PPCISelLowering.cpp revision 86098bd6a63d2cdf0c9be9ef3151bd2728281fd7
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no SREM/UREM instructions
81  setOperationAction(ISD::SREM, MVT::i32, Expand);
82  setOperationAction(ISD::UREM, MVT::i32, Expand);
83  setOperationAction(ISD::SREM, MVT::i64, Expand);
84  setOperationAction(ISD::UREM, MVT::i64, Expand);
85
86  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
87  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
88  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
89  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
90  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
91  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
92  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
93  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
94  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
95
96  // We don't support sin/cos/sqrt/fmod/pow
97  setOperationAction(ISD::FSIN , MVT::f64, Expand);
98  setOperationAction(ISD::FCOS , MVT::f64, Expand);
99  setOperationAction(ISD::FREM , MVT::f64, Expand);
100  setOperationAction(ISD::FPOW , MVT::f64, Expand);
101  setOperationAction(ISD::FSIN , MVT::f32, Expand);
102  setOperationAction(ISD::FCOS , MVT::f32, Expand);
103  setOperationAction(ISD::FREM , MVT::f32, Expand);
104  setOperationAction(ISD::FPOW , MVT::f32, Expand);
105
106  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
107
108  // If we're enabling GP optimizations, use hardware square root
109  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
110    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
111    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
112  }
113
114  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
115  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
116
117  // PowerPC does not have BSWAP, CTPOP or CTTZ
118  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
119  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
120  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
121  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
122  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
123  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
124
125  // PowerPC does not have ROTR
126  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
127  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
128
129  // PowerPC does not have Select
130  setOperationAction(ISD::SELECT, MVT::i32, Expand);
131  setOperationAction(ISD::SELECT, MVT::i64, Expand);
132  setOperationAction(ISD::SELECT, MVT::f32, Expand);
133  setOperationAction(ISD::SELECT, MVT::f64, Expand);
134
135  // PowerPC wants to turn select_cc of FP into fsel when possible.
136  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
138
139  // PowerPC wants to optimize integer setcc a bit
140  setOperationAction(ISD::SETCC, MVT::i32, Custom);
141
142  // PowerPC does not have BRCOND which requires SetCC
143  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
144
145  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
146
147  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
148  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
149
150  // PowerPC does not have [U|S]INT_TO_FP
151  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
152  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
153
154  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
156  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
157  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
158
159  // We cannot sextinreg(i1).  Expand to shifts.
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
161
162  // Support label based line numbers.
163  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
164  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
165
166  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
167  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
168  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
169  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
170
171
172  // We want to legalize GlobalAddress and ConstantPool nodes into the
173  // appropriate instructions to materialize the address.
174  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
176  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
177  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
178  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
182
183  // RET must be custom lowered, to meet ABI requirements.
184  setOperationAction(ISD::RET               , MVT::Other, Custom);
185
186  // TRAP is legal.
187  setOperationAction(ISD::TRAP, MVT::Other, Legal);
188
189  // TRAMPOLINE is custom lowered.
190  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
191
192  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
194
195  // VAARG is custom lowered with ELF 32 ABI
196  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197    setOperationAction(ISD::VAARG, MVT::Other, Custom);
198  else
199    setOperationAction(ISD::VAARG, MVT::Other, Expand);
200
201  // Use the default implementation.
202  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
203  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
204  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
205  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
208
209  // We want to custom lower some of our intrinsics.
210  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211
212  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
213    // They also have instructions for converting between i64 and fp.
214    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
215    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
216    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
217    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
218    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
219
220    // FIXME: disable this lowered code.  This generates 64-bit register values,
221    // and we don't model the fact that the top part is clobbered by calls.  We
222    // need to flag these together so that the value isn't live across a call.
223    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
224
225    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
226    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
227  } else {
228    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
229    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
230  }
231
232  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
233    // 64-bit PowerPC implementations can support i64 types directly
234    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
235    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
236    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
237    // 64-bit PowerPC wants to expand i128 shifts itself.
238    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
239    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
240    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
241  } else {
242    // 32-bit PowerPC wants to expand i64 shifts itself.
243    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
244    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
245    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
246  }
247
248  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
249    // First set operation action for all vector types to expand. Then we
250    // will selectively turn on ones that can be effectively codegen'd.
251    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
252         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
253      MVT VT = (MVT::SimpleValueType)i;
254
255      // add/sub are legal for all supported vector VT's.
256      setOperationAction(ISD::ADD , VT, Legal);
257      setOperationAction(ISD::SUB , VT, Legal);
258
259      // We promote all shuffles to v16i8.
260      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
261      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
262
263      // We promote all non-typed operations to v4i32.
264      setOperationAction(ISD::AND   , VT, Promote);
265      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
266      setOperationAction(ISD::OR    , VT, Promote);
267      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
268      setOperationAction(ISD::XOR   , VT, Promote);
269      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
270      setOperationAction(ISD::LOAD  , VT, Promote);
271      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
272      setOperationAction(ISD::SELECT, VT, Promote);
273      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
274      setOperationAction(ISD::STORE, VT, Promote);
275      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
276
277      // No other operations are legal.
278      setOperationAction(ISD::MUL , VT, Expand);
279      setOperationAction(ISD::SDIV, VT, Expand);
280      setOperationAction(ISD::SREM, VT, Expand);
281      setOperationAction(ISD::UDIV, VT, Expand);
282      setOperationAction(ISD::UREM, VT, Expand);
283      setOperationAction(ISD::FDIV, VT, Expand);
284      setOperationAction(ISD::FNEG, VT, Expand);
285      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
286      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
287      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
288      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
289      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
290      setOperationAction(ISD::UDIVREM, VT, Expand);
291      setOperationAction(ISD::SDIVREM, VT, Expand);
292      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
293      setOperationAction(ISD::FPOW, VT, Expand);
294      setOperationAction(ISD::CTPOP, VT, Expand);
295      setOperationAction(ISD::CTLZ, VT, Expand);
296      setOperationAction(ISD::CTTZ, VT, Expand);
297    }
298
299    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
300    // with merges, splats, etc.
301    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
302
303    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
304    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
305    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
306    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
307    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
308    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
309
310    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
311    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
312    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
313    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
314
315    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
316    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
317    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
318    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
319
320    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
321    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
322
323    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
324    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
325    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
326    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
327  }
328
329  setShiftAmountType(MVT::i32);
330  setSetCCResultContents(ZeroOrOneSetCCResult);
331
332  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
333    setStackPointerRegisterToSaveRestore(PPC::X1);
334    setExceptionPointerRegister(PPC::X3);
335    setExceptionSelectorRegister(PPC::X4);
336  } else {
337    setStackPointerRegisterToSaveRestore(PPC::R1);
338    setExceptionPointerRegister(PPC::R3);
339    setExceptionSelectorRegister(PPC::R4);
340  }
341
342  // We have target-specific dag combine patterns for the following nodes:
343  setTargetDAGCombine(ISD::SINT_TO_FP);
344  setTargetDAGCombine(ISD::STORE);
345  setTargetDAGCombine(ISD::BR_CC);
346  setTargetDAGCombine(ISD::BSWAP);
347
348  // Darwin long double math library functions have $LDBL128 appended.
349  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
350    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
351    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
352    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
353    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
354    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
355    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
356    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
357    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
358    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
359    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
360  }
361
362  computeRegisterProperties();
363}
364
365/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
366/// function arguments in the caller parameter area.
367unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
368  TargetMachine &TM = getTargetMachine();
369  // Darwin passes everything on 4 byte boundary.
370  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
371    return 4;
372  // FIXME Elf TBD
373  return 4;
374}
375
376const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
377  switch (Opcode) {
378  default: return 0;
379  case PPCISD::FSEL:            return "PPCISD::FSEL";
380  case PPCISD::FCFID:           return "PPCISD::FCFID";
381  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
382  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
383  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
384  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
385  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
386  case PPCISD::VPERM:           return "PPCISD::VPERM";
387  case PPCISD::Hi:              return "PPCISD::Hi";
388  case PPCISD::Lo:              return "PPCISD::Lo";
389  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
390  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
391  case PPCISD::SRL:             return "PPCISD::SRL";
392  case PPCISD::SRA:             return "PPCISD::SRA";
393  case PPCISD::SHL:             return "PPCISD::SHL";
394  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
395  case PPCISD::STD_32:          return "PPCISD::STD_32";
396  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
397  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
398  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
399  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
400  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
401  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
402  case PPCISD::MFCR:            return "PPCISD::MFCR";
403  case PPCISD::VCMP:            return "PPCISD::VCMP";
404  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
405  case PPCISD::LBRX:            return "PPCISD::LBRX";
406  case PPCISD::STBRX:           return "PPCISD::STBRX";
407  case PPCISD::LARX:            return "PPCISD::LARX";
408  case PPCISD::STCX:            return "PPCISD::STCX";
409  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
410  case PPCISD::MFFS:            return "PPCISD::MFFS";
411  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
412  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
413  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
414  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
415  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
416  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
417  }
418}
419
420
421MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
422  return MVT::i32;
423}
424
425
426//===----------------------------------------------------------------------===//
427// Node matching predicates, for use by the tblgen matching code.
428//===----------------------------------------------------------------------===//
429
430/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
431static bool isFloatingPointZero(SDValue Op) {
432  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
433    return CFP->getValueAPF().isZero();
434  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
435    // Maybe this has already been legalized into the constant pool?
436    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
437      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
438        return CFP->getValueAPF().isZero();
439  }
440  return false;
441}
442
443/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
444/// true if Op is undef or if it matches the specified value.
445static bool isConstantOrUndef(SDValue Op, unsigned Val) {
446  return Op.getOpcode() == ISD::UNDEF ||
447         cast<ConstantSDNode>(Op)->getZExtValue() == Val;
448}
449
450/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
451/// VPKUHUM instruction.
452bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
453  if (!isUnary) {
454    for (unsigned i = 0; i != 16; ++i)
455      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
456        return false;
457  } else {
458    for (unsigned i = 0; i != 8; ++i)
459      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
460          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
461        return false;
462  }
463  return true;
464}
465
466/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
467/// VPKUWUM instruction.
468bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
469  if (!isUnary) {
470    for (unsigned i = 0; i != 16; i += 2)
471      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
472          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
473        return false;
474  } else {
475    for (unsigned i = 0; i != 8; i += 2)
476      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
477          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
478          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
479          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
480        return false;
481  }
482  return true;
483}
484
485/// isVMerge - Common function, used to match vmrg* shuffles.
486///
487static bool isVMerge(SDNode *N, unsigned UnitSize,
488                     unsigned LHSStart, unsigned RHSStart) {
489  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
490         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
491  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
492         "Unsupported merge size!");
493
494  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
495    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
496      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
497                             LHSStart+j+i*UnitSize) ||
498          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
499                             RHSStart+j+i*UnitSize))
500        return false;
501    }
502      return true;
503}
504
505/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
506/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
507bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
508  if (!isUnary)
509    return isVMerge(N, UnitSize, 8, 24);
510  return isVMerge(N, UnitSize, 8, 8);
511}
512
513/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
514/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
515bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
516  if (!isUnary)
517    return isVMerge(N, UnitSize, 0, 16);
518  return isVMerge(N, UnitSize, 0, 0);
519}
520
521
522/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
523/// amount, otherwise return -1.
524int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
525  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
526         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
527  // Find the first non-undef value in the shuffle mask.
528  unsigned i;
529  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
530    /*search*/;
531
532  if (i == 16) return -1;  // all undef.
533
534  // Otherwise, check to see if the rest of the elements are consequtively
535  // numbered from this value.
536  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getZExtValue();
537  if (ShiftAmt < i) return -1;
538  ShiftAmt -= i;
539
540  if (!isUnary) {
541    // Check the rest of the elements to see if they are consequtive.
542    for (++i; i != 16; ++i)
543      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
544        return -1;
545  } else {
546    // Check the rest of the elements to see if they are consequtive.
547    for (++i; i != 16; ++i)
548      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
549        return -1;
550  }
551
552  return ShiftAmt;
553}
554
555/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
556/// specifies a splat of a single element that is suitable for input to
557/// VSPLTB/VSPLTH/VSPLTW.
558bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
559  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
560         N->getNumOperands() == 16 &&
561         (EltSize == 1 || EltSize == 2 || EltSize == 4));
562
563  // This is a splat operation if each element of the permute is the same, and
564  // if the value doesn't reference the second vector.
565  unsigned ElementBase = 0;
566  SDValue Elt = N->getOperand(0);
567  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
568    ElementBase = EltV->getZExtValue();
569  else
570    return false;   // FIXME: Handle UNDEF elements too!
571
572  if (cast<ConstantSDNode>(Elt)->getZExtValue() >= 16)
573    return false;
574
575  // Check that they are consequtive.
576  for (unsigned i = 1; i != EltSize; ++i) {
577    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
578        cast<ConstantSDNode>(N->getOperand(i))->getZExtValue() != i+ElementBase)
579      return false;
580  }
581
582  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
583  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
584    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
585    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
586           "Invalid VECTOR_SHUFFLE mask!");
587    for (unsigned j = 0; j != EltSize; ++j)
588      if (N->getOperand(i+j) != N->getOperand(j))
589        return false;
590  }
591
592  return true;
593}
594
595/// isAllNegativeZeroVector - Returns true if all elements of build_vector
596/// are -0.0.
597bool PPC::isAllNegativeZeroVector(SDNode *N) {
598  assert(N->getOpcode() == ISD::BUILD_VECTOR);
599  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
600    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
601      return CFP->getValueAPF().isNegZero();
602  return false;
603}
604
605/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
606/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
607unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
608  assert(isSplatShuffleMask(N, EltSize));
609  return cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() / EltSize;
610}
611
612/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
613/// by using a vspltis[bhw] instruction of the specified element size, return
614/// the constant being splatted.  The ByteSize field indicates the number of
615/// bytes of each element [124] -> [bhw].
616SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
617  SDValue OpVal(0, 0);
618
619  // If ByteSize of the splat is bigger than the element size of the
620  // build_vector, then we have a case where we are checking for a splat where
621  // multiple elements of the buildvector are folded together into a single
622  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
623  unsigned EltSize = 16/N->getNumOperands();
624  if (EltSize < ByteSize) {
625    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
626    SDValue UniquedVals[4];
627    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
628
629    // See if all of the elements in the buildvector agree across.
630    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
631      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
632      // If the element isn't a constant, bail fully out.
633      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
634
635
636      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
637        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
638      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
639        return SDValue();  // no match.
640    }
641
642    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
643    // either constant or undef values that are identical for each chunk.  See
644    // if these chunks can form into a larger vspltis*.
645
646    // Check to see if all of the leading entries are either 0 or -1.  If
647    // neither, then this won't fit into the immediate field.
648    bool LeadingZero = true;
649    bool LeadingOnes = true;
650    for (unsigned i = 0; i != Multiple-1; ++i) {
651      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
652
653      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
654      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
655    }
656    // Finally, check the least significant entry.
657    if (LeadingZero) {
658      if (UniquedVals[Multiple-1].getNode() == 0)
659        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
660      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
661      if (Val < 16)
662        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
663    }
664    if (LeadingOnes) {
665      if (UniquedVals[Multiple-1].getNode() == 0)
666        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
667      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
668      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
669        return DAG.getTargetConstant(Val, MVT::i32);
670    }
671
672    return SDValue();
673  }
674
675  // Check to see if this buildvec has a single non-undef value in its elements.
676  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
677    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
678    if (OpVal.getNode() == 0)
679      OpVal = N->getOperand(i);
680    else if (OpVal != N->getOperand(i))
681      return SDValue();
682  }
683
684  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
685
686  unsigned ValSizeInBytes = 0;
687  uint64_t Value = 0;
688  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
689    Value = CN->getZExtValue();
690    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
691  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
692    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
693    Value = FloatToBits(CN->getValueAPF().convertToFloat());
694    ValSizeInBytes = 4;
695  }
696
697  // If the splat value is larger than the element value, then we can never do
698  // this splat.  The only case that we could fit the replicated bits into our
699  // immediate field for would be zero, and we prefer to use vxor for it.
700  if (ValSizeInBytes < ByteSize) return SDValue();
701
702  // If the element value is larger than the splat value, cut it in half and
703  // check to see if the two halves are equal.  Continue doing this until we
704  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
705  while (ValSizeInBytes > ByteSize) {
706    ValSizeInBytes >>= 1;
707
708    // If the top half equals the bottom half, we're still ok.
709    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
710         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
711      return SDValue();
712  }
713
714  // Properly sign extend the value.
715  int ShAmt = (4-ByteSize)*8;
716  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
717
718  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
719  if (MaskVal == 0) return SDValue();
720
721  // Finally, if this value fits in a 5 bit sext field, return it
722  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
723    return DAG.getTargetConstant(MaskVal, MVT::i32);
724  return SDValue();
725}
726
727//===----------------------------------------------------------------------===//
728//  Addressing Mode Selection
729//===----------------------------------------------------------------------===//
730
731/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
732/// or 64-bit immediate, and if the value can be accurately represented as a
733/// sign extension from a 16-bit value.  If so, this returns true and the
734/// immediate.
735static bool isIntS16Immediate(SDNode *N, short &Imm) {
736  if (N->getOpcode() != ISD::Constant)
737    return false;
738
739  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
740  if (N->getValueType(0) == MVT::i32)
741    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
742  else
743    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
744}
745static bool isIntS16Immediate(SDValue Op, short &Imm) {
746  return isIntS16Immediate(Op.getNode(), Imm);
747}
748
749
750/// SelectAddressRegReg - Given the specified addressed, check to see if it
751/// can be represented as an indexed [r+r] operation.  Returns false if it
752/// can be more efficiently represented with [r+imm].
753bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
754                                            SDValue &Index,
755                                            SelectionDAG &DAG) {
756  short imm = 0;
757  if (N.getOpcode() == ISD::ADD) {
758    if (isIntS16Immediate(N.getOperand(1), imm))
759      return false;    // r+i
760    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
761      return false;    // r+i
762
763    Base = N.getOperand(0);
764    Index = N.getOperand(1);
765    return true;
766  } else if (N.getOpcode() == ISD::OR) {
767    if (isIntS16Immediate(N.getOperand(1), imm))
768      return false;    // r+i can fold it if we can.
769
770    // If this is an or of disjoint bitfields, we can codegen this as an add
771    // (for better address arithmetic) if the LHS and RHS of the OR are provably
772    // disjoint.
773    APInt LHSKnownZero, LHSKnownOne;
774    APInt RHSKnownZero, RHSKnownOne;
775    DAG.ComputeMaskedBits(N.getOperand(0),
776                          APInt::getAllOnesValue(N.getOperand(0)
777                            .getValueSizeInBits()),
778                          LHSKnownZero, LHSKnownOne);
779
780    if (LHSKnownZero.getBoolValue()) {
781      DAG.ComputeMaskedBits(N.getOperand(1),
782                            APInt::getAllOnesValue(N.getOperand(1)
783                              .getValueSizeInBits()),
784                            RHSKnownZero, RHSKnownOne);
785      // If all of the bits are known zero on the LHS or RHS, the add won't
786      // carry.
787      if (~(LHSKnownZero | RHSKnownZero) == 0) {
788        Base = N.getOperand(0);
789        Index = N.getOperand(1);
790        return true;
791      }
792    }
793  }
794
795  return false;
796}
797
798/// Returns true if the address N can be represented by a base register plus
799/// a signed 16-bit displacement [r+imm], and if it is not better
800/// represented as reg+reg.
801bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
802                                            SDValue &Base, SelectionDAG &DAG){
803  // If this can be more profitably realized as r+r, fail.
804  if (SelectAddressRegReg(N, Disp, Base, DAG))
805    return false;
806
807  if (N.getOpcode() == ISD::ADD) {
808    short imm = 0;
809    if (isIntS16Immediate(N.getOperand(1), imm)) {
810      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
811      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
812        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
813      } else {
814        Base = N.getOperand(0);
815      }
816      return true; // [r+i]
817    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
818      // Match LOAD (ADD (X, Lo(G))).
819     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
820             && "Cannot handle constant offsets yet!");
821      Disp = N.getOperand(1).getOperand(0);  // The global address.
822      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
823             Disp.getOpcode() == ISD::TargetConstantPool ||
824             Disp.getOpcode() == ISD::TargetJumpTable);
825      Base = N.getOperand(0);
826      return true;  // [&g+r]
827    }
828  } else if (N.getOpcode() == ISD::OR) {
829    short imm = 0;
830    if (isIntS16Immediate(N.getOperand(1), imm)) {
831      // If this is an or of disjoint bitfields, we can codegen this as an add
832      // (for better address arithmetic) if the LHS and RHS of the OR are
833      // provably disjoint.
834      APInt LHSKnownZero, LHSKnownOne;
835      DAG.ComputeMaskedBits(N.getOperand(0),
836                            APInt::getAllOnesValue(N.getOperand(0)
837                                                   .getValueSizeInBits()),
838                            LHSKnownZero, LHSKnownOne);
839
840      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
841        // If all of the bits are known zero on the LHS or RHS, the add won't
842        // carry.
843        Base = N.getOperand(0);
844        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
845        return true;
846      }
847    }
848  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
849    // Loading from a constant address.
850
851    // If this address fits entirely in a 16-bit sext immediate field, codegen
852    // this as "d, 0"
853    short Imm;
854    if (isIntS16Immediate(CN, Imm)) {
855      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
856      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
857      return true;
858    }
859
860    // Handle 32-bit sext immediates with LIS + addr mode.
861    if (CN->getValueType(0) == MVT::i32 ||
862        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
863      int Addr = (int)CN->getZExtValue();
864
865      // Otherwise, break this down into an LIS + disp.
866      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
867
868      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
869      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
870      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
871      return true;
872    }
873  }
874
875  Disp = DAG.getTargetConstant(0, getPointerTy());
876  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
877    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
878  else
879    Base = N;
880  return true;      // [r+0]
881}
882
883/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
884/// represented as an indexed [r+r] operation.
885bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
886                                                SDValue &Index,
887                                                SelectionDAG &DAG) {
888  // Check to see if we can easily represent this as an [r+r] address.  This
889  // will fail if it thinks that the address is more profitably represented as
890  // reg+imm, e.g. where imm = 0.
891  if (SelectAddressRegReg(N, Base, Index, DAG))
892    return true;
893
894  // If the operand is an addition, always emit this as [r+r], since this is
895  // better (for code size, and execution, as the memop does the add for free)
896  // than emitting an explicit add.
897  if (N.getOpcode() == ISD::ADD) {
898    Base = N.getOperand(0);
899    Index = N.getOperand(1);
900    return true;
901  }
902
903  // Otherwise, do it the hard way, using R0 as the base register.
904  Base = DAG.getRegister(PPC::R0, N.getValueType());
905  Index = N;
906  return true;
907}
908
909/// SelectAddressRegImmShift - Returns true if the address N can be
910/// represented by a base register plus a signed 14-bit displacement
911/// [r+imm*4].  Suitable for use by STD and friends.
912bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
913                                                 SDValue &Base,
914                                                 SelectionDAG &DAG) {
915  // If this can be more profitably realized as r+r, fail.
916  if (SelectAddressRegReg(N, Disp, Base, DAG))
917    return false;
918
919  if (N.getOpcode() == ISD::ADD) {
920    short imm = 0;
921    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
922      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
923      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
924        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925      } else {
926        Base = N.getOperand(0);
927      }
928      return true; // [r+i]
929    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
930      // Match LOAD (ADD (X, Lo(G))).
931     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
932             && "Cannot handle constant offsets yet!");
933      Disp = N.getOperand(1).getOperand(0);  // The global address.
934      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
935             Disp.getOpcode() == ISD::TargetConstantPool ||
936             Disp.getOpcode() == ISD::TargetJumpTable);
937      Base = N.getOperand(0);
938      return true;  // [&g+r]
939    }
940  } else if (N.getOpcode() == ISD::OR) {
941    short imm = 0;
942    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
943      // If this is an or of disjoint bitfields, we can codegen this as an add
944      // (for better address arithmetic) if the LHS and RHS of the OR are
945      // provably disjoint.
946      APInt LHSKnownZero, LHSKnownOne;
947      DAG.ComputeMaskedBits(N.getOperand(0),
948                            APInt::getAllOnesValue(N.getOperand(0)
949                                                   .getValueSizeInBits()),
950                            LHSKnownZero, LHSKnownOne);
951      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
952        // If all of the bits are known zero on the LHS or RHS, the add won't
953        // carry.
954        Base = N.getOperand(0);
955        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
956        return true;
957      }
958    }
959  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
960    // Loading from a constant address.  Verify low two bits are clear.
961    if ((CN->getZExtValue() & 3) == 0) {
962      // If this address fits entirely in a 14-bit sext immediate field, codegen
963      // this as "d, 0"
964      short Imm;
965      if (isIntS16Immediate(CN, Imm)) {
966        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
967        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
968        return true;
969      }
970
971      // Fold the low-part of 32-bit absolute addresses into addr mode.
972      if (CN->getValueType(0) == MVT::i32 ||
973          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
974        int Addr = (int)CN->getZExtValue();
975
976        // Otherwise, break this down into an LIS + disp.
977        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
978
979        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
980        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
981        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
982        return true;
983      }
984    }
985  }
986
987  Disp = DAG.getTargetConstant(0, getPointerTy());
988  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
989    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
990  else
991    Base = N;
992  return true;      // [r+0]
993}
994
995
996/// getPreIndexedAddressParts - returns true by value, base pointer and
997/// offset pointer and addressing mode by reference if the node's address
998/// can be legally represented as pre-indexed load / store address.
999bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1000                                                  SDValue &Offset,
1001                                                  ISD::MemIndexedMode &AM,
1002                                                  SelectionDAG &DAG) {
1003  // Disabled by default for now.
1004  if (!EnablePPCPreinc) return false;
1005
1006  SDValue Ptr;
1007  MVT VT;
1008  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1009    Ptr = LD->getBasePtr();
1010    VT = LD->getMemoryVT();
1011
1012  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1013    ST = ST;
1014    Ptr = ST->getBasePtr();
1015    VT  = ST->getMemoryVT();
1016  } else
1017    return false;
1018
1019  // PowerPC doesn't have preinc load/store instructions for vectors.
1020  if (VT.isVector())
1021    return false;
1022
1023  // TODO: Check reg+reg first.
1024
1025  // LDU/STU use reg+imm*4, others use reg+imm.
1026  if (VT != MVT::i64) {
1027    // reg + imm
1028    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1029      return false;
1030  } else {
1031    // reg + imm * 4.
1032    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1033      return false;
1034  }
1035
1036  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1037    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1038    // sext i32 to i64 when addr mode is r+i.
1039    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1040        LD->getExtensionType() == ISD::SEXTLOAD &&
1041        isa<ConstantSDNode>(Offset))
1042      return false;
1043  }
1044
1045  AM = ISD::PRE_INC;
1046  return true;
1047}
1048
1049//===----------------------------------------------------------------------===//
1050//  LowerOperation implementation
1051//===----------------------------------------------------------------------===//
1052
1053SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1054                                             SelectionDAG &DAG) {
1055  MVT PtrVT = Op.getValueType();
1056  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1057  Constant *C = CP->getConstVal();
1058  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1059  SDValue Zero = DAG.getConstant(0, PtrVT);
1060
1061  const TargetMachine &TM = DAG.getTarget();
1062
1063  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1064  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1065
1066  // If this is a non-darwin platform, we don't support non-static relo models
1067  // yet.
1068  if (TM.getRelocationModel() == Reloc::Static ||
1069      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1070    // Generate non-pic code that has direct accesses to the constant pool.
1071    // The address of the global is just (hi(&g)+lo(&g)).
1072    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1073  }
1074
1075  if (TM.getRelocationModel() == Reloc::PIC_) {
1076    // With PIC, the first instruction is actually "GR+hi(&G)".
1077    Hi = DAG.getNode(ISD::ADD, PtrVT,
1078                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1079  }
1080
1081  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1082  return Lo;
1083}
1084
1085SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1086  MVT PtrVT = Op.getValueType();
1087  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1088  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1089  SDValue Zero = DAG.getConstant(0, PtrVT);
1090
1091  const TargetMachine &TM = DAG.getTarget();
1092
1093  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1094  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1095
1096  // If this is a non-darwin platform, we don't support non-static relo models
1097  // yet.
1098  if (TM.getRelocationModel() == Reloc::Static ||
1099      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1100    // Generate non-pic code that has direct accesses to the constant pool.
1101    // The address of the global is just (hi(&g)+lo(&g)).
1102    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1103  }
1104
1105  if (TM.getRelocationModel() == Reloc::PIC_) {
1106    // With PIC, the first instruction is actually "GR+hi(&G)".
1107    Hi = DAG.getNode(ISD::ADD, PtrVT,
1108                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1109  }
1110
1111  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1112  return Lo;
1113}
1114
1115SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1116                                                   SelectionDAG &DAG) {
1117  assert(0 && "TLS not implemented for PPC.");
1118  return SDValue(); // Not reached
1119}
1120
1121SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1122                                                SelectionDAG &DAG) {
1123  MVT PtrVT = Op.getValueType();
1124  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1125  GlobalValue *GV = GSDN->getGlobal();
1126  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1127  // If it's a debug information descriptor, don't mess with it.
1128  if (DAG.isVerifiedDebugInfoDesc(Op))
1129    return GA;
1130  SDValue Zero = DAG.getConstant(0, PtrVT);
1131
1132  const TargetMachine &TM = DAG.getTarget();
1133
1134  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1135  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1136
1137  // If this is a non-darwin platform, we don't support non-static relo models
1138  // yet.
1139  if (TM.getRelocationModel() == Reloc::Static ||
1140      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1141    // Generate non-pic code that has direct accesses to globals.
1142    // The address of the global is just (hi(&g)+lo(&g)).
1143    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1144  }
1145
1146  if (TM.getRelocationModel() == Reloc::PIC_) {
1147    // With PIC, the first instruction is actually "GR+hi(&G)".
1148    Hi = DAG.getNode(ISD::ADD, PtrVT,
1149                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1150  }
1151
1152  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1153
1154  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1155    return Lo;
1156
1157  // If the global is weak or external, we have to go through the lazy
1158  // resolution stub.
1159  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1160}
1161
1162SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1163  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1164
1165  // If we're comparing for equality to zero, expose the fact that this is
1166  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1167  // fold the new nodes.
1168  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1169    if (C->isNullValue() && CC == ISD::SETEQ) {
1170      MVT VT = Op.getOperand(0).getValueType();
1171      SDValue Zext = Op.getOperand(0);
1172      if (VT.bitsLT(MVT::i32)) {
1173        VT = MVT::i32;
1174        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1175      }
1176      unsigned Log2b = Log2_32(VT.getSizeInBits());
1177      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1178      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1179                                  DAG.getConstant(Log2b, MVT::i32));
1180      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1181    }
1182    // Leave comparisons against 0 and -1 alone for now, since they're usually
1183    // optimized.  FIXME: revisit this when we can custom lower all setcc
1184    // optimizations.
1185    if (C->isAllOnesValue() || C->isNullValue())
1186      return SDValue();
1187  }
1188
1189  // If we have an integer seteq/setne, turn it into a compare against zero
1190  // by xor'ing the rhs with the lhs, which is faster than setting a
1191  // condition register, reading it back out, and masking the correct bit.  The
1192  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1193  // the result to other bit-twiddling opportunities.
1194  MVT LHSVT = Op.getOperand(0).getValueType();
1195  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1196    MVT VT = Op.getValueType();
1197    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1198                                Op.getOperand(1));
1199    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1200  }
1201  return SDValue();
1202}
1203
1204SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1205                              int VarArgsFrameIndex,
1206                              int VarArgsStackOffset,
1207                              unsigned VarArgsNumGPR,
1208                              unsigned VarArgsNumFPR,
1209                              const PPCSubtarget &Subtarget) {
1210
1211  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1212  return SDValue(); // Not reached
1213}
1214
1215SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1216  SDValue Chain = Op.getOperand(0);
1217  SDValue Trmp = Op.getOperand(1); // trampoline
1218  SDValue FPtr = Op.getOperand(2); // nested function
1219  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1220
1221  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1222  bool isPPC64 = (PtrVT == MVT::i64);
1223  const Type *IntPtrTy =
1224    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1225
1226  TargetLowering::ArgListTy Args;
1227  TargetLowering::ArgListEntry Entry;
1228
1229  Entry.Ty = IntPtrTy;
1230  Entry.Node = Trmp; Args.push_back(Entry);
1231
1232  // TrampSize == (isPPC64 ? 48 : 40);
1233  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1234                               isPPC64 ? MVT::i64 : MVT::i32);
1235  Args.push_back(Entry);
1236
1237  Entry.Node = FPtr; Args.push_back(Entry);
1238  Entry.Node = Nest; Args.push_back(Entry);
1239
1240  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1241  std::pair<SDValue, SDValue> CallResult =
1242    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
1243                false, false, CallingConv::C, false,
1244                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1245                Args, DAG);
1246
1247  SDValue Ops[] =
1248    { CallResult.first, CallResult.second };
1249
1250  return DAG.getMergeValues(Ops, 2, false);
1251}
1252
1253SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1254                                        int VarArgsFrameIndex,
1255                                        int VarArgsStackOffset,
1256                                        unsigned VarArgsNumGPR,
1257                                        unsigned VarArgsNumFPR,
1258                                        const PPCSubtarget &Subtarget) {
1259
1260  if (Subtarget.isMachoABI()) {
1261    // vastart just stores the address of the VarArgsFrameIndex slot into the
1262    // memory location argument.
1263    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1264    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1265    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1266    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1267  }
1268
1269  // For ELF 32 ABI we follow the layout of the va_list struct.
1270  // We suppose the given va_list is already allocated.
1271  //
1272  // typedef struct {
1273  //  char gpr;     /* index into the array of 8 GPRs
1274  //                 * stored in the register save area
1275  //                 * gpr=0 corresponds to r3,
1276  //                 * gpr=1 to r4, etc.
1277  //                 */
1278  //  char fpr;     /* index into the array of 8 FPRs
1279  //                 * stored in the register save area
1280  //                 * fpr=0 corresponds to f1,
1281  //                 * fpr=1 to f2, etc.
1282  //                 */
1283  //  char *overflow_arg_area;
1284  //                /* location on stack that holds
1285  //                 * the next overflow argument
1286  //                 */
1287  //  char *reg_save_area;
1288  //               /* where r3:r10 and f1:f8 (if saved)
1289  //                * are stored
1290  //                */
1291  // } va_list[1];
1292
1293
1294  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1295  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1296
1297
1298  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1299
1300  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1301  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1302
1303  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1304  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1305
1306  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1307  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1308
1309  uint64_t FPROffset = 1;
1310  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1311
1312  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1313
1314  // Store first byte : number of int regs
1315  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1316                                      Op.getOperand(1), SV, 0);
1317  uint64_t nextOffset = FPROffset;
1318  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1319                                  ConstFPROffset);
1320
1321  // Store second byte : number of float regs
1322  SDValue secondStore =
1323    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1324  nextOffset += StackOffset;
1325  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1326
1327  // Store second word : arguments given on stack
1328  SDValue thirdStore =
1329    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1330  nextOffset += FrameOffset;
1331  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1332
1333  // Store third word : arguments given in registers
1334  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1335
1336}
1337
1338#include "PPCGenCallingConv.inc"
1339
1340/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1341/// depending on which subtarget is selected.
1342static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1343  if (Subtarget.isMachoABI()) {
1344    static const unsigned FPR[] = {
1345      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1346      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1347    };
1348    return FPR;
1349  }
1350
1351
1352  static const unsigned FPR[] = {
1353    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1354    PPC::F8
1355  };
1356  return FPR;
1357}
1358
1359/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1360/// the stack.
1361static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1362                                       bool isVarArg, unsigned PtrByteSize) {
1363  MVT ArgVT = Arg.getValueType();
1364  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1365  if (Flags.isByVal())
1366    ArgSize = Flags.getByValSize();
1367  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1368
1369  return ArgSize;
1370}
1371
1372SDValue
1373PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1374                                         SelectionDAG &DAG,
1375                                         int &VarArgsFrameIndex,
1376                                         int &VarArgsStackOffset,
1377                                         unsigned &VarArgsNumGPR,
1378                                         unsigned &VarArgsNumFPR,
1379                                         const PPCSubtarget &Subtarget) {
1380  // TODO: add description of PPC stack frame format, or at least some docs.
1381  //
1382  MachineFunction &MF = DAG.getMachineFunction();
1383  MachineFrameInfo *MFI = MF.getFrameInfo();
1384  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1385  SmallVector<SDValue, 8> ArgValues;
1386  SDValue Root = Op.getOperand(0);
1387  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1388
1389  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1390  bool isPPC64 = PtrVT == MVT::i64;
1391  bool isMachoABI = Subtarget.isMachoABI();
1392  bool isELF32_ABI = Subtarget.isELF32_ABI();
1393  // Potential tail calls could cause overwriting of argument stack slots.
1394  unsigned CC = MF.getFunction()->getCallingConv();
1395  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1396  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1397
1398  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1399  // Area that is at least reserved in caller of this function.
1400  unsigned MinReservedArea = ArgOffset;
1401
1402  static const unsigned GPR_32[] = {           // 32-bit registers.
1403    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1404    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1405  };
1406  static const unsigned GPR_64[] = {           // 64-bit registers.
1407    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1408    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1409  };
1410
1411  static const unsigned *FPR = GetFPR(Subtarget);
1412
1413  static const unsigned VR[] = {
1414    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1415    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1416  };
1417
1418  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1419  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1420  const unsigned Num_VR_Regs  = array_lengthof( VR);
1421
1422  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1423
1424  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1425
1426  // In 32-bit non-varargs functions, the stack space for vectors is after the
1427  // stack space for non-vectors.  We do not use this space unless we have
1428  // too many vectors to fit in registers, something that only occurs in
1429  // constructed examples:), but we have to walk the arglist to figure
1430  // that out...for the pathological case, compute VecArgOffset as the
1431  // start of the vector parameter area.  Computing VecArgOffset is the
1432  // entire point of the following loop.
1433  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1434  // to handle Elf here.
1435  unsigned VecArgOffset = ArgOffset;
1436  if (!isVarArg && !isPPC64) {
1437    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1438         ++ArgNo) {
1439      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1440      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1441      ISD::ArgFlagsTy Flags =
1442        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1443
1444      if (Flags.isByVal()) {
1445        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1446        ObjSize = Flags.getByValSize();
1447        unsigned ArgSize =
1448                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1449        VecArgOffset += ArgSize;
1450        continue;
1451      }
1452
1453      switch(ObjectVT.getSimpleVT()) {
1454      default: assert(0 && "Unhandled argument type!");
1455      case MVT::i32:
1456      case MVT::f32:
1457        VecArgOffset += isPPC64 ? 8 : 4;
1458        break;
1459      case MVT::i64:  // PPC64
1460      case MVT::f64:
1461        VecArgOffset += 8;
1462        break;
1463      case MVT::v4f32:
1464      case MVT::v4i32:
1465      case MVT::v8i16:
1466      case MVT::v16i8:
1467        // Nothing to do, we're only looking at Nonvector args here.
1468        break;
1469      }
1470    }
1471  }
1472  // We've found where the vector parameter area in memory is.  Skip the
1473  // first 12 parameters; these don't use that memory.
1474  VecArgOffset = ((VecArgOffset+15)/16)*16;
1475  VecArgOffset += 12*16;
1476
1477  // Add DAG nodes to load the arguments or copy them out of registers.  On
1478  // entry to a function on PPC, the arguments start after the linkage area,
1479  // although the first ones are often in registers.
1480  //
1481  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1482  // represented with two words (long long or double) must be copied to an
1483  // even GPR_idx value or to an even ArgOffset value.
1484
1485  SmallVector<SDValue, 8> MemOps;
1486  unsigned nAltivecParamsAtEnd = 0;
1487  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1488       ArgNo != e; ++ArgNo) {
1489    SDValue ArgVal;
1490    bool needsLoad = false;
1491    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1492    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1493    unsigned ArgSize = ObjSize;
1494    ISD::ArgFlagsTy Flags =
1495      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1496    // See if next argument requires stack alignment in ELF
1497    bool Align = Flags.isSplit();
1498
1499    unsigned CurArgOffset = ArgOffset;
1500
1501    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1502    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1503        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1504      if (isVarArg || isPPC64) {
1505        MinReservedArea = ((MinReservedArea+15)/16)*16;
1506        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1507                                                  Flags,
1508                                                  isVarArg,
1509                                                  PtrByteSize);
1510      } else  nAltivecParamsAtEnd++;
1511    } else
1512      // Calculate min reserved area.
1513      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1514                                                Flags,
1515                                                isVarArg,
1516                                                PtrByteSize);
1517
1518    // FIXME alignment for ELF may not be right
1519    // FIXME the codegen can be much improved in some cases.
1520    // We do not have to keep everything in memory.
1521    if (Flags.isByVal()) {
1522      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1523      ObjSize = Flags.getByValSize();
1524      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1525      // Double word align in ELF
1526      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1527      // Objects of size 1 and 2 are right justified, everything else is
1528      // left justified.  This means the memory address is adjusted forwards.
1529      if (ObjSize==1 || ObjSize==2) {
1530        CurArgOffset = CurArgOffset + (4 - ObjSize);
1531      }
1532      // The value of the object is its address.
1533      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1534      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1535      ArgValues.push_back(FIN);
1536      if (ObjSize==1 || ObjSize==2) {
1537        if (GPR_idx != Num_GPR_Regs) {
1538          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1539          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1540          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1541          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1542                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1543          MemOps.push_back(Store);
1544          ++GPR_idx;
1545          if (isMachoABI) ArgOffset += PtrByteSize;
1546        } else {
1547          ArgOffset += PtrByteSize;
1548        }
1549        continue;
1550      }
1551      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1552        // Store whatever pieces of the object are in registers
1553        // to memory.  ArgVal will be address of the beginning of
1554        // the object.
1555        if (GPR_idx != Num_GPR_Regs) {
1556          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1557          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1558          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1559          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1560          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1561          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1562          MemOps.push_back(Store);
1563          ++GPR_idx;
1564          if (isMachoABI) ArgOffset += PtrByteSize;
1565        } else {
1566          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1567          break;
1568        }
1569      }
1570      continue;
1571    }
1572
1573    switch (ObjectVT.getSimpleVT()) {
1574    default: assert(0 && "Unhandled argument type!");
1575    case MVT::i32:
1576      if (!isPPC64) {
1577        // Double word align in ELF
1578        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1579
1580        if (GPR_idx != Num_GPR_Regs) {
1581          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1582          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1583          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1584          ++GPR_idx;
1585        } else {
1586          needsLoad = true;
1587          ArgSize = PtrByteSize;
1588        }
1589        // Stack align in ELF
1590        if (needsLoad && Align && isELF32_ABI)
1591          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1592        // All int arguments reserve stack space in Macho ABI.
1593        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1594        break;
1595      }
1596      // FALLTHROUGH
1597    case MVT::i64:  // PPC64
1598      if (GPR_idx != Num_GPR_Regs) {
1599        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1600        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1601        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1602
1603        if (ObjectVT == MVT::i32) {
1604          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1605          // value to MVT::i64 and then truncate to the correct register size.
1606          if (Flags.isSExt())
1607            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1608                                 DAG.getValueType(ObjectVT));
1609          else if (Flags.isZExt())
1610            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1611                                 DAG.getValueType(ObjectVT));
1612
1613          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1614        }
1615
1616        ++GPR_idx;
1617      } else {
1618        needsLoad = true;
1619        ArgSize = PtrByteSize;
1620      }
1621      // All int arguments reserve stack space in Macho ABI.
1622      if (isMachoABI || needsLoad) ArgOffset += 8;
1623      break;
1624
1625    case MVT::f32:
1626    case MVT::f64:
1627      // Every 4 bytes of argument space consumes one of the GPRs available for
1628      // argument passing.
1629      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1630        ++GPR_idx;
1631        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1632          ++GPR_idx;
1633      }
1634      if (FPR_idx != Num_FPR_Regs) {
1635        unsigned VReg;
1636        if (ObjectVT == MVT::f32)
1637          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1638        else
1639          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1640        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1641        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1642        ++FPR_idx;
1643      } else {
1644        needsLoad = true;
1645      }
1646
1647      // Stack align in ELF
1648      if (needsLoad && Align && isELF32_ABI)
1649        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1650      // All FP arguments reserve stack space in Macho ABI.
1651      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1652      break;
1653    case MVT::v4f32:
1654    case MVT::v4i32:
1655    case MVT::v8i16:
1656    case MVT::v16i8:
1657      // Note that vector arguments in registers don't reserve stack space,
1658      // except in varargs functions.
1659      if (VR_idx != Num_VR_Regs) {
1660        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1661        RegInfo.addLiveIn(VR[VR_idx], VReg);
1662        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1663        if (isVarArg) {
1664          while ((ArgOffset % 16) != 0) {
1665            ArgOffset += PtrByteSize;
1666            if (GPR_idx != Num_GPR_Regs)
1667              GPR_idx++;
1668          }
1669          ArgOffset += 16;
1670          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1671        }
1672        ++VR_idx;
1673      } else {
1674        if (!isVarArg && !isPPC64) {
1675          // Vectors go after all the nonvectors.
1676          CurArgOffset = VecArgOffset;
1677          VecArgOffset += 16;
1678        } else {
1679          // Vectors are aligned.
1680          ArgOffset = ((ArgOffset+15)/16)*16;
1681          CurArgOffset = ArgOffset;
1682          ArgOffset += 16;
1683        }
1684        needsLoad = true;
1685      }
1686      break;
1687    }
1688
1689    // We need to load the argument to a virtual register if we determined above
1690    // that we ran out of physical registers of the appropriate type.
1691    if (needsLoad) {
1692      int FI = MFI->CreateFixedObject(ObjSize,
1693                                      CurArgOffset + (ArgSize - ObjSize),
1694                                      isImmutable);
1695      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1696      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1697    }
1698
1699    ArgValues.push_back(ArgVal);
1700  }
1701
1702  // Set the size that is at least reserved in caller of this function.  Tail
1703  // call optimized function's reserved stack space needs to be aligned so that
1704  // taking the difference between two stack areas will result in an aligned
1705  // stack.
1706  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1707  // Add the Altivec parameters at the end, if needed.
1708  if (nAltivecParamsAtEnd) {
1709    MinReservedArea = ((MinReservedArea+15)/16)*16;
1710    MinReservedArea += 16*nAltivecParamsAtEnd;
1711  }
1712  MinReservedArea =
1713    std::max(MinReservedArea,
1714             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1715  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1716    getStackAlignment();
1717  unsigned AlignMask = TargetAlign-1;
1718  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1719  FI->setMinReservedArea(MinReservedArea);
1720
1721  // If the function takes variable number of arguments, make a frame index for
1722  // the start of the first vararg value... for expansion of llvm.va_start.
1723  if (isVarArg) {
1724
1725    int depth;
1726    if (isELF32_ABI) {
1727      VarArgsNumGPR = GPR_idx;
1728      VarArgsNumFPR = FPR_idx;
1729
1730      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1731      // pointer.
1732      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1733                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1734                PtrVT.getSizeInBits()/8);
1735
1736      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1737                                                  ArgOffset);
1738
1739    }
1740    else
1741      depth = ArgOffset;
1742
1743    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1744                                               depth);
1745    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1746
1747    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1748    // stored to the VarArgsFrameIndex on the stack.
1749    if (isELF32_ABI) {
1750      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1751        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1752        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1753        MemOps.push_back(Store);
1754        // Increment the address by four for the next argument to store
1755        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1756        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1757      }
1758    }
1759
1760    // If this function is vararg, store any remaining integer argument regs
1761    // to their spots on the stack so that they may be loaded by deferencing the
1762    // result of va_next.
1763    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1764      unsigned VReg;
1765      if (isPPC64)
1766        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1767      else
1768        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1769
1770      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1771      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1772      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1773      MemOps.push_back(Store);
1774      // Increment the address by four for the next argument to store
1775      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1776      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1777    }
1778
1779    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1780    // on the stack.
1781    if (isELF32_ABI) {
1782      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1783        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1784        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1785        MemOps.push_back(Store);
1786        // Increment the address by eight for the next argument to store
1787        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1788                                           PtrVT);
1789        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1790      }
1791
1792      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1793        unsigned VReg;
1794        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1795
1796        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1797        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1798        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1799        MemOps.push_back(Store);
1800        // Increment the address by eight for the next argument to store
1801        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1802                                           PtrVT);
1803        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1804      }
1805    }
1806  }
1807
1808  if (!MemOps.empty())
1809    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1810
1811  ArgValues.push_back(Root);
1812
1813  // Return the new list of results.
1814  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1815                            ArgValues.size());
1816}
1817
1818/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1819/// linkage area.
1820static unsigned
1821CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1822                                     bool isPPC64,
1823                                     bool isMachoABI,
1824                                     bool isVarArg,
1825                                     unsigned CC,
1826                                     CallSDNode *TheCall,
1827                                     unsigned &nAltivecParamsAtEnd) {
1828  // Count how many bytes are to be pushed on the stack, including the linkage
1829  // area, and parameter passing area.  We start with 24/48 bytes, which is
1830  // prereserved space for [SP][CR][LR][3 x unused].
1831  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1832  unsigned NumOps = TheCall->getNumArgs();
1833  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1834
1835  // Add up all the space actually used.
1836  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1837  // they all go in registers, but we must reserve stack space for them for
1838  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1839  // assigned stack space in order, with padding so Altivec parameters are
1840  // 16-byte aligned.
1841  nAltivecParamsAtEnd = 0;
1842  for (unsigned i = 0; i != NumOps; ++i) {
1843    SDValue Arg = TheCall->getArg(i);
1844    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1845    MVT ArgVT = Arg.getValueType();
1846    // Varargs Altivec parameters are padded to a 16 byte boundary.
1847    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1848        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1849      if (!isVarArg && !isPPC64) {
1850        // Non-varargs Altivec parameters go after all the non-Altivec
1851        // parameters; handle those later so we know how much padding we need.
1852        nAltivecParamsAtEnd++;
1853        continue;
1854      }
1855      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1856      NumBytes = ((NumBytes+15)/16)*16;
1857    }
1858    NumBytes += CalculateStackSlotSize(Arg, Flags, isVarArg, PtrByteSize);
1859  }
1860
1861   // Allow for Altivec parameters at the end, if needed.
1862  if (nAltivecParamsAtEnd) {
1863    NumBytes = ((NumBytes+15)/16)*16;
1864    NumBytes += 16*nAltivecParamsAtEnd;
1865  }
1866
1867  // The prolog code of the callee may store up to 8 GPR argument registers to
1868  // the stack, allowing va_start to index over them in memory if its varargs.
1869  // Because we cannot tell if this is needed on the caller side, we have to
1870  // conservatively assume that it is needed.  As such, make sure we have at
1871  // least enough stack space for the caller to store the 8 GPRs.
1872  NumBytes = std::max(NumBytes,
1873                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1874
1875  // Tail call needs the stack to be aligned.
1876  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1877    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1878      getStackAlignment();
1879    unsigned AlignMask = TargetAlign-1;
1880    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1881  }
1882
1883  return NumBytes;
1884}
1885
1886/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1887/// adjusted to accomodate the arguments for the tailcall.
1888static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1889                                   unsigned ParamSize) {
1890
1891  if (!IsTailCall) return 0;
1892
1893  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1894  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1895  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1896  // Remember only if the new adjustement is bigger.
1897  if (SPDiff < FI->getTailCallSPDelta())
1898    FI->setTailCallSPDelta(SPDiff);
1899
1900  return SPDiff;
1901}
1902
1903/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1904/// following the call is a return. A function is eligible if caller/callee
1905/// calling conventions match, currently only fastcc supports tail calls, and
1906/// the function CALL is immediatly followed by a RET.
1907bool
1908PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1909                                                     SDValue Ret,
1910                                                     SelectionDAG& DAG) const {
1911  // Variable argument functions are not supported.
1912  if (!PerformTailCallOpt || TheCall->isVarArg())
1913    return false;
1914
1915  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1916    MachineFunction &MF = DAG.getMachineFunction();
1917    unsigned CallerCC = MF.getFunction()->getCallingConv();
1918    unsigned CalleeCC = TheCall->getCallingConv();
1919    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1920      // Functions containing by val parameters are not supported.
1921      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1922         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1923         if (Flags.isByVal()) return false;
1924      }
1925
1926      SDValue Callee = TheCall->getCallee();
1927      // Non PIC/GOT  tail calls are supported.
1928      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1929        return true;
1930
1931      // At the moment we can only do local tail calls (in same module, hidden
1932      // or protected) if we are generating PIC.
1933      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1934        return G->getGlobal()->hasHiddenVisibility()
1935            || G->getGlobal()->hasProtectedVisibility();
1936    }
1937  }
1938
1939  return false;
1940}
1941
1942/// isCallCompatibleAddress - Return the immediate to use if the specified
1943/// 32-bit value is representable in the immediate field of a BxA instruction.
1944static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1945  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1946  if (!C) return 0;
1947
1948  int Addr = C->getZExtValue();
1949  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1950      (Addr << 6 >> 6) != Addr)
1951    return 0;  // Top 6 bits have to be sext of immediate.
1952
1953  return DAG.getConstant((int)C->getZExtValue() >> 2,
1954                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1955}
1956
1957namespace {
1958
1959struct TailCallArgumentInfo {
1960  SDValue Arg;
1961  SDValue FrameIdxOp;
1962  int       FrameIdx;
1963
1964  TailCallArgumentInfo() : FrameIdx(0) {}
1965};
1966
1967}
1968
1969/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1970static void
1971StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1972                                           SDValue Chain,
1973                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1974                   SmallVector<SDValue, 8> &MemOpChains) {
1975  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1976    SDValue Arg = TailCallArgs[i].Arg;
1977    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1978    int FI = TailCallArgs[i].FrameIdx;
1979    // Store relative to framepointer.
1980    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1981                                       PseudoSourceValue::getFixedStack(FI),
1982                                       0));
1983  }
1984}
1985
1986/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1987/// the appropriate stack slot for the tail call optimized function call.
1988static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1989                                               MachineFunction &MF,
1990                                               SDValue Chain,
1991                                               SDValue OldRetAddr,
1992                                               SDValue OldFP,
1993                                               int SPDiff,
1994                                               bool isPPC64,
1995                                               bool isMachoABI) {
1996  if (SPDiff) {
1997    // Calculate the new stack slot for the return address.
1998    int SlotSize = isPPC64 ? 8 : 4;
1999    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2000                                                                   isMachoABI);
2001    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2002                                                          NewRetAddrLoc);
2003    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
2004                                                                    isMachoABI);
2005    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2006
2007    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2008    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2009    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
2010                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2011    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2012    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
2013                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2014  }
2015  return Chain;
2016}
2017
2018/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2019/// the position of the argument.
2020static void
2021CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2022                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2023                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2024  int Offset = ArgOffset + SPDiff;
2025  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2026  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2027  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2028  SDValue FIN = DAG.getFrameIndex(FI, VT);
2029  TailCallArgumentInfo Info;
2030  Info.Arg = Arg;
2031  Info.FrameIdxOp = FIN;
2032  Info.FrameIdx = FI;
2033  TailCallArguments.push_back(Info);
2034}
2035
2036/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2037/// stack slot. Returns the chain as result and the loaded frame pointers in
2038/// LROpOut/FPOpout. Used when tail calling.
2039SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2040                                                          int SPDiff,
2041                                                          SDValue Chain,
2042                                                          SDValue &LROpOut,
2043                                                          SDValue &FPOpOut) {
2044  if (SPDiff) {
2045    // Load the LR and FP stack slot for later adjusting.
2046    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2047    LROpOut = getReturnAddrFrameIndex(DAG);
2048    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2049    Chain = SDValue(LROpOut.getNode(), 1);
2050    FPOpOut = getFramePointerFrameIndex(DAG);
2051    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2052    Chain = SDValue(FPOpOut.getNode(), 1);
2053  }
2054  return Chain;
2055}
2056
2057/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2058/// by "Src" to address "Dst" of size "Size".  Alignment information is
2059/// specified by the specific parameter attribute. The copy will be passed as
2060/// a byval function parameter.
2061/// Sometimes what we are copying is the end of a larger object, the part that
2062/// does not fit in registers.
2063static SDValue
2064CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2065                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2066                          unsigned Size) {
2067  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2068  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2069                       NULL, 0, NULL, 0);
2070}
2071
2072/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2073/// tail calls.
2074static void
2075LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2076                 SDValue Arg, SDValue PtrOff, int SPDiff,
2077                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2078                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2079                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2080  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2081  if (!isTailCall) {
2082    if (isVector) {
2083      SDValue StackPtr;
2084      if (isPPC64)
2085        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2086      else
2087        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2088      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2089                           DAG.getConstant(ArgOffset, PtrVT));
2090    }
2091    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2092  // Calculate and remember argument location.
2093  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2094                                  TailCallArguments);
2095}
2096
2097SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2098                                       const PPCSubtarget &Subtarget,
2099                                       TargetMachine &TM) {
2100  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2101  SDValue Chain  = TheCall->getChain();
2102  bool isVarArg   = TheCall->isVarArg();
2103  unsigned CC     = TheCall->getCallingConv();
2104  bool isTailCall = TheCall->isTailCall()
2105                 && CC == CallingConv::Fast && PerformTailCallOpt;
2106  SDValue Callee = TheCall->getCallee();
2107  unsigned NumOps  = TheCall->getNumArgs();
2108
2109  bool isMachoABI = Subtarget.isMachoABI();
2110  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2111
2112  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2113  bool isPPC64 = PtrVT == MVT::i64;
2114  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2115
2116  MachineFunction &MF = DAG.getMachineFunction();
2117
2118  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2119  // SelectExpr to use to put the arguments in the appropriate registers.
2120  std::vector<SDValue> args_to_use;
2121
2122  // Mark this function as potentially containing a function that contains a
2123  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2124  // and restoring the callers stack pointer in this functions epilog. This is
2125  // done because by tail calling the called function might overwrite the value
2126  // in this function's (MF) stack pointer stack slot 0(SP).
2127  if (PerformTailCallOpt && CC==CallingConv::Fast)
2128    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2129
2130  unsigned nAltivecParamsAtEnd = 0;
2131
2132  // Count how many bytes are to be pushed on the stack, including the linkage
2133  // area, and parameter passing area.  We start with 24/48 bytes, which is
2134  // prereserved space for [SP][CR][LR][3 x unused].
2135  unsigned NumBytes =
2136    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2137                                         TheCall, nAltivecParamsAtEnd);
2138
2139  // Calculate by how many bytes the stack has to be adjusted in case of tail
2140  // call optimization.
2141  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2142
2143  // Adjust the stack pointer for the new arguments...
2144  // These operations are automatically eliminated by the prolog/epilog pass
2145  Chain = DAG.getCALLSEQ_START(Chain,
2146                               DAG.getConstant(NumBytes, PtrVT));
2147  SDValue CallSeqStart = Chain;
2148
2149  // Load the return address and frame pointer so it can be move somewhere else
2150  // later.
2151  SDValue LROp, FPOp;
2152  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2153
2154  // Set up a copy of the stack pointer for use loading and storing any
2155  // arguments that may not fit in the registers available for argument
2156  // passing.
2157  SDValue StackPtr;
2158  if (isPPC64)
2159    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2160  else
2161    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2162
2163  // Figure out which arguments are going to go in registers, and which in
2164  // memory.  Also, if this is a vararg function, floating point operations
2165  // must be stored to our stack, and loaded into integer regs as well, if
2166  // any integer regs are available for argument passing.
2167  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2168  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2169
2170  static const unsigned GPR_32[] = {           // 32-bit registers.
2171    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2172    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2173  };
2174  static const unsigned GPR_64[] = {           // 64-bit registers.
2175    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2176    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2177  };
2178  static const unsigned *FPR = GetFPR(Subtarget);
2179
2180  static const unsigned VR[] = {
2181    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2182    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2183  };
2184  const unsigned NumGPRs = array_lengthof(GPR_32);
2185  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2186  const unsigned NumVRs  = array_lengthof( VR);
2187
2188  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2189
2190  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2191  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2192
2193  SmallVector<SDValue, 8> MemOpChains;
2194  for (unsigned i = 0; i != NumOps; ++i) {
2195    bool inMem = false;
2196    SDValue Arg = TheCall->getArg(i);
2197    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2198    // See if next argument requires stack alignment in ELF
2199    bool Align = Flags.isSplit();
2200
2201    // PtrOff will be used to store the current argument to the stack if a
2202    // register cannot be found for it.
2203    SDValue PtrOff;
2204
2205    // Stack align in ELF 32
2206    if (isELF32_ABI && Align)
2207      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2208                               StackPtr.getValueType());
2209    else
2210      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2211
2212    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2213
2214    // On PPC64, promote integers to 64-bit values.
2215    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2216      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2217      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2218      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2219    }
2220
2221    // FIXME Elf untested, what are alignment rules?
2222    // FIXME memcpy is used way more than necessary.  Correctness first.
2223    if (Flags.isByVal()) {
2224      unsigned Size = Flags.getByValSize();
2225      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2226      if (Size==1 || Size==2) {
2227        // Very small objects are passed right-justified.
2228        // Everything else is passed left-justified.
2229        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2230        if (GPR_idx != NumGPRs) {
2231          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2232                                          NULL, 0, VT);
2233          MemOpChains.push_back(Load.getValue(1));
2234          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2235          if (isMachoABI)
2236            ArgOffset += PtrByteSize;
2237        } else {
2238          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2239          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2240          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2241                                CallSeqStart.getNode()->getOperand(0),
2242                                Flags, DAG, Size);
2243          // This must go outside the CALLSEQ_START..END.
2244          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2245                               CallSeqStart.getNode()->getOperand(1));
2246          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2247                                 NewCallSeqStart.getNode());
2248          Chain = CallSeqStart = NewCallSeqStart;
2249          ArgOffset += PtrByteSize;
2250        }
2251        continue;
2252      }
2253      // Copy entire object into memory.  There are cases where gcc-generated
2254      // code assumes it is there, even if it could be put entirely into
2255      // registers.  (This is not what the doc says.)
2256      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2257                            CallSeqStart.getNode()->getOperand(0),
2258                            Flags, DAG, Size);
2259      // This must go outside the CALLSEQ_START..END.
2260      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2261                           CallSeqStart.getNode()->getOperand(1));
2262      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2263      Chain = CallSeqStart = NewCallSeqStart;
2264      // And copy the pieces of it that fit into registers.
2265      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2266        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2267        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2268        if (GPR_idx != NumGPRs) {
2269          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2270          MemOpChains.push_back(Load.getValue(1));
2271          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2272          if (isMachoABI)
2273            ArgOffset += PtrByteSize;
2274        } else {
2275          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2276          break;
2277        }
2278      }
2279      continue;
2280    }
2281
2282    switch (Arg.getValueType().getSimpleVT()) {
2283    default: assert(0 && "Unexpected ValueType for argument!");
2284    case MVT::i32:
2285    case MVT::i64:
2286      // Double word align in ELF
2287      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2288      if (GPR_idx != NumGPRs) {
2289        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2290      } else {
2291        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2292                         isPPC64, isTailCall, false, MemOpChains,
2293                         TailCallArguments);
2294        inMem = true;
2295      }
2296      if (inMem || isMachoABI) {
2297        // Stack align in ELF
2298        if (isELF32_ABI && Align)
2299          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2300
2301        ArgOffset += PtrByteSize;
2302      }
2303      break;
2304    case MVT::f32:
2305    case MVT::f64:
2306      if (FPR_idx != NumFPRs) {
2307        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2308
2309        if (isVarArg) {
2310          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2311          MemOpChains.push_back(Store);
2312
2313          // Float varargs are always shadowed in available integer registers
2314          if (GPR_idx != NumGPRs) {
2315            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2316            MemOpChains.push_back(Load.getValue(1));
2317            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2318                                                                Load));
2319          }
2320          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2321            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2322            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2323            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2324            MemOpChains.push_back(Load.getValue(1));
2325            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2326                                                                Load));
2327          }
2328        } else {
2329          // If we have any FPRs remaining, we may also have GPRs remaining.
2330          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2331          // GPRs.
2332          if (isMachoABI) {
2333            if (GPR_idx != NumGPRs)
2334              ++GPR_idx;
2335            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2336                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2337              ++GPR_idx;
2338          }
2339        }
2340      } else {
2341        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2342                         isPPC64, isTailCall, false, MemOpChains,
2343                         TailCallArguments);
2344        inMem = true;
2345      }
2346      if (inMem || isMachoABI) {
2347        // Stack align in ELF
2348        if (isELF32_ABI && Align)
2349          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2350        if (isPPC64)
2351          ArgOffset += 8;
2352        else
2353          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2354      }
2355      break;
2356    case MVT::v4f32:
2357    case MVT::v4i32:
2358    case MVT::v8i16:
2359    case MVT::v16i8:
2360      if (isVarArg) {
2361        // These go aligned on the stack, or in the corresponding R registers
2362        // when within range.  The Darwin PPC ABI doc claims they also go in
2363        // V registers; in fact gcc does this only for arguments that are
2364        // prototyped, not for those that match the ...  We do it for all
2365        // arguments, seems to work.
2366        while (ArgOffset % 16 !=0) {
2367          ArgOffset += PtrByteSize;
2368          if (GPR_idx != NumGPRs)
2369            GPR_idx++;
2370        }
2371        // We could elide this store in the case where the object fits
2372        // entirely in R registers.  Maybe later.
2373        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2374                            DAG.getConstant(ArgOffset, PtrVT));
2375        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2376        MemOpChains.push_back(Store);
2377        if (VR_idx != NumVRs) {
2378          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2379          MemOpChains.push_back(Load.getValue(1));
2380          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2381        }
2382        ArgOffset += 16;
2383        for (unsigned i=0; i<16; i+=PtrByteSize) {
2384          if (GPR_idx == NumGPRs)
2385            break;
2386          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2387                                  DAG.getConstant(i, PtrVT));
2388          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2389          MemOpChains.push_back(Load.getValue(1));
2390          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2391        }
2392        break;
2393      }
2394
2395      // Non-varargs Altivec params generally go in registers, but have
2396      // stack space allocated at the end.
2397      if (VR_idx != NumVRs) {
2398        // Doesn't have GPR space allocated.
2399        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2400      } else if (nAltivecParamsAtEnd==0) {
2401        // We are emitting Altivec params in order.
2402        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2403                         isPPC64, isTailCall, true, MemOpChains,
2404                         TailCallArguments);
2405        ArgOffset += 16;
2406      }
2407      break;
2408    }
2409  }
2410  // If all Altivec parameters fit in registers, as they usually do,
2411  // they get stack space following the non-Altivec parameters.  We
2412  // don't track this here because nobody below needs it.
2413  // If there are more Altivec parameters than fit in registers emit
2414  // the stores here.
2415  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2416    unsigned j = 0;
2417    // Offset is aligned; skip 1st 12 params which go in V registers.
2418    ArgOffset = ((ArgOffset+15)/16)*16;
2419    ArgOffset += 12*16;
2420    for (unsigned i = 0; i != NumOps; ++i) {
2421      SDValue Arg = TheCall->getArg(i);
2422      MVT ArgType = Arg.getValueType();
2423      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2424          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2425        if (++j > NumVRs) {
2426          SDValue PtrOff;
2427          // We are emitting Altivec params in order.
2428          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2429                           isPPC64, isTailCall, true, MemOpChains,
2430                           TailCallArguments);
2431          ArgOffset += 16;
2432        }
2433      }
2434    }
2435  }
2436
2437  if (!MemOpChains.empty())
2438    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2439                        &MemOpChains[0], MemOpChains.size());
2440
2441  // Build a sequence of copy-to-reg nodes chained together with token chain
2442  // and flag operands which copy the outgoing args into the appropriate regs.
2443  SDValue InFlag;
2444  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2445    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2446                             InFlag);
2447    InFlag = Chain.getValue(1);
2448  }
2449
2450  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2451  if (isVarArg && isELF32_ABI) {
2452    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2453    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2454    InFlag = Chain.getValue(1);
2455  }
2456
2457  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2458  // might overwrite each other in case of tail call optimization.
2459  if (isTailCall) {
2460    SmallVector<SDValue, 8> MemOpChains2;
2461    // Do not flag preceeding copytoreg stuff together with the following stuff.
2462    InFlag = SDValue();
2463    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2464                                      MemOpChains2);
2465    if (!MemOpChains2.empty())
2466      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2467                          &MemOpChains2[0], MemOpChains2.size());
2468
2469    // Store the return address to the appropriate stack slot.
2470    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2471                                          isPPC64, isMachoABI);
2472  }
2473
2474  // Emit callseq_end just before tailcall node.
2475  if (isTailCall) {
2476    SmallVector<SDValue, 8> CallSeqOps;
2477    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2478    CallSeqOps.push_back(Chain);
2479    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2480    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2481    if (InFlag.getNode())
2482      CallSeqOps.push_back(InFlag);
2483    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2484                        CallSeqOps.size());
2485    InFlag = Chain.getValue(1);
2486  }
2487
2488  std::vector<MVT> NodeTys;
2489  NodeTys.push_back(MVT::Other);   // Returns a chain
2490  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2491
2492  SmallVector<SDValue, 8> Ops;
2493  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2494
2495  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2496  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2497  // node so that legalize doesn't hack it.
2498  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2499    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2500  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2501    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2502  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2503    // If this is an absolute destination address, use the munged value.
2504    Callee = SDValue(Dest, 0);
2505  else {
2506    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2507    // to do the call, we can't use PPCISD::CALL.
2508    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2509    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps,
2510                        2 + (InFlag.getNode() != 0));
2511    InFlag = Chain.getValue(1);
2512
2513    // Copy the callee address into R12/X12 on darwin.
2514    if (isMachoABI) {
2515      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2516      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2517      InFlag = Chain.getValue(1);
2518    }
2519
2520    NodeTys.clear();
2521    NodeTys.push_back(MVT::Other);
2522    NodeTys.push_back(MVT::Flag);
2523    Ops.push_back(Chain);
2524    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2525    Callee.setNode(0);
2526    // Add CTR register as callee so a bctr can be emitted later.
2527    if (isTailCall)
2528      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2529  }
2530
2531  // If this is a direct call, pass the chain and the callee.
2532  if (Callee.getNode()) {
2533    Ops.push_back(Chain);
2534    Ops.push_back(Callee);
2535  }
2536  // If this is a tail call add stack pointer delta.
2537  if (isTailCall)
2538    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2539
2540  // Add argument registers to the end of the list so that they are known live
2541  // into the call.
2542  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2543    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2544                                  RegsToPass[i].second.getValueType()));
2545
2546  // When performing tail call optimization the callee pops its arguments off
2547  // the stack. Account for this here so these bytes can be pushed back on in
2548  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2549  int BytesCalleePops =
2550    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2551
2552  if (InFlag.getNode())
2553    Ops.push_back(InFlag);
2554
2555  // Emit tail call.
2556  if (isTailCall) {
2557    assert(InFlag.getNode() &&
2558           "Flag must be set. Depend on flag being set in LowerRET");
2559    Chain = DAG.getNode(PPCISD::TAILCALL,
2560                        TheCall->getVTList(), &Ops[0], Ops.size());
2561    return SDValue(Chain.getNode(), Op.getResNo());
2562  }
2563
2564  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2565  InFlag = Chain.getValue(1);
2566
2567  Chain = DAG.getCALLSEQ_END(Chain,
2568                             DAG.getConstant(NumBytes, PtrVT),
2569                             DAG.getConstant(BytesCalleePops, PtrVT),
2570                             InFlag);
2571  if (TheCall->getValueType(0) != MVT::Other)
2572    InFlag = Chain.getValue(1);
2573
2574  SmallVector<SDValue, 16> ResultVals;
2575  SmallVector<CCValAssign, 16> RVLocs;
2576  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2577  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2578  CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2579
2580  // Copy all of the result registers out of their specified physreg.
2581  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2582    CCValAssign &VA = RVLocs[i];
2583    MVT VT = VA.getValVT();
2584    assert(VA.isRegLoc() && "Can only return in registers!");
2585    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2586    ResultVals.push_back(Chain.getValue(0));
2587    InFlag = Chain.getValue(2);
2588  }
2589
2590  // If the function returns void, just return the chain.
2591  if (RVLocs.empty())
2592    return Chain;
2593
2594  // Otherwise, merge everything together with a MERGE_VALUES node.
2595  ResultVals.push_back(Chain);
2596  SDValue Res = DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
2597                                     ResultVals.size());
2598  return Res.getValue(Op.getResNo());
2599}
2600
2601SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2602                                      TargetMachine &TM) {
2603  SmallVector<CCValAssign, 16> RVLocs;
2604  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2605  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2606  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2607  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2608
2609  // If this is the first return lowered for this function, add the regs to the
2610  // liveout set for the function.
2611  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2612    for (unsigned i = 0; i != RVLocs.size(); ++i)
2613      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2614  }
2615
2616  SDValue Chain = Op.getOperand(0);
2617
2618  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2619  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2620    SDValue TailCall = Chain;
2621    SDValue TargetAddress = TailCall.getOperand(1);
2622    SDValue StackAdjustment = TailCall.getOperand(2);
2623
2624    assert(((TargetAddress.getOpcode() == ISD::Register &&
2625             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2626            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2627            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2628            isa<ConstantSDNode>(TargetAddress)) &&
2629    "Expecting an global address, external symbol, absolute value or register");
2630
2631    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2632           "Expecting a const value");
2633
2634    SmallVector<SDValue,8> Operands;
2635    Operands.push_back(Chain.getOperand(0));
2636    Operands.push_back(TargetAddress);
2637    Operands.push_back(StackAdjustment);
2638    // Copy registers used by the call. Last operand is a flag so it is not
2639    // copied.
2640    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2641      Operands.push_back(Chain.getOperand(i));
2642    }
2643    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2644                       Operands.size());
2645  }
2646
2647  SDValue Flag;
2648
2649  // Copy the result values into the output registers.
2650  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2651    CCValAssign &VA = RVLocs[i];
2652    assert(VA.isRegLoc() && "Can only return in registers!");
2653    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2654    Flag = Chain.getValue(1);
2655  }
2656
2657  if (Flag.getNode())
2658    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2659  else
2660    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2661}
2662
2663SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2664                                   const PPCSubtarget &Subtarget) {
2665  // When we pop the dynamic allocation we need to restore the SP link.
2666
2667  // Get the corect type for pointers.
2668  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2669
2670  // Construct the stack pointer operand.
2671  bool IsPPC64 = Subtarget.isPPC64();
2672  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2673  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2674
2675  // Get the operands for the STACKRESTORE.
2676  SDValue Chain = Op.getOperand(0);
2677  SDValue SaveSP = Op.getOperand(1);
2678
2679  // Load the old link SP.
2680  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2681
2682  // Restore the stack pointer.
2683  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2684
2685  // Store the old link SP.
2686  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2687}
2688
2689
2690
2691SDValue
2692PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2693  MachineFunction &MF = DAG.getMachineFunction();
2694  bool IsPPC64 = PPCSubTarget.isPPC64();
2695  bool isMachoABI = PPCSubTarget.isMachoABI();
2696  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2697
2698  // Get current frame pointer save index.  The users of this index will be
2699  // primarily DYNALLOC instructions.
2700  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2701  int RASI = FI->getReturnAddrSaveIndex();
2702
2703  // If the frame pointer save index hasn't been defined yet.
2704  if (!RASI) {
2705    // Find out what the fix offset of the frame pointer save area.
2706    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2707    // Allocate the frame index for frame pointer save area.
2708    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2709    // Save the result.
2710    FI->setReturnAddrSaveIndex(RASI);
2711  }
2712  return DAG.getFrameIndex(RASI, PtrVT);
2713}
2714
2715SDValue
2716PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2717  MachineFunction &MF = DAG.getMachineFunction();
2718  bool IsPPC64 = PPCSubTarget.isPPC64();
2719  bool isMachoABI = PPCSubTarget.isMachoABI();
2720  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2721
2722  // Get current frame pointer save index.  The users of this index will be
2723  // primarily DYNALLOC instructions.
2724  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2725  int FPSI = FI->getFramePointerSaveIndex();
2726
2727  // If the frame pointer save index hasn't been defined yet.
2728  if (!FPSI) {
2729    // Find out what the fix offset of the frame pointer save area.
2730    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2731
2732    // Allocate the frame index for frame pointer save area.
2733    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2734    // Save the result.
2735    FI->setFramePointerSaveIndex(FPSI);
2736  }
2737  return DAG.getFrameIndex(FPSI, PtrVT);
2738}
2739
2740SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2741                                         SelectionDAG &DAG,
2742                                         const PPCSubtarget &Subtarget) {
2743  // Get the inputs.
2744  SDValue Chain = Op.getOperand(0);
2745  SDValue Size  = Op.getOperand(1);
2746
2747  // Get the corect type for pointers.
2748  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2749  // Negate the size.
2750  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2751                                  DAG.getConstant(0, PtrVT), Size);
2752  // Construct a node for the frame pointer save index.
2753  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2754  // Build a DYNALLOC node.
2755  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2756  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2757  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2758}
2759
2760/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2761/// possible.
2762SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2763  // Not FP? Not a fsel.
2764  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2765      !Op.getOperand(2).getValueType().isFloatingPoint())
2766    return SDValue();
2767
2768  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2769
2770  // Cannot handle SETEQ/SETNE.
2771  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2772
2773  MVT ResVT = Op.getValueType();
2774  MVT CmpVT = Op.getOperand(0).getValueType();
2775  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2776  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2777
2778  // If the RHS of the comparison is a 0.0, we don't need to do the
2779  // subtraction at all.
2780  if (isFloatingPointZero(RHS))
2781    switch (CC) {
2782    default: break;       // SETUO etc aren't handled by fsel.
2783    case ISD::SETULT:
2784    case ISD::SETLT:
2785      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2786    case ISD::SETOGE:
2787    case ISD::SETGE:
2788      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2789        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2790      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2791    case ISD::SETUGT:
2792    case ISD::SETGT:
2793      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2794    case ISD::SETOLE:
2795    case ISD::SETLE:
2796      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2797        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2798      return DAG.getNode(PPCISD::FSEL, ResVT,
2799                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2800    }
2801
2802  SDValue Cmp;
2803  switch (CC) {
2804  default: break;       // SETUO etc aren't handled by fsel.
2805  case ISD::SETULT:
2806  case ISD::SETLT:
2807    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2808    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2809      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2810      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2811  case ISD::SETOGE:
2812  case ISD::SETGE:
2813    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2814    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2815      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2816      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2817  case ISD::SETUGT:
2818  case ISD::SETGT:
2819    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2820    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2821      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2822      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2823  case ISD::SETOLE:
2824  case ISD::SETLE:
2825    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2826    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2827      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2828      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2829  }
2830  return SDValue();
2831}
2832
2833// FIXME: Split this code up when LegalizeDAGTypes lands.
2834SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2835  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2836  SDValue Src = Op.getOperand(0);
2837  if (Src.getValueType() == MVT::f32)
2838    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2839
2840  SDValue Tmp;
2841  switch (Op.getValueType().getSimpleVT()) {
2842  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2843  case MVT::i32:
2844    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2845    break;
2846  case MVT::i64:
2847    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2848    break;
2849  }
2850
2851  // Convert the FP value to an int value through memory.
2852  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2853
2854  // Emit a store to the stack slot.
2855  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2856
2857  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2858  // add in a bias.
2859  if (Op.getValueType() == MVT::i32)
2860    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2861                        DAG.getConstant(4, FIPtr.getValueType()));
2862  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2863}
2864
2865SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2866                                                 SelectionDAG &DAG) {
2867  assert(Op.getValueType() == MVT::ppcf128);
2868  SDNode *Node = Op.getNode();
2869  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2870  assert(Node->getOperand(0).getNode()->getOpcode() == ISD::BUILD_PAIR);
2871  SDValue Lo = Node->getOperand(0).getNode()->getOperand(0);
2872  SDValue Hi = Node->getOperand(0).getNode()->getOperand(1);
2873
2874  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2875  // of the long double, and puts FPSCR back the way it was.  We do not
2876  // actually model FPSCR.
2877  std::vector<MVT> NodeTys;
2878  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2879
2880  NodeTys.push_back(MVT::f64);   // Return register
2881  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2882  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2883  MFFSreg = Result.getValue(0);
2884  InFlag = Result.getValue(1);
2885
2886  NodeTys.clear();
2887  NodeTys.push_back(MVT::Flag);   // Returns a flag
2888  Ops[0] = DAG.getConstant(31, MVT::i32);
2889  Ops[1] = InFlag;
2890  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2891  InFlag = Result.getValue(0);
2892
2893  NodeTys.clear();
2894  NodeTys.push_back(MVT::Flag);   // Returns a flag
2895  Ops[0] = DAG.getConstant(30, MVT::i32);
2896  Ops[1] = InFlag;
2897  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2898  InFlag = Result.getValue(0);
2899
2900  NodeTys.clear();
2901  NodeTys.push_back(MVT::f64);    // result of add
2902  NodeTys.push_back(MVT::Flag);   // Returns a flag
2903  Ops[0] = Lo;
2904  Ops[1] = Hi;
2905  Ops[2] = InFlag;
2906  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2907  FPreg = Result.getValue(0);
2908  InFlag = Result.getValue(1);
2909
2910  NodeTys.clear();
2911  NodeTys.push_back(MVT::f64);
2912  Ops[0] = DAG.getConstant(1, MVT::i32);
2913  Ops[1] = MFFSreg;
2914  Ops[2] = FPreg;
2915  Ops[3] = InFlag;
2916  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2917  FPreg = Result.getValue(0);
2918
2919  // We know the low half is about to be thrown away, so just use something
2920  // convenient.
2921  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2922}
2923
2924SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2925  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2926  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2927    return SDValue();
2928
2929  if (Op.getOperand(0).getValueType() == MVT::i64) {
2930    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2931    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2932    if (Op.getValueType() == MVT::f32)
2933      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2934    return FP;
2935  }
2936
2937  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2938         "Unhandled SINT_TO_FP type in custom expander!");
2939  // Since we only generate this in 64-bit mode, we can take advantage of
2940  // 64-bit registers.  In particular, sign extend the input value into the
2941  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2942  // then lfd it and fcfid it.
2943  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2944  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2945  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2946  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2947
2948  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2949                                Op.getOperand(0));
2950
2951  // STD the extended value into the stack slot.
2952  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2953                       MachineMemOperand::MOStore, 0, 8, 8);
2954  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2955                                DAG.getEntryNode(), Ext64, FIdx,
2956                                DAG.getMemOperand(MO));
2957  // Load the value as a double.
2958  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2959
2960  // FCFID it and return it.
2961  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2962  if (Op.getValueType() == MVT::f32)
2963    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2964  return FP;
2965}
2966
2967SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2968  /*
2969   The rounding mode is in bits 30:31 of FPSR, and has the following
2970   settings:
2971     00 Round to nearest
2972     01 Round to 0
2973     10 Round to +inf
2974     11 Round to -inf
2975
2976  FLT_ROUNDS, on the other hand, expects the following:
2977    -1 Undefined
2978     0 Round to 0
2979     1 Round to nearest
2980     2 Round to +inf
2981     3 Round to -inf
2982
2983  To perform the conversion, we do:
2984    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2985  */
2986
2987  MachineFunction &MF = DAG.getMachineFunction();
2988  MVT VT = Op.getValueType();
2989  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2990  std::vector<MVT> NodeTys;
2991  SDValue MFFSreg, InFlag;
2992
2993  // Save FP Control Word to register
2994  NodeTys.push_back(MVT::f64);    // return register
2995  NodeTys.push_back(MVT::Flag);   // unused in this context
2996  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2997
2998  // Save FP register to stack slot
2999  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3000  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3001  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
3002                                 StackSlot, NULL, 0);
3003
3004  // Load FP Control Word from low 32 bits of stack slot.
3005  SDValue Four = DAG.getConstant(4, PtrVT);
3006  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
3007  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
3008
3009  // Transform as necessary
3010  SDValue CWD1 =
3011    DAG.getNode(ISD::AND, MVT::i32,
3012                CWD, DAG.getConstant(3, MVT::i32));
3013  SDValue CWD2 =
3014    DAG.getNode(ISD::SRL, MVT::i32,
3015                DAG.getNode(ISD::AND, MVT::i32,
3016                            DAG.getNode(ISD::XOR, MVT::i32,
3017                                        CWD, DAG.getConstant(3, MVT::i32)),
3018                            DAG.getConstant(3, MVT::i32)),
3019                DAG.getConstant(1, MVT::i8));
3020
3021  SDValue RetVal =
3022    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
3023
3024  return DAG.getNode((VT.getSizeInBits() < 16 ?
3025                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
3026}
3027
3028SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3029  MVT VT = Op.getValueType();
3030  unsigned BitWidth = VT.getSizeInBits();
3031  assert(Op.getNumOperands() == 3 &&
3032         VT == Op.getOperand(1).getValueType() &&
3033         "Unexpected SHL!");
3034
3035  // Expand into a bunch of logical ops.  Note that these ops
3036  // depend on the PPC behavior for oversized shift amounts.
3037  SDValue Lo = Op.getOperand(0);
3038  SDValue Hi = Op.getOperand(1);
3039  SDValue Amt = Op.getOperand(2);
3040  MVT AmtVT = Amt.getValueType();
3041
3042  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3043                               DAG.getConstant(BitWidth, AmtVT), Amt);
3044  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3045  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3046  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3047  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3048                               DAG.getConstant(-BitWidth, AmtVT));
3049  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3050  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3051  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3052  SDValue OutOps[] = { OutLo, OutHi };
3053  return DAG.getMergeValues(OutOps, 2);
3054}
3055
3056SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3057  MVT VT = Op.getValueType();
3058  unsigned BitWidth = VT.getSizeInBits();
3059  assert(Op.getNumOperands() == 3 &&
3060         VT == Op.getOperand(1).getValueType() &&
3061         "Unexpected SRL!");
3062
3063  // Expand into a bunch of logical ops.  Note that these ops
3064  // depend on the PPC behavior for oversized shift amounts.
3065  SDValue Lo = Op.getOperand(0);
3066  SDValue Hi = Op.getOperand(1);
3067  SDValue Amt = Op.getOperand(2);
3068  MVT AmtVT = Amt.getValueType();
3069
3070  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3071                               DAG.getConstant(BitWidth, AmtVT), Amt);
3072  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3073  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3074  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3075  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3076                               DAG.getConstant(-BitWidth, AmtVT));
3077  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3078  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3079  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3080  SDValue OutOps[] = { OutLo, OutHi };
3081  return DAG.getMergeValues(OutOps, 2);
3082}
3083
3084SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3085  MVT VT = Op.getValueType();
3086  unsigned BitWidth = VT.getSizeInBits();
3087  assert(Op.getNumOperands() == 3 &&
3088         VT == Op.getOperand(1).getValueType() &&
3089         "Unexpected SRA!");
3090
3091  // Expand into a bunch of logical ops, followed by a select_cc.
3092  SDValue Lo = Op.getOperand(0);
3093  SDValue Hi = Op.getOperand(1);
3094  SDValue Amt = Op.getOperand(2);
3095  MVT AmtVT = Amt.getValueType();
3096
3097  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3098                               DAG.getConstant(BitWidth, AmtVT), Amt);
3099  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3100  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3101  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3102  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3103                               DAG.getConstant(-BitWidth, AmtVT));
3104  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3105  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3106  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3107                                    Tmp4, Tmp6, ISD::SETLE);
3108  SDValue OutOps[] = { OutLo, OutHi };
3109  return DAG.getMergeValues(OutOps, 2);
3110}
3111
3112//===----------------------------------------------------------------------===//
3113// Vector related lowering.
3114//
3115
3116// If this is a vector of constants or undefs, get the bits.  A bit in
3117// UndefBits is set if the corresponding element of the vector is an
3118// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3119// zero.   Return true if this is not an array of constants, false if it is.
3120//
3121static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3122                                       uint64_t UndefBits[2]) {
3123  // Start with zero'd results.
3124  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3125
3126  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3127  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3128    SDValue OpVal = BV->getOperand(i);
3129
3130    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3131    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3132
3133    uint64_t EltBits = 0;
3134    if (OpVal.getOpcode() == ISD::UNDEF) {
3135      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3136      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3137      continue;
3138    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3139      EltBits = CN->getZExtValue() & (~0U >> (32-EltBitSize));
3140    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3141      assert(CN->getValueType(0) == MVT::f32 &&
3142             "Only one legal FP vector type!");
3143      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3144    } else {
3145      // Nonconstant element.
3146      return true;
3147    }
3148
3149    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3150  }
3151
3152  //printf("%llx %llx  %llx %llx\n",
3153  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3154  return false;
3155}
3156
3157// If this is a splat (repetition) of a value across the whole vector, return
3158// the smallest size that splats it.  For example, "0x01010101010101..." is a
3159// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3160// SplatSize = 1 byte.
3161static bool isConstantSplat(const uint64_t Bits128[2],
3162                            const uint64_t Undef128[2],
3163                            unsigned &SplatBits, unsigned &SplatUndef,
3164                            unsigned &SplatSize) {
3165
3166  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3167  // the same as the lower 64-bits, ignoring undefs.
3168  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3169    return false;  // Can't be a splat if two pieces don't match.
3170
3171  uint64_t Bits64  = Bits128[0] | Bits128[1];
3172  uint64_t Undef64 = Undef128[0] & Undef128[1];
3173
3174  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3175  // undefs.
3176  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3177    return false;  // Can't be a splat if two pieces don't match.
3178
3179  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3180  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3181
3182  // If the top 16-bits are different than the lower 16-bits, ignoring
3183  // undefs, we have an i32 splat.
3184  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3185    SplatBits = Bits32;
3186    SplatUndef = Undef32;
3187    SplatSize = 4;
3188    return true;
3189  }
3190
3191  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3192  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3193
3194  // If the top 8-bits are different than the lower 8-bits, ignoring
3195  // undefs, we have an i16 splat.
3196  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3197    SplatBits = Bits16;
3198    SplatUndef = Undef16;
3199    SplatSize = 2;
3200    return true;
3201  }
3202
3203  // Otherwise, we have an 8-bit splat.
3204  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3205  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3206  SplatSize = 1;
3207  return true;
3208}
3209
3210/// BuildSplatI - Build a canonical splati of Val with an element size of
3211/// SplatSize.  Cast the result to VT.
3212static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3213                             SelectionDAG &DAG) {
3214  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3215
3216  static const MVT VTys[] = { // canonical VT to use for each size.
3217    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3218  };
3219
3220  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3221
3222  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3223  if (Val == -1)
3224    SplatSize = 1;
3225
3226  MVT CanonicalVT = VTys[SplatSize-1];
3227
3228  // Build a canonical splat for this value.
3229  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3230  SmallVector<SDValue, 8> Ops;
3231  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3232  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3233                              &Ops[0], Ops.size());
3234  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3235}
3236
3237/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3238/// specified intrinsic ID.
3239static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3240                                  SelectionDAG &DAG,
3241                                  MVT DestVT = MVT::Other) {
3242  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3243  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3244                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3245}
3246
3247/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3248/// specified intrinsic ID.
3249static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3250                                  SDValue Op2, SelectionDAG &DAG,
3251                                  MVT DestVT = MVT::Other) {
3252  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3253  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3254                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3255}
3256
3257
3258/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3259/// amount.  The result has the specified value type.
3260static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3261                             MVT VT, SelectionDAG &DAG) {
3262  // Force LHS/RHS to be the right type.
3263  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3264  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3265
3266  SDValue Ops[16];
3267  for (unsigned i = 0; i != 16; ++i)
3268    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3269  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3270                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3271  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3272}
3273
3274// If this is a case we can't handle, return null and let the default
3275// expansion code take care of it.  If we CAN select this case, and if it
3276// selects to a single instruction, return Op.  Otherwise, if we can codegen
3277// this case more efficiently than a constant pool load, lower it to the
3278// sequence of ops that should be used.
3279SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3280                                               SelectionDAG &DAG) {
3281  // If this is a vector of constants or undefs, get the bits.  A bit in
3282  // UndefBits is set if the corresponding element of the vector is an
3283  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3284  // zero.
3285  uint64_t VectorBits[2];
3286  uint64_t UndefBits[2];
3287  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
3288    return SDValue();   // Not a constant vector.
3289
3290  // If this is a splat (repetition) of a value across the whole vector, return
3291  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3292  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3293  // SplatSize = 1 byte.
3294  unsigned SplatBits, SplatUndef, SplatSize;
3295  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3296    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3297
3298    // First, handle single instruction cases.
3299
3300    // All zeros?
3301    if (SplatBits == 0) {
3302      // Canonicalize all zero vectors to be v4i32.
3303      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3304        SDValue Z = DAG.getConstant(0, MVT::i32);
3305        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3306        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3307      }
3308      return Op;
3309    }
3310
3311    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3312    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3313    if (SextVal >= -16 && SextVal <= 15)
3314      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3315
3316
3317    // Two instruction sequences.
3318
3319    // If this value is in the range [-32,30] and is even, use:
3320    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3321    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3322      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3323      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3324      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3325    }
3326
3327    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3328    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3329    // for fneg/fabs.
3330    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3331      // Make -1 and vspltisw -1:
3332      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3333
3334      // Make the VSLW intrinsic, computing 0x8000_0000.
3335      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3336                                       OnesV, DAG);
3337
3338      // xor by OnesV to invert it.
3339      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3340      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3341    }
3342
3343    // Check to see if this is a wide variety of vsplti*, binop self cases.
3344    unsigned SplatBitSize = SplatSize*8;
3345    static const signed char SplatCsts[] = {
3346      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3347      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3348    };
3349
3350    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3351      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3352      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3353      int i = SplatCsts[idx];
3354
3355      // Figure out what shift amount will be used by altivec if shifted by i in
3356      // this splat size.
3357      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3358
3359      // vsplti + shl self.
3360      if (SextVal == (i << (int)TypeShiftAmt)) {
3361        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3362        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3363          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3364          Intrinsic::ppc_altivec_vslw
3365        };
3366        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3367        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3368      }
3369
3370      // vsplti + srl self.
3371      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3372        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3373        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3374          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3375          Intrinsic::ppc_altivec_vsrw
3376        };
3377        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3378        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3379      }
3380
3381      // vsplti + sra self.
3382      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3383        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3384        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3385          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3386          Intrinsic::ppc_altivec_vsraw
3387        };
3388        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3389        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3390      }
3391
3392      // vsplti + rol self.
3393      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3394                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3395        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3396        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3397          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3398          Intrinsic::ppc_altivec_vrlw
3399        };
3400        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3401        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3402      }
3403
3404      // t = vsplti c, result = vsldoi t, t, 1
3405      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3406        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3407        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3408      }
3409      // t = vsplti c, result = vsldoi t, t, 2
3410      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3411        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3412        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3413      }
3414      // t = vsplti c, result = vsldoi t, t, 3
3415      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3416        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3417        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3418      }
3419    }
3420
3421    // Three instruction sequences.
3422
3423    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3424    if (SextVal >= 0 && SextVal <= 31) {
3425      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3426      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3427      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3428      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3429    }
3430    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3431    if (SextVal >= -31 && SextVal <= 0) {
3432      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3433      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3434      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3435      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3436    }
3437  }
3438
3439  return SDValue();
3440}
3441
3442/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3443/// the specified operations to build the shuffle.
3444static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3445                                        SDValue RHS, SelectionDAG &DAG) {
3446  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3447  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3448  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3449
3450  enum {
3451    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3452    OP_VMRGHW,
3453    OP_VMRGLW,
3454    OP_VSPLTISW0,
3455    OP_VSPLTISW1,
3456    OP_VSPLTISW2,
3457    OP_VSPLTISW3,
3458    OP_VSLDOI4,
3459    OP_VSLDOI8,
3460    OP_VSLDOI12
3461  };
3462
3463  if (OpNum == OP_COPY) {
3464    if (LHSID == (1*9+2)*9+3) return LHS;
3465    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3466    return RHS;
3467  }
3468
3469  SDValue OpLHS, OpRHS;
3470  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3471  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3472
3473  unsigned ShufIdxs[16];
3474  switch (OpNum) {
3475  default: assert(0 && "Unknown i32 permute!");
3476  case OP_VMRGHW:
3477    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3478    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3479    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3480    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3481    break;
3482  case OP_VMRGLW:
3483    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3484    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3485    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3486    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3487    break;
3488  case OP_VSPLTISW0:
3489    for (unsigned i = 0; i != 16; ++i)
3490      ShufIdxs[i] = (i&3)+0;
3491    break;
3492  case OP_VSPLTISW1:
3493    for (unsigned i = 0; i != 16; ++i)
3494      ShufIdxs[i] = (i&3)+4;
3495    break;
3496  case OP_VSPLTISW2:
3497    for (unsigned i = 0; i != 16; ++i)
3498      ShufIdxs[i] = (i&3)+8;
3499    break;
3500  case OP_VSPLTISW3:
3501    for (unsigned i = 0; i != 16; ++i)
3502      ShufIdxs[i] = (i&3)+12;
3503    break;
3504  case OP_VSLDOI4:
3505    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3506  case OP_VSLDOI8:
3507    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3508  case OP_VSLDOI12:
3509    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3510  }
3511  SDValue Ops[16];
3512  for (unsigned i = 0; i != 16; ++i)
3513    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3514
3515  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3516                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3517}
3518
3519/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3520/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3521/// return the code it can be lowered into.  Worst case, it can always be
3522/// lowered into a vperm.
3523SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3524                                                 SelectionDAG &DAG) {
3525  SDValue V1 = Op.getOperand(0);
3526  SDValue V2 = Op.getOperand(1);
3527  SDValue PermMask = Op.getOperand(2);
3528
3529  // Cases that are handled by instructions that take permute immediates
3530  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3531  // selected by the instruction selector.
3532  if (V2.getOpcode() == ISD::UNDEF) {
3533    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
3534        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
3535        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
3536        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
3537        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
3538        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
3539        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
3540        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
3541        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
3542        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
3543        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
3544        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
3545      return Op;
3546    }
3547  }
3548
3549  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3550  // and produce a fixed permutation.  If any of these match, do not lower to
3551  // VPERM.
3552  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
3553      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
3554      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
3555      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
3556      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
3557      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
3558      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
3559      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
3560      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
3561    return Op;
3562
3563  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3564  // perfect shuffle table to emit an optimal matching sequence.
3565  unsigned PFIndexes[4];
3566  bool isFourElementShuffle = true;
3567  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3568    unsigned EltNo = 8;   // Start out undef.
3569    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3570      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3571        continue;   // Undef, ignore it.
3572
3573      unsigned ByteSource =
3574        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getZExtValue();
3575      if ((ByteSource & 3) != j) {
3576        isFourElementShuffle = false;
3577        break;
3578      }
3579
3580      if (EltNo == 8) {
3581        EltNo = ByteSource/4;
3582      } else if (EltNo != ByteSource/4) {
3583        isFourElementShuffle = false;
3584        break;
3585      }
3586    }
3587    PFIndexes[i] = EltNo;
3588  }
3589
3590  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3591  // perfect shuffle vector to determine if it is cost effective to do this as
3592  // discrete instructions, or whether we should use a vperm.
3593  if (isFourElementShuffle) {
3594    // Compute the index in the perfect shuffle table.
3595    unsigned PFTableIndex =
3596      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3597
3598    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3599    unsigned Cost  = (PFEntry >> 30);
3600
3601    // Determining when to avoid vperm is tricky.  Many things affect the cost
3602    // of vperm, particularly how many times the perm mask needs to be computed.
3603    // For example, if the perm mask can be hoisted out of a loop or is already
3604    // used (perhaps because there are multiple permutes with the same shuffle
3605    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3606    // the loop requires an extra register.
3607    //
3608    // As a compromise, we only emit discrete instructions if the shuffle can be
3609    // generated in 3 or fewer operations.  When we have loop information
3610    // available, if this block is within a loop, we should avoid using vperm
3611    // for 3-operation perms and use a constant pool load instead.
3612    if (Cost < 3)
3613      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3614  }
3615
3616  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3617  // vector that will get spilled to the constant pool.
3618  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3619
3620  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3621  // that it is in input element units, not in bytes.  Convert now.
3622  MVT EltVT = V1.getValueType().getVectorElementType();
3623  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3624
3625  SmallVector<SDValue, 16> ResultMask;
3626  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3627    unsigned SrcElt;
3628    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3629      SrcElt = 0;
3630    else
3631      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getZExtValue();
3632
3633    for (unsigned j = 0; j != BytesPerElement; ++j)
3634      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3635                                           MVT::i8));
3636  }
3637
3638  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3639                                    &ResultMask[0], ResultMask.size());
3640  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3641}
3642
3643/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3644/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3645/// information about the intrinsic.
3646static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3647                                  bool &isDot) {
3648  unsigned IntrinsicID =
3649    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3650  CompareOpc = -1;
3651  isDot = false;
3652  switch (IntrinsicID) {
3653  default: return false;
3654    // Comparison predicates.
3655  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3656  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3657  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3658  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3659  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3660  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3661  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3662  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3663  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3664  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3665  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3666  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3667  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3668
3669    // Normal Comparisons.
3670  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3671  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3672  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3673  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3674  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3675  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3676  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3677  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3678  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3679  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3680  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3681  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3682  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3683  }
3684  return true;
3685}
3686
3687/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3688/// lower, do it, otherwise return null.
3689SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3690                                                     SelectionDAG &DAG) {
3691  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3692  // opcode number of the comparison.
3693  int CompareOpc;
3694  bool isDot;
3695  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3696    return SDValue();    // Don't custom lower most intrinsics.
3697
3698  // If this is a non-dot comparison, make the VCMP node and we are done.
3699  if (!isDot) {
3700    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3701                                Op.getOperand(1), Op.getOperand(2),
3702                                DAG.getConstant(CompareOpc, MVT::i32));
3703    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3704  }
3705
3706  // Create the PPCISD altivec 'dot' comparison node.
3707  SDValue Ops[] = {
3708    Op.getOperand(2),  // LHS
3709    Op.getOperand(3),  // RHS
3710    DAG.getConstant(CompareOpc, MVT::i32)
3711  };
3712  std::vector<MVT> VTs;
3713  VTs.push_back(Op.getOperand(2).getValueType());
3714  VTs.push_back(MVT::Flag);
3715  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3716
3717  // Now that we have the comparison, emit a copy from the CR to a GPR.
3718  // This is flagged to the above dot comparison.
3719  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3720                                DAG.getRegister(PPC::CR6, MVT::i32),
3721                                CompNode.getValue(1));
3722
3723  // Unpack the result based on how the target uses it.
3724  unsigned BitNo;   // Bit # of CR6.
3725  bool InvertBit;   // Invert result?
3726  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3727  default:  // Can't happen, don't crash on invalid number though.
3728  case 0:   // Return the value of the EQ bit of CR6.
3729    BitNo = 0; InvertBit = false;
3730    break;
3731  case 1:   // Return the inverted value of the EQ bit of CR6.
3732    BitNo = 0; InvertBit = true;
3733    break;
3734  case 2:   // Return the value of the LT bit of CR6.
3735    BitNo = 2; InvertBit = false;
3736    break;
3737  case 3:   // Return the inverted value of the LT bit of CR6.
3738    BitNo = 2; InvertBit = true;
3739    break;
3740  }
3741
3742  // Shift the bit into the low position.
3743  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3744                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3745  // Isolate the bit.
3746  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3747                      DAG.getConstant(1, MVT::i32));
3748
3749  // If we are supposed to, toggle the bit.
3750  if (InvertBit)
3751    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3752                        DAG.getConstant(1, MVT::i32));
3753  return Flags;
3754}
3755
3756SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3757                                                   SelectionDAG &DAG) {
3758  // Create a stack slot that is 16-byte aligned.
3759  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3760  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3761  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3762  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3763
3764  // Store the input value into Value#0 of the stack slot.
3765  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3766                                 Op.getOperand(0), FIdx, NULL, 0);
3767  // Load it out.
3768  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3769}
3770
3771SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3772  if (Op.getValueType() == MVT::v4i32) {
3773    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3774
3775    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3776    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3777
3778    SDValue RHSSwap =   // = vrlw RHS, 16
3779      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3780
3781    // Shrinkify inputs to v8i16.
3782    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3783    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3784    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3785
3786    // Low parts multiplied together, generating 32-bit results (we ignore the
3787    // top parts).
3788    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3789                                        LHS, RHS, DAG, MVT::v4i32);
3790
3791    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3792                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3793    // Shift the high parts up 16 bits.
3794    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3795    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3796  } else if (Op.getValueType() == MVT::v8i16) {
3797    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3798
3799    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3800
3801    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3802                            LHS, RHS, Zero, DAG);
3803  } else if (Op.getValueType() == MVT::v16i8) {
3804    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3805
3806    // Multiply the even 8-bit parts, producing 16-bit sums.
3807    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3808                                           LHS, RHS, DAG, MVT::v8i16);
3809    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3810
3811    // Multiply the odd 8-bit parts, producing 16-bit sums.
3812    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3813                                          LHS, RHS, DAG, MVT::v8i16);
3814    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3815
3816    // Merge the results together.
3817    SDValue Ops[16];
3818    for (unsigned i = 0; i != 8; ++i) {
3819      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3820      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3821    }
3822    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3823                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3824  } else {
3825    assert(0 && "Unknown mul to lower!");
3826    abort();
3827  }
3828}
3829
3830/// LowerOperation - Provide custom lowering hooks for some operations.
3831///
3832SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3833  switch (Op.getOpcode()) {
3834  default: assert(0 && "Wasn't expecting to be able to lower this!");
3835  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3836  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3837  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3838  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3839  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3840  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
3841  case ISD::VASTART:
3842    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3843                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3844
3845  case ISD::VAARG:
3846    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3847                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3848
3849  case ISD::FORMAL_ARGUMENTS:
3850    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3851                                 VarArgsStackOffset, VarArgsNumGPR,
3852                                 VarArgsNumFPR, PPCSubTarget);
3853
3854  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3855                                                 getTargetMachine());
3856  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3857  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3858  case ISD::DYNAMIC_STACKALLOC:
3859    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3860
3861  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3862  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3863  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3864  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3865  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3866
3867  // Lower 64-bit shifts.
3868  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3869  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3870  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3871
3872  // Vector-related lowering.
3873  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3874  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3875  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3876  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3877  case ISD::MUL:                return LowerMUL(Op, DAG);
3878
3879  // Frame & Return address.
3880  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3881  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3882  }
3883  return SDValue();
3884}
3885
3886SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3887  switch (N->getOpcode()) {
3888  default: assert(0 && "Wasn't expecting to be able to lower this!");
3889  case ISD::FP_TO_SINT: {
3890    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3891    // Use MERGE_VALUES to drop the chain result value and get a node with one
3892    // result.  This requires turning off getMergeValues simplification, since
3893    // otherwise it will give us Res back.
3894    return DAG.getMergeValues(&Res, 1, false).getNode();
3895  }
3896  }
3897}
3898
3899
3900//===----------------------------------------------------------------------===//
3901//  Other Lowering Code
3902//===----------------------------------------------------------------------===//
3903
3904MachineBasicBlock *
3905PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3906                                    bool is64bit, unsigned BinOpcode) {
3907  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3908  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3909
3910  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3911  MachineFunction *F = BB->getParent();
3912  MachineFunction::iterator It = BB;
3913  ++It;
3914
3915  unsigned dest = MI->getOperand(0).getReg();
3916  unsigned ptrA = MI->getOperand(1).getReg();
3917  unsigned ptrB = MI->getOperand(2).getReg();
3918  unsigned incr = MI->getOperand(3).getReg();
3919
3920  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3921  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3922  F->insert(It, loopMBB);
3923  F->insert(It, exitMBB);
3924  exitMBB->transferSuccessors(BB);
3925
3926  MachineRegisterInfo &RegInfo = F->getRegInfo();
3927  unsigned TmpReg = (!BinOpcode) ? incr :
3928    RegInfo.createVirtualRegister(
3929       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3930                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3931
3932  //  thisMBB:
3933  //   ...
3934  //   fallthrough --> loopMBB
3935  BB->addSuccessor(loopMBB);
3936
3937  //  loopMBB:
3938  //   l[wd]arx dest, ptr
3939  //   add r0, dest, incr
3940  //   st[wd]cx. r0, ptr
3941  //   bne- loopMBB
3942  //   fallthrough --> exitMBB
3943  BB = loopMBB;
3944  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3945    .addReg(ptrA).addReg(ptrB);
3946  if (BinOpcode)
3947    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3948  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3949    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3950  BuildMI(BB, TII->get(PPC::BCC))
3951    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3952  BB->addSuccessor(loopMBB);
3953  BB->addSuccessor(exitMBB);
3954
3955  //  exitMBB:
3956  //   ...
3957  BB = exitMBB;
3958  return BB;
3959}
3960
3961MachineBasicBlock *
3962PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3963                                            MachineBasicBlock *BB,
3964                                            bool is8bit,    // operation
3965                                            unsigned BinOpcode) {
3966  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3967  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3968  // In 64 bit mode we have to use 64 bits for addresses, even though the
3969  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3970  // registers without caring whether they're 32 or 64, but here we're
3971  // doing actual arithmetic on the addresses.
3972  bool is64bit = PPCSubTarget.isPPC64();
3973
3974  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3975  MachineFunction *F = BB->getParent();
3976  MachineFunction::iterator It = BB;
3977  ++It;
3978
3979  unsigned dest = MI->getOperand(0).getReg();
3980  unsigned ptrA = MI->getOperand(1).getReg();
3981  unsigned ptrB = MI->getOperand(2).getReg();
3982  unsigned incr = MI->getOperand(3).getReg();
3983
3984  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3985  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3986  F->insert(It, loopMBB);
3987  F->insert(It, exitMBB);
3988  exitMBB->transferSuccessors(BB);
3989
3990  MachineRegisterInfo &RegInfo = F->getRegInfo();
3991  const TargetRegisterClass *RC =
3992    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3993              (const TargetRegisterClass *) &PPC::GPRCRegClass;
3994  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3995  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3996  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3997  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3998  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3999  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4000  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4001  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4002  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4003  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4004  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4005  unsigned Ptr1Reg;
4006  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4007
4008  //  thisMBB:
4009  //   ...
4010  //   fallthrough --> loopMBB
4011  BB->addSuccessor(loopMBB);
4012
4013  // The 4-byte load must be aligned, while a char or short may be
4014  // anywhere in the word.  Hence all this nasty bookkeeping code.
4015  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4016  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4017  //   xori shift, shift1, 24 [16]
4018  //   rlwinm ptr, ptr1, 0, 0, 29
4019  //   slw incr2, incr, shift
4020  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4021  //   slw mask, mask2, shift
4022  //  loopMBB:
4023  //   lwarx tmpDest, ptr
4024  //   add tmp, tmpDest, incr2
4025  //   andc tmp2, tmpDest, mask
4026  //   and tmp3, tmp, mask
4027  //   or tmp4, tmp3, tmp2
4028  //   stwcx. tmp4, ptr
4029  //   bne- loopMBB
4030  //   fallthrough --> exitMBB
4031  //   srw dest, tmpDest, shift
4032
4033  if (ptrA!=PPC::R0) {
4034    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4035    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4036      .addReg(ptrA).addReg(ptrB);
4037  } else {
4038    Ptr1Reg = ptrB;
4039  }
4040  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4041      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4042  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4043      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4044  if (is64bit)
4045    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4046      .addReg(Ptr1Reg).addImm(0).addImm(61);
4047  else
4048    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4049      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4050  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4051      .addReg(incr).addReg(ShiftReg);
4052  if (is8bit)
4053    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4054  else {
4055    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4056    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4057  }
4058  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4059      .addReg(Mask2Reg).addReg(ShiftReg);
4060
4061  BB = loopMBB;
4062  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4063    .addReg(PPC::R0).addReg(PtrReg);
4064  if (BinOpcode)
4065    BuildMI(BB, TII->get(BinOpcode), TmpReg)
4066      .addReg(Incr2Reg).addReg(TmpDestReg);
4067  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4068    .addReg(TmpDestReg).addReg(MaskReg);
4069  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4070    .addReg(TmpReg).addReg(MaskReg);
4071  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4072    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4073  BuildMI(BB, TII->get(PPC::STWCX))
4074    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4075  BuildMI(BB, TII->get(PPC::BCC))
4076    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4077  BB->addSuccessor(loopMBB);
4078  BB->addSuccessor(exitMBB);
4079
4080  //  exitMBB:
4081  //   ...
4082  BB = exitMBB;
4083  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4084  return BB;
4085}
4086
4087MachineBasicBlock *
4088PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4089                                               MachineBasicBlock *BB) {
4090  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4091
4092  // To "insert" these instructions we actually have to insert their
4093  // control-flow patterns.
4094  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4095  MachineFunction::iterator It = BB;
4096  ++It;
4097
4098  MachineFunction *F = BB->getParent();
4099
4100  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4101      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4102      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4103      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4104      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4105
4106    // The incoming instruction knows the destination vreg to set, the
4107    // condition code register to branch on, the true/false values to
4108    // select between, and a branch opcode to use.
4109
4110    //  thisMBB:
4111    //  ...
4112    //   TrueVal = ...
4113    //   cmpTY ccX, r1, r2
4114    //   bCC copy1MBB
4115    //   fallthrough --> copy0MBB
4116    MachineBasicBlock *thisMBB = BB;
4117    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4118    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4119    unsigned SelectPred = MI->getOperand(4).getImm();
4120    BuildMI(BB, TII->get(PPC::BCC))
4121      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4122    F->insert(It, copy0MBB);
4123    F->insert(It, sinkMBB);
4124    // Update machine-CFG edges by transferring all successors of the current
4125    // block to the new block which will contain the Phi node for the select.
4126    sinkMBB->transferSuccessors(BB);
4127    // Next, add the true and fallthrough blocks as its successors.
4128    BB->addSuccessor(copy0MBB);
4129    BB->addSuccessor(sinkMBB);
4130
4131    //  copy0MBB:
4132    //   %FalseValue = ...
4133    //   # fallthrough to sinkMBB
4134    BB = copy0MBB;
4135
4136    // Update machine-CFG edges
4137    BB->addSuccessor(sinkMBB);
4138
4139    //  sinkMBB:
4140    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4141    //  ...
4142    BB = sinkMBB;
4143    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4144      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4145      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4146  }
4147  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4148    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4149  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4150    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4151  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4152    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4153  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4154    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4155
4156  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4157    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4158  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4159    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4160  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4161    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4162  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4163    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4164
4165  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4166    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4167  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4168    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4169  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4170    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4171  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4172    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4173
4174  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4175    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4176  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4177    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4178  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4179    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4180  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4181    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4182
4183  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4184    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4185  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4186    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4187  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4188    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4189  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4190    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4191
4192  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4193    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4194  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4195    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4196  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4197    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4198  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4199    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4200
4201  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4202    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4203  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4204    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4205  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4206    BB = EmitAtomicBinary(MI, BB, false, 0);
4207  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4208    BB = EmitAtomicBinary(MI, BB, true, 0);
4209
4210  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4211           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4212    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4213
4214    unsigned dest   = MI->getOperand(0).getReg();
4215    unsigned ptrA   = MI->getOperand(1).getReg();
4216    unsigned ptrB   = MI->getOperand(2).getReg();
4217    unsigned oldval = MI->getOperand(3).getReg();
4218    unsigned newval = MI->getOperand(4).getReg();
4219
4220    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4221    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4222    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4223    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4224    F->insert(It, loop1MBB);
4225    F->insert(It, loop2MBB);
4226    F->insert(It, midMBB);
4227    F->insert(It, exitMBB);
4228    exitMBB->transferSuccessors(BB);
4229
4230    //  thisMBB:
4231    //   ...
4232    //   fallthrough --> loopMBB
4233    BB->addSuccessor(loop1MBB);
4234
4235    // loop1MBB:
4236    //   l[wd]arx dest, ptr
4237    //   cmp[wd] dest, oldval
4238    //   bne- midMBB
4239    // loop2MBB:
4240    //   st[wd]cx. newval, ptr
4241    //   bne- loopMBB
4242    //   b exitBB
4243    // midMBB:
4244    //   st[wd]cx. dest, ptr
4245    // exitBB:
4246    BB = loop1MBB;
4247    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4248      .addReg(ptrA).addReg(ptrB);
4249    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4250      .addReg(oldval).addReg(dest);
4251    BuildMI(BB, TII->get(PPC::BCC))
4252      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4253    BB->addSuccessor(loop2MBB);
4254    BB->addSuccessor(midMBB);
4255
4256    BB = loop2MBB;
4257    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4258      .addReg(newval).addReg(ptrA).addReg(ptrB);
4259    BuildMI(BB, TII->get(PPC::BCC))
4260      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4261    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4262    BB->addSuccessor(loop1MBB);
4263    BB->addSuccessor(exitMBB);
4264
4265    BB = midMBB;
4266    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4267      .addReg(dest).addReg(ptrA).addReg(ptrB);
4268    BB->addSuccessor(exitMBB);
4269
4270    //  exitMBB:
4271    //   ...
4272    BB = exitMBB;
4273  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4274             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4275    // We must use 64-bit registers for addresses when targeting 64-bit,
4276    // since we're actually doing arithmetic on them.  Other registers
4277    // can be 32-bit.
4278    bool is64bit = PPCSubTarget.isPPC64();
4279    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4280
4281    unsigned dest   = MI->getOperand(0).getReg();
4282    unsigned ptrA   = MI->getOperand(1).getReg();
4283    unsigned ptrB   = MI->getOperand(2).getReg();
4284    unsigned oldval = MI->getOperand(3).getReg();
4285    unsigned newval = MI->getOperand(4).getReg();
4286
4287    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4288    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4289    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4290    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4291    F->insert(It, loop1MBB);
4292    F->insert(It, loop2MBB);
4293    F->insert(It, midMBB);
4294    F->insert(It, exitMBB);
4295    exitMBB->transferSuccessors(BB);
4296
4297    MachineRegisterInfo &RegInfo = F->getRegInfo();
4298    const TargetRegisterClass *RC =
4299      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4300                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4301    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4302    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4303    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4304    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4305    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4306    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4307    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4308    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4309    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4310    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4311    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4312    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4313    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4314    unsigned Ptr1Reg;
4315    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4316    //  thisMBB:
4317    //   ...
4318    //   fallthrough --> loopMBB
4319    BB->addSuccessor(loop1MBB);
4320
4321    // The 4-byte load must be aligned, while a char or short may be
4322    // anywhere in the word.  Hence all this nasty bookkeeping code.
4323    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4324    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4325    //   xori shift, shift1, 24 [16]
4326    //   rlwinm ptr, ptr1, 0, 0, 29
4327    //   slw newval2, newval, shift
4328    //   slw oldval2, oldval,shift
4329    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4330    //   slw mask, mask2, shift
4331    //   and newval3, newval2, mask
4332    //   and oldval3, oldval2, mask
4333    // loop1MBB:
4334    //   lwarx tmpDest, ptr
4335    //   and tmp, tmpDest, mask
4336    //   cmpw tmp, oldval3
4337    //   bne- midMBB
4338    // loop2MBB:
4339    //   andc tmp2, tmpDest, mask
4340    //   or tmp4, tmp2, newval3
4341    //   stwcx. tmp4, ptr
4342    //   bne- loop1MBB
4343    //   b exitBB
4344    // midMBB:
4345    //   stwcx. tmpDest, ptr
4346    // exitBB:
4347    //   srw dest, tmpDest, shift
4348    if (ptrA!=PPC::R0) {
4349      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4350      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4351        .addReg(ptrA).addReg(ptrB);
4352    } else {
4353      Ptr1Reg = ptrB;
4354    }
4355    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4356        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4357    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4358        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4359    if (is64bit)
4360      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4361        .addReg(Ptr1Reg).addImm(0).addImm(61);
4362    else
4363      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4364        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4365    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
4366        .addReg(newval).addReg(ShiftReg);
4367    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
4368        .addReg(oldval).addReg(ShiftReg);
4369    if (is8bit)
4370      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4371    else {
4372      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4373      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4374    }
4375    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4376        .addReg(Mask2Reg).addReg(ShiftReg);
4377    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
4378        .addReg(NewVal2Reg).addReg(MaskReg);
4379    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
4380        .addReg(OldVal2Reg).addReg(MaskReg);
4381
4382    BB = loop1MBB;
4383    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4384        .addReg(PPC::R0).addReg(PtrReg);
4385    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
4386    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
4387        .addReg(TmpReg).addReg(OldVal3Reg);
4388    BuildMI(BB, TII->get(PPC::BCC))
4389        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4390    BB->addSuccessor(loop2MBB);
4391    BB->addSuccessor(midMBB);
4392
4393    BB = loop2MBB;
4394    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
4395    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
4396    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4397        .addReg(PPC::R0).addReg(PtrReg);
4398    BuildMI(BB, TII->get(PPC::BCC))
4399      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4400    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4401    BB->addSuccessor(loop1MBB);
4402    BB->addSuccessor(exitMBB);
4403
4404    BB = midMBB;
4405    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4406      .addReg(PPC::R0).addReg(PtrReg);
4407    BB->addSuccessor(exitMBB);
4408
4409    //  exitMBB:
4410    //   ...
4411    BB = exitMBB;
4412    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4413  } else {
4414    assert(0 && "Unexpected instr type to insert");
4415  }
4416
4417  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4418  return BB;
4419}
4420
4421//===----------------------------------------------------------------------===//
4422// Target Optimization Hooks
4423//===----------------------------------------------------------------------===//
4424
4425SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4426                                               DAGCombinerInfo &DCI) const {
4427  TargetMachine &TM = getTargetMachine();
4428  SelectionDAG &DAG = DCI.DAG;
4429  switch (N->getOpcode()) {
4430  default: break;
4431  case PPCISD::SHL:
4432    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4433      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4434        return N->getOperand(0);
4435    }
4436    break;
4437  case PPCISD::SRL:
4438    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4439      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4440        return N->getOperand(0);
4441    }
4442    break;
4443  case PPCISD::SRA:
4444    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4445      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4446          C->isAllOnesValue())    // -1 >>s V -> -1.
4447        return N->getOperand(0);
4448    }
4449    break;
4450
4451  case ISD::SINT_TO_FP:
4452    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4453      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4454        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4455        // We allow the src/dst to be either f32/f64, but the intermediate
4456        // type must be i64.
4457        if (N->getOperand(0).getValueType() == MVT::i64 &&
4458            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4459          SDValue Val = N->getOperand(0).getOperand(0);
4460          if (Val.getValueType() == MVT::f32) {
4461            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4462            DCI.AddToWorklist(Val.getNode());
4463          }
4464
4465          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4466          DCI.AddToWorklist(Val.getNode());
4467          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4468          DCI.AddToWorklist(Val.getNode());
4469          if (N->getValueType(0) == MVT::f32) {
4470            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4471                              DAG.getIntPtrConstant(0));
4472            DCI.AddToWorklist(Val.getNode());
4473          }
4474          return Val;
4475        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4476          // If the intermediate type is i32, we can avoid the load/store here
4477          // too.
4478        }
4479      }
4480    }
4481    break;
4482  case ISD::STORE:
4483    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4484    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4485        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4486        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4487        N->getOperand(1).getValueType() == MVT::i32 &&
4488        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4489      SDValue Val = N->getOperand(1).getOperand(0);
4490      if (Val.getValueType() == MVT::f32) {
4491        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4492        DCI.AddToWorklist(Val.getNode());
4493      }
4494      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4495      DCI.AddToWorklist(Val.getNode());
4496
4497      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4498                        N->getOperand(2), N->getOperand(3));
4499      DCI.AddToWorklist(Val.getNode());
4500      return Val;
4501    }
4502
4503    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4504    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4505        N->getOperand(1).getNode()->hasOneUse() &&
4506        (N->getOperand(1).getValueType() == MVT::i32 ||
4507         N->getOperand(1).getValueType() == MVT::i16)) {
4508      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4509      // Do an any-extend to 32-bits if this is a half-word input.
4510      if (BSwapOp.getValueType() == MVT::i16)
4511        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4512
4513      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4514                         N->getOperand(2), N->getOperand(3),
4515                         DAG.getValueType(N->getOperand(1).getValueType()));
4516    }
4517    break;
4518  case ISD::BSWAP:
4519    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4520    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4521        N->getOperand(0).hasOneUse() &&
4522        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4523      SDValue Load = N->getOperand(0);
4524      LoadSDNode *LD = cast<LoadSDNode>(Load);
4525      // Create the byte-swapping load.
4526      std::vector<MVT> VTs;
4527      VTs.push_back(MVT::i32);
4528      VTs.push_back(MVT::Other);
4529      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4530      SDValue Ops[] = {
4531        LD->getChain(),    // Chain
4532        LD->getBasePtr(),  // Ptr
4533        MO,                // MemOperand
4534        DAG.getValueType(N->getValueType(0)) // VT
4535      };
4536      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4537
4538      // If this is an i16 load, insert the truncate.
4539      SDValue ResVal = BSLoad;
4540      if (N->getValueType(0) == MVT::i16)
4541        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4542
4543      // First, combine the bswap away.  This makes the value produced by the
4544      // load dead.
4545      DCI.CombineTo(N, ResVal);
4546
4547      // Next, combine the load away, we give it a bogus result value but a real
4548      // chain result.  The result value is dead because the bswap is dead.
4549      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4550
4551      // Return N so it doesn't get rechecked!
4552      return SDValue(N, 0);
4553    }
4554
4555    break;
4556  case PPCISD::VCMP: {
4557    // If a VCMPo node already exists with exactly the same operands as this
4558    // node, use its result instead of this node (VCMPo computes both a CR6 and
4559    // a normal output).
4560    //
4561    if (!N->getOperand(0).hasOneUse() &&
4562        !N->getOperand(1).hasOneUse() &&
4563        !N->getOperand(2).hasOneUse()) {
4564
4565      // Scan all of the users of the LHS, looking for VCMPo's that match.
4566      SDNode *VCMPoNode = 0;
4567
4568      SDNode *LHSN = N->getOperand(0).getNode();
4569      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4570           UI != E; ++UI)
4571        if (UI->getOpcode() == PPCISD::VCMPo &&
4572            UI->getOperand(1) == N->getOperand(1) &&
4573            UI->getOperand(2) == N->getOperand(2) &&
4574            UI->getOperand(0) == N->getOperand(0)) {
4575          VCMPoNode = *UI;
4576          break;
4577        }
4578
4579      // If there is no VCMPo node, or if the flag value has a single use, don't
4580      // transform this.
4581      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4582        break;
4583
4584      // Look at the (necessarily single) use of the flag value.  If it has a
4585      // chain, this transformation is more complex.  Note that multiple things
4586      // could use the value result, which we should ignore.
4587      SDNode *FlagUser = 0;
4588      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4589           FlagUser == 0; ++UI) {
4590        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4591        SDNode *User = *UI;
4592        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4593          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4594            FlagUser = User;
4595            break;
4596          }
4597        }
4598      }
4599
4600      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4601      // give up for right now.
4602      if (FlagUser->getOpcode() == PPCISD::MFCR)
4603        return SDValue(VCMPoNode, 0);
4604    }
4605    break;
4606  }
4607  case ISD::BR_CC: {
4608    // If this is a branch on an altivec predicate comparison, lower this so
4609    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4610    // lowering is done pre-legalize, because the legalizer lowers the predicate
4611    // compare down to code that is difficult to reassemble.
4612    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4613    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4614    int CompareOpc;
4615    bool isDot;
4616
4617    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4618        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4619        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4620      assert(isDot && "Can't compare against a vector result!");
4621
4622      // If this is a comparison against something other than 0/1, then we know
4623      // that the condition is never/always true.
4624      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4625      if (Val != 0 && Val != 1) {
4626        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4627          return N->getOperand(0);
4628        // Always !=, turn it into an unconditional branch.
4629        return DAG.getNode(ISD::BR, MVT::Other,
4630                           N->getOperand(0), N->getOperand(4));
4631      }
4632
4633      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4634
4635      // Create the PPCISD altivec 'dot' comparison node.
4636      std::vector<MVT> VTs;
4637      SDValue Ops[] = {
4638        LHS.getOperand(2),  // LHS of compare
4639        LHS.getOperand(3),  // RHS of compare
4640        DAG.getConstant(CompareOpc, MVT::i32)
4641      };
4642      VTs.push_back(LHS.getOperand(2).getValueType());
4643      VTs.push_back(MVT::Flag);
4644      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4645
4646      // Unpack the result based on how the target uses it.
4647      PPC::Predicate CompOpc;
4648      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4649      default:  // Can't happen, don't crash on invalid number though.
4650      case 0:   // Branch on the value of the EQ bit of CR6.
4651        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4652        break;
4653      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4654        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4655        break;
4656      case 2:   // Branch on the value of the LT bit of CR6.
4657        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4658        break;
4659      case 3:   // Branch on the inverted value of the LT bit of CR6.
4660        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4661        break;
4662      }
4663
4664      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4665                         DAG.getConstant(CompOpc, MVT::i32),
4666                         DAG.getRegister(PPC::CR6, MVT::i32),
4667                         N->getOperand(4), CompNode.getValue(1));
4668    }
4669    break;
4670  }
4671  }
4672
4673  return SDValue();
4674}
4675
4676//===----------------------------------------------------------------------===//
4677// Inline Assembly Support
4678//===----------------------------------------------------------------------===//
4679
4680void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4681                                                       const APInt &Mask,
4682                                                       APInt &KnownZero,
4683                                                       APInt &KnownOne,
4684                                                       const SelectionDAG &DAG,
4685                                                       unsigned Depth) const {
4686  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4687  switch (Op.getOpcode()) {
4688  default: break;
4689  case PPCISD::LBRX: {
4690    // lhbrx is known to have the top bits cleared out.
4691    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4692      KnownZero = 0xFFFF0000;
4693    break;
4694  }
4695  case ISD::INTRINSIC_WO_CHAIN: {
4696    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4697    default: break;
4698    case Intrinsic::ppc_altivec_vcmpbfp_p:
4699    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4700    case Intrinsic::ppc_altivec_vcmpequb_p:
4701    case Intrinsic::ppc_altivec_vcmpequh_p:
4702    case Intrinsic::ppc_altivec_vcmpequw_p:
4703    case Intrinsic::ppc_altivec_vcmpgefp_p:
4704    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4705    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4706    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4707    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4708    case Intrinsic::ppc_altivec_vcmpgtub_p:
4709    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4710    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4711      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4712      break;
4713    }
4714  }
4715  }
4716}
4717
4718
4719/// getConstraintType - Given a constraint, return the type of
4720/// constraint it is for this target.
4721PPCTargetLowering::ConstraintType
4722PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4723  if (Constraint.size() == 1) {
4724    switch (Constraint[0]) {
4725    default: break;
4726    case 'b':
4727    case 'r':
4728    case 'f':
4729    case 'v':
4730    case 'y':
4731      return C_RegisterClass;
4732    }
4733  }
4734  return TargetLowering::getConstraintType(Constraint);
4735}
4736
4737std::pair<unsigned, const TargetRegisterClass*>
4738PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4739                                                MVT VT) const {
4740  if (Constraint.size() == 1) {
4741    // GCC RS6000 Constraint Letters
4742    switch (Constraint[0]) {
4743    case 'b':   // R1-R31
4744    case 'r':   // R0-R31
4745      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4746        return std::make_pair(0U, PPC::G8RCRegisterClass);
4747      return std::make_pair(0U, PPC::GPRCRegisterClass);
4748    case 'f':
4749      if (VT == MVT::f32)
4750        return std::make_pair(0U, PPC::F4RCRegisterClass);
4751      else if (VT == MVT::f64)
4752        return std::make_pair(0U, PPC::F8RCRegisterClass);
4753      break;
4754    case 'v':
4755      return std::make_pair(0U, PPC::VRRCRegisterClass);
4756    case 'y':   // crrc
4757      return std::make_pair(0U, PPC::CRRCRegisterClass);
4758    }
4759  }
4760
4761  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4762}
4763
4764
4765/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4766/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
4767/// it means one of the asm constraint of the inline asm instruction being
4768/// processed is 'm'.
4769void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4770                                                     bool hasMemory,
4771                                                     std::vector<SDValue>&Ops,
4772                                                     SelectionDAG &DAG) const {
4773  SDValue Result(0,0);
4774  switch (Letter) {
4775  default: break;
4776  case 'I':
4777  case 'J':
4778  case 'K':
4779  case 'L':
4780  case 'M':
4781  case 'N':
4782  case 'O':
4783  case 'P': {
4784    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4785    if (!CST) return; // Must be an immediate to match.
4786    unsigned Value = CST->getZExtValue();
4787    switch (Letter) {
4788    default: assert(0 && "Unknown constraint letter!");
4789    case 'I':  // "I" is a signed 16-bit constant.
4790      if ((short)Value == (int)Value)
4791        Result = DAG.getTargetConstant(Value, Op.getValueType());
4792      break;
4793    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4794    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4795      if ((short)Value == 0)
4796        Result = DAG.getTargetConstant(Value, Op.getValueType());
4797      break;
4798    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4799      if ((Value >> 16) == 0)
4800        Result = DAG.getTargetConstant(Value, Op.getValueType());
4801      break;
4802    case 'M':  // "M" is a constant that is greater than 31.
4803      if (Value > 31)
4804        Result = DAG.getTargetConstant(Value, Op.getValueType());
4805      break;
4806    case 'N':  // "N" is a positive constant that is an exact power of two.
4807      if ((int)Value > 0 && isPowerOf2_32(Value))
4808        Result = DAG.getTargetConstant(Value, Op.getValueType());
4809      break;
4810    case 'O':  // "O" is the constant zero.
4811      if (Value == 0)
4812        Result = DAG.getTargetConstant(Value, Op.getValueType());
4813      break;
4814    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4815      if ((short)-Value == (int)-Value)
4816        Result = DAG.getTargetConstant(Value, Op.getValueType());
4817      break;
4818    }
4819    break;
4820  }
4821  }
4822
4823  if (Result.getNode()) {
4824    Ops.push_back(Result);
4825    return;
4826  }
4827
4828  // Handle standard constraint letters.
4829  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
4830}
4831
4832// isLegalAddressingMode - Return true if the addressing mode represented
4833// by AM is legal for this target, for a load/store of the specified type.
4834bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4835                                              const Type *Ty) const {
4836  // FIXME: PPC does not allow r+i addressing modes for vectors!
4837
4838  // PPC allows a sign-extended 16-bit immediate field.
4839  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4840    return false;
4841
4842  // No global is ever allowed as a base.
4843  if (AM.BaseGV)
4844    return false;
4845
4846  // PPC only support r+r,
4847  switch (AM.Scale) {
4848  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4849    break;
4850  case 1:
4851    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4852      return false;
4853    // Otherwise we have r+r or r+i.
4854    break;
4855  case 2:
4856    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4857      return false;
4858    // Allow 2*r as r+r.
4859    break;
4860  default:
4861    // No other scales are supported.
4862    return false;
4863  }
4864
4865  return true;
4866}
4867
4868/// isLegalAddressImmediate - Return true if the integer value can be used
4869/// as the offset of the target addressing mode for load / store of the
4870/// given type.
4871bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4872  // PPC allows a sign-extended 16-bit immediate field.
4873  return (V > -(1 << 16) && V < (1 << 16)-1);
4874}
4875
4876bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4877  return false;
4878}
4879
4880SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4881  // Depths > 0 not supported yet!
4882  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4883    return SDValue();
4884
4885  MachineFunction &MF = DAG.getMachineFunction();
4886  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4887
4888  // Just load the return address off the stack.
4889  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4890
4891  // Make sure the function really does not optimize away the store of the RA
4892  // to the stack.
4893  FuncInfo->setLRStoreRequired();
4894  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4895}
4896
4897SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4898  // Depths > 0 not supported yet!
4899  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4900    return SDValue();
4901
4902  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4903  bool isPPC64 = PtrVT == MVT::i64;
4904
4905  MachineFunction &MF = DAG.getMachineFunction();
4906  MachineFrameInfo *MFI = MF.getFrameInfo();
4907  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4908                  && MFI->getStackSize();
4909
4910  if (isPPC64)
4911    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4912      MVT::i64);
4913  else
4914    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4915      MVT::i32);
4916}
4917