PPCISelLowering.cpp revision 6e0b2a0cb0d398f175a5294bf0ad5488c714e8c2
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "PPCTargetObjectFile.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetOptions.h"
38using namespace llvm;
39
40static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
41                                       CCValAssign::LocInfo &LocInfo,
42                                       ISD::ArgFlagsTy &ArgFlags,
43                                       CCState &State);
44static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
45                                              MVT &LocVT,
46                                              CCValAssign::LocInfo &LocInfo,
47                                              ISD::ArgFlagsTy &ArgFlags,
48                                              CCState &State);
49static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
50                                                MVT &LocVT,
51                                                CCValAssign::LocInfo &LocInfo,
52                                                ISD::ArgFlagsTy &ArgFlags,
53                                                CCState &State);
54
55static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
56cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
57
58static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
59cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
60
61static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
62cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
63
64static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
65  if (TM.getSubtargetImpl()->isDarwin())
66    return new TargetLoweringObjectFileMachO();
67
68  if (TM.getSubtargetImpl()->isSVR4ABI())
69    return new PPC64LinuxTargetObjectFile();
70
71  return new TargetLoweringObjectFileELF();
72}
73
74PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
75  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
76  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
77  PPCRegInfo = TM.getRegisterInfo();
78  PPCII = TM.getInstrInfo();
79
80  setPow2DivIsCheap();
81
82  // Use _setjmp/_longjmp instead of setjmp/longjmp.
83  setUseUnderscoreSetJmp(true);
84  setUseUnderscoreLongJmp(true);
85
86  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
87  // arguments are at least 4/8 bytes aligned.
88  bool isPPC64 = Subtarget->isPPC64();
89  setMinStackArgumentAlignment(isPPC64 ? 8:4);
90
91  // Set up the register classes.
92  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
93  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
94  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
95
96  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
97  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
98  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
99
100  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
101
102  // PowerPC has pre-inc load and store's.
103  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
104  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
105  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
106  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
107  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
108  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
109  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
110  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
111  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
112  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
113
114  // This is used in the ppcf128->int sequence.  Note it has different semantics
115  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
116  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
117
118  // We do not currently implement these libm ops for PowerPC.
119  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
120  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
121  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
122  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
123  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
124  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
125
126  // PowerPC has no SREM/UREM instructions
127  setOperationAction(ISD::SREM, MVT::i32, Expand);
128  setOperationAction(ISD::UREM, MVT::i32, Expand);
129  setOperationAction(ISD::SREM, MVT::i64, Expand);
130  setOperationAction(ISD::UREM, MVT::i64, Expand);
131
132  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
133  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
134  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
135  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
136  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
137  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
138  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
139  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
140  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
141
142  // We don't support sin/cos/sqrt/fmod/pow
143  setOperationAction(ISD::FSIN , MVT::f64, Expand);
144  setOperationAction(ISD::FCOS , MVT::f64, Expand);
145  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
146  setOperationAction(ISD::FREM , MVT::f64, Expand);
147  setOperationAction(ISD::FPOW , MVT::f64, Expand);
148  setOperationAction(ISD::FMA  , MVT::f64, Legal);
149  setOperationAction(ISD::FSIN , MVT::f32, Expand);
150  setOperationAction(ISD::FCOS , MVT::f32, Expand);
151  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
152  setOperationAction(ISD::FREM , MVT::f32, Expand);
153  setOperationAction(ISD::FPOW , MVT::f32, Expand);
154  setOperationAction(ISD::FMA  , MVT::f32, Legal);
155
156  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
157
158  // If we're enabling GP optimizations, use hardware square root
159  if (!Subtarget->hasFSQRT() &&
160      !(TM.Options.UnsafeFPMath &&
161        Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
162    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
163
164  if (!Subtarget->hasFSQRT() &&
165      !(TM.Options.UnsafeFPMath &&
166        Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
167    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
168
169  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
170  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
171
172  if (Subtarget->hasFPRND()) {
173    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
174    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
175    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
176
177    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
178    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
179    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
180
181    // frin does not implement "ties to even." Thus, this is safe only in
182    // fast-math mode.
183    if (TM.Options.UnsafeFPMath) {
184      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
185      setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
186
187      // These need to set FE_INEXACT, and use a custom inserter.
188      setOperationAction(ISD::FRINT, MVT::f64, Legal);
189      setOperationAction(ISD::FRINT, MVT::f32, Legal);
190    }
191  }
192
193  // PowerPC does not have BSWAP, CTPOP or CTTZ
194  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
195  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
196  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
197  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
198  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
199  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
200  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
201  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
202
203  if (Subtarget->hasPOPCNTD()) {
204    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
205    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
206  } else {
207    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
208    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
209  }
210
211  // PowerPC does not have ROTR
212  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
213  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
214
215  // PowerPC does not have Select
216  setOperationAction(ISD::SELECT, MVT::i32, Expand);
217  setOperationAction(ISD::SELECT, MVT::i64, Expand);
218  setOperationAction(ISD::SELECT, MVT::f32, Expand);
219  setOperationAction(ISD::SELECT, MVT::f64, Expand);
220
221  // PowerPC wants to turn select_cc of FP into fsel when possible.
222  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
223  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
224
225  // PowerPC wants to optimize integer setcc a bit
226  setOperationAction(ISD::SETCC, MVT::i32, Custom);
227
228  // PowerPC does not have BRCOND which requires SetCC
229  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
230
231  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
232
233  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
234  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
235
236  // PowerPC does not have [U|S]INT_TO_FP
237  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
238  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
239
240  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
241  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
242  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
243  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
244
245  // We cannot sextinreg(i1).  Expand to shifts.
246  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
247
248  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
249  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
250  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
251  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
252
253  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
254  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
255  // support continuation, user-level threading, and etc.. As a result, no
256  // other SjLj exception interfaces are implemented and please don't build
257  // your own exception handling based on them.
258  // LLVM/Clang supports zero-cost DWARF exception handling.
259  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
260  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
261
262  // We want to legalize GlobalAddress and ConstantPool nodes into the
263  // appropriate instructions to materialize the address.
264  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
265  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
266  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
267  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
268  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
269  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
270  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
271  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
272  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
273  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
274
275  // TRAP is legal.
276  setOperationAction(ISD::TRAP, MVT::Other, Legal);
277
278  // TRAMPOLINE is custom lowered.
279  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
280  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
281
282  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
283  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
284
285  if (Subtarget->isSVR4ABI()) {
286    if (isPPC64) {
287      // VAARG always uses double-word chunks, so promote anything smaller.
288      setOperationAction(ISD::VAARG, MVT::i1, Promote);
289      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
290      setOperationAction(ISD::VAARG, MVT::i8, Promote);
291      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
292      setOperationAction(ISD::VAARG, MVT::i16, Promote);
293      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
294      setOperationAction(ISD::VAARG, MVT::i32, Promote);
295      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
296      setOperationAction(ISD::VAARG, MVT::Other, Expand);
297    } else {
298      // VAARG is custom lowered with the 32-bit SVR4 ABI.
299      setOperationAction(ISD::VAARG, MVT::Other, Custom);
300      setOperationAction(ISD::VAARG, MVT::i64, Custom);
301    }
302  } else
303    setOperationAction(ISD::VAARG, MVT::Other, Expand);
304
305  // Use the default implementation.
306  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
307  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
308  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
309  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
310  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
311  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
312
313  // We want to custom lower some of our intrinsics.
314  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
315
316  // To handle counter-based loop conditions.
317  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
318
319  // Comparisons that require checking two conditions.
320  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
321  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
322  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
323  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
324  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
325  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
326  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
327  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
328  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
329  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
330  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
331  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
332
333  if (Subtarget->has64BitSupport()) {
334    // They also have instructions for converting between i64 and fp.
335    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
336    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
337    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
338    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
339    // This is just the low 32 bits of a (signed) fp->i64 conversion.
340    // We cannot do this with Promote because i64 is not a legal type.
341    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
342
343    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
344      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
345  } else {
346    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
347    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
348  }
349
350  // With the instructions enabled under FPCVT, we can do everything.
351  if (PPCSubTarget.hasFPCVT()) {
352    if (Subtarget->has64BitSupport()) {
353      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
354      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
355      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
356      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
357    }
358
359    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
360    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
361    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
362    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
363  }
364
365  if (Subtarget->use64BitRegs()) {
366    // 64-bit PowerPC implementations can support i64 types directly
367    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
368    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
369    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
370    // 64-bit PowerPC wants to expand i128 shifts itself.
371    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
372    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
373    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
374  } else {
375    // 32-bit PowerPC wants to expand i64 shifts itself.
376    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
377    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
378    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
379  }
380
381  if (Subtarget->hasAltivec()) {
382    // First set operation action for all vector types to expand. Then we
383    // will selectively turn on ones that can be effectively codegen'd.
384    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
385         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
386      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
387
388      // add/sub are legal for all supported vector VT's.
389      setOperationAction(ISD::ADD , VT, Legal);
390      setOperationAction(ISD::SUB , VT, Legal);
391
392      // We promote all shuffles to v16i8.
393      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
394      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
395
396      // We promote all non-typed operations to v4i32.
397      setOperationAction(ISD::AND   , VT, Promote);
398      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
399      setOperationAction(ISD::OR    , VT, Promote);
400      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
401      setOperationAction(ISD::XOR   , VT, Promote);
402      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
403      setOperationAction(ISD::LOAD  , VT, Promote);
404      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
405      setOperationAction(ISD::SELECT, VT, Promote);
406      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
407      setOperationAction(ISD::STORE, VT, Promote);
408      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
409
410      // No other operations are legal.
411      setOperationAction(ISD::MUL , VT, Expand);
412      setOperationAction(ISD::SDIV, VT, Expand);
413      setOperationAction(ISD::SREM, VT, Expand);
414      setOperationAction(ISD::UDIV, VT, Expand);
415      setOperationAction(ISD::UREM, VT, Expand);
416      setOperationAction(ISD::FDIV, VT, Expand);
417      setOperationAction(ISD::FNEG, VT, Expand);
418      setOperationAction(ISD::FSQRT, VT, Expand);
419      setOperationAction(ISD::FLOG, VT, Expand);
420      setOperationAction(ISD::FLOG10, VT, Expand);
421      setOperationAction(ISD::FLOG2, VT, Expand);
422      setOperationAction(ISD::FEXP, VT, Expand);
423      setOperationAction(ISD::FEXP2, VT, Expand);
424      setOperationAction(ISD::FSIN, VT, Expand);
425      setOperationAction(ISD::FCOS, VT, Expand);
426      setOperationAction(ISD::FABS, VT, Expand);
427      setOperationAction(ISD::FPOWI, VT, Expand);
428      setOperationAction(ISD::FFLOOR, VT, Expand);
429      setOperationAction(ISD::FCEIL,  VT, Expand);
430      setOperationAction(ISD::FTRUNC, VT, Expand);
431      setOperationAction(ISD::FRINT,  VT, Expand);
432      setOperationAction(ISD::FNEARBYINT, VT, Expand);
433      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
434      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
435      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
436      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
437      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
438      setOperationAction(ISD::UDIVREM, VT, Expand);
439      setOperationAction(ISD::SDIVREM, VT, Expand);
440      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
441      setOperationAction(ISD::FPOW, VT, Expand);
442      setOperationAction(ISD::CTPOP, VT, Expand);
443      setOperationAction(ISD::CTLZ, VT, Expand);
444      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
445      setOperationAction(ISD::CTTZ, VT, Expand);
446      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
447      setOperationAction(ISD::VSELECT, VT, Expand);
448      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
449
450      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
452        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
453        setTruncStoreAction(VT, InnerVT, Expand);
454      }
455      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
456      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
457      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
458    }
459
460    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
461    // with merges, splats, etc.
462    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
463
464    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
465    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
466    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
467    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
468    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
469    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
470    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
471    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
472    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
473    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
474    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
475    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
476    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
477    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
478
479    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
480    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
481    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
482    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
483
484    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
485    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
486
487    if (TM.Options.UnsafeFPMath) {
488      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
489      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
490    }
491
492    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
493    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
494    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
495
496    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
497    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
498
499    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
500    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
501    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
502    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
503
504    // Altivec does not contain unordered floating-point compare instructions
505    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
506    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
507    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
508    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
509    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
510    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
511  }
512
513  if (Subtarget->has64BitSupport()) {
514    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
515    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
516  }
517
518  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
519  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
520  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
521  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
522
523  setBooleanContents(ZeroOrOneBooleanContent);
524  // Altivec instructions set fields to all zeros or all ones.
525  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
526
527  if (isPPC64) {
528    setStackPointerRegisterToSaveRestore(PPC::X1);
529    setExceptionPointerRegister(PPC::X3);
530    setExceptionSelectorRegister(PPC::X4);
531  } else {
532    setStackPointerRegisterToSaveRestore(PPC::R1);
533    setExceptionPointerRegister(PPC::R3);
534    setExceptionSelectorRegister(PPC::R4);
535  }
536
537  // We have target-specific dag combine patterns for the following nodes:
538  setTargetDAGCombine(ISD::SINT_TO_FP);
539  setTargetDAGCombine(ISD::LOAD);
540  setTargetDAGCombine(ISD::STORE);
541  setTargetDAGCombine(ISD::BR_CC);
542  setTargetDAGCombine(ISD::BSWAP);
543  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
544
545  // Use reciprocal estimates.
546  if (TM.Options.UnsafeFPMath) {
547    setTargetDAGCombine(ISD::FDIV);
548    setTargetDAGCombine(ISD::FSQRT);
549  }
550
551  // Darwin long double math library functions have $LDBL128 appended.
552  if (Subtarget->isDarwin()) {
553    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
554    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
555    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
556    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
557    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
558    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
559    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
560    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
561    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
562    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
563  }
564
565  setMinFunctionAlignment(2);
566  if (PPCSubTarget.isDarwin())
567    setPrefFunctionAlignment(4);
568
569  if (isPPC64 && Subtarget->isJITCodeModel())
570    // Temporary workaround for the inability of PPC64 JIT to handle jump
571    // tables.
572    setSupportJumpTables(false);
573
574  setInsertFencesForAtomic(true);
575
576  setSchedulingPreference(Sched::Hybrid);
577
578  computeRegisterProperties();
579
580  // The Freescale cores does better with aggressive inlining of memcpy and
581  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
582  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
583      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
584    MaxStoresPerMemset = 32;
585    MaxStoresPerMemsetOptSize = 16;
586    MaxStoresPerMemcpy = 32;
587    MaxStoresPerMemcpyOptSize = 8;
588    MaxStoresPerMemmove = 32;
589    MaxStoresPerMemmoveOptSize = 8;
590
591    setPrefFunctionAlignment(4);
592  }
593}
594
595/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
596/// function arguments in the caller parameter area.
597unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
598  const TargetMachine &TM = getTargetMachine();
599  // Darwin passes everything on 4 byte boundary.
600  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
601    return 4;
602
603  // 16byte and wider vectors are passed on 16byte boundary.
604  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
605    if (VTy->getBitWidth() >= 128)
606      return 16;
607
608  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
609   if (PPCSubTarget.isPPC64())
610     return 8;
611
612  return 4;
613}
614
615const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
616  switch (Opcode) {
617  default: return 0;
618  case PPCISD::FSEL:            return "PPCISD::FSEL";
619  case PPCISD::FCFID:           return "PPCISD::FCFID";
620  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
621  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
622  case PPCISD::FRE:             return "PPCISD::FRE";
623  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
624  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
625  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
626  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
627  case PPCISD::VPERM:           return "PPCISD::VPERM";
628  case PPCISD::Hi:              return "PPCISD::Hi";
629  case PPCISD::Lo:              return "PPCISD::Lo";
630  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
631  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
632  case PPCISD::LOAD:            return "PPCISD::LOAD";
633  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
634  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
635  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
636  case PPCISD::SRL:             return "PPCISD::SRL";
637  case PPCISD::SRA:             return "PPCISD::SRA";
638  case PPCISD::SHL:             return "PPCISD::SHL";
639  case PPCISD::CALL:            return "PPCISD::CALL";
640  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
641  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
642  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
643  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
644  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
645  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
646  case PPCISD::MFCR:            return "PPCISD::MFCR";
647  case PPCISD::VCMP:            return "PPCISD::VCMP";
648  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
649  case PPCISD::LBRX:            return "PPCISD::LBRX";
650  case PPCISD::STBRX:           return "PPCISD::STBRX";
651  case PPCISD::LARX:            return "PPCISD::LARX";
652  case PPCISD::STCX:            return "PPCISD::STCX";
653  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
654  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
655  case PPCISD::BDZ:             return "PPCISD::BDZ";
656  case PPCISD::MFFS:            return "PPCISD::MFFS";
657  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
658  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
659  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
660  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
661  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
662  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
663  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
664  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
665  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
666  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
667  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
668  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
669  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
670  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
671  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
672  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
673  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
674  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
675  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
676  case PPCISD::SC:              return "PPCISD::SC";
677  }
678}
679
680EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
681  if (!VT.isVector())
682    return MVT::i32;
683  return VT.changeVectorElementTypeToInteger();
684}
685
686//===----------------------------------------------------------------------===//
687// Node matching predicates, for use by the tblgen matching code.
688//===----------------------------------------------------------------------===//
689
690/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
691static bool isFloatingPointZero(SDValue Op) {
692  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
693    return CFP->getValueAPF().isZero();
694  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
695    // Maybe this has already been legalized into the constant pool?
696    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
697      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
698        return CFP->getValueAPF().isZero();
699  }
700  return false;
701}
702
703/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
704/// true if Op is undef or if it matches the specified value.
705static bool isConstantOrUndef(int Op, int Val) {
706  return Op < 0 || Op == Val;
707}
708
709/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
710/// VPKUHUM instruction.
711bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
712  if (!isUnary) {
713    for (unsigned i = 0; i != 16; ++i)
714      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
715        return false;
716  } else {
717    for (unsigned i = 0; i != 8; ++i)
718      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
719          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
720        return false;
721  }
722  return true;
723}
724
725/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
726/// VPKUWUM instruction.
727bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
728  if (!isUnary) {
729    for (unsigned i = 0; i != 16; i += 2)
730      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
731          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
732        return false;
733  } else {
734    for (unsigned i = 0; i != 8; i += 2)
735      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
736          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
737          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
738          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
739        return false;
740  }
741  return true;
742}
743
744/// isVMerge - Common function, used to match vmrg* shuffles.
745///
746static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
747                     unsigned LHSStart, unsigned RHSStart) {
748  assert(N->getValueType(0) == MVT::v16i8 &&
749         "PPC only supports shuffles by bytes!");
750  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
751         "Unsupported merge size!");
752
753  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
754    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
755      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
756                             LHSStart+j+i*UnitSize) ||
757          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
758                             RHSStart+j+i*UnitSize))
759        return false;
760    }
761  return true;
762}
763
764/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
765/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
766bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
767                             bool isUnary) {
768  if (!isUnary)
769    return isVMerge(N, UnitSize, 8, 24);
770  return isVMerge(N, UnitSize, 8, 8);
771}
772
773/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
774/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
775bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
776                             bool isUnary) {
777  if (!isUnary)
778    return isVMerge(N, UnitSize, 0, 16);
779  return isVMerge(N, UnitSize, 0, 0);
780}
781
782
783/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
784/// amount, otherwise return -1.
785int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
786  assert(N->getValueType(0) == MVT::v16i8 &&
787         "PPC only supports shuffles by bytes!");
788
789  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
790
791  // Find the first non-undef value in the shuffle mask.
792  unsigned i;
793  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
794    /*search*/;
795
796  if (i == 16) return -1;  // all undef.
797
798  // Otherwise, check to see if the rest of the elements are consecutively
799  // numbered from this value.
800  unsigned ShiftAmt = SVOp->getMaskElt(i);
801  if (ShiftAmt < i) return -1;
802  ShiftAmt -= i;
803
804  if (!isUnary) {
805    // Check the rest of the elements to see if they are consecutive.
806    for (++i; i != 16; ++i)
807      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
808        return -1;
809  } else {
810    // Check the rest of the elements to see if they are consecutive.
811    for (++i; i != 16; ++i)
812      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
813        return -1;
814  }
815  return ShiftAmt;
816}
817
818/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
819/// specifies a splat of a single element that is suitable for input to
820/// VSPLTB/VSPLTH/VSPLTW.
821bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
822  assert(N->getValueType(0) == MVT::v16i8 &&
823         (EltSize == 1 || EltSize == 2 || EltSize == 4));
824
825  // This is a splat operation if each element of the permute is the same, and
826  // if the value doesn't reference the second vector.
827  unsigned ElementBase = N->getMaskElt(0);
828
829  // FIXME: Handle UNDEF elements too!
830  if (ElementBase >= 16)
831    return false;
832
833  // Check that the indices are consecutive, in the case of a multi-byte element
834  // splatted with a v16i8 mask.
835  for (unsigned i = 1; i != EltSize; ++i)
836    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
837      return false;
838
839  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
840    if (N->getMaskElt(i) < 0) continue;
841    for (unsigned j = 0; j != EltSize; ++j)
842      if (N->getMaskElt(i+j) != N->getMaskElt(j))
843        return false;
844  }
845  return true;
846}
847
848/// isAllNegativeZeroVector - Returns true if all elements of build_vector
849/// are -0.0.
850bool PPC::isAllNegativeZeroVector(SDNode *N) {
851  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
852
853  APInt APVal, APUndef;
854  unsigned BitSize;
855  bool HasAnyUndefs;
856
857  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
858    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
859      return CFP->getValueAPF().isNegZero();
860
861  return false;
862}
863
864/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
865/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
866unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
867  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
868  assert(isSplatShuffleMask(SVOp, EltSize));
869  return SVOp->getMaskElt(0) / EltSize;
870}
871
872/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
873/// by using a vspltis[bhw] instruction of the specified element size, return
874/// the constant being splatted.  The ByteSize field indicates the number of
875/// bytes of each element [124] -> [bhw].
876SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
877  SDValue OpVal(0, 0);
878
879  // If ByteSize of the splat is bigger than the element size of the
880  // build_vector, then we have a case where we are checking for a splat where
881  // multiple elements of the buildvector are folded together into a single
882  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
883  unsigned EltSize = 16/N->getNumOperands();
884  if (EltSize < ByteSize) {
885    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
886    SDValue UniquedVals[4];
887    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
888
889    // See if all of the elements in the buildvector agree across.
890    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
891      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
892      // If the element isn't a constant, bail fully out.
893      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
894
895
896      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
897        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
898      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
899        return SDValue();  // no match.
900    }
901
902    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
903    // either constant or undef values that are identical for each chunk.  See
904    // if these chunks can form into a larger vspltis*.
905
906    // Check to see if all of the leading entries are either 0 or -1.  If
907    // neither, then this won't fit into the immediate field.
908    bool LeadingZero = true;
909    bool LeadingOnes = true;
910    for (unsigned i = 0; i != Multiple-1; ++i) {
911      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
912
913      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
914      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
915    }
916    // Finally, check the least significant entry.
917    if (LeadingZero) {
918      if (UniquedVals[Multiple-1].getNode() == 0)
919        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
920      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
921      if (Val < 16)
922        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
923    }
924    if (LeadingOnes) {
925      if (UniquedVals[Multiple-1].getNode() == 0)
926        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
927      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
928      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
929        return DAG.getTargetConstant(Val, MVT::i32);
930    }
931
932    return SDValue();
933  }
934
935  // Check to see if this buildvec has a single non-undef value in its elements.
936  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
937    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
938    if (OpVal.getNode() == 0)
939      OpVal = N->getOperand(i);
940    else if (OpVal != N->getOperand(i))
941      return SDValue();
942  }
943
944  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
945
946  unsigned ValSizeInBytes = EltSize;
947  uint64_t Value = 0;
948  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
949    Value = CN->getZExtValue();
950  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
951    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
952    Value = FloatToBits(CN->getValueAPF().convertToFloat());
953  }
954
955  // If the splat value is larger than the element value, then we can never do
956  // this splat.  The only case that we could fit the replicated bits into our
957  // immediate field for would be zero, and we prefer to use vxor for it.
958  if (ValSizeInBytes < ByteSize) return SDValue();
959
960  // If the element value is larger than the splat value, cut it in half and
961  // check to see if the two halves are equal.  Continue doing this until we
962  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
963  while (ValSizeInBytes > ByteSize) {
964    ValSizeInBytes >>= 1;
965
966    // If the top half equals the bottom half, we're still ok.
967    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
968         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
969      return SDValue();
970  }
971
972  // Properly sign extend the value.
973  int MaskVal = SignExtend32(Value, ByteSize * 8);
974
975  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
976  if (MaskVal == 0) return SDValue();
977
978  // Finally, if this value fits in a 5 bit sext field, return it
979  if (SignExtend32<5>(MaskVal) == MaskVal)
980    return DAG.getTargetConstant(MaskVal, MVT::i32);
981  return SDValue();
982}
983
984//===----------------------------------------------------------------------===//
985//  Addressing Mode Selection
986//===----------------------------------------------------------------------===//
987
988/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
989/// or 64-bit immediate, and if the value can be accurately represented as a
990/// sign extension from a 16-bit value.  If so, this returns true and the
991/// immediate.
992static bool isIntS16Immediate(SDNode *N, short &Imm) {
993  if (N->getOpcode() != ISD::Constant)
994    return false;
995
996  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
997  if (N->getValueType(0) == MVT::i32)
998    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
999  else
1000    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1001}
1002static bool isIntS16Immediate(SDValue Op, short &Imm) {
1003  return isIntS16Immediate(Op.getNode(), Imm);
1004}
1005
1006
1007/// SelectAddressRegReg - Given the specified addressed, check to see if it
1008/// can be represented as an indexed [r+r] operation.  Returns false if it
1009/// can be more efficiently represented with [r+imm].
1010bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1011                                            SDValue &Index,
1012                                            SelectionDAG &DAG) const {
1013  short imm = 0;
1014  if (N.getOpcode() == ISD::ADD) {
1015    if (isIntS16Immediate(N.getOperand(1), imm))
1016      return false;    // r+i
1017    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1018      return false;    // r+i
1019
1020    Base = N.getOperand(0);
1021    Index = N.getOperand(1);
1022    return true;
1023  } else if (N.getOpcode() == ISD::OR) {
1024    if (isIntS16Immediate(N.getOperand(1), imm))
1025      return false;    // r+i can fold it if we can.
1026
1027    // If this is an or of disjoint bitfields, we can codegen this as an add
1028    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1029    // disjoint.
1030    APInt LHSKnownZero, LHSKnownOne;
1031    APInt RHSKnownZero, RHSKnownOne;
1032    DAG.ComputeMaskedBits(N.getOperand(0),
1033                          LHSKnownZero, LHSKnownOne);
1034
1035    if (LHSKnownZero.getBoolValue()) {
1036      DAG.ComputeMaskedBits(N.getOperand(1),
1037                            RHSKnownZero, RHSKnownOne);
1038      // If all of the bits are known zero on the LHS or RHS, the add won't
1039      // carry.
1040      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1041        Base = N.getOperand(0);
1042        Index = N.getOperand(1);
1043        return true;
1044      }
1045    }
1046  }
1047
1048  return false;
1049}
1050
1051/// Returns true if the address N can be represented by a base register plus
1052/// a signed 16-bit displacement [r+imm], and if it is not better
1053/// represented as reg+reg.  If Aligned is true, only accept displacements
1054/// suitable for STD and friends, i.e. multiples of 4.
1055bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1056                                            SDValue &Base,
1057                                            SelectionDAG &DAG,
1058                                            bool Aligned) const {
1059  // FIXME dl should come from parent load or store, not from address
1060  SDLoc dl(N);
1061  // If this can be more profitably realized as r+r, fail.
1062  if (SelectAddressRegReg(N, Disp, Base, DAG))
1063    return false;
1064
1065  if (N.getOpcode() == ISD::ADD) {
1066    short imm = 0;
1067    if (isIntS16Immediate(N.getOperand(1), imm) &&
1068        (!Aligned || (imm & 3) == 0)) {
1069      Disp = DAG.getTargetConstant(imm, N.getValueType());
1070      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1071        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1072      } else {
1073        Base = N.getOperand(0);
1074      }
1075      return true; // [r+i]
1076    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1077      // Match LOAD (ADD (X, Lo(G))).
1078      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1079             && "Cannot handle constant offsets yet!");
1080      Disp = N.getOperand(1).getOperand(0);  // The global address.
1081      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1082             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1083             Disp.getOpcode() == ISD::TargetConstantPool ||
1084             Disp.getOpcode() == ISD::TargetJumpTable);
1085      Base = N.getOperand(0);
1086      return true;  // [&g+r]
1087    }
1088  } else if (N.getOpcode() == ISD::OR) {
1089    short imm = 0;
1090    if (isIntS16Immediate(N.getOperand(1), imm) &&
1091        (!Aligned || (imm & 3) == 0)) {
1092      // If this is an or of disjoint bitfields, we can codegen this as an add
1093      // (for better address arithmetic) if the LHS and RHS of the OR are
1094      // provably disjoint.
1095      APInt LHSKnownZero, LHSKnownOne;
1096      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1097
1098      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1099        // If all of the bits are known zero on the LHS or RHS, the add won't
1100        // carry.
1101        Base = N.getOperand(0);
1102        Disp = DAG.getTargetConstant(imm, N.getValueType());
1103        return true;
1104      }
1105    }
1106  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1107    // Loading from a constant address.
1108
1109    // If this address fits entirely in a 16-bit sext immediate field, codegen
1110    // this as "d, 0"
1111    short Imm;
1112    if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1113      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1114      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1115                             CN->getValueType(0));
1116      return true;
1117    }
1118
1119    // Handle 32-bit sext immediates with LIS + addr mode.
1120    if ((CN->getValueType(0) == MVT::i32 ||
1121         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1122        (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1123      int Addr = (int)CN->getZExtValue();
1124
1125      // Otherwise, break this down into an LIS + disp.
1126      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1127
1128      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1129      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1130      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1131      return true;
1132    }
1133  }
1134
1135  Disp = DAG.getTargetConstant(0, getPointerTy());
1136  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1137    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1138  else
1139    Base = N;
1140  return true;      // [r+0]
1141}
1142
1143/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1144/// represented as an indexed [r+r] operation.
1145bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1146                                                SDValue &Index,
1147                                                SelectionDAG &DAG) const {
1148  // Check to see if we can easily represent this as an [r+r] address.  This
1149  // will fail if it thinks that the address is more profitably represented as
1150  // reg+imm, e.g. where imm = 0.
1151  if (SelectAddressRegReg(N, Base, Index, DAG))
1152    return true;
1153
1154  // If the operand is an addition, always emit this as [r+r], since this is
1155  // better (for code size, and execution, as the memop does the add for free)
1156  // than emitting an explicit add.
1157  if (N.getOpcode() == ISD::ADD) {
1158    Base = N.getOperand(0);
1159    Index = N.getOperand(1);
1160    return true;
1161  }
1162
1163  // Otherwise, do it the hard way, using R0 as the base register.
1164  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1165                         N.getValueType());
1166  Index = N;
1167  return true;
1168}
1169
1170/// getPreIndexedAddressParts - returns true by value, base pointer and
1171/// offset pointer and addressing mode by reference if the node's address
1172/// can be legally represented as pre-indexed load / store address.
1173bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1174                                                  SDValue &Offset,
1175                                                  ISD::MemIndexedMode &AM,
1176                                                  SelectionDAG &DAG) const {
1177  if (DisablePPCPreinc) return false;
1178
1179  bool isLoad = true;
1180  SDValue Ptr;
1181  EVT VT;
1182  unsigned Alignment;
1183  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1184    Ptr = LD->getBasePtr();
1185    VT = LD->getMemoryVT();
1186    Alignment = LD->getAlignment();
1187  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1188    Ptr = ST->getBasePtr();
1189    VT  = ST->getMemoryVT();
1190    Alignment = ST->getAlignment();
1191    isLoad = false;
1192  } else
1193    return false;
1194
1195  // PowerPC doesn't have preinc load/store instructions for vectors.
1196  if (VT.isVector())
1197    return false;
1198
1199  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1200
1201    // Common code will reject creating a pre-inc form if the base pointer
1202    // is a frame index, or if N is a store and the base pointer is either
1203    // the same as or a predecessor of the value being stored.  Check for
1204    // those situations here, and try with swapped Base/Offset instead.
1205    bool Swap = false;
1206
1207    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1208      Swap = true;
1209    else if (!isLoad) {
1210      SDValue Val = cast<StoreSDNode>(N)->getValue();
1211      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1212        Swap = true;
1213    }
1214
1215    if (Swap)
1216      std::swap(Base, Offset);
1217
1218    AM = ISD::PRE_INC;
1219    return true;
1220  }
1221
1222  // LDU/STU can only handle immediates that are a multiple of 4.
1223  if (VT != MVT::i64) {
1224    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1225      return false;
1226  } else {
1227    // LDU/STU need an address with at least 4-byte alignment.
1228    if (Alignment < 4)
1229      return false;
1230
1231    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1232      return false;
1233  }
1234
1235  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1236    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1237    // sext i32 to i64 when addr mode is r+i.
1238    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1239        LD->getExtensionType() == ISD::SEXTLOAD &&
1240        isa<ConstantSDNode>(Offset))
1241      return false;
1242  }
1243
1244  AM = ISD::PRE_INC;
1245  return true;
1246}
1247
1248//===----------------------------------------------------------------------===//
1249//  LowerOperation implementation
1250//===----------------------------------------------------------------------===//
1251
1252/// GetLabelAccessInfo - Return true if we should reference labels using a
1253/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1254static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1255                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1256  HiOpFlags = PPCII::MO_HA16;
1257  LoOpFlags = PPCII::MO_LO16;
1258
1259  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1260  // non-darwin platform.  We don't support PIC on other platforms yet.
1261  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1262               TM.getSubtarget<PPCSubtarget>().isDarwin();
1263  if (isPIC) {
1264    HiOpFlags |= PPCII::MO_PIC_FLAG;
1265    LoOpFlags |= PPCII::MO_PIC_FLAG;
1266  }
1267
1268  // If this is a reference to a global value that requires a non-lazy-ptr, make
1269  // sure that instruction lowering adds it.
1270  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1271    HiOpFlags |= PPCII::MO_NLP_FLAG;
1272    LoOpFlags |= PPCII::MO_NLP_FLAG;
1273
1274    if (GV->hasHiddenVisibility()) {
1275      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1276      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1277    }
1278  }
1279
1280  return isPIC;
1281}
1282
1283static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1284                             SelectionDAG &DAG) {
1285  EVT PtrVT = HiPart.getValueType();
1286  SDValue Zero = DAG.getConstant(0, PtrVT);
1287  SDLoc DL(HiPart);
1288
1289  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1290  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1291
1292  // With PIC, the first instruction is actually "GR+hi(&G)".
1293  if (isPIC)
1294    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1295                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1296
1297  // Generate non-pic code that has direct accesses to the constant pool.
1298  // The address of the global is just (hi(&g)+lo(&g)).
1299  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1300}
1301
1302SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1303                                             SelectionDAG &DAG) const {
1304  EVT PtrVT = Op.getValueType();
1305  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1306  const Constant *C = CP->getConstVal();
1307
1308  // 64-bit SVR4 ABI code is always position-independent.
1309  // The actual address of the GlobalValue is stored in the TOC.
1310  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1311    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1312    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1313                       DAG.getRegister(PPC::X2, MVT::i64));
1314  }
1315
1316  unsigned MOHiFlag, MOLoFlag;
1317  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1318  SDValue CPIHi =
1319    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1320  SDValue CPILo =
1321    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1322  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1323}
1324
1325SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1326  EVT PtrVT = Op.getValueType();
1327  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1328
1329  // 64-bit SVR4 ABI code is always position-independent.
1330  // The actual address of the GlobalValue is stored in the TOC.
1331  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1332    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1333    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1334                       DAG.getRegister(PPC::X2, MVT::i64));
1335  }
1336
1337  unsigned MOHiFlag, MOLoFlag;
1338  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1339  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1340  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1341  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1342}
1343
1344SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1345                                             SelectionDAG &DAG) const {
1346  EVT PtrVT = Op.getValueType();
1347
1348  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1349
1350  unsigned MOHiFlag, MOLoFlag;
1351  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1352  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1353  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1354  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1355}
1356
1357SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1358                                              SelectionDAG &DAG) const {
1359
1360  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1361  SDLoc dl(GA);
1362  const GlobalValue *GV = GA->getGlobal();
1363  EVT PtrVT = getPointerTy();
1364  bool is64bit = PPCSubTarget.isPPC64();
1365
1366  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1367
1368  if (Model == TLSModel::LocalExec) {
1369    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1370                                               PPCII::MO_TPREL16_HA);
1371    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1372                                               PPCII::MO_TPREL16_LO);
1373    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1374                                     is64bit ? MVT::i64 : MVT::i32);
1375    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1376    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1377  }
1378
1379  if (!is64bit)
1380    llvm_unreachable("only local-exec is currently supported for ppc32");
1381
1382  if (Model == TLSModel::InitialExec) {
1383    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1384    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1385    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1386                                     PtrVT, GOTReg, TGA);
1387    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1388                                   PtrVT, TGA, TPOffsetHi);
1389    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1390  }
1391
1392  if (Model == TLSModel::GeneralDynamic) {
1393    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1394    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1395    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1396                                     GOTReg, TGA);
1397    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1398                                   GOTEntryHi, TGA);
1399
1400    // We need a chain node, and don't have one handy.  The underlying
1401    // call has no side effects, so using the function entry node
1402    // suffices.
1403    SDValue Chain = DAG.getEntryNode();
1404    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1405    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1406    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1407                                  PtrVT, ParmReg, TGA);
1408    // The return value from GET_TLS_ADDR really is in X3 already, but
1409    // some hacks are needed here to tie everything together.  The extra
1410    // copies dissolve during subsequent transforms.
1411    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1412    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1413  }
1414
1415  if (Model == TLSModel::LocalDynamic) {
1416    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1417    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1418    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1419                                     GOTReg, TGA);
1420    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1421                                   GOTEntryHi, TGA);
1422
1423    // We need a chain node, and don't have one handy.  The underlying
1424    // call has no side effects, so using the function entry node
1425    // suffices.
1426    SDValue Chain = DAG.getEntryNode();
1427    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1428    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1429    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1430                                  PtrVT, ParmReg, TGA);
1431    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1432    // some hacks are needed here to tie everything together.  The extra
1433    // copies dissolve during subsequent transforms.
1434    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1435    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1436                                      Chain, ParmReg, TGA);
1437    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1438  }
1439
1440  llvm_unreachable("Unknown TLS model!");
1441}
1442
1443SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1444                                              SelectionDAG &DAG) const {
1445  EVT PtrVT = Op.getValueType();
1446  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1447  SDLoc DL(GSDN);
1448  const GlobalValue *GV = GSDN->getGlobal();
1449
1450  // 64-bit SVR4 ABI code is always position-independent.
1451  // The actual address of the GlobalValue is stored in the TOC.
1452  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1453    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1454    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1455                       DAG.getRegister(PPC::X2, MVT::i64));
1456  }
1457
1458  unsigned MOHiFlag, MOLoFlag;
1459  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1460
1461  SDValue GAHi =
1462    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1463  SDValue GALo =
1464    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1465
1466  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1467
1468  // If the global reference is actually to a non-lazy-pointer, we have to do an
1469  // extra load to get the address of the global.
1470  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1471    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1472                      false, false, false, 0);
1473  return Ptr;
1474}
1475
1476SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1477  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1478  SDLoc dl(Op);
1479
1480  // If we're comparing for equality to zero, expose the fact that this is
1481  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1482  // fold the new nodes.
1483  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1484    if (C->isNullValue() && CC == ISD::SETEQ) {
1485      EVT VT = Op.getOperand(0).getValueType();
1486      SDValue Zext = Op.getOperand(0);
1487      if (VT.bitsLT(MVT::i32)) {
1488        VT = MVT::i32;
1489        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1490      }
1491      unsigned Log2b = Log2_32(VT.getSizeInBits());
1492      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1493      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1494                                DAG.getConstant(Log2b, MVT::i32));
1495      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1496    }
1497    // Leave comparisons against 0 and -1 alone for now, since they're usually
1498    // optimized.  FIXME: revisit this when we can custom lower all setcc
1499    // optimizations.
1500    if (C->isAllOnesValue() || C->isNullValue())
1501      return SDValue();
1502  }
1503
1504  // If we have an integer seteq/setne, turn it into a compare against zero
1505  // by xor'ing the rhs with the lhs, which is faster than setting a
1506  // condition register, reading it back out, and masking the correct bit.  The
1507  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1508  // the result to other bit-twiddling opportunities.
1509  EVT LHSVT = Op.getOperand(0).getValueType();
1510  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1511    EVT VT = Op.getValueType();
1512    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1513                                Op.getOperand(1));
1514    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1515  }
1516  return SDValue();
1517}
1518
1519SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1520                                      const PPCSubtarget &Subtarget) const {
1521  SDNode *Node = Op.getNode();
1522  EVT VT = Node->getValueType(0);
1523  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1524  SDValue InChain = Node->getOperand(0);
1525  SDValue VAListPtr = Node->getOperand(1);
1526  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1527  SDLoc dl(Node);
1528
1529  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1530
1531  // gpr_index
1532  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1533                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1534                                    false, false, 0);
1535  InChain = GprIndex.getValue(1);
1536
1537  if (VT == MVT::i64) {
1538    // Check if GprIndex is even
1539    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1540                                 DAG.getConstant(1, MVT::i32));
1541    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1542                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1543    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1544                                          DAG.getConstant(1, MVT::i32));
1545    // Align GprIndex to be even if it isn't
1546    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1547                           GprIndex);
1548  }
1549
1550  // fpr index is 1 byte after gpr
1551  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1552                               DAG.getConstant(1, MVT::i32));
1553
1554  // fpr
1555  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1556                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1557                                    false, false, 0);
1558  InChain = FprIndex.getValue(1);
1559
1560  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1561                                       DAG.getConstant(8, MVT::i32));
1562
1563  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1564                                        DAG.getConstant(4, MVT::i32));
1565
1566  // areas
1567  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1568                                     MachinePointerInfo(), false, false,
1569                                     false, 0);
1570  InChain = OverflowArea.getValue(1);
1571
1572  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1573                                    MachinePointerInfo(), false, false,
1574                                    false, 0);
1575  InChain = RegSaveArea.getValue(1);
1576
1577  // select overflow_area if index > 8
1578  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1579                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1580
1581  // adjustment constant gpr_index * 4/8
1582  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1583                                    VT.isInteger() ? GprIndex : FprIndex,
1584                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1585                                                    MVT::i32));
1586
1587  // OurReg = RegSaveArea + RegConstant
1588  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1589                               RegConstant);
1590
1591  // Floating types are 32 bytes into RegSaveArea
1592  if (VT.isFloatingPoint())
1593    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1594                         DAG.getConstant(32, MVT::i32));
1595
1596  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1597  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1598                                   VT.isInteger() ? GprIndex : FprIndex,
1599                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1600                                                   MVT::i32));
1601
1602  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1603                              VT.isInteger() ? VAListPtr : FprPtr,
1604                              MachinePointerInfo(SV),
1605                              MVT::i8, false, false, 0);
1606
1607  // determine if we should load from reg_save_area or overflow_area
1608  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1609
1610  // increase overflow_area by 4/8 if gpr/fpr > 8
1611  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1612                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1613                                          MVT::i32));
1614
1615  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1616                             OverflowAreaPlusN);
1617
1618  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1619                              OverflowAreaPtr,
1620                              MachinePointerInfo(),
1621                              MVT::i32, false, false, 0);
1622
1623  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1624                     false, false, false, 0);
1625}
1626
1627SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1628                                                  SelectionDAG &DAG) const {
1629  return Op.getOperand(0);
1630}
1631
1632SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1633                                                SelectionDAG &DAG) const {
1634  SDValue Chain = Op.getOperand(0);
1635  SDValue Trmp = Op.getOperand(1); // trampoline
1636  SDValue FPtr = Op.getOperand(2); // nested function
1637  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1638  SDLoc dl(Op);
1639
1640  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1641  bool isPPC64 = (PtrVT == MVT::i64);
1642  Type *IntPtrTy =
1643    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1644                                                             *DAG.getContext());
1645
1646  TargetLowering::ArgListTy Args;
1647  TargetLowering::ArgListEntry Entry;
1648
1649  Entry.Ty = IntPtrTy;
1650  Entry.Node = Trmp; Args.push_back(Entry);
1651
1652  // TrampSize == (isPPC64 ? 48 : 40);
1653  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1654                               isPPC64 ? MVT::i64 : MVT::i32);
1655  Args.push_back(Entry);
1656
1657  Entry.Node = FPtr; Args.push_back(Entry);
1658  Entry.Node = Nest; Args.push_back(Entry);
1659
1660  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1661  TargetLowering::CallLoweringInfo CLI(Chain,
1662                                       Type::getVoidTy(*DAG.getContext()),
1663                                       false, false, false, false, 0,
1664                                       CallingConv::C,
1665                /*isTailCall=*/false,
1666                                       /*doesNotRet=*/false,
1667                                       /*isReturnValueUsed=*/true,
1668                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1669                Args, DAG, dl);
1670  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1671
1672  return CallResult.second;
1673}
1674
1675SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1676                                        const PPCSubtarget &Subtarget) const {
1677  MachineFunction &MF = DAG.getMachineFunction();
1678  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1679
1680  SDLoc dl(Op);
1681
1682  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1683    // vastart just stores the address of the VarArgsFrameIndex slot into the
1684    // memory location argument.
1685    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1686    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1687    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1688    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1689                        MachinePointerInfo(SV),
1690                        false, false, 0);
1691  }
1692
1693  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1694  // We suppose the given va_list is already allocated.
1695  //
1696  // typedef struct {
1697  //  char gpr;     /* index into the array of 8 GPRs
1698  //                 * stored in the register save area
1699  //                 * gpr=0 corresponds to r3,
1700  //                 * gpr=1 to r4, etc.
1701  //                 */
1702  //  char fpr;     /* index into the array of 8 FPRs
1703  //                 * stored in the register save area
1704  //                 * fpr=0 corresponds to f1,
1705  //                 * fpr=1 to f2, etc.
1706  //                 */
1707  //  char *overflow_arg_area;
1708  //                /* location on stack that holds
1709  //                 * the next overflow argument
1710  //                 */
1711  //  char *reg_save_area;
1712  //               /* where r3:r10 and f1:f8 (if saved)
1713  //                * are stored
1714  //                */
1715  // } va_list[1];
1716
1717
1718  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1719  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1720
1721
1722  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1723
1724  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1725                                            PtrVT);
1726  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1727                                 PtrVT);
1728
1729  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1730  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1731
1732  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1733  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1734
1735  uint64_t FPROffset = 1;
1736  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1737
1738  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1739
1740  // Store first byte : number of int regs
1741  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1742                                         Op.getOperand(1),
1743                                         MachinePointerInfo(SV),
1744                                         MVT::i8, false, false, 0);
1745  uint64_t nextOffset = FPROffset;
1746  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1747                                  ConstFPROffset);
1748
1749  // Store second byte : number of float regs
1750  SDValue secondStore =
1751    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1752                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1753                      false, false, 0);
1754  nextOffset += StackOffset;
1755  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1756
1757  // Store second word : arguments given on stack
1758  SDValue thirdStore =
1759    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1760                 MachinePointerInfo(SV, nextOffset),
1761                 false, false, 0);
1762  nextOffset += FrameOffset;
1763  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1764
1765  // Store third word : arguments given in registers
1766  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1767                      MachinePointerInfo(SV, nextOffset),
1768                      false, false, 0);
1769
1770}
1771
1772#include "PPCGenCallingConv.inc"
1773
1774static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1775                                       CCValAssign::LocInfo &LocInfo,
1776                                       ISD::ArgFlagsTy &ArgFlags,
1777                                       CCState &State) {
1778  return true;
1779}
1780
1781static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1782                                              MVT &LocVT,
1783                                              CCValAssign::LocInfo &LocInfo,
1784                                              ISD::ArgFlagsTy &ArgFlags,
1785                                              CCState &State) {
1786  static const uint16_t ArgRegs[] = {
1787    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1788    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1789  };
1790  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1791
1792  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1793
1794  // Skip one register if the first unallocated register has an even register
1795  // number and there are still argument registers available which have not been
1796  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1797  // need to skip a register if RegNum is odd.
1798  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1799    State.AllocateReg(ArgRegs[RegNum]);
1800  }
1801
1802  // Always return false here, as this function only makes sure that the first
1803  // unallocated register has an odd register number and does not actually
1804  // allocate a register for the current argument.
1805  return false;
1806}
1807
1808static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1809                                                MVT &LocVT,
1810                                                CCValAssign::LocInfo &LocInfo,
1811                                                ISD::ArgFlagsTy &ArgFlags,
1812                                                CCState &State) {
1813  static const uint16_t ArgRegs[] = {
1814    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1815    PPC::F8
1816  };
1817
1818  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1819
1820  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1821
1822  // If there is only one Floating-point register left we need to put both f64
1823  // values of a split ppc_fp128 value on the stack.
1824  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1825    State.AllocateReg(ArgRegs[RegNum]);
1826  }
1827
1828  // Always return false here, as this function only makes sure that the two f64
1829  // values a ppc_fp128 value is split into are both passed in registers or both
1830  // passed on the stack and does not actually allocate a register for the
1831  // current argument.
1832  return false;
1833}
1834
1835/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1836/// on Darwin.
1837static const uint16_t *GetFPR() {
1838  static const uint16_t FPR[] = {
1839    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1840    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1841  };
1842
1843  return FPR;
1844}
1845
1846/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1847/// the stack.
1848static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1849                                       unsigned PtrByteSize) {
1850  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1851  if (Flags.isByVal())
1852    ArgSize = Flags.getByValSize();
1853  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1854
1855  return ArgSize;
1856}
1857
1858SDValue
1859PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1860                                        CallingConv::ID CallConv, bool isVarArg,
1861                                        const SmallVectorImpl<ISD::InputArg>
1862                                          &Ins,
1863                                        SDLoc dl, SelectionDAG &DAG,
1864                                        SmallVectorImpl<SDValue> &InVals)
1865                                          const {
1866  if (PPCSubTarget.isSVR4ABI()) {
1867    if (PPCSubTarget.isPPC64())
1868      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1869                                         dl, DAG, InVals);
1870    else
1871      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1872                                         dl, DAG, InVals);
1873  } else {
1874    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1875                                       dl, DAG, InVals);
1876  }
1877}
1878
1879SDValue
1880PPCTargetLowering::LowerFormalArguments_32SVR4(
1881                                      SDValue Chain,
1882                                      CallingConv::ID CallConv, bool isVarArg,
1883                                      const SmallVectorImpl<ISD::InputArg>
1884                                        &Ins,
1885                                      SDLoc dl, SelectionDAG &DAG,
1886                                      SmallVectorImpl<SDValue> &InVals) const {
1887
1888  // 32-bit SVR4 ABI Stack Frame Layout:
1889  //              +-----------------------------------+
1890  //        +-->  |            Back chain             |
1891  //        |     +-----------------------------------+
1892  //        |     | Floating-point register save area |
1893  //        |     +-----------------------------------+
1894  //        |     |    General register save area     |
1895  //        |     +-----------------------------------+
1896  //        |     |          CR save word             |
1897  //        |     +-----------------------------------+
1898  //        |     |         VRSAVE save word          |
1899  //        |     +-----------------------------------+
1900  //        |     |         Alignment padding         |
1901  //        |     +-----------------------------------+
1902  //        |     |     Vector register save area     |
1903  //        |     +-----------------------------------+
1904  //        |     |       Local variable space        |
1905  //        |     +-----------------------------------+
1906  //        |     |        Parameter list area        |
1907  //        |     +-----------------------------------+
1908  //        |     |           LR save word            |
1909  //        |     +-----------------------------------+
1910  // SP-->  +---  |            Back chain             |
1911  //              +-----------------------------------+
1912  //
1913  // Specifications:
1914  //   System V Application Binary Interface PowerPC Processor Supplement
1915  //   AltiVec Technology Programming Interface Manual
1916
1917  MachineFunction &MF = DAG.getMachineFunction();
1918  MachineFrameInfo *MFI = MF.getFrameInfo();
1919  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1920
1921  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1922  // Potential tail calls could cause overwriting of argument stack slots.
1923  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1924                       (CallConv == CallingConv::Fast));
1925  unsigned PtrByteSize = 4;
1926
1927  // Assign locations to all of the incoming arguments.
1928  SmallVector<CCValAssign, 16> ArgLocs;
1929  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1930                 getTargetMachine(), ArgLocs, *DAG.getContext());
1931
1932  // Reserve space for the linkage area on the stack.
1933  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1934
1935  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1936
1937  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1938    CCValAssign &VA = ArgLocs[i];
1939
1940    // Arguments stored in registers.
1941    if (VA.isRegLoc()) {
1942      const TargetRegisterClass *RC;
1943      EVT ValVT = VA.getValVT();
1944
1945      switch (ValVT.getSimpleVT().SimpleTy) {
1946        default:
1947          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1948        case MVT::i32:
1949          RC = &PPC::GPRCRegClass;
1950          break;
1951        case MVT::f32:
1952          RC = &PPC::F4RCRegClass;
1953          break;
1954        case MVT::f64:
1955          RC = &PPC::F8RCRegClass;
1956          break;
1957        case MVT::v16i8:
1958        case MVT::v8i16:
1959        case MVT::v4i32:
1960        case MVT::v4f32:
1961          RC = &PPC::VRRCRegClass;
1962          break;
1963      }
1964
1965      // Transform the arguments stored in physical registers into virtual ones.
1966      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1967      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1968
1969      InVals.push_back(ArgValue);
1970    } else {
1971      // Argument stored in memory.
1972      assert(VA.isMemLoc());
1973
1974      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1975      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1976                                      isImmutable);
1977
1978      // Create load nodes to retrieve arguments from the stack.
1979      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1980      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1981                                   MachinePointerInfo(),
1982                                   false, false, false, 0));
1983    }
1984  }
1985
1986  // Assign locations to all of the incoming aggregate by value arguments.
1987  // Aggregates passed by value are stored in the local variable space of the
1988  // caller's stack frame, right above the parameter list area.
1989  SmallVector<CCValAssign, 16> ByValArgLocs;
1990  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1991                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1992
1993  // Reserve stack space for the allocations in CCInfo.
1994  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1995
1996  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
1997
1998  // Area that is at least reserved in the caller of this function.
1999  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2000
2001  // Set the size that is at least reserved in caller of this function.  Tail
2002  // call optimized function's reserved stack space needs to be aligned so that
2003  // taking the difference between two stack areas will result in an aligned
2004  // stack.
2005  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2006
2007  MinReservedArea =
2008    std::max(MinReservedArea,
2009             PPCFrameLowering::getMinCallFrameSize(false, false));
2010
2011  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2012    getStackAlignment();
2013  unsigned AlignMask = TargetAlign-1;
2014  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2015
2016  FI->setMinReservedArea(MinReservedArea);
2017
2018  SmallVector<SDValue, 8> MemOps;
2019
2020  // If the function takes variable number of arguments, make a frame index for
2021  // the start of the first vararg value... for expansion of llvm.va_start.
2022  if (isVarArg) {
2023    static const uint16_t GPArgRegs[] = {
2024      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2025      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2026    };
2027    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2028
2029    static const uint16_t FPArgRegs[] = {
2030      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2031      PPC::F8
2032    };
2033    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2034
2035    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2036                                                          NumGPArgRegs));
2037    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2038                                                          NumFPArgRegs));
2039
2040    // Make room for NumGPArgRegs and NumFPArgRegs.
2041    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2042                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2043
2044    FuncInfo->setVarArgsStackOffset(
2045      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2046                             CCInfo.getNextStackOffset(), true));
2047
2048    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2049    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2050
2051    // The fixed integer arguments of a variadic function are stored to the
2052    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2053    // the result of va_next.
2054    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2055      // Get an existing live-in vreg, or add a new one.
2056      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2057      if (!VReg)
2058        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2059
2060      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2061      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2062                                   MachinePointerInfo(), false, false, 0);
2063      MemOps.push_back(Store);
2064      // Increment the address by four for the next argument to store
2065      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2066      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2067    }
2068
2069    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2070    // is set.
2071    // The double arguments are stored to the VarArgsFrameIndex
2072    // on the stack.
2073    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2074      // Get an existing live-in vreg, or add a new one.
2075      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2076      if (!VReg)
2077        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2078
2079      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2080      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2081                                   MachinePointerInfo(), false, false, 0);
2082      MemOps.push_back(Store);
2083      // Increment the address by eight for the next argument to store
2084      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2085                                         PtrVT);
2086      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2087    }
2088  }
2089
2090  if (!MemOps.empty())
2091    Chain = DAG.getNode(ISD::TokenFactor, dl,
2092                        MVT::Other, &MemOps[0], MemOps.size());
2093
2094  return Chain;
2095}
2096
2097// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2098// value to MVT::i64 and then truncate to the correct register size.
2099SDValue
2100PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2101                                     SelectionDAG &DAG, SDValue ArgVal,
2102                                     SDLoc dl) const {
2103  if (Flags.isSExt())
2104    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2105                         DAG.getValueType(ObjectVT));
2106  else if (Flags.isZExt())
2107    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2108                         DAG.getValueType(ObjectVT));
2109
2110  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2111}
2112
2113// Set the size that is at least reserved in caller of this function.  Tail
2114// call optimized functions' reserved stack space needs to be aligned so that
2115// taking the difference between two stack areas will result in an aligned
2116// stack.
2117void
2118PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2119                                      unsigned nAltivecParamsAtEnd,
2120                                      unsigned MinReservedArea,
2121                                      bool isPPC64) const {
2122  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2123  // Add the Altivec parameters at the end, if needed.
2124  if (nAltivecParamsAtEnd) {
2125    MinReservedArea = ((MinReservedArea+15)/16)*16;
2126    MinReservedArea += 16*nAltivecParamsAtEnd;
2127  }
2128  MinReservedArea =
2129    std::max(MinReservedArea,
2130             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2131  unsigned TargetAlign
2132    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2133        getStackAlignment();
2134  unsigned AlignMask = TargetAlign-1;
2135  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2136  FI->setMinReservedArea(MinReservedArea);
2137}
2138
2139SDValue
2140PPCTargetLowering::LowerFormalArguments_64SVR4(
2141                                      SDValue Chain,
2142                                      CallingConv::ID CallConv, bool isVarArg,
2143                                      const SmallVectorImpl<ISD::InputArg>
2144                                        &Ins,
2145                                      SDLoc dl, SelectionDAG &DAG,
2146                                      SmallVectorImpl<SDValue> &InVals) const {
2147  // TODO: add description of PPC stack frame format, or at least some docs.
2148  //
2149  MachineFunction &MF = DAG.getMachineFunction();
2150  MachineFrameInfo *MFI = MF.getFrameInfo();
2151  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2152
2153  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2154  // Potential tail calls could cause overwriting of argument stack slots.
2155  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2156                       (CallConv == CallingConv::Fast));
2157  unsigned PtrByteSize = 8;
2158
2159  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2160  // Area that is at least reserved in caller of this function.
2161  unsigned MinReservedArea = ArgOffset;
2162
2163  static const uint16_t GPR[] = {
2164    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2165    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2166  };
2167
2168  static const uint16_t *FPR = GetFPR();
2169
2170  static const uint16_t VR[] = {
2171    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2172    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2173  };
2174
2175  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2176  const unsigned Num_FPR_Regs = 13;
2177  const unsigned Num_VR_Regs  = array_lengthof(VR);
2178
2179  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2180
2181  // Add DAG nodes to load the arguments or copy them out of registers.  On
2182  // entry to a function on PPC, the arguments start after the linkage area,
2183  // although the first ones are often in registers.
2184
2185  SmallVector<SDValue, 8> MemOps;
2186  unsigned nAltivecParamsAtEnd = 0;
2187  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2188  unsigned CurArgIdx = 0;
2189  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2190    SDValue ArgVal;
2191    bool needsLoad = false;
2192    EVT ObjectVT = Ins[ArgNo].VT;
2193    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2194    unsigned ArgSize = ObjSize;
2195    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2196    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2197    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2198
2199    unsigned CurArgOffset = ArgOffset;
2200
2201    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2202    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2203        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2204      if (isVarArg) {
2205        MinReservedArea = ((MinReservedArea+15)/16)*16;
2206        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2207                                                  Flags,
2208                                                  PtrByteSize);
2209      } else
2210        nAltivecParamsAtEnd++;
2211    } else
2212      // Calculate min reserved area.
2213      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2214                                                Flags,
2215                                                PtrByteSize);
2216
2217    // FIXME the codegen can be much improved in some cases.
2218    // We do not have to keep everything in memory.
2219    if (Flags.isByVal()) {
2220      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2221      ObjSize = Flags.getByValSize();
2222      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2223      // Empty aggregate parameters do not take up registers.  Examples:
2224      //   struct { } a;
2225      //   union  { } b;
2226      //   int c[0];
2227      // etc.  However, we have to provide a place-holder in InVals, so
2228      // pretend we have an 8-byte item at the current address for that
2229      // purpose.
2230      if (!ObjSize) {
2231        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2232        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2233        InVals.push_back(FIN);
2234        continue;
2235      }
2236      // All aggregates smaller than 8 bytes must be passed right-justified.
2237      if (ObjSize < PtrByteSize)
2238        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2239      // The value of the object is its address.
2240      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2241      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2242      InVals.push_back(FIN);
2243
2244      if (ObjSize < 8) {
2245        if (GPR_idx != Num_GPR_Regs) {
2246          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2247          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2248          SDValue Store;
2249
2250          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2251            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2252                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2253            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2254                                      MachinePointerInfo(FuncArg, CurArgOffset),
2255                                      ObjType, false, false, 0);
2256          } else {
2257            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2258            // store the whole register as-is to the parameter save area
2259            // slot.  The address of the parameter was already calculated
2260            // above (InVals.push_back(FIN)) to be the right-justified
2261            // offset within the slot.  For this store, we need a new
2262            // frame index that points at the beginning of the slot.
2263            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2264            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2265            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2266                                 MachinePointerInfo(FuncArg, ArgOffset),
2267                                 false, false, 0);
2268          }
2269
2270          MemOps.push_back(Store);
2271          ++GPR_idx;
2272        }
2273        // Whether we copied from a register or not, advance the offset
2274        // into the parameter save area by a full doubleword.
2275        ArgOffset += PtrByteSize;
2276        continue;
2277      }
2278
2279      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2280        // Store whatever pieces of the object are in registers
2281        // to memory.  ArgOffset will be the address of the beginning
2282        // of the object.
2283        if (GPR_idx != Num_GPR_Regs) {
2284          unsigned VReg;
2285          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2286          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2287          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2288          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2289          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2290                                       MachinePointerInfo(FuncArg, ArgOffset),
2291                                       false, false, 0);
2292          MemOps.push_back(Store);
2293          ++GPR_idx;
2294          ArgOffset += PtrByteSize;
2295        } else {
2296          ArgOffset += ArgSize - j;
2297          break;
2298        }
2299      }
2300      continue;
2301    }
2302
2303    switch (ObjectVT.getSimpleVT().SimpleTy) {
2304    default: llvm_unreachable("Unhandled argument type!");
2305    case MVT::i32:
2306    case MVT::i64:
2307      if (GPR_idx != Num_GPR_Regs) {
2308        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2309        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2310
2311        if (ObjectVT == MVT::i32)
2312          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2313          // value to MVT::i64 and then truncate to the correct register size.
2314          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2315
2316        ++GPR_idx;
2317      } else {
2318        needsLoad = true;
2319        ArgSize = PtrByteSize;
2320      }
2321      ArgOffset += 8;
2322      break;
2323
2324    case MVT::f32:
2325    case MVT::f64:
2326      // Every 8 bytes of argument space consumes one of the GPRs available for
2327      // argument passing.
2328      if (GPR_idx != Num_GPR_Regs) {
2329        ++GPR_idx;
2330      }
2331      if (FPR_idx != Num_FPR_Regs) {
2332        unsigned VReg;
2333
2334        if (ObjectVT == MVT::f32)
2335          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2336        else
2337          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2338
2339        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2340        ++FPR_idx;
2341      } else {
2342        needsLoad = true;
2343        ArgSize = PtrByteSize;
2344      }
2345
2346      ArgOffset += 8;
2347      break;
2348    case MVT::v4f32:
2349    case MVT::v4i32:
2350    case MVT::v8i16:
2351    case MVT::v16i8:
2352      // Note that vector arguments in registers don't reserve stack space,
2353      // except in varargs functions.
2354      if (VR_idx != Num_VR_Regs) {
2355        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2356        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2357        if (isVarArg) {
2358          while ((ArgOffset % 16) != 0) {
2359            ArgOffset += PtrByteSize;
2360            if (GPR_idx != Num_GPR_Regs)
2361              GPR_idx++;
2362          }
2363          ArgOffset += 16;
2364          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2365        }
2366        ++VR_idx;
2367      } else {
2368        // Vectors are aligned.
2369        ArgOffset = ((ArgOffset+15)/16)*16;
2370        CurArgOffset = ArgOffset;
2371        ArgOffset += 16;
2372        needsLoad = true;
2373      }
2374      break;
2375    }
2376
2377    // We need to load the argument to a virtual register if we determined
2378    // above that we ran out of physical registers of the appropriate type.
2379    if (needsLoad) {
2380      int FI = MFI->CreateFixedObject(ObjSize,
2381                                      CurArgOffset + (ArgSize - ObjSize),
2382                                      isImmutable);
2383      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2384      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2385                           false, false, false, 0);
2386    }
2387
2388    InVals.push_back(ArgVal);
2389  }
2390
2391  // Set the size that is at least reserved in caller of this function.  Tail
2392  // call optimized functions' reserved stack space needs to be aligned so that
2393  // taking the difference between two stack areas will result in an aligned
2394  // stack.
2395  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2396
2397  // If the function takes variable number of arguments, make a frame index for
2398  // the start of the first vararg value... for expansion of llvm.va_start.
2399  if (isVarArg) {
2400    int Depth = ArgOffset;
2401
2402    FuncInfo->setVarArgsFrameIndex(
2403      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2404    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2405
2406    // If this function is vararg, store any remaining integer argument regs
2407    // to their spots on the stack so that they may be loaded by deferencing the
2408    // result of va_next.
2409    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2410      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2411      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2412      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2413                                   MachinePointerInfo(), false, false, 0);
2414      MemOps.push_back(Store);
2415      // Increment the address by four for the next argument to store
2416      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2417      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2418    }
2419  }
2420
2421  if (!MemOps.empty())
2422    Chain = DAG.getNode(ISD::TokenFactor, dl,
2423                        MVT::Other, &MemOps[0], MemOps.size());
2424
2425  return Chain;
2426}
2427
2428SDValue
2429PPCTargetLowering::LowerFormalArguments_Darwin(
2430                                      SDValue Chain,
2431                                      CallingConv::ID CallConv, bool isVarArg,
2432                                      const SmallVectorImpl<ISD::InputArg>
2433                                        &Ins,
2434                                      SDLoc dl, SelectionDAG &DAG,
2435                                      SmallVectorImpl<SDValue> &InVals) const {
2436  // TODO: add description of PPC stack frame format, or at least some docs.
2437  //
2438  MachineFunction &MF = DAG.getMachineFunction();
2439  MachineFrameInfo *MFI = MF.getFrameInfo();
2440  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2441
2442  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2443  bool isPPC64 = PtrVT == MVT::i64;
2444  // Potential tail calls could cause overwriting of argument stack slots.
2445  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2446                       (CallConv == CallingConv::Fast));
2447  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2448
2449  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2450  // Area that is at least reserved in caller of this function.
2451  unsigned MinReservedArea = ArgOffset;
2452
2453  static const uint16_t GPR_32[] = {           // 32-bit registers.
2454    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2455    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2456  };
2457  static const uint16_t GPR_64[] = {           // 64-bit registers.
2458    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2459    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2460  };
2461
2462  static const uint16_t *FPR = GetFPR();
2463
2464  static const uint16_t VR[] = {
2465    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2466    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2467  };
2468
2469  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2470  const unsigned Num_FPR_Regs = 13;
2471  const unsigned Num_VR_Regs  = array_lengthof( VR);
2472
2473  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2474
2475  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2476
2477  // In 32-bit non-varargs functions, the stack space for vectors is after the
2478  // stack space for non-vectors.  We do not use this space unless we have
2479  // too many vectors to fit in registers, something that only occurs in
2480  // constructed examples:), but we have to walk the arglist to figure
2481  // that out...for the pathological case, compute VecArgOffset as the
2482  // start of the vector parameter area.  Computing VecArgOffset is the
2483  // entire point of the following loop.
2484  unsigned VecArgOffset = ArgOffset;
2485  if (!isVarArg && !isPPC64) {
2486    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2487         ++ArgNo) {
2488      EVT ObjectVT = Ins[ArgNo].VT;
2489      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2490
2491      if (Flags.isByVal()) {
2492        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2493        unsigned ObjSize = Flags.getByValSize();
2494        unsigned ArgSize =
2495                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2496        VecArgOffset += ArgSize;
2497        continue;
2498      }
2499
2500      switch(ObjectVT.getSimpleVT().SimpleTy) {
2501      default: llvm_unreachable("Unhandled argument type!");
2502      case MVT::i32:
2503      case MVT::f32:
2504        VecArgOffset += 4;
2505        break;
2506      case MVT::i64:  // PPC64
2507      case MVT::f64:
2508        // FIXME: We are guaranteed to be !isPPC64 at this point.
2509        // Does MVT::i64 apply?
2510        VecArgOffset += 8;
2511        break;
2512      case MVT::v4f32:
2513      case MVT::v4i32:
2514      case MVT::v8i16:
2515      case MVT::v16i8:
2516        // Nothing to do, we're only looking at Nonvector args here.
2517        break;
2518      }
2519    }
2520  }
2521  // We've found where the vector parameter area in memory is.  Skip the
2522  // first 12 parameters; these don't use that memory.
2523  VecArgOffset = ((VecArgOffset+15)/16)*16;
2524  VecArgOffset += 12*16;
2525
2526  // Add DAG nodes to load the arguments or copy them out of registers.  On
2527  // entry to a function on PPC, the arguments start after the linkage area,
2528  // although the first ones are often in registers.
2529
2530  SmallVector<SDValue, 8> MemOps;
2531  unsigned nAltivecParamsAtEnd = 0;
2532  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2533  unsigned CurArgIdx = 0;
2534  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2535    SDValue ArgVal;
2536    bool needsLoad = false;
2537    EVT ObjectVT = Ins[ArgNo].VT;
2538    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2539    unsigned ArgSize = ObjSize;
2540    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2541    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2542    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2543
2544    unsigned CurArgOffset = ArgOffset;
2545
2546    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2547    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2548        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2549      if (isVarArg || isPPC64) {
2550        MinReservedArea = ((MinReservedArea+15)/16)*16;
2551        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2552                                                  Flags,
2553                                                  PtrByteSize);
2554      } else  nAltivecParamsAtEnd++;
2555    } else
2556      // Calculate min reserved area.
2557      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2558                                                Flags,
2559                                                PtrByteSize);
2560
2561    // FIXME the codegen can be much improved in some cases.
2562    // We do not have to keep everything in memory.
2563    if (Flags.isByVal()) {
2564      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2565      ObjSize = Flags.getByValSize();
2566      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2567      // Objects of size 1 and 2 are right justified, everything else is
2568      // left justified.  This means the memory address is adjusted forwards.
2569      if (ObjSize==1 || ObjSize==2) {
2570        CurArgOffset = CurArgOffset + (4 - ObjSize);
2571      }
2572      // The value of the object is its address.
2573      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2574      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2575      InVals.push_back(FIN);
2576      if (ObjSize==1 || ObjSize==2) {
2577        if (GPR_idx != Num_GPR_Regs) {
2578          unsigned VReg;
2579          if (isPPC64)
2580            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2581          else
2582            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2583          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2584          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2585          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2586                                            MachinePointerInfo(FuncArg,
2587                                              CurArgOffset),
2588                                            ObjType, false, false, 0);
2589          MemOps.push_back(Store);
2590          ++GPR_idx;
2591        }
2592
2593        ArgOffset += PtrByteSize;
2594
2595        continue;
2596      }
2597      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2598        // Store whatever pieces of the object are in registers
2599        // to memory.  ArgOffset will be the address of the beginning
2600        // of the object.
2601        if (GPR_idx != Num_GPR_Regs) {
2602          unsigned VReg;
2603          if (isPPC64)
2604            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2605          else
2606            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2607          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2608          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2609          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2610          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2611                                       MachinePointerInfo(FuncArg, ArgOffset),
2612                                       false, false, 0);
2613          MemOps.push_back(Store);
2614          ++GPR_idx;
2615          ArgOffset += PtrByteSize;
2616        } else {
2617          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2618          break;
2619        }
2620      }
2621      continue;
2622    }
2623
2624    switch (ObjectVT.getSimpleVT().SimpleTy) {
2625    default: llvm_unreachable("Unhandled argument type!");
2626    case MVT::i32:
2627      if (!isPPC64) {
2628        if (GPR_idx != Num_GPR_Regs) {
2629          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2630          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2631          ++GPR_idx;
2632        } else {
2633          needsLoad = true;
2634          ArgSize = PtrByteSize;
2635        }
2636        // All int arguments reserve stack space in the Darwin ABI.
2637        ArgOffset += PtrByteSize;
2638        break;
2639      }
2640      // FALLTHROUGH
2641    case MVT::i64:  // PPC64
2642      if (GPR_idx != Num_GPR_Regs) {
2643        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2644        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2645
2646        if (ObjectVT == MVT::i32)
2647          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2648          // value to MVT::i64 and then truncate to the correct register size.
2649          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2650
2651        ++GPR_idx;
2652      } else {
2653        needsLoad = true;
2654        ArgSize = PtrByteSize;
2655      }
2656      // All int arguments reserve stack space in the Darwin ABI.
2657      ArgOffset += 8;
2658      break;
2659
2660    case MVT::f32:
2661    case MVT::f64:
2662      // Every 4 bytes of argument space consumes one of the GPRs available for
2663      // argument passing.
2664      if (GPR_idx != Num_GPR_Regs) {
2665        ++GPR_idx;
2666        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2667          ++GPR_idx;
2668      }
2669      if (FPR_idx != Num_FPR_Regs) {
2670        unsigned VReg;
2671
2672        if (ObjectVT == MVT::f32)
2673          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2674        else
2675          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2676
2677        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2678        ++FPR_idx;
2679      } else {
2680        needsLoad = true;
2681      }
2682
2683      // All FP arguments reserve stack space in the Darwin ABI.
2684      ArgOffset += isPPC64 ? 8 : ObjSize;
2685      break;
2686    case MVT::v4f32:
2687    case MVT::v4i32:
2688    case MVT::v8i16:
2689    case MVT::v16i8:
2690      // Note that vector arguments in registers don't reserve stack space,
2691      // except in varargs functions.
2692      if (VR_idx != Num_VR_Regs) {
2693        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2694        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2695        if (isVarArg) {
2696          while ((ArgOffset % 16) != 0) {
2697            ArgOffset += PtrByteSize;
2698            if (GPR_idx != Num_GPR_Regs)
2699              GPR_idx++;
2700          }
2701          ArgOffset += 16;
2702          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2703        }
2704        ++VR_idx;
2705      } else {
2706        if (!isVarArg && !isPPC64) {
2707          // Vectors go after all the nonvectors.
2708          CurArgOffset = VecArgOffset;
2709          VecArgOffset += 16;
2710        } else {
2711          // Vectors are aligned.
2712          ArgOffset = ((ArgOffset+15)/16)*16;
2713          CurArgOffset = ArgOffset;
2714          ArgOffset += 16;
2715        }
2716        needsLoad = true;
2717      }
2718      break;
2719    }
2720
2721    // We need to load the argument to a virtual register if we determined above
2722    // that we ran out of physical registers of the appropriate type.
2723    if (needsLoad) {
2724      int FI = MFI->CreateFixedObject(ObjSize,
2725                                      CurArgOffset + (ArgSize - ObjSize),
2726                                      isImmutable);
2727      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2728      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2729                           false, false, false, 0);
2730    }
2731
2732    InVals.push_back(ArgVal);
2733  }
2734
2735  // Set the size that is at least reserved in caller of this function.  Tail
2736  // call optimized functions' reserved stack space needs to be aligned so that
2737  // taking the difference between two stack areas will result in an aligned
2738  // stack.
2739  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2740
2741  // If the function takes variable number of arguments, make a frame index for
2742  // the start of the first vararg value... for expansion of llvm.va_start.
2743  if (isVarArg) {
2744    int Depth = ArgOffset;
2745
2746    FuncInfo->setVarArgsFrameIndex(
2747      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2748                             Depth, true));
2749    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2750
2751    // If this function is vararg, store any remaining integer argument regs
2752    // to their spots on the stack so that they may be loaded by deferencing the
2753    // result of va_next.
2754    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2755      unsigned VReg;
2756
2757      if (isPPC64)
2758        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2759      else
2760        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2761
2762      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2763      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2764                                   MachinePointerInfo(), false, false, 0);
2765      MemOps.push_back(Store);
2766      // Increment the address by four for the next argument to store
2767      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2768      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2769    }
2770  }
2771
2772  if (!MemOps.empty())
2773    Chain = DAG.getNode(ISD::TokenFactor, dl,
2774                        MVT::Other, &MemOps[0], MemOps.size());
2775
2776  return Chain;
2777}
2778
2779/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2780/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2781static unsigned
2782CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2783                                     bool isPPC64,
2784                                     bool isVarArg,
2785                                     unsigned CC,
2786                                     const SmallVectorImpl<ISD::OutputArg>
2787                                       &Outs,
2788                                     const SmallVectorImpl<SDValue> &OutVals,
2789                                     unsigned &nAltivecParamsAtEnd) {
2790  // Count how many bytes are to be pushed on the stack, including the linkage
2791  // area, and parameter passing area.  We start with 24/48 bytes, which is
2792  // prereserved space for [SP][CR][LR][3 x unused].
2793  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2794  unsigned NumOps = Outs.size();
2795  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2796
2797  // Add up all the space actually used.
2798  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2799  // they all go in registers, but we must reserve stack space for them for
2800  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2801  // assigned stack space in order, with padding so Altivec parameters are
2802  // 16-byte aligned.
2803  nAltivecParamsAtEnd = 0;
2804  for (unsigned i = 0; i != NumOps; ++i) {
2805    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2806    EVT ArgVT = Outs[i].VT;
2807    // Varargs Altivec parameters are padded to a 16 byte boundary.
2808    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2809        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2810      if (!isVarArg && !isPPC64) {
2811        // Non-varargs Altivec parameters go after all the non-Altivec
2812        // parameters; handle those later so we know how much padding we need.
2813        nAltivecParamsAtEnd++;
2814        continue;
2815      }
2816      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2817      NumBytes = ((NumBytes+15)/16)*16;
2818    }
2819    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2820  }
2821
2822   // Allow for Altivec parameters at the end, if needed.
2823  if (nAltivecParamsAtEnd) {
2824    NumBytes = ((NumBytes+15)/16)*16;
2825    NumBytes += 16*nAltivecParamsAtEnd;
2826  }
2827
2828  // The prolog code of the callee may store up to 8 GPR argument registers to
2829  // the stack, allowing va_start to index over them in memory if its varargs.
2830  // Because we cannot tell if this is needed on the caller side, we have to
2831  // conservatively assume that it is needed.  As such, make sure we have at
2832  // least enough stack space for the caller to store the 8 GPRs.
2833  NumBytes = std::max(NumBytes,
2834                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2835
2836  // Tail call needs the stack to be aligned.
2837  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2838    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2839      getFrameLowering()->getStackAlignment();
2840    unsigned AlignMask = TargetAlign-1;
2841    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2842  }
2843
2844  return NumBytes;
2845}
2846
2847/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2848/// adjusted to accommodate the arguments for the tailcall.
2849static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2850                                   unsigned ParamSize) {
2851
2852  if (!isTailCall) return 0;
2853
2854  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2855  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2856  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2857  // Remember only if the new adjustement is bigger.
2858  if (SPDiff < FI->getTailCallSPDelta())
2859    FI->setTailCallSPDelta(SPDiff);
2860
2861  return SPDiff;
2862}
2863
2864/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2865/// for tail call optimization. Targets which want to do tail call
2866/// optimization should implement this function.
2867bool
2868PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2869                                                     CallingConv::ID CalleeCC,
2870                                                     bool isVarArg,
2871                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2872                                                     SelectionDAG& DAG) const {
2873  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2874    return false;
2875
2876  // Variable argument functions are not supported.
2877  if (isVarArg)
2878    return false;
2879
2880  MachineFunction &MF = DAG.getMachineFunction();
2881  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2882  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2883    // Functions containing by val parameters are not supported.
2884    for (unsigned i = 0; i != Ins.size(); i++) {
2885       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2886       if (Flags.isByVal()) return false;
2887    }
2888
2889    // Non PIC/GOT  tail calls are supported.
2890    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2891      return true;
2892
2893    // At the moment we can only do local tail calls (in same module, hidden
2894    // or protected) if we are generating PIC.
2895    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2896      return G->getGlobal()->hasHiddenVisibility()
2897          || G->getGlobal()->hasProtectedVisibility();
2898  }
2899
2900  return false;
2901}
2902
2903/// isCallCompatibleAddress - Return the immediate to use if the specified
2904/// 32-bit value is representable in the immediate field of a BxA instruction.
2905static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2906  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2907  if (!C) return 0;
2908
2909  int Addr = C->getZExtValue();
2910  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2911      SignExtend32<26>(Addr) != Addr)
2912    return 0;  // Top 6 bits have to be sext of immediate.
2913
2914  return DAG.getConstant((int)C->getZExtValue() >> 2,
2915                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2916}
2917
2918namespace {
2919
2920struct TailCallArgumentInfo {
2921  SDValue Arg;
2922  SDValue FrameIdxOp;
2923  int       FrameIdx;
2924
2925  TailCallArgumentInfo() : FrameIdx(0) {}
2926};
2927
2928}
2929
2930/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2931static void
2932StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2933                                           SDValue Chain,
2934                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2935                   SmallVector<SDValue, 8> &MemOpChains,
2936                   SDLoc dl) {
2937  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2938    SDValue Arg = TailCallArgs[i].Arg;
2939    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2940    int FI = TailCallArgs[i].FrameIdx;
2941    // Store relative to framepointer.
2942    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2943                                       MachinePointerInfo::getFixedStack(FI),
2944                                       false, false, 0));
2945  }
2946}
2947
2948/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2949/// the appropriate stack slot for the tail call optimized function call.
2950static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2951                                               MachineFunction &MF,
2952                                               SDValue Chain,
2953                                               SDValue OldRetAddr,
2954                                               SDValue OldFP,
2955                                               int SPDiff,
2956                                               bool isPPC64,
2957                                               bool isDarwinABI,
2958                                               SDLoc dl) {
2959  if (SPDiff) {
2960    // Calculate the new stack slot for the return address.
2961    int SlotSize = isPPC64 ? 8 : 4;
2962    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2963                                                                   isDarwinABI);
2964    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2965                                                          NewRetAddrLoc, true);
2966    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2967    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2968    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2969                         MachinePointerInfo::getFixedStack(NewRetAddr),
2970                         false, false, 0);
2971
2972    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2973    // slot as the FP is never overwritten.
2974    if (isDarwinABI) {
2975      int NewFPLoc =
2976        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2977      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2978                                                          true);
2979      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2980      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2981                           MachinePointerInfo::getFixedStack(NewFPIdx),
2982                           false, false, 0);
2983    }
2984  }
2985  return Chain;
2986}
2987
2988/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2989/// the position of the argument.
2990static void
2991CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2992                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2993                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2994  int Offset = ArgOffset + SPDiff;
2995  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2996  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2997  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2998  SDValue FIN = DAG.getFrameIndex(FI, VT);
2999  TailCallArgumentInfo Info;
3000  Info.Arg = Arg;
3001  Info.FrameIdxOp = FIN;
3002  Info.FrameIdx = FI;
3003  TailCallArguments.push_back(Info);
3004}
3005
3006/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3007/// stack slot. Returns the chain as result and the loaded frame pointers in
3008/// LROpOut/FPOpout. Used when tail calling.
3009SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3010                                                        int SPDiff,
3011                                                        SDValue Chain,
3012                                                        SDValue &LROpOut,
3013                                                        SDValue &FPOpOut,
3014                                                        bool isDarwinABI,
3015                                                        SDLoc dl) const {
3016  if (SPDiff) {
3017    // Load the LR and FP stack slot for later adjusting.
3018    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3019    LROpOut = getReturnAddrFrameIndex(DAG);
3020    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3021                          false, false, false, 0);
3022    Chain = SDValue(LROpOut.getNode(), 1);
3023
3024    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3025    // slot as the FP is never overwritten.
3026    if (isDarwinABI) {
3027      FPOpOut = getFramePointerFrameIndex(DAG);
3028      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3029                            false, false, false, 0);
3030      Chain = SDValue(FPOpOut.getNode(), 1);
3031    }
3032  }
3033  return Chain;
3034}
3035
3036/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3037/// by "Src" to address "Dst" of size "Size".  Alignment information is
3038/// specified by the specific parameter attribute. The copy will be passed as
3039/// a byval function parameter.
3040/// Sometimes what we are copying is the end of a larger object, the part that
3041/// does not fit in registers.
3042static SDValue
3043CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3044                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3045                          SDLoc dl) {
3046  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3047  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3048                       false, false, MachinePointerInfo(0),
3049                       MachinePointerInfo(0));
3050}
3051
3052/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3053/// tail calls.
3054static void
3055LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3056                 SDValue Arg, SDValue PtrOff, int SPDiff,
3057                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3058                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3059                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3060                 SDLoc dl) {
3061  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3062  if (!isTailCall) {
3063    if (isVector) {
3064      SDValue StackPtr;
3065      if (isPPC64)
3066        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3067      else
3068        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3069      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3070                           DAG.getConstant(ArgOffset, PtrVT));
3071    }
3072    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3073                                       MachinePointerInfo(), false, false, 0));
3074  // Calculate and remember argument location.
3075  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3076                                  TailCallArguments);
3077}
3078
3079static
3080void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3081                     SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3082                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3083                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3084  MachineFunction &MF = DAG.getMachineFunction();
3085
3086  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3087  // might overwrite each other in case of tail call optimization.
3088  SmallVector<SDValue, 8> MemOpChains2;
3089  // Do not flag preceding copytoreg stuff together with the following stuff.
3090  InFlag = SDValue();
3091  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3092                                    MemOpChains2, dl);
3093  if (!MemOpChains2.empty())
3094    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3095                        &MemOpChains2[0], MemOpChains2.size());
3096
3097  // Store the return address to the appropriate stack slot.
3098  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3099                                        isPPC64, isDarwinABI, dl);
3100
3101  // Emit callseq_end just before tailcall node.
3102  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3103                             DAG.getIntPtrConstant(0, true), InFlag, dl);
3104  InFlag = Chain.getValue(1);
3105}
3106
3107static
3108unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3109                     SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3110                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3111                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3112                     const PPCSubtarget &PPCSubTarget) {
3113
3114  bool isPPC64 = PPCSubTarget.isPPC64();
3115  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3116
3117  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3118  NodeTys.push_back(MVT::Other);   // Returns a chain
3119  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3120
3121  unsigned CallOpc = PPCISD::CALL;
3122
3123  bool needIndirectCall = true;
3124  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3125    // If this is an absolute destination address, use the munged value.
3126    Callee = SDValue(Dest, 0);
3127    needIndirectCall = false;
3128  }
3129
3130  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3131    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3132    // Use indirect calls for ALL functions calls in JIT mode, since the
3133    // far-call stubs may be outside relocation limits for a BL instruction.
3134    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3135      unsigned OpFlags = 0;
3136      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3137          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3138           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3139          (G->getGlobal()->isDeclaration() ||
3140           G->getGlobal()->isWeakForLinker())) {
3141        // PC-relative references to external symbols should go through $stub,
3142        // unless we're building with the leopard linker or later, which
3143        // automatically synthesizes these stubs.
3144        OpFlags = PPCII::MO_DARWIN_STUB;
3145      }
3146
3147      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3148      // every direct call is) turn it into a TargetGlobalAddress /
3149      // TargetExternalSymbol node so that legalize doesn't hack it.
3150      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3151                                          Callee.getValueType(),
3152                                          0, OpFlags);
3153      needIndirectCall = false;
3154    }
3155  }
3156
3157  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3158    unsigned char OpFlags = 0;
3159
3160    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3161        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3162         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3163      // PC-relative references to external symbols should go through $stub,
3164      // unless we're building with the leopard linker or later, which
3165      // automatically synthesizes these stubs.
3166      OpFlags = PPCII::MO_DARWIN_STUB;
3167    }
3168
3169    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3170                                         OpFlags);
3171    needIndirectCall = false;
3172  }
3173
3174  if (needIndirectCall) {
3175    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3176    // to do the call, we can't use PPCISD::CALL.
3177    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3178
3179    if (isSVR4ABI && isPPC64) {
3180      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3181      // entry point, but to the function descriptor (the function entry point
3182      // address is part of the function descriptor though).
3183      // The function descriptor is a three doubleword structure with the
3184      // following fields: function entry point, TOC base address and
3185      // environment pointer.
3186      // Thus for a call through a function pointer, the following actions need
3187      // to be performed:
3188      //   1. Save the TOC of the caller in the TOC save area of its stack
3189      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3190      //   2. Load the address of the function entry point from the function
3191      //      descriptor.
3192      //   3. Load the TOC of the callee from the function descriptor into r2.
3193      //   4. Load the environment pointer from the function descriptor into
3194      //      r11.
3195      //   5. Branch to the function entry point address.
3196      //   6. On return of the callee, the TOC of the caller needs to be
3197      //      restored (this is done in FinishCall()).
3198      //
3199      // All those operations are flagged together to ensure that no other
3200      // operations can be scheduled in between. E.g. without flagging the
3201      // operations together, a TOC access in the caller could be scheduled
3202      // between the load of the callee TOC and the branch to the callee, which
3203      // results in the TOC access going through the TOC of the callee instead
3204      // of going through the TOC of the caller, which leads to incorrect code.
3205
3206      // Load the address of the function entry point from the function
3207      // descriptor.
3208      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3209      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3210                                        InFlag.getNode() ? 3 : 2);
3211      Chain = LoadFuncPtr.getValue(1);
3212      InFlag = LoadFuncPtr.getValue(2);
3213
3214      // Load environment pointer into r11.
3215      // Offset of the environment pointer within the function descriptor.
3216      SDValue PtrOff = DAG.getIntPtrConstant(16);
3217
3218      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3219      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3220                                       InFlag);
3221      Chain = LoadEnvPtr.getValue(1);
3222      InFlag = LoadEnvPtr.getValue(2);
3223
3224      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3225                                        InFlag);
3226      Chain = EnvVal.getValue(0);
3227      InFlag = EnvVal.getValue(1);
3228
3229      // Load TOC of the callee into r2. We are using a target-specific load
3230      // with r2 hard coded, because the result of a target-independent load
3231      // would never go directly into r2, since r2 is a reserved register (which
3232      // prevents the register allocator from allocating it), resulting in an
3233      // additional register being allocated and an unnecessary move instruction
3234      // being generated.
3235      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3236      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3237                                       Callee, InFlag);
3238      Chain = LoadTOCPtr.getValue(0);
3239      InFlag = LoadTOCPtr.getValue(1);
3240
3241      MTCTROps[0] = Chain;
3242      MTCTROps[1] = LoadFuncPtr;
3243      MTCTROps[2] = InFlag;
3244    }
3245
3246    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3247                        2 + (InFlag.getNode() != 0));
3248    InFlag = Chain.getValue(1);
3249
3250    NodeTys.clear();
3251    NodeTys.push_back(MVT::Other);
3252    NodeTys.push_back(MVT::Glue);
3253    Ops.push_back(Chain);
3254    CallOpc = PPCISD::BCTRL;
3255    Callee.setNode(0);
3256    // Add use of X11 (holding environment pointer)
3257    if (isSVR4ABI && isPPC64)
3258      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3259    // Add CTR register as callee so a bctr can be emitted later.
3260    if (isTailCall)
3261      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3262  }
3263
3264  // If this is a direct call, pass the chain and the callee.
3265  if (Callee.getNode()) {
3266    Ops.push_back(Chain);
3267    Ops.push_back(Callee);
3268  }
3269  // If this is a tail call add stack pointer delta.
3270  if (isTailCall)
3271    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3272
3273  // Add argument registers to the end of the list so that they are known live
3274  // into the call.
3275  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3276    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3277                                  RegsToPass[i].second.getValueType()));
3278
3279  return CallOpc;
3280}
3281
3282static
3283bool isLocalCall(const SDValue &Callee)
3284{
3285  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3286    return !G->getGlobal()->isDeclaration() &&
3287           !G->getGlobal()->isWeakForLinker();
3288  return false;
3289}
3290
3291SDValue
3292PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3293                                   CallingConv::ID CallConv, bool isVarArg,
3294                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3295                                   SDLoc dl, SelectionDAG &DAG,
3296                                   SmallVectorImpl<SDValue> &InVals) const {
3297
3298  SmallVector<CCValAssign, 16> RVLocs;
3299  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3300                    getTargetMachine(), RVLocs, *DAG.getContext());
3301  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3302
3303  // Copy all of the result registers out of their specified physreg.
3304  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3305    CCValAssign &VA = RVLocs[i];
3306    assert(VA.isRegLoc() && "Can only return in registers!");
3307
3308    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3309                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3310    Chain = Val.getValue(1);
3311    InFlag = Val.getValue(2);
3312
3313    switch (VA.getLocInfo()) {
3314    default: llvm_unreachable("Unknown loc info!");
3315    case CCValAssign::Full: break;
3316    case CCValAssign::AExt:
3317      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3318      break;
3319    case CCValAssign::ZExt:
3320      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3321                        DAG.getValueType(VA.getValVT()));
3322      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3323      break;
3324    case CCValAssign::SExt:
3325      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3326                        DAG.getValueType(VA.getValVT()));
3327      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3328      break;
3329    }
3330
3331    InVals.push_back(Val);
3332  }
3333
3334  return Chain;
3335}
3336
3337SDValue
3338PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3339                              bool isTailCall, bool isVarArg,
3340                              SelectionDAG &DAG,
3341                              SmallVector<std::pair<unsigned, SDValue>, 8>
3342                                &RegsToPass,
3343                              SDValue InFlag, SDValue Chain,
3344                              SDValue &Callee,
3345                              int SPDiff, unsigned NumBytes,
3346                              const SmallVectorImpl<ISD::InputArg> &Ins,
3347                              SmallVectorImpl<SDValue> &InVals) const {
3348  std::vector<EVT> NodeTys;
3349  SmallVector<SDValue, 8> Ops;
3350  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3351                                 isTailCall, RegsToPass, Ops, NodeTys,
3352                                 PPCSubTarget);
3353
3354  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3355  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3356    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3357
3358  // When performing tail call optimization the callee pops its arguments off
3359  // the stack. Account for this here so these bytes can be pushed back on in
3360  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3361  int BytesCalleePops =
3362    (CallConv == CallingConv::Fast &&
3363     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3364
3365  // Add a register mask operand representing the call-preserved registers.
3366  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3367  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3368  assert(Mask && "Missing call preserved mask for calling convention");
3369  Ops.push_back(DAG.getRegisterMask(Mask));
3370
3371  if (InFlag.getNode())
3372    Ops.push_back(InFlag);
3373
3374  // Emit tail call.
3375  if (isTailCall) {
3376    assert(((Callee.getOpcode() == ISD::Register &&
3377             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3378            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3379            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3380            isa<ConstantSDNode>(Callee)) &&
3381    "Expecting an global address, external symbol, absolute value or register");
3382
3383    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3384  }
3385
3386  // Add a NOP immediately after the branch instruction when using the 64-bit
3387  // SVR4 ABI. At link time, if caller and callee are in a different module and
3388  // thus have a different TOC, the call will be replaced with a call to a stub
3389  // function which saves the current TOC, loads the TOC of the callee and
3390  // branches to the callee. The NOP will be replaced with a load instruction
3391  // which restores the TOC of the caller from the TOC save slot of the current
3392  // stack frame. If caller and callee belong to the same module (and have the
3393  // same TOC), the NOP will remain unchanged.
3394
3395  bool needsTOCRestore = false;
3396  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3397    if (CallOpc == PPCISD::BCTRL) {
3398      // This is a call through a function pointer.
3399      // Restore the caller TOC from the save area into R2.
3400      // See PrepareCall() for more information about calls through function
3401      // pointers in the 64-bit SVR4 ABI.
3402      // We are using a target-specific load with r2 hard coded, because the
3403      // result of a target-independent load would never go directly into r2,
3404      // since r2 is a reserved register (which prevents the register allocator
3405      // from allocating it), resulting in an additional register being
3406      // allocated and an unnecessary move instruction being generated.
3407      needsTOCRestore = true;
3408    } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3409      // Otherwise insert NOP for non-local calls.
3410      CallOpc = PPCISD::CALL_NOP;
3411    }
3412  }
3413
3414  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3415  InFlag = Chain.getValue(1);
3416
3417  if (needsTOCRestore) {
3418    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3419    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3420    InFlag = Chain.getValue(1);
3421  }
3422
3423  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3424                             DAG.getIntPtrConstant(BytesCalleePops, true),
3425                             InFlag, dl);
3426  if (!Ins.empty())
3427    InFlag = Chain.getValue(1);
3428
3429  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3430                         Ins, dl, DAG, InVals);
3431}
3432
3433SDValue
3434PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3435                             SmallVectorImpl<SDValue> &InVals) const {
3436  SelectionDAG &DAG                     = CLI.DAG;
3437  SDLoc &dl                          = CLI.DL;
3438  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3439  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3440  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3441  SDValue Chain                         = CLI.Chain;
3442  SDValue Callee                        = CLI.Callee;
3443  bool &isTailCall                      = CLI.IsTailCall;
3444  CallingConv::ID CallConv              = CLI.CallConv;
3445  bool isVarArg                         = CLI.IsVarArg;
3446
3447  if (isTailCall)
3448    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3449                                                   Ins, DAG);
3450
3451  if (PPCSubTarget.isSVR4ABI()) {
3452    if (PPCSubTarget.isPPC64())
3453      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3454                              isTailCall, Outs, OutVals, Ins,
3455                              dl, DAG, InVals);
3456    else
3457      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3458                              isTailCall, Outs, OutVals, Ins,
3459                              dl, DAG, InVals);
3460  }
3461
3462  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3463                          isTailCall, Outs, OutVals, Ins,
3464                          dl, DAG, InVals);
3465}
3466
3467SDValue
3468PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3469                                    CallingConv::ID CallConv, bool isVarArg,
3470                                    bool isTailCall,
3471                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3472                                    const SmallVectorImpl<SDValue> &OutVals,
3473                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3474                                    SDLoc dl, SelectionDAG &DAG,
3475                                    SmallVectorImpl<SDValue> &InVals) const {
3476  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3477  // of the 32-bit SVR4 ABI stack frame layout.
3478
3479  assert((CallConv == CallingConv::C ||
3480          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3481
3482  unsigned PtrByteSize = 4;
3483
3484  MachineFunction &MF = DAG.getMachineFunction();
3485
3486  // Mark this function as potentially containing a function that contains a
3487  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3488  // and restoring the callers stack pointer in this functions epilog. This is
3489  // done because by tail calling the called function might overwrite the value
3490  // in this function's (MF) stack pointer stack slot 0(SP).
3491  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3492      CallConv == CallingConv::Fast)
3493    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3494
3495  // Count how many bytes are to be pushed on the stack, including the linkage
3496  // area, parameter list area and the part of the local variable space which
3497  // contains copies of aggregates which are passed by value.
3498
3499  // Assign locations to all of the outgoing arguments.
3500  SmallVector<CCValAssign, 16> ArgLocs;
3501  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3502                 getTargetMachine(), ArgLocs, *DAG.getContext());
3503
3504  // Reserve space for the linkage area on the stack.
3505  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3506
3507  if (isVarArg) {
3508    // Handle fixed and variable vector arguments differently.
3509    // Fixed vector arguments go into registers as long as registers are
3510    // available. Variable vector arguments always go into memory.
3511    unsigned NumArgs = Outs.size();
3512
3513    for (unsigned i = 0; i != NumArgs; ++i) {
3514      MVT ArgVT = Outs[i].VT;
3515      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3516      bool Result;
3517
3518      if (Outs[i].IsFixed) {
3519        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3520                               CCInfo);
3521      } else {
3522        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3523                                      ArgFlags, CCInfo);
3524      }
3525
3526      if (Result) {
3527#ifndef NDEBUG
3528        errs() << "Call operand #" << i << " has unhandled type "
3529             << EVT(ArgVT).getEVTString() << "\n";
3530#endif
3531        llvm_unreachable(0);
3532      }
3533    }
3534  } else {
3535    // All arguments are treated the same.
3536    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3537  }
3538
3539  // Assign locations to all of the outgoing aggregate by value arguments.
3540  SmallVector<CCValAssign, 16> ByValArgLocs;
3541  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3542                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3543
3544  // Reserve stack space for the allocations in CCInfo.
3545  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3546
3547  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3548
3549  // Size of the linkage area, parameter list area and the part of the local
3550  // space variable where copies of aggregates which are passed by value are
3551  // stored.
3552  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3553
3554  // Calculate by how many bytes the stack has to be adjusted in case of tail
3555  // call optimization.
3556  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3557
3558  // Adjust the stack pointer for the new arguments...
3559  // These operations are automatically eliminated by the prolog/epilog pass
3560  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3561                               dl);
3562  SDValue CallSeqStart = Chain;
3563
3564  // Load the return address and frame pointer so it can be moved somewhere else
3565  // later.
3566  SDValue LROp, FPOp;
3567  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3568                                       dl);
3569
3570  // Set up a copy of the stack pointer for use loading and storing any
3571  // arguments that may not fit in the registers available for argument
3572  // passing.
3573  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3574
3575  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3576  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3577  SmallVector<SDValue, 8> MemOpChains;
3578
3579  bool seenFloatArg = false;
3580  // Walk the register/memloc assignments, inserting copies/loads.
3581  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3582       i != e;
3583       ++i) {
3584    CCValAssign &VA = ArgLocs[i];
3585    SDValue Arg = OutVals[i];
3586    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3587
3588    if (Flags.isByVal()) {
3589      // Argument is an aggregate which is passed by value, thus we need to
3590      // create a copy of it in the local variable space of the current stack
3591      // frame (which is the stack frame of the caller) and pass the address of
3592      // this copy to the callee.
3593      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3594      CCValAssign &ByValVA = ByValArgLocs[j++];
3595      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3596
3597      // Memory reserved in the local variable space of the callers stack frame.
3598      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3599
3600      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3601      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3602
3603      // Create a copy of the argument in the local area of the current
3604      // stack frame.
3605      SDValue MemcpyCall =
3606        CreateCopyOfByValArgument(Arg, PtrOff,
3607                                  CallSeqStart.getNode()->getOperand(0),
3608                                  Flags, DAG, dl);
3609
3610      // This must go outside the CALLSEQ_START..END.
3611      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3612                           CallSeqStart.getNode()->getOperand(1),
3613                           SDLoc(MemcpyCall));
3614      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3615                             NewCallSeqStart.getNode());
3616      Chain = CallSeqStart = NewCallSeqStart;
3617
3618      // Pass the address of the aggregate copy on the stack either in a
3619      // physical register or in the parameter list area of the current stack
3620      // frame to the callee.
3621      Arg = PtrOff;
3622    }
3623
3624    if (VA.isRegLoc()) {
3625      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3626      // Put argument in a physical register.
3627      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3628    } else {
3629      // Put argument in the parameter list area of the current stack frame.
3630      assert(VA.isMemLoc());
3631      unsigned LocMemOffset = VA.getLocMemOffset();
3632
3633      if (!isTailCall) {
3634        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3635        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3636
3637        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3638                                           MachinePointerInfo(),
3639                                           false, false, 0));
3640      } else {
3641        // Calculate and remember argument location.
3642        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3643                                 TailCallArguments);
3644      }
3645    }
3646  }
3647
3648  if (!MemOpChains.empty())
3649    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3650                        &MemOpChains[0], MemOpChains.size());
3651
3652  // Build a sequence of copy-to-reg nodes chained together with token chain
3653  // and flag operands which copy the outgoing args into the appropriate regs.
3654  SDValue InFlag;
3655  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3656    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3657                             RegsToPass[i].second, InFlag);
3658    InFlag = Chain.getValue(1);
3659  }
3660
3661  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3662  // registers.
3663  if (isVarArg) {
3664    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3665    SDValue Ops[] = { Chain, InFlag };
3666
3667    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3668                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3669
3670    InFlag = Chain.getValue(1);
3671  }
3672
3673  if (isTailCall)
3674    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3675                    false, TailCallArguments);
3676
3677  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3678                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3679                    Ins, InVals);
3680}
3681
3682// Copy an argument into memory, being careful to do this outside the
3683// call sequence for the call to which the argument belongs.
3684SDValue
3685PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3686                                              SDValue CallSeqStart,
3687                                              ISD::ArgFlagsTy Flags,
3688                                              SelectionDAG &DAG,
3689                                              SDLoc dl) const {
3690  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3691                        CallSeqStart.getNode()->getOperand(0),
3692                        Flags, DAG, dl);
3693  // The MEMCPY must go outside the CALLSEQ_START..END.
3694  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3695                             CallSeqStart.getNode()->getOperand(1),
3696                             SDLoc(MemcpyCall));
3697  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3698                         NewCallSeqStart.getNode());
3699  return NewCallSeqStart;
3700}
3701
3702SDValue
3703PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3704                                    CallingConv::ID CallConv, bool isVarArg,
3705                                    bool isTailCall,
3706                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3707                                    const SmallVectorImpl<SDValue> &OutVals,
3708                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3709                                    SDLoc dl, SelectionDAG &DAG,
3710                                    SmallVectorImpl<SDValue> &InVals) const {
3711
3712  unsigned NumOps = Outs.size();
3713
3714  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3715  unsigned PtrByteSize = 8;
3716
3717  MachineFunction &MF = DAG.getMachineFunction();
3718
3719  // Mark this function as potentially containing a function that contains a
3720  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3721  // and restoring the callers stack pointer in this functions epilog. This is
3722  // done because by tail calling the called function might overwrite the value
3723  // in this function's (MF) stack pointer stack slot 0(SP).
3724  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3725      CallConv == CallingConv::Fast)
3726    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3727
3728  unsigned nAltivecParamsAtEnd = 0;
3729
3730  // Count how many bytes are to be pushed on the stack, including the linkage
3731  // area, and parameter passing area.  We start with at least 48 bytes, which
3732  // is reserved space for [SP][CR][LR][3 x unused].
3733  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3734  // of this call.
3735  unsigned NumBytes =
3736    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3737                                         Outs, OutVals, nAltivecParamsAtEnd);
3738
3739  // Calculate by how many bytes the stack has to be adjusted in case of tail
3740  // call optimization.
3741  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3742
3743  // To protect arguments on the stack from being clobbered in a tail call,
3744  // force all the loads to happen before doing any other lowering.
3745  if (isTailCall)
3746    Chain = DAG.getStackArgumentTokenFactor(Chain);
3747
3748  // Adjust the stack pointer for the new arguments...
3749  // These operations are automatically eliminated by the prolog/epilog pass
3750  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3751                               dl);
3752  SDValue CallSeqStart = Chain;
3753
3754  // Load the return address and frame pointer so it can be move somewhere else
3755  // later.
3756  SDValue LROp, FPOp;
3757  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3758                                       dl);
3759
3760  // Set up a copy of the stack pointer for use loading and storing any
3761  // arguments that may not fit in the registers available for argument
3762  // passing.
3763  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3764
3765  // Figure out which arguments are going to go in registers, and which in
3766  // memory.  Also, if this is a vararg function, floating point operations
3767  // must be stored to our stack, and loaded into integer regs as well, if
3768  // any integer regs are available for argument passing.
3769  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3770  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3771
3772  static const uint16_t GPR[] = {
3773    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3774    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3775  };
3776  static const uint16_t *FPR = GetFPR();
3777
3778  static const uint16_t VR[] = {
3779    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3780    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3781  };
3782  const unsigned NumGPRs = array_lengthof(GPR);
3783  const unsigned NumFPRs = 13;
3784  const unsigned NumVRs  = array_lengthof(VR);
3785
3786  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3787  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3788
3789  SmallVector<SDValue, 8> MemOpChains;
3790  for (unsigned i = 0; i != NumOps; ++i) {
3791    SDValue Arg = OutVals[i];
3792    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3793
3794    // PtrOff will be used to store the current argument to the stack if a
3795    // register cannot be found for it.
3796    SDValue PtrOff;
3797
3798    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3799
3800    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3801
3802    // Promote integers to 64-bit values.
3803    if (Arg.getValueType() == MVT::i32) {
3804      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3805      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3806      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3807    }
3808
3809    // FIXME memcpy is used way more than necessary.  Correctness first.
3810    // Note: "by value" is code for passing a structure by value, not
3811    // basic types.
3812    if (Flags.isByVal()) {
3813      // Note: Size includes alignment padding, so
3814      //   struct x { short a; char b; }
3815      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3816      // These are the proper values we need for right-justifying the
3817      // aggregate in a parameter register.
3818      unsigned Size = Flags.getByValSize();
3819
3820      // An empty aggregate parameter takes up no storage and no
3821      // registers.
3822      if (Size == 0)
3823        continue;
3824
3825      // All aggregates smaller than 8 bytes must be passed right-justified.
3826      if (Size==1 || Size==2 || Size==4) {
3827        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3828        if (GPR_idx != NumGPRs) {
3829          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3830                                        MachinePointerInfo(), VT,
3831                                        false, false, 0);
3832          MemOpChains.push_back(Load.getValue(1));
3833          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3834
3835          ArgOffset += PtrByteSize;
3836          continue;
3837        }
3838      }
3839
3840      if (GPR_idx == NumGPRs && Size < 8) {
3841        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3842                                        PtrOff.getValueType());
3843        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3844        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3845                                                          CallSeqStart,
3846                                                          Flags, DAG, dl);
3847        ArgOffset += PtrByteSize;
3848        continue;
3849      }
3850      // Copy entire object into memory.  There are cases where gcc-generated
3851      // code assumes it is there, even if it could be put entirely into
3852      // registers.  (This is not what the doc says.)
3853
3854      // FIXME: The above statement is likely due to a misunderstanding of the
3855      // documents.  All arguments must be copied into the parameter area BY
3856      // THE CALLEE in the event that the callee takes the address of any
3857      // formal argument.  That has not yet been implemented.  However, it is
3858      // reasonable to use the stack area as a staging area for the register
3859      // load.
3860
3861      // Skip this for small aggregates, as we will use the same slot for a
3862      // right-justified copy, below.
3863      if (Size >= 8)
3864        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3865                                                          CallSeqStart,
3866                                                          Flags, DAG, dl);
3867
3868      // When a register is available, pass a small aggregate right-justified.
3869      if (Size < 8 && GPR_idx != NumGPRs) {
3870        // The easiest way to get this right-justified in a register
3871        // is to copy the structure into the rightmost portion of a
3872        // local variable slot, then load the whole slot into the
3873        // register.
3874        // FIXME: The memcpy seems to produce pretty awful code for
3875        // small aggregates, particularly for packed ones.
3876        // FIXME: It would be preferable to use the slot in the
3877        // parameter save area instead of a new local variable.
3878        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3879        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3880        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3881                                                          CallSeqStart,
3882                                                          Flags, DAG, dl);
3883
3884        // Load the slot into the register.
3885        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3886                                   MachinePointerInfo(),
3887                                   false, false, false, 0);
3888        MemOpChains.push_back(Load.getValue(1));
3889        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3890
3891        // Done with this argument.
3892        ArgOffset += PtrByteSize;
3893        continue;
3894      }
3895
3896      // For aggregates larger than PtrByteSize, copy the pieces of the
3897      // object that fit into registers from the parameter save area.
3898      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3899        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3900        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3901        if (GPR_idx != NumGPRs) {
3902          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3903                                     MachinePointerInfo(),
3904                                     false, false, false, 0);
3905          MemOpChains.push_back(Load.getValue(1));
3906          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3907          ArgOffset += PtrByteSize;
3908        } else {
3909          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3910          break;
3911        }
3912      }
3913      continue;
3914    }
3915
3916    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3917    default: llvm_unreachable("Unexpected ValueType for argument!");
3918    case MVT::i32:
3919    case MVT::i64:
3920      if (GPR_idx != NumGPRs) {
3921        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3922      } else {
3923        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3924                         true, isTailCall, false, MemOpChains,
3925                         TailCallArguments, dl);
3926      }
3927      ArgOffset += PtrByteSize;
3928      break;
3929    case MVT::f32:
3930    case MVT::f64:
3931      if (FPR_idx != NumFPRs) {
3932        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3933
3934        if (isVarArg) {
3935          // A single float or an aggregate containing only a single float
3936          // must be passed right-justified in the stack doubleword, and
3937          // in the GPR, if one is available.
3938          SDValue StoreOff;
3939          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3940            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3941            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3942          } else
3943            StoreOff = PtrOff;
3944
3945          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3946                                       MachinePointerInfo(), false, false, 0);
3947          MemOpChains.push_back(Store);
3948
3949          // Float varargs are always shadowed in available integer registers
3950          if (GPR_idx != NumGPRs) {
3951            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3952                                       MachinePointerInfo(), false, false,
3953                                       false, 0);
3954            MemOpChains.push_back(Load.getValue(1));
3955            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3956          }
3957        } else if (GPR_idx != NumGPRs)
3958          // If we have any FPRs remaining, we may also have GPRs remaining.
3959          ++GPR_idx;
3960      } else {
3961        // Single-precision floating-point values are mapped to the
3962        // second (rightmost) word of the stack doubleword.
3963        if (Arg.getValueType() == MVT::f32) {
3964          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3965          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3966        }
3967
3968        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3969                         true, isTailCall, false, MemOpChains,
3970                         TailCallArguments, dl);
3971      }
3972      ArgOffset += 8;
3973      break;
3974    case MVT::v4f32:
3975    case MVT::v4i32:
3976    case MVT::v8i16:
3977    case MVT::v16i8:
3978      if (isVarArg) {
3979        // These go aligned on the stack, or in the corresponding R registers
3980        // when within range.  The Darwin PPC ABI doc claims they also go in
3981        // V registers; in fact gcc does this only for arguments that are
3982        // prototyped, not for those that match the ...  We do it for all
3983        // arguments, seems to work.
3984        while (ArgOffset % 16 !=0) {
3985          ArgOffset += PtrByteSize;
3986          if (GPR_idx != NumGPRs)
3987            GPR_idx++;
3988        }
3989        // We could elide this store in the case where the object fits
3990        // entirely in R registers.  Maybe later.
3991        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3992                            DAG.getConstant(ArgOffset, PtrVT));
3993        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3994                                     MachinePointerInfo(), false, false, 0);
3995        MemOpChains.push_back(Store);
3996        if (VR_idx != NumVRs) {
3997          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3998                                     MachinePointerInfo(),
3999                                     false, false, false, 0);
4000          MemOpChains.push_back(Load.getValue(1));
4001          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4002        }
4003        ArgOffset += 16;
4004        for (unsigned i=0; i<16; i+=PtrByteSize) {
4005          if (GPR_idx == NumGPRs)
4006            break;
4007          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4008                                  DAG.getConstant(i, PtrVT));
4009          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4010                                     false, false, false, 0);
4011          MemOpChains.push_back(Load.getValue(1));
4012          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4013        }
4014        break;
4015      }
4016
4017      // Non-varargs Altivec params generally go in registers, but have
4018      // stack space allocated at the end.
4019      if (VR_idx != NumVRs) {
4020        // Doesn't have GPR space allocated.
4021        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4022      } else {
4023        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4024                         true, isTailCall, true, MemOpChains,
4025                         TailCallArguments, dl);
4026        ArgOffset += 16;
4027      }
4028      break;
4029    }
4030  }
4031
4032  if (!MemOpChains.empty())
4033    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4034                        &MemOpChains[0], MemOpChains.size());
4035
4036  // Check if this is an indirect call (MTCTR/BCTRL).
4037  // See PrepareCall() for more information about calls through function
4038  // pointers in the 64-bit SVR4 ABI.
4039  if (!isTailCall &&
4040      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4041      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4042      !isBLACompatibleAddress(Callee, DAG)) {
4043    // Load r2 into a virtual register and store it to the TOC save area.
4044    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4045    // TOC save area offset.
4046    SDValue PtrOff = DAG.getIntPtrConstant(40);
4047    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4048    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4049                         false, false, 0);
4050    // R12 must contain the address of an indirect callee.  This does not
4051    // mean the MTCTR instruction must use R12; it's easier to model this
4052    // as an extra parameter, so do that.
4053    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4054  }
4055
4056  // Build a sequence of copy-to-reg nodes chained together with token chain
4057  // and flag operands which copy the outgoing args into the appropriate regs.
4058  SDValue InFlag;
4059  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4060    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4061                             RegsToPass[i].second, InFlag);
4062    InFlag = Chain.getValue(1);
4063  }
4064
4065  if (isTailCall)
4066    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4067                    FPOp, true, TailCallArguments);
4068
4069  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4070                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4071                    Ins, InVals);
4072}
4073
4074SDValue
4075PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4076                                    CallingConv::ID CallConv, bool isVarArg,
4077                                    bool isTailCall,
4078                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4079                                    const SmallVectorImpl<SDValue> &OutVals,
4080                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4081                                    SDLoc dl, SelectionDAG &DAG,
4082                                    SmallVectorImpl<SDValue> &InVals) const {
4083
4084  unsigned NumOps = Outs.size();
4085
4086  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4087  bool isPPC64 = PtrVT == MVT::i64;
4088  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4089
4090  MachineFunction &MF = DAG.getMachineFunction();
4091
4092  // Mark this function as potentially containing a function that contains a
4093  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4094  // and restoring the callers stack pointer in this functions epilog. This is
4095  // done because by tail calling the called function might overwrite the value
4096  // in this function's (MF) stack pointer stack slot 0(SP).
4097  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4098      CallConv == CallingConv::Fast)
4099    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4100
4101  unsigned nAltivecParamsAtEnd = 0;
4102
4103  // Count how many bytes are to be pushed on the stack, including the linkage
4104  // area, and parameter passing area.  We start with 24/48 bytes, which is
4105  // prereserved space for [SP][CR][LR][3 x unused].
4106  unsigned NumBytes =
4107    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4108                                         Outs, OutVals,
4109                                         nAltivecParamsAtEnd);
4110
4111  // Calculate by how many bytes the stack has to be adjusted in case of tail
4112  // call optimization.
4113  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4114
4115  // To protect arguments on the stack from being clobbered in a tail call,
4116  // force all the loads to happen before doing any other lowering.
4117  if (isTailCall)
4118    Chain = DAG.getStackArgumentTokenFactor(Chain);
4119
4120  // Adjust the stack pointer for the new arguments...
4121  // These operations are automatically eliminated by the prolog/epilog pass
4122  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4123                               dl);
4124  SDValue CallSeqStart = Chain;
4125
4126  // Load the return address and frame pointer so it can be move somewhere else
4127  // later.
4128  SDValue LROp, FPOp;
4129  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4130                                       dl);
4131
4132  // Set up a copy of the stack pointer for use loading and storing any
4133  // arguments that may not fit in the registers available for argument
4134  // passing.
4135  SDValue StackPtr;
4136  if (isPPC64)
4137    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4138  else
4139    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4140
4141  // Figure out which arguments are going to go in registers, and which in
4142  // memory.  Also, if this is a vararg function, floating point operations
4143  // must be stored to our stack, and loaded into integer regs as well, if
4144  // any integer regs are available for argument passing.
4145  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4146  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4147
4148  static const uint16_t GPR_32[] = {           // 32-bit registers.
4149    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4150    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4151  };
4152  static const uint16_t GPR_64[] = {           // 64-bit registers.
4153    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4154    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4155  };
4156  static const uint16_t *FPR = GetFPR();
4157
4158  static const uint16_t VR[] = {
4159    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4160    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4161  };
4162  const unsigned NumGPRs = array_lengthof(GPR_32);
4163  const unsigned NumFPRs = 13;
4164  const unsigned NumVRs  = array_lengthof(VR);
4165
4166  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4167
4168  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4169  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4170
4171  SmallVector<SDValue, 8> MemOpChains;
4172  for (unsigned i = 0; i != NumOps; ++i) {
4173    SDValue Arg = OutVals[i];
4174    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4175
4176    // PtrOff will be used to store the current argument to the stack if a
4177    // register cannot be found for it.
4178    SDValue PtrOff;
4179
4180    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4181
4182    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4183
4184    // On PPC64, promote integers to 64-bit values.
4185    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4186      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4187      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4188      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4189    }
4190
4191    // FIXME memcpy is used way more than necessary.  Correctness first.
4192    // Note: "by value" is code for passing a structure by value, not
4193    // basic types.
4194    if (Flags.isByVal()) {
4195      unsigned Size = Flags.getByValSize();
4196      // Very small objects are passed right-justified.  Everything else is
4197      // passed left-justified.
4198      if (Size==1 || Size==2) {
4199        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4200        if (GPR_idx != NumGPRs) {
4201          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4202                                        MachinePointerInfo(), VT,
4203                                        false, false, 0);
4204          MemOpChains.push_back(Load.getValue(1));
4205          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4206
4207          ArgOffset += PtrByteSize;
4208        } else {
4209          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4210                                          PtrOff.getValueType());
4211          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4212          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4213                                                            CallSeqStart,
4214                                                            Flags, DAG, dl);
4215          ArgOffset += PtrByteSize;
4216        }
4217        continue;
4218      }
4219      // Copy entire object into memory.  There are cases where gcc-generated
4220      // code assumes it is there, even if it could be put entirely into
4221      // registers.  (This is not what the doc says.)
4222      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4223                                                        CallSeqStart,
4224                                                        Flags, DAG, dl);
4225
4226      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4227      // copy the pieces of the object that fit into registers from the
4228      // parameter save area.
4229      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4230        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4231        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4232        if (GPR_idx != NumGPRs) {
4233          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4234                                     MachinePointerInfo(),
4235                                     false, false, false, 0);
4236          MemOpChains.push_back(Load.getValue(1));
4237          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4238          ArgOffset += PtrByteSize;
4239        } else {
4240          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4241          break;
4242        }
4243      }
4244      continue;
4245    }
4246
4247    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4248    default: llvm_unreachable("Unexpected ValueType for argument!");
4249    case MVT::i32:
4250    case MVT::i64:
4251      if (GPR_idx != NumGPRs) {
4252        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4253      } else {
4254        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4255                         isPPC64, isTailCall, false, MemOpChains,
4256                         TailCallArguments, dl);
4257      }
4258      ArgOffset += PtrByteSize;
4259      break;
4260    case MVT::f32:
4261    case MVT::f64:
4262      if (FPR_idx != NumFPRs) {
4263        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4264
4265        if (isVarArg) {
4266          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4267                                       MachinePointerInfo(), false, false, 0);
4268          MemOpChains.push_back(Store);
4269
4270          // Float varargs are always shadowed in available integer registers
4271          if (GPR_idx != NumGPRs) {
4272            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4273                                       MachinePointerInfo(), false, false,
4274                                       false, 0);
4275            MemOpChains.push_back(Load.getValue(1));
4276            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4277          }
4278          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4279            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4280            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4281            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4282                                       MachinePointerInfo(),
4283                                       false, false, false, 0);
4284            MemOpChains.push_back(Load.getValue(1));
4285            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4286          }
4287        } else {
4288          // If we have any FPRs remaining, we may also have GPRs remaining.
4289          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4290          // GPRs.
4291          if (GPR_idx != NumGPRs)
4292            ++GPR_idx;
4293          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4294              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4295            ++GPR_idx;
4296        }
4297      } else
4298        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4299                         isPPC64, isTailCall, false, MemOpChains,
4300                         TailCallArguments, dl);
4301      if (isPPC64)
4302        ArgOffset += 8;
4303      else
4304        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4305      break;
4306    case MVT::v4f32:
4307    case MVT::v4i32:
4308    case MVT::v8i16:
4309    case MVT::v16i8:
4310      if (isVarArg) {
4311        // These go aligned on the stack, or in the corresponding R registers
4312        // when within range.  The Darwin PPC ABI doc claims they also go in
4313        // V registers; in fact gcc does this only for arguments that are
4314        // prototyped, not for those that match the ...  We do it for all
4315        // arguments, seems to work.
4316        while (ArgOffset % 16 !=0) {
4317          ArgOffset += PtrByteSize;
4318          if (GPR_idx != NumGPRs)
4319            GPR_idx++;
4320        }
4321        // We could elide this store in the case where the object fits
4322        // entirely in R registers.  Maybe later.
4323        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4324                            DAG.getConstant(ArgOffset, PtrVT));
4325        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4326                                     MachinePointerInfo(), false, false, 0);
4327        MemOpChains.push_back(Store);
4328        if (VR_idx != NumVRs) {
4329          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4330                                     MachinePointerInfo(),
4331                                     false, false, false, 0);
4332          MemOpChains.push_back(Load.getValue(1));
4333          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4334        }
4335        ArgOffset += 16;
4336        for (unsigned i=0; i<16; i+=PtrByteSize) {
4337          if (GPR_idx == NumGPRs)
4338            break;
4339          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4340                                  DAG.getConstant(i, PtrVT));
4341          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4342                                     false, false, false, 0);
4343          MemOpChains.push_back(Load.getValue(1));
4344          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4345        }
4346        break;
4347      }
4348
4349      // Non-varargs Altivec params generally go in registers, but have
4350      // stack space allocated at the end.
4351      if (VR_idx != NumVRs) {
4352        // Doesn't have GPR space allocated.
4353        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4354      } else if (nAltivecParamsAtEnd==0) {
4355        // We are emitting Altivec params in order.
4356        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4357                         isPPC64, isTailCall, true, MemOpChains,
4358                         TailCallArguments, dl);
4359        ArgOffset += 16;
4360      }
4361      break;
4362    }
4363  }
4364  // If all Altivec parameters fit in registers, as they usually do,
4365  // they get stack space following the non-Altivec parameters.  We
4366  // don't track this here because nobody below needs it.
4367  // If there are more Altivec parameters than fit in registers emit
4368  // the stores here.
4369  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4370    unsigned j = 0;
4371    // Offset is aligned; skip 1st 12 params which go in V registers.
4372    ArgOffset = ((ArgOffset+15)/16)*16;
4373    ArgOffset += 12*16;
4374    for (unsigned i = 0; i != NumOps; ++i) {
4375      SDValue Arg = OutVals[i];
4376      EVT ArgType = Outs[i].VT;
4377      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4378          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4379        if (++j > NumVRs) {
4380          SDValue PtrOff;
4381          // We are emitting Altivec params in order.
4382          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4383                           isPPC64, isTailCall, true, MemOpChains,
4384                           TailCallArguments, dl);
4385          ArgOffset += 16;
4386        }
4387      }
4388    }
4389  }
4390
4391  if (!MemOpChains.empty())
4392    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4393                        &MemOpChains[0], MemOpChains.size());
4394
4395  // On Darwin, R12 must contain the address of an indirect callee.  This does
4396  // not mean the MTCTR instruction must use R12; it's easier to model this as
4397  // an extra parameter, so do that.
4398  if (!isTailCall &&
4399      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4400      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4401      !isBLACompatibleAddress(Callee, DAG))
4402    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4403                                                   PPC::R12), Callee));
4404
4405  // Build a sequence of copy-to-reg nodes chained together with token chain
4406  // and flag operands which copy the outgoing args into the appropriate regs.
4407  SDValue InFlag;
4408  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4409    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4410                             RegsToPass[i].second, InFlag);
4411    InFlag = Chain.getValue(1);
4412  }
4413
4414  if (isTailCall)
4415    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4416                    FPOp, true, TailCallArguments);
4417
4418  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4419                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4420                    Ins, InVals);
4421}
4422
4423bool
4424PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4425                                  MachineFunction &MF, bool isVarArg,
4426                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4427                                  LLVMContext &Context) const {
4428  SmallVector<CCValAssign, 16> RVLocs;
4429  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4430                 RVLocs, Context);
4431  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4432}
4433
4434SDValue
4435PPCTargetLowering::LowerReturn(SDValue Chain,
4436                               CallingConv::ID CallConv, bool isVarArg,
4437                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4438                               const SmallVectorImpl<SDValue> &OutVals,
4439                               SDLoc dl, SelectionDAG &DAG) const {
4440
4441  SmallVector<CCValAssign, 16> RVLocs;
4442  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4443                 getTargetMachine(), RVLocs, *DAG.getContext());
4444  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4445
4446  SDValue Flag;
4447  SmallVector<SDValue, 4> RetOps(1, Chain);
4448
4449  // Copy the result values into the output registers.
4450  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4451    CCValAssign &VA = RVLocs[i];
4452    assert(VA.isRegLoc() && "Can only return in registers!");
4453
4454    SDValue Arg = OutVals[i];
4455
4456    switch (VA.getLocInfo()) {
4457    default: llvm_unreachable("Unknown loc info!");
4458    case CCValAssign::Full: break;
4459    case CCValAssign::AExt:
4460      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4461      break;
4462    case CCValAssign::ZExt:
4463      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4464      break;
4465    case CCValAssign::SExt:
4466      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4467      break;
4468    }
4469
4470    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4471    Flag = Chain.getValue(1);
4472    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4473  }
4474
4475  RetOps[0] = Chain;  // Update chain.
4476
4477  // Add the flag if we have it.
4478  if (Flag.getNode())
4479    RetOps.push_back(Flag);
4480
4481  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4482                     &RetOps[0], RetOps.size());
4483}
4484
4485SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4486                                   const PPCSubtarget &Subtarget) const {
4487  // When we pop the dynamic allocation we need to restore the SP link.
4488  SDLoc dl(Op);
4489
4490  // Get the corect type for pointers.
4491  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4492
4493  // Construct the stack pointer operand.
4494  bool isPPC64 = Subtarget.isPPC64();
4495  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4496  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4497
4498  // Get the operands for the STACKRESTORE.
4499  SDValue Chain = Op.getOperand(0);
4500  SDValue SaveSP = Op.getOperand(1);
4501
4502  // Load the old link SP.
4503  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4504                                   MachinePointerInfo(),
4505                                   false, false, false, 0);
4506
4507  // Restore the stack pointer.
4508  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4509
4510  // Store the old link SP.
4511  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4512                      false, false, 0);
4513}
4514
4515
4516
4517SDValue
4518PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4519  MachineFunction &MF = DAG.getMachineFunction();
4520  bool isPPC64 = PPCSubTarget.isPPC64();
4521  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4522  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4523
4524  // Get current frame pointer save index.  The users of this index will be
4525  // primarily DYNALLOC instructions.
4526  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4527  int RASI = FI->getReturnAddrSaveIndex();
4528
4529  // If the frame pointer save index hasn't been defined yet.
4530  if (!RASI) {
4531    // Find out what the fix offset of the frame pointer save area.
4532    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4533    // Allocate the frame index for frame pointer save area.
4534    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4535    // Save the result.
4536    FI->setReturnAddrSaveIndex(RASI);
4537  }
4538  return DAG.getFrameIndex(RASI, PtrVT);
4539}
4540
4541SDValue
4542PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4543  MachineFunction &MF = DAG.getMachineFunction();
4544  bool isPPC64 = PPCSubTarget.isPPC64();
4545  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4546  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4547
4548  // Get current frame pointer save index.  The users of this index will be
4549  // primarily DYNALLOC instructions.
4550  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4551  int FPSI = FI->getFramePointerSaveIndex();
4552
4553  // If the frame pointer save index hasn't been defined yet.
4554  if (!FPSI) {
4555    // Find out what the fix offset of the frame pointer save area.
4556    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4557                                                           isDarwinABI);
4558
4559    // Allocate the frame index for frame pointer save area.
4560    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4561    // Save the result.
4562    FI->setFramePointerSaveIndex(FPSI);
4563  }
4564  return DAG.getFrameIndex(FPSI, PtrVT);
4565}
4566
4567SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4568                                         SelectionDAG &DAG,
4569                                         const PPCSubtarget &Subtarget) const {
4570  // Get the inputs.
4571  SDValue Chain = Op.getOperand(0);
4572  SDValue Size  = Op.getOperand(1);
4573  SDLoc dl(Op);
4574
4575  // Get the corect type for pointers.
4576  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4577  // Negate the size.
4578  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4579                                  DAG.getConstant(0, PtrVT), Size);
4580  // Construct a node for the frame pointer save index.
4581  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4582  // Build a DYNALLOC node.
4583  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4584  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4585  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4586}
4587
4588SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4589                                               SelectionDAG &DAG) const {
4590  SDLoc DL(Op);
4591  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4592                     DAG.getVTList(MVT::i32, MVT::Other),
4593                     Op.getOperand(0), Op.getOperand(1));
4594}
4595
4596SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4597                                                SelectionDAG &DAG) const {
4598  SDLoc DL(Op);
4599  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4600                     Op.getOperand(0), Op.getOperand(1));
4601}
4602
4603/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4604/// possible.
4605SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4606  // Not FP? Not a fsel.
4607  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4608      !Op.getOperand(2).getValueType().isFloatingPoint())
4609    return Op;
4610
4611  // We might be able to do better than this under some circumstances, but in
4612  // general, fsel-based lowering of select is a finite-math-only optimization.
4613  // For more information, see section F.3 of the 2.06 ISA specification.
4614  if (!DAG.getTarget().Options.NoInfsFPMath ||
4615      !DAG.getTarget().Options.NoNaNsFPMath)
4616    return Op;
4617
4618  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4619
4620  EVT ResVT = Op.getValueType();
4621  EVT CmpVT = Op.getOperand(0).getValueType();
4622  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4623  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4624  SDLoc dl(Op);
4625
4626  // If the RHS of the comparison is a 0.0, we don't need to do the
4627  // subtraction at all.
4628  SDValue Sel1;
4629  if (isFloatingPointZero(RHS))
4630    switch (CC) {
4631    default: break;       // SETUO etc aren't handled by fsel.
4632    case ISD::SETNE:
4633      std::swap(TV, FV);
4634    case ISD::SETEQ:
4635      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4636        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4637      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4638      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4639        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4640      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4641                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
4642    case ISD::SETULT:
4643    case ISD::SETLT:
4644      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4645    case ISD::SETOGE:
4646    case ISD::SETGE:
4647      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4648        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4649      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4650    case ISD::SETUGT:
4651    case ISD::SETGT:
4652      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4653    case ISD::SETOLE:
4654    case ISD::SETLE:
4655      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4656        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4657      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4658                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4659    }
4660
4661  SDValue Cmp;
4662  switch (CC) {
4663  default: break;       // SETUO etc aren't handled by fsel.
4664  case ISD::SETNE:
4665    std::swap(TV, FV);
4666  case ISD::SETEQ:
4667    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4668    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4669      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4670    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4671    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4672      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4673    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4674                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
4675  case ISD::SETULT:
4676  case ISD::SETLT:
4677    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4678    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4679      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4680    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4681  case ISD::SETOGE:
4682  case ISD::SETGE:
4683    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4684    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4685      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4686    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4687  case ISD::SETUGT:
4688  case ISD::SETGT:
4689    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4690    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4691      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4692    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4693  case ISD::SETOLE:
4694  case ISD::SETLE:
4695    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4696    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4697      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4698    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4699  }
4700  return Op;
4701}
4702
4703// FIXME: Split this code up when LegalizeDAGTypes lands.
4704SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4705                                           SDLoc dl) const {
4706  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4707  SDValue Src = Op.getOperand(0);
4708  if (Src.getValueType() == MVT::f32)
4709    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4710
4711  SDValue Tmp;
4712  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4713  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4714  case MVT::i32:
4715    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4716                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
4717                                                   PPCISD::FCTIDZ),
4718                      dl, MVT::f64, Src);
4719    break;
4720  case MVT::i64:
4721    assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
4722           "i64 FP_TO_UINT is supported only with FPCVT");
4723    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
4724                                                        PPCISD::FCTIDUZ,
4725                      dl, MVT::f64, Src);
4726    break;
4727  }
4728
4729  // Convert the FP value to an int value through memory.
4730  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
4731    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
4732  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
4733  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
4734  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
4735
4736  // Emit a store to the stack slot.
4737  SDValue Chain;
4738  if (i32Stack) {
4739    MachineFunction &MF = DAG.getMachineFunction();
4740    MachineMemOperand *MMO =
4741      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
4742    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
4743    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
4744              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
4745              MVT::i32, MMO);
4746  } else
4747    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4748                         MPI, false, false, 0);
4749
4750  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4751  // add in a bias.
4752  if (Op.getValueType() == MVT::i32 && !i32Stack) {
4753    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4754                        DAG.getConstant(4, FIPtr.getValueType()));
4755    MPI = MachinePointerInfo();
4756  }
4757
4758  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
4759                     false, false, false, 0);
4760}
4761
4762SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
4763                                           SelectionDAG &DAG) const {
4764  SDLoc dl(Op);
4765  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4766  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4767    return SDValue();
4768
4769  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4770         "UINT_TO_FP is supported only with FPCVT");
4771
4772  // If we have FCFIDS, then use it when converting to single-precision.
4773  // Otherwise, convert to double-precision and then round.
4774  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4775                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4776                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
4777                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4778                    PPCISD::FCFIDU : PPCISD::FCFID);
4779  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4780                   MVT::f32 : MVT::f64;
4781
4782  if (Op.getOperand(0).getValueType() == MVT::i64) {
4783    SDValue SINT = Op.getOperand(0);
4784    // When converting to single-precision, we actually need to convert
4785    // to double-precision first and then round to single-precision.
4786    // To avoid double-rounding effects during that operation, we have
4787    // to prepare the input operand.  Bits that might be truncated when
4788    // converting to double-precision are replaced by a bit that won't
4789    // be lost at this stage, but is below the single-precision rounding
4790    // position.
4791    //
4792    // However, if -enable-unsafe-fp-math is in effect, accept double
4793    // rounding to avoid the extra overhead.
4794    if (Op.getValueType() == MVT::f32 &&
4795        !PPCSubTarget.hasFPCVT() &&
4796        !DAG.getTarget().Options.UnsafeFPMath) {
4797
4798      // Twiddle input to make sure the low 11 bits are zero.  (If this
4799      // is the case, we are guaranteed the value will fit into the 53 bit
4800      // mantissa of an IEEE double-precision value without rounding.)
4801      // If any of those low 11 bits were not zero originally, make sure
4802      // bit 12 (value 2048) is set instead, so that the final rounding
4803      // to single-precision gets the correct result.
4804      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4805                                  SINT, DAG.getConstant(2047, MVT::i64));
4806      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4807                          Round, DAG.getConstant(2047, MVT::i64));
4808      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4809      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4810                          Round, DAG.getConstant(-2048, MVT::i64));
4811
4812      // However, we cannot use that value unconditionally: if the magnitude
4813      // of the input value is small, the bit-twiddling we did above might
4814      // end up visibly changing the output.  Fortunately, in that case, we
4815      // don't need to twiddle bits since the original input will convert
4816      // exactly to double-precision floating-point already.  Therefore,
4817      // construct a conditional to use the original value if the top 11
4818      // bits are all sign-bit copies, and use the rounded value computed
4819      // above otherwise.
4820      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4821                                 SINT, DAG.getConstant(53, MVT::i32));
4822      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4823                         Cond, DAG.getConstant(1, MVT::i64));
4824      Cond = DAG.getSetCC(dl, MVT::i32,
4825                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4826
4827      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4828    }
4829
4830    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4831    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
4832
4833    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4834      FP = DAG.getNode(ISD::FP_ROUND, dl,
4835                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4836    return FP;
4837  }
4838
4839  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4840         "Unhandled INT_TO_FP type in custom expander!");
4841  // Since we only generate this in 64-bit mode, we can take advantage of
4842  // 64-bit registers.  In particular, sign extend the input value into the
4843  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4844  // then lfd it and fcfid it.
4845  MachineFunction &MF = DAG.getMachineFunction();
4846  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4847  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4848
4849  SDValue Ld;
4850  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
4851    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
4852    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4853
4854    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
4855                                 MachinePointerInfo::getFixedStack(FrameIdx),
4856                                 false, false, 0);
4857
4858    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
4859           "Expected an i32 store");
4860    MachineMemOperand *MMO =
4861      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4862                              MachineMemOperand::MOLoad, 4, 4);
4863    SDValue Ops[] = { Store, FIdx };
4864    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
4865                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
4866                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
4867                                 Ops, 2, MVT::i32, MMO);
4868  } else {
4869    assert(PPCSubTarget.isPPC64() &&
4870           "i32->FP without LFIWAX supported only on PPC64");
4871
4872    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4873    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4874
4875    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
4876                                Op.getOperand(0));
4877
4878    // STD the extended value into the stack slot.
4879    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
4880                                 MachinePointerInfo::getFixedStack(FrameIdx),
4881                                 false, false, 0);
4882
4883    // Load the value as a double.
4884    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
4885                     MachinePointerInfo::getFixedStack(FrameIdx),
4886                     false, false, false, 0);
4887  }
4888
4889  // FCFID it and return it.
4890  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
4891  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4892    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4893  return FP;
4894}
4895
4896SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4897                                            SelectionDAG &DAG) const {
4898  SDLoc dl(Op);
4899  /*
4900   The rounding mode is in bits 30:31 of FPSR, and has the following
4901   settings:
4902     00 Round to nearest
4903     01 Round to 0
4904     10 Round to +inf
4905     11 Round to -inf
4906
4907  FLT_ROUNDS, on the other hand, expects the following:
4908    -1 Undefined
4909     0 Round to 0
4910     1 Round to nearest
4911     2 Round to +inf
4912     3 Round to -inf
4913
4914  To perform the conversion, we do:
4915    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4916  */
4917
4918  MachineFunction &MF = DAG.getMachineFunction();
4919  EVT VT = Op.getValueType();
4920  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4921  SDValue MFFSreg, InFlag;
4922
4923  // Save FP Control Word to register
4924  EVT NodeTys[] = {
4925    MVT::f64,    // return register
4926    MVT::Glue    // unused in this context
4927  };
4928  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4929
4930  // Save FP register to stack slot
4931  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4932  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4933  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4934                               StackSlot, MachinePointerInfo(), false, false,0);
4935
4936  // Load FP Control Word from low 32 bits of stack slot.
4937  SDValue Four = DAG.getConstant(4, PtrVT);
4938  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4939  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4940                            false, false, false, 0);
4941
4942  // Transform as necessary
4943  SDValue CWD1 =
4944    DAG.getNode(ISD::AND, dl, MVT::i32,
4945                CWD, DAG.getConstant(3, MVT::i32));
4946  SDValue CWD2 =
4947    DAG.getNode(ISD::SRL, dl, MVT::i32,
4948                DAG.getNode(ISD::AND, dl, MVT::i32,
4949                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4950                                        CWD, DAG.getConstant(3, MVT::i32)),
4951                            DAG.getConstant(3, MVT::i32)),
4952                DAG.getConstant(1, MVT::i32));
4953
4954  SDValue RetVal =
4955    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4956
4957  return DAG.getNode((VT.getSizeInBits() < 16 ?
4958                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4959}
4960
4961SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4962  EVT VT = Op.getValueType();
4963  unsigned BitWidth = VT.getSizeInBits();
4964  SDLoc dl(Op);
4965  assert(Op.getNumOperands() == 3 &&
4966         VT == Op.getOperand(1).getValueType() &&
4967         "Unexpected SHL!");
4968
4969  // Expand into a bunch of logical ops.  Note that these ops
4970  // depend on the PPC behavior for oversized shift amounts.
4971  SDValue Lo = Op.getOperand(0);
4972  SDValue Hi = Op.getOperand(1);
4973  SDValue Amt = Op.getOperand(2);
4974  EVT AmtVT = Amt.getValueType();
4975
4976  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4977                             DAG.getConstant(BitWidth, AmtVT), Amt);
4978  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4979  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4980  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4981  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4982                             DAG.getConstant(-BitWidth, AmtVT));
4983  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4984  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4985  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4986  SDValue OutOps[] = { OutLo, OutHi };
4987  return DAG.getMergeValues(OutOps, 2, dl);
4988}
4989
4990SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4991  EVT VT = Op.getValueType();
4992  SDLoc dl(Op);
4993  unsigned BitWidth = VT.getSizeInBits();
4994  assert(Op.getNumOperands() == 3 &&
4995         VT == Op.getOperand(1).getValueType() &&
4996         "Unexpected SRL!");
4997
4998  // Expand into a bunch of logical ops.  Note that these ops
4999  // depend on the PPC behavior for oversized shift amounts.
5000  SDValue Lo = Op.getOperand(0);
5001  SDValue Hi = Op.getOperand(1);
5002  SDValue Amt = Op.getOperand(2);
5003  EVT AmtVT = Amt.getValueType();
5004
5005  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5006                             DAG.getConstant(BitWidth, AmtVT), Amt);
5007  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5008  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5009  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5010  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5011                             DAG.getConstant(-BitWidth, AmtVT));
5012  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5013  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5014  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5015  SDValue OutOps[] = { OutLo, OutHi };
5016  return DAG.getMergeValues(OutOps, 2, dl);
5017}
5018
5019SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5020  SDLoc dl(Op);
5021  EVT VT = Op.getValueType();
5022  unsigned BitWidth = VT.getSizeInBits();
5023  assert(Op.getNumOperands() == 3 &&
5024         VT == Op.getOperand(1).getValueType() &&
5025         "Unexpected SRA!");
5026
5027  // Expand into a bunch of logical ops, followed by a select_cc.
5028  SDValue Lo = Op.getOperand(0);
5029  SDValue Hi = Op.getOperand(1);
5030  SDValue Amt = Op.getOperand(2);
5031  EVT AmtVT = Amt.getValueType();
5032
5033  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5034                             DAG.getConstant(BitWidth, AmtVT), Amt);
5035  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5036  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5037  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5038  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5039                             DAG.getConstant(-BitWidth, AmtVT));
5040  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5041  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5042  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5043                                  Tmp4, Tmp6, ISD::SETLE);
5044  SDValue OutOps[] = { OutLo, OutHi };
5045  return DAG.getMergeValues(OutOps, 2, dl);
5046}
5047
5048//===----------------------------------------------------------------------===//
5049// Vector related lowering.
5050//
5051
5052/// BuildSplatI - Build a canonical splati of Val with an element size of
5053/// SplatSize.  Cast the result to VT.
5054static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5055                             SelectionDAG &DAG, SDLoc dl) {
5056  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5057
5058  static const EVT VTys[] = { // canonical VT to use for each size.
5059    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5060  };
5061
5062  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5063
5064  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5065  if (Val == -1)
5066    SplatSize = 1;
5067
5068  EVT CanonicalVT = VTys[SplatSize-1];
5069
5070  // Build a canonical splat for this value.
5071  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5072  SmallVector<SDValue, 8> Ops;
5073  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5074  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5075                              &Ops[0], Ops.size());
5076  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5077}
5078
5079/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5080/// specified intrinsic ID.
5081static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5082                                SelectionDAG &DAG, SDLoc dl,
5083                                EVT DestVT = MVT::Other) {
5084  if (DestVT == MVT::Other) DestVT = Op.getValueType();
5085  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5086                     DAG.getConstant(IID, MVT::i32), Op);
5087}
5088
5089/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5090/// specified intrinsic ID.
5091static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5092                                SelectionDAG &DAG, SDLoc dl,
5093                                EVT DestVT = MVT::Other) {
5094  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5095  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5096                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5097}
5098
5099/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5100/// specified intrinsic ID.
5101static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5102                                SDValue Op2, SelectionDAG &DAG,
5103                                SDLoc dl, EVT DestVT = MVT::Other) {
5104  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5105  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5106                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5107}
5108
5109
5110/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5111/// amount.  The result has the specified value type.
5112static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5113                             EVT VT, SelectionDAG &DAG, SDLoc dl) {
5114  // Force LHS/RHS to be the right type.
5115  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5116  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5117
5118  int Ops[16];
5119  for (unsigned i = 0; i != 16; ++i)
5120    Ops[i] = i + Amt;
5121  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5122  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5123}
5124
5125// If this is a case we can't handle, return null and let the default
5126// expansion code take care of it.  If we CAN select this case, and if it
5127// selects to a single instruction, return Op.  Otherwise, if we can codegen
5128// this case more efficiently than a constant pool load, lower it to the
5129// sequence of ops that should be used.
5130SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5131                                             SelectionDAG &DAG) const {
5132  SDLoc dl(Op);
5133  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5134  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5135
5136  // Check if this is a splat of a constant value.
5137  APInt APSplatBits, APSplatUndef;
5138  unsigned SplatBitSize;
5139  bool HasAnyUndefs;
5140  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5141                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5142    return SDValue();
5143
5144  unsigned SplatBits = APSplatBits.getZExtValue();
5145  unsigned SplatUndef = APSplatUndef.getZExtValue();
5146  unsigned SplatSize = SplatBitSize / 8;
5147
5148  // First, handle single instruction cases.
5149
5150  // All zeros?
5151  if (SplatBits == 0) {
5152    // Canonicalize all zero vectors to be v4i32.
5153    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5154      SDValue Z = DAG.getConstant(0, MVT::i32);
5155      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5156      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5157    }
5158    return Op;
5159  }
5160
5161  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5162  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5163                    (32-SplatBitSize));
5164  if (SextVal >= -16 && SextVal <= 15)
5165    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5166
5167
5168  // Two instruction sequences.
5169
5170  // If this value is in the range [-32,30] and is even, use:
5171  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5172  // If this value is in the range [17,31] and is odd, use:
5173  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5174  // If this value is in the range [-31,-17] and is odd, use:
5175  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5176  // Note the last two are three-instruction sequences.
5177  if (SextVal >= -32 && SextVal <= 31) {
5178    // To avoid having these optimizations undone by constant folding,
5179    // we convert to a pseudo that will be expanded later into one of
5180    // the above forms.
5181    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5182    EVT VT = Op.getValueType();
5183    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5184    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5185    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5186  }
5187
5188  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5189  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5190  // for fneg/fabs.
5191  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5192    // Make -1 and vspltisw -1:
5193    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5194
5195    // Make the VSLW intrinsic, computing 0x8000_0000.
5196    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5197                                   OnesV, DAG, dl);
5198
5199    // xor by OnesV to invert it.
5200    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5201    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5202  }
5203
5204  // Check to see if this is a wide variety of vsplti*, binop self cases.
5205  static const signed char SplatCsts[] = {
5206    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5207    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5208  };
5209
5210  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5211    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5212    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5213    int i = SplatCsts[idx];
5214
5215    // Figure out what shift amount will be used by altivec if shifted by i in
5216    // this splat size.
5217    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5218
5219    // vsplti + shl self.
5220    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5221      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5222      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5223        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5224        Intrinsic::ppc_altivec_vslw
5225      };
5226      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5227      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5228    }
5229
5230    // vsplti + srl self.
5231    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5232      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5233      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5234        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5235        Intrinsic::ppc_altivec_vsrw
5236      };
5237      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5238      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5239    }
5240
5241    // vsplti + sra self.
5242    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5243      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5244      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5245        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5246        Intrinsic::ppc_altivec_vsraw
5247      };
5248      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5249      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5250    }
5251
5252    // vsplti + rol self.
5253    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5254                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5255      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5256      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5257        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5258        Intrinsic::ppc_altivec_vrlw
5259      };
5260      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5261      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5262    }
5263
5264    // t = vsplti c, result = vsldoi t, t, 1
5265    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5266      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5267      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5268    }
5269    // t = vsplti c, result = vsldoi t, t, 2
5270    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5271      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5272      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5273    }
5274    // t = vsplti c, result = vsldoi t, t, 3
5275    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5276      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5277      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5278    }
5279  }
5280
5281  return SDValue();
5282}
5283
5284/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5285/// the specified operations to build the shuffle.
5286static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5287                                      SDValue RHS, SelectionDAG &DAG,
5288                                      SDLoc dl) {
5289  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5290  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5291  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5292
5293  enum {
5294    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5295    OP_VMRGHW,
5296    OP_VMRGLW,
5297    OP_VSPLTISW0,
5298    OP_VSPLTISW1,
5299    OP_VSPLTISW2,
5300    OP_VSPLTISW3,
5301    OP_VSLDOI4,
5302    OP_VSLDOI8,
5303    OP_VSLDOI12
5304  };
5305
5306  if (OpNum == OP_COPY) {
5307    if (LHSID == (1*9+2)*9+3) return LHS;
5308    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5309    return RHS;
5310  }
5311
5312  SDValue OpLHS, OpRHS;
5313  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5314  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5315
5316  int ShufIdxs[16];
5317  switch (OpNum) {
5318  default: llvm_unreachable("Unknown i32 permute!");
5319  case OP_VMRGHW:
5320    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5321    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5322    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5323    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5324    break;
5325  case OP_VMRGLW:
5326    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5327    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5328    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5329    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5330    break;
5331  case OP_VSPLTISW0:
5332    for (unsigned i = 0; i != 16; ++i)
5333      ShufIdxs[i] = (i&3)+0;
5334    break;
5335  case OP_VSPLTISW1:
5336    for (unsigned i = 0; i != 16; ++i)
5337      ShufIdxs[i] = (i&3)+4;
5338    break;
5339  case OP_VSPLTISW2:
5340    for (unsigned i = 0; i != 16; ++i)
5341      ShufIdxs[i] = (i&3)+8;
5342    break;
5343  case OP_VSPLTISW3:
5344    for (unsigned i = 0; i != 16; ++i)
5345      ShufIdxs[i] = (i&3)+12;
5346    break;
5347  case OP_VSLDOI4:
5348    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5349  case OP_VSLDOI8:
5350    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5351  case OP_VSLDOI12:
5352    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5353  }
5354  EVT VT = OpLHS.getValueType();
5355  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5356  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5357  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5358  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5359}
5360
5361/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5362/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5363/// return the code it can be lowered into.  Worst case, it can always be
5364/// lowered into a vperm.
5365SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5366                                               SelectionDAG &DAG) const {
5367  SDLoc dl(Op);
5368  SDValue V1 = Op.getOperand(0);
5369  SDValue V2 = Op.getOperand(1);
5370  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5371  EVT VT = Op.getValueType();
5372
5373  // Cases that are handled by instructions that take permute immediates
5374  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5375  // selected by the instruction selector.
5376  if (V2.getOpcode() == ISD::UNDEF) {
5377    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5378        PPC::isSplatShuffleMask(SVOp, 2) ||
5379        PPC::isSplatShuffleMask(SVOp, 4) ||
5380        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5381        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5382        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5383        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5384        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5385        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5386        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5387        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5388        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5389      return Op;
5390    }
5391  }
5392
5393  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5394  // and produce a fixed permutation.  If any of these match, do not lower to
5395  // VPERM.
5396  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5397      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5398      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5399      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5400      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5401      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5402      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5403      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5404      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5405    return Op;
5406
5407  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5408  // perfect shuffle table to emit an optimal matching sequence.
5409  ArrayRef<int> PermMask = SVOp->getMask();
5410
5411  unsigned PFIndexes[4];
5412  bool isFourElementShuffle = true;
5413  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5414    unsigned EltNo = 8;   // Start out undef.
5415    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5416      if (PermMask[i*4+j] < 0)
5417        continue;   // Undef, ignore it.
5418
5419      unsigned ByteSource = PermMask[i*4+j];
5420      if ((ByteSource & 3) != j) {
5421        isFourElementShuffle = false;
5422        break;
5423      }
5424
5425      if (EltNo == 8) {
5426        EltNo = ByteSource/4;
5427      } else if (EltNo != ByteSource/4) {
5428        isFourElementShuffle = false;
5429        break;
5430      }
5431    }
5432    PFIndexes[i] = EltNo;
5433  }
5434
5435  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5436  // perfect shuffle vector to determine if it is cost effective to do this as
5437  // discrete instructions, or whether we should use a vperm.
5438  if (isFourElementShuffle) {
5439    // Compute the index in the perfect shuffle table.
5440    unsigned PFTableIndex =
5441      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5442
5443    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5444    unsigned Cost  = (PFEntry >> 30);
5445
5446    // Determining when to avoid vperm is tricky.  Many things affect the cost
5447    // of vperm, particularly how many times the perm mask needs to be computed.
5448    // For example, if the perm mask can be hoisted out of a loop or is already
5449    // used (perhaps because there are multiple permutes with the same shuffle
5450    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5451    // the loop requires an extra register.
5452    //
5453    // As a compromise, we only emit discrete instructions if the shuffle can be
5454    // generated in 3 or fewer operations.  When we have loop information
5455    // available, if this block is within a loop, we should avoid using vperm
5456    // for 3-operation perms and use a constant pool load instead.
5457    if (Cost < 3)
5458      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5459  }
5460
5461  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5462  // vector that will get spilled to the constant pool.
5463  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5464
5465  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5466  // that it is in input element units, not in bytes.  Convert now.
5467  EVT EltVT = V1.getValueType().getVectorElementType();
5468  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5469
5470  SmallVector<SDValue, 16> ResultMask;
5471  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5472    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5473
5474    for (unsigned j = 0; j != BytesPerElement; ++j)
5475      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5476                                           MVT::i32));
5477  }
5478
5479  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5480                                    &ResultMask[0], ResultMask.size());
5481  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5482}
5483
5484/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5485/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5486/// information about the intrinsic.
5487static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5488                                  bool &isDot) {
5489  unsigned IntrinsicID =
5490    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5491  CompareOpc = -1;
5492  isDot = false;
5493  switch (IntrinsicID) {
5494  default: return false;
5495    // Comparison predicates.
5496  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5497  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5498  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5499  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5500  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5501  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5502  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5503  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5504  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5505  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5506  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5507  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5508  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5509
5510    // Normal Comparisons.
5511  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5512  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5513  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5514  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5515  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5516  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5517  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5518  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5519  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5520  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5521  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5522  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5523  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5524  }
5525  return true;
5526}
5527
5528/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5529/// lower, do it, otherwise return null.
5530SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5531                                                   SelectionDAG &DAG) const {
5532  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5533  // opcode number of the comparison.
5534  SDLoc dl(Op);
5535  int CompareOpc;
5536  bool isDot;
5537  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5538    return SDValue();    // Don't custom lower most intrinsics.
5539
5540  // If this is a non-dot comparison, make the VCMP node and we are done.
5541  if (!isDot) {
5542    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5543                              Op.getOperand(1), Op.getOperand(2),
5544                              DAG.getConstant(CompareOpc, MVT::i32));
5545    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5546  }
5547
5548  // Create the PPCISD altivec 'dot' comparison node.
5549  SDValue Ops[] = {
5550    Op.getOperand(2),  // LHS
5551    Op.getOperand(3),  // RHS
5552    DAG.getConstant(CompareOpc, MVT::i32)
5553  };
5554  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5555  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5556
5557  // Now that we have the comparison, emit a copy from the CR to a GPR.
5558  // This is flagged to the above dot comparison.
5559  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5560                                DAG.getRegister(PPC::CR6, MVT::i32),
5561                                CompNode.getValue(1));
5562
5563  // Unpack the result based on how the target uses it.
5564  unsigned BitNo;   // Bit # of CR6.
5565  bool InvertBit;   // Invert result?
5566  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5567  default:  // Can't happen, don't crash on invalid number though.
5568  case 0:   // Return the value of the EQ bit of CR6.
5569    BitNo = 0; InvertBit = false;
5570    break;
5571  case 1:   // Return the inverted value of the EQ bit of CR6.
5572    BitNo = 0; InvertBit = true;
5573    break;
5574  case 2:   // Return the value of the LT bit of CR6.
5575    BitNo = 2; InvertBit = false;
5576    break;
5577  case 3:   // Return the inverted value of the LT bit of CR6.
5578    BitNo = 2; InvertBit = true;
5579    break;
5580  }
5581
5582  // Shift the bit into the low position.
5583  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5584                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5585  // Isolate the bit.
5586  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5587                      DAG.getConstant(1, MVT::i32));
5588
5589  // If we are supposed to, toggle the bit.
5590  if (InvertBit)
5591    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5592                        DAG.getConstant(1, MVT::i32));
5593  return Flags;
5594}
5595
5596SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5597                                                   SelectionDAG &DAG) const {
5598  SDLoc dl(Op);
5599  // Create a stack slot that is 16-byte aligned.
5600  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5601  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5602  EVT PtrVT = getPointerTy();
5603  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5604
5605  // Store the input value into Value#0 of the stack slot.
5606  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5607                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5608                               false, false, 0);
5609  // Load it out.
5610  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5611                     false, false, false, 0);
5612}
5613
5614SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5615  SDLoc dl(Op);
5616  if (Op.getValueType() == MVT::v4i32) {
5617    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5618
5619    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5620    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5621
5622    SDValue RHSSwap =   // = vrlw RHS, 16
5623      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5624
5625    // Shrinkify inputs to v8i16.
5626    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5627    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5628    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5629
5630    // Low parts multiplied together, generating 32-bit results (we ignore the
5631    // top parts).
5632    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5633                                        LHS, RHS, DAG, dl, MVT::v4i32);
5634
5635    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5636                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5637    // Shift the high parts up 16 bits.
5638    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5639                              Neg16, DAG, dl);
5640    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5641  } else if (Op.getValueType() == MVT::v8i16) {
5642    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5643
5644    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5645
5646    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5647                            LHS, RHS, Zero, DAG, dl);
5648  } else if (Op.getValueType() == MVT::v16i8) {
5649    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5650
5651    // Multiply the even 8-bit parts, producing 16-bit sums.
5652    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5653                                           LHS, RHS, DAG, dl, MVT::v8i16);
5654    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5655
5656    // Multiply the odd 8-bit parts, producing 16-bit sums.
5657    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5658                                          LHS, RHS, DAG, dl, MVT::v8i16);
5659    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5660
5661    // Merge the results together.
5662    int Ops[16];
5663    for (unsigned i = 0; i != 8; ++i) {
5664      Ops[i*2  ] = 2*i+1;
5665      Ops[i*2+1] = 2*i+1+16;
5666    }
5667    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5668  } else {
5669    llvm_unreachable("Unknown mul to lower!");
5670  }
5671}
5672
5673/// LowerOperation - Provide custom lowering hooks for some operations.
5674///
5675SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5676  switch (Op.getOpcode()) {
5677  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5678  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5679  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5680  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5681  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5682  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5683  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5684  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5685  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5686  case ISD::VASTART:
5687    return LowerVASTART(Op, DAG, PPCSubTarget);
5688
5689  case ISD::VAARG:
5690    return LowerVAARG(Op, DAG, PPCSubTarget);
5691
5692  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5693  case ISD::DYNAMIC_STACKALLOC:
5694    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5695
5696  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5697  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5698
5699  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5700  case ISD::FP_TO_UINT:
5701  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5702                                                       SDLoc(Op));
5703  case ISD::UINT_TO_FP:
5704  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
5705  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5706
5707  // Lower 64-bit shifts.
5708  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5709  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5710  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5711
5712  // Vector-related lowering.
5713  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5714  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5715  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5716  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5717  case ISD::MUL:                return LowerMUL(Op, DAG);
5718
5719  // For counter-based loop handling.
5720  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
5721
5722  // Frame & Return address.
5723  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5724  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5725  }
5726}
5727
5728void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5729                                           SmallVectorImpl<SDValue>&Results,
5730                                           SelectionDAG &DAG) const {
5731  const TargetMachine &TM = getTargetMachine();
5732  SDLoc dl(N);
5733  switch (N->getOpcode()) {
5734  default:
5735    llvm_unreachable("Do not know how to custom type legalize this operation!");
5736  case ISD::INTRINSIC_W_CHAIN: {
5737    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
5738        Intrinsic::ppc_is_decremented_ctr_nonzero)
5739      break;
5740
5741    assert(N->getValueType(0) == MVT::i1 &&
5742           "Unexpected result type for CTR decrement intrinsic");
5743    EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
5744    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
5745    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
5746                                 N->getOperand(1));
5747
5748    Results.push_back(NewInt);
5749    Results.push_back(NewInt.getValue(1));
5750    break;
5751  }
5752  case ISD::VAARG: {
5753    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5754        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5755      return;
5756
5757    EVT VT = N->getValueType(0);
5758
5759    if (VT == MVT::i64) {
5760      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5761
5762      Results.push_back(NewNode);
5763      Results.push_back(NewNode.getValue(1));
5764    }
5765    return;
5766  }
5767  case ISD::FP_ROUND_INREG: {
5768    assert(N->getValueType(0) == MVT::ppcf128);
5769    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5770    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5771                             MVT::f64, N->getOperand(0),
5772                             DAG.getIntPtrConstant(0));
5773    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5774                             MVT::f64, N->getOperand(0),
5775                             DAG.getIntPtrConstant(1));
5776
5777    // Add the two halves of the long double in round-to-zero mode.
5778    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5779
5780    // We know the low half is about to be thrown away, so just use something
5781    // convenient.
5782    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5783                                FPreg, FPreg));
5784    return;
5785  }
5786  case ISD::FP_TO_SINT:
5787    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5788    return;
5789  }
5790}
5791
5792
5793//===----------------------------------------------------------------------===//
5794//  Other Lowering Code
5795//===----------------------------------------------------------------------===//
5796
5797MachineBasicBlock *
5798PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5799                                    bool is64bit, unsigned BinOpcode) const {
5800  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5801  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5802
5803  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5804  MachineFunction *F = BB->getParent();
5805  MachineFunction::iterator It = BB;
5806  ++It;
5807
5808  unsigned dest = MI->getOperand(0).getReg();
5809  unsigned ptrA = MI->getOperand(1).getReg();
5810  unsigned ptrB = MI->getOperand(2).getReg();
5811  unsigned incr = MI->getOperand(3).getReg();
5812  DebugLoc dl = MI->getDebugLoc();
5813
5814  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5815  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5816  F->insert(It, loopMBB);
5817  F->insert(It, exitMBB);
5818  exitMBB->splice(exitMBB->begin(), BB,
5819                  llvm::next(MachineBasicBlock::iterator(MI)),
5820                  BB->end());
5821  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5822
5823  MachineRegisterInfo &RegInfo = F->getRegInfo();
5824  unsigned TmpReg = (!BinOpcode) ? incr :
5825    RegInfo.createVirtualRegister(
5826       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5827                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5828
5829  //  thisMBB:
5830  //   ...
5831  //   fallthrough --> loopMBB
5832  BB->addSuccessor(loopMBB);
5833
5834  //  loopMBB:
5835  //   l[wd]arx dest, ptr
5836  //   add r0, dest, incr
5837  //   st[wd]cx. r0, ptr
5838  //   bne- loopMBB
5839  //   fallthrough --> exitMBB
5840  BB = loopMBB;
5841  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5842    .addReg(ptrA).addReg(ptrB);
5843  if (BinOpcode)
5844    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5845  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5846    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5847  BuildMI(BB, dl, TII->get(PPC::BCC))
5848    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5849  BB->addSuccessor(loopMBB);
5850  BB->addSuccessor(exitMBB);
5851
5852  //  exitMBB:
5853  //   ...
5854  BB = exitMBB;
5855  return BB;
5856}
5857
5858MachineBasicBlock *
5859PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5860                                            MachineBasicBlock *BB,
5861                                            bool is8bit,    // operation
5862                                            unsigned BinOpcode) const {
5863  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5864  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5865  // In 64 bit mode we have to use 64 bits for addresses, even though the
5866  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5867  // registers without caring whether they're 32 or 64, but here we're
5868  // doing actual arithmetic on the addresses.
5869  bool is64bit = PPCSubTarget.isPPC64();
5870  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5871
5872  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5873  MachineFunction *F = BB->getParent();
5874  MachineFunction::iterator It = BB;
5875  ++It;
5876
5877  unsigned dest = MI->getOperand(0).getReg();
5878  unsigned ptrA = MI->getOperand(1).getReg();
5879  unsigned ptrB = MI->getOperand(2).getReg();
5880  unsigned incr = MI->getOperand(3).getReg();
5881  DebugLoc dl = MI->getDebugLoc();
5882
5883  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5884  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5885  F->insert(It, loopMBB);
5886  F->insert(It, exitMBB);
5887  exitMBB->splice(exitMBB->begin(), BB,
5888                  llvm::next(MachineBasicBlock::iterator(MI)),
5889                  BB->end());
5890  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5891
5892  MachineRegisterInfo &RegInfo = F->getRegInfo();
5893  const TargetRegisterClass *RC =
5894    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5895              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5896  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5897  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5898  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5899  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5900  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5901  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5902  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5903  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5904  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5905  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5906  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5907  unsigned Ptr1Reg;
5908  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5909
5910  //  thisMBB:
5911  //   ...
5912  //   fallthrough --> loopMBB
5913  BB->addSuccessor(loopMBB);
5914
5915  // The 4-byte load must be aligned, while a char or short may be
5916  // anywhere in the word.  Hence all this nasty bookkeeping code.
5917  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5918  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5919  //   xori shift, shift1, 24 [16]
5920  //   rlwinm ptr, ptr1, 0, 0, 29
5921  //   slw incr2, incr, shift
5922  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5923  //   slw mask, mask2, shift
5924  //  loopMBB:
5925  //   lwarx tmpDest, ptr
5926  //   add tmp, tmpDest, incr2
5927  //   andc tmp2, tmpDest, mask
5928  //   and tmp3, tmp, mask
5929  //   or tmp4, tmp3, tmp2
5930  //   stwcx. tmp4, ptr
5931  //   bne- loopMBB
5932  //   fallthrough --> exitMBB
5933  //   srw dest, tmpDest, shift
5934  if (ptrA != ZeroReg) {
5935    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5936    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5937      .addReg(ptrA).addReg(ptrB);
5938  } else {
5939    Ptr1Reg = ptrB;
5940  }
5941  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5942      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5943  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5944      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5945  if (is64bit)
5946    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5947      .addReg(Ptr1Reg).addImm(0).addImm(61);
5948  else
5949    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5950      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5951  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5952      .addReg(incr).addReg(ShiftReg);
5953  if (is8bit)
5954    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5955  else {
5956    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5957    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5958  }
5959  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5960      .addReg(Mask2Reg).addReg(ShiftReg);
5961
5962  BB = loopMBB;
5963  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5964    .addReg(ZeroReg).addReg(PtrReg);
5965  if (BinOpcode)
5966    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5967      .addReg(Incr2Reg).addReg(TmpDestReg);
5968  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5969    .addReg(TmpDestReg).addReg(MaskReg);
5970  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5971    .addReg(TmpReg).addReg(MaskReg);
5972  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5973    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5974  BuildMI(BB, dl, TII->get(PPC::STWCX))
5975    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5976  BuildMI(BB, dl, TII->get(PPC::BCC))
5977    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5978  BB->addSuccessor(loopMBB);
5979  BB->addSuccessor(exitMBB);
5980
5981  //  exitMBB:
5982  //   ...
5983  BB = exitMBB;
5984  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5985    .addReg(ShiftReg);
5986  return BB;
5987}
5988
5989llvm::MachineBasicBlock*
5990PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
5991                                    MachineBasicBlock *MBB) const {
5992  DebugLoc DL = MI->getDebugLoc();
5993  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5994
5995  MachineFunction *MF = MBB->getParent();
5996  MachineRegisterInfo &MRI = MF->getRegInfo();
5997
5998  const BasicBlock *BB = MBB->getBasicBlock();
5999  MachineFunction::iterator I = MBB;
6000  ++I;
6001
6002  // Memory Reference
6003  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6004  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6005
6006  unsigned DstReg = MI->getOperand(0).getReg();
6007  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
6008  assert(RC->hasType(MVT::i32) && "Invalid destination!");
6009  unsigned mainDstReg = MRI.createVirtualRegister(RC);
6010  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6011
6012  MVT PVT = getPointerTy();
6013  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6014         "Invalid Pointer Size!");
6015  // For v = setjmp(buf), we generate
6016  //
6017  // thisMBB:
6018  //  SjLjSetup mainMBB
6019  //  bl mainMBB
6020  //  v_restore = 1
6021  //  b sinkMBB
6022  //
6023  // mainMBB:
6024  //  buf[LabelOffset] = LR
6025  //  v_main = 0
6026  //
6027  // sinkMBB:
6028  //  v = phi(main, restore)
6029  //
6030
6031  MachineBasicBlock *thisMBB = MBB;
6032  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6033  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6034  MF->insert(I, mainMBB);
6035  MF->insert(I, sinkMBB);
6036
6037  MachineInstrBuilder MIB;
6038
6039  // Transfer the remainder of BB and its successor edges to sinkMBB.
6040  sinkMBB->splice(sinkMBB->begin(), MBB,
6041                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
6042  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6043
6044  // Note that the structure of the jmp_buf used here is not compatible
6045  // with that used by libc, and is not designed to be. Specifically, it
6046  // stores only those 'reserved' registers that LLVM does not otherwise
6047  // understand how to spill. Also, by convention, by the time this
6048  // intrinsic is called, Clang has already stored the frame address in the
6049  // first slot of the buffer and stack address in the third. Following the
6050  // X86 target code, we'll store the jump address in the second slot. We also
6051  // need to save the TOC pointer (R2) to handle jumps between shared
6052  // libraries, and that will be stored in the fourth slot. The thread
6053  // identifier (R13) is not affected.
6054
6055  // thisMBB:
6056  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6057  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6058
6059  // Prepare IP either in reg.
6060  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6061  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6062  unsigned BufReg = MI->getOperand(1).getReg();
6063
6064  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6065    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6066            .addReg(PPC::X2)
6067            .addImm(TOCOffset)
6068            .addReg(BufReg);
6069
6070    MIB.setMemRefs(MMOBegin, MMOEnd);
6071  }
6072
6073  // Setup
6074  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6075  MIB.addRegMask(PPCRegInfo->getNoPreservedMask());
6076
6077  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6078
6079  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6080          .addMBB(mainMBB);
6081  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6082
6083  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6084  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6085
6086  // mainMBB:
6087  //  mainDstReg = 0
6088  MIB = BuildMI(mainMBB, DL,
6089    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6090
6091  // Store IP
6092  if (PPCSubTarget.isPPC64()) {
6093    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6094            .addReg(LabelReg)
6095            .addImm(LabelOffset)
6096            .addReg(BufReg);
6097  } else {
6098    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6099            .addReg(LabelReg)
6100            .addImm(LabelOffset)
6101            .addReg(BufReg);
6102  }
6103
6104  MIB.setMemRefs(MMOBegin, MMOEnd);
6105
6106  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6107  mainMBB->addSuccessor(sinkMBB);
6108
6109  // sinkMBB:
6110  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6111          TII->get(PPC::PHI), DstReg)
6112    .addReg(mainDstReg).addMBB(mainMBB)
6113    .addReg(restoreDstReg).addMBB(thisMBB);
6114
6115  MI->eraseFromParent();
6116  return sinkMBB;
6117}
6118
6119MachineBasicBlock *
6120PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6121                                     MachineBasicBlock *MBB) const {
6122  DebugLoc DL = MI->getDebugLoc();
6123  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6124
6125  MachineFunction *MF = MBB->getParent();
6126  MachineRegisterInfo &MRI = MF->getRegInfo();
6127
6128  // Memory Reference
6129  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6130  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6131
6132  MVT PVT = getPointerTy();
6133  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6134         "Invalid Pointer Size!");
6135
6136  const TargetRegisterClass *RC =
6137    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6138  unsigned Tmp = MRI.createVirtualRegister(RC);
6139  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6140  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6141  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6142
6143  MachineInstrBuilder MIB;
6144
6145  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6146  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6147  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6148
6149  unsigned BufReg = MI->getOperand(0).getReg();
6150
6151  // Reload FP (the jumped-to function may not have had a
6152  // frame pointer, and if so, then its r31 will be restored
6153  // as necessary).
6154  if (PVT == MVT::i64) {
6155    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6156            .addImm(0)
6157            .addReg(BufReg);
6158  } else {
6159    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6160            .addImm(0)
6161            .addReg(BufReg);
6162  }
6163  MIB.setMemRefs(MMOBegin, MMOEnd);
6164
6165  // Reload IP
6166  if (PVT == MVT::i64) {
6167    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6168            .addImm(LabelOffset)
6169            .addReg(BufReg);
6170  } else {
6171    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6172            .addImm(LabelOffset)
6173            .addReg(BufReg);
6174  }
6175  MIB.setMemRefs(MMOBegin, MMOEnd);
6176
6177  // Reload SP
6178  if (PVT == MVT::i64) {
6179    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6180            .addImm(SPOffset)
6181            .addReg(BufReg);
6182  } else {
6183    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6184            .addImm(SPOffset)
6185            .addReg(BufReg);
6186  }
6187  MIB.setMemRefs(MMOBegin, MMOEnd);
6188
6189  // FIXME: When we also support base pointers, that register must also be
6190  // restored here.
6191
6192  // Reload TOC
6193  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6194    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6195            .addImm(TOCOffset)
6196            .addReg(BufReg);
6197
6198    MIB.setMemRefs(MMOBegin, MMOEnd);
6199  }
6200
6201  // Jump
6202  BuildMI(*MBB, MI, DL,
6203          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6204  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6205
6206  MI->eraseFromParent();
6207  return MBB;
6208}
6209
6210MachineBasicBlock *
6211PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6212                                               MachineBasicBlock *BB) const {
6213  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6214      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6215    return emitEHSjLjSetJmp(MI, BB);
6216  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6217             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6218    return emitEHSjLjLongJmp(MI, BB);
6219  }
6220
6221  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6222
6223  // To "insert" these instructions we actually have to insert their
6224  // control-flow patterns.
6225  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6226  MachineFunction::iterator It = BB;
6227  ++It;
6228
6229  MachineFunction *F = BB->getParent();
6230
6231  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6232                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6233    SmallVector<MachineOperand, 2> Cond;
6234    Cond.push_back(MI->getOperand(4));
6235    Cond.push_back(MI->getOperand(1));
6236
6237    DebugLoc dl = MI->getDebugLoc();
6238    PPCII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), Cond,
6239                        MI->getOperand(2).getReg(), MI->getOperand(3).getReg());
6240  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6241             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6242             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6243             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6244             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6245
6246
6247    // The incoming instruction knows the destination vreg to set, the
6248    // condition code register to branch on, the true/false values to
6249    // select between, and a branch opcode to use.
6250
6251    //  thisMBB:
6252    //  ...
6253    //   TrueVal = ...
6254    //   cmpTY ccX, r1, r2
6255    //   bCC copy1MBB
6256    //   fallthrough --> copy0MBB
6257    MachineBasicBlock *thisMBB = BB;
6258    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6259    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6260    unsigned SelectPred = MI->getOperand(4).getImm();
6261    DebugLoc dl = MI->getDebugLoc();
6262    F->insert(It, copy0MBB);
6263    F->insert(It, sinkMBB);
6264
6265    // Transfer the remainder of BB and its successor edges to sinkMBB.
6266    sinkMBB->splice(sinkMBB->begin(), BB,
6267                    llvm::next(MachineBasicBlock::iterator(MI)),
6268                    BB->end());
6269    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6270
6271    // Next, add the true and fallthrough blocks as its successors.
6272    BB->addSuccessor(copy0MBB);
6273    BB->addSuccessor(sinkMBB);
6274
6275    BuildMI(BB, dl, TII->get(PPC::BCC))
6276      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6277
6278    //  copy0MBB:
6279    //   %FalseValue = ...
6280    //   # fallthrough to sinkMBB
6281    BB = copy0MBB;
6282
6283    // Update machine-CFG edges
6284    BB->addSuccessor(sinkMBB);
6285
6286    //  sinkMBB:
6287    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6288    //  ...
6289    BB = sinkMBB;
6290    BuildMI(*BB, BB->begin(), dl,
6291            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6292      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6293      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6294  }
6295  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6296    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6297  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6298    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6299  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6300    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6301  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6302    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6303
6304  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6305    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6306  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6307    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6308  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6309    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6310  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6311    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6312
6313  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6314    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6315  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6316    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6317  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6318    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6319  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6320    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6321
6322  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6323    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6324  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6325    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6326  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6327    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6328  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6329    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6330
6331  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6332    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6333  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6334    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6335  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6336    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6337  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6338    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6339
6340  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6341    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6342  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6343    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6344  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6345    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6346  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6347    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6348
6349  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6350    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6351  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6352    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6353  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6354    BB = EmitAtomicBinary(MI, BB, false, 0);
6355  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6356    BB = EmitAtomicBinary(MI, BB, true, 0);
6357
6358  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6359           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6360    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6361
6362    unsigned dest   = MI->getOperand(0).getReg();
6363    unsigned ptrA   = MI->getOperand(1).getReg();
6364    unsigned ptrB   = MI->getOperand(2).getReg();
6365    unsigned oldval = MI->getOperand(3).getReg();
6366    unsigned newval = MI->getOperand(4).getReg();
6367    DebugLoc dl     = MI->getDebugLoc();
6368
6369    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6370    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6371    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6372    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6373    F->insert(It, loop1MBB);
6374    F->insert(It, loop2MBB);
6375    F->insert(It, midMBB);
6376    F->insert(It, exitMBB);
6377    exitMBB->splice(exitMBB->begin(), BB,
6378                    llvm::next(MachineBasicBlock::iterator(MI)),
6379                    BB->end());
6380    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6381
6382    //  thisMBB:
6383    //   ...
6384    //   fallthrough --> loopMBB
6385    BB->addSuccessor(loop1MBB);
6386
6387    // loop1MBB:
6388    //   l[wd]arx dest, ptr
6389    //   cmp[wd] dest, oldval
6390    //   bne- midMBB
6391    // loop2MBB:
6392    //   st[wd]cx. newval, ptr
6393    //   bne- loopMBB
6394    //   b exitBB
6395    // midMBB:
6396    //   st[wd]cx. dest, ptr
6397    // exitBB:
6398    BB = loop1MBB;
6399    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6400      .addReg(ptrA).addReg(ptrB);
6401    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6402      .addReg(oldval).addReg(dest);
6403    BuildMI(BB, dl, TII->get(PPC::BCC))
6404      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6405    BB->addSuccessor(loop2MBB);
6406    BB->addSuccessor(midMBB);
6407
6408    BB = loop2MBB;
6409    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6410      .addReg(newval).addReg(ptrA).addReg(ptrB);
6411    BuildMI(BB, dl, TII->get(PPC::BCC))
6412      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6413    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6414    BB->addSuccessor(loop1MBB);
6415    BB->addSuccessor(exitMBB);
6416
6417    BB = midMBB;
6418    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6419      .addReg(dest).addReg(ptrA).addReg(ptrB);
6420    BB->addSuccessor(exitMBB);
6421
6422    //  exitMBB:
6423    //   ...
6424    BB = exitMBB;
6425  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6426             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6427    // We must use 64-bit registers for addresses when targeting 64-bit,
6428    // since we're actually doing arithmetic on them.  Other registers
6429    // can be 32-bit.
6430    bool is64bit = PPCSubTarget.isPPC64();
6431    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6432
6433    unsigned dest   = MI->getOperand(0).getReg();
6434    unsigned ptrA   = MI->getOperand(1).getReg();
6435    unsigned ptrB   = MI->getOperand(2).getReg();
6436    unsigned oldval = MI->getOperand(3).getReg();
6437    unsigned newval = MI->getOperand(4).getReg();
6438    DebugLoc dl     = MI->getDebugLoc();
6439
6440    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6441    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6442    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6443    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6444    F->insert(It, loop1MBB);
6445    F->insert(It, loop2MBB);
6446    F->insert(It, midMBB);
6447    F->insert(It, exitMBB);
6448    exitMBB->splice(exitMBB->begin(), BB,
6449                    llvm::next(MachineBasicBlock::iterator(MI)),
6450                    BB->end());
6451    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6452
6453    MachineRegisterInfo &RegInfo = F->getRegInfo();
6454    const TargetRegisterClass *RC =
6455      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6456                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6457    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6458    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6459    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6460    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6461    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6462    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6463    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6464    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6465    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6466    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6467    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6468    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6469    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6470    unsigned Ptr1Reg;
6471    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6472    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6473    //  thisMBB:
6474    //   ...
6475    //   fallthrough --> loopMBB
6476    BB->addSuccessor(loop1MBB);
6477
6478    // The 4-byte load must be aligned, while a char or short may be
6479    // anywhere in the word.  Hence all this nasty bookkeeping code.
6480    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6481    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6482    //   xori shift, shift1, 24 [16]
6483    //   rlwinm ptr, ptr1, 0, 0, 29
6484    //   slw newval2, newval, shift
6485    //   slw oldval2, oldval,shift
6486    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6487    //   slw mask, mask2, shift
6488    //   and newval3, newval2, mask
6489    //   and oldval3, oldval2, mask
6490    // loop1MBB:
6491    //   lwarx tmpDest, ptr
6492    //   and tmp, tmpDest, mask
6493    //   cmpw tmp, oldval3
6494    //   bne- midMBB
6495    // loop2MBB:
6496    //   andc tmp2, tmpDest, mask
6497    //   or tmp4, tmp2, newval3
6498    //   stwcx. tmp4, ptr
6499    //   bne- loop1MBB
6500    //   b exitBB
6501    // midMBB:
6502    //   stwcx. tmpDest, ptr
6503    // exitBB:
6504    //   srw dest, tmpDest, shift
6505    if (ptrA != ZeroReg) {
6506      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6507      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6508        .addReg(ptrA).addReg(ptrB);
6509    } else {
6510      Ptr1Reg = ptrB;
6511    }
6512    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6513        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6514    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6515        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6516    if (is64bit)
6517      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6518        .addReg(Ptr1Reg).addImm(0).addImm(61);
6519    else
6520      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6521        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6522    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6523        .addReg(newval).addReg(ShiftReg);
6524    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6525        .addReg(oldval).addReg(ShiftReg);
6526    if (is8bit)
6527      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6528    else {
6529      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6530      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6531        .addReg(Mask3Reg).addImm(65535);
6532    }
6533    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6534        .addReg(Mask2Reg).addReg(ShiftReg);
6535    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6536        .addReg(NewVal2Reg).addReg(MaskReg);
6537    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6538        .addReg(OldVal2Reg).addReg(MaskReg);
6539
6540    BB = loop1MBB;
6541    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6542        .addReg(ZeroReg).addReg(PtrReg);
6543    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6544        .addReg(TmpDestReg).addReg(MaskReg);
6545    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6546        .addReg(TmpReg).addReg(OldVal3Reg);
6547    BuildMI(BB, dl, TII->get(PPC::BCC))
6548        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6549    BB->addSuccessor(loop2MBB);
6550    BB->addSuccessor(midMBB);
6551
6552    BB = loop2MBB;
6553    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6554        .addReg(TmpDestReg).addReg(MaskReg);
6555    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6556        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6557    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6558        .addReg(ZeroReg).addReg(PtrReg);
6559    BuildMI(BB, dl, TII->get(PPC::BCC))
6560      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6561    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6562    BB->addSuccessor(loop1MBB);
6563    BB->addSuccessor(exitMBB);
6564
6565    BB = midMBB;
6566    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6567      .addReg(ZeroReg).addReg(PtrReg);
6568    BB->addSuccessor(exitMBB);
6569
6570    //  exitMBB:
6571    //   ...
6572    BB = exitMBB;
6573    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6574      .addReg(ShiftReg);
6575  } else if (MI->getOpcode() == PPC::FADDrtz) {
6576    // This pseudo performs an FADD with rounding mode temporarily forced
6577    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6578    // is not modeled at the SelectionDAG level.
6579    unsigned Dest = MI->getOperand(0).getReg();
6580    unsigned Src1 = MI->getOperand(1).getReg();
6581    unsigned Src2 = MI->getOperand(2).getReg();
6582    DebugLoc dl   = MI->getDebugLoc();
6583
6584    MachineRegisterInfo &RegInfo = F->getRegInfo();
6585    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6586
6587    // Save FPSCR value.
6588    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6589
6590    // Set rounding mode to round-to-zero.
6591    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6592    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6593
6594    // Perform addition.
6595    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6596
6597    // Restore FPSCR value.
6598    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6599  } else if (MI->getOpcode() == PPC::FRINDrint ||
6600             MI->getOpcode() == PPC::FRINSrint) {
6601    bool isf32 = MI->getOpcode() == PPC::FRINSrint;
6602    unsigned Dest = MI->getOperand(0).getReg();
6603    unsigned Src = MI->getOperand(1).getReg();
6604    DebugLoc dl   = MI->getDebugLoc();
6605
6606    MachineRegisterInfo &RegInfo = F->getRegInfo();
6607    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
6608
6609    // Perform the rounding.
6610    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
6611      .addReg(Src);
6612
6613    // Compare the results.
6614    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
6615      .addReg(Dest).addReg(Src);
6616
6617    // If the results were not equal, then set the FPSCR XX bit.
6618    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6619    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6620    F->insert(It, midMBB);
6621    F->insert(It, exitMBB);
6622    exitMBB->splice(exitMBB->begin(), BB,
6623                    llvm::next(MachineBasicBlock::iterator(MI)),
6624                    BB->end());
6625    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6626
6627    BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
6628      .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
6629
6630    BB->addSuccessor(midMBB);
6631    BB->addSuccessor(exitMBB);
6632
6633    BB = midMBB;
6634
6635    // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
6636    // the FI bit here because that will not automatically set XX also,
6637    // and XX is what libm interprets as the FE_INEXACT flag.
6638    BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
6639    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6640
6641    BB->addSuccessor(exitMBB);
6642
6643    BB = exitMBB;
6644  } else {
6645    llvm_unreachable("Unexpected instr type to insert");
6646  }
6647
6648  MI->eraseFromParent();   // The pseudo instruction is gone now.
6649  return BB;
6650}
6651
6652//===----------------------------------------------------------------------===//
6653// Target Optimization Hooks
6654//===----------------------------------------------------------------------===//
6655
6656SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
6657                                               DAGCombinerInfo &DCI) const {
6658  if (DCI.isAfterLegalizeVectorOps())
6659    return SDValue();
6660
6661  EVT VT = Op.getValueType();
6662
6663  if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
6664      (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
6665      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6666
6667    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6668    // For the reciprocal, we need to find the zero of the function:
6669    //   F(X) = A X - 1 [which has a zero at X = 1/A]
6670    //     =>
6671    //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
6672    //     does not require additional intermediate precision]
6673
6674    // Convergence is quadratic, so we essentially double the number of digits
6675    // correct after every iteration. The minimum architected relative
6676    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6677    // 23 digits and double has 52 digits.
6678    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6679    if (VT.getScalarType() == MVT::f64)
6680      ++Iterations;
6681
6682    SelectionDAG &DAG = DCI.DAG;
6683    SDLoc dl(Op);
6684
6685    SDValue FPOne =
6686      DAG.getConstantFP(1.0, VT.getScalarType());
6687    if (VT.isVector()) {
6688      assert(VT.getVectorNumElements() == 4 &&
6689             "Unknown vector type");
6690      FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6691                          FPOne, FPOne, FPOne, FPOne);
6692    }
6693
6694    SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
6695    DCI.AddToWorklist(Est.getNode());
6696
6697    // Newton iterations: Est = Est + Est (1 - Arg * Est)
6698    for (int i = 0; i < Iterations; ++i) {
6699      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
6700      DCI.AddToWorklist(NewEst.getNode());
6701
6702      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
6703      DCI.AddToWorklist(NewEst.getNode());
6704
6705      NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6706      DCI.AddToWorklist(NewEst.getNode());
6707
6708      Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
6709      DCI.AddToWorklist(Est.getNode());
6710    }
6711
6712    return Est;
6713  }
6714
6715  return SDValue();
6716}
6717
6718SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
6719                                             DAGCombinerInfo &DCI) const {
6720  if (DCI.isAfterLegalizeVectorOps())
6721    return SDValue();
6722
6723  EVT VT = Op.getValueType();
6724
6725  if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
6726      (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
6727      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6728
6729    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6730    // For the reciprocal sqrt, we need to find the zero of the function:
6731    //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
6732    //     =>
6733    //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
6734    // As a result, we precompute A/2 prior to the iteration loop.
6735
6736    // Convergence is quadratic, so we essentially double the number of digits
6737    // correct after every iteration. The minimum architected relative
6738    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6739    // 23 digits and double has 52 digits.
6740    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6741    if (VT.getScalarType() == MVT::f64)
6742      ++Iterations;
6743
6744    SelectionDAG &DAG = DCI.DAG;
6745    SDLoc dl(Op);
6746
6747    SDValue FPThreeHalves =
6748      DAG.getConstantFP(1.5, VT.getScalarType());
6749    if (VT.isVector()) {
6750      assert(VT.getVectorNumElements() == 4 &&
6751             "Unknown vector type");
6752      FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6753                                  FPThreeHalves, FPThreeHalves,
6754                                  FPThreeHalves, FPThreeHalves);
6755    }
6756
6757    SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
6758    DCI.AddToWorklist(Est.getNode());
6759
6760    // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
6761    // this entire sequence requires only one FP constant.
6762    SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
6763    DCI.AddToWorklist(HalfArg.getNode());
6764
6765    HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
6766    DCI.AddToWorklist(HalfArg.getNode());
6767
6768    // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
6769    for (int i = 0; i < Iterations; ++i) {
6770      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
6771      DCI.AddToWorklist(NewEst.getNode());
6772
6773      NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
6774      DCI.AddToWorklist(NewEst.getNode());
6775
6776      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
6777      DCI.AddToWorklist(NewEst.getNode());
6778
6779      Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6780      DCI.AddToWorklist(Est.getNode());
6781    }
6782
6783    return Est;
6784  }
6785
6786  return SDValue();
6787}
6788
6789// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
6790// not enforce equality of the chain operands.
6791static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
6792                            unsigned Bytes, int Dist,
6793                            SelectionDAG &DAG) {
6794  EVT VT = LS->getMemoryVT();
6795  if (VT.getSizeInBits() / 8 != Bytes)
6796    return false;
6797
6798  SDValue Loc = LS->getBasePtr();
6799  SDValue BaseLoc = Base->getBasePtr();
6800  if (Loc.getOpcode() == ISD::FrameIndex) {
6801    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6802      return false;
6803    const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6804    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6805    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6806    int FS  = MFI->getObjectSize(FI);
6807    int BFS = MFI->getObjectSize(BFI);
6808    if (FS != BFS || FS != (int)Bytes) return false;
6809    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6810  }
6811
6812  // Handle X+C
6813  if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6814      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6815    return true;
6816
6817  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6818  const GlobalValue *GV1 = NULL;
6819  const GlobalValue *GV2 = NULL;
6820  int64_t Offset1 = 0;
6821  int64_t Offset2 = 0;
6822  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6823  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6824  if (isGA1 && isGA2 && GV1 == GV2)
6825    return Offset1 == (Offset2 + Dist*Bytes);
6826  return false;
6827}
6828
6829// Return true is there is a nearyby consecutive load to the one provided
6830// (regardless of alignment). We search up and down the chain, looking though
6831// token factors and other loads (but nothing else). As a result, a true
6832// results indicates that it is safe to create a new consecutive load adjacent
6833// to the load provided.
6834static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
6835  SDValue Chain = LD->getChain();
6836  EVT VT = LD->getMemoryVT();
6837
6838  SmallSet<SDNode *, 16> LoadRoots;
6839  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
6840  SmallSet<SDNode *, 16> Visited;
6841
6842  // First, search up the chain, branching to follow all token-factor operands.
6843  // If we find a consecutive load, then we're done, otherwise, record all
6844  // nodes just above the top-level loads and token factors.
6845  while (!Queue.empty()) {
6846    SDNode *ChainNext = Queue.pop_back_val();
6847    if (!Visited.insert(ChainNext))
6848      continue;
6849
6850    if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
6851      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6852        return true;
6853
6854      if (!Visited.count(ChainLD->getChain().getNode()))
6855        Queue.push_back(ChainLD->getChain().getNode());
6856    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
6857      for (SDNode::op_iterator O = ChainNext->op_begin(),
6858           OE = ChainNext->op_end(); O != OE; ++O)
6859        if (!Visited.count(O->getNode()))
6860          Queue.push_back(O->getNode());
6861    } else
6862      LoadRoots.insert(ChainNext);
6863  }
6864
6865  // Second, search down the chain, starting from the top-level nodes recorded
6866  // in the first phase. These top-level nodes are the nodes just above all
6867  // loads and token factors. Starting with their uses, recursively look though
6868  // all loads (just the chain uses) and token factors to find a consecutive
6869  // load.
6870  Visited.clear();
6871  Queue.clear();
6872
6873  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
6874       IE = LoadRoots.end(); I != IE; ++I) {
6875    Queue.push_back(*I);
6876
6877    while (!Queue.empty()) {
6878      SDNode *LoadRoot = Queue.pop_back_val();
6879      if (!Visited.insert(LoadRoot))
6880        continue;
6881
6882      if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
6883        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6884          return true;
6885
6886      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
6887           UE = LoadRoot->use_end(); UI != UE; ++UI)
6888        if (((isa<LoadSDNode>(*UI) &&
6889            cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
6890            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
6891          Queue.push_back(*UI);
6892    }
6893  }
6894
6895  return false;
6896}
6897
6898SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6899                                             DAGCombinerInfo &DCI) const {
6900  const TargetMachine &TM = getTargetMachine();
6901  SelectionDAG &DAG = DCI.DAG;
6902  SDLoc dl(N);
6903  switch (N->getOpcode()) {
6904  default: break;
6905  case PPCISD::SHL:
6906    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6907      if (C->isNullValue())   // 0 << V -> 0.
6908        return N->getOperand(0);
6909    }
6910    break;
6911  case PPCISD::SRL:
6912    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6913      if (C->isNullValue())   // 0 >>u V -> 0.
6914        return N->getOperand(0);
6915    }
6916    break;
6917  case PPCISD::SRA:
6918    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6919      if (C->isNullValue() ||   //  0 >>s V -> 0.
6920          C->isAllOnesValue())    // -1 >>s V -> -1.
6921        return N->getOperand(0);
6922    }
6923    break;
6924  case ISD::FDIV: {
6925    assert(TM.Options.UnsafeFPMath &&
6926           "Reciprocal estimates require UnsafeFPMath");
6927
6928    if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
6929      SDValue RV =
6930        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
6931      if (RV.getNode() != 0) {
6932        DCI.AddToWorklist(RV.getNode());
6933        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6934                           N->getOperand(0), RV);
6935      }
6936    } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
6937               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6938      SDValue RV =
6939        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6940                                 DCI);
6941      if (RV.getNode() != 0) {
6942        DCI.AddToWorklist(RV.getNode());
6943        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
6944                         N->getValueType(0), RV);
6945        DCI.AddToWorklist(RV.getNode());
6946        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6947                           N->getOperand(0), RV);
6948      }
6949    } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
6950               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6951      SDValue RV =
6952        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6953                                 DCI);
6954      if (RV.getNode() != 0) {
6955        DCI.AddToWorklist(RV.getNode());
6956        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
6957                         N->getValueType(0), RV,
6958                         N->getOperand(1).getOperand(1));
6959        DCI.AddToWorklist(RV.getNode());
6960        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6961                           N->getOperand(0), RV);
6962      }
6963    }
6964
6965    SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
6966    if (RV.getNode() != 0) {
6967      DCI.AddToWorklist(RV.getNode());
6968      return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6969                         N->getOperand(0), RV);
6970    }
6971
6972    }
6973    break;
6974  case ISD::FSQRT: {
6975    assert(TM.Options.UnsafeFPMath &&
6976           "Reciprocal estimates require UnsafeFPMath");
6977
6978    // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
6979    // reciprocal sqrt.
6980    SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
6981    if (RV.getNode() != 0) {
6982      DCI.AddToWorklist(RV.getNode());
6983      RV = DAGCombineFastRecip(RV, DCI);
6984      if (RV.getNode() != 0)
6985        return RV;
6986    }
6987
6988    }
6989    break;
6990  case ISD::SINT_TO_FP:
6991    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6992      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6993        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6994        // We allow the src/dst to be either f32/f64, but the intermediate
6995        // type must be i64.
6996        if (N->getOperand(0).getValueType() == MVT::i64 &&
6997            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6998          SDValue Val = N->getOperand(0).getOperand(0);
6999          if (Val.getValueType() == MVT::f32) {
7000            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7001            DCI.AddToWorklist(Val.getNode());
7002          }
7003
7004          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
7005          DCI.AddToWorklist(Val.getNode());
7006          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
7007          DCI.AddToWorklist(Val.getNode());
7008          if (N->getValueType(0) == MVT::f32) {
7009            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
7010                              DAG.getIntPtrConstant(0));
7011            DCI.AddToWorklist(Val.getNode());
7012          }
7013          return Val;
7014        } else if (N->getOperand(0).getValueType() == MVT::i32) {
7015          // If the intermediate type is i32, we can avoid the load/store here
7016          // too.
7017        }
7018      }
7019    }
7020    break;
7021  case ISD::STORE:
7022    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
7023    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
7024        !cast<StoreSDNode>(N)->isTruncatingStore() &&
7025        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
7026        N->getOperand(1).getValueType() == MVT::i32 &&
7027        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
7028      SDValue Val = N->getOperand(1).getOperand(0);
7029      if (Val.getValueType() == MVT::f32) {
7030        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7031        DCI.AddToWorklist(Val.getNode());
7032      }
7033      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
7034      DCI.AddToWorklist(Val.getNode());
7035
7036      SDValue Ops[] = {
7037        N->getOperand(0), Val, N->getOperand(2),
7038        DAG.getValueType(N->getOperand(1).getValueType())
7039      };
7040
7041      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7042              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
7043              cast<StoreSDNode>(N)->getMemoryVT(),
7044              cast<StoreSDNode>(N)->getMemOperand());
7045      DCI.AddToWorklist(Val.getNode());
7046      return Val;
7047    }
7048
7049    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
7050    if (cast<StoreSDNode>(N)->isUnindexed() &&
7051        N->getOperand(1).getOpcode() == ISD::BSWAP &&
7052        N->getOperand(1).getNode()->hasOneUse() &&
7053        (N->getOperand(1).getValueType() == MVT::i32 ||
7054         N->getOperand(1).getValueType() == MVT::i16 ||
7055         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7056          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7057          N->getOperand(1).getValueType() == MVT::i64))) {
7058      SDValue BSwapOp = N->getOperand(1).getOperand(0);
7059      // Do an any-extend to 32-bits if this is a half-word input.
7060      if (BSwapOp.getValueType() == MVT::i16)
7061        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
7062
7063      SDValue Ops[] = {
7064        N->getOperand(0), BSwapOp, N->getOperand(2),
7065        DAG.getValueType(N->getOperand(1).getValueType())
7066      };
7067      return
7068        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
7069                                Ops, array_lengthof(Ops),
7070                                cast<StoreSDNode>(N)->getMemoryVT(),
7071                                cast<StoreSDNode>(N)->getMemOperand());
7072    }
7073    break;
7074  case ISD::LOAD: {
7075    LoadSDNode *LD = cast<LoadSDNode>(N);
7076    EVT VT = LD->getValueType(0);
7077    Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
7078    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
7079    if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
7080        TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
7081        DCI.getDAGCombineLevel() == AfterLegalizeTypes &&
7082        LD->getAlignment() < ABIAlignment) {
7083      // This is a type-legal unaligned Altivec load.
7084      SDValue Chain = LD->getChain();
7085      SDValue Ptr = LD->getBasePtr();
7086
7087      // This implements the loading of unaligned vectors as described in
7088      // the venerable Apple Velocity Engine overview. Specifically:
7089      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
7090      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
7091      //
7092      // The general idea is to expand a sequence of one or more unaligned
7093      // loads into a alignment-based permutation-control instruction (lvsl),
7094      // a series of regular vector loads (which always truncate their
7095      // input address to an aligned address), and a series of permutations.
7096      // The results of these permutations are the requested loaded values.
7097      // The trick is that the last "extra" load is not taken from the address
7098      // you might suspect (sizeof(vector) bytes after the last requested
7099      // load), but rather sizeof(vector) - 1 bytes after the last
7100      // requested vector. The point of this is to avoid a page fault if the
7101      // base address happend to be aligned. This works because if the base
7102      // address is aligned, then adding less than a full vector length will
7103      // cause the last vector in the sequence to be (re)loaded. Otherwise,
7104      // the next vector will be fetched as you might suspect was necessary.
7105
7106      // We might be able to reuse the permutation generation from
7107      // a different base address offset from this one by an aligned amount.
7108      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
7109      // optimization later.
7110      SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
7111                                          DAG, dl, MVT::v16i8);
7112
7113      // Refine the alignment of the original load (a "new" load created here
7114      // which was identical to the first except for the alignment would be
7115      // merged with the existing node regardless).
7116      MachineFunction &MF = DAG.getMachineFunction();
7117      MachineMemOperand *MMO =
7118        MF.getMachineMemOperand(LD->getPointerInfo(),
7119                                LD->getMemOperand()->getFlags(),
7120                                LD->getMemoryVT().getStoreSize(),
7121                                ABIAlignment);
7122      LD->refineAlignment(MMO);
7123      SDValue BaseLoad = SDValue(LD, 0);
7124
7125      // Note that the value of IncOffset (which is provided to the next
7126      // load's pointer info offset value, and thus used to calculate the
7127      // alignment), and the value of IncValue (which is actually used to
7128      // increment the pointer value) are different! This is because we
7129      // require the next load to appear to be aligned, even though it
7130      // is actually offset from the base pointer by a lesser amount.
7131      int IncOffset = VT.getSizeInBits() / 8;
7132      int IncValue = IncOffset;
7133
7134      // Walk (both up and down) the chain looking for another load at the real
7135      // (aligned) offset (the alignment of the other load does not matter in
7136      // this case). If found, then do not use the offset reduction trick, as
7137      // that will prevent the loads from being later combined (as they would
7138      // otherwise be duplicates).
7139      if (!findConsecutiveLoad(LD, DAG))
7140        --IncValue;
7141
7142      SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
7143      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
7144
7145      SDValue ExtraLoad =
7146        DAG.getLoad(VT, dl, Chain, Ptr,
7147                    LD->getPointerInfo().getWithOffset(IncOffset),
7148                    LD->isVolatile(), LD->isNonTemporal(),
7149                    LD->isInvariant(), ABIAlignment);
7150
7151      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7152        BaseLoad.getValue(1), ExtraLoad.getValue(1));
7153
7154      if (BaseLoad.getValueType() != MVT::v4i32)
7155        BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
7156
7157      if (ExtraLoad.getValueType() != MVT::v4i32)
7158        ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
7159
7160      SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
7161                                      BaseLoad, ExtraLoad, PermCntl, DAG, dl);
7162
7163      if (VT != MVT::v4i32)
7164        Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
7165
7166      // Now we need to be really careful about how we update the users of the
7167      // original load. We cannot just call DCI.CombineTo (or
7168      // DAG.ReplaceAllUsesWith for that matter), because the load still has
7169      // uses created here (the permutation for example) that need to stay.
7170      SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7171      while (UI != UE) {
7172        SDUse &Use = UI.getUse();
7173        SDNode *User = *UI;
7174        // Note: BaseLoad is checked here because it might not be N, but a
7175        // bitcast of N.
7176        if (User == Perm.getNode() || User == BaseLoad.getNode() ||
7177            User == TF.getNode() || Use.getResNo() > 1) {
7178          ++UI;
7179          continue;
7180        }
7181
7182        SDValue To = Use.getResNo() ? TF : Perm;
7183        ++UI;
7184
7185        SmallVector<SDValue, 8> Ops;
7186        for (SDNode::op_iterator O = User->op_begin(),
7187             OE = User->op_end(); O != OE; ++O) {
7188          if (*O == Use)
7189            Ops.push_back(To);
7190          else
7191            Ops.push_back(*O);
7192        }
7193
7194        DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
7195      }
7196
7197      return SDValue(N, 0);
7198    }
7199    }
7200    break;
7201  case ISD::INTRINSIC_WO_CHAIN:
7202    if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
7203          Intrinsic::ppc_altivec_lvsl &&
7204        N->getOperand(1)->getOpcode() == ISD::ADD) {
7205      SDValue Add = N->getOperand(1);
7206
7207      if (DAG.MaskedValueIsZero(Add->getOperand(1),
7208            APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
7209              Add.getValueType().getScalarType().getSizeInBits()))) {
7210        SDNode *BasePtr = Add->getOperand(0).getNode();
7211        for (SDNode::use_iterator UI = BasePtr->use_begin(),
7212             UE = BasePtr->use_end(); UI != UE; ++UI) {
7213          if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7214              cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
7215                Intrinsic::ppc_altivec_lvsl) {
7216            // We've found another LVSL, and this address if an aligned
7217            // multiple of that one. The results will be the same, so use the
7218            // one we've just found instead.
7219
7220            return SDValue(*UI, 0);
7221          }
7222        }
7223      }
7224    }
7225  case ISD::BSWAP:
7226    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
7227    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7228        N->getOperand(0).hasOneUse() &&
7229        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
7230         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7231          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7232          N->getValueType(0) == MVT::i64))) {
7233      SDValue Load = N->getOperand(0);
7234      LoadSDNode *LD = cast<LoadSDNode>(Load);
7235      // Create the byte-swapping load.
7236      SDValue Ops[] = {
7237        LD->getChain(),    // Chain
7238        LD->getBasePtr(),  // Ptr
7239        DAG.getValueType(N->getValueType(0)) // VT
7240      };
7241      SDValue BSLoad =
7242        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
7243                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
7244                                              MVT::i64 : MVT::i32, MVT::Other),
7245                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
7246
7247      // If this is an i16 load, insert the truncate.
7248      SDValue ResVal = BSLoad;
7249      if (N->getValueType(0) == MVT::i16)
7250        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
7251
7252      // First, combine the bswap away.  This makes the value produced by the
7253      // load dead.
7254      DCI.CombineTo(N, ResVal);
7255
7256      // Next, combine the load away, we give it a bogus result value but a real
7257      // chain result.  The result value is dead because the bswap is dead.
7258      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7259
7260      // Return N so it doesn't get rechecked!
7261      return SDValue(N, 0);
7262    }
7263
7264    break;
7265  case PPCISD::VCMP: {
7266    // If a VCMPo node already exists with exactly the same operands as this
7267    // node, use its result instead of this node (VCMPo computes both a CR6 and
7268    // a normal output).
7269    //
7270    if (!N->getOperand(0).hasOneUse() &&
7271        !N->getOperand(1).hasOneUse() &&
7272        !N->getOperand(2).hasOneUse()) {
7273
7274      // Scan all of the users of the LHS, looking for VCMPo's that match.
7275      SDNode *VCMPoNode = 0;
7276
7277      SDNode *LHSN = N->getOperand(0).getNode();
7278      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
7279           UI != E; ++UI)
7280        if (UI->getOpcode() == PPCISD::VCMPo &&
7281            UI->getOperand(1) == N->getOperand(1) &&
7282            UI->getOperand(2) == N->getOperand(2) &&
7283            UI->getOperand(0) == N->getOperand(0)) {
7284          VCMPoNode = *UI;
7285          break;
7286        }
7287
7288      // If there is no VCMPo node, or if the flag value has a single use, don't
7289      // transform this.
7290      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
7291        break;
7292
7293      // Look at the (necessarily single) use of the flag value.  If it has a
7294      // chain, this transformation is more complex.  Note that multiple things
7295      // could use the value result, which we should ignore.
7296      SDNode *FlagUser = 0;
7297      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
7298           FlagUser == 0; ++UI) {
7299        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
7300        SDNode *User = *UI;
7301        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
7302          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
7303            FlagUser = User;
7304            break;
7305          }
7306        }
7307      }
7308
7309      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
7310      // give up for right now.
7311      if (FlagUser->getOpcode() == PPCISD::MFCR)
7312        return SDValue(VCMPoNode, 0);
7313    }
7314    break;
7315  }
7316  case ISD::BR_CC: {
7317    // If this is a branch on an altivec predicate comparison, lower this so
7318    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
7319    // lowering is done pre-legalize, because the legalizer lowers the predicate
7320    // compare down to code that is difficult to reassemble.
7321    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
7322    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
7323
7324    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
7325    // value. If so, pass-through the AND to get to the intrinsic.
7326    if (LHS.getOpcode() == ISD::AND &&
7327        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7328        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
7329          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7330        isa<ConstantSDNode>(LHS.getOperand(1)) &&
7331        !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
7332          isZero())
7333      LHS = LHS.getOperand(0);
7334
7335    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7336        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
7337          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7338        isa<ConstantSDNode>(RHS)) {
7339      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
7340             "Counter decrement comparison is not EQ or NE");
7341
7342      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7343      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
7344                    (CC == ISD::SETNE && !Val);
7345
7346      // We now need to make the intrinsic dead (it cannot be instruction
7347      // selected).
7348      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
7349      assert(LHS.getNode()->hasOneUse() &&
7350             "Counter decrement has more than one use");
7351
7352      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
7353                         N->getOperand(0), N->getOperand(4));
7354    }
7355
7356    int CompareOpc;
7357    bool isDot;
7358
7359    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7360        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
7361        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
7362      assert(isDot && "Can't compare against a vector result!");
7363
7364      // If this is a comparison against something other than 0/1, then we know
7365      // that the condition is never/always true.
7366      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7367      if (Val != 0 && Val != 1) {
7368        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
7369          return N->getOperand(0);
7370        // Always !=, turn it into an unconditional branch.
7371        return DAG.getNode(ISD::BR, dl, MVT::Other,
7372                           N->getOperand(0), N->getOperand(4));
7373      }
7374
7375      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
7376
7377      // Create the PPCISD altivec 'dot' comparison node.
7378      SDValue Ops[] = {
7379        LHS.getOperand(2),  // LHS of compare
7380        LHS.getOperand(3),  // RHS of compare
7381        DAG.getConstant(CompareOpc, MVT::i32)
7382      };
7383      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
7384      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
7385
7386      // Unpack the result based on how the target uses it.
7387      PPC::Predicate CompOpc;
7388      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
7389      default:  // Can't happen, don't crash on invalid number though.
7390      case 0:   // Branch on the value of the EQ bit of CR6.
7391        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
7392        break;
7393      case 1:   // Branch on the inverted value of the EQ bit of CR6.
7394        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
7395        break;
7396      case 2:   // Branch on the value of the LT bit of CR6.
7397        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
7398        break;
7399      case 3:   // Branch on the inverted value of the LT bit of CR6.
7400        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
7401        break;
7402      }
7403
7404      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
7405                         DAG.getConstant(CompOpc, MVT::i32),
7406                         DAG.getRegister(PPC::CR6, MVT::i32),
7407                         N->getOperand(4), CompNode.getValue(1));
7408    }
7409    break;
7410  }
7411  }
7412
7413  return SDValue();
7414}
7415
7416//===----------------------------------------------------------------------===//
7417// Inline Assembly Support
7418//===----------------------------------------------------------------------===//
7419
7420void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7421                                                       APInt &KnownZero,
7422                                                       APInt &KnownOne,
7423                                                       const SelectionDAG &DAG,
7424                                                       unsigned Depth) const {
7425  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
7426  switch (Op.getOpcode()) {
7427  default: break;
7428  case PPCISD::LBRX: {
7429    // lhbrx is known to have the top bits cleared out.
7430    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
7431      KnownZero = 0xFFFF0000;
7432    break;
7433  }
7434  case ISD::INTRINSIC_WO_CHAIN: {
7435    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
7436    default: break;
7437    case Intrinsic::ppc_altivec_vcmpbfp_p:
7438    case Intrinsic::ppc_altivec_vcmpeqfp_p:
7439    case Intrinsic::ppc_altivec_vcmpequb_p:
7440    case Intrinsic::ppc_altivec_vcmpequh_p:
7441    case Intrinsic::ppc_altivec_vcmpequw_p:
7442    case Intrinsic::ppc_altivec_vcmpgefp_p:
7443    case Intrinsic::ppc_altivec_vcmpgtfp_p:
7444    case Intrinsic::ppc_altivec_vcmpgtsb_p:
7445    case Intrinsic::ppc_altivec_vcmpgtsh_p:
7446    case Intrinsic::ppc_altivec_vcmpgtsw_p:
7447    case Intrinsic::ppc_altivec_vcmpgtub_p:
7448    case Intrinsic::ppc_altivec_vcmpgtuh_p:
7449    case Intrinsic::ppc_altivec_vcmpgtuw_p:
7450      KnownZero = ~1U;  // All bits but the low one are known to be zero.
7451      break;
7452    }
7453  }
7454  }
7455}
7456
7457
7458/// getConstraintType - Given a constraint, return the type of
7459/// constraint it is for this target.
7460PPCTargetLowering::ConstraintType
7461PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
7462  if (Constraint.size() == 1) {
7463    switch (Constraint[0]) {
7464    default: break;
7465    case 'b':
7466    case 'r':
7467    case 'f':
7468    case 'v':
7469    case 'y':
7470      return C_RegisterClass;
7471    case 'Z':
7472      // FIXME: While Z does indicate a memory constraint, it specifically
7473      // indicates an r+r address (used in conjunction with the 'y' modifier
7474      // in the replacement string). Currently, we're forcing the base
7475      // register to be r0 in the asm printer (which is interpreted as zero)
7476      // and forming the complete address in the second register. This is
7477      // suboptimal.
7478      return C_Memory;
7479    }
7480  }
7481  return TargetLowering::getConstraintType(Constraint);
7482}
7483
7484/// Examine constraint type and operand type and determine a weight value.
7485/// This object must already have been set up with the operand type
7486/// and the current alternative constraint selected.
7487TargetLowering::ConstraintWeight
7488PPCTargetLowering::getSingleConstraintMatchWeight(
7489    AsmOperandInfo &info, const char *constraint) const {
7490  ConstraintWeight weight = CW_Invalid;
7491  Value *CallOperandVal = info.CallOperandVal;
7492    // If we don't have a value, we can't do a match,
7493    // but allow it at the lowest weight.
7494  if (CallOperandVal == NULL)
7495    return CW_Default;
7496  Type *type = CallOperandVal->getType();
7497  // Look at the constraint type.
7498  switch (*constraint) {
7499  default:
7500    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7501    break;
7502  case 'b':
7503    if (type->isIntegerTy())
7504      weight = CW_Register;
7505    break;
7506  case 'f':
7507    if (type->isFloatTy())
7508      weight = CW_Register;
7509    break;
7510  case 'd':
7511    if (type->isDoubleTy())
7512      weight = CW_Register;
7513    break;
7514  case 'v':
7515    if (type->isVectorTy())
7516      weight = CW_Register;
7517    break;
7518  case 'y':
7519    weight = CW_Register;
7520    break;
7521  case 'Z':
7522    weight = CW_Memory;
7523    break;
7524  }
7525  return weight;
7526}
7527
7528std::pair<unsigned, const TargetRegisterClass*>
7529PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7530                                                EVT VT) const {
7531  if (Constraint.size() == 1) {
7532    // GCC RS6000 Constraint Letters
7533    switch (Constraint[0]) {
7534    case 'b':   // R1-R31
7535      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7536        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
7537      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
7538    case 'r':   // R0-R31
7539      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7540        return std::make_pair(0U, &PPC::G8RCRegClass);
7541      return std::make_pair(0U, &PPC::GPRCRegClass);
7542    case 'f':
7543      if (VT == MVT::f32 || VT == MVT::i32)
7544        return std::make_pair(0U, &PPC::F4RCRegClass);
7545      if (VT == MVT::f64 || VT == MVT::i64)
7546        return std::make_pair(0U, &PPC::F8RCRegClass);
7547      break;
7548    case 'v':
7549      return std::make_pair(0U, &PPC::VRRCRegClass);
7550    case 'y':   // crrc
7551      return std::make_pair(0U, &PPC::CRRCRegClass);
7552    }
7553  }
7554
7555  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7556}
7557
7558
7559/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7560/// vector.  If it is invalid, don't add anything to Ops.
7561void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7562                                                     std::string &Constraint,
7563                                                     std::vector<SDValue>&Ops,
7564                                                     SelectionDAG &DAG) const {
7565  SDValue Result(0,0);
7566
7567  // Only support length 1 constraints.
7568  if (Constraint.length() > 1) return;
7569
7570  char Letter = Constraint[0];
7571  switch (Letter) {
7572  default: break;
7573  case 'I':
7574  case 'J':
7575  case 'K':
7576  case 'L':
7577  case 'M':
7578  case 'N':
7579  case 'O':
7580  case 'P': {
7581    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7582    if (!CST) return; // Must be an immediate to match.
7583    unsigned Value = CST->getZExtValue();
7584    switch (Letter) {
7585    default: llvm_unreachable("Unknown constraint letter!");
7586    case 'I':  // "I" is a signed 16-bit constant.
7587      if ((short)Value == (int)Value)
7588        Result = DAG.getTargetConstant(Value, Op.getValueType());
7589      break;
7590    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7591    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7592      if ((short)Value == 0)
7593        Result = DAG.getTargetConstant(Value, Op.getValueType());
7594      break;
7595    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7596      if ((Value >> 16) == 0)
7597        Result = DAG.getTargetConstant(Value, Op.getValueType());
7598      break;
7599    case 'M':  // "M" is a constant that is greater than 31.
7600      if (Value > 31)
7601        Result = DAG.getTargetConstant(Value, Op.getValueType());
7602      break;
7603    case 'N':  // "N" is a positive constant that is an exact power of two.
7604      if ((int)Value > 0 && isPowerOf2_32(Value))
7605        Result = DAG.getTargetConstant(Value, Op.getValueType());
7606      break;
7607    case 'O':  // "O" is the constant zero.
7608      if (Value == 0)
7609        Result = DAG.getTargetConstant(Value, Op.getValueType());
7610      break;
7611    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7612      if ((short)-Value == (int)-Value)
7613        Result = DAG.getTargetConstant(Value, Op.getValueType());
7614      break;
7615    }
7616    break;
7617  }
7618  }
7619
7620  if (Result.getNode()) {
7621    Ops.push_back(Result);
7622    return;
7623  }
7624
7625  // Handle standard constraint letters.
7626  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7627}
7628
7629// isLegalAddressingMode - Return true if the addressing mode represented
7630// by AM is legal for this target, for a load/store of the specified type.
7631bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7632                                              Type *Ty) const {
7633  // FIXME: PPC does not allow r+i addressing modes for vectors!
7634
7635  // PPC allows a sign-extended 16-bit immediate field.
7636  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7637    return false;
7638
7639  // No global is ever allowed as a base.
7640  if (AM.BaseGV)
7641    return false;
7642
7643  // PPC only support r+r,
7644  switch (AM.Scale) {
7645  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7646    break;
7647  case 1:
7648    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7649      return false;
7650    // Otherwise we have r+r or r+i.
7651    break;
7652  case 2:
7653    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7654      return false;
7655    // Allow 2*r as r+r.
7656    break;
7657  default:
7658    // No other scales are supported.
7659    return false;
7660  }
7661
7662  return true;
7663}
7664
7665SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7666                                           SelectionDAG &DAG) const {
7667  MachineFunction &MF = DAG.getMachineFunction();
7668  MachineFrameInfo *MFI = MF.getFrameInfo();
7669  MFI->setReturnAddressIsTaken(true);
7670
7671  SDLoc dl(Op);
7672  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7673
7674  // Make sure the function does not optimize away the store of the RA to
7675  // the stack.
7676  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7677  FuncInfo->setLRStoreRequired();
7678  bool isPPC64 = PPCSubTarget.isPPC64();
7679  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7680
7681  if (Depth > 0) {
7682    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7683    SDValue Offset =
7684
7685      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7686                      isPPC64? MVT::i64 : MVT::i32);
7687    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7688                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7689                                   FrameAddr, Offset),
7690                       MachinePointerInfo(), false, false, false, 0);
7691  }
7692
7693  // Just load the return address off the stack.
7694  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7695  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7696                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7697}
7698
7699SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7700                                          SelectionDAG &DAG) const {
7701  SDLoc dl(Op);
7702  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7703
7704  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7705  bool isPPC64 = PtrVT == MVT::i64;
7706
7707  MachineFunction &MF = DAG.getMachineFunction();
7708  MachineFrameInfo *MFI = MF.getFrameInfo();
7709  MFI->setFrameAddressIsTaken(true);
7710
7711  // Naked functions never have a frame pointer, and so we use r1. For all
7712  // other functions, this decision must be delayed until during PEI.
7713  unsigned FrameReg;
7714  if (MF.getFunction()->getAttributes().hasAttribute(
7715        AttributeSet::FunctionIndex, Attribute::Naked))
7716    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7717  else
7718    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7719
7720  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7721                                         PtrVT);
7722  while (Depth--)
7723    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7724                            FrameAddr, MachinePointerInfo(), false, false,
7725                            false, 0);
7726  return FrameAddr;
7727}
7728
7729bool
7730PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7731  // The PowerPC target isn't yet aware of offsets.
7732  return false;
7733}
7734
7735/// getOptimalMemOpType - Returns the target specific optimal type for load
7736/// and store operations as a result of memset, memcpy, and memmove
7737/// lowering. If DstAlign is zero that means it's safe to destination
7738/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7739/// means there isn't a need to check it against alignment requirement,
7740/// probably because the source does not need to be loaded. If 'IsMemset' is
7741/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7742/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7743/// source is constant so it does not need to be loaded.
7744/// It returns EVT::Other if the type should be determined using generic
7745/// target-independent logic.
7746EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7747                                           unsigned DstAlign, unsigned SrcAlign,
7748                                           bool IsMemset, bool ZeroMemset,
7749                                           bool MemcpyStrSrc,
7750                                           MachineFunction &MF) const {
7751  if (this->PPCSubTarget.isPPC64()) {
7752    return MVT::i64;
7753  } else {
7754    return MVT::i32;
7755  }
7756}
7757
7758bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7759                                                      bool *Fast) const {
7760  if (DisablePPCUnaligned)
7761    return false;
7762
7763  // PowerPC supports unaligned memory access for simple non-vector types.
7764  // Although accessing unaligned addresses is not as efficient as accessing
7765  // aligned addresses, it is generally more efficient than manual expansion,
7766  // and generally only traps for software emulation when crossing page
7767  // boundaries.
7768
7769  if (!VT.isSimple())
7770    return false;
7771
7772  if (VT.getSimpleVT().isVector())
7773    return false;
7774
7775  if (VT == MVT::ppcf128)
7776    return false;
7777
7778  if (Fast)
7779    *Fast = true;
7780
7781  return true;
7782}
7783
7784/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7785/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7786/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7787/// is expanded to mul + add.
7788bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7789  if (!VT.isSimple())
7790    return false;
7791
7792  switch (VT.getSimpleVT().SimpleTy) {
7793  case MVT::f32:
7794  case MVT::f64:
7795  case MVT::v4f32:
7796    return true;
7797  default:
7798    break;
7799  }
7800
7801  return false;
7802}
7803
7804Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7805  if (DisableILPPref)
7806    return TargetLowering::getSchedulingPreference(N);
7807
7808  return Sched::ILP;
7809}
7810
7811