      KnownZero = 0xFFFF0000;
3269    break;
3270  }
3271  case ISD::INTRINSIC_WO_CHAIN: {
3272    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3273    default: break;
3274    case Intrinsic::ppc_altivec_vcmpbfp_p:
3275    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3276    case Intrinsic::ppc_altivec_vcmpequb_p:
3277    case Intrinsic::ppc_altivec_vcmpequh_p:
3278    case Intrinsic::ppc_altivec_vcmpequw_p:
3279    case Intrinsic::ppc_altivec_vcmpgefp_p:
3280    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3281    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3282    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3283    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3284    case Intrinsic::ppc_altivec_vcmpgtub_p:
3285    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3286    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3287      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3288      break;
3289    }
3290  }
3291  }
3292}
3293
3294
3295/// getConstraintType - Given a constraint, return the type of
3296/// constraint it is for this target.
3297PPCTargetLowering::ConstraintType
3298PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3299  if (Constraint.size() == 1) {
3300    switch (Constraint[0]) {
3301    default: break;
3302    case 'b':
3303    case 'r':
3304    case 'f':
3305    case 'v':
3306    case 'y':
3307      return C_RegisterClass;
3308    }
3309  }
3310  return TargetLowering::getConstraintType(Constraint);
3311}
3312
3313std::pair<unsigned, const TargetRegisterClass*>
3314PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3315                                                MVT::ValueType VT) const {
3316  if (Constraint.size() == 1) {
3317    // GCC RS6000 Constraint Letters
3318    switch (Constraint[0]) {
3319    case 'b':   // R1-R31
3320    case 'r':   // R0-R31
3321      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3322        return std::make_pair(0U, PPC::G8RCRegisterClass);
3323      return std::make_pair(0U, PPC::GPRCRegisterClass);
3324    case 'f':
3325      if (VT == MVT::f32)
3326        return std::make_pair(0U, PPC::F4RCRegisterClass);
3327      else if (VT == MVT::f64)
3328        return std::make_pair(0U, PPC::F8RCRegisterClass);
3329      break;
3330    case 'v':
3331      return std::make_pair(0U, PPC::VRRCRegisterClass);
3332    case 'y':   // crrc
3333      return std::make_pair(0U, PPC::CRRCRegisterClass);
3334    }
3335  }
3336
3337  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3338}
3339
3340
3341// isOperandValidForConstraint
3342SDOperand PPCTargetLowering::
3343isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3344  switch (Letter) {
3345  default: break;
3346  case 'I':
3347  case 'J':
3348  case 'K':
3349  case 'L':
3350  case 'M':
3351  case 'N':
3352  case 'O':
3353  case 'P': {
3354    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3355    if (!CST) return SDOperand(0, 0); // Must be an immediate to match.
3356    unsigned Value = CST->getValue();
3357    switch (Letter) {
3358    default: assert(0 && "Unknown constraint letter!");
3359    case 'I':  // "I" is a signed 16-bit constant.
3360      if ((short)Value == (int)Value)
3361        return DAG.getTargetConstant(Value, Op.getValueType());
3362      break;
3363    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3364    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3365      if ((short)Value == 0)
3366        return DAG.getTargetConstant(Value, Op.getValueType());
3367      break;
3368    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3369      if ((Value >> 16) == 0)
3370        return DAG.getTargetConstant(Value, Op.getValueType());
3371      break;
3372    case 'M':  // "M" is a constant that is greater than 31.
3373      if (Value > 31)
3374        return DAG.getTargetConstant(Value, Op.getValueType());
3375      break;
3376    case 'N':  // "N" is a positive constant that is an exact power of two.
3377      if ((int)Value > 0 && isPowerOf2_32(Value))
3378        return DAG.getTargetConstant(Value, Op.getValueType());
3379      break;
3380    case 'O':  // "O" is the constant zero.
3381      if (Value == 0)
3382        return DAG.getTargetConstant(Value, Op.getValueType());
3383      break;
3384    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3385      if ((short)-Value == (int)-Value)
3386        return DAG.getTargetConstant(Value, Op.getValueType());
3387      break;
3388    }
3389    break;
3390  }
3391  }
3392
3393  // Handle standard constraint letters.
3394  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3395}
3396
3397// isLegalAddressingMode - Return true if the addressing mode represented
3398// by AM is legal for this target, for a load/store of the specified type.
3399bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3400                                              const Type *Ty) const {
3401  // FIXME: PPC does not allow r+i addressing modes for vectors!
3402
3403  // PPC allows a sign-extended 16-bit immediate field.
3404  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3405    return false;
3406
3407  // No global is ever allowed as a base.
3408  if (AM.BaseGV)
3409    return false;
3410
3411  // PPC only support r+r,
3412  switch (AM.Scale) {
3413  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3414    break;
3415  case 1:
3416    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3417      return false;
3418    // Otherwise we have r+r or r+i.
3419    break;
3420  case 2:
3421    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3422      return false;
3423    // Allow 2*r as r+r.
3424    break;
3425  default:
3426    // No other scales are supported.
3427    return false;
3428  }
3429
3430  return true;
3431}
3432
3433/// isLegalAddressImmediate - Return true if the integer value can be used
3434/// as the offset of the target addressing mode for load / store of the
3435/// given type.
3436bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3437  // PPC allows a sign-extended 16-bit immediate field.
3438  return (V > -(1 << 16) && V < (1 << 16)-1);
3439}
3440
3441bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3442  return false;
3443}
3444
3445SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3446{
3447  // Depths > 0 not supported yet!
3448  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3449    return SDOperand();
3450
3451  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3452  bool isPPC64 = PtrVT == MVT::i64;
3453
3454  MachineFunction &MF = DAG.getMachineFunction();
3455  MachineFrameInfo *MFI = MF.getFrameInfo();
3456  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3457                  && MFI->getStackSize();
3458
3459  if (isPPC64)
3460    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3461      MVT::i32);
3462  else
3463    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3464      MVT::i32);
3465}
3466