PPCISelLowering.cpp revision 8ad9b43e690e8773cf836b30e8da26bc71e18844
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no SREM/UREM instructions
81  setOperationAction(ISD::SREM, MVT::i32, Expand);
82  setOperationAction(ISD::UREM, MVT::i32, Expand);
83  setOperationAction(ISD::SREM, MVT::i64, Expand);
84  setOperationAction(ISD::UREM, MVT::i64, Expand);
85
86  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
87  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
88  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
89  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
90  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
91  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
92  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
93  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
94  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
95
96  // We don't support sin/cos/sqrt/fmod/pow
97  setOperationAction(ISD::FSIN , MVT::f64, Expand);
98  setOperationAction(ISD::FCOS , MVT::f64, Expand);
99  setOperationAction(ISD::FREM , MVT::f64, Expand);
100  setOperationAction(ISD::FPOW , MVT::f64, Expand);
101  setOperationAction(ISD::FSIN , MVT::f32, Expand);
102  setOperationAction(ISD::FCOS , MVT::f32, Expand);
103  setOperationAction(ISD::FREM , MVT::f32, Expand);
104  setOperationAction(ISD::FPOW , MVT::f32, Expand);
105
106  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
107
108  // If we're enabling GP optimizations, use hardware square root
109  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
110    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
111    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
112  }
113
114  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
115  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
116
117  // PowerPC does not have BSWAP, CTPOP or CTTZ
118  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
119  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
120  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
121  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
122  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
123  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
124
125  // PowerPC does not have ROTR
126  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
127  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
128
129  // PowerPC does not have Select
130  setOperationAction(ISD::SELECT, MVT::i32, Expand);
131  setOperationAction(ISD::SELECT, MVT::i64, Expand);
132  setOperationAction(ISD::SELECT, MVT::f32, Expand);
133  setOperationAction(ISD::SELECT, MVT::f64, Expand);
134
135  // PowerPC wants to turn select_cc of FP into fsel when possible.
136  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
138
139  // PowerPC wants to optimize integer setcc a bit
140  setOperationAction(ISD::SETCC, MVT::i32, Custom);
141
142  // PowerPC does not have BRCOND which requires SetCC
143  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
144
145  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
146
147  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
148  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
149
150  // PowerPC does not have [U|S]INT_TO_FP
151  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
152  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
153
154  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
156  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
157  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
158
159  // We cannot sextinreg(i1).  Expand to shifts.
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
161
162  // Support label based line numbers.
163  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
164  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
165
166  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
167  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
168  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
169  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
170
171
172  // We want to legalize GlobalAddress and ConstantPool nodes into the
173  // appropriate instructions to materialize the address.
174  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
176  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
177  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
178  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
182
183  // RET must be custom lowered, to meet ABI requirements.
184  setOperationAction(ISD::RET               , MVT::Other, Custom);
185
186  // TRAP is legal.
187  setOperationAction(ISD::TRAP, MVT::Other, Legal);
188
189  // TRAMPOLINE is custom lowered.
190  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
191
192  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
194
195  // VAARG is custom lowered with ELF 32 ABI
196  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197    setOperationAction(ISD::VAARG, MVT::Other, Custom);
198  else
199    setOperationAction(ISD::VAARG, MVT::Other, Expand);
200
201  // Use the default implementation.
202  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
203  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
204  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
205  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
208
209  // We want to custom lower some of our intrinsics.
210  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211
212  // Comparisons that require checking two conditions.
213  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
214  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
215  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
216  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
217  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
218  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
219  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
220  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
221  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
222  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
223  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
224  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
225
226  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
227    // They also have instructions for converting between i64 and fp.
228    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
229    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
230    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
231    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
232    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
233
234    // FIXME: disable this lowered code.  This generates 64-bit register values,
235    // and we don't model the fact that the top part is clobbered by calls.  We
236    // need to flag these together so that the value isn't live across a call.
237    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
238
239    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
240    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
241  } else {
242    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
243    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
244  }
245
246  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
247    // 64-bit PowerPC implementations can support i64 types directly
248    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
249    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
250    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
251    // 64-bit PowerPC wants to expand i128 shifts itself.
252    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
253    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
254    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
255  } else {
256    // 32-bit PowerPC wants to expand i64 shifts itself.
257    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
258    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
259    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
260  }
261
262  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
263    // First set operation action for all vector types to expand. Then we
264    // will selectively turn on ones that can be effectively codegen'd.
265    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
266         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
267      MVT VT = (MVT::SimpleValueType)i;
268
269      // add/sub are legal for all supported vector VT's.
270      setOperationAction(ISD::ADD , VT, Legal);
271      setOperationAction(ISD::SUB , VT, Legal);
272
273      // We promote all shuffles to v16i8.
274      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
275      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
276
277      // We promote all non-typed operations to v4i32.
278      setOperationAction(ISD::AND   , VT, Promote);
279      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
280      setOperationAction(ISD::OR    , VT, Promote);
281      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
282      setOperationAction(ISD::XOR   , VT, Promote);
283      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
284      setOperationAction(ISD::LOAD  , VT, Promote);
285      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
286      setOperationAction(ISD::SELECT, VT, Promote);
287      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
288      setOperationAction(ISD::STORE, VT, Promote);
289      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
290
291      // No other operations are legal.
292      setOperationAction(ISD::MUL , VT, Expand);
293      setOperationAction(ISD::SDIV, VT, Expand);
294      setOperationAction(ISD::SREM, VT, Expand);
295      setOperationAction(ISD::UDIV, VT, Expand);
296      setOperationAction(ISD::UREM, VT, Expand);
297      setOperationAction(ISD::FDIV, VT, Expand);
298      setOperationAction(ISD::FNEG, VT, Expand);
299      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
300      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
301      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
302      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
303      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
304      setOperationAction(ISD::UDIVREM, VT, Expand);
305      setOperationAction(ISD::SDIVREM, VT, Expand);
306      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
307      setOperationAction(ISD::FPOW, VT, Expand);
308      setOperationAction(ISD::CTPOP, VT, Expand);
309      setOperationAction(ISD::CTLZ, VT, Expand);
310      setOperationAction(ISD::CTTZ, VT, Expand);
311    }
312
313    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
314    // with merges, splats, etc.
315    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
318    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
319    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
320    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
321    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
322    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
323
324    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
325    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
326    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
327    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
328
329    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
330    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
331    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
332    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
333
334    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
335    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
336
337    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
338    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
339    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
340    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
341  }
342
343  setShiftAmountType(MVT::i32);
344  setBooleanContents(ZeroOrOneBooleanContent);
345
346  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
347    setStackPointerRegisterToSaveRestore(PPC::X1);
348    setExceptionPointerRegister(PPC::X3);
349    setExceptionSelectorRegister(PPC::X4);
350  } else {
351    setStackPointerRegisterToSaveRestore(PPC::R1);
352    setExceptionPointerRegister(PPC::R3);
353    setExceptionSelectorRegister(PPC::R4);
354  }
355
356  // We have target-specific dag combine patterns for the following nodes:
357  setTargetDAGCombine(ISD::SINT_TO_FP);
358  setTargetDAGCombine(ISD::STORE);
359  setTargetDAGCombine(ISD::BR_CC);
360  setTargetDAGCombine(ISD::BSWAP);
361
362  // Darwin long double math library functions have $LDBL128 appended.
363  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
364    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
365    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
366    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
367    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
368    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
369    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
370    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
371    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
372    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
373    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
374  }
375
376  computeRegisterProperties();
377}
378
379/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
380/// function arguments in the caller parameter area.
381unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
382  TargetMachine &TM = getTargetMachine();
383  // Darwin passes everything on 4 byte boundary.
384  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
385    return 4;
386  // FIXME Elf TBD
387  return 4;
388}
389
390const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
391  switch (Opcode) {
392  default: return 0;
393  case PPCISD::FSEL:            return "PPCISD::FSEL";
394  case PPCISD::FCFID:           return "PPCISD::FCFID";
395  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
396  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
397  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
398  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
399  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
400  case PPCISD::VPERM:           return "PPCISD::VPERM";
401  case PPCISD::Hi:              return "PPCISD::Hi";
402  case PPCISD::Lo:              return "PPCISD::Lo";
403  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
404  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
405  case PPCISD::SRL:             return "PPCISD::SRL";
406  case PPCISD::SRA:             return "PPCISD::SRA";
407  case PPCISD::SHL:             return "PPCISD::SHL";
408  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
409  case PPCISD::STD_32:          return "PPCISD::STD_32";
410  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
411  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
412  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
413  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
414  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
415  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
416  case PPCISD::MFCR:            return "PPCISD::MFCR";
417  case PPCISD::VCMP:            return "PPCISD::VCMP";
418  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
419  case PPCISD::LBRX:            return "PPCISD::LBRX";
420  case PPCISD::STBRX:           return "PPCISD::STBRX";
421  case PPCISD::LARX:            return "PPCISD::LARX";
422  case PPCISD::STCX:            return "PPCISD::STCX";
423  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
424  case PPCISD::MFFS:            return "PPCISD::MFFS";
425  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
426  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
427  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
428  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
429  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
430  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
431  }
432}
433
434
435MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
436  return MVT::i32;
437}
438
439
440//===----------------------------------------------------------------------===//
441// Node matching predicates, for use by the tblgen matching code.
442//===----------------------------------------------------------------------===//
443
444/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
445static bool isFloatingPointZero(SDValue Op) {
446  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
447    return CFP->getValueAPF().isZero();
448  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
449    // Maybe this has already been legalized into the constant pool?
450    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
451      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
452        return CFP->getValueAPF().isZero();
453  }
454  return false;
455}
456
457/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
458/// true if Op is undef or if it matches the specified value.
459static bool isConstantOrUndef(SDValue Op, unsigned Val) {
460  return Op.getOpcode() == ISD::UNDEF ||
461         cast<ConstantSDNode>(Op)->getZExtValue() == Val;
462}
463
464/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
465/// VPKUHUM instruction.
466bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
467  if (!isUnary) {
468    for (unsigned i = 0; i != 16; ++i)
469      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
470        return false;
471  } else {
472    for (unsigned i = 0; i != 8; ++i)
473      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
474          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
475        return false;
476  }
477  return true;
478}
479
480/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
481/// VPKUWUM instruction.
482bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
483  if (!isUnary) {
484    for (unsigned i = 0; i != 16; i += 2)
485      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
486          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
487        return false;
488  } else {
489    for (unsigned i = 0; i != 8; i += 2)
490      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
491          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
492          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
493          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
494        return false;
495  }
496  return true;
497}
498
499/// isVMerge - Common function, used to match vmrg* shuffles.
500///
501static bool isVMerge(SDNode *N, unsigned UnitSize,
502                     unsigned LHSStart, unsigned RHSStart) {
503  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
504         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
505  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
506         "Unsupported merge size!");
507
508  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
509    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
510      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
511                             LHSStart+j+i*UnitSize) ||
512          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
513                             RHSStart+j+i*UnitSize))
514        return false;
515    }
516      return true;
517}
518
519/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
520/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
521bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
522  if (!isUnary)
523    return isVMerge(N, UnitSize, 8, 24);
524  return isVMerge(N, UnitSize, 8, 8);
525}
526
527/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
528/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
529bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
530  if (!isUnary)
531    return isVMerge(N, UnitSize, 0, 16);
532  return isVMerge(N, UnitSize, 0, 0);
533}
534
535
536/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
537/// amount, otherwise return -1.
538int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
539  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
540         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
541  // Find the first non-undef value in the shuffle mask.
542  unsigned i;
543  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
544    /*search*/;
545
546  if (i == 16) return -1;  // all undef.
547
548  // Otherwise, check to see if the rest of the elements are consequtively
549  // numbered from this value.
550  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getZExtValue();
551  if (ShiftAmt < i) return -1;
552  ShiftAmt -= i;
553
554  if (!isUnary) {
555    // Check the rest of the elements to see if they are consequtive.
556    for (++i; i != 16; ++i)
557      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
558        return -1;
559  } else {
560    // Check the rest of the elements to see if they are consequtive.
561    for (++i; i != 16; ++i)
562      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
563        return -1;
564  }
565
566  return ShiftAmt;
567}
568
569/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
570/// specifies a splat of a single element that is suitable for input to
571/// VSPLTB/VSPLTH/VSPLTW.
572bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
573  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
574         N->getNumOperands() == 16 &&
575         (EltSize == 1 || EltSize == 2 || EltSize == 4));
576
577  // This is a splat operation if each element of the permute is the same, and
578  // if the value doesn't reference the second vector.
579  unsigned ElementBase = 0;
580  SDValue Elt = N->getOperand(0);
581  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
582    ElementBase = EltV->getZExtValue();
583  else
584    return false;   // FIXME: Handle UNDEF elements too!
585
586  if (cast<ConstantSDNode>(Elt)->getZExtValue() >= 16)
587    return false;
588
589  // Check that they are consequtive.
590  for (unsigned i = 1; i != EltSize; ++i) {
591    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
592        cast<ConstantSDNode>(N->getOperand(i))->getZExtValue() != i+ElementBase)
593      return false;
594  }
595
596  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
597  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
598    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
599    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
600           "Invalid VECTOR_SHUFFLE mask!");
601    for (unsigned j = 0; j != EltSize; ++j)
602      if (N->getOperand(i+j) != N->getOperand(j))
603        return false;
604  }
605
606  return true;
607}
608
609/// isAllNegativeZeroVector - Returns true if all elements of build_vector
610/// are -0.0.
611bool PPC::isAllNegativeZeroVector(SDNode *N) {
612  assert(N->getOpcode() == ISD::BUILD_VECTOR);
613  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
614    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
615      return CFP->getValueAPF().isNegZero();
616  return false;
617}
618
619/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
620/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
621unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
622  assert(isSplatShuffleMask(N, EltSize));
623  return cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() / EltSize;
624}
625
626/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
627/// by using a vspltis[bhw] instruction of the specified element size, return
628/// the constant being splatted.  The ByteSize field indicates the number of
629/// bytes of each element [124] -> [bhw].
630SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
631  SDValue OpVal(0, 0);
632
633  // If ByteSize of the splat is bigger than the element size of the
634  // build_vector, then we have a case where we are checking for a splat where
635  // multiple elements of the buildvector are folded together into a single
636  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
637  unsigned EltSize = 16/N->getNumOperands();
638  if (EltSize < ByteSize) {
639    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
640    SDValue UniquedVals[4];
641    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
642
643    // See if all of the elements in the buildvector agree across.
644    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
645      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
646      // If the element isn't a constant, bail fully out.
647      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
648
649
650      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
651        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
652      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
653        return SDValue();  // no match.
654    }
655
656    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
657    // either constant or undef values that are identical for each chunk.  See
658    // if these chunks can form into a larger vspltis*.
659
660    // Check to see if all of the leading entries are either 0 or -1.  If
661    // neither, then this won't fit into the immediate field.
662    bool LeadingZero = true;
663    bool LeadingOnes = true;
664    for (unsigned i = 0; i != Multiple-1; ++i) {
665      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
666
667      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
668      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
669    }
670    // Finally, check the least significant entry.
671    if (LeadingZero) {
672      if (UniquedVals[Multiple-1].getNode() == 0)
673        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
674      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
675      if (Val < 16)
676        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
677    }
678    if (LeadingOnes) {
679      if (UniquedVals[Multiple-1].getNode() == 0)
680        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
681      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
682      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
683        return DAG.getTargetConstant(Val, MVT::i32);
684    }
685
686    return SDValue();
687  }
688
689  // Check to see if this buildvec has a single non-undef value in its elements.
690  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
691    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
692    if (OpVal.getNode() == 0)
693      OpVal = N->getOperand(i);
694    else if (OpVal != N->getOperand(i))
695      return SDValue();
696  }
697
698  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
699
700  unsigned ValSizeInBytes = 0;
701  uint64_t Value = 0;
702  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
703    Value = CN->getZExtValue();
704    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
705  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
706    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
707    Value = FloatToBits(CN->getValueAPF().convertToFloat());
708    ValSizeInBytes = 4;
709  }
710
711  // If the splat value is larger than the element value, then we can never do
712  // this splat.  The only case that we could fit the replicated bits into our
713  // immediate field for would be zero, and we prefer to use vxor for it.
714  if (ValSizeInBytes < ByteSize) return SDValue();
715
716  // If the element value is larger than the splat value, cut it in half and
717  // check to see if the two halves are equal.  Continue doing this until we
718  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
719  while (ValSizeInBytes > ByteSize) {
720    ValSizeInBytes >>= 1;
721
722    // If the top half equals the bottom half, we're still ok.
723    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
724         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
725      return SDValue();
726  }
727
728  // Properly sign extend the value.
729  int ShAmt = (4-ByteSize)*8;
730  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
731
732  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
733  if (MaskVal == 0) return SDValue();
734
735  // Finally, if this value fits in a 5 bit sext field, return it
736  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
737    return DAG.getTargetConstant(MaskVal, MVT::i32);
738  return SDValue();
739}
740
741//===----------------------------------------------------------------------===//
742//  Addressing Mode Selection
743//===----------------------------------------------------------------------===//
744
745/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
746/// or 64-bit immediate, and if the value can be accurately represented as a
747/// sign extension from a 16-bit value.  If so, this returns true and the
748/// immediate.
749static bool isIntS16Immediate(SDNode *N, short &Imm) {
750  if (N->getOpcode() != ISD::Constant)
751    return false;
752
753  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
754  if (N->getValueType(0) == MVT::i32)
755    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
756  else
757    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
758}
759static bool isIntS16Immediate(SDValue Op, short &Imm) {
760  return isIntS16Immediate(Op.getNode(), Imm);
761}
762
763
764/// SelectAddressRegReg - Given the specified addressed, check to see if it
765/// can be represented as an indexed [r+r] operation.  Returns false if it
766/// can be more efficiently represented with [r+imm].
767bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
768                                            SDValue &Index,
769                                            SelectionDAG &DAG) const {
770  short imm = 0;
771  if (N.getOpcode() == ISD::ADD) {
772    if (isIntS16Immediate(N.getOperand(1), imm))
773      return false;    // r+i
774    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
775      return false;    // r+i
776
777    Base = N.getOperand(0);
778    Index = N.getOperand(1);
779    return true;
780  } else if (N.getOpcode() == ISD::OR) {
781    if (isIntS16Immediate(N.getOperand(1), imm))
782      return false;    // r+i can fold it if we can.
783
784    // If this is an or of disjoint bitfields, we can codegen this as an add
785    // (for better address arithmetic) if the LHS and RHS of the OR are provably
786    // disjoint.
787    APInt LHSKnownZero, LHSKnownOne;
788    APInt RHSKnownZero, RHSKnownOne;
789    DAG.ComputeMaskedBits(N.getOperand(0),
790                          APInt::getAllOnesValue(N.getOperand(0)
791                            .getValueSizeInBits()),
792                          LHSKnownZero, LHSKnownOne);
793
794    if (LHSKnownZero.getBoolValue()) {
795      DAG.ComputeMaskedBits(N.getOperand(1),
796                            APInt::getAllOnesValue(N.getOperand(1)
797                              .getValueSizeInBits()),
798                            RHSKnownZero, RHSKnownOne);
799      // If all of the bits are known zero on the LHS or RHS, the add won't
800      // carry.
801      if (~(LHSKnownZero | RHSKnownZero) == 0) {
802        Base = N.getOperand(0);
803        Index = N.getOperand(1);
804        return true;
805      }
806    }
807  }
808
809  return false;
810}
811
812/// Returns true if the address N can be represented by a base register plus
813/// a signed 16-bit displacement [r+imm], and if it is not better
814/// represented as reg+reg.
815bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
816                                            SDValue &Base,
817                                            SelectionDAG &DAG) const {
818  // If this can be more profitably realized as r+r, fail.
819  if (SelectAddressRegReg(N, Disp, Base, DAG))
820    return false;
821
822  if (N.getOpcode() == ISD::ADD) {
823    short imm = 0;
824    if (isIntS16Immediate(N.getOperand(1), imm)) {
825      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
826      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
827        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
828      } else {
829        Base = N.getOperand(0);
830      }
831      return true; // [r+i]
832    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
833      // Match LOAD (ADD (X, Lo(G))).
834     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
835             && "Cannot handle constant offsets yet!");
836      Disp = N.getOperand(1).getOperand(0);  // The global address.
837      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
838             Disp.getOpcode() == ISD::TargetConstantPool ||
839             Disp.getOpcode() == ISD::TargetJumpTable);
840      Base = N.getOperand(0);
841      return true;  // [&g+r]
842    }
843  } else if (N.getOpcode() == ISD::OR) {
844    short imm = 0;
845    if (isIntS16Immediate(N.getOperand(1), imm)) {
846      // If this is an or of disjoint bitfields, we can codegen this as an add
847      // (for better address arithmetic) if the LHS and RHS of the OR are
848      // provably disjoint.
849      APInt LHSKnownZero, LHSKnownOne;
850      DAG.ComputeMaskedBits(N.getOperand(0),
851                            APInt::getAllOnesValue(N.getOperand(0)
852                                                   .getValueSizeInBits()),
853                            LHSKnownZero, LHSKnownOne);
854
855      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
856        // If all of the bits are known zero on the LHS or RHS, the add won't
857        // carry.
858        Base = N.getOperand(0);
859        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
860        return true;
861      }
862    }
863  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
864    // Loading from a constant address.
865
866    // If this address fits entirely in a 16-bit sext immediate field, codegen
867    // this as "d, 0"
868    short Imm;
869    if (isIntS16Immediate(CN, Imm)) {
870      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
871      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
872      return true;
873    }
874
875    // Handle 32-bit sext immediates with LIS + addr mode.
876    if (CN->getValueType(0) == MVT::i32 ||
877        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
878      int Addr = (int)CN->getZExtValue();
879
880      // Otherwise, break this down into an LIS + disp.
881      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
882
883      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
884      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
885      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
886      return true;
887    }
888  }
889
890  Disp = DAG.getTargetConstant(0, getPointerTy());
891  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
892    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
893  else
894    Base = N;
895  return true;      // [r+0]
896}
897
898/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
899/// represented as an indexed [r+r] operation.
900bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
901                                                SDValue &Index,
902                                                SelectionDAG &DAG) const {
903  // Check to see if we can easily represent this as an [r+r] address.  This
904  // will fail if it thinks that the address is more profitably represented as
905  // reg+imm, e.g. where imm = 0.
906  if (SelectAddressRegReg(N, Base, Index, DAG))
907    return true;
908
909  // If the operand is an addition, always emit this as [r+r], since this is
910  // better (for code size, and execution, as the memop does the add for free)
911  // than emitting an explicit add.
912  if (N.getOpcode() == ISD::ADD) {
913    Base = N.getOperand(0);
914    Index = N.getOperand(1);
915    return true;
916  }
917
918  // Otherwise, do it the hard way, using R0 as the base register.
919  Base = DAG.getRegister(PPC::R0, N.getValueType());
920  Index = N;
921  return true;
922}
923
924/// SelectAddressRegImmShift - Returns true if the address N can be
925/// represented by a base register plus a signed 14-bit displacement
926/// [r+imm*4].  Suitable for use by STD and friends.
927bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
928                                                 SDValue &Base,
929                                                 SelectionDAG &DAG) const {
930  // If this can be more profitably realized as r+r, fail.
931  if (SelectAddressRegReg(N, Disp, Base, DAG))
932    return false;
933
934  if (N.getOpcode() == ISD::ADD) {
935    short imm = 0;
936    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
937      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
938      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
939        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
940      } else {
941        Base = N.getOperand(0);
942      }
943      return true; // [r+i]
944    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
945      // Match LOAD (ADD (X, Lo(G))).
946     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
947             && "Cannot handle constant offsets yet!");
948      Disp = N.getOperand(1).getOperand(0);  // The global address.
949      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
950             Disp.getOpcode() == ISD::TargetConstantPool ||
951             Disp.getOpcode() == ISD::TargetJumpTable);
952      Base = N.getOperand(0);
953      return true;  // [&g+r]
954    }
955  } else if (N.getOpcode() == ISD::OR) {
956    short imm = 0;
957    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
958      // If this is an or of disjoint bitfields, we can codegen this as an add
959      // (for better address arithmetic) if the LHS and RHS of the OR are
960      // provably disjoint.
961      APInt LHSKnownZero, LHSKnownOne;
962      DAG.ComputeMaskedBits(N.getOperand(0),
963                            APInt::getAllOnesValue(N.getOperand(0)
964                                                   .getValueSizeInBits()),
965                            LHSKnownZero, LHSKnownOne);
966      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
967        // If all of the bits are known zero on the LHS or RHS, the add won't
968        // carry.
969        Base = N.getOperand(0);
970        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
971        return true;
972      }
973    }
974  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
975    // Loading from a constant address.  Verify low two bits are clear.
976    if ((CN->getZExtValue() & 3) == 0) {
977      // If this address fits entirely in a 14-bit sext immediate field, codegen
978      // this as "d, 0"
979      short Imm;
980      if (isIntS16Immediate(CN, Imm)) {
981        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
982        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
983        return true;
984      }
985
986      // Fold the low-part of 32-bit absolute addresses into addr mode.
987      if (CN->getValueType(0) == MVT::i32 ||
988          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
989        int Addr = (int)CN->getZExtValue();
990
991        // Otherwise, break this down into an LIS + disp.
992        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
993
994        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
995        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
996        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
997        return true;
998      }
999    }
1000  }
1001
1002  Disp = DAG.getTargetConstant(0, getPointerTy());
1003  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1004    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1005  else
1006    Base = N;
1007  return true;      // [r+0]
1008}
1009
1010
1011/// getPreIndexedAddressParts - returns true by value, base pointer and
1012/// offset pointer and addressing mode by reference if the node's address
1013/// can be legally represented as pre-indexed load / store address.
1014bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1015                                                  SDValue &Offset,
1016                                                  ISD::MemIndexedMode &AM,
1017                                                  SelectionDAG &DAG) const {
1018  // Disabled by default for now.
1019  if (!EnablePPCPreinc) return false;
1020
1021  SDValue Ptr;
1022  MVT VT;
1023  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1024    Ptr = LD->getBasePtr();
1025    VT = LD->getMemoryVT();
1026
1027  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1028    ST = ST;
1029    Ptr = ST->getBasePtr();
1030    VT  = ST->getMemoryVT();
1031  } else
1032    return false;
1033
1034  // PowerPC doesn't have preinc load/store instructions for vectors.
1035  if (VT.isVector())
1036    return false;
1037
1038  // TODO: Check reg+reg first.
1039
1040  // LDU/STU use reg+imm*4, others use reg+imm.
1041  if (VT != MVT::i64) {
1042    // reg + imm
1043    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1044      return false;
1045  } else {
1046    // reg + imm * 4.
1047    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1048      return false;
1049  }
1050
1051  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1052    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1053    // sext i32 to i64 when addr mode is r+i.
1054    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1055        LD->getExtensionType() == ISD::SEXTLOAD &&
1056        isa<ConstantSDNode>(Offset))
1057      return false;
1058  }
1059
1060  AM = ISD::PRE_INC;
1061  return true;
1062}
1063
1064//===----------------------------------------------------------------------===//
1065//  LowerOperation implementation
1066//===----------------------------------------------------------------------===//
1067
1068SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1069                                             SelectionDAG &DAG) {
1070  MVT PtrVT = Op.getValueType();
1071  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1072  Constant *C = CP->getConstVal();
1073  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1074  SDValue Zero = DAG.getConstant(0, PtrVT);
1075
1076  const TargetMachine &TM = DAG.getTarget();
1077
1078  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1079  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1080
1081  // If this is a non-darwin platform, we don't support non-static relo models
1082  // yet.
1083  if (TM.getRelocationModel() == Reloc::Static ||
1084      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1085    // Generate non-pic code that has direct accesses to the constant pool.
1086    // The address of the global is just (hi(&g)+lo(&g)).
1087    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1088  }
1089
1090  if (TM.getRelocationModel() == Reloc::PIC_) {
1091    // With PIC, the first instruction is actually "GR+hi(&G)".
1092    Hi = DAG.getNode(ISD::ADD, PtrVT,
1093                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1094  }
1095
1096  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1097  return Lo;
1098}
1099
1100SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1101  MVT PtrVT = Op.getValueType();
1102  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1103  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1104  SDValue Zero = DAG.getConstant(0, PtrVT);
1105
1106  const TargetMachine &TM = DAG.getTarget();
1107
1108  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1109  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1110
1111  // If this is a non-darwin platform, we don't support non-static relo models
1112  // yet.
1113  if (TM.getRelocationModel() == Reloc::Static ||
1114      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1115    // Generate non-pic code that has direct accesses to the constant pool.
1116    // The address of the global is just (hi(&g)+lo(&g)).
1117    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1118  }
1119
1120  if (TM.getRelocationModel() == Reloc::PIC_) {
1121    // With PIC, the first instruction is actually "GR+hi(&G)".
1122    Hi = DAG.getNode(ISD::ADD, PtrVT,
1123                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1124  }
1125
1126  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1127  return Lo;
1128}
1129
1130SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1131                                                   SelectionDAG &DAG) {
1132  assert(0 && "TLS not implemented for PPC.");
1133  return SDValue(); // Not reached
1134}
1135
1136SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1137                                              SelectionDAG &DAG) {
1138  MVT PtrVT = Op.getValueType();
1139  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1140  GlobalValue *GV = GSDN->getGlobal();
1141  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1142  SDValue Zero = DAG.getConstant(0, PtrVT);
1143
1144  const TargetMachine &TM = DAG.getTarget();
1145
1146  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1147  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1148
1149  // If this is a non-darwin platform, we don't support non-static relo models
1150  // yet.
1151  if (TM.getRelocationModel() == Reloc::Static ||
1152      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1153    // Generate non-pic code that has direct accesses to globals.
1154    // The address of the global is just (hi(&g)+lo(&g)).
1155    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1156  }
1157
1158  if (TM.getRelocationModel() == Reloc::PIC_) {
1159    // With PIC, the first instruction is actually "GR+hi(&G)".
1160    Hi = DAG.getNode(ISD::ADD, PtrVT,
1161                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1162  }
1163
1164  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1165
1166  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1167    return Lo;
1168
1169  // If the global is weak or external, we have to go through the lazy
1170  // resolution stub.
1171  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1172}
1173
1174SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1175  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1176
1177  // If we're comparing for equality to zero, expose the fact that this is
1178  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1179  // fold the new nodes.
1180  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1181    if (C->isNullValue() && CC == ISD::SETEQ) {
1182      MVT VT = Op.getOperand(0).getValueType();
1183      SDValue Zext = Op.getOperand(0);
1184      if (VT.bitsLT(MVT::i32)) {
1185        VT = MVT::i32;
1186        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1187      }
1188      unsigned Log2b = Log2_32(VT.getSizeInBits());
1189      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1190      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1191                                DAG.getConstant(Log2b, MVT::i32));
1192      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1193    }
1194    // Leave comparisons against 0 and -1 alone for now, since they're usually
1195    // optimized.  FIXME: revisit this when we can custom lower all setcc
1196    // optimizations.
1197    if (C->isAllOnesValue() || C->isNullValue())
1198      return SDValue();
1199  }
1200
1201  // If we have an integer seteq/setne, turn it into a compare against zero
1202  // by xor'ing the rhs with the lhs, which is faster than setting a
1203  // condition register, reading it back out, and masking the correct bit.  The
1204  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1205  // the result to other bit-twiddling opportunities.
1206  MVT LHSVT = Op.getOperand(0).getValueType();
1207  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1208    MVT VT = Op.getValueType();
1209    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1210                                Op.getOperand(1));
1211    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1212  }
1213  return SDValue();
1214}
1215
1216SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1217                              int VarArgsFrameIndex,
1218                              int VarArgsStackOffset,
1219                              unsigned VarArgsNumGPR,
1220                              unsigned VarArgsNumFPR,
1221                              const PPCSubtarget &Subtarget) {
1222
1223  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1224  return SDValue(); // Not reached
1225}
1226
1227SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1228  SDValue Chain = Op.getOperand(0);
1229  SDValue Trmp = Op.getOperand(1); // trampoline
1230  SDValue FPtr = Op.getOperand(2); // nested function
1231  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1232  DebugLoc dl = Op.getNode()->getDebugLoc();
1233
1234  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1235  bool isPPC64 = (PtrVT == MVT::i64);
1236  const Type *IntPtrTy =
1237    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1238
1239  TargetLowering::ArgListTy Args;
1240  TargetLowering::ArgListEntry Entry;
1241
1242  Entry.Ty = IntPtrTy;
1243  Entry.Node = Trmp; Args.push_back(Entry);
1244
1245  // TrampSize == (isPPC64 ? 48 : 40);
1246  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1247                               isPPC64 ? MVT::i64 : MVT::i32);
1248  Args.push_back(Entry);
1249
1250  Entry.Node = FPtr; Args.push_back(Entry);
1251  Entry.Node = Nest; Args.push_back(Entry);
1252
1253  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1254  std::pair<SDValue, SDValue> CallResult =
1255    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
1256                false, false, CallingConv::C, false,
1257                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1258                Args, DAG, dl);
1259
1260  SDValue Ops[] =
1261    { CallResult.first, CallResult.second };
1262
1263  return DAG.getMergeValues(Ops, 2);
1264}
1265
1266SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1267                                        int VarArgsFrameIndex,
1268                                        int VarArgsStackOffset,
1269                                        unsigned VarArgsNumGPR,
1270                                        unsigned VarArgsNumFPR,
1271                                        const PPCSubtarget &Subtarget) {
1272
1273  if (Subtarget.isMachoABI()) {
1274    // vastart just stores the address of the VarArgsFrameIndex slot into the
1275    // memory location argument.
1276    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1277    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1278    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1279    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1280  }
1281
1282  // For ELF 32 ABI we follow the layout of the va_list struct.
1283  // We suppose the given va_list is already allocated.
1284  //
1285  // typedef struct {
1286  //  char gpr;     /* index into the array of 8 GPRs
1287  //                 * stored in the register save area
1288  //                 * gpr=0 corresponds to r3,
1289  //                 * gpr=1 to r4, etc.
1290  //                 */
1291  //  char fpr;     /* index into the array of 8 FPRs
1292  //                 * stored in the register save area
1293  //                 * fpr=0 corresponds to f1,
1294  //                 * fpr=1 to f2, etc.
1295  //                 */
1296  //  char *overflow_arg_area;
1297  //                /* location on stack that holds
1298  //                 * the next overflow argument
1299  //                 */
1300  //  char *reg_save_area;
1301  //               /* where r3:r10 and f1:f8 (if saved)
1302  //                * are stored
1303  //                */
1304  // } va_list[1];
1305
1306
1307  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1308  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1309
1310
1311  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1312
1313  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1314  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1315
1316  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1317  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1318
1319  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1320  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1321
1322  uint64_t FPROffset = 1;
1323  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1324
1325  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1326
1327  // Store first byte : number of int regs
1328  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1329                                      Op.getOperand(1), SV, 0);
1330  uint64_t nextOffset = FPROffset;
1331  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1332                                  ConstFPROffset);
1333
1334  // Store second byte : number of float regs
1335  SDValue secondStore =
1336    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1337  nextOffset += StackOffset;
1338  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1339
1340  // Store second word : arguments given on stack
1341  SDValue thirdStore =
1342    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1343  nextOffset += FrameOffset;
1344  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1345
1346  // Store third word : arguments given in registers
1347  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1348
1349}
1350
1351#include "PPCGenCallingConv.inc"
1352
1353/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1354/// depending on which subtarget is selected.
1355static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1356  if (Subtarget.isMachoABI()) {
1357    static const unsigned FPR[] = {
1358      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1359      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1360    };
1361    return FPR;
1362  }
1363
1364
1365  static const unsigned FPR[] = {
1366    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1367    PPC::F8
1368  };
1369  return FPR;
1370}
1371
1372/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1373/// the stack.
1374static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1375                                       bool isVarArg, unsigned PtrByteSize) {
1376  MVT ArgVT = Arg.getValueType();
1377  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1378  if (Flags.isByVal())
1379    ArgSize = Flags.getByValSize();
1380  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1381
1382  return ArgSize;
1383}
1384
1385SDValue
1386PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1387                                         SelectionDAG &DAG,
1388                                         int &VarArgsFrameIndex,
1389                                         int &VarArgsStackOffset,
1390                                         unsigned &VarArgsNumGPR,
1391                                         unsigned &VarArgsNumFPR,
1392                                         const PPCSubtarget &Subtarget) {
1393  // TODO: add description of PPC stack frame format, or at least some docs.
1394  //
1395  MachineFunction &MF = DAG.getMachineFunction();
1396  MachineFrameInfo *MFI = MF.getFrameInfo();
1397  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1398  SmallVector<SDValue, 8> ArgValues;
1399  SDValue Root = Op.getOperand(0);
1400  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1401
1402  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1403  bool isPPC64 = PtrVT == MVT::i64;
1404  bool isMachoABI = Subtarget.isMachoABI();
1405  bool isELF32_ABI = Subtarget.isELF32_ABI();
1406  // Potential tail calls could cause overwriting of argument stack slots.
1407  unsigned CC = MF.getFunction()->getCallingConv();
1408  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1409  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1410
1411  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1412  // Area that is at least reserved in caller of this function.
1413  unsigned MinReservedArea = ArgOffset;
1414
1415  static const unsigned GPR_32[] = {           // 32-bit registers.
1416    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1417    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1418  };
1419  static const unsigned GPR_64[] = {           // 64-bit registers.
1420    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1421    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1422  };
1423
1424  static const unsigned *FPR = GetFPR(Subtarget);
1425
1426  static const unsigned VR[] = {
1427    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1428    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1429  };
1430
1431  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1432  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1433  const unsigned Num_VR_Regs  = array_lengthof( VR);
1434
1435  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1436
1437  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1438
1439  // In 32-bit non-varargs functions, the stack space for vectors is after the
1440  // stack space for non-vectors.  We do not use this space unless we have
1441  // too many vectors to fit in registers, something that only occurs in
1442  // constructed examples:), but we have to walk the arglist to figure
1443  // that out...for the pathological case, compute VecArgOffset as the
1444  // start of the vector parameter area.  Computing VecArgOffset is the
1445  // entire point of the following loop.
1446  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1447  // to handle Elf here.
1448  unsigned VecArgOffset = ArgOffset;
1449  if (!isVarArg && !isPPC64) {
1450    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1451         ++ArgNo) {
1452      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1453      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1454      ISD::ArgFlagsTy Flags =
1455        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1456
1457      if (Flags.isByVal()) {
1458        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1459        ObjSize = Flags.getByValSize();
1460        unsigned ArgSize =
1461                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1462        VecArgOffset += ArgSize;
1463        continue;
1464      }
1465
1466      switch(ObjectVT.getSimpleVT()) {
1467      default: assert(0 && "Unhandled argument type!");
1468      case MVT::i32:
1469      case MVT::f32:
1470        VecArgOffset += isPPC64 ? 8 : 4;
1471        break;
1472      case MVT::i64:  // PPC64
1473      case MVT::f64:
1474        VecArgOffset += 8;
1475        break;
1476      case MVT::v4f32:
1477      case MVT::v4i32:
1478      case MVT::v8i16:
1479      case MVT::v16i8:
1480        // Nothing to do, we're only looking at Nonvector args here.
1481        break;
1482      }
1483    }
1484  }
1485  // We've found where the vector parameter area in memory is.  Skip the
1486  // first 12 parameters; these don't use that memory.
1487  VecArgOffset = ((VecArgOffset+15)/16)*16;
1488  VecArgOffset += 12*16;
1489
1490  // Add DAG nodes to load the arguments or copy them out of registers.  On
1491  // entry to a function on PPC, the arguments start after the linkage area,
1492  // although the first ones are often in registers.
1493  //
1494  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1495  // represented with two words (long long or double) must be copied to an
1496  // even GPR_idx value or to an even ArgOffset value.
1497
1498  SmallVector<SDValue, 8> MemOps;
1499  unsigned nAltivecParamsAtEnd = 0;
1500  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1501       ArgNo != e; ++ArgNo) {
1502    SDValue ArgVal;
1503    bool needsLoad = false;
1504    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1505    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1506    unsigned ArgSize = ObjSize;
1507    ISD::ArgFlagsTy Flags =
1508      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1509    // See if next argument requires stack alignment in ELF
1510    bool Align = Flags.isSplit();
1511
1512    unsigned CurArgOffset = ArgOffset;
1513
1514    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1515    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1516        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1517      if (isVarArg || isPPC64) {
1518        MinReservedArea = ((MinReservedArea+15)/16)*16;
1519        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1520                                                  Flags,
1521                                                  isVarArg,
1522                                                  PtrByteSize);
1523      } else  nAltivecParamsAtEnd++;
1524    } else
1525      // Calculate min reserved area.
1526      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1527                                                Flags,
1528                                                isVarArg,
1529                                                PtrByteSize);
1530
1531    // FIXME alignment for ELF may not be right
1532    // FIXME the codegen can be much improved in some cases.
1533    // We do not have to keep everything in memory.
1534    if (Flags.isByVal()) {
1535      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1536      ObjSize = Flags.getByValSize();
1537      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1538      // Double word align in ELF
1539      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1540      // Objects of size 1 and 2 are right justified, everything else is
1541      // left justified.  This means the memory address is adjusted forwards.
1542      if (ObjSize==1 || ObjSize==2) {
1543        CurArgOffset = CurArgOffset + (4 - ObjSize);
1544      }
1545      // The value of the object is its address.
1546      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1547      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1548      ArgValues.push_back(FIN);
1549      if (ObjSize==1 || ObjSize==2) {
1550        if (GPR_idx != Num_GPR_Regs) {
1551          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1552          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1553          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1554          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1555                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1556          MemOps.push_back(Store);
1557          ++GPR_idx;
1558          if (isMachoABI) ArgOffset += PtrByteSize;
1559        } else {
1560          ArgOffset += PtrByteSize;
1561        }
1562        continue;
1563      }
1564      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1565        // Store whatever pieces of the object are in registers
1566        // to memory.  ArgVal will be address of the beginning of
1567        // the object.
1568        if (GPR_idx != Num_GPR_Regs) {
1569          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1570          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1571          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1572          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1573          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1574          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1575          MemOps.push_back(Store);
1576          ++GPR_idx;
1577          if (isMachoABI) ArgOffset += PtrByteSize;
1578        } else {
1579          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1580          break;
1581        }
1582      }
1583      continue;
1584    }
1585
1586    switch (ObjectVT.getSimpleVT()) {
1587    default: assert(0 && "Unhandled argument type!");
1588    case MVT::i32:
1589      if (!isPPC64) {
1590        // Double word align in ELF
1591        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1592
1593        if (GPR_idx != Num_GPR_Regs) {
1594          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1595          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1596          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1597          ++GPR_idx;
1598        } else {
1599          needsLoad = true;
1600          ArgSize = PtrByteSize;
1601        }
1602        // Stack align in ELF
1603        if (needsLoad && Align && isELF32_ABI)
1604          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1605        // All int arguments reserve stack space in Macho ABI.
1606        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1607        break;
1608      }
1609      // FALLTHROUGH
1610    case MVT::i64:  // PPC64
1611      if (GPR_idx != Num_GPR_Regs) {
1612        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1613        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1614        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1615
1616        if (ObjectVT == MVT::i32) {
1617          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1618          // value to MVT::i64 and then truncate to the correct register size.
1619          if (Flags.isSExt())
1620            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1621                                 DAG.getValueType(ObjectVT));
1622          else if (Flags.isZExt())
1623            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1624                                 DAG.getValueType(ObjectVT));
1625
1626          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1627        }
1628
1629        ++GPR_idx;
1630      } else {
1631        needsLoad = true;
1632        ArgSize = PtrByteSize;
1633      }
1634      // All int arguments reserve stack space in Macho ABI.
1635      if (isMachoABI || needsLoad) ArgOffset += 8;
1636      break;
1637
1638    case MVT::f32:
1639    case MVT::f64:
1640      // Every 4 bytes of argument space consumes one of the GPRs available for
1641      // argument passing.
1642      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1643        ++GPR_idx;
1644        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1645          ++GPR_idx;
1646      }
1647      if (FPR_idx != Num_FPR_Regs) {
1648        unsigned VReg;
1649        if (ObjectVT == MVT::f32)
1650          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1651        else
1652          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1653        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1654        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1655        ++FPR_idx;
1656      } else {
1657        needsLoad = true;
1658      }
1659
1660      // Stack align in ELF
1661      if (needsLoad && Align && isELF32_ABI)
1662        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1663      // All FP arguments reserve stack space in Macho ABI.
1664      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1665      break;
1666    case MVT::v4f32:
1667    case MVT::v4i32:
1668    case MVT::v8i16:
1669    case MVT::v16i8:
1670      // Note that vector arguments in registers don't reserve stack space,
1671      // except in varargs functions.
1672      if (VR_idx != Num_VR_Regs) {
1673        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1674        RegInfo.addLiveIn(VR[VR_idx], VReg);
1675        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1676        if (isVarArg) {
1677          while ((ArgOffset % 16) != 0) {
1678            ArgOffset += PtrByteSize;
1679            if (GPR_idx != Num_GPR_Regs)
1680              GPR_idx++;
1681          }
1682          ArgOffset += 16;
1683          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1684        }
1685        ++VR_idx;
1686      } else {
1687        if (!isVarArg && !isPPC64) {
1688          // Vectors go after all the nonvectors.
1689          CurArgOffset = VecArgOffset;
1690          VecArgOffset += 16;
1691        } else {
1692          // Vectors are aligned.
1693          ArgOffset = ((ArgOffset+15)/16)*16;
1694          CurArgOffset = ArgOffset;
1695          ArgOffset += 16;
1696        }
1697        needsLoad = true;
1698      }
1699      break;
1700    }
1701
1702    // We need to load the argument to a virtual register if we determined above
1703    // that we ran out of physical registers of the appropriate type.
1704    if (needsLoad) {
1705      int FI = MFI->CreateFixedObject(ObjSize,
1706                                      CurArgOffset + (ArgSize - ObjSize),
1707                                      isImmutable);
1708      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1709      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1710    }
1711
1712    ArgValues.push_back(ArgVal);
1713  }
1714
1715  // Set the size that is at least reserved in caller of this function.  Tail
1716  // call optimized function's reserved stack space needs to be aligned so that
1717  // taking the difference between two stack areas will result in an aligned
1718  // stack.
1719  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1720  // Add the Altivec parameters at the end, if needed.
1721  if (nAltivecParamsAtEnd) {
1722    MinReservedArea = ((MinReservedArea+15)/16)*16;
1723    MinReservedArea += 16*nAltivecParamsAtEnd;
1724  }
1725  MinReservedArea =
1726    std::max(MinReservedArea,
1727             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1728  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1729    getStackAlignment();
1730  unsigned AlignMask = TargetAlign-1;
1731  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1732  FI->setMinReservedArea(MinReservedArea);
1733
1734  // If the function takes variable number of arguments, make a frame index for
1735  // the start of the first vararg value... for expansion of llvm.va_start.
1736  if (isVarArg) {
1737
1738    int depth;
1739    if (isELF32_ABI) {
1740      VarArgsNumGPR = GPR_idx;
1741      VarArgsNumFPR = FPR_idx;
1742
1743      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1744      // pointer.
1745      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1746                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1747                PtrVT.getSizeInBits()/8);
1748
1749      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1750                                                  ArgOffset);
1751
1752    }
1753    else
1754      depth = ArgOffset;
1755
1756    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1757                                               depth);
1758    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1759
1760    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1761    // stored to the VarArgsFrameIndex on the stack.
1762    if (isELF32_ABI) {
1763      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1764        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1765        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1766        MemOps.push_back(Store);
1767        // Increment the address by four for the next argument to store
1768        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1769        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1770      }
1771    }
1772
1773    // If this function is vararg, store any remaining integer argument regs
1774    // to their spots on the stack so that they may be loaded by deferencing the
1775    // result of va_next.
1776    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1777      unsigned VReg;
1778      if (isPPC64)
1779        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1780      else
1781        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1782
1783      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1784      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1785      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1786      MemOps.push_back(Store);
1787      // Increment the address by four for the next argument to store
1788      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1789      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1790    }
1791
1792    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1793    // on the stack.
1794    if (isELF32_ABI) {
1795      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1796        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1797        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1798        MemOps.push_back(Store);
1799        // Increment the address by eight for the next argument to store
1800        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1801                                           PtrVT);
1802        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1803      }
1804
1805      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1806        unsigned VReg;
1807        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1808
1809        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1810        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1811        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1812        MemOps.push_back(Store);
1813        // Increment the address by eight for the next argument to store
1814        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1815                                           PtrVT);
1816        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1817      }
1818    }
1819  }
1820
1821  if (!MemOps.empty())
1822    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1823
1824  ArgValues.push_back(Root);
1825
1826  // Return the new list of results.
1827  return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
1828                     &ArgValues[0], ArgValues.size());
1829}
1830
1831/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1832/// linkage area.
1833static unsigned
1834CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1835                                     bool isPPC64,
1836                                     bool isMachoABI,
1837                                     bool isVarArg,
1838                                     unsigned CC,
1839                                     CallSDNode *TheCall,
1840                                     unsigned &nAltivecParamsAtEnd) {
1841  // Count how many bytes are to be pushed on the stack, including the linkage
1842  // area, and parameter passing area.  We start with 24/48 bytes, which is
1843  // prereserved space for [SP][CR][LR][3 x unused].
1844  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1845  unsigned NumOps = TheCall->getNumArgs();
1846  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1847
1848  // Add up all the space actually used.
1849  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1850  // they all go in registers, but we must reserve stack space for them for
1851  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1852  // assigned stack space in order, with padding so Altivec parameters are
1853  // 16-byte aligned.
1854  nAltivecParamsAtEnd = 0;
1855  for (unsigned i = 0; i != NumOps; ++i) {
1856    SDValue Arg = TheCall->getArg(i);
1857    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1858    MVT ArgVT = Arg.getValueType();
1859    // Varargs Altivec parameters are padded to a 16 byte boundary.
1860    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1861        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1862      if (!isVarArg && !isPPC64) {
1863        // Non-varargs Altivec parameters go after all the non-Altivec
1864        // parameters; handle those later so we know how much padding we need.
1865        nAltivecParamsAtEnd++;
1866        continue;
1867      }
1868      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1869      NumBytes = ((NumBytes+15)/16)*16;
1870    }
1871    NumBytes += CalculateStackSlotSize(Arg, Flags, isVarArg, PtrByteSize);
1872  }
1873
1874   // Allow for Altivec parameters at the end, if needed.
1875  if (nAltivecParamsAtEnd) {
1876    NumBytes = ((NumBytes+15)/16)*16;
1877    NumBytes += 16*nAltivecParamsAtEnd;
1878  }
1879
1880  // The prolog code of the callee may store up to 8 GPR argument registers to
1881  // the stack, allowing va_start to index over them in memory if its varargs.
1882  // Because we cannot tell if this is needed on the caller side, we have to
1883  // conservatively assume that it is needed.  As such, make sure we have at
1884  // least enough stack space for the caller to store the 8 GPRs.
1885  NumBytes = std::max(NumBytes,
1886                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1887
1888  // Tail call needs the stack to be aligned.
1889  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1890    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1891      getStackAlignment();
1892    unsigned AlignMask = TargetAlign-1;
1893    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1894  }
1895
1896  return NumBytes;
1897}
1898
1899/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1900/// adjusted to accomodate the arguments for the tailcall.
1901static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1902                                   unsigned ParamSize) {
1903
1904  if (!IsTailCall) return 0;
1905
1906  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1907  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1908  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1909  // Remember only if the new adjustement is bigger.
1910  if (SPDiff < FI->getTailCallSPDelta())
1911    FI->setTailCallSPDelta(SPDiff);
1912
1913  return SPDiff;
1914}
1915
1916/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1917/// following the call is a return. A function is eligible if caller/callee
1918/// calling conventions match, currently only fastcc supports tail calls, and
1919/// the function CALL is immediatly followed by a RET.
1920bool
1921PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1922                                                     SDValue Ret,
1923                                                     SelectionDAG& DAG) const {
1924  // Variable argument functions are not supported.
1925  if (!PerformTailCallOpt || TheCall->isVarArg())
1926    return false;
1927
1928  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1929    MachineFunction &MF = DAG.getMachineFunction();
1930    unsigned CallerCC = MF.getFunction()->getCallingConv();
1931    unsigned CalleeCC = TheCall->getCallingConv();
1932    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1933      // Functions containing by val parameters are not supported.
1934      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1935         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1936         if (Flags.isByVal()) return false;
1937      }
1938
1939      SDValue Callee = TheCall->getCallee();
1940      // Non PIC/GOT  tail calls are supported.
1941      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1942        return true;
1943
1944      // At the moment we can only do local tail calls (in same module, hidden
1945      // or protected) if we are generating PIC.
1946      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1947        return G->getGlobal()->hasHiddenVisibility()
1948            || G->getGlobal()->hasProtectedVisibility();
1949    }
1950  }
1951
1952  return false;
1953}
1954
1955/// isCallCompatibleAddress - Return the immediate to use if the specified
1956/// 32-bit value is representable in the immediate field of a BxA instruction.
1957static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1958  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1959  if (!C) return 0;
1960
1961  int Addr = C->getZExtValue();
1962  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1963      (Addr << 6 >> 6) != Addr)
1964    return 0;  // Top 6 bits have to be sext of immediate.
1965
1966  return DAG.getConstant((int)C->getZExtValue() >> 2,
1967                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1968}
1969
1970namespace {
1971
1972struct TailCallArgumentInfo {
1973  SDValue Arg;
1974  SDValue FrameIdxOp;
1975  int       FrameIdx;
1976
1977  TailCallArgumentInfo() : FrameIdx(0) {}
1978};
1979
1980}
1981
1982/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1983static void
1984StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1985                                           SDValue Chain,
1986                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1987                   SmallVector<SDValue, 8> &MemOpChains) {
1988  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1989    SDValue Arg = TailCallArgs[i].Arg;
1990    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1991    int FI = TailCallArgs[i].FrameIdx;
1992    // Store relative to framepointer.
1993    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1994                                       PseudoSourceValue::getFixedStack(FI),
1995                                       0));
1996  }
1997}
1998
1999/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2000/// the appropriate stack slot for the tail call optimized function call.
2001static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2002                                               MachineFunction &MF,
2003                                               SDValue Chain,
2004                                               SDValue OldRetAddr,
2005                                               SDValue OldFP,
2006                                               int SPDiff,
2007                                               bool isPPC64,
2008                                               bool isMachoABI) {
2009  if (SPDiff) {
2010    // Calculate the new stack slot for the return address.
2011    int SlotSize = isPPC64 ? 8 : 4;
2012    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2013                                                                   isMachoABI);
2014    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2015                                                          NewRetAddrLoc);
2016    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
2017                                                                    isMachoABI);
2018    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2019
2020    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2021    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2022    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
2023                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2024    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2025    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
2026                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2027  }
2028  return Chain;
2029}
2030
2031/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2032/// the position of the argument.
2033static void
2034CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2035                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2036                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2037  int Offset = ArgOffset + SPDiff;
2038  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2039  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2040  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2041  SDValue FIN = DAG.getFrameIndex(FI, VT);
2042  TailCallArgumentInfo Info;
2043  Info.Arg = Arg;
2044  Info.FrameIdxOp = FIN;
2045  Info.FrameIdx = FI;
2046  TailCallArguments.push_back(Info);
2047}
2048
2049/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2050/// stack slot. Returns the chain as result and the loaded frame pointers in
2051/// LROpOut/FPOpout. Used when tail calling.
2052SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2053                                                          int SPDiff,
2054                                                          SDValue Chain,
2055                                                          SDValue &LROpOut,
2056                                                          SDValue &FPOpOut) {
2057  if (SPDiff) {
2058    // Load the LR and FP stack slot for later adjusting.
2059    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2060    LROpOut = getReturnAddrFrameIndex(DAG);
2061    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2062    Chain = SDValue(LROpOut.getNode(), 1);
2063    FPOpOut = getFramePointerFrameIndex(DAG);
2064    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2065    Chain = SDValue(FPOpOut.getNode(), 1);
2066  }
2067  return Chain;
2068}
2069
2070/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2071/// by "Src" to address "Dst" of size "Size".  Alignment information is
2072/// specified by the specific parameter attribute. The copy will be passed as
2073/// a byval function parameter.
2074/// Sometimes what we are copying is the end of a larger object, the part that
2075/// does not fit in registers.
2076static SDValue
2077CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2078                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2079                          unsigned Size, DebugLoc dl) {
2080  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2081  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2082                       false, NULL, 0, NULL, 0);
2083}
2084
2085/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2086/// tail calls.
2087static void
2088LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2089                 SDValue Arg, SDValue PtrOff, int SPDiff,
2090                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2091                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2092                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2093  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2094  if (!isTailCall) {
2095    if (isVector) {
2096      SDValue StackPtr;
2097      if (isPPC64)
2098        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2099      else
2100        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2101      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2102                           DAG.getConstant(ArgOffset, PtrVT));
2103    }
2104    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2105  // Calculate and remember argument location.
2106  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2107                                  TailCallArguments);
2108}
2109
2110SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2111                                       const PPCSubtarget &Subtarget,
2112                                       TargetMachine &TM) {
2113  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2114  SDValue Chain  = TheCall->getChain();
2115  bool isVarArg   = TheCall->isVarArg();
2116  unsigned CC     = TheCall->getCallingConv();
2117  bool isTailCall = TheCall->isTailCall()
2118                 && CC == CallingConv::Fast && PerformTailCallOpt;
2119  SDValue Callee = TheCall->getCallee();
2120  unsigned NumOps  = TheCall->getNumArgs();
2121  DebugLoc dl = TheCall->getDebugLoc();
2122
2123  bool isMachoABI = Subtarget.isMachoABI();
2124  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2125
2126  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2127  bool isPPC64 = PtrVT == MVT::i64;
2128  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2129
2130  MachineFunction &MF = DAG.getMachineFunction();
2131
2132  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2133  // SelectExpr to use to put the arguments in the appropriate registers.
2134  std::vector<SDValue> args_to_use;
2135
2136  // Mark this function as potentially containing a function that contains a
2137  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2138  // and restoring the callers stack pointer in this functions epilog. This is
2139  // done because by tail calling the called function might overwrite the value
2140  // in this function's (MF) stack pointer stack slot 0(SP).
2141  if (PerformTailCallOpt && CC==CallingConv::Fast)
2142    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2143
2144  unsigned nAltivecParamsAtEnd = 0;
2145
2146  // Count how many bytes are to be pushed on the stack, including the linkage
2147  // area, and parameter passing area.  We start with 24/48 bytes, which is
2148  // prereserved space for [SP][CR][LR][3 x unused].
2149  unsigned NumBytes =
2150    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2151                                         TheCall, nAltivecParamsAtEnd);
2152
2153  // Calculate by how many bytes the stack has to be adjusted in case of tail
2154  // call optimization.
2155  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2156
2157  // Adjust the stack pointer for the new arguments...
2158  // These operations are automatically eliminated by the prolog/epilog pass
2159  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2160  SDValue CallSeqStart = Chain;
2161
2162  // Load the return address and frame pointer so it can be move somewhere else
2163  // later.
2164  SDValue LROp, FPOp;
2165  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2166
2167  // Set up a copy of the stack pointer for use loading and storing any
2168  // arguments that may not fit in the registers available for argument
2169  // passing.
2170  SDValue StackPtr;
2171  if (isPPC64)
2172    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2173  else
2174    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2175
2176  // Figure out which arguments are going to go in registers, and which in
2177  // memory.  Also, if this is a vararg function, floating point operations
2178  // must be stored to our stack, and loaded into integer regs as well, if
2179  // any integer regs are available for argument passing.
2180  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2181  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2182
2183  static const unsigned GPR_32[] = {           // 32-bit registers.
2184    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2185    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2186  };
2187  static const unsigned GPR_64[] = {           // 64-bit registers.
2188    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2189    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2190  };
2191  static const unsigned *FPR = GetFPR(Subtarget);
2192
2193  static const unsigned VR[] = {
2194    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2195    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2196  };
2197  const unsigned NumGPRs = array_lengthof(GPR_32);
2198  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2199  const unsigned NumVRs  = array_lengthof( VR);
2200
2201  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2202
2203  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2204  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2205
2206  SmallVector<SDValue, 8> MemOpChains;
2207  for (unsigned i = 0; i != NumOps; ++i) {
2208    bool inMem = false;
2209    SDValue Arg = TheCall->getArg(i);
2210    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2211    // See if next argument requires stack alignment in ELF
2212    bool Align = Flags.isSplit();
2213
2214    // PtrOff will be used to store the current argument to the stack if a
2215    // register cannot be found for it.
2216    SDValue PtrOff;
2217
2218    // Stack align in ELF 32
2219    if (isELF32_ABI && Align)
2220      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2221                               StackPtr.getValueType());
2222    else
2223      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2224
2225    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2226
2227    // On PPC64, promote integers to 64-bit values.
2228    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2229      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2230      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2231      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2232    }
2233
2234    // FIXME Elf untested, what are alignment rules?
2235    // FIXME memcpy is used way more than necessary.  Correctness first.
2236    if (Flags.isByVal()) {
2237      unsigned Size = Flags.getByValSize();
2238      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2239      if (Size==1 || Size==2) {
2240        // Very small objects are passed right-justified.
2241        // Everything else is passed left-justified.
2242        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2243        if (GPR_idx != NumGPRs) {
2244          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2245                                          NULL, 0, VT);
2246          MemOpChains.push_back(Load.getValue(1));
2247          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2248          if (isMachoABI)
2249            ArgOffset += PtrByteSize;
2250        } else {
2251          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2252          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2253          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2254                                CallSeqStart.getNode()->getOperand(0),
2255                                Flags, DAG, Size, dl);
2256          // This must go outside the CALLSEQ_START..END.
2257          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2258                               CallSeqStart.getNode()->getOperand(1));
2259          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2260                                 NewCallSeqStart.getNode());
2261          Chain = CallSeqStart = NewCallSeqStart;
2262          ArgOffset += PtrByteSize;
2263        }
2264        continue;
2265      }
2266      // Copy entire object into memory.  There are cases where gcc-generated
2267      // code assumes it is there, even if it could be put entirely into
2268      // registers.  (This is not what the doc says.)
2269      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2270                            CallSeqStart.getNode()->getOperand(0),
2271                            Flags, DAG, Size, dl);
2272      // This must go outside the CALLSEQ_START..END.
2273      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2274                           CallSeqStart.getNode()->getOperand(1));
2275      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2276      Chain = CallSeqStart = NewCallSeqStart;
2277      // And copy the pieces of it that fit into registers.
2278      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2279        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2280        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2281        if (GPR_idx != NumGPRs) {
2282          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2283          MemOpChains.push_back(Load.getValue(1));
2284          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2285          if (isMachoABI)
2286            ArgOffset += PtrByteSize;
2287        } else {
2288          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2289          break;
2290        }
2291      }
2292      continue;
2293    }
2294
2295    switch (Arg.getValueType().getSimpleVT()) {
2296    default: assert(0 && "Unexpected ValueType for argument!");
2297    case MVT::i32:
2298    case MVT::i64:
2299      // Double word align in ELF
2300      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2301      if (GPR_idx != NumGPRs) {
2302        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2303      } else {
2304        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2305                         isPPC64, isTailCall, false, MemOpChains,
2306                         TailCallArguments);
2307        inMem = true;
2308      }
2309      if (inMem || isMachoABI) {
2310        // Stack align in ELF
2311        if (isELF32_ABI && Align)
2312          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2313
2314        ArgOffset += PtrByteSize;
2315      }
2316      break;
2317    case MVT::f32:
2318    case MVT::f64:
2319      if (FPR_idx != NumFPRs) {
2320        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2321
2322        if (isVarArg) {
2323          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2324          MemOpChains.push_back(Store);
2325
2326          // Float varargs are always shadowed in available integer registers
2327          if (GPR_idx != NumGPRs) {
2328            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2329            MemOpChains.push_back(Load.getValue(1));
2330            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2331                                                                Load));
2332          }
2333          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2334            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2335            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2336            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2337            MemOpChains.push_back(Load.getValue(1));
2338            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2339                                                                Load));
2340          }
2341        } else {
2342          // If we have any FPRs remaining, we may also have GPRs remaining.
2343          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2344          // GPRs.
2345          if (isMachoABI) {
2346            if (GPR_idx != NumGPRs)
2347              ++GPR_idx;
2348            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2349                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2350              ++GPR_idx;
2351          }
2352        }
2353      } else {
2354        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2355                         isPPC64, isTailCall, false, MemOpChains,
2356                         TailCallArguments);
2357        inMem = true;
2358      }
2359      if (inMem || isMachoABI) {
2360        // Stack align in ELF
2361        if (isELF32_ABI && Align)
2362          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2363        if (isPPC64)
2364          ArgOffset += 8;
2365        else
2366          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2367      }
2368      break;
2369    case MVT::v4f32:
2370    case MVT::v4i32:
2371    case MVT::v8i16:
2372    case MVT::v16i8:
2373      if (isVarArg) {
2374        // These go aligned on the stack, or in the corresponding R registers
2375        // when within range.  The Darwin PPC ABI doc claims they also go in
2376        // V registers; in fact gcc does this only for arguments that are
2377        // prototyped, not for those that match the ...  We do it for all
2378        // arguments, seems to work.
2379        while (ArgOffset % 16 !=0) {
2380          ArgOffset += PtrByteSize;
2381          if (GPR_idx != NumGPRs)
2382            GPR_idx++;
2383        }
2384        // We could elide this store in the case where the object fits
2385        // entirely in R registers.  Maybe later.
2386        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2387                            DAG.getConstant(ArgOffset, PtrVT));
2388        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2389        MemOpChains.push_back(Store);
2390        if (VR_idx != NumVRs) {
2391          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2392          MemOpChains.push_back(Load.getValue(1));
2393          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2394        }
2395        ArgOffset += 16;
2396        for (unsigned i=0; i<16; i+=PtrByteSize) {
2397          if (GPR_idx == NumGPRs)
2398            break;
2399          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2400                                  DAG.getConstant(i, PtrVT));
2401          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2402          MemOpChains.push_back(Load.getValue(1));
2403          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2404        }
2405        break;
2406      }
2407
2408      // Non-varargs Altivec params generally go in registers, but have
2409      // stack space allocated at the end.
2410      if (VR_idx != NumVRs) {
2411        // Doesn't have GPR space allocated.
2412        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2413      } else if (nAltivecParamsAtEnd==0) {
2414        // We are emitting Altivec params in order.
2415        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2416                         isPPC64, isTailCall, true, MemOpChains,
2417                         TailCallArguments);
2418        ArgOffset += 16;
2419      }
2420      break;
2421    }
2422  }
2423  // If all Altivec parameters fit in registers, as they usually do,
2424  // they get stack space following the non-Altivec parameters.  We
2425  // don't track this here because nobody below needs it.
2426  // If there are more Altivec parameters than fit in registers emit
2427  // the stores here.
2428  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2429    unsigned j = 0;
2430    // Offset is aligned; skip 1st 12 params which go in V registers.
2431    ArgOffset = ((ArgOffset+15)/16)*16;
2432    ArgOffset += 12*16;
2433    for (unsigned i = 0; i != NumOps; ++i) {
2434      SDValue Arg = TheCall->getArg(i);
2435      MVT ArgType = Arg.getValueType();
2436      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2437          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2438        if (++j > NumVRs) {
2439          SDValue PtrOff;
2440          // We are emitting Altivec params in order.
2441          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2442                           isPPC64, isTailCall, true, MemOpChains,
2443                           TailCallArguments);
2444          ArgOffset += 16;
2445        }
2446      }
2447    }
2448  }
2449
2450  if (!MemOpChains.empty())
2451    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2452                        &MemOpChains[0], MemOpChains.size());
2453
2454  // Build a sequence of copy-to-reg nodes chained together with token chain
2455  // and flag operands which copy the outgoing args into the appropriate regs.
2456  SDValue InFlag;
2457  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2458    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2459                             InFlag);
2460    InFlag = Chain.getValue(1);
2461  }
2462
2463  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2464  if (isVarArg && isELF32_ABI) {
2465    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2466    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2467    InFlag = Chain.getValue(1);
2468  }
2469
2470  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2471  // might overwrite each other in case of tail call optimization.
2472  if (isTailCall) {
2473    SmallVector<SDValue, 8> MemOpChains2;
2474    // Do not flag preceeding copytoreg stuff together with the following stuff.
2475    InFlag = SDValue();
2476    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2477                                      MemOpChains2);
2478    if (!MemOpChains2.empty())
2479      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2480                          &MemOpChains2[0], MemOpChains2.size());
2481
2482    // Store the return address to the appropriate stack slot.
2483    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2484                                          isPPC64, isMachoABI);
2485  }
2486
2487  // Emit callseq_end just before tailcall node.
2488  if (isTailCall) {
2489    SmallVector<SDValue, 8> CallSeqOps;
2490    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2491    CallSeqOps.push_back(Chain);
2492    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes, true));
2493    CallSeqOps.push_back(DAG.getIntPtrConstant(0, true));
2494    if (InFlag.getNode())
2495      CallSeqOps.push_back(InFlag);
2496    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2497                        CallSeqOps.size());
2498    InFlag = Chain.getValue(1);
2499  }
2500
2501  std::vector<MVT> NodeTys;
2502  NodeTys.push_back(MVT::Other);   // Returns a chain
2503  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2504
2505  SmallVector<SDValue, 8> Ops;
2506  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2507
2508  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2509  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2510  // node so that legalize doesn't hack it.
2511  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2512    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2513  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2514    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2515  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2516    // If this is an absolute destination address, use the munged value.
2517    Callee = SDValue(Dest, 0);
2518  else {
2519    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2520    // to do the call, we can't use PPCISD::CALL.
2521    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2522    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps,
2523                        2 + (InFlag.getNode() != 0));
2524    InFlag = Chain.getValue(1);
2525
2526    // Copy the callee address into R12/X12 on darwin.
2527    if (isMachoABI) {
2528      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2529      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2530      InFlag = Chain.getValue(1);
2531    }
2532
2533    NodeTys.clear();
2534    NodeTys.push_back(MVT::Other);
2535    NodeTys.push_back(MVT::Flag);
2536    Ops.push_back(Chain);
2537    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2538    Callee.setNode(0);
2539    // Add CTR register as callee so a bctr can be emitted later.
2540    if (isTailCall)
2541      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2542  }
2543
2544  // If this is a direct call, pass the chain and the callee.
2545  if (Callee.getNode()) {
2546    Ops.push_back(Chain);
2547    Ops.push_back(Callee);
2548  }
2549  // If this is a tail call add stack pointer delta.
2550  if (isTailCall)
2551    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2552
2553  // Add argument registers to the end of the list so that they are known live
2554  // into the call.
2555  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2556    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2557                                  RegsToPass[i].second.getValueType()));
2558
2559  // When performing tail call optimization the callee pops its arguments off
2560  // the stack. Account for this here so these bytes can be pushed back on in
2561  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2562  int BytesCalleePops =
2563    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2564
2565  if (InFlag.getNode())
2566    Ops.push_back(InFlag);
2567
2568  // Emit tail call.
2569  if (isTailCall) {
2570    assert(InFlag.getNode() &&
2571           "Flag must be set. Depend on flag being set in LowerRET");
2572    Chain = DAG.getNode(PPCISD::TAILCALL,
2573                        TheCall->getVTList(), &Ops[0], Ops.size());
2574    return SDValue(Chain.getNode(), Op.getResNo());
2575  }
2576
2577  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2578  InFlag = Chain.getValue(1);
2579
2580  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2581                             DAG.getIntPtrConstant(BytesCalleePops, true),
2582                             InFlag);
2583  if (TheCall->getValueType(0) != MVT::Other)
2584    InFlag = Chain.getValue(1);
2585
2586  SmallVector<SDValue, 16> ResultVals;
2587  SmallVector<CCValAssign, 16> RVLocs;
2588  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2589  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2590  CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2591
2592  // Copy all of the result registers out of their specified physreg.
2593  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2594    CCValAssign &VA = RVLocs[i];
2595    MVT VT = VA.getValVT();
2596    assert(VA.isRegLoc() && "Can only return in registers!");
2597    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2598    ResultVals.push_back(Chain.getValue(0));
2599    InFlag = Chain.getValue(2);
2600  }
2601
2602  // If the function returns void, just return the chain.
2603  if (RVLocs.empty())
2604    return Chain;
2605
2606  // Otherwise, merge everything together with a MERGE_VALUES node.
2607  ResultVals.push_back(Chain);
2608  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
2609                            &ResultVals[0], ResultVals.size());
2610  return Res.getValue(Op.getResNo());
2611}
2612
2613SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2614                                      TargetMachine &TM) {
2615  SmallVector<CCValAssign, 16> RVLocs;
2616  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2617  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2618  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2619  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2620
2621  // If this is the first return lowered for this function, add the regs to the
2622  // liveout set for the function.
2623  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2624    for (unsigned i = 0; i != RVLocs.size(); ++i)
2625      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2626  }
2627
2628  SDValue Chain = Op.getOperand(0);
2629
2630  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2631  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2632    SDValue TailCall = Chain;
2633    SDValue TargetAddress = TailCall.getOperand(1);
2634    SDValue StackAdjustment = TailCall.getOperand(2);
2635
2636    assert(((TargetAddress.getOpcode() == ISD::Register &&
2637             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2638            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2639            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2640            isa<ConstantSDNode>(TargetAddress)) &&
2641    "Expecting an global address, external symbol, absolute value or register");
2642
2643    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2644           "Expecting a const value");
2645
2646    SmallVector<SDValue,8> Operands;
2647    Operands.push_back(Chain.getOperand(0));
2648    Operands.push_back(TargetAddress);
2649    Operands.push_back(StackAdjustment);
2650    // Copy registers used by the call. Last operand is a flag so it is not
2651    // copied.
2652    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2653      Operands.push_back(Chain.getOperand(i));
2654    }
2655    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2656                       Operands.size());
2657  }
2658
2659  SDValue Flag;
2660
2661  // Copy the result values into the output registers.
2662  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2663    CCValAssign &VA = RVLocs[i];
2664    assert(VA.isRegLoc() && "Can only return in registers!");
2665    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2666    Flag = Chain.getValue(1);
2667  }
2668
2669  if (Flag.getNode())
2670    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2671  else
2672    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2673}
2674
2675SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2676                                   const PPCSubtarget &Subtarget) {
2677  // When we pop the dynamic allocation we need to restore the SP link.
2678
2679  // Get the corect type for pointers.
2680  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2681
2682  // Construct the stack pointer operand.
2683  bool IsPPC64 = Subtarget.isPPC64();
2684  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2685  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2686
2687  // Get the operands for the STACKRESTORE.
2688  SDValue Chain = Op.getOperand(0);
2689  SDValue SaveSP = Op.getOperand(1);
2690
2691  // Load the old link SP.
2692  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2693
2694  // Restore the stack pointer.
2695  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2696
2697  // Store the old link SP.
2698  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2699}
2700
2701
2702
2703SDValue
2704PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2705  MachineFunction &MF = DAG.getMachineFunction();
2706  bool IsPPC64 = PPCSubTarget.isPPC64();
2707  bool isMachoABI = PPCSubTarget.isMachoABI();
2708  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2709
2710  // Get current frame pointer save index.  The users of this index will be
2711  // primarily DYNALLOC instructions.
2712  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2713  int RASI = FI->getReturnAddrSaveIndex();
2714
2715  // If the frame pointer save index hasn't been defined yet.
2716  if (!RASI) {
2717    // Find out what the fix offset of the frame pointer save area.
2718    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2719    // Allocate the frame index for frame pointer save area.
2720    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2721    // Save the result.
2722    FI->setReturnAddrSaveIndex(RASI);
2723  }
2724  return DAG.getFrameIndex(RASI, PtrVT);
2725}
2726
2727SDValue
2728PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2729  MachineFunction &MF = DAG.getMachineFunction();
2730  bool IsPPC64 = PPCSubTarget.isPPC64();
2731  bool isMachoABI = PPCSubTarget.isMachoABI();
2732  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2733
2734  // Get current frame pointer save index.  The users of this index will be
2735  // primarily DYNALLOC instructions.
2736  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2737  int FPSI = FI->getFramePointerSaveIndex();
2738
2739  // If the frame pointer save index hasn't been defined yet.
2740  if (!FPSI) {
2741    // Find out what the fix offset of the frame pointer save area.
2742    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2743
2744    // Allocate the frame index for frame pointer save area.
2745    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2746    // Save the result.
2747    FI->setFramePointerSaveIndex(FPSI);
2748  }
2749  return DAG.getFrameIndex(FPSI, PtrVT);
2750}
2751
2752SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2753                                         SelectionDAG &DAG,
2754                                         const PPCSubtarget &Subtarget) {
2755  // Get the inputs.
2756  SDValue Chain = Op.getOperand(0);
2757  SDValue Size  = Op.getOperand(1);
2758
2759  // Get the corect type for pointers.
2760  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2761  // Negate the size.
2762  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2763                                  DAG.getConstant(0, PtrVT), Size);
2764  // Construct a node for the frame pointer save index.
2765  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2766  // Build a DYNALLOC node.
2767  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2768  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2769  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2770}
2771
2772/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2773/// possible.
2774SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2775  // Not FP? Not a fsel.
2776  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2777      !Op.getOperand(2).getValueType().isFloatingPoint())
2778    return SDValue();
2779
2780  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2781
2782  // Cannot handle SETEQ/SETNE.
2783  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2784
2785  MVT ResVT = Op.getValueType();
2786  MVT CmpVT = Op.getOperand(0).getValueType();
2787  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2788  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2789
2790  // If the RHS of the comparison is a 0.0, we don't need to do the
2791  // subtraction at all.
2792  if (isFloatingPointZero(RHS))
2793    switch (CC) {
2794    default: break;       // SETUO etc aren't handled by fsel.
2795    case ISD::SETULT:
2796    case ISD::SETLT:
2797      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2798    case ISD::SETOGE:
2799    case ISD::SETGE:
2800      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2801        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2802      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2803    case ISD::SETUGT:
2804    case ISD::SETGT:
2805      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2806    case ISD::SETOLE:
2807    case ISD::SETLE:
2808      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2809        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2810      return DAG.getNode(PPCISD::FSEL, ResVT,
2811                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2812    }
2813
2814  SDValue Cmp;
2815  switch (CC) {
2816  default: break;       // SETUO etc aren't handled by fsel.
2817  case ISD::SETULT:
2818  case ISD::SETLT:
2819    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2820    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2821      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2822      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2823  case ISD::SETOGE:
2824  case ISD::SETGE:
2825    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2826    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2827      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2828      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2829  case ISD::SETUGT:
2830  case ISD::SETGT:
2831    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2832    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2833      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2834      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2835  case ISD::SETOLE:
2836  case ISD::SETLE:
2837    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2838    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2839      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2840      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2841  }
2842  return SDValue();
2843}
2844
2845// FIXME: Split this code up when LegalizeDAGTypes lands.
2846SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2847  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2848  SDValue Src = Op.getOperand(0);
2849  if (Src.getValueType() == MVT::f32)
2850    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2851
2852  SDValue Tmp;
2853  switch (Op.getValueType().getSimpleVT()) {
2854  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2855  case MVT::i32:
2856    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2857    break;
2858  case MVT::i64:
2859    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2860    break;
2861  }
2862
2863  // Convert the FP value to an int value through memory.
2864  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2865
2866  // Emit a store to the stack slot.
2867  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2868
2869  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2870  // add in a bias.
2871  if (Op.getValueType() == MVT::i32)
2872    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2873                        DAG.getConstant(4, FIPtr.getValueType()));
2874  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2875}
2876
2877SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2878  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2879  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2880    return SDValue();
2881
2882  if (Op.getOperand(0).getValueType() == MVT::i64) {
2883    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2884    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2885    if (Op.getValueType() == MVT::f32)
2886      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2887    return FP;
2888  }
2889
2890  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2891         "Unhandled SINT_TO_FP type in custom expander!");
2892  // Since we only generate this in 64-bit mode, we can take advantage of
2893  // 64-bit registers.  In particular, sign extend the input value into the
2894  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2895  // then lfd it and fcfid it.
2896  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2897  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2898  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2899  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2900
2901  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2902                                Op.getOperand(0));
2903
2904  // STD the extended value into the stack slot.
2905  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2906                       MachineMemOperand::MOStore, 0, 8, 8);
2907  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2908                                DAG.getEntryNode(), Ext64, FIdx,
2909                                DAG.getMemOperand(MO));
2910  // Load the value as a double.
2911  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2912
2913  // FCFID it and return it.
2914  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2915  if (Op.getValueType() == MVT::f32)
2916    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2917  return FP;
2918}
2919
2920SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2921  /*
2922   The rounding mode is in bits 30:31 of FPSR, and has the following
2923   settings:
2924     00 Round to nearest
2925     01 Round to 0
2926     10 Round to +inf
2927     11 Round to -inf
2928
2929  FLT_ROUNDS, on the other hand, expects the following:
2930    -1 Undefined
2931     0 Round to 0
2932     1 Round to nearest
2933     2 Round to +inf
2934     3 Round to -inf
2935
2936  To perform the conversion, we do:
2937    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2938  */
2939
2940  MachineFunction &MF = DAG.getMachineFunction();
2941  MVT VT = Op.getValueType();
2942  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2943  std::vector<MVT> NodeTys;
2944  SDValue MFFSreg, InFlag;
2945
2946  // Save FP Control Word to register
2947  NodeTys.push_back(MVT::f64);    // return register
2948  NodeTys.push_back(MVT::Flag);   // unused in this context
2949  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2950
2951  // Save FP register to stack slot
2952  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2953  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2954  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
2955                                 StackSlot, NULL, 0);
2956
2957  // Load FP Control Word from low 32 bits of stack slot.
2958  SDValue Four = DAG.getConstant(4, PtrVT);
2959  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2960  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2961
2962  // Transform as necessary
2963  SDValue CWD1 =
2964    DAG.getNode(ISD::AND, MVT::i32,
2965                CWD, DAG.getConstant(3, MVT::i32));
2966  SDValue CWD2 =
2967    DAG.getNode(ISD::SRL, MVT::i32,
2968                DAG.getNode(ISD::AND, MVT::i32,
2969                            DAG.getNode(ISD::XOR, MVT::i32,
2970                                        CWD, DAG.getConstant(3, MVT::i32)),
2971                            DAG.getConstant(3, MVT::i32)),
2972                DAG.getConstant(1, MVT::i32));
2973
2974  SDValue RetVal =
2975    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2976
2977  return DAG.getNode((VT.getSizeInBits() < 16 ?
2978                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2979}
2980
2981SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
2982  MVT VT = Op.getValueType();
2983  unsigned BitWidth = VT.getSizeInBits();
2984  assert(Op.getNumOperands() == 3 &&
2985         VT == Op.getOperand(1).getValueType() &&
2986         "Unexpected SHL!");
2987
2988  // Expand into a bunch of logical ops.  Note that these ops
2989  // depend on the PPC behavior for oversized shift amounts.
2990  SDValue Lo = Op.getOperand(0);
2991  SDValue Hi = Op.getOperand(1);
2992  SDValue Amt = Op.getOperand(2);
2993  MVT AmtVT = Amt.getValueType();
2994
2995  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2996                             DAG.getConstant(BitWidth, AmtVT), Amt);
2997  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2998  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2999  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3000  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3001                             DAG.getConstant(-BitWidth, AmtVT));
3002  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3003  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3004  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3005  SDValue OutOps[] = { OutLo, OutHi };
3006  return DAG.getMergeValues(OutOps, 2);
3007}
3008
3009SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3010  MVT VT = Op.getValueType();
3011  unsigned BitWidth = VT.getSizeInBits();
3012  assert(Op.getNumOperands() == 3 &&
3013         VT == Op.getOperand(1).getValueType() &&
3014         "Unexpected SRL!");
3015
3016  // Expand into a bunch of logical ops.  Note that these ops
3017  // depend on the PPC behavior for oversized shift amounts.
3018  SDValue Lo = Op.getOperand(0);
3019  SDValue Hi = Op.getOperand(1);
3020  SDValue Amt = Op.getOperand(2);
3021  MVT AmtVT = Amt.getValueType();
3022
3023  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3024                             DAG.getConstant(BitWidth, AmtVT), Amt);
3025  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3026  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3027  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3028  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3029                             DAG.getConstant(-BitWidth, AmtVT));
3030  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3031  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3032  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3033  SDValue OutOps[] = { OutLo, OutHi };
3034  return DAG.getMergeValues(OutOps, 2);
3035}
3036
3037SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3038  MVT VT = Op.getValueType();
3039  unsigned BitWidth = VT.getSizeInBits();
3040  assert(Op.getNumOperands() == 3 &&
3041         VT == Op.getOperand(1).getValueType() &&
3042         "Unexpected SRA!");
3043
3044  // Expand into a bunch of logical ops, followed by a select_cc.
3045  SDValue Lo = Op.getOperand(0);
3046  SDValue Hi = Op.getOperand(1);
3047  SDValue Amt = Op.getOperand(2);
3048  MVT AmtVT = Amt.getValueType();
3049
3050  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3051                             DAG.getConstant(BitWidth, AmtVT), Amt);
3052  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3053  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3054  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3055  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3056                             DAG.getConstant(-BitWidth, AmtVT));
3057  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3058  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3059  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3060                                  Tmp4, Tmp6, ISD::SETLE);
3061  SDValue OutOps[] = { OutLo, OutHi };
3062  return DAG.getMergeValues(OutOps, 2);
3063}
3064
3065//===----------------------------------------------------------------------===//
3066// Vector related lowering.
3067//
3068
3069// If this is a vector of constants or undefs, get the bits.  A bit in
3070// UndefBits is set if the corresponding element of the vector is an
3071// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3072// zero.   Return true if this is not an array of constants, false if it is.
3073//
3074static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3075                                       uint64_t UndefBits[2]) {
3076  // Start with zero'd results.
3077  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3078
3079  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3080  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3081    SDValue OpVal = BV->getOperand(i);
3082
3083    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3084    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3085
3086    uint64_t EltBits = 0;
3087    if (OpVal.getOpcode() == ISD::UNDEF) {
3088      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3089      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3090      continue;
3091    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3092      EltBits = CN->getZExtValue() & (~0U >> (32-EltBitSize));
3093    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3094      assert(CN->getValueType(0) == MVT::f32 &&
3095             "Only one legal FP vector type!");
3096      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3097    } else {
3098      // Nonconstant element.
3099      return true;
3100    }
3101
3102    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3103  }
3104
3105  //printf("%llx %llx  %llx %llx\n",
3106  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3107  return false;
3108}
3109
3110// If this is a splat (repetition) of a value across the whole vector, return
3111// the smallest size that splats it.  For example, "0x01010101010101..." is a
3112// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3113// SplatSize = 1 byte.
3114static bool isConstantSplat(const uint64_t Bits128[2],
3115                            const uint64_t Undef128[2],
3116                            unsigned &SplatBits, unsigned &SplatUndef,
3117                            unsigned &SplatSize) {
3118
3119  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3120  // the same as the lower 64-bits, ignoring undefs.
3121  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3122    return false;  // Can't be a splat if two pieces don't match.
3123
3124  uint64_t Bits64  = Bits128[0] | Bits128[1];
3125  uint64_t Undef64 = Undef128[0] & Undef128[1];
3126
3127  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3128  // undefs.
3129  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3130    return false;  // Can't be a splat if two pieces don't match.
3131
3132  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3133  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3134
3135  // If the top 16-bits are different than the lower 16-bits, ignoring
3136  // undefs, we have an i32 splat.
3137  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3138    SplatBits = Bits32;
3139    SplatUndef = Undef32;
3140    SplatSize = 4;
3141    return true;
3142  }
3143
3144  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3145  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3146
3147  // If the top 8-bits are different than the lower 8-bits, ignoring
3148  // undefs, we have an i16 splat.
3149  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3150    SplatBits = Bits16;
3151    SplatUndef = Undef16;
3152    SplatSize = 2;
3153    return true;
3154  }
3155
3156  // Otherwise, we have an 8-bit splat.
3157  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3158  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3159  SplatSize = 1;
3160  return true;
3161}
3162
3163/// BuildSplatI - Build a canonical splati of Val with an element size of
3164/// SplatSize.  Cast the result to VT.
3165static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3166                             SelectionDAG &DAG) {
3167  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3168
3169  static const MVT VTys[] = { // canonical VT to use for each size.
3170    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3171  };
3172
3173  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3174
3175  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3176  if (Val == -1)
3177    SplatSize = 1;
3178
3179  MVT CanonicalVT = VTys[SplatSize-1];
3180
3181  // Build a canonical splat for this value.
3182  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3183  SmallVector<SDValue, 8> Ops;
3184  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3185  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3186                              &Ops[0], Ops.size());
3187  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3188}
3189
3190/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3191/// specified intrinsic ID.
3192static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3193                                  SelectionDAG &DAG,
3194                                  MVT DestVT = MVT::Other) {
3195  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3196  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3197                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3198}
3199
3200/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3201/// specified intrinsic ID.
3202static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3203                                  SDValue Op2, SelectionDAG &DAG,
3204                                  MVT DestVT = MVT::Other) {
3205  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3206  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3207                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3208}
3209
3210
3211/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3212/// amount.  The result has the specified value type.
3213static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3214                             MVT VT, SelectionDAG &DAG) {
3215  // Force LHS/RHS to be the right type.
3216  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3217  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3218
3219  SDValue Ops[16];
3220  for (unsigned i = 0; i != 16; ++i)
3221    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3222  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3223                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3224  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3225}
3226
3227// If this is a case we can't handle, return null and let the default
3228// expansion code take care of it.  If we CAN select this case, and if it
3229// selects to a single instruction, return Op.  Otherwise, if we can codegen
3230// this case more efficiently than a constant pool load, lower it to the
3231// sequence of ops that should be used.
3232SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3233                                               SelectionDAG &DAG) {
3234  // If this is a vector of constants or undefs, get the bits.  A bit in
3235  // UndefBits is set if the corresponding element of the vector is an
3236  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3237  // zero.
3238  uint64_t VectorBits[2];
3239  uint64_t UndefBits[2];
3240  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
3241    return SDValue();   // Not a constant vector.
3242
3243  // If this is a splat (repetition) of a value across the whole vector, return
3244  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3245  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3246  // SplatSize = 1 byte.
3247  unsigned SplatBits, SplatUndef, SplatSize;
3248  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3249    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3250
3251    // First, handle single instruction cases.
3252
3253    // All zeros?
3254    if (SplatBits == 0) {
3255      // Canonicalize all zero vectors to be v4i32.
3256      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3257        SDValue Z = DAG.getConstant(0, MVT::i32);
3258        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3259        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3260      }
3261      return Op;
3262    }
3263
3264    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3265    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3266    if (SextVal >= -16 && SextVal <= 15)
3267      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3268
3269
3270    // Two instruction sequences.
3271
3272    // If this value is in the range [-32,30] and is even, use:
3273    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3274    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3275      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3276      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3277      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3278    }
3279
3280    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3281    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3282    // for fneg/fabs.
3283    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3284      // Make -1 and vspltisw -1:
3285      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3286
3287      // Make the VSLW intrinsic, computing 0x8000_0000.
3288      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3289                                       OnesV, DAG);
3290
3291      // xor by OnesV to invert it.
3292      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3293      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3294    }
3295
3296    // Check to see if this is a wide variety of vsplti*, binop self cases.
3297    unsigned SplatBitSize = SplatSize*8;
3298    static const signed char SplatCsts[] = {
3299      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3300      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3301    };
3302
3303    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3304      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3305      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3306      int i = SplatCsts[idx];
3307
3308      // Figure out what shift amount will be used by altivec if shifted by i in
3309      // this splat size.
3310      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3311
3312      // vsplti + shl self.
3313      if (SextVal == (i << (int)TypeShiftAmt)) {
3314        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3315        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3316          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3317          Intrinsic::ppc_altivec_vslw
3318        };
3319        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3320        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3321      }
3322
3323      // vsplti + srl self.
3324      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3325        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3326        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3327          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3328          Intrinsic::ppc_altivec_vsrw
3329        };
3330        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3331        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3332      }
3333
3334      // vsplti + sra self.
3335      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3336        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3337        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3338          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3339          Intrinsic::ppc_altivec_vsraw
3340        };
3341        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3342        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3343      }
3344
3345      // vsplti + rol self.
3346      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3347                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3348        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3349        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3350          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3351          Intrinsic::ppc_altivec_vrlw
3352        };
3353        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3354        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3355      }
3356
3357      // t = vsplti c, result = vsldoi t, t, 1
3358      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3359        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3360        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3361      }
3362      // t = vsplti c, result = vsldoi t, t, 2
3363      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3364        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3365        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3366      }
3367      // t = vsplti c, result = vsldoi t, t, 3
3368      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3369        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3370        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3371      }
3372    }
3373
3374    // Three instruction sequences.
3375
3376    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3377    if (SextVal >= 0 && SextVal <= 31) {
3378      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3379      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3380      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3381      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3382    }
3383    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3384    if (SextVal >= -31 && SextVal <= 0) {
3385      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3386      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3387      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3388      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3389    }
3390  }
3391
3392  return SDValue();
3393}
3394
3395/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3396/// the specified operations to build the shuffle.
3397static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3398                                        SDValue RHS, SelectionDAG &DAG) {
3399  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3400  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3401  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3402
3403  enum {
3404    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3405    OP_VMRGHW,
3406    OP_VMRGLW,
3407    OP_VSPLTISW0,
3408    OP_VSPLTISW1,
3409    OP_VSPLTISW2,
3410    OP_VSPLTISW3,
3411    OP_VSLDOI4,
3412    OP_VSLDOI8,
3413    OP_VSLDOI12
3414  };
3415
3416  if (OpNum == OP_COPY) {
3417    if (LHSID == (1*9+2)*9+3) return LHS;
3418    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3419    return RHS;
3420  }
3421
3422  SDValue OpLHS, OpRHS;
3423  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3424  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3425
3426  unsigned ShufIdxs[16];
3427  switch (OpNum) {
3428  default: assert(0 && "Unknown i32 permute!");
3429  case OP_VMRGHW:
3430    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3431    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3432    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3433    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3434    break;
3435  case OP_VMRGLW:
3436    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3437    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3438    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3439    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3440    break;
3441  case OP_VSPLTISW0:
3442    for (unsigned i = 0; i != 16; ++i)
3443      ShufIdxs[i] = (i&3)+0;
3444    break;
3445  case OP_VSPLTISW1:
3446    for (unsigned i = 0; i != 16; ++i)
3447      ShufIdxs[i] = (i&3)+4;
3448    break;
3449  case OP_VSPLTISW2:
3450    for (unsigned i = 0; i != 16; ++i)
3451      ShufIdxs[i] = (i&3)+8;
3452    break;
3453  case OP_VSPLTISW3:
3454    for (unsigned i = 0; i != 16; ++i)
3455      ShufIdxs[i] = (i&3)+12;
3456    break;
3457  case OP_VSLDOI4:
3458    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3459  case OP_VSLDOI8:
3460    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3461  case OP_VSLDOI12:
3462    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3463  }
3464  SDValue Ops[16];
3465  for (unsigned i = 0; i != 16; ++i)
3466    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3467
3468  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3469                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3470}
3471
3472/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3473/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3474/// return the code it can be lowered into.  Worst case, it can always be
3475/// lowered into a vperm.
3476SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3477                                                 SelectionDAG &DAG) {
3478  SDValue V1 = Op.getOperand(0);
3479  SDValue V2 = Op.getOperand(1);
3480  SDValue PermMask = Op.getOperand(2);
3481
3482  // Cases that are handled by instructions that take permute immediates
3483  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3484  // selected by the instruction selector.
3485  if (V2.getOpcode() == ISD::UNDEF) {
3486    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
3487        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
3488        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
3489        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
3490        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
3491        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
3492        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
3493        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
3494        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
3495        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
3496        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
3497        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
3498      return Op;
3499    }
3500  }
3501
3502  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3503  // and produce a fixed permutation.  If any of these match, do not lower to
3504  // VPERM.
3505  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
3506      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
3507      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
3508      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
3509      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
3510      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
3511      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
3512      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
3513      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
3514    return Op;
3515
3516  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3517  // perfect shuffle table to emit an optimal matching sequence.
3518  unsigned PFIndexes[4];
3519  bool isFourElementShuffle = true;
3520  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3521    unsigned EltNo = 8;   // Start out undef.
3522    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3523      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3524        continue;   // Undef, ignore it.
3525
3526      unsigned ByteSource =
3527        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getZExtValue();
3528      if ((ByteSource & 3) != j) {
3529        isFourElementShuffle = false;
3530        break;
3531      }
3532
3533      if (EltNo == 8) {
3534        EltNo = ByteSource/4;
3535      } else if (EltNo != ByteSource/4) {
3536        isFourElementShuffle = false;
3537        break;
3538      }
3539    }
3540    PFIndexes[i] = EltNo;
3541  }
3542
3543  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3544  // perfect shuffle vector to determine if it is cost effective to do this as
3545  // discrete instructions, or whether we should use a vperm.
3546  if (isFourElementShuffle) {
3547    // Compute the index in the perfect shuffle table.
3548    unsigned PFTableIndex =
3549      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3550
3551    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3552    unsigned Cost  = (PFEntry >> 30);
3553
3554    // Determining when to avoid vperm is tricky.  Many things affect the cost
3555    // of vperm, particularly how many times the perm mask needs to be computed.
3556    // For example, if the perm mask can be hoisted out of a loop or is already
3557    // used (perhaps because there are multiple permutes with the same shuffle
3558    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3559    // the loop requires an extra register.
3560    //
3561    // As a compromise, we only emit discrete instructions if the shuffle can be
3562    // generated in 3 or fewer operations.  When we have loop information
3563    // available, if this block is within a loop, we should avoid using vperm
3564    // for 3-operation perms and use a constant pool load instead.
3565    if (Cost < 3)
3566      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3567  }
3568
3569  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3570  // vector that will get spilled to the constant pool.
3571  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3572
3573  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3574  // that it is in input element units, not in bytes.  Convert now.
3575  MVT EltVT = V1.getValueType().getVectorElementType();
3576  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3577
3578  SmallVector<SDValue, 16> ResultMask;
3579  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3580    unsigned SrcElt;
3581    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3582      SrcElt = 0;
3583    else
3584      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getZExtValue();
3585
3586    for (unsigned j = 0; j != BytesPerElement; ++j)
3587      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3588                                           MVT::i8));
3589  }
3590
3591  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3592                                    &ResultMask[0], ResultMask.size());
3593  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3594}
3595
3596/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3597/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3598/// information about the intrinsic.
3599static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3600                                  bool &isDot) {
3601  unsigned IntrinsicID =
3602    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3603  CompareOpc = -1;
3604  isDot = false;
3605  switch (IntrinsicID) {
3606  default: return false;
3607    // Comparison predicates.
3608  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3609  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3610  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3611  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3612  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3613  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3614  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3615  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3616  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3617  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3618  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3619  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3620  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3621
3622    // Normal Comparisons.
3623  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3624  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3625  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3626  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3627  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3628  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3629  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3630  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3631  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3632  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3633  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3634  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3635  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3636  }
3637  return true;
3638}
3639
3640/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3641/// lower, do it, otherwise return null.
3642SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3643                                                     SelectionDAG &DAG) {
3644  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3645  // opcode number of the comparison.
3646  int CompareOpc;
3647  bool isDot;
3648  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3649    return SDValue();    // Don't custom lower most intrinsics.
3650
3651  // If this is a non-dot comparison, make the VCMP node and we are done.
3652  if (!isDot) {
3653    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3654                                Op.getOperand(1), Op.getOperand(2),
3655                                DAG.getConstant(CompareOpc, MVT::i32));
3656    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3657  }
3658
3659  // Create the PPCISD altivec 'dot' comparison node.
3660  SDValue Ops[] = {
3661    Op.getOperand(2),  // LHS
3662    Op.getOperand(3),  // RHS
3663    DAG.getConstant(CompareOpc, MVT::i32)
3664  };
3665  std::vector<MVT> VTs;
3666  VTs.push_back(Op.getOperand(2).getValueType());
3667  VTs.push_back(MVT::Flag);
3668  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3669
3670  // Now that we have the comparison, emit a copy from the CR to a GPR.
3671  // This is flagged to the above dot comparison.
3672  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3673                                DAG.getRegister(PPC::CR6, MVT::i32),
3674                                CompNode.getValue(1));
3675
3676  // Unpack the result based on how the target uses it.
3677  unsigned BitNo;   // Bit # of CR6.
3678  bool InvertBit;   // Invert result?
3679  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3680  default:  // Can't happen, don't crash on invalid number though.
3681  case 0:   // Return the value of the EQ bit of CR6.
3682    BitNo = 0; InvertBit = false;
3683    break;
3684  case 1:   // Return the inverted value of the EQ bit of CR6.
3685    BitNo = 0; InvertBit = true;
3686    break;
3687  case 2:   // Return the value of the LT bit of CR6.
3688    BitNo = 2; InvertBit = false;
3689    break;
3690  case 3:   // Return the inverted value of the LT bit of CR6.
3691    BitNo = 2; InvertBit = true;
3692    break;
3693  }
3694
3695  // Shift the bit into the low position.
3696  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3697                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3698  // Isolate the bit.
3699  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3700                      DAG.getConstant(1, MVT::i32));
3701
3702  // If we are supposed to, toggle the bit.
3703  if (InvertBit)
3704    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3705                        DAG.getConstant(1, MVT::i32));
3706  return Flags;
3707}
3708
3709SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3710                                                   SelectionDAG &DAG) {
3711  // Create a stack slot that is 16-byte aligned.
3712  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3713  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3714  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3715  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3716
3717  // Store the input value into Value#0 of the stack slot.
3718  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3719                                 Op.getOperand(0), FIdx, NULL, 0);
3720  // Load it out.
3721  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3722}
3723
3724SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3725  if (Op.getValueType() == MVT::v4i32) {
3726    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3727
3728    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3729    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3730
3731    SDValue RHSSwap =   // = vrlw RHS, 16
3732      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3733
3734    // Shrinkify inputs to v8i16.
3735    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3736    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3737    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3738
3739    // Low parts multiplied together, generating 32-bit results (we ignore the
3740    // top parts).
3741    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3742                                        LHS, RHS, DAG, MVT::v4i32);
3743
3744    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3745                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3746    // Shift the high parts up 16 bits.
3747    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3748    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3749  } else if (Op.getValueType() == MVT::v8i16) {
3750    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3751
3752    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3753
3754    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3755                            LHS, RHS, Zero, DAG);
3756  } else if (Op.getValueType() == MVT::v16i8) {
3757    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3758
3759    // Multiply the even 8-bit parts, producing 16-bit sums.
3760    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3761                                           LHS, RHS, DAG, MVT::v8i16);
3762    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3763
3764    // Multiply the odd 8-bit parts, producing 16-bit sums.
3765    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3766                                          LHS, RHS, DAG, MVT::v8i16);
3767    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3768
3769    // Merge the results together.
3770    SDValue Ops[16];
3771    for (unsigned i = 0; i != 8; ++i) {
3772      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3773      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3774    }
3775    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3776                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3777  } else {
3778    assert(0 && "Unknown mul to lower!");
3779    abort();
3780  }
3781}
3782
3783/// LowerOperation - Provide custom lowering hooks for some operations.
3784///
3785SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3786  switch (Op.getOpcode()) {
3787  default: assert(0 && "Wasn't expecting to be able to lower this!");
3788  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3789  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3790  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3791  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3792  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3793  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
3794  case ISD::VASTART:
3795    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3796                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3797
3798  case ISD::VAARG:
3799    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3800                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3801
3802  case ISD::FORMAL_ARGUMENTS:
3803    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3804                                 VarArgsStackOffset, VarArgsNumGPR,
3805                                 VarArgsNumFPR, PPCSubTarget);
3806
3807  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3808                                                 getTargetMachine());
3809  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3810  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3811  case ISD::DYNAMIC_STACKALLOC:
3812    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3813
3814  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3815  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3816  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3817  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3818
3819  // Lower 64-bit shifts.
3820  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3821  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3822  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3823
3824  // Vector-related lowering.
3825  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3826  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3827  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3828  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3829  case ISD::MUL:                return LowerMUL(Op, DAG);
3830
3831  // Frame & Return address.
3832  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3833  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3834  }
3835  return SDValue();
3836}
3837
3838void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
3839                                           SmallVectorImpl<SDValue>&Results,
3840                                           SelectionDAG &DAG) {
3841  switch (N->getOpcode()) {
3842  default:
3843    assert(false && "Do not know how to custom type legalize this operation!");
3844    return;
3845  case ISD::FP_ROUND_INREG: {
3846    assert(N->getValueType(0) == MVT::ppcf128);
3847    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
3848    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::f64, N->getOperand(0),
3849                             DAG.getIntPtrConstant(0));
3850    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::f64, N->getOperand(0),
3851                             DAG.getIntPtrConstant(1));
3852
3853    // This sequence changes FPSCR to do round-to-zero, adds the two halves
3854    // of the long double, and puts FPSCR back the way it was.  We do not
3855    // actually model FPSCR.
3856    std::vector<MVT> NodeTys;
3857    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
3858
3859    NodeTys.push_back(MVT::f64);   // Return register
3860    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
3861    Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
3862    MFFSreg = Result.getValue(0);
3863    InFlag = Result.getValue(1);
3864
3865    NodeTys.clear();
3866    NodeTys.push_back(MVT::Flag);   // Returns a flag
3867    Ops[0] = DAG.getConstant(31, MVT::i32);
3868    Ops[1] = InFlag;
3869    Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
3870    InFlag = Result.getValue(0);
3871
3872    NodeTys.clear();
3873    NodeTys.push_back(MVT::Flag);   // Returns a flag
3874    Ops[0] = DAG.getConstant(30, MVT::i32);
3875    Ops[1] = InFlag;
3876    Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
3877    InFlag = Result.getValue(0);
3878
3879    NodeTys.clear();
3880    NodeTys.push_back(MVT::f64);    // result of add
3881    NodeTys.push_back(MVT::Flag);   // Returns a flag
3882    Ops[0] = Lo;
3883    Ops[1] = Hi;
3884    Ops[2] = InFlag;
3885    Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
3886    FPreg = Result.getValue(0);
3887    InFlag = Result.getValue(1);
3888
3889    NodeTys.clear();
3890    NodeTys.push_back(MVT::f64);
3891    Ops[0] = DAG.getConstant(1, MVT::i32);
3892    Ops[1] = MFFSreg;
3893    Ops[2] = FPreg;
3894    Ops[3] = InFlag;
3895    Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
3896    FPreg = Result.getValue(0);
3897
3898    // We know the low half is about to be thrown away, so just use something
3899    // convenient.
3900    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::ppcf128, FPreg, FPreg));
3901    return;
3902  }
3903  case ISD::FP_TO_SINT:
3904    Results.push_back(LowerFP_TO_SINT(SDValue(N, 0), DAG));
3905    return;
3906  }
3907}
3908
3909
3910//===----------------------------------------------------------------------===//
3911//  Other Lowering Code
3912//===----------------------------------------------------------------------===//
3913
3914MachineBasicBlock *
3915PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3916                                    bool is64bit, unsigned BinOpcode) {
3917  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3918  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3919
3920  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3921  MachineFunction *F = BB->getParent();
3922  MachineFunction::iterator It = BB;
3923  ++It;
3924
3925  unsigned dest = MI->getOperand(0).getReg();
3926  unsigned ptrA = MI->getOperand(1).getReg();
3927  unsigned ptrB = MI->getOperand(2).getReg();
3928  unsigned incr = MI->getOperand(3).getReg();
3929
3930  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3931  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3932  F->insert(It, loopMBB);
3933  F->insert(It, exitMBB);
3934  exitMBB->transferSuccessors(BB);
3935
3936  MachineRegisterInfo &RegInfo = F->getRegInfo();
3937  unsigned TmpReg = (!BinOpcode) ? incr :
3938    RegInfo.createVirtualRegister(
3939       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3940                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3941
3942  //  thisMBB:
3943  //   ...
3944  //   fallthrough --> loopMBB
3945  BB->addSuccessor(loopMBB);
3946
3947  //  loopMBB:
3948  //   l[wd]arx dest, ptr
3949  //   add r0, dest, incr
3950  //   st[wd]cx. r0, ptr
3951  //   bne- loopMBB
3952  //   fallthrough --> exitMBB
3953  BB = loopMBB;
3954  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3955    .addReg(ptrA).addReg(ptrB);
3956  if (BinOpcode)
3957    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3958  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3959    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3960  BuildMI(BB, TII->get(PPC::BCC))
3961    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3962  BB->addSuccessor(loopMBB);
3963  BB->addSuccessor(exitMBB);
3964
3965  //  exitMBB:
3966  //   ...
3967  BB = exitMBB;
3968  return BB;
3969}
3970
3971MachineBasicBlock *
3972PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3973                                            MachineBasicBlock *BB,
3974                                            bool is8bit,    // operation
3975                                            unsigned BinOpcode) {
3976  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3977  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3978  // In 64 bit mode we have to use 64 bits for addresses, even though the
3979  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3980  // registers without caring whether they're 32 or 64, but here we're
3981  // doing actual arithmetic on the addresses.
3982  bool is64bit = PPCSubTarget.isPPC64();
3983
3984  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3985  MachineFunction *F = BB->getParent();
3986  MachineFunction::iterator It = BB;
3987  ++It;
3988
3989  unsigned dest = MI->getOperand(0).getReg();
3990  unsigned ptrA = MI->getOperand(1).getReg();
3991  unsigned ptrB = MI->getOperand(2).getReg();
3992  unsigned incr = MI->getOperand(3).getReg();
3993
3994  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3995  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3996  F->insert(It, loopMBB);
3997  F->insert(It, exitMBB);
3998  exitMBB->transferSuccessors(BB);
3999
4000  MachineRegisterInfo &RegInfo = F->getRegInfo();
4001  const TargetRegisterClass *RC =
4002    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4003              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4004  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4005  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4006  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4007  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4008  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4009  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4010  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4011  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4012  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4013  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4014  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4015  unsigned Ptr1Reg;
4016  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4017
4018  //  thisMBB:
4019  //   ...
4020  //   fallthrough --> loopMBB
4021  BB->addSuccessor(loopMBB);
4022
4023  // The 4-byte load must be aligned, while a char or short may be
4024  // anywhere in the word.  Hence all this nasty bookkeeping code.
4025  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4026  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4027  //   xori shift, shift1, 24 [16]
4028  //   rlwinm ptr, ptr1, 0, 0, 29
4029  //   slw incr2, incr, shift
4030  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4031  //   slw mask, mask2, shift
4032  //  loopMBB:
4033  //   lwarx tmpDest, ptr
4034  //   add tmp, tmpDest, incr2
4035  //   andc tmp2, tmpDest, mask
4036  //   and tmp3, tmp, mask
4037  //   or tmp4, tmp3, tmp2
4038  //   stwcx. tmp4, ptr
4039  //   bne- loopMBB
4040  //   fallthrough --> exitMBB
4041  //   srw dest, tmpDest, shift
4042
4043  if (ptrA!=PPC::R0) {
4044    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4045    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4046      .addReg(ptrA).addReg(ptrB);
4047  } else {
4048    Ptr1Reg = ptrB;
4049  }
4050  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4051      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4052  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4053      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4054  if (is64bit)
4055    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4056      .addReg(Ptr1Reg).addImm(0).addImm(61);
4057  else
4058    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4059      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4060  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4061      .addReg(incr).addReg(ShiftReg);
4062  if (is8bit)
4063    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4064  else {
4065    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4066    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4067  }
4068  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4069      .addReg(Mask2Reg).addReg(ShiftReg);
4070
4071  BB = loopMBB;
4072  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4073    .addReg(PPC::R0).addReg(PtrReg);
4074  if (BinOpcode)
4075    BuildMI(BB, TII->get(BinOpcode), TmpReg)
4076      .addReg(Incr2Reg).addReg(TmpDestReg);
4077  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4078    .addReg(TmpDestReg).addReg(MaskReg);
4079  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4080    .addReg(TmpReg).addReg(MaskReg);
4081  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4082    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4083  BuildMI(BB, TII->get(PPC::STWCX))
4084    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4085  BuildMI(BB, TII->get(PPC::BCC))
4086    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4087  BB->addSuccessor(loopMBB);
4088  BB->addSuccessor(exitMBB);
4089
4090  //  exitMBB:
4091  //   ...
4092  BB = exitMBB;
4093  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4094  return BB;
4095}
4096
4097MachineBasicBlock *
4098PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4099                                               MachineBasicBlock *BB) {
4100  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4101
4102  // To "insert" these instructions we actually have to insert their
4103  // control-flow patterns.
4104  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4105  MachineFunction::iterator It = BB;
4106  ++It;
4107
4108  MachineFunction *F = BB->getParent();
4109
4110  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4111      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4112      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4113      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4114      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4115
4116    // The incoming instruction knows the destination vreg to set, the
4117    // condition code register to branch on, the true/false values to
4118    // select between, and a branch opcode to use.
4119
4120    //  thisMBB:
4121    //  ...
4122    //   TrueVal = ...
4123    //   cmpTY ccX, r1, r2
4124    //   bCC copy1MBB
4125    //   fallthrough --> copy0MBB
4126    MachineBasicBlock *thisMBB = BB;
4127    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4128    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4129    unsigned SelectPred = MI->getOperand(4).getImm();
4130    BuildMI(BB, TII->get(PPC::BCC))
4131      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4132    F->insert(It, copy0MBB);
4133    F->insert(It, sinkMBB);
4134    // Update machine-CFG edges by transferring all successors of the current
4135    // block to the new block which will contain the Phi node for the select.
4136    sinkMBB->transferSuccessors(BB);
4137    // Next, add the true and fallthrough blocks as its successors.
4138    BB->addSuccessor(copy0MBB);
4139    BB->addSuccessor(sinkMBB);
4140
4141    //  copy0MBB:
4142    //   %FalseValue = ...
4143    //   # fallthrough to sinkMBB
4144    BB = copy0MBB;
4145
4146    // Update machine-CFG edges
4147    BB->addSuccessor(sinkMBB);
4148
4149    //  sinkMBB:
4150    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4151    //  ...
4152    BB = sinkMBB;
4153    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4154      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4155      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4156  }
4157  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4158    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4159  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4160    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4161  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4162    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4163  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4164    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4165
4166  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4167    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4168  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4169    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4170  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4171    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4172  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4173    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4174
4175  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4176    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4177  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4178    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4179  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4180    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4181  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4182    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4183
4184  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4185    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4186  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4187    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4188  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4189    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4190  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4191    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4192
4193  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4194    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4195  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4196    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4197  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4198    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4199  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4200    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4201
4202  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4203    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4204  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4205    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4206  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4207    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4208  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4209    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4210
4211  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4212    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4213  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4214    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4215  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4216    BB = EmitAtomicBinary(MI, BB, false, 0);
4217  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4218    BB = EmitAtomicBinary(MI, BB, true, 0);
4219
4220  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4221           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4222    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4223
4224    unsigned dest   = MI->getOperand(0).getReg();
4225    unsigned ptrA   = MI->getOperand(1).getReg();
4226    unsigned ptrB   = MI->getOperand(2).getReg();
4227    unsigned oldval = MI->getOperand(3).getReg();
4228    unsigned newval = MI->getOperand(4).getReg();
4229
4230    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4231    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4232    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4233    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4234    F->insert(It, loop1MBB);
4235    F->insert(It, loop2MBB);
4236    F->insert(It, midMBB);
4237    F->insert(It, exitMBB);
4238    exitMBB->transferSuccessors(BB);
4239
4240    //  thisMBB:
4241    //   ...
4242    //   fallthrough --> loopMBB
4243    BB->addSuccessor(loop1MBB);
4244
4245    // loop1MBB:
4246    //   l[wd]arx dest, ptr
4247    //   cmp[wd] dest, oldval
4248    //   bne- midMBB
4249    // loop2MBB:
4250    //   st[wd]cx. newval, ptr
4251    //   bne- loopMBB
4252    //   b exitBB
4253    // midMBB:
4254    //   st[wd]cx. dest, ptr
4255    // exitBB:
4256    BB = loop1MBB;
4257    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4258      .addReg(ptrA).addReg(ptrB);
4259    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4260      .addReg(oldval).addReg(dest);
4261    BuildMI(BB, TII->get(PPC::BCC))
4262      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4263    BB->addSuccessor(loop2MBB);
4264    BB->addSuccessor(midMBB);
4265
4266    BB = loop2MBB;
4267    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4268      .addReg(newval).addReg(ptrA).addReg(ptrB);
4269    BuildMI(BB, TII->get(PPC::BCC))
4270      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4271    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4272    BB->addSuccessor(loop1MBB);
4273    BB->addSuccessor(exitMBB);
4274
4275    BB = midMBB;
4276    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4277      .addReg(dest).addReg(ptrA).addReg(ptrB);
4278    BB->addSuccessor(exitMBB);
4279
4280    //  exitMBB:
4281    //   ...
4282    BB = exitMBB;
4283  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4284             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4285    // We must use 64-bit registers for addresses when targeting 64-bit,
4286    // since we're actually doing arithmetic on them.  Other registers
4287    // can be 32-bit.
4288    bool is64bit = PPCSubTarget.isPPC64();
4289    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4290
4291    unsigned dest   = MI->getOperand(0).getReg();
4292    unsigned ptrA   = MI->getOperand(1).getReg();
4293    unsigned ptrB   = MI->getOperand(2).getReg();
4294    unsigned oldval = MI->getOperand(3).getReg();
4295    unsigned newval = MI->getOperand(4).getReg();
4296
4297    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4298    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4299    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4300    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4301    F->insert(It, loop1MBB);
4302    F->insert(It, loop2MBB);
4303    F->insert(It, midMBB);
4304    F->insert(It, exitMBB);
4305    exitMBB->transferSuccessors(BB);
4306
4307    MachineRegisterInfo &RegInfo = F->getRegInfo();
4308    const TargetRegisterClass *RC =
4309      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4310                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4311    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4312    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4313    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4314    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4315    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4316    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4317    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4318    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4319    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4320    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4321    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4322    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4323    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4324    unsigned Ptr1Reg;
4325    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4326    //  thisMBB:
4327    //   ...
4328    //   fallthrough --> loopMBB
4329    BB->addSuccessor(loop1MBB);
4330
4331    // The 4-byte load must be aligned, while a char or short may be
4332    // anywhere in the word.  Hence all this nasty bookkeeping code.
4333    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4334    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4335    //   xori shift, shift1, 24 [16]
4336    //   rlwinm ptr, ptr1, 0, 0, 29
4337    //   slw newval2, newval, shift
4338    //   slw oldval2, oldval,shift
4339    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4340    //   slw mask, mask2, shift
4341    //   and newval3, newval2, mask
4342    //   and oldval3, oldval2, mask
4343    // loop1MBB:
4344    //   lwarx tmpDest, ptr
4345    //   and tmp, tmpDest, mask
4346    //   cmpw tmp, oldval3
4347    //   bne- midMBB
4348    // loop2MBB:
4349    //   andc tmp2, tmpDest, mask
4350    //   or tmp4, tmp2, newval3
4351    //   stwcx. tmp4, ptr
4352    //   bne- loop1MBB
4353    //   b exitBB
4354    // midMBB:
4355    //   stwcx. tmpDest, ptr
4356    // exitBB:
4357    //   srw dest, tmpDest, shift
4358    if (ptrA!=PPC::R0) {
4359      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4360      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4361        .addReg(ptrA).addReg(ptrB);
4362    } else {
4363      Ptr1Reg = ptrB;
4364    }
4365    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4366        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4367    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4368        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4369    if (is64bit)
4370      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4371        .addReg(Ptr1Reg).addImm(0).addImm(61);
4372    else
4373      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4374        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4375    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
4376        .addReg(newval).addReg(ShiftReg);
4377    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
4378        .addReg(oldval).addReg(ShiftReg);
4379    if (is8bit)
4380      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4381    else {
4382      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4383      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4384    }
4385    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4386        .addReg(Mask2Reg).addReg(ShiftReg);
4387    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
4388        .addReg(NewVal2Reg).addReg(MaskReg);
4389    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
4390        .addReg(OldVal2Reg).addReg(MaskReg);
4391
4392    BB = loop1MBB;
4393    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4394        .addReg(PPC::R0).addReg(PtrReg);
4395    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
4396    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
4397        .addReg(TmpReg).addReg(OldVal3Reg);
4398    BuildMI(BB, TII->get(PPC::BCC))
4399        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4400    BB->addSuccessor(loop2MBB);
4401    BB->addSuccessor(midMBB);
4402
4403    BB = loop2MBB;
4404    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
4405    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
4406    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4407        .addReg(PPC::R0).addReg(PtrReg);
4408    BuildMI(BB, TII->get(PPC::BCC))
4409      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4410    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4411    BB->addSuccessor(loop1MBB);
4412    BB->addSuccessor(exitMBB);
4413
4414    BB = midMBB;
4415    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4416      .addReg(PPC::R0).addReg(PtrReg);
4417    BB->addSuccessor(exitMBB);
4418
4419    //  exitMBB:
4420    //   ...
4421    BB = exitMBB;
4422    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4423  } else {
4424    assert(0 && "Unexpected instr type to insert");
4425  }
4426
4427  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4428  return BB;
4429}
4430
4431//===----------------------------------------------------------------------===//
4432// Target Optimization Hooks
4433//===----------------------------------------------------------------------===//
4434
4435SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4436                                             DAGCombinerInfo &DCI) const {
4437  TargetMachine &TM = getTargetMachine();
4438  SelectionDAG &DAG = DCI.DAG;
4439  switch (N->getOpcode()) {
4440  default: break;
4441  case PPCISD::SHL:
4442    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4443      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4444        return N->getOperand(0);
4445    }
4446    break;
4447  case PPCISD::SRL:
4448    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4449      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4450        return N->getOperand(0);
4451    }
4452    break;
4453  case PPCISD::SRA:
4454    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4455      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4456          C->isAllOnesValue())    // -1 >>s V -> -1.
4457        return N->getOperand(0);
4458    }
4459    break;
4460
4461  case ISD::SINT_TO_FP:
4462    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4463      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4464        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4465        // We allow the src/dst to be either f32/f64, but the intermediate
4466        // type must be i64.
4467        if (N->getOperand(0).getValueType() == MVT::i64 &&
4468            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4469          SDValue Val = N->getOperand(0).getOperand(0);
4470          if (Val.getValueType() == MVT::f32) {
4471            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4472            DCI.AddToWorklist(Val.getNode());
4473          }
4474
4475          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4476          DCI.AddToWorklist(Val.getNode());
4477          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4478          DCI.AddToWorklist(Val.getNode());
4479          if (N->getValueType(0) == MVT::f32) {
4480            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4481                              DAG.getIntPtrConstant(0));
4482            DCI.AddToWorklist(Val.getNode());
4483          }
4484          return Val;
4485        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4486          // If the intermediate type is i32, we can avoid the load/store here
4487          // too.
4488        }
4489      }
4490    }
4491    break;
4492  case ISD::STORE:
4493    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4494    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4495        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4496        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4497        N->getOperand(1).getValueType() == MVT::i32 &&
4498        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4499      SDValue Val = N->getOperand(1).getOperand(0);
4500      if (Val.getValueType() == MVT::f32) {
4501        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4502        DCI.AddToWorklist(Val.getNode());
4503      }
4504      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4505      DCI.AddToWorklist(Val.getNode());
4506
4507      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4508                        N->getOperand(2), N->getOperand(3));
4509      DCI.AddToWorklist(Val.getNode());
4510      return Val;
4511    }
4512
4513    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4514    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4515        N->getOperand(1).getNode()->hasOneUse() &&
4516        (N->getOperand(1).getValueType() == MVT::i32 ||
4517         N->getOperand(1).getValueType() == MVT::i16)) {
4518      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4519      // Do an any-extend to 32-bits if this is a half-word input.
4520      if (BSwapOp.getValueType() == MVT::i16)
4521        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4522
4523      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4524                         N->getOperand(2), N->getOperand(3),
4525                         DAG.getValueType(N->getOperand(1).getValueType()));
4526    }
4527    break;
4528  case ISD::BSWAP:
4529    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4530    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4531        N->getOperand(0).hasOneUse() &&
4532        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4533      SDValue Load = N->getOperand(0);
4534      LoadSDNode *LD = cast<LoadSDNode>(Load);
4535      // Create the byte-swapping load.
4536      std::vector<MVT> VTs;
4537      VTs.push_back(MVT::i32);
4538      VTs.push_back(MVT::Other);
4539      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4540      SDValue Ops[] = {
4541        LD->getChain(),    // Chain
4542        LD->getBasePtr(),  // Ptr
4543        MO,                // MemOperand
4544        DAG.getValueType(N->getValueType(0)) // VT
4545      };
4546      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4547
4548      // If this is an i16 load, insert the truncate.
4549      SDValue ResVal = BSLoad;
4550      if (N->getValueType(0) == MVT::i16)
4551        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4552
4553      // First, combine the bswap away.  This makes the value produced by the
4554      // load dead.
4555      DCI.CombineTo(N, ResVal);
4556
4557      // Next, combine the load away, we give it a bogus result value but a real
4558      // chain result.  The result value is dead because the bswap is dead.
4559      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4560
4561      // Return N so it doesn't get rechecked!
4562      return SDValue(N, 0);
4563    }
4564
4565    break;
4566  case PPCISD::VCMP: {
4567    // If a VCMPo node already exists with exactly the same operands as this
4568    // node, use its result instead of this node (VCMPo computes both a CR6 and
4569    // a normal output).
4570    //
4571    if (!N->getOperand(0).hasOneUse() &&
4572        !N->getOperand(1).hasOneUse() &&
4573        !N->getOperand(2).hasOneUse()) {
4574
4575      // Scan all of the users of the LHS, looking for VCMPo's that match.
4576      SDNode *VCMPoNode = 0;
4577
4578      SDNode *LHSN = N->getOperand(0).getNode();
4579      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4580           UI != E; ++UI)
4581        if (UI->getOpcode() == PPCISD::VCMPo &&
4582            UI->getOperand(1) == N->getOperand(1) &&
4583            UI->getOperand(2) == N->getOperand(2) &&
4584            UI->getOperand(0) == N->getOperand(0)) {
4585          VCMPoNode = *UI;
4586          break;
4587        }
4588
4589      // If there is no VCMPo node, or if the flag value has a single use, don't
4590      // transform this.
4591      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4592        break;
4593
4594      // Look at the (necessarily single) use of the flag value.  If it has a
4595      // chain, this transformation is more complex.  Note that multiple things
4596      // could use the value result, which we should ignore.
4597      SDNode *FlagUser = 0;
4598      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4599           FlagUser == 0; ++UI) {
4600        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4601        SDNode *User = *UI;
4602        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4603          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4604            FlagUser = User;
4605            break;
4606          }
4607        }
4608      }
4609
4610      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4611      // give up for right now.
4612      if (FlagUser->getOpcode() == PPCISD::MFCR)
4613        return SDValue(VCMPoNode, 0);
4614    }
4615    break;
4616  }
4617  case ISD::BR_CC: {
4618    // If this is a branch on an altivec predicate comparison, lower this so
4619    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4620    // lowering is done pre-legalize, because the legalizer lowers the predicate
4621    // compare down to code that is difficult to reassemble.
4622    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4623    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4624    int CompareOpc;
4625    bool isDot;
4626
4627    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4628        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4629        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4630      assert(isDot && "Can't compare against a vector result!");
4631
4632      // If this is a comparison against something other than 0/1, then we know
4633      // that the condition is never/always true.
4634      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4635      if (Val != 0 && Val != 1) {
4636        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4637          return N->getOperand(0);
4638        // Always !=, turn it into an unconditional branch.
4639        return DAG.getNode(ISD::BR, MVT::Other,
4640                           N->getOperand(0), N->getOperand(4));
4641      }
4642
4643      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4644
4645      // Create the PPCISD altivec 'dot' comparison node.
4646      std::vector<MVT> VTs;
4647      SDValue Ops[] = {
4648        LHS.getOperand(2),  // LHS of compare
4649        LHS.getOperand(3),  // RHS of compare
4650        DAG.getConstant(CompareOpc, MVT::i32)
4651      };
4652      VTs.push_back(LHS.getOperand(2).getValueType());
4653      VTs.push_back(MVT::Flag);
4654      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4655
4656      // Unpack the result based on how the target uses it.
4657      PPC::Predicate CompOpc;
4658      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4659      default:  // Can't happen, don't crash on invalid number though.
4660      case 0:   // Branch on the value of the EQ bit of CR6.
4661        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4662        break;
4663      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4664        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4665        break;
4666      case 2:   // Branch on the value of the LT bit of CR6.
4667        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4668        break;
4669      case 3:   // Branch on the inverted value of the LT bit of CR6.
4670        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4671        break;
4672      }
4673
4674      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4675                         DAG.getConstant(CompOpc, MVT::i32),
4676                         DAG.getRegister(PPC::CR6, MVT::i32),
4677                         N->getOperand(4), CompNode.getValue(1));
4678    }
4679    break;
4680  }
4681  }
4682
4683  return SDValue();
4684}
4685
4686//===----------------------------------------------------------------------===//
4687// Inline Assembly Support
4688//===----------------------------------------------------------------------===//
4689
4690void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4691                                                       const APInt &Mask,
4692                                                       APInt &KnownZero,
4693                                                       APInt &KnownOne,
4694                                                       const SelectionDAG &DAG,
4695                                                       unsigned Depth) const {
4696  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4697  switch (Op.getOpcode()) {
4698  default: break;
4699  case PPCISD::LBRX: {
4700    // lhbrx is known to have the top bits cleared out.
4701    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4702      KnownZero = 0xFFFF0000;
4703    break;
4704  }
4705  case ISD::INTRINSIC_WO_CHAIN: {
4706    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4707    default: break;
4708    case Intrinsic::ppc_altivec_vcmpbfp_p:
4709    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4710    case Intrinsic::ppc_altivec_vcmpequb_p:
4711    case Intrinsic::ppc_altivec_vcmpequh_p:
4712    case Intrinsic::ppc_altivec_vcmpequw_p:
4713    case Intrinsic::ppc_altivec_vcmpgefp_p:
4714    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4715    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4716    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4717    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4718    case Intrinsic::ppc_altivec_vcmpgtub_p:
4719    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4720    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4721      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4722      break;
4723    }
4724  }
4725  }
4726}
4727
4728
4729/// getConstraintType - Given a constraint, return the type of
4730/// constraint it is for this target.
4731PPCTargetLowering::ConstraintType
4732PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4733  if (Constraint.size() == 1) {
4734    switch (Constraint[0]) {
4735    default: break;
4736    case 'b':
4737    case 'r':
4738    case 'f':
4739    case 'v':
4740    case 'y':
4741      return C_RegisterClass;
4742    }
4743  }
4744  return TargetLowering::getConstraintType(Constraint);
4745}
4746
4747std::pair<unsigned, const TargetRegisterClass*>
4748PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4749                                                MVT VT) const {
4750  if (Constraint.size() == 1) {
4751    // GCC RS6000 Constraint Letters
4752    switch (Constraint[0]) {
4753    case 'b':   // R1-R31
4754    case 'r':   // R0-R31
4755      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4756        return std::make_pair(0U, PPC::G8RCRegisterClass);
4757      return std::make_pair(0U, PPC::GPRCRegisterClass);
4758    case 'f':
4759      if (VT == MVT::f32)
4760        return std::make_pair(0U, PPC::F4RCRegisterClass);
4761      else if (VT == MVT::f64)
4762        return std::make_pair(0U, PPC::F8RCRegisterClass);
4763      break;
4764    case 'v':
4765      return std::make_pair(0U, PPC::VRRCRegisterClass);
4766    case 'y':   // crrc
4767      return std::make_pair(0U, PPC::CRRCRegisterClass);
4768    }
4769  }
4770
4771  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4772}
4773
4774
4775/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4776/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
4777/// it means one of the asm constraint of the inline asm instruction being
4778/// processed is 'm'.
4779void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4780                                                     bool hasMemory,
4781                                                     std::vector<SDValue>&Ops,
4782                                                     SelectionDAG &DAG) const {
4783  SDValue Result(0,0);
4784  switch (Letter) {
4785  default: break;
4786  case 'I':
4787  case 'J':
4788  case 'K':
4789  case 'L':
4790  case 'M':
4791  case 'N':
4792  case 'O':
4793  case 'P': {
4794    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4795    if (!CST) return; // Must be an immediate to match.
4796    unsigned Value = CST->getZExtValue();
4797    switch (Letter) {
4798    default: assert(0 && "Unknown constraint letter!");
4799    case 'I':  // "I" is a signed 16-bit constant.
4800      if ((short)Value == (int)Value)
4801        Result = DAG.getTargetConstant(Value, Op.getValueType());
4802      break;
4803    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4804    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4805      if ((short)Value == 0)
4806        Result = DAG.getTargetConstant(Value, Op.getValueType());
4807      break;
4808    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4809      if ((Value >> 16) == 0)
4810        Result = DAG.getTargetConstant(Value, Op.getValueType());
4811      break;
4812    case 'M':  // "M" is a constant that is greater than 31.
4813      if (Value > 31)
4814        Result = DAG.getTargetConstant(Value, Op.getValueType());
4815      break;
4816    case 'N':  // "N" is a positive constant that is an exact power of two.
4817      if ((int)Value > 0 && isPowerOf2_32(Value))
4818        Result = DAG.getTargetConstant(Value, Op.getValueType());
4819      break;
4820    case 'O':  // "O" is the constant zero.
4821      if (Value == 0)
4822        Result = DAG.getTargetConstant(Value, Op.getValueType());
4823      break;
4824    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4825      if ((short)-Value == (int)-Value)
4826        Result = DAG.getTargetConstant(Value, Op.getValueType());
4827      break;
4828    }
4829    break;
4830  }
4831  }
4832
4833  if (Result.getNode()) {
4834    Ops.push_back(Result);
4835    return;
4836  }
4837
4838  // Handle standard constraint letters.
4839  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
4840}
4841
4842// isLegalAddressingMode - Return true if the addressing mode represented
4843// by AM is legal for this target, for a load/store of the specified type.
4844bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4845                                              const Type *Ty) const {
4846  // FIXME: PPC does not allow r+i addressing modes for vectors!
4847
4848  // PPC allows a sign-extended 16-bit immediate field.
4849  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4850    return false;
4851
4852  // No global is ever allowed as a base.
4853  if (AM.BaseGV)
4854    return false;
4855
4856  // PPC only support r+r,
4857  switch (AM.Scale) {
4858  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4859    break;
4860  case 1:
4861    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4862      return false;
4863    // Otherwise we have r+r or r+i.
4864    break;
4865  case 2:
4866    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4867      return false;
4868    // Allow 2*r as r+r.
4869    break;
4870  default:
4871    // No other scales are supported.
4872    return false;
4873  }
4874
4875  return true;
4876}
4877
4878/// isLegalAddressImmediate - Return true if the integer value can be used
4879/// as the offset of the target addressing mode for load / store of the
4880/// given type.
4881bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4882  // PPC allows a sign-extended 16-bit immediate field.
4883  return (V > -(1 << 16) && V < (1 << 16)-1);
4884}
4885
4886bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4887  return false;
4888}
4889
4890SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4891  // Depths > 0 not supported yet!
4892  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4893    return SDValue();
4894
4895  MachineFunction &MF = DAG.getMachineFunction();
4896  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4897
4898  // Just load the return address off the stack.
4899  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4900
4901  // Make sure the function really does not optimize away the store of the RA
4902  // to the stack.
4903  FuncInfo->setLRStoreRequired();
4904  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4905}
4906
4907SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4908  // Depths > 0 not supported yet!
4909  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4910    return SDValue();
4911
4912  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4913  bool isPPC64 = PtrVT == MVT::i64;
4914
4915  MachineFunction &MF = DAG.getMachineFunction();
4916  MachineFrameInfo *MFI = MF.getFrameInfo();
4917  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4918                  && MFI->getStackSize();
4919
4920  if (isPPC64)
4921    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4922      MVT::i64);
4923  else
4924    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4925      MVT::i32);
4926}
4927
4928bool
4929PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4930  // The PowerPC target isn't yet aware of offsets.
4931  return false;
4932}
4933