PPCISelLowering.cpp revision 7925ed05d0245aca0b0b2ea8d8a0b35b77c5ebd4
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no intrinsics for these particular operations
81  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
84  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85
86  // PowerPC has no SREM/UREM instructions
87  setOperationAction(ISD::SREM, MVT::i32, Expand);
88  setOperationAction(ISD::UREM, MVT::i32, Expand);
89  setOperationAction(ISD::SREM, MVT::i64, Expand);
90  setOperationAction(ISD::UREM, MVT::i64, Expand);
91
92  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
101
102  // We don't support sin/cos/sqrt/fmod/pow
103  setOperationAction(ISD::FSIN , MVT::f64, Expand);
104  setOperationAction(ISD::FCOS , MVT::f64, Expand);
105  setOperationAction(ISD::FREM , MVT::f64, Expand);
106  setOperationAction(ISD::FPOW , MVT::f64, Expand);
107  setOperationAction(ISD::FSIN , MVT::f32, Expand);
108  setOperationAction(ISD::FCOS , MVT::f32, Expand);
109  setOperationAction(ISD::FREM , MVT::f32, Expand);
110  setOperationAction(ISD::FPOW , MVT::f32, Expand);
111
112  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
113
114  // If we're enabling GP optimizations, use hardware square root
115  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118  }
119
120  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123  // PowerPC does not have BSWAP, CTPOP or CTTZ
124  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
126  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
127  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
129  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
130
131  // PowerPC does not have ROTR
132  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
133
134  // PowerPC does not have Select
135  setOperationAction(ISD::SELECT, MVT::i32, Expand);
136  setOperationAction(ISD::SELECT, MVT::i64, Expand);
137  setOperationAction(ISD::SELECT, MVT::f32, Expand);
138  setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140  // PowerPC wants to turn select_cc of FP into fsel when possible.
141  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144  // PowerPC wants to optimize integer setcc a bit
145  setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147  // PowerPC does not have BRCOND which requires SetCC
148  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
151
152  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155  // PowerPC does not have [U|S]INT_TO_FP
156  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164  // We cannot sextinreg(i1).  Expand to shifts.
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167  // Support label based line numbers.
168  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
170
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
173  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
175
176
177  // We want to legalize GlobalAddress and ConstantPool nodes into the
178  // appropriate instructions to materialize the address.
179  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
182  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
183  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
186  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
187
188  // RET must be custom lowered, to meet ABI requirements
189  setOperationAction(ISD::RET               , MVT::Other, Custom);
190
191  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
193
194  // VAARG is custom lowered with ELF 32 ABI
195  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196    setOperationAction(ISD::VAARG, MVT::Other, Custom);
197  else
198    setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200  // Use the default implementation.
201  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
202  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
203  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
204  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
207
208  // We want to custom lower some of our intrinsics.
209  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212    // They also have instructions for converting between i64 and fp.
213    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219    // FIXME: disable this lowered code.  This generates 64-bit register values,
220    // and we don't model the fact that the top part is clobbered by calls.  We
221    // need to flag these together so that the value isn't live across a call.
222    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226  } else {
227    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229  }
230
231  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232    // 64-bit PowerPC implementations can support i64 types directly
233    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236    // 64-bit PowerPC wants to expand i128 shifts itself.
237    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
238    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
239    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
240  } else {
241    // 32-bit PowerPC wants to expand i64 shifts itself.
242    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
243    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
244    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
245  }
246
247  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
248    // First set operation action for all vector types to expand. Then we
249    // will selectively turn on ones that can be effectively codegen'd.
250    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
251         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
252      // add/sub are legal for all supported vector VT's.
253      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
254      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
255
256      // We promote all shuffles to v16i8.
257      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
258      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
259
260      // We promote all non-typed operations to v4i32.
261      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
269      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
270      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
271      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
272      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
273
274      // No other operations are legal.
275      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
292      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
293      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
294    }
295
296    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297    // with merges, splats, etc.
298    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
301    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
302    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
303    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
304    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324  }
325
326  setShiftAmountType(MVT::i32);
327  setSetCCResultContents(ZeroOrOneSetCCResult);
328
329  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330    setStackPointerRegisterToSaveRestore(PPC::X1);
331    setExceptionPointerRegister(PPC::X3);
332    setExceptionSelectorRegister(PPC::X4);
333  } else {
334    setStackPointerRegisterToSaveRestore(PPC::R1);
335    setExceptionPointerRegister(PPC::R3);
336    setExceptionSelectorRegister(PPC::R4);
337  }
338
339  // We have target-specific dag combine patterns for the following nodes:
340  setTargetDAGCombine(ISD::SINT_TO_FP);
341  setTargetDAGCombine(ISD::STORE);
342  setTargetDAGCombine(ISD::BR_CC);
343  setTargetDAGCombine(ISD::BSWAP);
344
345  // Darwin long double math library functions have $LDBL128 appended.
346  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
347    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
348    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
350    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
352  }
353
354  computeRegisterProperties();
355}
356
357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360  TargetMachine &TM = getTargetMachine();
361  // Darwin passes everything on 4 byte boundary.
362  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363    return 4;
364  // FIXME Elf TBD
365  return 4;
366}
367
368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369  switch (Opcode) {
370  default: return 0;
371  case PPCISD::FSEL:          return "PPCISD::FSEL";
372  case PPCISD::FCFID:         return "PPCISD::FCFID";
373  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
374  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
375  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
376  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
377  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
378  case PPCISD::VPERM:         return "PPCISD::VPERM";
379  case PPCISD::Hi:            return "PPCISD::Hi";
380  case PPCISD::Lo:            return "PPCISD::Lo";
381  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
382  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
383  case PPCISD::SRL:           return "PPCISD::SRL";
384  case PPCISD::SRA:           return "PPCISD::SRA";
385  case PPCISD::SHL:           return "PPCISD::SHL";
386  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
387  case PPCISD::STD_32:        return "PPCISD::STD_32";
388  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
389  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
390  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
391  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
392  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
393  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
394  case PPCISD::MFCR:          return "PPCISD::MFCR";
395  case PPCISD::VCMP:          return "PPCISD::VCMP";
396  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
397  case PPCISD::LBRX:          return "PPCISD::LBRX";
398  case PPCISD::STBRX:         return "PPCISD::STBRX";
399  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
400  case PPCISD::MFFS:          return "PPCISD::MFFS";
401  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
402  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
403  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
404  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
405  }
406}
407
408
409MVT::ValueType
410PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
411  return MVT::i32;
412}
413
414
415//===----------------------------------------------------------------------===//
416// Node matching predicates, for use by the tblgen matching code.
417//===----------------------------------------------------------------------===//
418
419/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
420static bool isFloatingPointZero(SDOperand Op) {
421  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
422    return CFP->getValueAPF().isZero();
423  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
424    // Maybe this has already been legalized into the constant pool?
425    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
426      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
427        return CFP->getValueAPF().isZero();
428  }
429  return false;
430}
431
432/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
433/// true if Op is undef or if it matches the specified value.
434static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
435  return Op.getOpcode() == ISD::UNDEF ||
436         cast<ConstantSDNode>(Op)->getValue() == Val;
437}
438
439/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
440/// VPKUHUM instruction.
441bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
442  if (!isUnary) {
443    for (unsigned i = 0; i != 16; ++i)
444      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
445        return false;
446  } else {
447    for (unsigned i = 0; i != 8; ++i)
448      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
449          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
450        return false;
451  }
452  return true;
453}
454
455/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
456/// VPKUWUM instruction.
457bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
458  if (!isUnary) {
459    for (unsigned i = 0; i != 16; i += 2)
460      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
461          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
462        return false;
463  } else {
464    for (unsigned i = 0; i != 8; i += 2)
465      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
466          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
467          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
468          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
469        return false;
470  }
471  return true;
472}
473
474/// isVMerge - Common function, used to match vmrg* shuffles.
475///
476static bool isVMerge(SDNode *N, unsigned UnitSize,
477                     unsigned LHSStart, unsigned RHSStart) {
478  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
479         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
480  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
481         "Unsupported merge size!");
482
483  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
484    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
485      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
486                             LHSStart+j+i*UnitSize) ||
487          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
488                             RHSStart+j+i*UnitSize))
489        return false;
490    }
491      return true;
492}
493
494/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
495/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
496bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
497  if (!isUnary)
498    return isVMerge(N, UnitSize, 8, 24);
499  return isVMerge(N, UnitSize, 8, 8);
500}
501
502/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
503/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
504bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
505  if (!isUnary)
506    return isVMerge(N, UnitSize, 0, 16);
507  return isVMerge(N, UnitSize, 0, 0);
508}
509
510
511/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
512/// amount, otherwise return -1.
513int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
514  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
515         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
516  // Find the first non-undef value in the shuffle mask.
517  unsigned i;
518  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
519    /*search*/;
520
521  if (i == 16) return -1;  // all undef.
522
523  // Otherwise, check to see if the rest of the elements are consequtively
524  // numbered from this value.
525  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
526  if (ShiftAmt < i) return -1;
527  ShiftAmt -= i;
528
529  if (!isUnary) {
530    // Check the rest of the elements to see if they are consequtive.
531    for (++i; i != 16; ++i)
532      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
533        return -1;
534  } else {
535    // Check the rest of the elements to see if they are consequtive.
536    for (++i; i != 16; ++i)
537      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
538        return -1;
539  }
540
541  return ShiftAmt;
542}
543
544/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
545/// specifies a splat of a single element that is suitable for input to
546/// VSPLTB/VSPLTH/VSPLTW.
547bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
548  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
549         N->getNumOperands() == 16 &&
550         (EltSize == 1 || EltSize == 2 || EltSize == 4));
551
552  // This is a splat operation if each element of the permute is the same, and
553  // if the value doesn't reference the second vector.
554  unsigned ElementBase = 0;
555  SDOperand Elt = N->getOperand(0);
556  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
557    ElementBase = EltV->getValue();
558  else
559    return false;   // FIXME: Handle UNDEF elements too!
560
561  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
562    return false;
563
564  // Check that they are consequtive.
565  for (unsigned i = 1; i != EltSize; ++i) {
566    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
567        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
568      return false;
569  }
570
571  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
572  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
573    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
574    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
575           "Invalid VECTOR_SHUFFLE mask!");
576    for (unsigned j = 0; j != EltSize; ++j)
577      if (N->getOperand(i+j) != N->getOperand(j))
578        return false;
579  }
580
581  return true;
582}
583
584/// isAllNegativeZeroVector - Returns true if all elements of build_vector
585/// are -0.0.
586bool PPC::isAllNegativeZeroVector(SDNode *N) {
587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
588  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
589    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
590      return CFP->getValueAPF().isNegZero();
591  return false;
592}
593
594/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
595/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
596unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
597  assert(isSplatShuffleMask(N, EltSize));
598  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
599}
600
601/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
602/// by using a vspltis[bhw] instruction of the specified element size, return
603/// the constant being splatted.  The ByteSize field indicates the number of
604/// bytes of each element [124] -> [bhw].
605SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
606  SDOperand OpVal(0, 0);
607
608  // If ByteSize of the splat is bigger than the element size of the
609  // build_vector, then we have a case where we are checking for a splat where
610  // multiple elements of the buildvector are folded together into a single
611  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
612  unsigned EltSize = 16/N->getNumOperands();
613  if (EltSize < ByteSize) {
614    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
615    SDOperand UniquedVals[4];
616    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
617
618    // See if all of the elements in the buildvector agree across.
619    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
620      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
621      // If the element isn't a constant, bail fully out.
622      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
623
624
625      if (UniquedVals[i&(Multiple-1)].Val == 0)
626        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
627      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
628        return SDOperand();  // no match.
629    }
630
631    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
632    // either constant or undef values that are identical for each chunk.  See
633    // if these chunks can form into a larger vspltis*.
634
635    // Check to see if all of the leading entries are either 0 or -1.  If
636    // neither, then this won't fit into the immediate field.
637    bool LeadingZero = true;
638    bool LeadingOnes = true;
639    for (unsigned i = 0; i != Multiple-1; ++i) {
640      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
641
642      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
643      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
644    }
645    // Finally, check the least significant entry.
646    if (LeadingZero) {
647      if (UniquedVals[Multiple-1].Val == 0)
648        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
649      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
650      if (Val < 16)
651        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
652    }
653    if (LeadingOnes) {
654      if (UniquedVals[Multiple-1].Val == 0)
655        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
656      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
657      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
658        return DAG.getTargetConstant(Val, MVT::i32);
659    }
660
661    return SDOperand();
662  }
663
664  // Check to see if this buildvec has a single non-undef value in its elements.
665  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
666    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
667    if (OpVal.Val == 0)
668      OpVal = N->getOperand(i);
669    else if (OpVal != N->getOperand(i))
670      return SDOperand();
671  }
672
673  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
674
675  unsigned ValSizeInBytes = 0;
676  uint64_t Value = 0;
677  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
678    Value = CN->getValue();
679    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
680  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
681    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
682    Value = FloatToBits(CN->getValueAPF().convertToFloat());
683    ValSizeInBytes = 4;
684  }
685
686  // If the splat value is larger than the element value, then we can never do
687  // this splat.  The only case that we could fit the replicated bits into our
688  // immediate field for would be zero, and we prefer to use vxor for it.
689  if (ValSizeInBytes < ByteSize) return SDOperand();
690
691  // If the element value is larger than the splat value, cut it in half and
692  // check to see if the two halves are equal.  Continue doing this until we
693  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
694  while (ValSizeInBytes > ByteSize) {
695    ValSizeInBytes >>= 1;
696
697    // If the top half equals the bottom half, we're still ok.
698    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
699         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
700      return SDOperand();
701  }
702
703  // Properly sign extend the value.
704  int ShAmt = (4-ByteSize)*8;
705  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
706
707  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
708  if (MaskVal == 0) return SDOperand();
709
710  // Finally, if this value fits in a 5 bit sext field, return it
711  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
712    return DAG.getTargetConstant(MaskVal, MVT::i32);
713  return SDOperand();
714}
715
716//===----------------------------------------------------------------------===//
717//  Addressing Mode Selection
718//===----------------------------------------------------------------------===//
719
720/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
721/// or 64-bit immediate, and if the value can be accurately represented as a
722/// sign extension from a 16-bit value.  If so, this returns true and the
723/// immediate.
724static bool isIntS16Immediate(SDNode *N, short &Imm) {
725  if (N->getOpcode() != ISD::Constant)
726    return false;
727
728  Imm = (short)cast<ConstantSDNode>(N)->getValue();
729  if (N->getValueType(0) == MVT::i32)
730    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
731  else
732    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
733}
734static bool isIntS16Immediate(SDOperand Op, short &Imm) {
735  return isIntS16Immediate(Op.Val, Imm);
736}
737
738
739/// SelectAddressRegReg - Given the specified addressed, check to see if it
740/// can be represented as an indexed [r+r] operation.  Returns false if it
741/// can be more efficiently represented with [r+imm].
742bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
743                                            SDOperand &Index,
744                                            SelectionDAG &DAG) {
745  short imm = 0;
746  if (N.getOpcode() == ISD::ADD) {
747    if (isIntS16Immediate(N.getOperand(1), imm))
748      return false;    // r+i
749    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
750      return false;    // r+i
751
752    Base = N.getOperand(0);
753    Index = N.getOperand(1);
754    return true;
755  } else if (N.getOpcode() == ISD::OR) {
756    if (isIntS16Immediate(N.getOperand(1), imm))
757      return false;    // r+i can fold it if we can.
758
759    // If this is an or of disjoint bitfields, we can codegen this as an add
760    // (for better address arithmetic) if the LHS and RHS of the OR are provably
761    // disjoint.
762    APInt LHSKnownZero, LHSKnownOne;
763    APInt RHSKnownZero, RHSKnownOne;
764    DAG.ComputeMaskedBits(N.getOperand(0),
765                          APInt::getAllOnesValue(N.getOperand(0)
766                            .getValueSizeInBits()),
767                          LHSKnownZero, LHSKnownOne);
768
769    if (LHSKnownZero.getBoolValue()) {
770      DAG.ComputeMaskedBits(N.getOperand(1),
771                            APInt::getAllOnesValue(N.getOperand(1)
772                              .getValueSizeInBits()),
773                            RHSKnownZero, RHSKnownOne);
774      // If all of the bits are known zero on the LHS or RHS, the add won't
775      // carry.
776      if (~(LHSKnownZero | RHSKnownZero) == 0) {
777        Base = N.getOperand(0);
778        Index = N.getOperand(1);
779        return true;
780      }
781    }
782  }
783
784  return false;
785}
786
787/// Returns true if the address N can be represented by a base register plus
788/// a signed 16-bit displacement [r+imm], and if it is not better
789/// represented as reg+reg.
790bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
791                                            SDOperand &Base, SelectionDAG &DAG){
792  // If this can be more profitably realized as r+r, fail.
793  if (SelectAddressRegReg(N, Disp, Base, DAG))
794    return false;
795
796  if (N.getOpcode() == ISD::ADD) {
797    short imm = 0;
798    if (isIntS16Immediate(N.getOperand(1), imm)) {
799      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
800      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
801        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
802      } else {
803        Base = N.getOperand(0);
804      }
805      return true; // [r+i]
806    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
807      // Match LOAD (ADD (X, Lo(G))).
808      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
809             && "Cannot handle constant offsets yet!");
810      Disp = N.getOperand(1).getOperand(0);  // The global address.
811      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
812             Disp.getOpcode() == ISD::TargetConstantPool ||
813             Disp.getOpcode() == ISD::TargetJumpTable);
814      Base = N.getOperand(0);
815      return true;  // [&g+r]
816    }
817  } else if (N.getOpcode() == ISD::OR) {
818    short imm = 0;
819    if (isIntS16Immediate(N.getOperand(1), imm)) {
820      // If this is an or of disjoint bitfields, we can codegen this as an add
821      // (for better address arithmetic) if the LHS and RHS of the OR are
822      // provably disjoint.
823      APInt LHSKnownZero, LHSKnownOne;
824      DAG.ComputeMaskedBits(N.getOperand(0),
825                            APInt::getAllOnesValue(32),
826                            LHSKnownZero, LHSKnownOne);
827      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
828        // If all of the bits are known zero on the LHS or RHS, the add won't
829        // carry.
830        Base = N.getOperand(0);
831        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
832        return true;
833      }
834    }
835  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
836    // Loading from a constant address.
837
838    // If this address fits entirely in a 16-bit sext immediate field, codegen
839    // this as "d, 0"
840    short Imm;
841    if (isIntS16Immediate(CN, Imm)) {
842      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
843      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
844      return true;
845    }
846
847    // Handle 32-bit sext immediates with LIS + addr mode.
848    if (CN->getValueType(0) == MVT::i32 ||
849        (int64_t)CN->getValue() == (int)CN->getValue()) {
850      int Addr = (int)CN->getValue();
851
852      // Otherwise, break this down into an LIS + disp.
853      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
854
855      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
856      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
857      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
858      return true;
859    }
860  }
861
862  Disp = DAG.getTargetConstant(0, getPointerTy());
863  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
864    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
865  else
866    Base = N;
867  return true;      // [r+0]
868}
869
870/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
871/// represented as an indexed [r+r] operation.
872bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
873                                                SDOperand &Index,
874                                                SelectionDAG &DAG) {
875  // Check to see if we can easily represent this as an [r+r] address.  This
876  // will fail if it thinks that the address is more profitably represented as
877  // reg+imm, e.g. where imm = 0.
878  if (SelectAddressRegReg(N, Base, Index, DAG))
879    return true;
880
881  // If the operand is an addition, always emit this as [r+r], since this is
882  // better (for code size, and execution, as the memop does the add for free)
883  // than emitting an explicit add.
884  if (N.getOpcode() == ISD::ADD) {
885    Base = N.getOperand(0);
886    Index = N.getOperand(1);
887    return true;
888  }
889
890  // Otherwise, do it the hard way, using R0 as the base register.
891  Base = DAG.getRegister(PPC::R0, N.getValueType());
892  Index = N;
893  return true;
894}
895
896/// SelectAddressRegImmShift - Returns true if the address N can be
897/// represented by a base register plus a signed 14-bit displacement
898/// [r+imm*4].  Suitable for use by STD and friends.
899bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
900                                                 SDOperand &Base,
901                                                 SelectionDAG &DAG) {
902  // If this can be more profitably realized as r+r, fail.
903  if (SelectAddressRegReg(N, Disp, Base, DAG))
904    return false;
905
906  if (N.getOpcode() == ISD::ADD) {
907    short imm = 0;
908    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
909      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
910      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
911        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
912      } else {
913        Base = N.getOperand(0);
914      }
915      return true; // [r+i]
916    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
917      // Match LOAD (ADD (X, Lo(G))).
918      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
919             && "Cannot handle constant offsets yet!");
920      Disp = N.getOperand(1).getOperand(0);  // The global address.
921      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
922             Disp.getOpcode() == ISD::TargetConstantPool ||
923             Disp.getOpcode() == ISD::TargetJumpTable);
924      Base = N.getOperand(0);
925      return true;  // [&g+r]
926    }
927  } else if (N.getOpcode() == ISD::OR) {
928    short imm = 0;
929    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
930      // If this is an or of disjoint bitfields, we can codegen this as an add
931      // (for better address arithmetic) if the LHS and RHS of the OR are
932      // provably disjoint.
933      APInt LHSKnownZero, LHSKnownOne;
934      DAG.ComputeMaskedBits(N.getOperand(0),
935                            APInt::getAllOnesValue(32),
936                            LHSKnownZero, LHSKnownOne);
937      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
938        // If all of the bits are known zero on the LHS or RHS, the add won't
939        // carry.
940        Base = N.getOperand(0);
941        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
942        return true;
943      }
944    }
945  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
946    // Loading from a constant address.  Verify low two bits are clear.
947    if ((CN->getValue() & 3) == 0) {
948      // If this address fits entirely in a 14-bit sext immediate field, codegen
949      // this as "d, 0"
950      short Imm;
951      if (isIntS16Immediate(CN, Imm)) {
952        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
953        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
954        return true;
955      }
956
957      // Fold the low-part of 32-bit absolute addresses into addr mode.
958      if (CN->getValueType(0) == MVT::i32 ||
959          (int64_t)CN->getValue() == (int)CN->getValue()) {
960        int Addr = (int)CN->getValue();
961
962        // Otherwise, break this down into an LIS + disp.
963        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
964
965        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
966        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
967        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
968        return true;
969      }
970    }
971  }
972
973  Disp = DAG.getTargetConstant(0, getPointerTy());
974  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
975    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
976  else
977    Base = N;
978  return true;      // [r+0]
979}
980
981
982/// getPreIndexedAddressParts - returns true by value, base pointer and
983/// offset pointer and addressing mode by reference if the node's address
984/// can be legally represented as pre-indexed load / store address.
985bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
986                                                  SDOperand &Offset,
987                                                  ISD::MemIndexedMode &AM,
988                                                  SelectionDAG &DAG) {
989  // Disabled by default for now.
990  if (!EnablePPCPreinc) return false;
991
992  SDOperand Ptr;
993  MVT::ValueType VT;
994  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
995    Ptr = LD->getBasePtr();
996    VT = LD->getMemoryVT();
997
998  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
999    ST = ST;
1000    Ptr = ST->getBasePtr();
1001    VT  = ST->getMemoryVT();
1002  } else
1003    return false;
1004
1005  // PowerPC doesn't have preinc load/store instructions for vectors.
1006  if (MVT::isVector(VT))
1007    return false;
1008
1009  // TODO: Check reg+reg first.
1010
1011  // LDU/STU use reg+imm*4, others use reg+imm.
1012  if (VT != MVT::i64) {
1013    // reg + imm
1014    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1015      return false;
1016  } else {
1017    // reg + imm * 4.
1018    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1019      return false;
1020  }
1021
1022  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1023    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1024    // sext i32 to i64 when addr mode is r+i.
1025    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1026        LD->getExtensionType() == ISD::SEXTLOAD &&
1027        isa<ConstantSDNode>(Offset))
1028      return false;
1029  }
1030
1031  AM = ISD::PRE_INC;
1032  return true;
1033}
1034
1035//===----------------------------------------------------------------------===//
1036//  LowerOperation implementation
1037//===----------------------------------------------------------------------===//
1038
1039SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1040                                             SelectionDAG &DAG) {
1041  MVT::ValueType PtrVT = Op.getValueType();
1042  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1043  Constant *C = CP->getConstVal();
1044  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1045  SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047  const TargetMachine &TM = DAG.getTarget();
1048
1049  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1050  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1051
1052  // If this is a non-darwin platform, we don't support non-static relo models
1053  // yet.
1054  if (TM.getRelocationModel() == Reloc::Static ||
1055      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056    // Generate non-pic code that has direct accesses to the constant pool.
1057    // The address of the global is just (hi(&g)+lo(&g)).
1058    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  }
1060
1061  if (TM.getRelocationModel() == Reloc::PIC_) {
1062    // With PIC, the first instruction is actually "GR+hi(&G)".
1063    Hi = DAG.getNode(ISD::ADD, PtrVT,
1064                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065  }
1066
1067  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068  return Lo;
1069}
1070
1071SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1072  MVT::ValueType PtrVT = Op.getValueType();
1073  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1074  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1075  SDOperand Zero = DAG.getConstant(0, PtrVT);
1076
1077  const TargetMachine &TM = DAG.getTarget();
1078
1079  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1080  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1081
1082  // If this is a non-darwin platform, we don't support non-static relo models
1083  // yet.
1084  if (TM.getRelocationModel() == Reloc::Static ||
1085      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1086    // Generate non-pic code that has direct accesses to the constant pool.
1087    // The address of the global is just (hi(&g)+lo(&g)).
1088    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089  }
1090
1091  if (TM.getRelocationModel() == Reloc::PIC_) {
1092    // With PIC, the first instruction is actually "GR+hi(&G)".
1093    Hi = DAG.getNode(ISD::ADD, PtrVT,
1094                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1095  }
1096
1097  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1098  return Lo;
1099}
1100
1101SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1102                                                   SelectionDAG &DAG) {
1103  assert(0 && "TLS not implemented for PPC.");
1104}
1105
1106SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1107                                                SelectionDAG &DAG) {
1108  MVT::ValueType PtrVT = Op.getValueType();
1109  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1110  GlobalValue *GV = GSDN->getGlobal();
1111  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1112  // If it's a debug information descriptor, don't mess with it.
1113  if (DAG.isVerifiedDebugInfoDesc(Op))
1114    return GA;
1115  SDOperand Zero = DAG.getConstant(0, PtrVT);
1116
1117  const TargetMachine &TM = DAG.getTarget();
1118
1119  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1120  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1121
1122  // If this is a non-darwin platform, we don't support non-static relo models
1123  // yet.
1124  if (TM.getRelocationModel() == Reloc::Static ||
1125      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1126    // Generate non-pic code that has direct accesses to globals.
1127    // The address of the global is just (hi(&g)+lo(&g)).
1128    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1129  }
1130
1131  if (TM.getRelocationModel() == Reloc::PIC_) {
1132    // With PIC, the first instruction is actually "GR+hi(&G)".
1133    Hi = DAG.getNode(ISD::ADD, PtrVT,
1134                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1135  }
1136
1137  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1138
1139  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1140    return Lo;
1141
1142  // If the global is weak or external, we have to go through the lazy
1143  // resolution stub.
1144  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1145}
1146
1147SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1148  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1149
1150  // If we're comparing for equality to zero, expose the fact that this is
1151  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1152  // fold the new nodes.
1153  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154    if (C->isNullValue() && CC == ISD::SETEQ) {
1155      MVT::ValueType VT = Op.getOperand(0).getValueType();
1156      SDOperand Zext = Op.getOperand(0);
1157      if (VT < MVT::i32) {
1158        VT = MVT::i32;
1159        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1160      }
1161      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1162      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1163      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1164                                  DAG.getConstant(Log2b, MVT::i32));
1165      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1166    }
1167    // Leave comparisons against 0 and -1 alone for now, since they're usually
1168    // optimized.  FIXME: revisit this when we can custom lower all setcc
1169    // optimizations.
1170    if (C->isAllOnesValue() || C->isNullValue())
1171      return SDOperand();
1172  }
1173
1174  // If we have an integer seteq/setne, turn it into a compare against zero
1175  // by xor'ing the rhs with the lhs, which is faster than setting a
1176  // condition register, reading it back out, and masking the correct bit.  The
1177  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1178  // the result to other bit-twiddling opportunities.
1179  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1180  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1181    MVT::ValueType VT = Op.getValueType();
1182    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1183                                Op.getOperand(1));
1184    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1185  }
1186  return SDOperand();
1187}
1188
1189SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1190                              int VarArgsFrameIndex,
1191                              int VarArgsStackOffset,
1192                              unsigned VarArgsNumGPR,
1193                              unsigned VarArgsNumFPR,
1194                              const PPCSubtarget &Subtarget) {
1195
1196  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1197}
1198
1199SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1200                              int VarArgsFrameIndex,
1201                              int VarArgsStackOffset,
1202                              unsigned VarArgsNumGPR,
1203                              unsigned VarArgsNumFPR,
1204                              const PPCSubtarget &Subtarget) {
1205
1206  if (Subtarget.isMachoABI()) {
1207    // vastart just stores the address of the VarArgsFrameIndex slot into the
1208    // memory location argument.
1209    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1210    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1211    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1212    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1213  }
1214
1215  // For ELF 32 ABI we follow the layout of the va_list struct.
1216  // We suppose the given va_list is already allocated.
1217  //
1218  // typedef struct {
1219  //  char gpr;     /* index into the array of 8 GPRs
1220  //                 * stored in the register save area
1221  //                 * gpr=0 corresponds to r3,
1222  //                 * gpr=1 to r4, etc.
1223  //                 */
1224  //  char fpr;     /* index into the array of 8 FPRs
1225  //                 * stored in the register save area
1226  //                 * fpr=0 corresponds to f1,
1227  //                 * fpr=1 to f2, etc.
1228  //                 */
1229  //  char *overflow_arg_area;
1230  //                /* location on stack that holds
1231  //                 * the next overflow argument
1232  //                 */
1233  //  char *reg_save_area;
1234  //               /* where r3:r10 and f1:f8 (if saved)
1235  //                * are stored
1236  //                */
1237  // } va_list[1];
1238
1239
1240  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1241  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1242
1243
1244  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1245
1246  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1247  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1248
1249  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1250  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1251
1252  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1253  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1254
1255  uint64_t FPROffset = 1;
1256  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1257
1258  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1259
1260  // Store first byte : number of int regs
1261  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1262                                      Op.getOperand(1), SV, 0);
1263  uint64_t nextOffset = FPROffset;
1264  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1265                                  ConstFPROffset);
1266
1267  // Store second byte : number of float regs
1268  SDOperand secondStore =
1269    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1270  nextOffset += StackOffset;
1271  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1272
1273  // Store second word : arguments given on stack
1274  SDOperand thirdStore =
1275    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1276  nextOffset += FrameOffset;
1277  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1278
1279  // Store third word : arguments given in registers
1280  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1281
1282}
1283
1284#include "PPCGenCallingConv.inc"
1285
1286/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1287/// depending on which subtarget is selected.
1288static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1289  if (Subtarget.isMachoABI()) {
1290    static const unsigned FPR[] = {
1291      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1292      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1293    };
1294    return FPR;
1295  }
1296
1297
1298  static const unsigned FPR[] = {
1299    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1300    PPC::F8
1301  };
1302  return FPR;
1303}
1304
1305SDOperand
1306PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1307                                         SelectionDAG &DAG,
1308                                         int &VarArgsFrameIndex,
1309                                         int &VarArgsStackOffset,
1310                                         unsigned &VarArgsNumGPR,
1311                                         unsigned &VarArgsNumFPR,
1312                                         const PPCSubtarget &Subtarget) {
1313  // TODO: add description of PPC stack frame format, or at least some docs.
1314  //
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  MachineFrameInfo *MFI = MF.getFrameInfo();
1317  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1318  SmallVector<SDOperand, 8> ArgValues;
1319  SDOperand Root = Op.getOperand(0);
1320  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1321
1322  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1323  bool isPPC64 = PtrVT == MVT::i64;
1324  bool isMachoABI = Subtarget.isMachoABI();
1325  bool isELF32_ABI = Subtarget.isELF32_ABI();
1326  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1327
1328  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1329
1330  static const unsigned GPR_32[] = {           // 32-bit registers.
1331    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1332    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1333  };
1334  static const unsigned GPR_64[] = {           // 64-bit registers.
1335    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1336    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1337  };
1338
1339  static const unsigned *FPR = GetFPR(Subtarget);
1340
1341  static const unsigned VR[] = {
1342    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1343    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1344  };
1345
1346  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1347  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1348  const unsigned Num_VR_Regs  = array_lengthof( VR);
1349
1350  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1351
1352  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1353
1354  // In 32-bit non-varargs functions, the stack space for vectors is after the
1355  // stack space for non-vectors.  We do not use this space unless we have
1356  // too many vectors to fit in registers, something that only occurs in
1357  // constructed examples:), but we have to walk the arglist to figure
1358  // that out...for the pathological case, compute VecArgOffset as the
1359  // start of the vector parameter area.  Computing VecArgOffset is the
1360  // entire point of the following loop.
1361  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1362  // to handle Elf here.
1363  unsigned VecArgOffset = ArgOffset;
1364  if (!isVarArg && !isPPC64) {
1365    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1366         ++ArgNo) {
1367      MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1368      unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1369      ISD::ParamFlags::ParamFlagsTy Flags =
1370                cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1371      unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
1372
1373      if (isByVal) {
1374        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1375        ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1376                        ISD::ParamFlags::ByValSizeOffs;
1377        unsigned ArgSize =
1378                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1379        VecArgOffset += ArgSize;
1380        continue;
1381      }
1382
1383      switch(ObjectVT) {
1384      default: assert(0 && "Unhandled argument type!");
1385      case MVT::i32:
1386      case MVT::f32:
1387        VecArgOffset += isPPC64 ? 8 : 4;
1388        break;
1389      case MVT::i64:  // PPC64
1390      case MVT::f64:
1391        VecArgOffset += 8;
1392        break;
1393      case MVT::v4f32:
1394      case MVT::v4i32:
1395      case MVT::v8i16:
1396      case MVT::v16i8:
1397        // Nothing to do, we're only looking at Nonvector args here.
1398        break;
1399      }
1400    }
1401  }
1402  // We've found where the vector parameter area in memory is.  Skip the
1403  // first 12 parameters; these don't use that memory.
1404  VecArgOffset = ((VecArgOffset+15)/16)*16;
1405  VecArgOffset += 12*16;
1406
1407  // Add DAG nodes to load the arguments or copy them out of registers.  On
1408  // entry to a function on PPC, the arguments start after the linkage area,
1409  // although the first ones are often in registers.
1410  //
1411  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1412  // represented with two words (long long or double) must be copied to an
1413  // even GPR_idx value or to an even ArgOffset value.
1414
1415  SmallVector<SDOperand, 8> MemOps;
1416
1417  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1418    SDOperand ArgVal;
1419    bool needsLoad = false;
1420    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1421    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1422    unsigned ArgSize = ObjSize;
1423    ISD::ParamFlags::ParamFlagsTy Flags =
1424              cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1425    unsigned AlignFlag = ISD::ParamFlags::One
1426                                << ISD::ParamFlags::OrigAlignmentOffs;
1427    unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
1428    // See if next argument requires stack alignment in ELF
1429    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1430      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1431      (!(Flags & AlignFlag)));
1432
1433    unsigned CurArgOffset = ArgOffset;
1434
1435    // FIXME alignment for ELF may not be right
1436    // FIXME the codegen can be much improved in some cases.
1437    // We do not have to keep everything in memory.
1438    if (isByVal) {
1439      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1440      ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1441                      ISD::ParamFlags::ByValSizeOffs;
1442      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1443      // Double word align in ELF
1444      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1445      // Objects of size 1 and 2 are right justified, everything else is
1446      // left justified.  This means the memory address is adjusted forwards.
1447      if (ObjSize==1 || ObjSize==2) {
1448        CurArgOffset = CurArgOffset + (4 - ObjSize);
1449      }
1450      // The value of the object is its address.
1451      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1452      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1453      ArgValues.push_back(FIN);
1454      if (ObjSize==1 || ObjSize==2) {
1455        if (GPR_idx != Num_GPR_Regs) {
1456          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1457          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1458          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1459          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1460                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1461          MemOps.push_back(Store);
1462          ++GPR_idx;
1463          if (isMachoABI) ArgOffset += PtrByteSize;
1464        } else {
1465          ArgOffset += PtrByteSize;
1466        }
1467        continue;
1468      }
1469      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1470        // Store whatever pieces of the object are in registers
1471        // to memory.  ArgVal will be address of the beginning of
1472        // the object.
1473        if (GPR_idx != Num_GPR_Regs) {
1474          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1475          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1476          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1477          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1478          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1479          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1480          MemOps.push_back(Store);
1481          ++GPR_idx;
1482          if (isMachoABI) ArgOffset += PtrByteSize;
1483        } else {
1484          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1485          break;
1486        }
1487      }
1488      continue;
1489    }
1490
1491    switch (ObjectVT) {
1492    default: assert(0 && "Unhandled argument type!");
1493    case MVT::i32:
1494      if (!isPPC64) {
1495        // Double word align in ELF
1496        if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1497
1498        if (GPR_idx != Num_GPR_Regs) {
1499          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1500          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1501          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1502          ++GPR_idx;
1503        } else {
1504          needsLoad = true;
1505          ArgSize = PtrByteSize;
1506        }
1507        // Stack align in ELF
1508        if (needsLoad && Expand && isELF32_ABI)
1509          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1510        // All int arguments reserve stack space in Macho ABI.
1511        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1512        break;
1513      }
1514      // FALLTHROUGH
1515    case MVT::i64:  // PPC64
1516      if (GPR_idx != Num_GPR_Regs) {
1517        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1518        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1519        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1520
1521        if (ObjectVT == MVT::i32) {
1522          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1523          // value to MVT::i64 and then truncate to the correct register size.
1524          if (Flags & ISD::ParamFlags::SExt)
1525            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1526                                 DAG.getValueType(ObjectVT));
1527          else if (Flags & ISD::ParamFlags::ZExt)
1528            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1529                                 DAG.getValueType(ObjectVT));
1530
1531          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1532        }
1533
1534        ++GPR_idx;
1535      } else {
1536        needsLoad = true;
1537      }
1538      // All int arguments reserve stack space in Macho ABI.
1539      if (isMachoABI || needsLoad) ArgOffset += 8;
1540      break;
1541
1542    case MVT::f32:
1543    case MVT::f64:
1544      // Every 4 bytes of argument space consumes one of the GPRs available for
1545      // argument passing.
1546      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1547        ++GPR_idx;
1548        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1549          ++GPR_idx;
1550      }
1551      if (FPR_idx != Num_FPR_Regs) {
1552        unsigned VReg;
1553        if (ObjectVT == MVT::f32)
1554          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1555        else
1556          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1557        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1558        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1559        ++FPR_idx;
1560      } else {
1561        needsLoad = true;
1562      }
1563
1564      // Stack align in ELF
1565      if (needsLoad && Expand && isELF32_ABI)
1566        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1567      // All FP arguments reserve stack space in Macho ABI.
1568      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1569      break;
1570    case MVT::v4f32:
1571    case MVT::v4i32:
1572    case MVT::v8i16:
1573    case MVT::v16i8:
1574      // Note that vector arguments in registers don't reserve stack space,
1575      // except in varargs functions.
1576      if (VR_idx != Num_VR_Regs) {
1577        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1578        RegInfo.addLiveIn(VR[VR_idx], VReg);
1579        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1580        if (isVarArg) {
1581          while ((ArgOffset % 16) != 0) {
1582            ArgOffset += PtrByteSize;
1583            if (GPR_idx != Num_GPR_Regs)
1584              GPR_idx++;
1585          }
1586          ArgOffset += 16;
1587          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1588        }
1589        ++VR_idx;
1590      } else {
1591        if (!isVarArg && !isPPC64) {
1592          // Vectors go after all the nonvectors.
1593          CurArgOffset = VecArgOffset;
1594          VecArgOffset += 16;
1595        } else {
1596          // Vectors are aligned.
1597          ArgOffset = ((ArgOffset+15)/16)*16;
1598          CurArgOffset = ArgOffset;
1599          ArgOffset += 16;
1600        }
1601        needsLoad = true;
1602      }
1603      break;
1604    }
1605
1606    // We need to load the argument to a virtual register if we determined above
1607    // that we ran out of physical registers of the appropriate type.
1608    if (needsLoad) {
1609      int FI = MFI->CreateFixedObject(ObjSize,
1610                                      CurArgOffset + (ArgSize - ObjSize));
1611      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1612      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1613    }
1614
1615    ArgValues.push_back(ArgVal);
1616  }
1617
1618  // If the function takes variable number of arguments, make a frame index for
1619  // the start of the first vararg value... for expansion of llvm.va_start.
1620  if (isVarArg) {
1621
1622    int depth;
1623    if (isELF32_ABI) {
1624      VarArgsNumGPR = GPR_idx;
1625      VarArgsNumFPR = FPR_idx;
1626
1627      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1628      // pointer.
1629      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1630                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1631                MVT::getSizeInBits(PtrVT)/8);
1632
1633      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1634                                                  ArgOffset);
1635
1636    }
1637    else
1638      depth = ArgOffset;
1639
1640    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1641                                               depth);
1642    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1643
1644    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1645    // stored to the VarArgsFrameIndex on the stack.
1646    if (isELF32_ABI) {
1647      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1648        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1649        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1650        MemOps.push_back(Store);
1651        // Increment the address by four for the next argument to store
1652        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1653        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1654      }
1655    }
1656
1657    // If this function is vararg, store any remaining integer argument regs
1658    // to their spots on the stack so that they may be loaded by deferencing the
1659    // result of va_next.
1660    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1661      unsigned VReg;
1662      if (isPPC64)
1663        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1664      else
1665        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1666
1667      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1668      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1669      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1670      MemOps.push_back(Store);
1671      // Increment the address by four for the next argument to store
1672      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1673      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1674    }
1675
1676    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1677    // on the stack.
1678    if (isELF32_ABI) {
1679      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1680        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1681        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1682        MemOps.push_back(Store);
1683        // Increment the address by eight for the next argument to store
1684        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1685                                           PtrVT);
1686        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1687      }
1688
1689      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1690        unsigned VReg;
1691        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1692
1693        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1694        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1695        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1696        MemOps.push_back(Store);
1697        // Increment the address by eight for the next argument to store
1698        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1699                                           PtrVT);
1700        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1701      }
1702    }
1703  }
1704
1705  if (!MemOps.empty())
1706    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1707
1708  ArgValues.push_back(Root);
1709
1710  // Return the new list of results.
1711  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1712                                    Op.Val->value_end());
1713  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1714}
1715
1716/// isCallCompatibleAddress - Return the immediate to use if the specified
1717/// 32-bit value is representable in the immediate field of a BxA instruction.
1718static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1719  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1720  if (!C) return 0;
1721
1722  int Addr = C->getValue();
1723  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1724      (Addr << 6 >> 6) != Addr)
1725    return 0;  // Top 6 bits have to be sext of immediate.
1726
1727  return DAG.getConstant((int)C->getValue() >> 2,
1728                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1729}
1730
1731/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1732/// by "Src" to address "Dst" of size "Size".  Alignment information is
1733/// specified by the specific parameter attribute. The copy will be passed as
1734/// a byval function parameter.
1735/// Sometimes what we are copying is the end of a larger object, the part that
1736/// does not fit in registers.
1737static SDOperand
1738CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1739                          ISD::ParamFlags::ParamFlagsTy Flags,
1740                          SelectionDAG &DAG, unsigned Size) {
1741  unsigned Align = ISD::ParamFlags::One <<
1742    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1743  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1744  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1745  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
1746  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1747}
1748
1749SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1750                                       const PPCSubtarget &Subtarget,
1751                                       TargetMachine &TM) {
1752  SDOperand Chain  = Op.getOperand(0);
1753  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1754  SDOperand Callee = Op.getOperand(4);
1755  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1756
1757  bool isMachoABI = Subtarget.isMachoABI();
1758  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1759
1760  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1761  bool isPPC64 = PtrVT == MVT::i64;
1762  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1763
1764  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1765  // SelectExpr to use to put the arguments in the appropriate registers.
1766  std::vector<SDOperand> args_to_use;
1767
1768  // Count how many bytes are to be pushed on the stack, including the linkage
1769  // area, and parameter passing area.  We start with 24/48 bytes, which is
1770  // prereserved space for [SP][CR][LR][3 x unused].
1771  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1772
1773  // Add up all the space actually used.
1774  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1775  // they all go in registers, but we must reserve stack space for them for
1776  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1777  // assigned stack space in order, with padding so Altivec parameters are
1778  // 16-byte aligned.
1779  unsigned nAltivecParamsAtEnd = 0;
1780  for (unsigned i = 0; i != NumOps; ++i) {
1781    SDOperand Arg = Op.getOperand(5+2*i);
1782    MVT::ValueType ArgVT = Arg.getValueType();
1783    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1784        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1785      if (!isVarArg && !isPPC64) {
1786      // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1787      // do those last so we know how much padding we need.
1788        nAltivecParamsAtEnd++;
1789        continue;
1790      } else {
1791        // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1792        NumBytes = ((NumBytes+15)/16)*16;
1793      }
1794    }
1795    ISD::ParamFlags::ParamFlagsTy Flags =
1796          cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1797    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1798    if (Flags & ISD::ParamFlags::ByVal)
1799      ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1800                ISD::ParamFlags::ByValSizeOffs;
1801    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1802    NumBytes += ArgSize;
1803  }
1804  // Allow for Altivec parameters at the end, if needed.
1805  if (nAltivecParamsAtEnd) {
1806    NumBytes = ((NumBytes+15)/16)*16;
1807    NumBytes += 16*nAltivecParamsAtEnd;
1808  }
1809
1810  // The prolog code of the callee may store up to 8 GPR argument registers to
1811  // the stack, allowing va_start to index over them in memory if its varargs.
1812  // Because we cannot tell if this is needed on the caller side, we have to
1813  // conservatively assume that it is needed.  As such, make sure we have at
1814  // least enough stack space for the caller to store the 8 GPRs.
1815  NumBytes = std::max(NumBytes,
1816                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1817
1818  // Adjust the stack pointer for the new arguments...
1819  // These operations are automatically eliminated by the prolog/epilog pass
1820  Chain = DAG.getCALLSEQ_START(Chain,
1821                               DAG.getConstant(NumBytes, PtrVT));
1822  SDOperand CallSeqStart = Chain;
1823
1824  // Set up a copy of the stack pointer for use loading and storing any
1825  // arguments that may not fit in the registers available for argument
1826  // passing.
1827  SDOperand StackPtr;
1828  if (isPPC64)
1829    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1830  else
1831    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1832
1833  // Figure out which arguments are going to go in registers, and which in
1834  // memory.  Also, if this is a vararg function, floating point operations
1835  // must be stored to our stack, and loaded into integer regs as well, if
1836  // any integer regs are available for argument passing.
1837  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1838  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1839
1840  static const unsigned GPR_32[] = {           // 32-bit registers.
1841    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1842    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1843  };
1844  static const unsigned GPR_64[] = {           // 64-bit registers.
1845    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1846    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1847  };
1848  static const unsigned *FPR = GetFPR(Subtarget);
1849
1850  static const unsigned VR[] = {
1851    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1852    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1853  };
1854  const unsigned NumGPRs = array_lengthof(GPR_32);
1855  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1856  const unsigned NumVRs  = array_lengthof( VR);
1857
1858  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1859
1860  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1861  SmallVector<SDOperand, 8> MemOpChains;
1862  for (unsigned i = 0; i != NumOps; ++i) {
1863    bool inMem = false;
1864    SDOperand Arg = Op.getOperand(5+2*i);
1865    ISD::ParamFlags::ParamFlagsTy Flags =
1866            cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1867    unsigned AlignFlag = ISD::ParamFlags::One <<
1868                         ISD::ParamFlags::OrigAlignmentOffs;
1869    // See if next argument requires stack alignment in ELF
1870    unsigned next = 5+2*(i+1)+1;
1871    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1872      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1873      (!(Flags & AlignFlag)));
1874
1875    // PtrOff will be used to store the current argument to the stack if a
1876    // register cannot be found for it.
1877    SDOperand PtrOff;
1878
1879    // Stack align in ELF 32
1880    if (isELF32_ABI && Expand)
1881      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1882                               StackPtr.getValueType());
1883    else
1884      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1885
1886    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1887
1888    // On PPC64, promote integers to 64-bit values.
1889    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1890      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1891      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1892    }
1893
1894    // FIXME Elf untested, what are alignment rules?
1895    // FIXME memcpy is used way more than necessary.  Correctness first.
1896    if (Flags & ISD::ParamFlags::ByVal) {
1897      unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1898                      ISD::ParamFlags::ByValSizeOffs;
1899      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1900      if (Size==1 || Size==2) {
1901        // Very small objects are passed right-justified.
1902        // Everything else is passed left-justified.
1903        MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1904        if (GPR_idx != NumGPRs) {
1905          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1906                                          NULL, 0, VT);
1907          MemOpChains.push_back(Load.getValue(1));
1908          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1909          if (isMachoABI)
1910            ArgOffset += PtrByteSize;
1911        } else {
1912          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1913          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1914          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1915                                CallSeqStart.Val->getOperand(0),
1916                                Flags, DAG, Size);
1917          // This must go outside the CALLSEQ_START..END.
1918          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1919                               CallSeqStart.Val->getOperand(1));
1920          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1921          Chain = CallSeqStart = NewCallSeqStart;
1922          ArgOffset += PtrByteSize;
1923        }
1924        continue;
1925      }
1926      // Copy entire object into memory.  There are cases where gcc-generated
1927      // code assumes it is there, even if it could be put entirely into
1928      // registers.  (This is not what the doc says.)
1929      SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1930                            CallSeqStart.Val->getOperand(0),
1931                            Flags, DAG, Size);
1932      // This must go outside the CALLSEQ_START..END.
1933      SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1934                           CallSeqStart.Val->getOperand(1));
1935      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1936      Chain = CallSeqStart = NewCallSeqStart;
1937      // And copy the pieces of it that fit into registers.
1938      for (unsigned j=0; j<Size; j+=PtrByteSize) {
1939        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1940        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1941        if (GPR_idx != NumGPRs) {
1942          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1943          MemOpChains.push_back(Load.getValue(1));
1944          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1945          if (isMachoABI)
1946            ArgOffset += PtrByteSize;
1947        } else {
1948          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
1949          break;
1950        }
1951      }
1952      continue;
1953    }
1954
1955    switch (Arg.getValueType()) {
1956    default: assert(0 && "Unexpected ValueType for argument!");
1957    case MVT::i32:
1958    case MVT::i64:
1959      // Double word align in ELF
1960      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1961      if (GPR_idx != NumGPRs) {
1962        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1963      } else {
1964        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1965        inMem = true;
1966      }
1967      if (inMem || isMachoABI) {
1968        // Stack align in ELF
1969        if (isELF32_ABI && Expand)
1970          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1971
1972        ArgOffset += PtrByteSize;
1973      }
1974      break;
1975    case MVT::f32:
1976    case MVT::f64:
1977      if (FPR_idx != NumFPRs) {
1978        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1979
1980        if (isVarArg) {
1981          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1982          MemOpChains.push_back(Store);
1983
1984          // Float varargs are always shadowed in available integer registers
1985          if (GPR_idx != NumGPRs) {
1986            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1987            MemOpChains.push_back(Load.getValue(1));
1988            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1989                                                                Load));
1990          }
1991          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1992            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1993            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1994            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1995            MemOpChains.push_back(Load.getValue(1));
1996            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1997                                                                Load));
1998          }
1999        } else {
2000          // If we have any FPRs remaining, we may also have GPRs remaining.
2001          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2002          // GPRs.
2003          if (isMachoABI) {
2004            if (GPR_idx != NumGPRs)
2005              ++GPR_idx;
2006            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2007                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2008              ++GPR_idx;
2009          }
2010        }
2011      } else {
2012        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2013        inMem = true;
2014      }
2015      if (inMem || isMachoABI) {
2016        // Stack align in ELF
2017        if (isELF32_ABI && Expand)
2018          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2019        if (isPPC64)
2020          ArgOffset += 8;
2021        else
2022          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2023      }
2024      break;
2025    case MVT::v4f32:
2026    case MVT::v4i32:
2027    case MVT::v8i16:
2028    case MVT::v16i8:
2029      if (isVarArg) {
2030        // These go aligned on the stack, or in the corresponding R registers
2031        // when within range.  The Darwin PPC ABI doc claims they also go in
2032        // V registers; in fact gcc does this only for arguments that are
2033        // prototyped, not for those that match the ...  We do it for all
2034        // arguments, seems to work.
2035        while (ArgOffset % 16 !=0) {
2036          ArgOffset += PtrByteSize;
2037          if (GPR_idx != NumGPRs)
2038            GPR_idx++;
2039        }
2040        // We could elide this store in the case where the object fits
2041        // entirely in R registers.  Maybe later.
2042        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2043                            DAG.getConstant(ArgOffset, PtrVT));
2044        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2045        MemOpChains.push_back(Store);
2046        if (VR_idx != NumVRs) {
2047          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2048          MemOpChains.push_back(Load.getValue(1));
2049          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2050        }
2051        ArgOffset += 16;
2052        for (unsigned i=0; i<16; i+=PtrByteSize) {
2053          if (GPR_idx == NumGPRs)
2054            break;
2055          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2056                                  DAG.getConstant(i, PtrVT));
2057          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2058          MemOpChains.push_back(Load.getValue(1));
2059          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2060        }
2061        break;
2062      }
2063      // Non-varargs Altivec params generally go in registers, but have
2064      // stack space allocated at the end.
2065      if (VR_idx != NumVRs) {
2066        // Doesn't have GPR space allocated.
2067        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2068      } else if (nAltivecParamsAtEnd==0) {
2069        // We are emitting Altivec params in order.
2070        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2071                            DAG.getConstant(ArgOffset, PtrVT));
2072        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2073        MemOpChains.push_back(Store);
2074        ArgOffset += 16;
2075      }
2076      break;
2077    }
2078  }
2079  // If all Altivec parameters fit in registers, as they usually do,
2080  // they get stack space following the non-Altivec parameters.  We
2081  // don't track this here because nobody below needs it.
2082  // If there are more Altivec parameters than fit in registers emit
2083  // the stores here.
2084  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2085    unsigned j = 0;
2086    // Offset is aligned; skip 1st 12 params which go in V registers.
2087    ArgOffset = ((ArgOffset+15)/16)*16;
2088    ArgOffset += 12*16;
2089    for (unsigned i = 0; i != NumOps; ++i) {
2090      SDOperand Arg = Op.getOperand(5+2*i);
2091      MVT::ValueType ArgType = Arg.getValueType();
2092      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2093          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2094        if (++j > NumVRs) {
2095          SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2096                              DAG.getConstant(ArgOffset, PtrVT));
2097          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2098          MemOpChains.push_back(Store);
2099          ArgOffset += 16;
2100        }
2101      }
2102    }
2103  }
2104
2105  if (!MemOpChains.empty())
2106    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2107                        &MemOpChains[0], MemOpChains.size());
2108
2109  // Build a sequence of copy-to-reg nodes chained together with token chain
2110  // and flag operands which copy the outgoing args into the appropriate regs.
2111  SDOperand InFlag;
2112  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2113    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2114                             InFlag);
2115    InFlag = Chain.getValue(1);
2116  }
2117
2118  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2119  if (isVarArg && isELF32_ABI) {
2120    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2121    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2122    InFlag = Chain.getValue(1);
2123  }
2124
2125  std::vector<MVT::ValueType> NodeTys;
2126  NodeTys.push_back(MVT::Other);   // Returns a chain
2127  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2128
2129  SmallVector<SDOperand, 8> Ops;
2130  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2131
2132  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2133  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2134  // node so that legalize doesn't hack it.
2135  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2136    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2137  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2138    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2139  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2140    // If this is an absolute destination address, use the munged value.
2141    Callee = SDOperand(Dest, 0);
2142  else {
2143    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2144    // to do the call, we can't use PPCISD::CALL.
2145    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2146    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2147    InFlag = Chain.getValue(1);
2148
2149    // Copy the callee address into R12/X12 on darwin.
2150    if (isMachoABI) {
2151      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2152      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2153      InFlag = Chain.getValue(1);
2154    }
2155
2156    NodeTys.clear();
2157    NodeTys.push_back(MVT::Other);
2158    NodeTys.push_back(MVT::Flag);
2159    Ops.push_back(Chain);
2160    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2161    Callee.Val = 0;
2162  }
2163
2164  // If this is a direct call, pass the chain and the callee.
2165  if (Callee.Val) {
2166    Ops.push_back(Chain);
2167    Ops.push_back(Callee);
2168  }
2169
2170  // Add argument registers to the end of the list so that they are known live
2171  // into the call.
2172  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2173    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2174                                  RegsToPass[i].second.getValueType()));
2175
2176  if (InFlag.Val)
2177    Ops.push_back(InFlag);
2178  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2179  InFlag = Chain.getValue(1);
2180
2181  Chain = DAG.getCALLSEQ_END(Chain,
2182                             DAG.getConstant(NumBytes, PtrVT),
2183                             DAG.getConstant(0, PtrVT),
2184                             InFlag);
2185  if (Op.Val->getValueType(0) != MVT::Other)
2186    InFlag = Chain.getValue(1);
2187
2188  SmallVector<SDOperand, 16> ResultVals;
2189  SmallVector<CCValAssign, 16> RVLocs;
2190  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2191  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2192  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2193
2194  // Copy all of the result registers out of their specified physreg.
2195  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2196    CCValAssign &VA = RVLocs[i];
2197    MVT::ValueType VT = VA.getValVT();
2198    assert(VA.isRegLoc() && "Can only return in registers!");
2199    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2200    ResultVals.push_back(Chain.getValue(0));
2201    InFlag = Chain.getValue(2);
2202  }
2203
2204  // If the function returns void, just return the chain.
2205  if (RVLocs.empty())
2206    return Chain;
2207
2208  // Otherwise, merge everything together with a MERGE_VALUES node.
2209  ResultVals.push_back(Chain);
2210  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2211                              &ResultVals[0], ResultVals.size());
2212  return Res.getValue(Op.ResNo);
2213}
2214
2215SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2216                                      TargetMachine &TM) {
2217  SmallVector<CCValAssign, 16> RVLocs;
2218  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2219  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2220  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2221  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2222
2223  // If this is the first return lowered for this function, add the regs to the
2224  // liveout set for the function.
2225  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2226    for (unsigned i = 0; i != RVLocs.size(); ++i)
2227      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2228  }
2229
2230  SDOperand Chain = Op.getOperand(0);
2231  SDOperand Flag;
2232
2233  // Copy the result values into the output registers.
2234  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2235    CCValAssign &VA = RVLocs[i];
2236    assert(VA.isRegLoc() && "Can only return in registers!");
2237    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2238    Flag = Chain.getValue(1);
2239  }
2240
2241  if (Flag.Val)
2242    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2243  else
2244    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2245}
2246
2247SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2248                                   const PPCSubtarget &Subtarget) {
2249  // When we pop the dynamic allocation we need to restore the SP link.
2250
2251  // Get the corect type for pointers.
2252  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2253
2254  // Construct the stack pointer operand.
2255  bool IsPPC64 = Subtarget.isPPC64();
2256  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2257  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2258
2259  // Get the operands for the STACKRESTORE.
2260  SDOperand Chain = Op.getOperand(0);
2261  SDOperand SaveSP = Op.getOperand(1);
2262
2263  // Load the old link SP.
2264  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2265
2266  // Restore the stack pointer.
2267  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2268
2269  // Store the old link SP.
2270  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2271}
2272
2273SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2274                                         SelectionDAG &DAG,
2275                                         const PPCSubtarget &Subtarget) {
2276  MachineFunction &MF = DAG.getMachineFunction();
2277  bool IsPPC64 = Subtarget.isPPC64();
2278  bool isMachoABI = Subtarget.isMachoABI();
2279
2280  // Get current frame pointer save index.  The users of this index will be
2281  // primarily DYNALLOC instructions.
2282  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2283  int FPSI = FI->getFramePointerSaveIndex();
2284
2285  // If the frame pointer save index hasn't been defined yet.
2286  if (!FPSI) {
2287    // Find out what the fix offset of the frame pointer save area.
2288    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2289
2290    // Allocate the frame index for frame pointer save area.
2291    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2292    // Save the result.
2293    FI->setFramePointerSaveIndex(FPSI);
2294  }
2295
2296  // Get the inputs.
2297  SDOperand Chain = Op.getOperand(0);
2298  SDOperand Size  = Op.getOperand(1);
2299
2300  // Get the corect type for pointers.
2301  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2302  // Negate the size.
2303  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2304                                  DAG.getConstant(0, PtrVT), Size);
2305  // Construct a node for the frame pointer save index.
2306  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2307  // Build a DYNALLOC node.
2308  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2309  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2310  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2311}
2312
2313
2314/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2315/// possible.
2316SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2317  // Not FP? Not a fsel.
2318  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2319      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2320    return SDOperand();
2321
2322  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2323
2324  // Cannot handle SETEQ/SETNE.
2325  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2326
2327  MVT::ValueType ResVT = Op.getValueType();
2328  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2329  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2330  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2331
2332  // If the RHS of the comparison is a 0.0, we don't need to do the
2333  // subtraction at all.
2334  if (isFloatingPointZero(RHS))
2335    switch (CC) {
2336    default: break;       // SETUO etc aren't handled by fsel.
2337    case ISD::SETULT:
2338    case ISD::SETOLT:
2339    case ISD::SETLT:
2340      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2341    case ISD::SETUGE:
2342    case ISD::SETOGE:
2343    case ISD::SETGE:
2344      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2345        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2346      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2347    case ISD::SETUGT:
2348    case ISD::SETOGT:
2349    case ISD::SETGT:
2350      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2351    case ISD::SETULE:
2352    case ISD::SETOLE:
2353    case ISD::SETLE:
2354      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2355        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2356      return DAG.getNode(PPCISD::FSEL, ResVT,
2357                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2358    }
2359
2360  SDOperand Cmp;
2361  switch (CC) {
2362  default: break;       // SETUO etc aren't handled by fsel.
2363  case ISD::SETULT:
2364  case ISD::SETOLT:
2365  case ISD::SETLT:
2366    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2367    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2368      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2369      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2370  case ISD::SETUGE:
2371  case ISD::SETOGE:
2372  case ISD::SETGE:
2373    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2374    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2375      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2376      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2377  case ISD::SETUGT:
2378  case ISD::SETOGT:
2379  case ISD::SETGT:
2380    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2381    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2382      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2383      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2384  case ISD::SETULE:
2385  case ISD::SETOLE:
2386  case ISD::SETLE:
2387    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2388    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2389      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2390      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2391  }
2392  return SDOperand();
2393}
2394
2395// FIXME: Split this code up when LegalizeDAGTypes lands.
2396SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2397  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2398  SDOperand Src = Op.getOperand(0);
2399  if (Src.getValueType() == MVT::f32)
2400    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2401
2402  SDOperand Tmp;
2403  switch (Op.getValueType()) {
2404  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2405  case MVT::i32:
2406    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2407    break;
2408  case MVT::i64:
2409    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2410    break;
2411  }
2412
2413  // Convert the FP value to an int value through memory.
2414  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2415
2416  // Emit a store to the stack slot.
2417  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2418
2419  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2420  // add in a bias.
2421  if (Op.getValueType() == MVT::i32)
2422    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2423                        DAG.getConstant(4, FIPtr.getValueType()));
2424  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2425}
2426
2427SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2428                                                 SelectionDAG &DAG) {
2429  assert(Op.getValueType() == MVT::ppcf128);
2430  SDNode *Node = Op.Val;
2431  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2432  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2433  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2434  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2435
2436  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2437  // of the long double, and puts FPSCR back the way it was.  We do not
2438  // actually model FPSCR.
2439  std::vector<MVT::ValueType> NodeTys;
2440  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2441
2442  NodeTys.push_back(MVT::f64);   // Return register
2443  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2444  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2445  MFFSreg = Result.getValue(0);
2446  InFlag = Result.getValue(1);
2447
2448  NodeTys.clear();
2449  NodeTys.push_back(MVT::Flag);   // Returns a flag
2450  Ops[0] = DAG.getConstant(31, MVT::i32);
2451  Ops[1] = InFlag;
2452  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2453  InFlag = Result.getValue(0);
2454
2455  NodeTys.clear();
2456  NodeTys.push_back(MVT::Flag);   // Returns a flag
2457  Ops[0] = DAG.getConstant(30, MVT::i32);
2458  Ops[1] = InFlag;
2459  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2460  InFlag = Result.getValue(0);
2461
2462  NodeTys.clear();
2463  NodeTys.push_back(MVT::f64);    // result of add
2464  NodeTys.push_back(MVT::Flag);   // Returns a flag
2465  Ops[0] = Lo;
2466  Ops[1] = Hi;
2467  Ops[2] = InFlag;
2468  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2469  FPreg = Result.getValue(0);
2470  InFlag = Result.getValue(1);
2471
2472  NodeTys.clear();
2473  NodeTys.push_back(MVT::f64);
2474  Ops[0] = DAG.getConstant(1, MVT::i32);
2475  Ops[1] = MFFSreg;
2476  Ops[2] = FPreg;
2477  Ops[3] = InFlag;
2478  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2479  FPreg = Result.getValue(0);
2480
2481  // We know the low half is about to be thrown away, so just use something
2482  // convenient.
2483  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2484}
2485
2486SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2487  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2488  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2489    return SDOperand();
2490
2491  if (Op.getOperand(0).getValueType() == MVT::i64) {
2492    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2493    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2494    if (Op.getValueType() == MVT::f32)
2495      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2496    return FP;
2497  }
2498
2499  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2500         "Unhandled SINT_TO_FP type in custom expander!");
2501  // Since we only generate this in 64-bit mode, we can take advantage of
2502  // 64-bit registers.  In particular, sign extend the input value into the
2503  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2504  // then lfd it and fcfid it.
2505  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2506  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2507  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2508  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2509
2510  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2511                                Op.getOperand(0));
2512
2513  // STD the extended value into the stack slot.
2514  MemOperand MO(PseudoSourceValue::getFixedStack(),
2515                MemOperand::MOStore, FrameIdx, 8, 8);
2516  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2517                                DAG.getEntryNode(), Ext64, FIdx,
2518                                DAG.getMemOperand(MO));
2519  // Load the value as a double.
2520  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2521
2522  // FCFID it and return it.
2523  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2524  if (Op.getValueType() == MVT::f32)
2525    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2526  return FP;
2527}
2528
2529SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2530  /*
2531   The rounding mode is in bits 30:31 of FPSR, and has the following
2532   settings:
2533     00 Round to nearest
2534     01 Round to 0
2535     10 Round to +inf
2536     11 Round to -inf
2537
2538  FLT_ROUNDS, on the other hand, expects the following:
2539    -1 Undefined
2540     0 Round to 0
2541     1 Round to nearest
2542     2 Round to +inf
2543     3 Round to -inf
2544
2545  To perform the conversion, we do:
2546    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2547  */
2548
2549  MachineFunction &MF = DAG.getMachineFunction();
2550  MVT::ValueType VT = Op.getValueType();
2551  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2552  std::vector<MVT::ValueType> NodeTys;
2553  SDOperand MFFSreg, InFlag;
2554
2555  // Save FP Control Word to register
2556  NodeTys.push_back(MVT::f64);    // return register
2557  NodeTys.push_back(MVT::Flag);   // unused in this context
2558  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2559
2560  // Save FP register to stack slot
2561  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2562  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2563  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2564                                 StackSlot, NULL, 0);
2565
2566  // Load FP Control Word from low 32 bits of stack slot.
2567  SDOperand Four = DAG.getConstant(4, PtrVT);
2568  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2569  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2570
2571  // Transform as necessary
2572  SDOperand CWD1 =
2573    DAG.getNode(ISD::AND, MVT::i32,
2574                CWD, DAG.getConstant(3, MVT::i32));
2575  SDOperand CWD2 =
2576    DAG.getNode(ISD::SRL, MVT::i32,
2577                DAG.getNode(ISD::AND, MVT::i32,
2578                            DAG.getNode(ISD::XOR, MVT::i32,
2579                                        CWD, DAG.getConstant(3, MVT::i32)),
2580                            DAG.getConstant(3, MVT::i32)),
2581                DAG.getConstant(1, MVT::i8));
2582
2583  SDOperand RetVal =
2584    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2585
2586  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2587                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2588}
2589
2590SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2591  MVT::ValueType VT = Op.getValueType();
2592  unsigned BitWidth = MVT::getSizeInBits(VT);
2593  assert(Op.getNumOperands() == 3 &&
2594         VT == Op.getOperand(1).getValueType() &&
2595         "Unexpected SHL!");
2596
2597  // Expand into a bunch of logical ops.  Note that these ops
2598  // depend on the PPC behavior for oversized shift amounts.
2599  SDOperand Lo = Op.getOperand(0);
2600  SDOperand Hi = Op.getOperand(1);
2601  SDOperand Amt = Op.getOperand(2);
2602  MVT::ValueType AmtVT = Amt.getValueType();
2603
2604  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2605                               DAG.getConstant(BitWidth, AmtVT), Amt);
2606  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2607  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2608  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2609  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2610                               DAG.getConstant(-BitWidth, AmtVT));
2611  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2612  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2613  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
2614  SDOperand OutOps[] = { OutLo, OutHi };
2615  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2616                     OutOps, 2);
2617}
2618
2619SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2620  MVT::ValueType VT = Op.getValueType();
2621  unsigned BitWidth = MVT::getSizeInBits(VT);
2622  assert(Op.getNumOperands() == 3 &&
2623         VT == Op.getOperand(1).getValueType() &&
2624         "Unexpected SRL!");
2625
2626  // Expand into a bunch of logical ops.  Note that these ops
2627  // depend on the PPC behavior for oversized shift amounts.
2628  SDOperand Lo = Op.getOperand(0);
2629  SDOperand Hi = Op.getOperand(1);
2630  SDOperand Amt = Op.getOperand(2);
2631  MVT::ValueType AmtVT = Amt.getValueType();
2632
2633  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2634                               DAG.getConstant(BitWidth, AmtVT), Amt);
2635  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2636  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2637  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2638  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2639                               DAG.getConstant(-BitWidth, AmtVT));
2640  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2641  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2642  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
2643  SDOperand OutOps[] = { OutLo, OutHi };
2644  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2645                     OutOps, 2);
2646}
2647
2648SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2649  MVT::ValueType VT = Op.getValueType();
2650  unsigned BitWidth = MVT::getSizeInBits(VT);
2651  assert(Op.getNumOperands() == 3 &&
2652         VT == Op.getOperand(1).getValueType() &&
2653         "Unexpected SRA!");
2654
2655  // Expand into a bunch of logical ops, followed by a select_cc.
2656  SDOperand Lo = Op.getOperand(0);
2657  SDOperand Hi = Op.getOperand(1);
2658  SDOperand Amt = Op.getOperand(2);
2659  MVT::ValueType AmtVT = Amt.getValueType();
2660
2661  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2662                               DAG.getConstant(BitWidth, AmtVT), Amt);
2663  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2664  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2665  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2666  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2667                               DAG.getConstant(-BitWidth, AmtVT));
2668  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2669  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2670  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
2671                                    Tmp4, Tmp6, ISD::SETLE);
2672  SDOperand OutOps[] = { OutLo, OutHi };
2673  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2674                     OutOps, 2);
2675}
2676
2677//===----------------------------------------------------------------------===//
2678// Vector related lowering.
2679//
2680
2681// If this is a vector of constants or undefs, get the bits.  A bit in
2682// UndefBits is set if the corresponding element of the vector is an
2683// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2684// zero.   Return true if this is not an array of constants, false if it is.
2685//
2686static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2687                                       uint64_t UndefBits[2]) {
2688  // Start with zero'd results.
2689  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2690
2691  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2692  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2693    SDOperand OpVal = BV->getOperand(i);
2694
2695    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2696    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2697
2698    uint64_t EltBits = 0;
2699    if (OpVal.getOpcode() == ISD::UNDEF) {
2700      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2701      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2702      continue;
2703    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2704      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2705    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2706      assert(CN->getValueType(0) == MVT::f32 &&
2707             "Only one legal FP vector type!");
2708      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2709    } else {
2710      // Nonconstant element.
2711      return true;
2712    }
2713
2714    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2715  }
2716
2717  //printf("%llx %llx  %llx %llx\n",
2718  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2719  return false;
2720}
2721
2722// If this is a splat (repetition) of a value across the whole vector, return
2723// the smallest size that splats it.  For example, "0x01010101010101..." is a
2724// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2725// SplatSize = 1 byte.
2726static bool isConstantSplat(const uint64_t Bits128[2],
2727                            const uint64_t Undef128[2],
2728                            unsigned &SplatBits, unsigned &SplatUndef,
2729                            unsigned &SplatSize) {
2730
2731  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2732  // the same as the lower 64-bits, ignoring undefs.
2733  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2734    return false;  // Can't be a splat if two pieces don't match.
2735
2736  uint64_t Bits64  = Bits128[0] | Bits128[1];
2737  uint64_t Undef64 = Undef128[0] & Undef128[1];
2738
2739  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2740  // undefs.
2741  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2742    return false;  // Can't be a splat if two pieces don't match.
2743
2744  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2745  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2746
2747  // If the top 16-bits are different than the lower 16-bits, ignoring
2748  // undefs, we have an i32 splat.
2749  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2750    SplatBits = Bits32;
2751    SplatUndef = Undef32;
2752    SplatSize = 4;
2753    return true;
2754  }
2755
2756  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2757  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2758
2759  // If the top 8-bits are different than the lower 8-bits, ignoring
2760  // undefs, we have an i16 splat.
2761  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2762    SplatBits = Bits16;
2763    SplatUndef = Undef16;
2764    SplatSize = 2;
2765    return true;
2766  }
2767
2768  // Otherwise, we have an 8-bit splat.
2769  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2770  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2771  SplatSize = 1;
2772  return true;
2773}
2774
2775/// BuildSplatI - Build a canonical splati of Val with an element size of
2776/// SplatSize.  Cast the result to VT.
2777static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2778                             SelectionDAG &DAG) {
2779  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2780
2781  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2782    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2783  };
2784
2785  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2786
2787  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2788  if (Val == -1)
2789    SplatSize = 1;
2790
2791  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2792
2793  // Build a canonical splat for this value.
2794  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2795  SmallVector<SDOperand, 8> Ops;
2796  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2797  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2798                              &Ops[0], Ops.size());
2799  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2800}
2801
2802/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2803/// specified intrinsic ID.
2804static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2805                                  SelectionDAG &DAG,
2806                                  MVT::ValueType DestVT = MVT::Other) {
2807  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2808  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2809                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2810}
2811
2812/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2813/// specified intrinsic ID.
2814static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2815                                  SDOperand Op2, SelectionDAG &DAG,
2816                                  MVT::ValueType DestVT = MVT::Other) {
2817  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2818  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2819                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2820}
2821
2822
2823/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2824/// amount.  The result has the specified value type.
2825static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2826                             MVT::ValueType VT, SelectionDAG &DAG) {
2827  // Force LHS/RHS to be the right type.
2828  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2829  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2830
2831  SDOperand Ops[16];
2832  for (unsigned i = 0; i != 16; ++i)
2833    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2834  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2835                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2836  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2837}
2838
2839// If this is a case we can't handle, return null and let the default
2840// expansion code take care of it.  If we CAN select this case, and if it
2841// selects to a single instruction, return Op.  Otherwise, if we can codegen
2842// this case more efficiently than a constant pool load, lower it to the
2843// sequence of ops that should be used.
2844SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2845                                               SelectionDAG &DAG) {
2846  // If this is a vector of constants or undefs, get the bits.  A bit in
2847  // UndefBits is set if the corresponding element of the vector is an
2848  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2849  // zero.
2850  uint64_t VectorBits[2];
2851  uint64_t UndefBits[2];
2852  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2853    return SDOperand();   // Not a constant vector.
2854
2855  // If this is a splat (repetition) of a value across the whole vector, return
2856  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2857  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2858  // SplatSize = 1 byte.
2859  unsigned SplatBits, SplatUndef, SplatSize;
2860  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2861    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2862
2863    // First, handle single instruction cases.
2864
2865    // All zeros?
2866    if (SplatBits == 0) {
2867      // Canonicalize all zero vectors to be v4i32.
2868      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2869        SDOperand Z = DAG.getConstant(0, MVT::i32);
2870        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2871        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2872      }
2873      return Op;
2874    }
2875
2876    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2877    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2878    if (SextVal >= -16 && SextVal <= 15)
2879      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2880
2881
2882    // Two instruction sequences.
2883
2884    // If this value is in the range [-32,30] and is even, use:
2885    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2886    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2887      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2888      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2889    }
2890
2891    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2892    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2893    // for fneg/fabs.
2894    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2895      // Make -1 and vspltisw -1:
2896      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2897
2898      // Make the VSLW intrinsic, computing 0x8000_0000.
2899      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2900                                       OnesV, DAG);
2901
2902      // xor by OnesV to invert it.
2903      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2904      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2905    }
2906
2907    // Check to see if this is a wide variety of vsplti*, binop self cases.
2908    unsigned SplatBitSize = SplatSize*8;
2909    static const signed char SplatCsts[] = {
2910      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2911      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2912    };
2913
2914    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2915      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2916      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2917      int i = SplatCsts[idx];
2918
2919      // Figure out what shift amount will be used by altivec if shifted by i in
2920      // this splat size.
2921      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2922
2923      // vsplti + shl self.
2924      if (SextVal == (i << (int)TypeShiftAmt)) {
2925        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2926        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2927          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2928          Intrinsic::ppc_altivec_vslw
2929        };
2930        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2931        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2932      }
2933
2934      // vsplti + srl self.
2935      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2936        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2937        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2938          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2939          Intrinsic::ppc_altivec_vsrw
2940        };
2941        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2942        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2943      }
2944
2945      // vsplti + sra self.
2946      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2947        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2948        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2949          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2950          Intrinsic::ppc_altivec_vsraw
2951        };
2952        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2953        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2954      }
2955
2956      // vsplti + rol self.
2957      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2958                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2959        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2960        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2961          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2962          Intrinsic::ppc_altivec_vrlw
2963        };
2964        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2965        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2966      }
2967
2968      // t = vsplti c, result = vsldoi t, t, 1
2969      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2970        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2971        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2972      }
2973      // t = vsplti c, result = vsldoi t, t, 2
2974      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2975        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2976        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2977      }
2978      // t = vsplti c, result = vsldoi t, t, 3
2979      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2980        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2981        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2982      }
2983    }
2984
2985    // Three instruction sequences.
2986
2987    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2988    if (SextVal >= 0 && SextVal <= 31) {
2989      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2990      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2991      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2992      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2993    }
2994    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2995    if (SextVal >= -31 && SextVal <= 0) {
2996      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2997      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2998      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2999      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3000    }
3001  }
3002
3003  return SDOperand();
3004}
3005
3006/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3007/// the specified operations to build the shuffle.
3008static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
3009                                        SDOperand RHS, SelectionDAG &DAG) {
3010  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3011  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3012  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3013
3014  enum {
3015    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3016    OP_VMRGHW,
3017    OP_VMRGLW,
3018    OP_VSPLTISW0,
3019    OP_VSPLTISW1,
3020    OP_VSPLTISW2,
3021    OP_VSPLTISW3,
3022    OP_VSLDOI4,
3023    OP_VSLDOI8,
3024    OP_VSLDOI12
3025  };
3026
3027  if (OpNum == OP_COPY) {
3028    if (LHSID == (1*9+2)*9+3) return LHS;
3029    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3030    return RHS;
3031  }
3032
3033  SDOperand OpLHS, OpRHS;
3034  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3035  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3036
3037  unsigned ShufIdxs[16];
3038  switch (OpNum) {
3039  default: assert(0 && "Unknown i32 permute!");
3040  case OP_VMRGHW:
3041    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3042    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3043    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3044    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3045    break;
3046  case OP_VMRGLW:
3047    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3048    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3049    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3050    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3051    break;
3052  case OP_VSPLTISW0:
3053    for (unsigned i = 0; i != 16; ++i)
3054      ShufIdxs[i] = (i&3)+0;
3055    break;
3056  case OP_VSPLTISW1:
3057    for (unsigned i = 0; i != 16; ++i)
3058      ShufIdxs[i] = (i&3)+4;
3059    break;
3060  case OP_VSPLTISW2:
3061    for (unsigned i = 0; i != 16; ++i)
3062      ShufIdxs[i] = (i&3)+8;
3063    break;
3064  case OP_VSPLTISW3:
3065    for (unsigned i = 0; i != 16; ++i)
3066      ShufIdxs[i] = (i&3)+12;
3067    break;
3068  case OP_VSLDOI4:
3069    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3070  case OP_VSLDOI8:
3071    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3072  case OP_VSLDOI12:
3073    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3074  }
3075  SDOperand Ops[16];
3076  for (unsigned i = 0; i != 16; ++i)
3077    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3078
3079  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3080                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3081}
3082
3083/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3084/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3085/// return the code it can be lowered into.  Worst case, it can always be
3086/// lowered into a vperm.
3087SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3088                                                 SelectionDAG &DAG) {
3089  SDOperand V1 = Op.getOperand(0);
3090  SDOperand V2 = Op.getOperand(1);
3091  SDOperand PermMask = Op.getOperand(2);
3092
3093  // Cases that are handled by instructions that take permute immediates
3094  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3095  // selected by the instruction selector.
3096  if (V2.getOpcode() == ISD::UNDEF) {
3097    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3098        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3099        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3100        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3101        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3102        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3103        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3104        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3105        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3106        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3107        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3108        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3109      return Op;
3110    }
3111  }
3112
3113  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3114  // and produce a fixed permutation.  If any of these match, do not lower to
3115  // VPERM.
3116  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3117      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3118      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3119      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3120      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3121      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3122      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3123      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3124      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3125    return Op;
3126
3127  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3128  // perfect shuffle table to emit an optimal matching sequence.
3129  unsigned PFIndexes[4];
3130  bool isFourElementShuffle = true;
3131  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3132    unsigned EltNo = 8;   // Start out undef.
3133    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3134      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3135        continue;   // Undef, ignore it.
3136
3137      unsigned ByteSource =
3138        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3139      if ((ByteSource & 3) != j) {
3140        isFourElementShuffle = false;
3141        break;
3142      }
3143
3144      if (EltNo == 8) {
3145        EltNo = ByteSource/4;
3146      } else if (EltNo != ByteSource/4) {
3147        isFourElementShuffle = false;
3148        break;
3149      }
3150    }
3151    PFIndexes[i] = EltNo;
3152  }
3153
3154  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3155  // perfect shuffle vector to determine if it is cost effective to do this as
3156  // discrete instructions, or whether we should use a vperm.
3157  if (isFourElementShuffle) {
3158    // Compute the index in the perfect shuffle table.
3159    unsigned PFTableIndex =
3160      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3161
3162    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3163    unsigned Cost  = (PFEntry >> 30);
3164
3165    // Determining when to avoid vperm is tricky.  Many things affect the cost
3166    // of vperm, particularly how many times the perm mask needs to be computed.
3167    // For example, if the perm mask can be hoisted out of a loop or is already
3168    // used (perhaps because there are multiple permutes with the same shuffle
3169    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3170    // the loop requires an extra register.
3171    //
3172    // As a compromise, we only emit discrete instructions if the shuffle can be
3173    // generated in 3 or fewer operations.  When we have loop information
3174    // available, if this block is within a loop, we should avoid using vperm
3175    // for 3-operation perms and use a constant pool load instead.
3176    if (Cost < 3)
3177      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3178  }
3179
3180  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3181  // vector that will get spilled to the constant pool.
3182  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3183
3184  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3185  // that it is in input element units, not in bytes.  Convert now.
3186  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3187  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3188
3189  SmallVector<SDOperand, 16> ResultMask;
3190  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3191    unsigned SrcElt;
3192    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3193      SrcElt = 0;
3194    else
3195      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3196
3197    for (unsigned j = 0; j != BytesPerElement; ++j)
3198      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3199                                           MVT::i8));
3200  }
3201
3202  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3203                                    &ResultMask[0], ResultMask.size());
3204  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3205}
3206
3207/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3208/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3209/// information about the intrinsic.
3210static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3211                                  bool &isDot) {
3212  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3213  CompareOpc = -1;
3214  isDot = false;
3215  switch (IntrinsicID) {
3216  default: return false;
3217    // Comparison predicates.
3218  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3219  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3220  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3221  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3222  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3223  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3224  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3225  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3226  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3227  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3228  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3229  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3230  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3231
3232    // Normal Comparisons.
3233  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3234  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3235  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3236  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3237  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3238  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3239  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3240  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3241  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3242  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3243  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3244  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3245  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3246  }
3247  return true;
3248}
3249
3250/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3251/// lower, do it, otherwise return null.
3252SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3253                                                     SelectionDAG &DAG) {
3254  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3255  // opcode number of the comparison.
3256  int CompareOpc;
3257  bool isDot;
3258  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3259    return SDOperand();    // Don't custom lower most intrinsics.
3260
3261  // If this is a non-dot comparison, make the VCMP node and we are done.
3262  if (!isDot) {
3263    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3264                                Op.getOperand(1), Op.getOperand(2),
3265                                DAG.getConstant(CompareOpc, MVT::i32));
3266    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3267  }
3268
3269  // Create the PPCISD altivec 'dot' comparison node.
3270  SDOperand Ops[] = {
3271    Op.getOperand(2),  // LHS
3272    Op.getOperand(3),  // RHS
3273    DAG.getConstant(CompareOpc, MVT::i32)
3274  };
3275  std::vector<MVT::ValueType> VTs;
3276  VTs.push_back(Op.getOperand(2).getValueType());
3277  VTs.push_back(MVT::Flag);
3278  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3279
3280  // Now that we have the comparison, emit a copy from the CR to a GPR.
3281  // This is flagged to the above dot comparison.
3282  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3283                                DAG.getRegister(PPC::CR6, MVT::i32),
3284                                CompNode.getValue(1));
3285
3286  // Unpack the result based on how the target uses it.
3287  unsigned BitNo;   // Bit # of CR6.
3288  bool InvertBit;   // Invert result?
3289  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3290  default:  // Can't happen, don't crash on invalid number though.
3291  case 0:   // Return the value of the EQ bit of CR6.
3292    BitNo = 0; InvertBit = false;
3293    break;
3294  case 1:   // Return the inverted value of the EQ bit of CR6.
3295    BitNo = 0; InvertBit = true;
3296    break;
3297  case 2:   // Return the value of the LT bit of CR6.
3298    BitNo = 2; InvertBit = false;
3299    break;
3300  case 3:   // Return the inverted value of the LT bit of CR6.
3301    BitNo = 2; InvertBit = true;
3302    break;
3303  }
3304
3305  // Shift the bit into the low position.
3306  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3307                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3308  // Isolate the bit.
3309  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3310                      DAG.getConstant(1, MVT::i32));
3311
3312  // If we are supposed to, toggle the bit.
3313  if (InvertBit)
3314    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3315                        DAG.getConstant(1, MVT::i32));
3316  return Flags;
3317}
3318
3319SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3320                                                   SelectionDAG &DAG) {
3321  // Create a stack slot that is 16-byte aligned.
3322  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3323  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3324  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3325  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3326
3327  // Store the input value into Value#0 of the stack slot.
3328  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3329                                 Op.getOperand(0), FIdx, NULL, 0);
3330  // Load it out.
3331  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3332}
3333
3334SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3335  if (Op.getValueType() == MVT::v4i32) {
3336    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3337
3338    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3339    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3340
3341    SDOperand RHSSwap =   // = vrlw RHS, 16
3342      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3343
3344    // Shrinkify inputs to v8i16.
3345    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3346    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3347    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3348
3349    // Low parts multiplied together, generating 32-bit results (we ignore the
3350    // top parts).
3351    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3352                                        LHS, RHS, DAG, MVT::v4i32);
3353
3354    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3355                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3356    // Shift the high parts up 16 bits.
3357    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3358    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3359  } else if (Op.getValueType() == MVT::v8i16) {
3360    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3361
3362    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3363
3364    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3365                            LHS, RHS, Zero, DAG);
3366  } else if (Op.getValueType() == MVT::v16i8) {
3367    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3368
3369    // Multiply the even 8-bit parts, producing 16-bit sums.
3370    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3371                                           LHS, RHS, DAG, MVT::v8i16);
3372    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3373
3374    // Multiply the odd 8-bit parts, producing 16-bit sums.
3375    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3376                                          LHS, RHS, DAG, MVT::v8i16);
3377    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3378
3379    // Merge the results together.
3380    SDOperand Ops[16];
3381    for (unsigned i = 0; i != 8; ++i) {
3382      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3383      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3384    }
3385    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3386                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3387  } else {
3388    assert(0 && "Unknown mul to lower!");
3389    abort();
3390  }
3391}
3392
3393/// LowerOperation - Provide custom lowering hooks for some operations.
3394///
3395SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3396  switch (Op.getOpcode()) {
3397  default: assert(0 && "Wasn't expecting to be able to lower this!");
3398  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3399  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3400  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3401  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3402  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3403  case ISD::VASTART:
3404    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3405                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3406
3407  case ISD::VAARG:
3408    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3409                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3410
3411  case ISD::FORMAL_ARGUMENTS:
3412    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3413                                 VarArgsStackOffset, VarArgsNumGPR,
3414                                 VarArgsNumFPR, PPCSubTarget);
3415
3416  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3417                                                 getTargetMachine());
3418  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3419  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3420  case ISD::DYNAMIC_STACKALLOC:
3421    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3422
3423  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3424  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3425  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3426  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3427  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3428
3429  // Lower 64-bit shifts.
3430  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3431  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3432  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3433
3434  // Vector-related lowering.
3435  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3436  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3437  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3438  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3439  case ISD::MUL:                return LowerMUL(Op, DAG);
3440
3441  // Frame & Return address.
3442  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3443  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3444  }
3445  return SDOperand();
3446}
3447
3448SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3449  switch (N->getOpcode()) {
3450  default: assert(0 && "Wasn't expecting to be able to lower this!");
3451  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3452  }
3453}
3454
3455
3456//===----------------------------------------------------------------------===//
3457//  Other Lowering Code
3458//===----------------------------------------------------------------------===//
3459
3460MachineBasicBlock *
3461PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3462                                               MachineBasicBlock *BB) {
3463  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3464  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3465          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3466          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3467          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3468          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3469         "Unexpected instr type to insert");
3470
3471  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3472  // control-flow pattern.  The incoming instruction knows the destination vreg
3473  // to set, the condition code register to branch on, the true/false values to
3474  // select between, and a branch opcode to use.
3475  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3476  ilist<MachineBasicBlock>::iterator It = BB;
3477  ++It;
3478
3479  //  thisMBB:
3480  //  ...
3481  //   TrueVal = ...
3482  //   cmpTY ccX, r1, r2
3483  //   bCC copy1MBB
3484  //   fallthrough --> copy0MBB
3485  MachineBasicBlock *thisMBB = BB;
3486  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3487  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3488  unsigned SelectPred = MI->getOperand(4).getImm();
3489  BuildMI(BB, TII->get(PPC::BCC))
3490    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3491  MachineFunction *F = BB->getParent();
3492  F->getBasicBlockList().insert(It, copy0MBB);
3493  F->getBasicBlockList().insert(It, sinkMBB);
3494  // Update machine-CFG edges by first adding all successors of the current
3495  // block to the new block which will contain the Phi node for the select.
3496  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3497      e = BB->succ_end(); i != e; ++i)
3498    sinkMBB->addSuccessor(*i);
3499  // Next, remove all successors of the current block, and add the true
3500  // and fallthrough blocks as its successors.
3501  while(!BB->succ_empty())
3502    BB->removeSuccessor(BB->succ_begin());
3503  BB->addSuccessor(copy0MBB);
3504  BB->addSuccessor(sinkMBB);
3505
3506  //  copy0MBB:
3507  //   %FalseValue = ...
3508  //   # fallthrough to sinkMBB
3509  BB = copy0MBB;
3510
3511  // Update machine-CFG edges
3512  BB->addSuccessor(sinkMBB);
3513
3514  //  sinkMBB:
3515  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3516  //  ...
3517  BB = sinkMBB;
3518  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3519    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3520    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3521
3522  delete MI;   // The pseudo instruction is gone now.
3523  return BB;
3524}
3525
3526//===----------------------------------------------------------------------===//
3527// Target Optimization Hooks
3528//===----------------------------------------------------------------------===//
3529
3530SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3531                                               DAGCombinerInfo &DCI) const {
3532  TargetMachine &TM = getTargetMachine();
3533  SelectionDAG &DAG = DCI.DAG;
3534  switch (N->getOpcode()) {
3535  default: break;
3536  case PPCISD::SHL:
3537    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3538      if (C->getValue() == 0)   // 0 << V -> 0.
3539        return N->getOperand(0);
3540    }
3541    break;
3542  case PPCISD::SRL:
3543    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3544      if (C->getValue() == 0)   // 0 >>u V -> 0.
3545        return N->getOperand(0);
3546    }
3547    break;
3548  case PPCISD::SRA:
3549    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3550      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3551          C->isAllOnesValue())    // -1 >>s V -> -1.
3552        return N->getOperand(0);
3553    }
3554    break;
3555
3556  case ISD::SINT_TO_FP:
3557    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3558      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3559        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3560        // We allow the src/dst to be either f32/f64, but the intermediate
3561        // type must be i64.
3562        if (N->getOperand(0).getValueType() == MVT::i64 &&
3563            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3564          SDOperand Val = N->getOperand(0).getOperand(0);
3565          if (Val.getValueType() == MVT::f32) {
3566            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3567            DCI.AddToWorklist(Val.Val);
3568          }
3569
3570          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3571          DCI.AddToWorklist(Val.Val);
3572          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3573          DCI.AddToWorklist(Val.Val);
3574          if (N->getValueType(0) == MVT::f32) {
3575            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3576                              DAG.getIntPtrConstant(0));
3577            DCI.AddToWorklist(Val.Val);
3578          }
3579          return Val;
3580        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3581          // If the intermediate type is i32, we can avoid the load/store here
3582          // too.
3583        }
3584      }
3585    }
3586    break;
3587  case ISD::STORE:
3588    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3589    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3590        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3591        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3592        N->getOperand(1).getValueType() == MVT::i32 &&
3593        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3594      SDOperand Val = N->getOperand(1).getOperand(0);
3595      if (Val.getValueType() == MVT::f32) {
3596        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3597        DCI.AddToWorklist(Val.Val);
3598      }
3599      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3600      DCI.AddToWorklist(Val.Val);
3601
3602      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3603                        N->getOperand(2), N->getOperand(3));
3604      DCI.AddToWorklist(Val.Val);
3605      return Val;
3606    }
3607
3608    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3609    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3610        N->getOperand(1).Val->hasOneUse() &&
3611        (N->getOperand(1).getValueType() == MVT::i32 ||
3612         N->getOperand(1).getValueType() == MVT::i16)) {
3613      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3614      // Do an any-extend to 32-bits if this is a half-word input.
3615      if (BSwapOp.getValueType() == MVT::i16)
3616        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3617
3618      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3619                         N->getOperand(2), N->getOperand(3),
3620                         DAG.getValueType(N->getOperand(1).getValueType()));
3621    }
3622    break;
3623  case ISD::BSWAP:
3624    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3625    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3626        N->getOperand(0).hasOneUse() &&
3627        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3628      SDOperand Load = N->getOperand(0);
3629      LoadSDNode *LD = cast<LoadSDNode>(Load);
3630      // Create the byte-swapping load.
3631      std::vector<MVT::ValueType> VTs;
3632      VTs.push_back(MVT::i32);
3633      VTs.push_back(MVT::Other);
3634      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3635      SDOperand Ops[] = {
3636        LD->getChain(),    // Chain
3637        LD->getBasePtr(),  // Ptr
3638        MO,                // MemOperand
3639        DAG.getValueType(N->getValueType(0)) // VT
3640      };
3641      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3642
3643      // If this is an i16 load, insert the truncate.
3644      SDOperand ResVal = BSLoad;
3645      if (N->getValueType(0) == MVT::i16)
3646        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3647
3648      // First, combine the bswap away.  This makes the value produced by the
3649      // load dead.
3650      DCI.CombineTo(N, ResVal);
3651
3652      // Next, combine the load away, we give it a bogus result value but a real
3653      // chain result.  The result value is dead because the bswap is dead.
3654      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3655
3656      // Return N so it doesn't get rechecked!
3657      return SDOperand(N, 0);
3658    }
3659
3660    break;
3661  case PPCISD::VCMP: {
3662    // If a VCMPo node already exists with exactly the same operands as this
3663    // node, use its result instead of this node (VCMPo computes both a CR6 and
3664    // a normal output).
3665    //
3666    if (!N->getOperand(0).hasOneUse() &&
3667        !N->getOperand(1).hasOneUse() &&
3668        !N->getOperand(2).hasOneUse()) {
3669
3670      // Scan all of the users of the LHS, looking for VCMPo's that match.
3671      SDNode *VCMPoNode = 0;
3672
3673      SDNode *LHSN = N->getOperand(0).Val;
3674      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3675           UI != E; ++UI)
3676        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3677            (*UI)->getOperand(1) == N->getOperand(1) &&
3678            (*UI)->getOperand(2) == N->getOperand(2) &&
3679            (*UI)->getOperand(0) == N->getOperand(0)) {
3680          VCMPoNode = *UI;
3681          break;
3682        }
3683
3684      // If there is no VCMPo node, or if the flag value has a single use, don't
3685      // transform this.
3686      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3687        break;
3688
3689      // Look at the (necessarily single) use of the flag value.  If it has a
3690      // chain, this transformation is more complex.  Note that multiple things
3691      // could use the value result, which we should ignore.
3692      SDNode *FlagUser = 0;
3693      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3694           FlagUser == 0; ++UI) {
3695        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3696        SDNode *User = *UI;
3697        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3698          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3699            FlagUser = User;
3700            break;
3701          }
3702        }
3703      }
3704
3705      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3706      // give up for right now.
3707      if (FlagUser->getOpcode() == PPCISD::MFCR)
3708        return SDOperand(VCMPoNode, 0);
3709    }
3710    break;
3711  }
3712  case ISD::BR_CC: {
3713    // If this is a branch on an altivec predicate comparison, lower this so
3714    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3715    // lowering is done pre-legalize, because the legalizer lowers the predicate
3716    // compare down to code that is difficult to reassemble.
3717    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3718    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3719    int CompareOpc;
3720    bool isDot;
3721
3722    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3723        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3724        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3725      assert(isDot && "Can't compare against a vector result!");
3726
3727      // If this is a comparison against something other than 0/1, then we know
3728      // that the condition is never/always true.
3729      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3730      if (Val != 0 && Val != 1) {
3731        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3732          return N->getOperand(0);
3733        // Always !=, turn it into an unconditional branch.
3734        return DAG.getNode(ISD::BR, MVT::Other,
3735                           N->getOperand(0), N->getOperand(4));
3736      }
3737
3738      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3739
3740      // Create the PPCISD altivec 'dot' comparison node.
3741      std::vector<MVT::ValueType> VTs;
3742      SDOperand Ops[] = {
3743        LHS.getOperand(2),  // LHS of compare
3744        LHS.getOperand(3),  // RHS of compare
3745        DAG.getConstant(CompareOpc, MVT::i32)
3746      };
3747      VTs.push_back(LHS.getOperand(2).getValueType());
3748      VTs.push_back(MVT::Flag);
3749      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3750
3751      // Unpack the result based on how the target uses it.
3752      PPC::Predicate CompOpc;
3753      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3754      default:  // Can't happen, don't crash on invalid number though.
3755      case 0:   // Branch on the value of the EQ bit of CR6.
3756        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3757        break;
3758      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3759        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3760        break;
3761      case 2:   // Branch on the value of the LT bit of CR6.
3762        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3763        break;
3764      case 3:   // Branch on the inverted value of the LT bit of CR6.
3765        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3766        break;
3767      }
3768
3769      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3770                         DAG.getConstant(CompOpc, MVT::i32),
3771                         DAG.getRegister(PPC::CR6, MVT::i32),
3772                         N->getOperand(4), CompNode.getValue(1));
3773    }
3774    break;
3775  }
3776  }
3777
3778  return SDOperand();
3779}
3780
3781//===----------------------------------------------------------------------===//
3782// Inline Assembly Support
3783//===----------------------------------------------------------------------===//
3784
3785void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3786                                                       const APInt &Mask,
3787                                                       APInt &KnownZero,
3788                                                       APInt &KnownOne,
3789                                                       const SelectionDAG &DAG,
3790                                                       unsigned Depth) const {
3791  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3792  switch (Op.getOpcode()) {
3793  default: break;
3794  case PPCISD::LBRX: {
3795    // lhbrx is known to have the top bits cleared out.
3796    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3797      KnownZero = 0xFFFF0000;
3798    break;
3799  }
3800  case ISD::INTRINSIC_WO_CHAIN: {
3801    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3802    default: break;
3803    case Intrinsic::ppc_altivec_vcmpbfp_p:
3804    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3805    case Intrinsic::ppc_altivec_vcmpequb_p:
3806    case Intrinsic::ppc_altivec_vcmpequh_p:
3807    case Intrinsic::ppc_altivec_vcmpequw_p:
3808    case Intrinsic::ppc_altivec_vcmpgefp_p:
3809    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3810    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3811    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3812    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3813    case Intrinsic::ppc_altivec_vcmpgtub_p:
3814    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3815    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3816      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3817      break;
3818    }
3819  }
3820  }
3821}
3822
3823
3824/// getConstraintType - Given a constraint, return the type of
3825/// constraint it is for this target.
3826PPCTargetLowering::ConstraintType
3827PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3828  if (Constraint.size() == 1) {
3829    switch (Constraint[0]) {
3830    default: break;
3831    case 'b':
3832    case 'r':
3833    case 'f':
3834    case 'v':
3835    case 'y':
3836      return C_RegisterClass;
3837    }
3838  }
3839  return TargetLowering::getConstraintType(Constraint);
3840}
3841
3842std::pair<unsigned, const TargetRegisterClass*>
3843PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3844                                                MVT::ValueType VT) const {
3845  if (Constraint.size() == 1) {
3846    // GCC RS6000 Constraint Letters
3847    switch (Constraint[0]) {
3848    case 'b':   // R1-R31
3849    case 'r':   // R0-R31
3850      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3851        return std::make_pair(0U, PPC::G8RCRegisterClass);
3852      return std::make_pair(0U, PPC::GPRCRegisterClass);
3853    case 'f':
3854      if (VT == MVT::f32)
3855        return std::make_pair(0U, PPC::F4RCRegisterClass);
3856      else if (VT == MVT::f64)
3857        return std::make_pair(0U, PPC::F8RCRegisterClass);
3858      break;
3859    case 'v':
3860      return std::make_pair(0U, PPC::VRRCRegisterClass);
3861    case 'y':   // crrc
3862      return std::make_pair(0U, PPC::CRRCRegisterClass);
3863    }
3864  }
3865
3866  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3867}
3868
3869
3870/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3871/// vector.  If it is invalid, don't add anything to Ops.
3872void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3873                                                     std::vector<SDOperand>&Ops,
3874                                                     SelectionDAG &DAG) {
3875  SDOperand Result(0,0);
3876  switch (Letter) {
3877  default: break;
3878  case 'I':
3879  case 'J':
3880  case 'K':
3881  case 'L':
3882  case 'M':
3883  case 'N':
3884  case 'O':
3885  case 'P': {
3886    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3887    if (!CST) return; // Must be an immediate to match.
3888    unsigned Value = CST->getValue();
3889    switch (Letter) {
3890    default: assert(0 && "Unknown constraint letter!");
3891    case 'I':  // "I" is a signed 16-bit constant.
3892      if ((short)Value == (int)Value)
3893        Result = DAG.getTargetConstant(Value, Op.getValueType());
3894      break;
3895    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3896    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3897      if ((short)Value == 0)
3898        Result = DAG.getTargetConstant(Value, Op.getValueType());
3899      break;
3900    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3901      if ((Value >> 16) == 0)
3902        Result = DAG.getTargetConstant(Value, Op.getValueType());
3903      break;
3904    case 'M':  // "M" is a constant that is greater than 31.
3905      if (Value > 31)
3906        Result = DAG.getTargetConstant(Value, Op.getValueType());
3907      break;
3908    case 'N':  // "N" is a positive constant that is an exact power of two.
3909      if ((int)Value > 0 && isPowerOf2_32(Value))
3910        Result = DAG.getTargetConstant(Value, Op.getValueType());
3911      break;
3912    case 'O':  // "O" is the constant zero.
3913      if (Value == 0)
3914        Result = DAG.getTargetConstant(Value, Op.getValueType());
3915      break;
3916    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3917      if ((short)-Value == (int)-Value)
3918        Result = DAG.getTargetConstant(Value, Op.getValueType());
3919      break;
3920    }
3921    break;
3922  }
3923  }
3924
3925  if (Result.Val) {
3926    Ops.push_back(Result);
3927    return;
3928  }
3929
3930  // Handle standard constraint letters.
3931  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3932}
3933
3934// isLegalAddressingMode - Return true if the addressing mode represented
3935// by AM is legal for this target, for a load/store of the specified type.
3936bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3937                                              const Type *Ty) const {
3938  // FIXME: PPC does not allow r+i addressing modes for vectors!
3939
3940  // PPC allows a sign-extended 16-bit immediate field.
3941  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3942    return false;
3943
3944  // No global is ever allowed as a base.
3945  if (AM.BaseGV)
3946    return false;
3947
3948  // PPC only support r+r,
3949  switch (AM.Scale) {
3950  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3951    break;
3952  case 1:
3953    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3954      return false;
3955    // Otherwise we have r+r or r+i.
3956    break;
3957  case 2:
3958    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3959      return false;
3960    // Allow 2*r as r+r.
3961    break;
3962  default:
3963    // No other scales are supported.
3964    return false;
3965  }
3966
3967  return true;
3968}
3969
3970/// isLegalAddressImmediate - Return true if the integer value can be used
3971/// as the offset of the target addressing mode for load / store of the
3972/// given type.
3973bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3974  // PPC allows a sign-extended 16-bit immediate field.
3975  return (V > -(1 << 16) && V < (1 << 16)-1);
3976}
3977
3978bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3979  return false;
3980}
3981
3982SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3983  // Depths > 0 not supported yet!
3984  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3985    return SDOperand();
3986
3987  MachineFunction &MF = DAG.getMachineFunction();
3988  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3989  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3990  if (RAIdx == 0) {
3991    bool isPPC64 = PPCSubTarget.isPPC64();
3992    int Offset =
3993      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3994
3995    // Set up a frame object for the return address.
3996    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3997
3998    // Remember it for next time.
3999    FuncInfo->setReturnAddrSaveIndex(RAIdx);
4000
4001    // Make sure the function really does not optimize away the store of the RA
4002    // to the stack.
4003    FuncInfo->setLRStoreRequired();
4004  }
4005
4006  // Just load the return address off the stack.
4007  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
4008  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4009}
4010
4011SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4012  // Depths > 0 not supported yet!
4013  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4014    return SDOperand();
4015
4016  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4017  bool isPPC64 = PtrVT == MVT::i64;
4018
4019  MachineFunction &MF = DAG.getMachineFunction();
4020  MachineFrameInfo *MFI = MF.getFrameInfo();
4021  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4022                  && MFI->getStackSize();
4023
4024  if (isPPC64)
4025    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4026      MVT::i64);
4027  else
4028    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4029      MVT::i32);
4030}
4031