PPCISelLowering.cpp revision 942619695f4bd77934c09a1cae0fb39ae59edac3
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF();
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
186  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
187  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
188  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
189
190
191  // We want to legalize GlobalAddress and ConstantPool nodes into the
192  // appropriate instructions to materialize the address.
193  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
194  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
195  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
196  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
197  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
198  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
199  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
200  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
201  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
202  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
203
204  // TRAP is legal.
205  setOperationAction(ISD::TRAP, MVT::Other, Legal);
206
207  // TRAMPOLINE is custom lowered.
208  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
209
210  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
211  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
212
213  // VAARG is custom lowered with the 32-bit SVR4 ABI.
214  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
215      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
216    setOperationAction(ISD::VAARG, MVT::Other, Custom);
217  else
218    setOperationAction(ISD::VAARG, MVT::Other, Expand);
219
220  // Use the default implementation.
221  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
222  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
223  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
224  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
225  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
226  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
227
228  // We want to custom lower some of our intrinsics.
229  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
230
231  // Comparisons that require checking two conditions.
232  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
233  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
234  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
244
245  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
246    // They also have instructions for converting between i64 and fp.
247    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
248    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
249    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
250    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
251    // This is just the low 32 bits of a (signed) fp->i64 conversion.
252    // We cannot do this with Promote because i64 is not a legal type.
253    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
254
255    // FIXME: disable this lowered code.  This generates 64-bit register values,
256    // and we don't model the fact that the top part is clobbered by calls.  We
257    // need to flag these together so that the value isn't live across a call.
258    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
259  } else {
260    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
261    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
262  }
263
264  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
265    // 64-bit PowerPC implementations can support i64 types directly
266    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
267    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
268    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
269    // 64-bit PowerPC wants to expand i128 shifts itself.
270    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
271    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
272    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
273  } else {
274    // 32-bit PowerPC wants to expand i64 shifts itself.
275    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
276    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
277    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
278  }
279
280  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
281    // First set operation action for all vector types to expand. Then we
282    // will selectively turn on ones that can be effectively codegen'd.
283    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
284         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
285      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
286
287      // add/sub are legal for all supported vector VT's.
288      setOperationAction(ISD::ADD , VT, Legal);
289      setOperationAction(ISD::SUB , VT, Legal);
290
291      // We promote all shuffles to v16i8.
292      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
293      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
294
295      // We promote all non-typed operations to v4i32.
296      setOperationAction(ISD::AND   , VT, Promote);
297      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
298      setOperationAction(ISD::OR    , VT, Promote);
299      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
300      setOperationAction(ISD::XOR   , VT, Promote);
301      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
302      setOperationAction(ISD::LOAD  , VT, Promote);
303      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
304      setOperationAction(ISD::SELECT, VT, Promote);
305      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
306      setOperationAction(ISD::STORE, VT, Promote);
307      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
308
309      // No other operations are legal.
310      setOperationAction(ISD::MUL , VT, Expand);
311      setOperationAction(ISD::SDIV, VT, Expand);
312      setOperationAction(ISD::SREM, VT, Expand);
313      setOperationAction(ISD::UDIV, VT, Expand);
314      setOperationAction(ISD::UREM, VT, Expand);
315      setOperationAction(ISD::FDIV, VT, Expand);
316      setOperationAction(ISD::FNEG, VT, Expand);
317      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
318      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
319      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
320      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
321      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
322      setOperationAction(ISD::UDIVREM, VT, Expand);
323      setOperationAction(ISD::SDIVREM, VT, Expand);
324      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
325      setOperationAction(ISD::FPOW, VT, Expand);
326      setOperationAction(ISD::CTPOP, VT, Expand);
327      setOperationAction(ISD::CTLZ, VT, Expand);
328      setOperationAction(ISD::CTTZ, VT, Expand);
329    }
330
331    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
332    // with merges, splats, etc.
333    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
334
335    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
336    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
337    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
338    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
339    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
340    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
341
342    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
343    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
344    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
346
347    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
348    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
349    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
350    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
351
352    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
353    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
354
355    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
356    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
359  }
360
361  setShiftAmountType(MVT::i32);
362  setBooleanContents(ZeroOrOneBooleanContent);
363
364  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
365    setStackPointerRegisterToSaveRestore(PPC::X1);
366    setExceptionPointerRegister(PPC::X3);
367    setExceptionSelectorRegister(PPC::X4);
368  } else {
369    setStackPointerRegisterToSaveRestore(PPC::R1);
370    setExceptionPointerRegister(PPC::R3);
371    setExceptionSelectorRegister(PPC::R4);
372  }
373
374  // We have target-specific dag combine patterns for the following nodes:
375  setTargetDAGCombine(ISD::SINT_TO_FP);
376  setTargetDAGCombine(ISD::STORE);
377  setTargetDAGCombine(ISD::BR_CC);
378  setTargetDAGCombine(ISD::BSWAP);
379
380  // Darwin long double math library functions have $LDBL128 appended.
381  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
382    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
383    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
384    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
385    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
386    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
387    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
388    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
389    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
390    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
391    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
392  }
393
394  computeRegisterProperties();
395}
396
397/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
398/// function arguments in the caller parameter area.
399unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
400  TargetMachine &TM = getTargetMachine();
401  // Darwin passes everything on 4 byte boundary.
402  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
403    return 4;
404  // FIXME SVR4 TBD
405  return 4;
406}
407
408const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
409  switch (Opcode) {
410  default: return 0;
411  case PPCISD::FSEL:            return "PPCISD::FSEL";
412  case PPCISD::FCFID:           return "PPCISD::FCFID";
413  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
414  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
415  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
416  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
417  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
418  case PPCISD::VPERM:           return "PPCISD::VPERM";
419  case PPCISD::Hi:              return "PPCISD::Hi";
420  case PPCISD::Lo:              return "PPCISD::Lo";
421  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
422  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
423  case PPCISD::LOAD:            return "PPCISD::LOAD";
424  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
425  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
426  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
427  case PPCISD::SRL:             return "PPCISD::SRL";
428  case PPCISD::SRA:             return "PPCISD::SRA";
429  case PPCISD::SHL:             return "PPCISD::SHL";
430  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
431  case PPCISD::STD_32:          return "PPCISD::STD_32";
432  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
433  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
434  case PPCISD::NOP:             return "PPCISD::NOP";
435  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
436  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
437  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
438  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
439  case PPCISD::MFCR:            return "PPCISD::MFCR";
440  case PPCISD::VCMP:            return "PPCISD::VCMP";
441  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
442  case PPCISD::LBRX:            return "PPCISD::LBRX";
443  case PPCISD::STBRX:           return "PPCISD::STBRX";
444  case PPCISD::LARX:            return "PPCISD::LARX";
445  case PPCISD::STCX:            return "PPCISD::STCX";
446  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
447  case PPCISD::MFFS:            return "PPCISD::MFFS";
448  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
449  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
450  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
451  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
452  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
453  }
454}
455
456MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
457  return MVT::i32;
458}
459
460/// getFunctionAlignment - Return the Log2 alignment of this function.
461unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
462  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
463    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
464  else
465    return 2;
466}
467
468//===----------------------------------------------------------------------===//
469// Node matching predicates, for use by the tblgen matching code.
470//===----------------------------------------------------------------------===//
471
472/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
473static bool isFloatingPointZero(SDValue Op) {
474  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
475    return CFP->getValueAPF().isZero();
476  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
477    // Maybe this has already been legalized into the constant pool?
478    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
479      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
480        return CFP->getValueAPF().isZero();
481  }
482  return false;
483}
484
485/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
486/// true if Op is undef or if it matches the specified value.
487static bool isConstantOrUndef(int Op, int Val) {
488  return Op < 0 || Op == Val;
489}
490
491/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
492/// VPKUHUM instruction.
493bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
494  if (!isUnary) {
495    for (unsigned i = 0; i != 16; ++i)
496      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
497        return false;
498  } else {
499    for (unsigned i = 0; i != 8; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
501          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
502        return false;
503  }
504  return true;
505}
506
507/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
508/// VPKUWUM instruction.
509bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
510  if (!isUnary) {
511    for (unsigned i = 0; i != 16; i += 2)
512      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
513          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
514        return false;
515  } else {
516    for (unsigned i = 0; i != 8; i += 2)
517      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
518          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
519          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
520          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
521        return false;
522  }
523  return true;
524}
525
526/// isVMerge - Common function, used to match vmrg* shuffles.
527///
528static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
529                     unsigned LHSStart, unsigned RHSStart) {
530  assert(N->getValueType(0) == MVT::v16i8 &&
531         "PPC only supports shuffles by bytes!");
532  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
533         "Unsupported merge size!");
534
535  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
536    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
537      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
538                             LHSStart+j+i*UnitSize) ||
539          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
540                             RHSStart+j+i*UnitSize))
541        return false;
542    }
543  return true;
544}
545
546/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
547/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
548bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
549                             bool isUnary) {
550  if (!isUnary)
551    return isVMerge(N, UnitSize, 8, 24);
552  return isVMerge(N, UnitSize, 8, 8);
553}
554
555/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
556/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
557bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
558                             bool isUnary) {
559  if (!isUnary)
560    return isVMerge(N, UnitSize, 0, 16);
561  return isVMerge(N, UnitSize, 0, 0);
562}
563
564
565/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
566/// amount, otherwise return -1.
567int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
568  assert(N->getValueType(0) == MVT::v16i8 &&
569         "PPC only supports shuffles by bytes!");
570
571  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
572
573  // Find the first non-undef value in the shuffle mask.
574  unsigned i;
575  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
576    /*search*/;
577
578  if (i == 16) return -1;  // all undef.
579
580  // Otherwise, check to see if the rest of the elements are consecutively
581  // numbered from this value.
582  unsigned ShiftAmt = SVOp->getMaskElt(i);
583  if (ShiftAmt < i) return -1;
584  ShiftAmt -= i;
585
586  if (!isUnary) {
587    // Check the rest of the elements to see if they are consecutive.
588    for (++i; i != 16; ++i)
589      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
590        return -1;
591  } else {
592    // Check the rest of the elements to see if they are consecutive.
593    for (++i; i != 16; ++i)
594      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
595        return -1;
596  }
597  return ShiftAmt;
598}
599
600/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
601/// specifies a splat of a single element that is suitable for input to
602/// VSPLTB/VSPLTH/VSPLTW.
603bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
604  assert(N->getValueType(0) == MVT::v16i8 &&
605         (EltSize == 1 || EltSize == 2 || EltSize == 4));
606
607  // This is a splat operation if each element of the permute is the same, and
608  // if the value doesn't reference the second vector.
609  unsigned ElementBase = N->getMaskElt(0);
610
611  // FIXME: Handle UNDEF elements too!
612  if (ElementBase >= 16)
613    return false;
614
615  // Check that the indices are consecutive, in the case of a multi-byte element
616  // splatted with a v16i8 mask.
617  for (unsigned i = 1; i != EltSize; ++i)
618    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
619      return false;
620
621  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
622    if (N->getMaskElt(i) < 0) continue;
623    for (unsigned j = 0; j != EltSize; ++j)
624      if (N->getMaskElt(i+j) != N->getMaskElt(j))
625        return false;
626  }
627  return true;
628}
629
630/// isAllNegativeZeroVector - Returns true if all elements of build_vector
631/// are -0.0.
632bool PPC::isAllNegativeZeroVector(SDNode *N) {
633  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
634
635  APInt APVal, APUndef;
636  unsigned BitSize;
637  bool HasAnyUndefs;
638
639  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
640    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
641      return CFP->getValueAPF().isNegZero();
642
643  return false;
644}
645
646/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
647/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
648unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
649  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
650  assert(isSplatShuffleMask(SVOp, EltSize));
651  return SVOp->getMaskElt(0) / EltSize;
652}
653
654/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
655/// by using a vspltis[bhw] instruction of the specified element size, return
656/// the constant being splatted.  The ByteSize field indicates the number of
657/// bytes of each element [124] -> [bhw].
658SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
659  SDValue OpVal(0, 0);
660
661  // If ByteSize of the splat is bigger than the element size of the
662  // build_vector, then we have a case where we are checking for a splat where
663  // multiple elements of the buildvector are folded together into a single
664  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
665  unsigned EltSize = 16/N->getNumOperands();
666  if (EltSize < ByteSize) {
667    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
668    SDValue UniquedVals[4];
669    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
670
671    // See if all of the elements in the buildvector agree across.
672    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
673      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
674      // If the element isn't a constant, bail fully out.
675      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
676
677
678      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
679        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
680      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
681        return SDValue();  // no match.
682    }
683
684    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
685    // either constant or undef values that are identical for each chunk.  See
686    // if these chunks can form into a larger vspltis*.
687
688    // Check to see if all of the leading entries are either 0 or -1.  If
689    // neither, then this won't fit into the immediate field.
690    bool LeadingZero = true;
691    bool LeadingOnes = true;
692    for (unsigned i = 0; i != Multiple-1; ++i) {
693      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
694
695      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
696      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
697    }
698    // Finally, check the least significant entry.
699    if (LeadingZero) {
700      if (UniquedVals[Multiple-1].getNode() == 0)
701        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
702      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
703      if (Val < 16)
704        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
705    }
706    if (LeadingOnes) {
707      if (UniquedVals[Multiple-1].getNode() == 0)
708        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
709      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
710      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
711        return DAG.getTargetConstant(Val, MVT::i32);
712    }
713
714    return SDValue();
715  }
716
717  // Check to see if this buildvec has a single non-undef value in its elements.
718  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
719    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
720    if (OpVal.getNode() == 0)
721      OpVal = N->getOperand(i);
722    else if (OpVal != N->getOperand(i))
723      return SDValue();
724  }
725
726  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
727
728  unsigned ValSizeInBytes = EltSize;
729  uint64_t Value = 0;
730  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
731    Value = CN->getZExtValue();
732  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
733    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
734    Value = FloatToBits(CN->getValueAPF().convertToFloat());
735  }
736
737  // If the splat value is larger than the element value, then we can never do
738  // this splat.  The only case that we could fit the replicated bits into our
739  // immediate field for would be zero, and we prefer to use vxor for it.
740  if (ValSizeInBytes < ByteSize) return SDValue();
741
742  // If the element value is larger than the splat value, cut it in half and
743  // check to see if the two halves are equal.  Continue doing this until we
744  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
745  while (ValSizeInBytes > ByteSize) {
746    ValSizeInBytes >>= 1;
747
748    // If the top half equals the bottom half, we're still ok.
749    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
750         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
751      return SDValue();
752  }
753
754  // Properly sign extend the value.
755  int ShAmt = (4-ByteSize)*8;
756  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
757
758  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
759  if (MaskVal == 0) return SDValue();
760
761  // Finally, if this value fits in a 5 bit sext field, return it
762  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
763    return DAG.getTargetConstant(MaskVal, MVT::i32);
764  return SDValue();
765}
766
767//===----------------------------------------------------------------------===//
768//  Addressing Mode Selection
769//===----------------------------------------------------------------------===//
770
771/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
772/// or 64-bit immediate, and if the value can be accurately represented as a
773/// sign extension from a 16-bit value.  If so, this returns true and the
774/// immediate.
775static bool isIntS16Immediate(SDNode *N, short &Imm) {
776  if (N->getOpcode() != ISD::Constant)
777    return false;
778
779  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
780  if (N->getValueType(0) == MVT::i32)
781    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
782  else
783    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
784}
785static bool isIntS16Immediate(SDValue Op, short &Imm) {
786  return isIntS16Immediate(Op.getNode(), Imm);
787}
788
789
790/// SelectAddressRegReg - Given the specified addressed, check to see if it
791/// can be represented as an indexed [r+r] operation.  Returns false if it
792/// can be more efficiently represented with [r+imm].
793bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
794                                            SDValue &Index,
795                                            SelectionDAG &DAG) const {
796  short imm = 0;
797  if (N.getOpcode() == ISD::ADD) {
798    if (isIntS16Immediate(N.getOperand(1), imm))
799      return false;    // r+i
800    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
801      return false;    // r+i
802
803    Base = N.getOperand(0);
804    Index = N.getOperand(1);
805    return true;
806  } else if (N.getOpcode() == ISD::OR) {
807    if (isIntS16Immediate(N.getOperand(1), imm))
808      return false;    // r+i can fold it if we can.
809
810    // If this is an or of disjoint bitfields, we can codegen this as an add
811    // (for better address arithmetic) if the LHS and RHS of the OR are provably
812    // disjoint.
813    APInt LHSKnownZero, LHSKnownOne;
814    APInt RHSKnownZero, RHSKnownOne;
815    DAG.ComputeMaskedBits(N.getOperand(0),
816                          APInt::getAllOnesValue(N.getOperand(0)
817                            .getValueSizeInBits()),
818                          LHSKnownZero, LHSKnownOne);
819
820    if (LHSKnownZero.getBoolValue()) {
821      DAG.ComputeMaskedBits(N.getOperand(1),
822                            APInt::getAllOnesValue(N.getOperand(1)
823                              .getValueSizeInBits()),
824                            RHSKnownZero, RHSKnownOne);
825      // If all of the bits are known zero on the LHS or RHS, the add won't
826      // carry.
827      if (~(LHSKnownZero | RHSKnownZero) == 0) {
828        Base = N.getOperand(0);
829        Index = N.getOperand(1);
830        return true;
831      }
832    }
833  }
834
835  return false;
836}
837
838/// Returns true if the address N can be represented by a base register plus
839/// a signed 16-bit displacement [r+imm], and if it is not better
840/// represented as reg+reg.
841bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
842                                            SDValue &Base,
843                                            SelectionDAG &DAG) const {
844  // FIXME dl should come from parent load or store, not from address
845  DebugLoc dl = N.getDebugLoc();
846  // If this can be more profitably realized as r+r, fail.
847  if (SelectAddressRegReg(N, Disp, Base, DAG))
848    return false;
849
850  if (N.getOpcode() == ISD::ADD) {
851    short imm = 0;
852    if (isIntS16Immediate(N.getOperand(1), imm)) {
853      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
854      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
855        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
856      } else {
857        Base = N.getOperand(0);
858      }
859      return true; // [r+i]
860    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
861      // Match LOAD (ADD (X, Lo(G))).
862     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
863             && "Cannot handle constant offsets yet!");
864      Disp = N.getOperand(1).getOperand(0);  // The global address.
865      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
866             Disp.getOpcode() == ISD::TargetConstantPool ||
867             Disp.getOpcode() == ISD::TargetJumpTable);
868      Base = N.getOperand(0);
869      return true;  // [&g+r]
870    }
871  } else if (N.getOpcode() == ISD::OR) {
872    short imm = 0;
873    if (isIntS16Immediate(N.getOperand(1), imm)) {
874      // If this is an or of disjoint bitfields, we can codegen this as an add
875      // (for better address arithmetic) if the LHS and RHS of the OR are
876      // provably disjoint.
877      APInt LHSKnownZero, LHSKnownOne;
878      DAG.ComputeMaskedBits(N.getOperand(0),
879                            APInt::getAllOnesValue(N.getOperand(0)
880                                                   .getValueSizeInBits()),
881                            LHSKnownZero, LHSKnownOne);
882
883      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
884        // If all of the bits are known zero on the LHS or RHS, the add won't
885        // carry.
886        Base = N.getOperand(0);
887        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
888        return true;
889      }
890    }
891  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
892    // Loading from a constant address.
893
894    // If this address fits entirely in a 16-bit sext immediate field, codegen
895    // this as "d, 0"
896    short Imm;
897    if (isIntS16Immediate(CN, Imm)) {
898      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
899      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
900      return true;
901    }
902
903    // Handle 32-bit sext immediates with LIS + addr mode.
904    if (CN->getValueType(0) == MVT::i32 ||
905        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
906      int Addr = (int)CN->getZExtValue();
907
908      // Otherwise, break this down into an LIS + disp.
909      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910
911      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
912      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
913      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
914      return true;
915    }
916  }
917
918  Disp = DAG.getTargetConstant(0, getPointerTy());
919  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
920    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
921  else
922    Base = N;
923  return true;      // [r+0]
924}
925
926/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
927/// represented as an indexed [r+r] operation.
928bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
929                                                SDValue &Index,
930                                                SelectionDAG &DAG) const {
931  // Check to see if we can easily represent this as an [r+r] address.  This
932  // will fail if it thinks that the address is more profitably represented as
933  // reg+imm, e.g. where imm = 0.
934  if (SelectAddressRegReg(N, Base, Index, DAG))
935    return true;
936
937  // If the operand is an addition, always emit this as [r+r], since this is
938  // better (for code size, and execution, as the memop does the add for free)
939  // than emitting an explicit add.
940  if (N.getOpcode() == ISD::ADD) {
941    Base = N.getOperand(0);
942    Index = N.getOperand(1);
943    return true;
944  }
945
946  // Otherwise, do it the hard way, using R0 as the base register.
947  Base = DAG.getRegister(PPC::R0, N.getValueType());
948  Index = N;
949  return true;
950}
951
952/// SelectAddressRegImmShift - Returns true if the address N can be
953/// represented by a base register plus a signed 14-bit displacement
954/// [r+imm*4].  Suitable for use by STD and friends.
955bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
956                                                 SDValue &Base,
957                                                 SelectionDAG &DAG) const {
958  // FIXME dl should come from the parent load or store, not the address
959  DebugLoc dl = N.getDebugLoc();
960  // If this can be more profitably realized as r+r, fail.
961  if (SelectAddressRegReg(N, Disp, Base, DAG))
962    return false;
963
964  if (N.getOpcode() == ISD::ADD) {
965    short imm = 0;
966    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
967      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
968      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
969        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
970      } else {
971        Base = N.getOperand(0);
972      }
973      return true; // [r+i]
974    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
975      // Match LOAD (ADD (X, Lo(G))).
976     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
977             && "Cannot handle constant offsets yet!");
978      Disp = N.getOperand(1).getOperand(0);  // The global address.
979      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
980             Disp.getOpcode() == ISD::TargetConstantPool ||
981             Disp.getOpcode() == ISD::TargetJumpTable);
982      Base = N.getOperand(0);
983      return true;  // [&g+r]
984    }
985  } else if (N.getOpcode() == ISD::OR) {
986    short imm = 0;
987    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
988      // If this is an or of disjoint bitfields, we can codegen this as an add
989      // (for better address arithmetic) if the LHS and RHS of the OR are
990      // provably disjoint.
991      APInt LHSKnownZero, LHSKnownOne;
992      DAG.ComputeMaskedBits(N.getOperand(0),
993                            APInt::getAllOnesValue(N.getOperand(0)
994                                                   .getValueSizeInBits()),
995                            LHSKnownZero, LHSKnownOne);
996      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
997        // If all of the bits are known zero on the LHS or RHS, the add won't
998        // carry.
999        Base = N.getOperand(0);
1000        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1001        return true;
1002      }
1003    }
1004  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1005    // Loading from a constant address.  Verify low two bits are clear.
1006    if ((CN->getZExtValue() & 3) == 0) {
1007      // If this address fits entirely in a 14-bit sext immediate field, codegen
1008      // this as "d, 0"
1009      short Imm;
1010      if (isIntS16Immediate(CN, Imm)) {
1011        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1012        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1013        return true;
1014      }
1015
1016      // Fold the low-part of 32-bit absolute addresses into addr mode.
1017      if (CN->getValueType(0) == MVT::i32 ||
1018          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1019        int Addr = (int)CN->getZExtValue();
1020
1021        // Otherwise, break this down into an LIS + disp.
1022        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1023        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1024        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1025        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1026        return true;
1027      }
1028    }
1029  }
1030
1031  Disp = DAG.getTargetConstant(0, getPointerTy());
1032  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1033    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1034  else
1035    Base = N;
1036  return true;      // [r+0]
1037}
1038
1039
1040/// getPreIndexedAddressParts - returns true by value, base pointer and
1041/// offset pointer and addressing mode by reference if the node's address
1042/// can be legally represented as pre-indexed load / store address.
1043bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1044                                                  SDValue &Offset,
1045                                                  ISD::MemIndexedMode &AM,
1046                                                  SelectionDAG &DAG) const {
1047  // Disabled by default for now.
1048  if (!EnablePPCPreinc) return false;
1049
1050  SDValue Ptr;
1051  EVT VT;
1052  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1053    Ptr = LD->getBasePtr();
1054    VT = LD->getMemoryVT();
1055
1056  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1057    ST = ST;
1058    Ptr = ST->getBasePtr();
1059    VT  = ST->getMemoryVT();
1060  } else
1061    return false;
1062
1063  // PowerPC doesn't have preinc load/store instructions for vectors.
1064  if (VT.isVector())
1065    return false;
1066
1067  // TODO: Check reg+reg first.
1068
1069  // LDU/STU use reg+imm*4, others use reg+imm.
1070  if (VT != MVT::i64) {
1071    // reg + imm
1072    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1073      return false;
1074  } else {
1075    // reg + imm * 4.
1076    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1077      return false;
1078  }
1079
1080  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1081    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1082    // sext i32 to i64 when addr mode is r+i.
1083    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1084        LD->getExtensionType() == ISD::SEXTLOAD &&
1085        isa<ConstantSDNode>(Offset))
1086      return false;
1087  }
1088
1089  AM = ISD::PRE_INC;
1090  return true;
1091}
1092
1093//===----------------------------------------------------------------------===//
1094//  LowerOperation implementation
1095//===----------------------------------------------------------------------===//
1096
1097SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1098                                             SelectionDAG &DAG) {
1099  EVT PtrVT = Op.getValueType();
1100  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1101  Constant *C = CP->getConstVal();
1102  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1103  SDValue Zero = DAG.getConstant(0, PtrVT);
1104  // FIXME there isn't really any debug info here
1105  DebugLoc dl = Op.getDebugLoc();
1106
1107  const TargetMachine &TM = DAG.getTarget();
1108
1109  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1110  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1111
1112  // If this is a non-darwin platform, we don't support non-static relo models
1113  // yet.
1114  if (TM.getRelocationModel() == Reloc::Static ||
1115      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1116    // Generate non-pic code that has direct accesses to the constant pool.
1117    // The address of the global is just (hi(&g)+lo(&g)).
1118    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1119  }
1120
1121  if (TM.getRelocationModel() == Reloc::PIC_) {
1122    // With PIC, the first instruction is actually "GR+hi(&G)".
1123    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1124                     DAG.getNode(PPCISD::GlobalBaseReg,
1125                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1126  }
1127
1128  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1129  return Lo;
1130}
1131
1132SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1133  EVT PtrVT = Op.getValueType();
1134  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1135  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1136  SDValue Zero = DAG.getConstant(0, PtrVT);
1137  // FIXME there isn't really any debug loc here
1138  DebugLoc dl = Op.getDebugLoc();
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to the constant pool.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg,
1158                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1159  }
1160
1161  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1162  return Lo;
1163}
1164
1165SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1166                                                   SelectionDAG &DAG) {
1167  llvm_unreachable("TLS not implemented for PPC.");
1168  return SDValue(); // Not reached
1169}
1170
1171SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1172  EVT PtrVT = Op.getValueType();
1173  DebugLoc DL = Op.getDebugLoc();
1174
1175  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1176  SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1177  SDValue Zero = DAG.getConstant(0, PtrVT);
1178  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1179  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1180
1181  // If this is a non-darwin platform, we don't support non-static relo models
1182  // yet.
1183  const TargetMachine &TM = DAG.getTarget();
1184  if (TM.getRelocationModel() == Reloc::Static ||
1185      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1186    // Generate non-pic code that has direct accesses to globals.
1187    // The address of the global is just (hi(&g)+lo(&g)).
1188    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1189  }
1190
1191  if (TM.getRelocationModel() == Reloc::PIC_) {
1192    // With PIC, the first instruction is actually "GR+hi(&G)".
1193    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1194                     DAG.getNode(PPCISD::GlobalBaseReg,
1195                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1196  }
1197
1198  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1199}
1200
1201SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1202                                              SelectionDAG &DAG) {
1203  EVT PtrVT = Op.getValueType();
1204  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1205  GlobalValue *GV = GSDN->getGlobal();
1206  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1207  SDValue Zero = DAG.getConstant(0, PtrVT);
1208  // FIXME there isn't really any debug info here
1209  DebugLoc dl = GSDN->getDebugLoc();
1210
1211  const TargetMachine &TM = DAG.getTarget();
1212
1213  // 64-bit SVR4 ABI code is always position-independent.
1214  // The actual address of the GlobalValue is stored in the TOC.
1215  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1216    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1217                       DAG.getRegister(PPC::X2, MVT::i64));
1218  }
1219
1220  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1221  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1222
1223  // If this is a non-darwin platform, we don't support non-static relo models
1224  // yet.
1225  if (TM.getRelocationModel() == Reloc::Static ||
1226      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1227    // Generate non-pic code that has direct accesses to globals.
1228    // The address of the global is just (hi(&g)+lo(&g)).
1229    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1230  }
1231
1232  if (TM.getRelocationModel() == Reloc::PIC_) {
1233    // With PIC, the first instruction is actually "GR+hi(&G)".
1234    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1235                     DAG.getNode(PPCISD::GlobalBaseReg,
1236                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1237  }
1238
1239  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1240
1241  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1242    return Lo;
1243
1244  // If the global is weak or external, we have to go through the lazy
1245  // resolution stub.
1246  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1247}
1248
1249SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1250  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1251  DebugLoc dl = Op.getDebugLoc();
1252
1253  // If we're comparing for equality to zero, expose the fact that this is
1254  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1255  // fold the new nodes.
1256  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1257    if (C->isNullValue() && CC == ISD::SETEQ) {
1258      EVT VT = Op.getOperand(0).getValueType();
1259      SDValue Zext = Op.getOperand(0);
1260      if (VT.bitsLT(MVT::i32)) {
1261        VT = MVT::i32;
1262        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1263      }
1264      unsigned Log2b = Log2_32(VT.getSizeInBits());
1265      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1266      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1267                                DAG.getConstant(Log2b, MVT::i32));
1268      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1269    }
1270    // Leave comparisons against 0 and -1 alone for now, since they're usually
1271    // optimized.  FIXME: revisit this when we can custom lower all setcc
1272    // optimizations.
1273    if (C->isAllOnesValue() || C->isNullValue())
1274      return SDValue();
1275  }
1276
1277  // If we have an integer seteq/setne, turn it into a compare against zero
1278  // by xor'ing the rhs with the lhs, which is faster than setting a
1279  // condition register, reading it back out, and masking the correct bit.  The
1280  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1281  // the result to other bit-twiddling opportunities.
1282  EVT LHSVT = Op.getOperand(0).getValueType();
1283  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1284    EVT VT = Op.getValueType();
1285    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1286                                Op.getOperand(1));
1287    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1288  }
1289  return SDValue();
1290}
1291
1292SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1293                              int VarArgsFrameIndex,
1294                              int VarArgsStackOffset,
1295                              unsigned VarArgsNumGPR,
1296                              unsigned VarArgsNumFPR,
1297                              const PPCSubtarget &Subtarget) {
1298
1299  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1300  return SDValue(); // Not reached
1301}
1302
1303SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1304  SDValue Chain = Op.getOperand(0);
1305  SDValue Trmp = Op.getOperand(1); // trampoline
1306  SDValue FPtr = Op.getOperand(2); // nested function
1307  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1308  DebugLoc dl = Op.getDebugLoc();
1309
1310  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1311  bool isPPC64 = (PtrVT == MVT::i64);
1312  const Type *IntPtrTy =
1313    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1314                                                             *DAG.getContext());
1315
1316  TargetLowering::ArgListTy Args;
1317  TargetLowering::ArgListEntry Entry;
1318
1319  Entry.Ty = IntPtrTy;
1320  Entry.Node = Trmp; Args.push_back(Entry);
1321
1322  // TrampSize == (isPPC64 ? 48 : 40);
1323  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1324                               isPPC64 ? MVT::i64 : MVT::i32);
1325  Args.push_back(Entry);
1326
1327  Entry.Node = FPtr; Args.push_back(Entry);
1328  Entry.Node = Nest; Args.push_back(Entry);
1329
1330  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1331  std::pair<SDValue, SDValue> CallResult =
1332    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1333                false, false, false, false, 0, CallingConv::C, false,
1334                /*isReturnValueUsed=*/true,
1335                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1336                Args, DAG, dl, DAG.GetOrdering(Chain.getNode()));
1337
1338  SDValue Ops[] =
1339    { CallResult.first, CallResult.second };
1340
1341  return DAG.getMergeValues(Ops, 2, dl);
1342}
1343
1344SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1345                                        int VarArgsFrameIndex,
1346                                        int VarArgsStackOffset,
1347                                        unsigned VarArgsNumGPR,
1348                                        unsigned VarArgsNumFPR,
1349                                        const PPCSubtarget &Subtarget) {
1350  DebugLoc dl = Op.getDebugLoc();
1351
1352  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1353    // vastart just stores the address of the VarArgsFrameIndex slot into the
1354    // memory location argument.
1355    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1356    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1357    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1358    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1359  }
1360
1361  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1362  // We suppose the given va_list is already allocated.
1363  //
1364  // typedef struct {
1365  //  char gpr;     /* index into the array of 8 GPRs
1366  //                 * stored in the register save area
1367  //                 * gpr=0 corresponds to r3,
1368  //                 * gpr=1 to r4, etc.
1369  //                 */
1370  //  char fpr;     /* index into the array of 8 FPRs
1371  //                 * stored in the register save area
1372  //                 * fpr=0 corresponds to f1,
1373  //                 * fpr=1 to f2, etc.
1374  //                 */
1375  //  char *overflow_arg_area;
1376  //                /* location on stack that holds
1377  //                 * the next overflow argument
1378  //                 */
1379  //  char *reg_save_area;
1380  //               /* where r3:r10 and f1:f8 (if saved)
1381  //                * are stored
1382  //                */
1383  // } va_list[1];
1384
1385
1386  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1387  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1388
1389
1390  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1391
1392  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1393  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1394
1395  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1396  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1397
1398  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1399  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1400
1401  uint64_t FPROffset = 1;
1402  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1403
1404  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1405
1406  // Store first byte : number of int regs
1407  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1408                                         Op.getOperand(1), SV, 0, MVT::i8);
1409  uint64_t nextOffset = FPROffset;
1410  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1411                                  ConstFPROffset);
1412
1413  // Store second byte : number of float regs
1414  SDValue secondStore =
1415    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1416  nextOffset += StackOffset;
1417  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1418
1419  // Store second word : arguments given on stack
1420  SDValue thirdStore =
1421    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1422  nextOffset += FrameOffset;
1423  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1424
1425  // Store third word : arguments given in registers
1426  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1427
1428}
1429
1430#include "PPCGenCallingConv.inc"
1431
1432static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1433                                     CCValAssign::LocInfo &LocInfo,
1434                                     ISD::ArgFlagsTy &ArgFlags,
1435                                     CCState &State) {
1436  return true;
1437}
1438
1439static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1440                                            EVT &LocVT,
1441                                            CCValAssign::LocInfo &LocInfo,
1442                                            ISD::ArgFlagsTy &ArgFlags,
1443                                            CCState &State) {
1444  static const unsigned ArgRegs[] = {
1445    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1446    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1447  };
1448  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1449
1450  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1451
1452  // Skip one register if the first unallocated register has an even register
1453  // number and there are still argument registers available which have not been
1454  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1455  // need to skip a register if RegNum is odd.
1456  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1457    State.AllocateReg(ArgRegs[RegNum]);
1458  }
1459
1460  // Always return false here, as this function only makes sure that the first
1461  // unallocated register has an odd register number and does not actually
1462  // allocate a register for the current argument.
1463  return false;
1464}
1465
1466static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1467                                              EVT &LocVT,
1468                                              CCValAssign::LocInfo &LocInfo,
1469                                              ISD::ArgFlagsTy &ArgFlags,
1470                                              CCState &State) {
1471  static const unsigned ArgRegs[] = {
1472    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1473    PPC::F8
1474  };
1475
1476  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1477
1478  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1479
1480  // If there is only one Floating-point register left we need to put both f64
1481  // values of a split ppc_fp128 value on the stack.
1482  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1483    State.AllocateReg(ArgRegs[RegNum]);
1484  }
1485
1486  // Always return false here, as this function only makes sure that the two f64
1487  // values a ppc_fp128 value is split into are both passed in registers or both
1488  // passed on the stack and does not actually allocate a register for the
1489  // current argument.
1490  return false;
1491}
1492
1493/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1494/// on Darwin.
1495static const unsigned *GetFPR() {
1496  static const unsigned FPR[] = {
1497    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1498    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1499  };
1500
1501  return FPR;
1502}
1503
1504/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1505/// the stack.
1506static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1507                                       unsigned PtrByteSize) {
1508  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1509  if (Flags.isByVal())
1510    ArgSize = Flags.getByValSize();
1511  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1512
1513  return ArgSize;
1514}
1515
1516SDValue
1517PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1518                                        CallingConv::ID CallConv, bool isVarArg,
1519                                        const SmallVectorImpl<ISD::InputArg>
1520                                          &Ins,
1521                                        DebugLoc dl, SelectionDAG &DAG,
1522                                        SmallVectorImpl<SDValue> &InVals) {
1523  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1524    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1525                                     dl, DAG, InVals);
1526  } else {
1527    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1528                                       dl, DAG, InVals);
1529  }
1530}
1531
1532SDValue
1533PPCTargetLowering::LowerFormalArguments_SVR4(
1534                                      SDValue Chain,
1535                                      CallingConv::ID CallConv, bool isVarArg,
1536                                      const SmallVectorImpl<ISD::InputArg>
1537                                        &Ins,
1538                                      DebugLoc dl, SelectionDAG &DAG,
1539                                      SmallVectorImpl<SDValue> &InVals) {
1540
1541  // 32-bit SVR4 ABI Stack Frame Layout:
1542  //              +-----------------------------------+
1543  //        +-->  |            Back chain             |
1544  //        |     +-----------------------------------+
1545  //        |     | Floating-point register save area |
1546  //        |     +-----------------------------------+
1547  //        |     |    General register save area     |
1548  //        |     +-----------------------------------+
1549  //        |     |          CR save word             |
1550  //        |     +-----------------------------------+
1551  //        |     |         VRSAVE save word          |
1552  //        |     +-----------------------------------+
1553  //        |     |         Alignment padding         |
1554  //        |     +-----------------------------------+
1555  //        |     |     Vector register save area     |
1556  //        |     +-----------------------------------+
1557  //        |     |       Local variable space        |
1558  //        |     +-----------------------------------+
1559  //        |     |        Parameter list area        |
1560  //        |     +-----------------------------------+
1561  //        |     |           LR save word            |
1562  //        |     +-----------------------------------+
1563  // SP-->  +---  |            Back chain             |
1564  //              +-----------------------------------+
1565  //
1566  // Specifications:
1567  //   System V Application Binary Interface PowerPC Processor Supplement
1568  //   AltiVec Technology Programming Interface Manual
1569
1570  MachineFunction &MF = DAG.getMachineFunction();
1571  MachineFrameInfo *MFI = MF.getFrameInfo();
1572
1573  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1574  // Potential tail calls could cause overwriting of argument stack slots.
1575  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1576  unsigned PtrByteSize = 4;
1577
1578  // Assign locations to all of the incoming arguments.
1579  SmallVector<CCValAssign, 16> ArgLocs;
1580  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1581                 *DAG.getContext());
1582
1583  // Reserve space for the linkage area on the stack.
1584  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1585
1586  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1587
1588  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1589    CCValAssign &VA = ArgLocs[i];
1590
1591    // Arguments stored in registers.
1592    if (VA.isRegLoc()) {
1593      TargetRegisterClass *RC;
1594      EVT ValVT = VA.getValVT();
1595
1596      switch (ValVT.getSimpleVT().SimpleTy) {
1597        default:
1598          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1599        case MVT::i32:
1600          RC = PPC::GPRCRegisterClass;
1601          break;
1602        case MVT::f32:
1603          RC = PPC::F4RCRegisterClass;
1604          break;
1605        case MVT::f64:
1606          RC = PPC::F8RCRegisterClass;
1607          break;
1608        case MVT::v16i8:
1609        case MVT::v8i16:
1610        case MVT::v4i32:
1611        case MVT::v4f32:
1612          RC = PPC::VRRCRegisterClass;
1613          break;
1614      }
1615
1616      // Transform the arguments stored in physical registers into virtual ones.
1617      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1618      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1619
1620      InVals.push_back(ArgValue);
1621    } else {
1622      // Argument stored in memory.
1623      assert(VA.isMemLoc());
1624
1625      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1626      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1627                                      isImmutable, false);
1628
1629      // Create load nodes to retrieve arguments from the stack.
1630      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1631      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1632    }
1633  }
1634
1635  // Assign locations to all of the incoming aggregate by value arguments.
1636  // Aggregates passed by value are stored in the local variable space of the
1637  // caller's stack frame, right above the parameter list area.
1638  SmallVector<CCValAssign, 16> ByValArgLocs;
1639  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1640                      ByValArgLocs, *DAG.getContext());
1641
1642  // Reserve stack space for the allocations in CCInfo.
1643  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1644
1645  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1646
1647  // Area that is at least reserved in the caller of this function.
1648  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1649
1650  // Set the size that is at least reserved in caller of this function.  Tail
1651  // call optimized function's reserved stack space needs to be aligned so that
1652  // taking the difference between two stack areas will result in an aligned
1653  // stack.
1654  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1655
1656  MinReservedArea =
1657    std::max(MinReservedArea,
1658             PPCFrameInfo::getMinCallFrameSize(false, false));
1659
1660  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1661    getStackAlignment();
1662  unsigned AlignMask = TargetAlign-1;
1663  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1664
1665  FI->setMinReservedArea(MinReservedArea);
1666
1667  SmallVector<SDValue, 8> MemOps;
1668
1669  // If the function takes variable number of arguments, make a frame index for
1670  // the start of the first vararg value... for expansion of llvm.va_start.
1671  if (isVarArg) {
1672    static const unsigned GPArgRegs[] = {
1673      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1674      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1675    };
1676    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1677
1678    static const unsigned FPArgRegs[] = {
1679      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1680      PPC::F8
1681    };
1682    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1683
1684    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1685    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1686
1687    // Make room for NumGPArgRegs and NumFPArgRegs.
1688    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1689                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1690
1691    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1692                                                CCInfo.getNextStackOffset(),
1693                                                true, false);
1694
1695    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8, false);
1696    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1697
1698    // The fixed integer arguments of a variadic function are
1699    // stored to the VarArgsFrameIndex on the stack.
1700    unsigned GPRIndex = 0;
1701    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1702      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1703      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1704      MemOps.push_back(Store);
1705      // Increment the address by four for the next argument to store
1706      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1707      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1708    }
1709
1710    // If this function is vararg, store any remaining integer argument regs
1711    // to their spots on the stack so that they may be loaded by deferencing the
1712    // result of va_next.
1713    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1714      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1715
1716      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1717      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1718      MemOps.push_back(Store);
1719      // Increment the address by four for the next argument to store
1720      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1721      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1722    }
1723
1724    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1725    // is set.
1726
1727    // The double arguments are stored to the VarArgsFrameIndex
1728    // on the stack.
1729    unsigned FPRIndex = 0;
1730    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1731      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1732      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1733      MemOps.push_back(Store);
1734      // Increment the address by eight for the next argument to store
1735      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1736                                         PtrVT);
1737      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1738    }
1739
1740    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1741      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1742
1743      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1744      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1745      MemOps.push_back(Store);
1746      // Increment the address by eight for the next argument to store
1747      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1748                                         PtrVT);
1749      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1750    }
1751  }
1752
1753  if (!MemOps.empty())
1754    Chain = DAG.getNode(ISD::TokenFactor, dl,
1755                        MVT::Other, &MemOps[0], MemOps.size());
1756
1757  return Chain;
1758}
1759
1760SDValue
1761PPCTargetLowering::LowerFormalArguments_Darwin(
1762                                      SDValue Chain,
1763                                      CallingConv::ID CallConv, bool isVarArg,
1764                                      const SmallVectorImpl<ISD::InputArg>
1765                                        &Ins,
1766                                      DebugLoc dl, SelectionDAG &DAG,
1767                                      SmallVectorImpl<SDValue> &InVals) {
1768  // TODO: add description of PPC stack frame format, or at least some docs.
1769  //
1770  MachineFunction &MF = DAG.getMachineFunction();
1771  MachineFrameInfo *MFI = MF.getFrameInfo();
1772
1773  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1774  bool isPPC64 = PtrVT == MVT::i64;
1775  // Potential tail calls could cause overwriting of argument stack slots.
1776  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1777  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1778
1779  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1780  // Area that is at least reserved in caller of this function.
1781  unsigned MinReservedArea = ArgOffset;
1782
1783  static const unsigned GPR_32[] = {           // 32-bit registers.
1784    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1785    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1786  };
1787  static const unsigned GPR_64[] = {           // 64-bit registers.
1788    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1789    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1790  };
1791
1792  static const unsigned *FPR = GetFPR();
1793
1794  static const unsigned VR[] = {
1795    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1796    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1797  };
1798
1799  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1800  const unsigned Num_FPR_Regs = 13;
1801  const unsigned Num_VR_Regs  = array_lengthof( VR);
1802
1803  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1804
1805  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1806
1807  // In 32-bit non-varargs functions, the stack space for vectors is after the
1808  // stack space for non-vectors.  We do not use this space unless we have
1809  // too many vectors to fit in registers, something that only occurs in
1810  // constructed examples:), but we have to walk the arglist to figure
1811  // that out...for the pathological case, compute VecArgOffset as the
1812  // start of the vector parameter area.  Computing VecArgOffset is the
1813  // entire point of the following loop.
1814  unsigned VecArgOffset = ArgOffset;
1815  if (!isVarArg && !isPPC64) {
1816    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1817         ++ArgNo) {
1818      EVT ObjectVT = Ins[ArgNo].VT;
1819      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1820      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1821
1822      if (Flags.isByVal()) {
1823        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1824        ObjSize = Flags.getByValSize();
1825        unsigned ArgSize =
1826                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1827        VecArgOffset += ArgSize;
1828        continue;
1829      }
1830
1831      switch(ObjectVT.getSimpleVT().SimpleTy) {
1832      default: llvm_unreachable("Unhandled argument type!");
1833      case MVT::i32:
1834      case MVT::f32:
1835        VecArgOffset += isPPC64 ? 8 : 4;
1836        break;
1837      case MVT::i64:  // PPC64
1838      case MVT::f64:
1839        VecArgOffset += 8;
1840        break;
1841      case MVT::v4f32:
1842      case MVT::v4i32:
1843      case MVT::v8i16:
1844      case MVT::v16i8:
1845        // Nothing to do, we're only looking at Nonvector args here.
1846        break;
1847      }
1848    }
1849  }
1850  // We've found where the vector parameter area in memory is.  Skip the
1851  // first 12 parameters; these don't use that memory.
1852  VecArgOffset = ((VecArgOffset+15)/16)*16;
1853  VecArgOffset += 12*16;
1854
1855  // Add DAG nodes to load the arguments or copy them out of registers.  On
1856  // entry to a function on PPC, the arguments start after the linkage area,
1857  // although the first ones are often in registers.
1858
1859  SmallVector<SDValue, 8> MemOps;
1860  unsigned nAltivecParamsAtEnd = 0;
1861  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1862    SDValue ArgVal;
1863    bool needsLoad = false;
1864    EVT ObjectVT = Ins[ArgNo].VT;
1865    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1866    unsigned ArgSize = ObjSize;
1867    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1868
1869    unsigned CurArgOffset = ArgOffset;
1870
1871    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1872    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1873        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1874      if (isVarArg || isPPC64) {
1875        MinReservedArea = ((MinReservedArea+15)/16)*16;
1876        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1877                                                  Flags,
1878                                                  PtrByteSize);
1879      } else  nAltivecParamsAtEnd++;
1880    } else
1881      // Calculate min reserved area.
1882      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1883                                                Flags,
1884                                                PtrByteSize);
1885
1886    // FIXME the codegen can be much improved in some cases.
1887    // We do not have to keep everything in memory.
1888    if (Flags.isByVal()) {
1889      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1890      ObjSize = Flags.getByValSize();
1891      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1892      // Objects of size 1 and 2 are right justified, everything else is
1893      // left justified.  This means the memory address is adjusted forwards.
1894      if (ObjSize==1 || ObjSize==2) {
1895        CurArgOffset = CurArgOffset + (4 - ObjSize);
1896      }
1897      // The value of the object is its address.
1898      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true, false);
1899      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1900      InVals.push_back(FIN);
1901      if (ObjSize==1 || ObjSize==2) {
1902        if (GPR_idx != Num_GPR_Regs) {
1903          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1904          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1905          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1906                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1907          MemOps.push_back(Store);
1908          ++GPR_idx;
1909        }
1910
1911        ArgOffset += PtrByteSize;
1912
1913        continue;
1914      }
1915      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1916        // Store whatever pieces of the object are in registers
1917        // to memory.  ArgVal will be address of the beginning of
1918        // the object.
1919        if (GPR_idx != Num_GPR_Regs) {
1920          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1921          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true, false);
1922          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1923          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1924          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1925          MemOps.push_back(Store);
1926          ++GPR_idx;
1927          ArgOffset += PtrByteSize;
1928        } else {
1929          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1930          break;
1931        }
1932      }
1933      continue;
1934    }
1935
1936    switch (ObjectVT.getSimpleVT().SimpleTy) {
1937    default: llvm_unreachable("Unhandled argument type!");
1938    case MVT::i32:
1939      if (!isPPC64) {
1940        if (GPR_idx != Num_GPR_Regs) {
1941          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1942          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1943          ++GPR_idx;
1944        } else {
1945          needsLoad = true;
1946          ArgSize = PtrByteSize;
1947        }
1948        // All int arguments reserve stack space in the Darwin ABI.
1949        ArgOffset += PtrByteSize;
1950        break;
1951      }
1952      // FALLTHROUGH
1953    case MVT::i64:  // PPC64
1954      if (GPR_idx != Num_GPR_Regs) {
1955        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1956        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1957
1958        if (ObjectVT == MVT::i32) {
1959          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1960          // value to MVT::i64 and then truncate to the correct register size.
1961          if (Flags.isSExt())
1962            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1963                                 DAG.getValueType(ObjectVT));
1964          else if (Flags.isZExt())
1965            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1966                                 DAG.getValueType(ObjectVT));
1967
1968          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1969        }
1970
1971        ++GPR_idx;
1972      } else {
1973        needsLoad = true;
1974        ArgSize = PtrByteSize;
1975      }
1976      // All int arguments reserve stack space in the Darwin ABI.
1977      ArgOffset += 8;
1978      break;
1979
1980    case MVT::f32:
1981    case MVT::f64:
1982      // Every 4 bytes of argument space consumes one of the GPRs available for
1983      // argument passing.
1984      if (GPR_idx != Num_GPR_Regs) {
1985        ++GPR_idx;
1986        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1987          ++GPR_idx;
1988      }
1989      if (FPR_idx != Num_FPR_Regs) {
1990        unsigned VReg;
1991
1992        if (ObjectVT == MVT::f32)
1993          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1994        else
1995          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1996
1997        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1998        ++FPR_idx;
1999      } else {
2000        needsLoad = true;
2001      }
2002
2003      // All FP arguments reserve stack space in the Darwin ABI.
2004      ArgOffset += isPPC64 ? 8 : ObjSize;
2005      break;
2006    case MVT::v4f32:
2007    case MVT::v4i32:
2008    case MVT::v8i16:
2009    case MVT::v16i8:
2010      // Note that vector arguments in registers don't reserve stack space,
2011      // except in varargs functions.
2012      if (VR_idx != Num_VR_Regs) {
2013        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2014        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2015        if (isVarArg) {
2016          while ((ArgOffset % 16) != 0) {
2017            ArgOffset += PtrByteSize;
2018            if (GPR_idx != Num_GPR_Regs)
2019              GPR_idx++;
2020          }
2021          ArgOffset += 16;
2022          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2023        }
2024        ++VR_idx;
2025      } else {
2026        if (!isVarArg && !isPPC64) {
2027          // Vectors go after all the nonvectors.
2028          CurArgOffset = VecArgOffset;
2029          VecArgOffset += 16;
2030        } else {
2031          // Vectors are aligned.
2032          ArgOffset = ((ArgOffset+15)/16)*16;
2033          CurArgOffset = ArgOffset;
2034          ArgOffset += 16;
2035        }
2036        needsLoad = true;
2037      }
2038      break;
2039    }
2040
2041    // We need to load the argument to a virtual register if we determined above
2042    // that we ran out of physical registers of the appropriate type.
2043    if (needsLoad) {
2044      int FI = MFI->CreateFixedObject(ObjSize,
2045                                      CurArgOffset + (ArgSize - ObjSize),
2046                                      isImmutable, false);
2047      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2048      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2049    }
2050
2051    InVals.push_back(ArgVal);
2052  }
2053
2054  // Set the size that is at least reserved in caller of this function.  Tail
2055  // call optimized function's reserved stack space needs to be aligned so that
2056  // taking the difference between two stack areas will result in an aligned
2057  // stack.
2058  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2059  // Add the Altivec parameters at the end, if needed.
2060  if (nAltivecParamsAtEnd) {
2061    MinReservedArea = ((MinReservedArea+15)/16)*16;
2062    MinReservedArea += 16*nAltivecParamsAtEnd;
2063  }
2064  MinReservedArea =
2065    std::max(MinReservedArea,
2066             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2067  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2068    getStackAlignment();
2069  unsigned AlignMask = TargetAlign-1;
2070  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2071  FI->setMinReservedArea(MinReservedArea);
2072
2073  // If the function takes variable number of arguments, make a frame index for
2074  // the start of the first vararg value... for expansion of llvm.va_start.
2075  if (isVarArg) {
2076    int Depth = ArgOffset;
2077
2078    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2079                                               Depth, true, false);
2080    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2081
2082    // If this function is vararg, store any remaining integer argument regs
2083    // to their spots on the stack so that they may be loaded by deferencing the
2084    // result of va_next.
2085    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2086      unsigned VReg;
2087
2088      if (isPPC64)
2089        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2090      else
2091        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2092
2093      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2094      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2095      MemOps.push_back(Store);
2096      // Increment the address by four for the next argument to store
2097      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2098      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2099    }
2100  }
2101
2102  if (!MemOps.empty())
2103    Chain = DAG.getNode(ISD::TokenFactor, dl,
2104                        MVT::Other, &MemOps[0], MemOps.size());
2105
2106  return Chain;
2107}
2108
2109/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2110/// linkage area for the Darwin ABI.
2111static unsigned
2112CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2113                                     bool isPPC64,
2114                                     bool isVarArg,
2115                                     unsigned CC,
2116                                     const SmallVectorImpl<ISD::OutputArg>
2117                                       &Outs,
2118                                     unsigned &nAltivecParamsAtEnd) {
2119  // Count how many bytes are to be pushed on the stack, including the linkage
2120  // area, and parameter passing area.  We start with 24/48 bytes, which is
2121  // prereserved space for [SP][CR][LR][3 x unused].
2122  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2123  unsigned NumOps = Outs.size();
2124  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2125
2126  // Add up all the space actually used.
2127  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2128  // they all go in registers, but we must reserve stack space for them for
2129  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2130  // assigned stack space in order, with padding so Altivec parameters are
2131  // 16-byte aligned.
2132  nAltivecParamsAtEnd = 0;
2133  for (unsigned i = 0; i != NumOps; ++i) {
2134    SDValue Arg = Outs[i].Val;
2135    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2136    EVT ArgVT = Arg.getValueType();
2137    // Varargs Altivec parameters are padded to a 16 byte boundary.
2138    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2139        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2140      if (!isVarArg && !isPPC64) {
2141        // Non-varargs Altivec parameters go after all the non-Altivec
2142        // parameters; handle those later so we know how much padding we need.
2143        nAltivecParamsAtEnd++;
2144        continue;
2145      }
2146      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2147      NumBytes = ((NumBytes+15)/16)*16;
2148    }
2149    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2150  }
2151
2152   // Allow for Altivec parameters at the end, if needed.
2153  if (nAltivecParamsAtEnd) {
2154    NumBytes = ((NumBytes+15)/16)*16;
2155    NumBytes += 16*nAltivecParamsAtEnd;
2156  }
2157
2158  // The prolog code of the callee may store up to 8 GPR argument registers to
2159  // the stack, allowing va_start to index over them in memory if its varargs.
2160  // Because we cannot tell if this is needed on the caller side, we have to
2161  // conservatively assume that it is needed.  As such, make sure we have at
2162  // least enough stack space for the caller to store the 8 GPRs.
2163  NumBytes = std::max(NumBytes,
2164                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2165
2166  // Tail call needs the stack to be aligned.
2167  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2168    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2169      getStackAlignment();
2170    unsigned AlignMask = TargetAlign-1;
2171    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2172  }
2173
2174  return NumBytes;
2175}
2176
2177/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2178/// adjusted to accomodate the arguments for the tailcall.
2179static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2180                                   unsigned ParamSize) {
2181
2182  if (!isTailCall) return 0;
2183
2184  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2185  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2186  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2187  // Remember only if the new adjustement is bigger.
2188  if (SPDiff < FI->getTailCallSPDelta())
2189    FI->setTailCallSPDelta(SPDiff);
2190
2191  return SPDiff;
2192}
2193
2194/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2195/// for tail call optimization. Targets which want to do tail call
2196/// optimization should implement this function.
2197bool
2198PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2199                                                     CallingConv::ID CalleeCC,
2200                                                     bool isVarArg,
2201                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2202                                                     SelectionDAG& DAG) const {
2203  if (!PerformTailCallOpt)
2204    return false;
2205
2206  // Variable argument functions are not supported.
2207  if (isVarArg)
2208    return false;
2209
2210  MachineFunction &MF = DAG.getMachineFunction();
2211  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2212  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2213    // Functions containing by val parameters are not supported.
2214    for (unsigned i = 0; i != Ins.size(); i++) {
2215       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2216       if (Flags.isByVal()) return false;
2217    }
2218
2219    // Non PIC/GOT  tail calls are supported.
2220    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2221      return true;
2222
2223    // At the moment we can only do local tail calls (in same module, hidden
2224    // or protected) if we are generating PIC.
2225    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2226      return G->getGlobal()->hasHiddenVisibility()
2227          || G->getGlobal()->hasProtectedVisibility();
2228  }
2229
2230  return false;
2231}
2232
2233/// isCallCompatibleAddress - Return the immediate to use if the specified
2234/// 32-bit value is representable in the immediate field of a BxA instruction.
2235static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2236  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2237  if (!C) return 0;
2238
2239  int Addr = C->getZExtValue();
2240  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2241      (Addr << 6 >> 6) != Addr)
2242    return 0;  // Top 6 bits have to be sext of immediate.
2243
2244  return DAG.getConstant((int)C->getZExtValue() >> 2,
2245                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2246}
2247
2248namespace {
2249
2250struct TailCallArgumentInfo {
2251  SDValue Arg;
2252  SDValue FrameIdxOp;
2253  int       FrameIdx;
2254
2255  TailCallArgumentInfo() : FrameIdx(0) {}
2256};
2257
2258}
2259
2260/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2261static void
2262StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2263                                           SDValue Chain,
2264                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2265                   SmallVector<SDValue, 8> &MemOpChains,
2266                   DebugLoc dl) {
2267  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2268    SDValue Arg = TailCallArgs[i].Arg;
2269    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2270    int FI = TailCallArgs[i].FrameIdx;
2271    // Store relative to framepointer.
2272    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2273                                       PseudoSourceValue::getFixedStack(FI),
2274                                       0));
2275  }
2276}
2277
2278/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2279/// the appropriate stack slot for the tail call optimized function call.
2280static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2281                                               MachineFunction &MF,
2282                                               SDValue Chain,
2283                                               SDValue OldRetAddr,
2284                                               SDValue OldFP,
2285                                               int SPDiff,
2286                                               bool isPPC64,
2287                                               bool isDarwinABI,
2288                                               DebugLoc dl) {
2289  if (SPDiff) {
2290    // Calculate the new stack slot for the return address.
2291    int SlotSize = isPPC64 ? 8 : 4;
2292    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2293                                                                   isDarwinABI);
2294    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2295                                                          NewRetAddrLoc,
2296                                                          true, false);
2297    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2298    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2299    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2300                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2301
2302    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2303    // slot as the FP is never overwritten.
2304    if (isDarwinABI) {
2305      int NewFPLoc =
2306        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2307      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2308                                                          true, false);
2309      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2310      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2311                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2312    }
2313  }
2314  return Chain;
2315}
2316
2317/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2318/// the position of the argument.
2319static void
2320CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2321                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2322                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2323  int Offset = ArgOffset + SPDiff;
2324  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2325  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true,false);
2326  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2327  SDValue FIN = DAG.getFrameIndex(FI, VT);
2328  TailCallArgumentInfo Info;
2329  Info.Arg = Arg;
2330  Info.FrameIdxOp = FIN;
2331  Info.FrameIdx = FI;
2332  TailCallArguments.push_back(Info);
2333}
2334
2335/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2336/// stack slot. Returns the chain as result and the loaded frame pointers in
2337/// LROpOut/FPOpout. Used when tail calling.
2338SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2339                                                        int SPDiff,
2340                                                        SDValue Chain,
2341                                                        SDValue &LROpOut,
2342                                                        SDValue &FPOpOut,
2343                                                        bool isDarwinABI,
2344                                                        DebugLoc dl) {
2345  if (SPDiff) {
2346    // Load the LR and FP stack slot for later adjusting.
2347    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2348    LROpOut = getReturnAddrFrameIndex(DAG);
2349    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2350    Chain = SDValue(LROpOut.getNode(), 1);
2351
2352    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2353    // slot as the FP is never overwritten.
2354    if (isDarwinABI) {
2355      FPOpOut = getFramePointerFrameIndex(DAG);
2356      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2357      Chain = SDValue(FPOpOut.getNode(), 1);
2358    }
2359  }
2360  return Chain;
2361}
2362
2363/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2364/// by "Src" to address "Dst" of size "Size".  Alignment information is
2365/// specified by the specific parameter attribute. The copy will be passed as
2366/// a byval function parameter.
2367/// Sometimes what we are copying is the end of a larger object, the part that
2368/// does not fit in registers.
2369static SDValue
2370CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2371                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2372                          DebugLoc dl) {
2373  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2374  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2375                       false, NULL, 0, NULL, 0);
2376}
2377
2378/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2379/// tail calls.
2380static void
2381LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2382                 SDValue Arg, SDValue PtrOff, int SPDiff,
2383                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2384                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2385                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2386                 DebugLoc dl) {
2387  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2388  if (!isTailCall) {
2389    if (isVector) {
2390      SDValue StackPtr;
2391      if (isPPC64)
2392        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2393      else
2394        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2395      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2396                           DAG.getConstant(ArgOffset, PtrVT));
2397    }
2398    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2399  // Calculate and remember argument location.
2400  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2401                                  TailCallArguments);
2402}
2403
2404static
2405void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2406                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2407                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2408                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2409  MachineFunction &MF = DAG.getMachineFunction();
2410
2411  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2412  // might overwrite each other in case of tail call optimization.
2413  SmallVector<SDValue, 8> MemOpChains2;
2414  // Do not flag preceeding copytoreg stuff together with the following stuff.
2415  InFlag = SDValue();
2416  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2417                                    MemOpChains2, dl);
2418  if (!MemOpChains2.empty())
2419    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2420                        &MemOpChains2[0], MemOpChains2.size());
2421
2422  // Store the return address to the appropriate stack slot.
2423  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2424                                        isPPC64, isDarwinABI, dl);
2425
2426  // Emit callseq_end just before tailcall node.
2427  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2428                             DAG.getIntPtrConstant(0, true), InFlag);
2429  InFlag = Chain.getValue(1);
2430}
2431
2432static
2433unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2434                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2435                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2436                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2437                     bool isPPC64, bool isSVR4ABI) {
2438  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2439  NodeTys.push_back(MVT::Other);   // Returns a chain
2440  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2441
2442  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2443
2444  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2445  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2446  // node so that legalize doesn't hack it.
2447  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2448    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2449  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2450    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2451  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2452    // If this is an absolute destination address, use the munged value.
2453    Callee = SDValue(Dest, 0);
2454  else {
2455    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2456    // to do the call, we can't use PPCISD::CALL.
2457    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2458
2459    if (isSVR4ABI && isPPC64) {
2460      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2461      // entry point, but to the function descriptor (the function entry point
2462      // address is part of the function descriptor though).
2463      // The function descriptor is a three doubleword structure with the
2464      // following fields: function entry point, TOC base address and
2465      // environment pointer.
2466      // Thus for a call through a function pointer, the following actions need
2467      // to be performed:
2468      //   1. Save the TOC of the caller in the TOC save area of its stack
2469      //      frame (this is done in LowerCall_Darwin()).
2470      //   2. Load the address of the function entry point from the function
2471      //      descriptor.
2472      //   3. Load the TOC of the callee from the function descriptor into r2.
2473      //   4. Load the environment pointer from the function descriptor into
2474      //      r11.
2475      //   5. Branch to the function entry point address.
2476      //   6. On return of the callee, the TOC of the caller needs to be
2477      //      restored (this is done in FinishCall()).
2478      //
2479      // All those operations are flagged together to ensure that no other
2480      // operations can be scheduled in between. E.g. without flagging the
2481      // operations together, a TOC access in the caller could be scheduled
2482      // between the load of the callee TOC and the branch to the callee, which
2483      // results in the TOC access going through the TOC of the callee instead
2484      // of going through the TOC of the caller, which leads to incorrect code.
2485
2486      // Load the address of the function entry point from the function
2487      // descriptor.
2488      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2489      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2490                                        InFlag.getNode() ? 3 : 2);
2491      Chain = LoadFuncPtr.getValue(1);
2492      InFlag = LoadFuncPtr.getValue(2);
2493
2494      // Load environment pointer into r11.
2495      // Offset of the environment pointer within the function descriptor.
2496      SDValue PtrOff = DAG.getIntPtrConstant(16);
2497
2498      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2499      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2500                                       InFlag);
2501      Chain = LoadEnvPtr.getValue(1);
2502      InFlag = LoadEnvPtr.getValue(2);
2503
2504      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2505                                        InFlag);
2506      Chain = EnvVal.getValue(0);
2507      InFlag = EnvVal.getValue(1);
2508
2509      // Load TOC of the callee into r2. We are using a target-specific load
2510      // with r2 hard coded, because the result of a target-independent load
2511      // would never go directly into r2, since r2 is a reserved register (which
2512      // prevents the register allocator from allocating it), resulting in an
2513      // additional register being allocated and an unnecessary move instruction
2514      // being generated.
2515      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2516      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2517                                       Callee, InFlag);
2518      Chain = LoadTOCPtr.getValue(0);
2519      InFlag = LoadTOCPtr.getValue(1);
2520
2521      MTCTROps[0] = Chain;
2522      MTCTROps[1] = LoadFuncPtr;
2523      MTCTROps[2] = InFlag;
2524    }
2525
2526    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2527                        2 + (InFlag.getNode() != 0));
2528    InFlag = Chain.getValue(1);
2529
2530    NodeTys.clear();
2531    NodeTys.push_back(MVT::Other);
2532    NodeTys.push_back(MVT::Flag);
2533    Ops.push_back(Chain);
2534    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2535    Callee.setNode(0);
2536    // Add CTR register as callee so a bctr can be emitted later.
2537    if (isTailCall)
2538      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2539  }
2540
2541  // If this is a direct call, pass the chain and the callee.
2542  if (Callee.getNode()) {
2543    Ops.push_back(Chain);
2544    Ops.push_back(Callee);
2545  }
2546  // If this is a tail call add stack pointer delta.
2547  if (isTailCall)
2548    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2549
2550  // Add argument registers to the end of the list so that they are known live
2551  // into the call.
2552  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2553    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2554                                  RegsToPass[i].second.getValueType()));
2555
2556  return CallOpc;
2557}
2558
2559SDValue
2560PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2561                                   CallingConv::ID CallConv, bool isVarArg,
2562                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2563                                   DebugLoc dl, SelectionDAG &DAG,
2564                                   SmallVectorImpl<SDValue> &InVals) {
2565
2566  SmallVector<CCValAssign, 16> RVLocs;
2567  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2568                    RVLocs, *DAG.getContext());
2569  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2570
2571  // Copy all of the result registers out of their specified physreg.
2572  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2573    CCValAssign &VA = RVLocs[i];
2574    EVT VT = VA.getValVT();
2575    assert(VA.isRegLoc() && "Can only return in registers!");
2576    Chain = DAG.getCopyFromReg(Chain, dl,
2577                               VA.getLocReg(), VT, InFlag).getValue(1);
2578    InVals.push_back(Chain.getValue(0));
2579    InFlag = Chain.getValue(2);
2580  }
2581
2582  return Chain;
2583}
2584
2585SDValue
2586PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2587                              bool isTailCall, bool isVarArg,
2588                              SelectionDAG &DAG,
2589                              SmallVector<std::pair<unsigned, SDValue>, 8>
2590                                &RegsToPass,
2591                              SDValue InFlag, SDValue Chain,
2592                              SDValue &Callee,
2593                              int SPDiff, unsigned NumBytes,
2594                              const SmallVectorImpl<ISD::InputArg> &Ins,
2595                              SmallVectorImpl<SDValue> &InVals) {
2596  std::vector<EVT> NodeTys;
2597  SmallVector<SDValue, 8> Ops;
2598  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2599                                 isTailCall, RegsToPass, Ops, NodeTys,
2600                                 PPCSubTarget.isPPC64(),
2601                                 PPCSubTarget.isSVR4ABI());
2602
2603  // When performing tail call optimization the callee pops its arguments off
2604  // the stack. Account for this here so these bytes can be pushed back on in
2605  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2606  int BytesCalleePops =
2607    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2608
2609  if (InFlag.getNode())
2610    Ops.push_back(InFlag);
2611
2612  // Emit tail call.
2613  if (isTailCall) {
2614    // If this is the first return lowered for this function, add the regs
2615    // to the liveout set for the function.
2616    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2617      SmallVector<CCValAssign, 16> RVLocs;
2618      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2619                     *DAG.getContext());
2620      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2621      for (unsigned i = 0; i != RVLocs.size(); ++i)
2622        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2623    }
2624
2625    assert(((Callee.getOpcode() == ISD::Register &&
2626             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2627            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2628            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2629            isa<ConstantSDNode>(Callee)) &&
2630    "Expecting an global address, external symbol, absolute value or register");
2631
2632    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2633  }
2634
2635  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2636  InFlag = Chain.getValue(1);
2637
2638  // Add a NOP immediately after the branch instruction when using the 64-bit
2639  // SVR4 ABI. At link time, if caller and callee are in a different module and
2640  // thus have a different TOC, the call will be replaced with a call to a stub
2641  // function which saves the current TOC, loads the TOC of the callee and
2642  // branches to the callee. The NOP will be replaced with a load instruction
2643  // which restores the TOC of the caller from the TOC save slot of the current
2644  // stack frame. If caller and callee belong to the same module (and have the
2645  // same TOC), the NOP will remain unchanged.
2646  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2647    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2648    if (CallOpc == PPCISD::BCTRL_SVR4) {
2649      // This is a call through a function pointer.
2650      // Restore the caller TOC from the save area into R2.
2651      // See PrepareCall() for more information about calls through function
2652      // pointers in the 64-bit SVR4 ABI.
2653      // We are using a target-specific load with r2 hard coded, because the
2654      // result of a target-independent load would never go directly into r2,
2655      // since r2 is a reserved register (which prevents the register allocator
2656      // from allocating it), resulting in an additional register being
2657      // allocated and an unnecessary move instruction being generated.
2658      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2659      InFlag = Chain.getValue(1);
2660    } else {
2661      // Otherwise insert NOP.
2662      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2663    }
2664  }
2665
2666  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2667                             DAG.getIntPtrConstant(BytesCalleePops, true),
2668                             InFlag);
2669  if (!Ins.empty())
2670    InFlag = Chain.getValue(1);
2671
2672  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2673                         Ins, dl, DAG, InVals);
2674}
2675
2676SDValue
2677PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, const Type *RetTy,
2678                             CallingConv::ID CallConv, bool isVarArg,
2679                             bool &isTailCall,
2680                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2681                             const SmallVectorImpl<ISD::InputArg> &Ins,
2682                             DebugLoc dl, SelectionDAG &DAG,
2683                             SmallVectorImpl<SDValue> &InVals) {
2684  if (isTailCall)
2685    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2686                                                   Ins, DAG);
2687
2688  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2689    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2690                          isTailCall, Outs, Ins,
2691                          dl, DAG, InVals);
2692  } else {
2693    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2694                            isTailCall, Outs, Ins,
2695                            dl, DAG, InVals);
2696  }
2697}
2698
2699SDValue
2700PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2701                                  CallingConv::ID CallConv, bool isVarArg,
2702                                  bool isTailCall,
2703                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2704                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2705                                  DebugLoc dl, SelectionDAG &DAG,
2706                                  SmallVectorImpl<SDValue> &InVals) {
2707  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2708  // of the 32-bit SVR4 ABI stack frame layout.
2709
2710  assert((CallConv == CallingConv::C ||
2711          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2712
2713  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2714  unsigned PtrByteSize = 4;
2715
2716  MachineFunction &MF = DAG.getMachineFunction();
2717
2718  // Mark this function as potentially containing a function that contains a
2719  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2720  // and restoring the callers stack pointer in this functions epilog. This is
2721  // done because by tail calling the called function might overwrite the value
2722  // in this function's (MF) stack pointer stack slot 0(SP).
2723  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2724    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2725
2726  // Count how many bytes are to be pushed on the stack, including the linkage
2727  // area, parameter list area and the part of the local variable space which
2728  // contains copies of aggregates which are passed by value.
2729
2730  // Assign locations to all of the outgoing arguments.
2731  SmallVector<CCValAssign, 16> ArgLocs;
2732  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2733                 ArgLocs, *DAG.getContext());
2734
2735  // Reserve space for the linkage area on the stack.
2736  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2737
2738  if (isVarArg) {
2739    // Handle fixed and variable vector arguments differently.
2740    // Fixed vector arguments go into registers as long as registers are
2741    // available. Variable vector arguments always go into memory.
2742    unsigned NumArgs = Outs.size();
2743
2744    for (unsigned i = 0; i != NumArgs; ++i) {
2745      EVT ArgVT = Outs[i].Val.getValueType();
2746      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2747      bool Result;
2748
2749      if (Outs[i].IsFixed) {
2750        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2751                             CCInfo);
2752      } else {
2753        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2754                                    ArgFlags, CCInfo);
2755      }
2756
2757      if (Result) {
2758#ifndef NDEBUG
2759        errs() << "Call operand #" << i << " has unhandled type "
2760             << ArgVT.getEVTString() << "\n";
2761#endif
2762        llvm_unreachable(0);
2763      }
2764    }
2765  } else {
2766    // All arguments are treated the same.
2767    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2768  }
2769
2770  // Assign locations to all of the outgoing aggregate by value arguments.
2771  SmallVector<CCValAssign, 16> ByValArgLocs;
2772  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2773                      *DAG.getContext());
2774
2775  // Reserve stack space for the allocations in CCInfo.
2776  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2777
2778  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2779
2780  // Size of the linkage area, parameter list area and the part of the local
2781  // space variable where copies of aggregates which are passed by value are
2782  // stored.
2783  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2784
2785  // Calculate by how many bytes the stack has to be adjusted in case of tail
2786  // call optimization.
2787  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2788
2789  // Adjust the stack pointer for the new arguments...
2790  // These operations are automatically eliminated by the prolog/epilog pass
2791  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2792  SDValue CallSeqStart = Chain;
2793
2794  // Load the return address and frame pointer so it can be moved somewhere else
2795  // later.
2796  SDValue LROp, FPOp;
2797  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2798                                       dl);
2799
2800  // Set up a copy of the stack pointer for use loading and storing any
2801  // arguments that may not fit in the registers available for argument
2802  // passing.
2803  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2804
2805  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2806  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2807  SmallVector<SDValue, 8> MemOpChains;
2808
2809  // Walk the register/memloc assignments, inserting copies/loads.
2810  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2811       i != e;
2812       ++i) {
2813    CCValAssign &VA = ArgLocs[i];
2814    SDValue Arg = Outs[i].Val;
2815    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2816
2817    if (Flags.isByVal()) {
2818      // Argument is an aggregate which is passed by value, thus we need to
2819      // create a copy of it in the local variable space of the current stack
2820      // frame (which is the stack frame of the caller) and pass the address of
2821      // this copy to the callee.
2822      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2823      CCValAssign &ByValVA = ByValArgLocs[j++];
2824      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2825
2826      // Memory reserved in the local variable space of the callers stack frame.
2827      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2828
2829      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2830      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2831
2832      // Create a copy of the argument in the local area of the current
2833      // stack frame.
2834      SDValue MemcpyCall =
2835        CreateCopyOfByValArgument(Arg, PtrOff,
2836                                  CallSeqStart.getNode()->getOperand(0),
2837                                  Flags, DAG, dl);
2838
2839      // This must go outside the CALLSEQ_START..END.
2840      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2841                           CallSeqStart.getNode()->getOperand(1));
2842      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2843                             NewCallSeqStart.getNode());
2844      Chain = CallSeqStart = NewCallSeqStart;
2845
2846      // Pass the address of the aggregate copy on the stack either in a
2847      // physical register or in the parameter list area of the current stack
2848      // frame to the callee.
2849      Arg = PtrOff;
2850    }
2851
2852    if (VA.isRegLoc()) {
2853      // Put argument in a physical register.
2854      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2855    } else {
2856      // Put argument in the parameter list area of the current stack frame.
2857      assert(VA.isMemLoc());
2858      unsigned LocMemOffset = VA.getLocMemOffset();
2859
2860      if (!isTailCall) {
2861        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2862        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2863
2864        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2865                              PseudoSourceValue::getStack(), LocMemOffset));
2866      } else {
2867        // Calculate and remember argument location.
2868        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2869                                 TailCallArguments);
2870      }
2871    }
2872  }
2873
2874  if (!MemOpChains.empty())
2875    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2876                        &MemOpChains[0], MemOpChains.size());
2877
2878  // Build a sequence of copy-to-reg nodes chained together with token chain
2879  // and flag operands which copy the outgoing args into the appropriate regs.
2880  SDValue InFlag;
2881  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2882    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2883                             RegsToPass[i].second, InFlag);
2884    InFlag = Chain.getValue(1);
2885  }
2886
2887  // Set CR6 to true if this is a vararg call.
2888  if (isVarArg) {
2889    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2890    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2891    InFlag = Chain.getValue(1);
2892  }
2893
2894  if (isTailCall) {
2895    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2896                    false, TailCallArguments);
2897  }
2898
2899  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2900                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2901                    Ins, InVals);
2902}
2903
2904SDValue
2905PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2906                                    CallingConv::ID CallConv, bool isVarArg,
2907                                    bool isTailCall,
2908                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2909                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2910                                    DebugLoc dl, SelectionDAG &DAG,
2911                                    SmallVectorImpl<SDValue> &InVals) {
2912
2913  unsigned NumOps  = Outs.size();
2914
2915  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2916  bool isPPC64 = PtrVT == MVT::i64;
2917  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2918
2919  MachineFunction &MF = DAG.getMachineFunction();
2920
2921  // Mark this function as potentially containing a function that contains a
2922  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2923  // and restoring the callers stack pointer in this functions epilog. This is
2924  // done because by tail calling the called function might overwrite the value
2925  // in this function's (MF) stack pointer stack slot 0(SP).
2926  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2927    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2928
2929  unsigned nAltivecParamsAtEnd = 0;
2930
2931  // Count how many bytes are to be pushed on the stack, including the linkage
2932  // area, and parameter passing area.  We start with 24/48 bytes, which is
2933  // prereserved space for [SP][CR][LR][3 x unused].
2934  unsigned NumBytes =
2935    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2936                                         Outs,
2937                                         nAltivecParamsAtEnd);
2938
2939  // Calculate by how many bytes the stack has to be adjusted in case of tail
2940  // call optimization.
2941  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2942
2943  // To protect arguments on the stack from being clobbered in a tail call,
2944  // force all the loads to happen before doing any other lowering.
2945  if (isTailCall)
2946    Chain = DAG.getStackArgumentTokenFactor(Chain);
2947
2948  // Adjust the stack pointer for the new arguments...
2949  // These operations are automatically eliminated by the prolog/epilog pass
2950  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2951  SDValue CallSeqStart = Chain;
2952
2953  // Load the return address and frame pointer so it can be move somewhere else
2954  // later.
2955  SDValue LROp, FPOp;
2956  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2957                                       dl);
2958
2959  // Set up a copy of the stack pointer for use loading and storing any
2960  // arguments that may not fit in the registers available for argument
2961  // passing.
2962  SDValue StackPtr;
2963  if (isPPC64)
2964    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2965  else
2966    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2967
2968  // Figure out which arguments are going to go in registers, and which in
2969  // memory.  Also, if this is a vararg function, floating point operations
2970  // must be stored to our stack, and loaded into integer regs as well, if
2971  // any integer regs are available for argument passing.
2972  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2973  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2974
2975  static const unsigned GPR_32[] = {           // 32-bit registers.
2976    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2977    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2978  };
2979  static const unsigned GPR_64[] = {           // 64-bit registers.
2980    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2981    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2982  };
2983  static const unsigned *FPR = GetFPR();
2984
2985  static const unsigned VR[] = {
2986    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2987    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2988  };
2989  const unsigned NumGPRs = array_lengthof(GPR_32);
2990  const unsigned NumFPRs = 13;
2991  const unsigned NumVRs  = array_lengthof(VR);
2992
2993  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2994
2995  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2996  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2997
2998  SmallVector<SDValue, 8> MemOpChains;
2999  for (unsigned i = 0; i != NumOps; ++i) {
3000    SDValue Arg = Outs[i].Val;
3001    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3002
3003    // PtrOff will be used to store the current argument to the stack if a
3004    // register cannot be found for it.
3005    SDValue PtrOff;
3006
3007    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3008
3009    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3010
3011    // On PPC64, promote integers to 64-bit values.
3012    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3013      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3014      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3015      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3016    }
3017
3018    // FIXME memcpy is used way more than necessary.  Correctness first.
3019    if (Flags.isByVal()) {
3020      unsigned Size = Flags.getByValSize();
3021      if (Size==1 || Size==2) {
3022        // Very small objects are passed right-justified.
3023        // Everything else is passed left-justified.
3024        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3025        if (GPR_idx != NumGPRs) {
3026          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3027                                          NULL, 0, VT);
3028          MemOpChains.push_back(Load.getValue(1));
3029          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3030
3031          ArgOffset += PtrByteSize;
3032        } else {
3033          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3034          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3035          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3036                                CallSeqStart.getNode()->getOperand(0),
3037                                Flags, DAG, dl);
3038          // This must go outside the CALLSEQ_START..END.
3039          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3040                               CallSeqStart.getNode()->getOperand(1));
3041          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3042                                 NewCallSeqStart.getNode());
3043          Chain = CallSeqStart = NewCallSeqStart;
3044          ArgOffset += PtrByteSize;
3045        }
3046        continue;
3047      }
3048      // Copy entire object into memory.  There are cases where gcc-generated
3049      // code assumes it is there, even if it could be put entirely into
3050      // registers.  (This is not what the doc says.)
3051      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3052                            CallSeqStart.getNode()->getOperand(0),
3053                            Flags, DAG, dl);
3054      // This must go outside the CALLSEQ_START..END.
3055      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3056                           CallSeqStart.getNode()->getOperand(1));
3057      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3058      Chain = CallSeqStart = NewCallSeqStart;
3059      // And copy the pieces of it that fit into registers.
3060      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3061        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3062        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3063        if (GPR_idx != NumGPRs) {
3064          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
3065          MemOpChains.push_back(Load.getValue(1));
3066          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3067          ArgOffset += PtrByteSize;
3068        } else {
3069          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3070          break;
3071        }
3072      }
3073      continue;
3074    }
3075
3076    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3077    default: llvm_unreachable("Unexpected ValueType for argument!");
3078    case MVT::i32:
3079    case MVT::i64:
3080      if (GPR_idx != NumGPRs) {
3081        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3082      } else {
3083        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3084                         isPPC64, isTailCall, false, MemOpChains,
3085                         TailCallArguments, dl);
3086      }
3087      ArgOffset += PtrByteSize;
3088      break;
3089    case MVT::f32:
3090    case MVT::f64:
3091      if (FPR_idx != NumFPRs) {
3092        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3093
3094        if (isVarArg) {
3095          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3096          MemOpChains.push_back(Store);
3097
3098          // Float varargs are always shadowed in available integer registers
3099          if (GPR_idx != NumGPRs) {
3100            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3101            MemOpChains.push_back(Load.getValue(1));
3102            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3103          }
3104          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3105            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3106            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3107            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3108            MemOpChains.push_back(Load.getValue(1));
3109            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3110          }
3111        } else {
3112          // If we have any FPRs remaining, we may also have GPRs remaining.
3113          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3114          // GPRs.
3115          if (GPR_idx != NumGPRs)
3116            ++GPR_idx;
3117          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3118              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3119            ++GPR_idx;
3120        }
3121      } else {
3122        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3123                         isPPC64, isTailCall, false, MemOpChains,
3124                         TailCallArguments, dl);
3125      }
3126      if (isPPC64)
3127        ArgOffset += 8;
3128      else
3129        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3130      break;
3131    case MVT::v4f32:
3132    case MVT::v4i32:
3133    case MVT::v8i16:
3134    case MVT::v16i8:
3135      if (isVarArg) {
3136        // These go aligned on the stack, or in the corresponding R registers
3137        // when within range.  The Darwin PPC ABI doc claims they also go in
3138        // V registers; in fact gcc does this only for arguments that are
3139        // prototyped, not for those that match the ...  We do it for all
3140        // arguments, seems to work.
3141        while (ArgOffset % 16 !=0) {
3142          ArgOffset += PtrByteSize;
3143          if (GPR_idx != NumGPRs)
3144            GPR_idx++;
3145        }
3146        // We could elide this store in the case where the object fits
3147        // entirely in R registers.  Maybe later.
3148        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3149                            DAG.getConstant(ArgOffset, PtrVT));
3150        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3151        MemOpChains.push_back(Store);
3152        if (VR_idx != NumVRs) {
3153          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3154          MemOpChains.push_back(Load.getValue(1));
3155          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3156        }
3157        ArgOffset += 16;
3158        for (unsigned i=0; i<16; i+=PtrByteSize) {
3159          if (GPR_idx == NumGPRs)
3160            break;
3161          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3162                                  DAG.getConstant(i, PtrVT));
3163          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3164          MemOpChains.push_back(Load.getValue(1));
3165          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3166        }
3167        break;
3168      }
3169
3170      // Non-varargs Altivec params generally go in registers, but have
3171      // stack space allocated at the end.
3172      if (VR_idx != NumVRs) {
3173        // Doesn't have GPR space allocated.
3174        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3175      } else if (nAltivecParamsAtEnd==0) {
3176        // We are emitting Altivec params in order.
3177        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3178                         isPPC64, isTailCall, true, MemOpChains,
3179                         TailCallArguments, dl);
3180        ArgOffset += 16;
3181      }
3182      break;
3183    }
3184  }
3185  // If all Altivec parameters fit in registers, as they usually do,
3186  // they get stack space following the non-Altivec parameters.  We
3187  // don't track this here because nobody below needs it.
3188  // If there are more Altivec parameters than fit in registers emit
3189  // the stores here.
3190  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3191    unsigned j = 0;
3192    // Offset is aligned; skip 1st 12 params which go in V registers.
3193    ArgOffset = ((ArgOffset+15)/16)*16;
3194    ArgOffset += 12*16;
3195    for (unsigned i = 0; i != NumOps; ++i) {
3196      SDValue Arg = Outs[i].Val;
3197      EVT ArgType = Arg.getValueType();
3198      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3199          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3200        if (++j > NumVRs) {
3201          SDValue PtrOff;
3202          // We are emitting Altivec params in order.
3203          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3204                           isPPC64, isTailCall, true, MemOpChains,
3205                           TailCallArguments, dl);
3206          ArgOffset += 16;
3207        }
3208      }
3209    }
3210  }
3211
3212  if (!MemOpChains.empty())
3213    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3214                        &MemOpChains[0], MemOpChains.size());
3215
3216  // Check if this is an indirect call (MTCTR/BCTRL).
3217  // See PrepareCall() for more information about calls through function
3218  // pointers in the 64-bit SVR4 ABI.
3219  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3220      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3221      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3222      !isBLACompatibleAddress(Callee, DAG)) {
3223    // Load r2 into a virtual register and store it to the TOC save area.
3224    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3225    // TOC save area offset.
3226    SDValue PtrOff = DAG.getIntPtrConstant(40);
3227    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3228    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, NULL, 0);
3229  }
3230
3231  // Build a sequence of copy-to-reg nodes chained together with token chain
3232  // and flag operands which copy the outgoing args into the appropriate regs.
3233  SDValue InFlag;
3234  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3235    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3236                             RegsToPass[i].second, InFlag);
3237    InFlag = Chain.getValue(1);
3238  }
3239
3240  if (isTailCall) {
3241    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3242                    FPOp, true, TailCallArguments);
3243  }
3244
3245  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3246                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3247                    Ins, InVals);
3248}
3249
3250SDValue
3251PPCTargetLowering::LowerReturn(SDValue Chain,
3252                               CallingConv::ID CallConv, bool isVarArg,
3253                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3254                               DebugLoc dl, SelectionDAG &DAG) {
3255
3256  SmallVector<CCValAssign, 16> RVLocs;
3257  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3258                 RVLocs, *DAG.getContext());
3259  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3260
3261  // If this is the first return lowered for this function, add the regs to the
3262  // liveout set for the function.
3263  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3264    for (unsigned i = 0; i != RVLocs.size(); ++i)
3265      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3266  }
3267
3268  SDValue Flag;
3269
3270  // Copy the result values into the output registers.
3271  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3272    CCValAssign &VA = RVLocs[i];
3273    assert(VA.isRegLoc() && "Can only return in registers!");
3274    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3275                             Outs[i].Val, Flag);
3276    Flag = Chain.getValue(1);
3277  }
3278
3279  if (Flag.getNode())
3280    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3281  else
3282    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3283}
3284
3285SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3286                                   const PPCSubtarget &Subtarget) {
3287  // When we pop the dynamic allocation we need to restore the SP link.
3288  DebugLoc dl = Op.getDebugLoc();
3289
3290  // Get the corect type for pointers.
3291  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3292
3293  // Construct the stack pointer operand.
3294  bool isPPC64 = Subtarget.isPPC64();
3295  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3296  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3297
3298  // Get the operands for the STACKRESTORE.
3299  SDValue Chain = Op.getOperand(0);
3300  SDValue SaveSP = Op.getOperand(1);
3301
3302  // Load the old link SP.
3303  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3304
3305  // Restore the stack pointer.
3306  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3307
3308  // Store the old link SP.
3309  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3310}
3311
3312
3313
3314SDValue
3315PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3316  MachineFunction &MF = DAG.getMachineFunction();
3317  bool isPPC64 = PPCSubTarget.isPPC64();
3318  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3319  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3320
3321  // Get current frame pointer save index.  The users of this index will be
3322  // primarily DYNALLOC instructions.
3323  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3324  int RASI = FI->getReturnAddrSaveIndex();
3325
3326  // If the frame pointer save index hasn't been defined yet.
3327  if (!RASI) {
3328    // Find out what the fix offset of the frame pointer save area.
3329    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3330    // Allocate the frame index for frame pointer save area.
3331    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset,
3332                                                true, false);
3333    // Save the result.
3334    FI->setReturnAddrSaveIndex(RASI);
3335  }
3336  return DAG.getFrameIndex(RASI, PtrVT);
3337}
3338
3339SDValue
3340PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3341  MachineFunction &MF = DAG.getMachineFunction();
3342  bool isPPC64 = PPCSubTarget.isPPC64();
3343  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3344  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3345
3346  // Get current frame pointer save index.  The users of this index will be
3347  // primarily DYNALLOC instructions.
3348  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3349  int FPSI = FI->getFramePointerSaveIndex();
3350
3351  // If the frame pointer save index hasn't been defined yet.
3352  if (!FPSI) {
3353    // Find out what the fix offset of the frame pointer save area.
3354    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3355                                                           isDarwinABI);
3356
3357    // Allocate the frame index for frame pointer save area.
3358    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset,
3359                                                true, false);
3360    // Save the result.
3361    FI->setFramePointerSaveIndex(FPSI);
3362  }
3363  return DAG.getFrameIndex(FPSI, PtrVT);
3364}
3365
3366SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3367                                         SelectionDAG &DAG,
3368                                         const PPCSubtarget &Subtarget) {
3369  // Get the inputs.
3370  SDValue Chain = Op.getOperand(0);
3371  SDValue Size  = Op.getOperand(1);
3372  DebugLoc dl = Op.getDebugLoc();
3373
3374  // Get the corect type for pointers.
3375  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3376  // Negate the size.
3377  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3378                                  DAG.getConstant(0, PtrVT), Size);
3379  // Construct a node for the frame pointer save index.
3380  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3381  // Build a DYNALLOC node.
3382  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3383  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3384  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3385}
3386
3387/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3388/// possible.
3389SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3390  // Not FP? Not a fsel.
3391  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3392      !Op.getOperand(2).getValueType().isFloatingPoint())
3393    return Op;
3394
3395  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3396
3397  // Cannot handle SETEQ/SETNE.
3398  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3399
3400  EVT ResVT = Op.getValueType();
3401  EVT CmpVT = Op.getOperand(0).getValueType();
3402  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3403  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3404  DebugLoc dl = Op.getDebugLoc();
3405
3406  // If the RHS of the comparison is a 0.0, we don't need to do the
3407  // subtraction at all.
3408  if (isFloatingPointZero(RHS))
3409    switch (CC) {
3410    default: break;       // SETUO etc aren't handled by fsel.
3411    case ISD::SETULT:
3412    case ISD::SETLT:
3413      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3414    case ISD::SETOGE:
3415    case ISD::SETGE:
3416      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3417        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3418      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3419    case ISD::SETUGT:
3420    case ISD::SETGT:
3421      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3422    case ISD::SETOLE:
3423    case ISD::SETLE:
3424      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3425        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3426      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3427                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3428    }
3429
3430  SDValue Cmp;
3431  switch (CC) {
3432  default: break;       // SETUO etc aren't handled by fsel.
3433  case ISD::SETULT:
3434  case ISD::SETLT:
3435    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3436    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3437      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3438      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3439  case ISD::SETOGE:
3440  case ISD::SETGE:
3441    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3442    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3443      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3444      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3445  case ISD::SETUGT:
3446  case ISD::SETGT:
3447    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3448    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3449      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3450      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3451  case ISD::SETOLE:
3452  case ISD::SETLE:
3453    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3454    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3455      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3456      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3457  }
3458  return Op;
3459}
3460
3461// FIXME: Split this code up when LegalizeDAGTypes lands.
3462SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3463                                           DebugLoc dl) {
3464  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3465  SDValue Src = Op.getOperand(0);
3466  if (Src.getValueType() == MVT::f32)
3467    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3468
3469  SDValue Tmp;
3470  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3471  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3472  case MVT::i32:
3473    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3474                                                         PPCISD::FCTIDZ,
3475                      dl, MVT::f64, Src);
3476    break;
3477  case MVT::i64:
3478    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3479    break;
3480  }
3481
3482  // Convert the FP value to an int value through memory.
3483  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3484
3485  // Emit a store to the stack slot.
3486  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3487
3488  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3489  // add in a bias.
3490  if (Op.getValueType() == MVT::i32)
3491    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3492                        DAG.getConstant(4, FIPtr.getValueType()));
3493  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3494}
3495
3496SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3497  DebugLoc dl = Op.getDebugLoc();
3498  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3499  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3500    return SDValue();
3501
3502  if (Op.getOperand(0).getValueType() == MVT::i64) {
3503    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3504                               MVT::f64, Op.getOperand(0));
3505    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3506    if (Op.getValueType() == MVT::f32)
3507      FP = DAG.getNode(ISD::FP_ROUND, dl,
3508                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3509    return FP;
3510  }
3511
3512  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3513         "Unhandled SINT_TO_FP type in custom expander!");
3514  // Since we only generate this in 64-bit mode, we can take advantage of
3515  // 64-bit registers.  In particular, sign extend the input value into the
3516  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3517  // then lfd it and fcfid it.
3518  MachineFunction &MF = DAG.getMachineFunction();
3519  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3520  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3521  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3522  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3523
3524  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3525                                Op.getOperand(0));
3526
3527  // STD the extended value into the stack slot.
3528  MachineMemOperand *MMO =
3529    MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
3530                            MachineMemOperand::MOStore, 0, 8, 8);
3531  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3532  SDValue Store =
3533    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3534                            Ops, 4, MVT::i64, MMO);
3535  // Load the value as a double.
3536  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3537
3538  // FCFID it and return it.
3539  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3540  if (Op.getValueType() == MVT::f32)
3541    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3542  return FP;
3543}
3544
3545SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3546  DebugLoc dl = Op.getDebugLoc();
3547  /*
3548   The rounding mode is in bits 30:31 of FPSR, and has the following
3549   settings:
3550     00 Round to nearest
3551     01 Round to 0
3552     10 Round to +inf
3553     11 Round to -inf
3554
3555  FLT_ROUNDS, on the other hand, expects the following:
3556    -1 Undefined
3557     0 Round to 0
3558     1 Round to nearest
3559     2 Round to +inf
3560     3 Round to -inf
3561
3562  To perform the conversion, we do:
3563    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3564  */
3565
3566  MachineFunction &MF = DAG.getMachineFunction();
3567  EVT VT = Op.getValueType();
3568  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3569  std::vector<EVT> NodeTys;
3570  SDValue MFFSreg, InFlag;
3571
3572  // Save FP Control Word to register
3573  NodeTys.push_back(MVT::f64);    // return register
3574  NodeTys.push_back(MVT::Flag);   // unused in this context
3575  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3576
3577  // Save FP register to stack slot
3578  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3579  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3580  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3581                                 StackSlot, NULL, 0);
3582
3583  // Load FP Control Word from low 32 bits of stack slot.
3584  SDValue Four = DAG.getConstant(4, PtrVT);
3585  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3586  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3587
3588  // Transform as necessary
3589  SDValue CWD1 =
3590    DAG.getNode(ISD::AND, dl, MVT::i32,
3591                CWD, DAG.getConstant(3, MVT::i32));
3592  SDValue CWD2 =
3593    DAG.getNode(ISD::SRL, dl, MVT::i32,
3594                DAG.getNode(ISD::AND, dl, MVT::i32,
3595                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3596                                        CWD, DAG.getConstant(3, MVT::i32)),
3597                            DAG.getConstant(3, MVT::i32)),
3598                DAG.getConstant(1, MVT::i32));
3599
3600  SDValue RetVal =
3601    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3602
3603  return DAG.getNode((VT.getSizeInBits() < 16 ?
3604                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3605}
3606
3607SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3608  EVT VT = Op.getValueType();
3609  unsigned BitWidth = VT.getSizeInBits();
3610  DebugLoc dl = Op.getDebugLoc();
3611  assert(Op.getNumOperands() == 3 &&
3612         VT == Op.getOperand(1).getValueType() &&
3613         "Unexpected SHL!");
3614
3615  // Expand into a bunch of logical ops.  Note that these ops
3616  // depend on the PPC behavior for oversized shift amounts.
3617  SDValue Lo = Op.getOperand(0);
3618  SDValue Hi = Op.getOperand(1);
3619  SDValue Amt = Op.getOperand(2);
3620  EVT AmtVT = Amt.getValueType();
3621
3622  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3623                             DAG.getConstant(BitWidth, AmtVT), Amt);
3624  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3625  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3626  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3627  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3628                             DAG.getConstant(-BitWidth, AmtVT));
3629  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3630  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3631  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3632  SDValue OutOps[] = { OutLo, OutHi };
3633  return DAG.getMergeValues(OutOps, 2, dl);
3634}
3635
3636SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3637  EVT VT = Op.getValueType();
3638  DebugLoc dl = Op.getDebugLoc();
3639  unsigned BitWidth = VT.getSizeInBits();
3640  assert(Op.getNumOperands() == 3 &&
3641         VT == Op.getOperand(1).getValueType() &&
3642         "Unexpected SRL!");
3643
3644  // Expand into a bunch of logical ops.  Note that these ops
3645  // depend on the PPC behavior for oversized shift amounts.
3646  SDValue Lo = Op.getOperand(0);
3647  SDValue Hi = Op.getOperand(1);
3648  SDValue Amt = Op.getOperand(2);
3649  EVT AmtVT = Amt.getValueType();
3650
3651  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3652                             DAG.getConstant(BitWidth, AmtVT), Amt);
3653  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3654  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3655  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3656  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3657                             DAG.getConstant(-BitWidth, AmtVT));
3658  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3659  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3660  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3661  SDValue OutOps[] = { OutLo, OutHi };
3662  return DAG.getMergeValues(OutOps, 2, dl);
3663}
3664
3665SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3666  DebugLoc dl = Op.getDebugLoc();
3667  EVT VT = Op.getValueType();
3668  unsigned BitWidth = VT.getSizeInBits();
3669  assert(Op.getNumOperands() == 3 &&
3670         VT == Op.getOperand(1).getValueType() &&
3671         "Unexpected SRA!");
3672
3673  // Expand into a bunch of logical ops, followed by a select_cc.
3674  SDValue Lo = Op.getOperand(0);
3675  SDValue Hi = Op.getOperand(1);
3676  SDValue Amt = Op.getOperand(2);
3677  EVT AmtVT = Amt.getValueType();
3678
3679  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3680                             DAG.getConstant(BitWidth, AmtVT), Amt);
3681  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3682  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3683  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3684  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3685                             DAG.getConstant(-BitWidth, AmtVT));
3686  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3687  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3688  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3689                                  Tmp4, Tmp6, ISD::SETLE);
3690  SDValue OutOps[] = { OutLo, OutHi };
3691  return DAG.getMergeValues(OutOps, 2, dl);
3692}
3693
3694//===----------------------------------------------------------------------===//
3695// Vector related lowering.
3696//
3697
3698/// BuildSplatI - Build a canonical splati of Val with an element size of
3699/// SplatSize.  Cast the result to VT.
3700static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3701                             SelectionDAG &DAG, DebugLoc dl) {
3702  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3703
3704  static const EVT VTys[] = { // canonical VT to use for each size.
3705    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3706  };
3707
3708  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3709
3710  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3711  if (Val == -1)
3712    SplatSize = 1;
3713
3714  EVT CanonicalVT = VTys[SplatSize-1];
3715
3716  // Build a canonical splat for this value.
3717  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3718  SmallVector<SDValue, 8> Ops;
3719  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3720  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3721                              &Ops[0], Ops.size());
3722  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3723}
3724
3725/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3726/// specified intrinsic ID.
3727static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3728                                SelectionDAG &DAG, DebugLoc dl,
3729                                EVT DestVT = MVT::Other) {
3730  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3731  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3732                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3733}
3734
3735/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3736/// specified intrinsic ID.
3737static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3738                                SDValue Op2, SelectionDAG &DAG,
3739                                DebugLoc dl, EVT DestVT = MVT::Other) {
3740  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3741  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3742                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3743}
3744
3745
3746/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3747/// amount.  The result has the specified value type.
3748static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3749                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3750  // Force LHS/RHS to be the right type.
3751  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3752  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3753
3754  int Ops[16];
3755  for (unsigned i = 0; i != 16; ++i)
3756    Ops[i] = i + Amt;
3757  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3758  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3759}
3760
3761// If this is a case we can't handle, return null and let the default
3762// expansion code take care of it.  If we CAN select this case, and if it
3763// selects to a single instruction, return Op.  Otherwise, if we can codegen
3764// this case more efficiently than a constant pool load, lower it to the
3765// sequence of ops that should be used.
3766SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3767  DebugLoc dl = Op.getDebugLoc();
3768  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3769  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3770
3771  // Check if this is a splat of a constant value.
3772  APInt APSplatBits, APSplatUndef;
3773  unsigned SplatBitSize;
3774  bool HasAnyUndefs;
3775  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3776                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3777    return SDValue();
3778
3779  unsigned SplatBits = APSplatBits.getZExtValue();
3780  unsigned SplatUndef = APSplatUndef.getZExtValue();
3781  unsigned SplatSize = SplatBitSize / 8;
3782
3783  // First, handle single instruction cases.
3784
3785  // All zeros?
3786  if (SplatBits == 0) {
3787    // Canonicalize all zero vectors to be v4i32.
3788    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3789      SDValue Z = DAG.getConstant(0, MVT::i32);
3790      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3791      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3792    }
3793    return Op;
3794  }
3795
3796  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3797  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3798                    (32-SplatBitSize));
3799  if (SextVal >= -16 && SextVal <= 15)
3800    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3801
3802
3803  // Two instruction sequences.
3804
3805  // If this value is in the range [-32,30] and is even, use:
3806  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3807  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3808    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3809    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3810    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3811  }
3812
3813  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3814  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3815  // for fneg/fabs.
3816  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3817    // Make -1 and vspltisw -1:
3818    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3819
3820    // Make the VSLW intrinsic, computing 0x8000_0000.
3821    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3822                                   OnesV, DAG, dl);
3823
3824    // xor by OnesV to invert it.
3825    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3826    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3827  }
3828
3829  // Check to see if this is a wide variety of vsplti*, binop self cases.
3830  static const signed char SplatCsts[] = {
3831    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3832    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3833  };
3834
3835  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3836    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3837    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3838    int i = SplatCsts[idx];
3839
3840    // Figure out what shift amount will be used by altivec if shifted by i in
3841    // this splat size.
3842    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3843
3844    // vsplti + shl self.
3845    if (SextVal == (i << (int)TypeShiftAmt)) {
3846      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3847      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3848        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3849        Intrinsic::ppc_altivec_vslw
3850      };
3851      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3852      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3853    }
3854
3855    // vsplti + srl self.
3856    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3857      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3858      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3859        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3860        Intrinsic::ppc_altivec_vsrw
3861      };
3862      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3863      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3864    }
3865
3866    // vsplti + sra self.
3867    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3868      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3869      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3870        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3871        Intrinsic::ppc_altivec_vsraw
3872      };
3873      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3874      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3875    }
3876
3877    // vsplti + rol self.
3878    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3879                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3880      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3881      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3882        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3883        Intrinsic::ppc_altivec_vrlw
3884      };
3885      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3886      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3887    }
3888
3889    // t = vsplti c, result = vsldoi t, t, 1
3890    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3891      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3892      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3893    }
3894    // t = vsplti c, result = vsldoi t, t, 2
3895    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3896      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3897      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3898    }
3899    // t = vsplti c, result = vsldoi t, t, 3
3900    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3901      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3902      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3903    }
3904  }
3905
3906  // Three instruction sequences.
3907
3908  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3909  if (SextVal >= 0 && SextVal <= 31) {
3910    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3911    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3912    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3913    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3914  }
3915  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3916  if (SextVal >= -31 && SextVal <= 0) {
3917    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3918    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3919    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3920    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3921  }
3922
3923  return SDValue();
3924}
3925
3926/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3927/// the specified operations to build the shuffle.
3928static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3929                                      SDValue RHS, SelectionDAG &DAG,
3930                                      DebugLoc dl) {
3931  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3932  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3933  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3934
3935  enum {
3936    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3937    OP_VMRGHW,
3938    OP_VMRGLW,
3939    OP_VSPLTISW0,
3940    OP_VSPLTISW1,
3941    OP_VSPLTISW2,
3942    OP_VSPLTISW3,
3943    OP_VSLDOI4,
3944    OP_VSLDOI8,
3945    OP_VSLDOI12
3946  };
3947
3948  if (OpNum == OP_COPY) {
3949    if (LHSID == (1*9+2)*9+3) return LHS;
3950    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3951    return RHS;
3952  }
3953
3954  SDValue OpLHS, OpRHS;
3955  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3956  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3957
3958  int ShufIdxs[16];
3959  switch (OpNum) {
3960  default: llvm_unreachable("Unknown i32 permute!");
3961  case OP_VMRGHW:
3962    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3963    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3964    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3965    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3966    break;
3967  case OP_VMRGLW:
3968    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3969    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3970    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3971    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3972    break;
3973  case OP_VSPLTISW0:
3974    for (unsigned i = 0; i != 16; ++i)
3975      ShufIdxs[i] = (i&3)+0;
3976    break;
3977  case OP_VSPLTISW1:
3978    for (unsigned i = 0; i != 16; ++i)
3979      ShufIdxs[i] = (i&3)+4;
3980    break;
3981  case OP_VSPLTISW2:
3982    for (unsigned i = 0; i != 16; ++i)
3983      ShufIdxs[i] = (i&3)+8;
3984    break;
3985  case OP_VSPLTISW3:
3986    for (unsigned i = 0; i != 16; ++i)
3987      ShufIdxs[i] = (i&3)+12;
3988    break;
3989  case OP_VSLDOI4:
3990    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3991  case OP_VSLDOI8:
3992    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3993  case OP_VSLDOI12:
3994    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3995  }
3996  EVT VT = OpLHS.getValueType();
3997  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3998  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3999  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4000  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4001}
4002
4003/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4004/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4005/// return the code it can be lowered into.  Worst case, it can always be
4006/// lowered into a vperm.
4007SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4008                                               SelectionDAG &DAG) {
4009  DebugLoc dl = Op.getDebugLoc();
4010  SDValue V1 = Op.getOperand(0);
4011  SDValue V2 = Op.getOperand(1);
4012  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4013  EVT VT = Op.getValueType();
4014
4015  // Cases that are handled by instructions that take permute immediates
4016  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4017  // selected by the instruction selector.
4018  if (V2.getOpcode() == ISD::UNDEF) {
4019    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4020        PPC::isSplatShuffleMask(SVOp, 2) ||
4021        PPC::isSplatShuffleMask(SVOp, 4) ||
4022        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4023        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4024        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4025        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4026        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4027        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4028        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4029        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4030        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4031      return Op;
4032    }
4033  }
4034
4035  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4036  // and produce a fixed permutation.  If any of these match, do not lower to
4037  // VPERM.
4038  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4039      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4040      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4041      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4042      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4043      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4044      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4045      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4046      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4047    return Op;
4048
4049  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4050  // perfect shuffle table to emit an optimal matching sequence.
4051  SmallVector<int, 16> PermMask;
4052  SVOp->getMask(PermMask);
4053
4054  unsigned PFIndexes[4];
4055  bool isFourElementShuffle = true;
4056  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4057    unsigned EltNo = 8;   // Start out undef.
4058    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4059      if (PermMask[i*4+j] < 0)
4060        continue;   // Undef, ignore it.
4061
4062      unsigned ByteSource = PermMask[i*4+j];
4063      if ((ByteSource & 3) != j) {
4064        isFourElementShuffle = false;
4065        break;
4066      }
4067
4068      if (EltNo == 8) {
4069        EltNo = ByteSource/4;
4070      } else if (EltNo != ByteSource/4) {
4071        isFourElementShuffle = false;
4072        break;
4073      }
4074    }
4075    PFIndexes[i] = EltNo;
4076  }
4077
4078  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4079  // perfect shuffle vector to determine if it is cost effective to do this as
4080  // discrete instructions, or whether we should use a vperm.
4081  if (isFourElementShuffle) {
4082    // Compute the index in the perfect shuffle table.
4083    unsigned PFTableIndex =
4084      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4085
4086    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4087    unsigned Cost  = (PFEntry >> 30);
4088
4089    // Determining when to avoid vperm is tricky.  Many things affect the cost
4090    // of vperm, particularly how many times the perm mask needs to be computed.
4091    // For example, if the perm mask can be hoisted out of a loop or is already
4092    // used (perhaps because there are multiple permutes with the same shuffle
4093    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4094    // the loop requires an extra register.
4095    //
4096    // As a compromise, we only emit discrete instructions if the shuffle can be
4097    // generated in 3 or fewer operations.  When we have loop information
4098    // available, if this block is within a loop, we should avoid using vperm
4099    // for 3-operation perms and use a constant pool load instead.
4100    if (Cost < 3)
4101      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4102  }
4103
4104  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4105  // vector that will get spilled to the constant pool.
4106  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4107
4108  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4109  // that it is in input element units, not in bytes.  Convert now.
4110  EVT EltVT = V1.getValueType().getVectorElementType();
4111  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4112
4113  SmallVector<SDValue, 16> ResultMask;
4114  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4115    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4116
4117    for (unsigned j = 0; j != BytesPerElement; ++j)
4118      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4119                                           MVT::i32));
4120  }
4121
4122  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4123                                    &ResultMask[0], ResultMask.size());
4124  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4125}
4126
4127/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4128/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4129/// information about the intrinsic.
4130static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4131                                  bool &isDot) {
4132  unsigned IntrinsicID =
4133    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4134  CompareOpc = -1;
4135  isDot = false;
4136  switch (IntrinsicID) {
4137  default: return false;
4138    // Comparison predicates.
4139  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4140  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4141  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4142  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4143  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4144  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4145  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4146  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4147  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4148  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4149  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4150  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4151  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4152
4153    // Normal Comparisons.
4154  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4155  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4156  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4157  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4158  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4159  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4160  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4161  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4162  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4163  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4164  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4165  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4166  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4167  }
4168  return true;
4169}
4170
4171/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4172/// lower, do it, otherwise return null.
4173SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4174                                                     SelectionDAG &DAG) {
4175  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4176  // opcode number of the comparison.
4177  DebugLoc dl = Op.getDebugLoc();
4178  int CompareOpc;
4179  bool isDot;
4180  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4181    return SDValue();    // Don't custom lower most intrinsics.
4182
4183  // If this is a non-dot comparison, make the VCMP node and we are done.
4184  if (!isDot) {
4185    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4186                                Op.getOperand(1), Op.getOperand(2),
4187                                DAG.getConstant(CompareOpc, MVT::i32));
4188    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4189  }
4190
4191  // Create the PPCISD altivec 'dot' comparison node.
4192  SDValue Ops[] = {
4193    Op.getOperand(2),  // LHS
4194    Op.getOperand(3),  // RHS
4195    DAG.getConstant(CompareOpc, MVT::i32)
4196  };
4197  std::vector<EVT> VTs;
4198  VTs.push_back(Op.getOperand(2).getValueType());
4199  VTs.push_back(MVT::Flag);
4200  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4201
4202  // Now that we have the comparison, emit a copy from the CR to a GPR.
4203  // This is flagged to the above dot comparison.
4204  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4205                                DAG.getRegister(PPC::CR6, MVT::i32),
4206                                CompNode.getValue(1));
4207
4208  // Unpack the result based on how the target uses it.
4209  unsigned BitNo;   // Bit # of CR6.
4210  bool InvertBit;   // Invert result?
4211  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4212  default:  // Can't happen, don't crash on invalid number though.
4213  case 0:   // Return the value of the EQ bit of CR6.
4214    BitNo = 0; InvertBit = false;
4215    break;
4216  case 1:   // Return the inverted value of the EQ bit of CR6.
4217    BitNo = 0; InvertBit = true;
4218    break;
4219  case 2:   // Return the value of the LT bit of CR6.
4220    BitNo = 2; InvertBit = false;
4221    break;
4222  case 3:   // Return the inverted value of the LT bit of CR6.
4223    BitNo = 2; InvertBit = true;
4224    break;
4225  }
4226
4227  // Shift the bit into the low position.
4228  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4229                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4230  // Isolate the bit.
4231  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4232                      DAG.getConstant(1, MVT::i32));
4233
4234  // If we are supposed to, toggle the bit.
4235  if (InvertBit)
4236    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4237                        DAG.getConstant(1, MVT::i32));
4238  return Flags;
4239}
4240
4241SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4242                                                   SelectionDAG &DAG) {
4243  DebugLoc dl = Op.getDebugLoc();
4244  // Create a stack slot that is 16-byte aligned.
4245  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4246  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4247  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4248  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4249
4250  // Store the input value into Value#0 of the stack slot.
4251  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4252                                 Op.getOperand(0), FIdx, NULL, 0);
4253  // Load it out.
4254  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4255}
4256
4257SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4258  DebugLoc dl = Op.getDebugLoc();
4259  if (Op.getValueType() == MVT::v4i32) {
4260    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4261
4262    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4263    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4264
4265    SDValue RHSSwap =   // = vrlw RHS, 16
4266      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4267
4268    // Shrinkify inputs to v8i16.
4269    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4270    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4271    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4272
4273    // Low parts multiplied together, generating 32-bit results (we ignore the
4274    // top parts).
4275    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4276                                        LHS, RHS, DAG, dl, MVT::v4i32);
4277
4278    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4279                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4280    // Shift the high parts up 16 bits.
4281    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4282                              Neg16, DAG, dl);
4283    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4284  } else if (Op.getValueType() == MVT::v8i16) {
4285    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4286
4287    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4288
4289    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4290                            LHS, RHS, Zero, DAG, dl);
4291  } else if (Op.getValueType() == MVT::v16i8) {
4292    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4293
4294    // Multiply the even 8-bit parts, producing 16-bit sums.
4295    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4296                                           LHS, RHS, DAG, dl, MVT::v8i16);
4297    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4298
4299    // Multiply the odd 8-bit parts, producing 16-bit sums.
4300    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4301                                          LHS, RHS, DAG, dl, MVT::v8i16);
4302    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4303
4304    // Merge the results together.
4305    int Ops[16];
4306    for (unsigned i = 0; i != 8; ++i) {
4307      Ops[i*2  ] = 2*i+1;
4308      Ops[i*2+1] = 2*i+1+16;
4309    }
4310    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4311  } else {
4312    llvm_unreachable("Unknown mul to lower!");
4313  }
4314}
4315
4316/// LowerOperation - Provide custom lowering hooks for some operations.
4317///
4318SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4319  switch (Op.getOpcode()) {
4320  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4321  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4322  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4323  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4324  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4325  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4326  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4327  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4328  case ISD::VASTART:
4329    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4330                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4331
4332  case ISD::VAARG:
4333    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4334                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4335
4336  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4337  case ISD::DYNAMIC_STACKALLOC:
4338    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4339
4340  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4341  case ISD::FP_TO_UINT:
4342  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4343                                                       Op.getDebugLoc());
4344  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4345  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4346
4347  // Lower 64-bit shifts.
4348  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4349  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4350  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4351
4352  // Vector-related lowering.
4353  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4354  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4355  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4356  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4357  case ISD::MUL:                return LowerMUL(Op, DAG);
4358
4359  // Frame & Return address.
4360  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4361  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4362  }
4363  return SDValue();
4364}
4365
4366void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4367                                           SmallVectorImpl<SDValue>&Results,
4368                                           SelectionDAG &DAG) {
4369  DebugLoc dl = N->getDebugLoc();
4370  switch (N->getOpcode()) {
4371  default:
4372    assert(false && "Do not know how to custom type legalize this operation!");
4373    return;
4374  case ISD::FP_ROUND_INREG: {
4375    assert(N->getValueType(0) == MVT::ppcf128);
4376    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4377    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4378                             MVT::f64, N->getOperand(0),
4379                             DAG.getIntPtrConstant(0));
4380    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4381                             MVT::f64, N->getOperand(0),
4382                             DAG.getIntPtrConstant(1));
4383
4384    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4385    // of the long double, and puts FPSCR back the way it was.  We do not
4386    // actually model FPSCR.
4387    std::vector<EVT> NodeTys;
4388    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4389
4390    NodeTys.push_back(MVT::f64);   // Return register
4391    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4392    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4393    MFFSreg = Result.getValue(0);
4394    InFlag = Result.getValue(1);
4395
4396    NodeTys.clear();
4397    NodeTys.push_back(MVT::Flag);   // Returns a flag
4398    Ops[0] = DAG.getConstant(31, MVT::i32);
4399    Ops[1] = InFlag;
4400    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4401    InFlag = Result.getValue(0);
4402
4403    NodeTys.clear();
4404    NodeTys.push_back(MVT::Flag);   // Returns a flag
4405    Ops[0] = DAG.getConstant(30, MVT::i32);
4406    Ops[1] = InFlag;
4407    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4408    InFlag = Result.getValue(0);
4409
4410    NodeTys.clear();
4411    NodeTys.push_back(MVT::f64);    // result of add
4412    NodeTys.push_back(MVT::Flag);   // Returns a flag
4413    Ops[0] = Lo;
4414    Ops[1] = Hi;
4415    Ops[2] = InFlag;
4416    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4417    FPreg = Result.getValue(0);
4418    InFlag = Result.getValue(1);
4419
4420    NodeTys.clear();
4421    NodeTys.push_back(MVT::f64);
4422    Ops[0] = DAG.getConstant(1, MVT::i32);
4423    Ops[1] = MFFSreg;
4424    Ops[2] = FPreg;
4425    Ops[3] = InFlag;
4426    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4427    FPreg = Result.getValue(0);
4428
4429    // We know the low half is about to be thrown away, so just use something
4430    // convenient.
4431    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4432                                FPreg, FPreg));
4433    return;
4434  }
4435  case ISD::FP_TO_SINT:
4436    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4437    return;
4438  }
4439}
4440
4441
4442//===----------------------------------------------------------------------===//
4443//  Other Lowering Code
4444//===----------------------------------------------------------------------===//
4445
4446MachineBasicBlock *
4447PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4448                                    bool is64bit, unsigned BinOpcode) const {
4449  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4450  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4451
4452  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4453  MachineFunction *F = BB->getParent();
4454  MachineFunction::iterator It = BB;
4455  ++It;
4456
4457  unsigned dest = MI->getOperand(0).getReg();
4458  unsigned ptrA = MI->getOperand(1).getReg();
4459  unsigned ptrB = MI->getOperand(2).getReg();
4460  unsigned incr = MI->getOperand(3).getReg();
4461  DebugLoc dl = MI->getDebugLoc();
4462
4463  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4464  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4465  F->insert(It, loopMBB);
4466  F->insert(It, exitMBB);
4467  exitMBB->transferSuccessors(BB);
4468
4469  MachineRegisterInfo &RegInfo = F->getRegInfo();
4470  unsigned TmpReg = (!BinOpcode) ? incr :
4471    RegInfo.createVirtualRegister(
4472       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4473                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4474
4475  //  thisMBB:
4476  //   ...
4477  //   fallthrough --> loopMBB
4478  BB->addSuccessor(loopMBB);
4479
4480  //  loopMBB:
4481  //   l[wd]arx dest, ptr
4482  //   add r0, dest, incr
4483  //   st[wd]cx. r0, ptr
4484  //   bne- loopMBB
4485  //   fallthrough --> exitMBB
4486  BB = loopMBB;
4487  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4488    .addReg(ptrA).addReg(ptrB);
4489  if (BinOpcode)
4490    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4491  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4492    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4493  BuildMI(BB, dl, TII->get(PPC::BCC))
4494    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4495  BB->addSuccessor(loopMBB);
4496  BB->addSuccessor(exitMBB);
4497
4498  //  exitMBB:
4499  //   ...
4500  BB = exitMBB;
4501  return BB;
4502}
4503
4504MachineBasicBlock *
4505PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4506                                            MachineBasicBlock *BB,
4507                                            bool is8bit,    // operation
4508                                            unsigned BinOpcode) const {
4509  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4510  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4511  // In 64 bit mode we have to use 64 bits for addresses, even though the
4512  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4513  // registers without caring whether they're 32 or 64, but here we're
4514  // doing actual arithmetic on the addresses.
4515  bool is64bit = PPCSubTarget.isPPC64();
4516
4517  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4518  MachineFunction *F = BB->getParent();
4519  MachineFunction::iterator It = BB;
4520  ++It;
4521
4522  unsigned dest = MI->getOperand(0).getReg();
4523  unsigned ptrA = MI->getOperand(1).getReg();
4524  unsigned ptrB = MI->getOperand(2).getReg();
4525  unsigned incr = MI->getOperand(3).getReg();
4526  DebugLoc dl = MI->getDebugLoc();
4527
4528  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4529  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4530  F->insert(It, loopMBB);
4531  F->insert(It, exitMBB);
4532  exitMBB->transferSuccessors(BB);
4533
4534  MachineRegisterInfo &RegInfo = F->getRegInfo();
4535  const TargetRegisterClass *RC =
4536    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4537              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4538  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4539  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4540  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4541  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4542  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4543  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4544  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4545  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4546  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4547  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4548  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4549  unsigned Ptr1Reg;
4550  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4551
4552  //  thisMBB:
4553  //   ...
4554  //   fallthrough --> loopMBB
4555  BB->addSuccessor(loopMBB);
4556
4557  // The 4-byte load must be aligned, while a char or short may be
4558  // anywhere in the word.  Hence all this nasty bookkeeping code.
4559  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4560  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4561  //   xori shift, shift1, 24 [16]
4562  //   rlwinm ptr, ptr1, 0, 0, 29
4563  //   slw incr2, incr, shift
4564  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4565  //   slw mask, mask2, shift
4566  //  loopMBB:
4567  //   lwarx tmpDest, ptr
4568  //   add tmp, tmpDest, incr2
4569  //   andc tmp2, tmpDest, mask
4570  //   and tmp3, tmp, mask
4571  //   or tmp4, tmp3, tmp2
4572  //   stwcx. tmp4, ptr
4573  //   bne- loopMBB
4574  //   fallthrough --> exitMBB
4575  //   srw dest, tmpDest, shift
4576
4577  if (ptrA!=PPC::R0) {
4578    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4579    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4580      .addReg(ptrA).addReg(ptrB);
4581  } else {
4582    Ptr1Reg = ptrB;
4583  }
4584  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4585      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4586  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4587      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4588  if (is64bit)
4589    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4590      .addReg(Ptr1Reg).addImm(0).addImm(61);
4591  else
4592    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4593      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4594  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4595      .addReg(incr).addReg(ShiftReg);
4596  if (is8bit)
4597    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4598  else {
4599    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4600    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4601  }
4602  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4603      .addReg(Mask2Reg).addReg(ShiftReg);
4604
4605  BB = loopMBB;
4606  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4607    .addReg(PPC::R0).addReg(PtrReg);
4608  if (BinOpcode)
4609    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4610      .addReg(Incr2Reg).addReg(TmpDestReg);
4611  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4612    .addReg(TmpDestReg).addReg(MaskReg);
4613  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4614    .addReg(TmpReg).addReg(MaskReg);
4615  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4616    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4617  BuildMI(BB, dl, TII->get(PPC::STWCX))
4618    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4619  BuildMI(BB, dl, TII->get(PPC::BCC))
4620    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4621  BB->addSuccessor(loopMBB);
4622  BB->addSuccessor(exitMBB);
4623
4624  //  exitMBB:
4625  //   ...
4626  BB = exitMBB;
4627  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4628  return BB;
4629}
4630
4631MachineBasicBlock *
4632PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4633                                               MachineBasicBlock *BB,
4634                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
4635  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4636
4637  // To "insert" these instructions we actually have to insert their
4638  // control-flow patterns.
4639  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4640  MachineFunction::iterator It = BB;
4641  ++It;
4642
4643  MachineFunction *F = BB->getParent();
4644
4645  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4646      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4647      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4648      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4649      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4650
4651    // The incoming instruction knows the destination vreg to set, the
4652    // condition code register to branch on, the true/false values to
4653    // select between, and a branch opcode to use.
4654
4655    //  thisMBB:
4656    //  ...
4657    //   TrueVal = ...
4658    //   cmpTY ccX, r1, r2
4659    //   bCC copy1MBB
4660    //   fallthrough --> copy0MBB
4661    MachineBasicBlock *thisMBB = BB;
4662    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4663    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4664    unsigned SelectPred = MI->getOperand(4).getImm();
4665    DebugLoc dl = MI->getDebugLoc();
4666    BuildMI(BB, dl, TII->get(PPC::BCC))
4667      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4668    F->insert(It, copy0MBB);
4669    F->insert(It, sinkMBB);
4670    // Update machine-CFG edges by first adding all successors of the current
4671    // block to the new block which will contain the Phi node for the select.
4672    // Also inform sdisel of the edge changes.
4673    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
4674           E = BB->succ_end(); I != E; ++I) {
4675      EM->insert(std::make_pair(*I, sinkMBB));
4676      sinkMBB->addSuccessor(*I);
4677    }
4678    // Next, remove all successors of the current block, and add the true
4679    // and fallthrough blocks as its successors.
4680    while (!BB->succ_empty())
4681      BB->removeSuccessor(BB->succ_begin());
4682    // Next, add the true and fallthrough blocks as its successors.
4683    BB->addSuccessor(copy0MBB);
4684    BB->addSuccessor(sinkMBB);
4685
4686    //  copy0MBB:
4687    //   %FalseValue = ...
4688    //   # fallthrough to sinkMBB
4689    BB = copy0MBB;
4690
4691    // Update machine-CFG edges
4692    BB->addSuccessor(sinkMBB);
4693
4694    //  sinkMBB:
4695    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4696    //  ...
4697    BB = sinkMBB;
4698    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4699      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4700      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4701  }
4702  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4703    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4704  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4705    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4706  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4707    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4708  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4709    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4710
4711  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4712    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4713  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4714    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4715  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4716    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4717  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4718    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4719
4720  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4721    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4722  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4723    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4724  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4725    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4726  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4727    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4728
4729  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4730    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4731  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4732    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4733  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4734    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4735  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4736    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4737
4738  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4739    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4740  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4741    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4742  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4743    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4744  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4745    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4746
4747  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4748    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4749  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4750    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4751  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4752    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4753  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4754    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4755
4756  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4757    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4758  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4759    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4760  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4761    BB = EmitAtomicBinary(MI, BB, false, 0);
4762  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4763    BB = EmitAtomicBinary(MI, BB, true, 0);
4764
4765  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4766           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4767    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4768
4769    unsigned dest   = MI->getOperand(0).getReg();
4770    unsigned ptrA   = MI->getOperand(1).getReg();
4771    unsigned ptrB   = MI->getOperand(2).getReg();
4772    unsigned oldval = MI->getOperand(3).getReg();
4773    unsigned newval = MI->getOperand(4).getReg();
4774    DebugLoc dl     = MI->getDebugLoc();
4775
4776    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4777    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4778    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4779    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4780    F->insert(It, loop1MBB);
4781    F->insert(It, loop2MBB);
4782    F->insert(It, midMBB);
4783    F->insert(It, exitMBB);
4784    exitMBB->transferSuccessors(BB);
4785
4786    //  thisMBB:
4787    //   ...
4788    //   fallthrough --> loopMBB
4789    BB->addSuccessor(loop1MBB);
4790
4791    // loop1MBB:
4792    //   l[wd]arx dest, ptr
4793    //   cmp[wd] dest, oldval
4794    //   bne- midMBB
4795    // loop2MBB:
4796    //   st[wd]cx. newval, ptr
4797    //   bne- loopMBB
4798    //   b exitBB
4799    // midMBB:
4800    //   st[wd]cx. dest, ptr
4801    // exitBB:
4802    BB = loop1MBB;
4803    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4804      .addReg(ptrA).addReg(ptrB);
4805    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4806      .addReg(oldval).addReg(dest);
4807    BuildMI(BB, dl, TII->get(PPC::BCC))
4808      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4809    BB->addSuccessor(loop2MBB);
4810    BB->addSuccessor(midMBB);
4811
4812    BB = loop2MBB;
4813    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4814      .addReg(newval).addReg(ptrA).addReg(ptrB);
4815    BuildMI(BB, dl, TII->get(PPC::BCC))
4816      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4817    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4818    BB->addSuccessor(loop1MBB);
4819    BB->addSuccessor(exitMBB);
4820
4821    BB = midMBB;
4822    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4823      .addReg(dest).addReg(ptrA).addReg(ptrB);
4824    BB->addSuccessor(exitMBB);
4825
4826    //  exitMBB:
4827    //   ...
4828    BB = exitMBB;
4829  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4830             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4831    // We must use 64-bit registers for addresses when targeting 64-bit,
4832    // since we're actually doing arithmetic on them.  Other registers
4833    // can be 32-bit.
4834    bool is64bit = PPCSubTarget.isPPC64();
4835    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4836
4837    unsigned dest   = MI->getOperand(0).getReg();
4838    unsigned ptrA   = MI->getOperand(1).getReg();
4839    unsigned ptrB   = MI->getOperand(2).getReg();
4840    unsigned oldval = MI->getOperand(3).getReg();
4841    unsigned newval = MI->getOperand(4).getReg();
4842    DebugLoc dl     = MI->getDebugLoc();
4843
4844    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4845    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4846    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4847    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4848    F->insert(It, loop1MBB);
4849    F->insert(It, loop2MBB);
4850    F->insert(It, midMBB);
4851    F->insert(It, exitMBB);
4852    exitMBB->transferSuccessors(BB);
4853
4854    MachineRegisterInfo &RegInfo = F->getRegInfo();
4855    const TargetRegisterClass *RC =
4856      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4857                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4858    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4859    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4860    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4861    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4862    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4863    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4864    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4865    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4866    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4867    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4868    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4869    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4870    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4871    unsigned Ptr1Reg;
4872    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4873    //  thisMBB:
4874    //   ...
4875    //   fallthrough --> loopMBB
4876    BB->addSuccessor(loop1MBB);
4877
4878    // The 4-byte load must be aligned, while a char or short may be
4879    // anywhere in the word.  Hence all this nasty bookkeeping code.
4880    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4881    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4882    //   xori shift, shift1, 24 [16]
4883    //   rlwinm ptr, ptr1, 0, 0, 29
4884    //   slw newval2, newval, shift
4885    //   slw oldval2, oldval,shift
4886    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4887    //   slw mask, mask2, shift
4888    //   and newval3, newval2, mask
4889    //   and oldval3, oldval2, mask
4890    // loop1MBB:
4891    //   lwarx tmpDest, ptr
4892    //   and tmp, tmpDest, mask
4893    //   cmpw tmp, oldval3
4894    //   bne- midMBB
4895    // loop2MBB:
4896    //   andc tmp2, tmpDest, mask
4897    //   or tmp4, tmp2, newval3
4898    //   stwcx. tmp4, ptr
4899    //   bne- loop1MBB
4900    //   b exitBB
4901    // midMBB:
4902    //   stwcx. tmpDest, ptr
4903    // exitBB:
4904    //   srw dest, tmpDest, shift
4905    if (ptrA!=PPC::R0) {
4906      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4907      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4908        .addReg(ptrA).addReg(ptrB);
4909    } else {
4910      Ptr1Reg = ptrB;
4911    }
4912    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4913        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4914    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4915        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4916    if (is64bit)
4917      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4918        .addReg(Ptr1Reg).addImm(0).addImm(61);
4919    else
4920      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4921        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4922    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4923        .addReg(newval).addReg(ShiftReg);
4924    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4925        .addReg(oldval).addReg(ShiftReg);
4926    if (is8bit)
4927      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4928    else {
4929      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4930      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4931        .addReg(Mask3Reg).addImm(65535);
4932    }
4933    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4934        .addReg(Mask2Reg).addReg(ShiftReg);
4935    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4936        .addReg(NewVal2Reg).addReg(MaskReg);
4937    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4938        .addReg(OldVal2Reg).addReg(MaskReg);
4939
4940    BB = loop1MBB;
4941    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4942        .addReg(PPC::R0).addReg(PtrReg);
4943    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4944        .addReg(TmpDestReg).addReg(MaskReg);
4945    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4946        .addReg(TmpReg).addReg(OldVal3Reg);
4947    BuildMI(BB, dl, TII->get(PPC::BCC))
4948        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4949    BB->addSuccessor(loop2MBB);
4950    BB->addSuccessor(midMBB);
4951
4952    BB = loop2MBB;
4953    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4954        .addReg(TmpDestReg).addReg(MaskReg);
4955    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4956        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4957    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4958        .addReg(PPC::R0).addReg(PtrReg);
4959    BuildMI(BB, dl, TII->get(PPC::BCC))
4960      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4961    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4962    BB->addSuccessor(loop1MBB);
4963    BB->addSuccessor(exitMBB);
4964
4965    BB = midMBB;
4966    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4967      .addReg(PPC::R0).addReg(PtrReg);
4968    BB->addSuccessor(exitMBB);
4969
4970    //  exitMBB:
4971    //   ...
4972    BB = exitMBB;
4973    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4974  } else {
4975    llvm_unreachable("Unexpected instr type to insert");
4976  }
4977
4978  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4979  return BB;
4980}
4981
4982//===----------------------------------------------------------------------===//
4983// Target Optimization Hooks
4984//===----------------------------------------------------------------------===//
4985
4986SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4987                                             DAGCombinerInfo &DCI) const {
4988  TargetMachine &TM = getTargetMachine();
4989  SelectionDAG &DAG = DCI.DAG;
4990  DebugLoc dl = N->getDebugLoc();
4991  switch (N->getOpcode()) {
4992  default: break;
4993  case PPCISD::SHL:
4994    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4995      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4996        return N->getOperand(0);
4997    }
4998    break;
4999  case PPCISD::SRL:
5000    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5001      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
5002        return N->getOperand(0);
5003    }
5004    break;
5005  case PPCISD::SRA:
5006    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5007      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
5008          C->isAllOnesValue())    // -1 >>s V -> -1.
5009        return N->getOperand(0);
5010    }
5011    break;
5012
5013  case ISD::SINT_TO_FP:
5014    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5015      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5016        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5017        // We allow the src/dst to be either f32/f64, but the intermediate
5018        // type must be i64.
5019        if (N->getOperand(0).getValueType() == MVT::i64 &&
5020            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5021          SDValue Val = N->getOperand(0).getOperand(0);
5022          if (Val.getValueType() == MVT::f32) {
5023            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5024            DCI.AddToWorklist(Val.getNode());
5025          }
5026
5027          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5028          DCI.AddToWorklist(Val.getNode());
5029          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5030          DCI.AddToWorklist(Val.getNode());
5031          if (N->getValueType(0) == MVT::f32) {
5032            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5033                              DAG.getIntPtrConstant(0));
5034            DCI.AddToWorklist(Val.getNode());
5035          }
5036          return Val;
5037        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5038          // If the intermediate type is i32, we can avoid the load/store here
5039          // too.
5040        }
5041      }
5042    }
5043    break;
5044  case ISD::STORE:
5045    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5046    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5047        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5048        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5049        N->getOperand(1).getValueType() == MVT::i32 &&
5050        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5051      SDValue Val = N->getOperand(1).getOperand(0);
5052      if (Val.getValueType() == MVT::f32) {
5053        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5054        DCI.AddToWorklist(Val.getNode());
5055      }
5056      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5057      DCI.AddToWorklist(Val.getNode());
5058
5059      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5060                        N->getOperand(2), N->getOperand(3));
5061      DCI.AddToWorklist(Val.getNode());
5062      return Val;
5063    }
5064
5065    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5066    if (cast<StoreSDNode>(N)->isUnindexed() &&
5067        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5068        N->getOperand(1).getNode()->hasOneUse() &&
5069        (N->getOperand(1).getValueType() == MVT::i32 ||
5070         N->getOperand(1).getValueType() == MVT::i16)) {
5071      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5072      // Do an any-extend to 32-bits if this is a half-word input.
5073      if (BSwapOp.getValueType() == MVT::i16)
5074        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5075
5076      SDValue Ops[] = {
5077        N->getOperand(0), BSwapOp, N->getOperand(2),
5078        DAG.getValueType(N->getOperand(1).getValueType())
5079      };
5080      return
5081        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5082                                Ops, array_lengthof(Ops),
5083                                cast<StoreSDNode>(N)->getMemoryVT(),
5084                                cast<StoreSDNode>(N)->getMemOperand());
5085    }
5086    break;
5087  case ISD::BSWAP:
5088    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5089    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5090        N->getOperand(0).hasOneUse() &&
5091        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5092      SDValue Load = N->getOperand(0);
5093      LoadSDNode *LD = cast<LoadSDNode>(Load);
5094      // Create the byte-swapping load.
5095      SDValue Ops[] = {
5096        LD->getChain(),    // Chain
5097        LD->getBasePtr(),  // Ptr
5098        DAG.getValueType(N->getValueType(0)) // VT
5099      };
5100      SDValue BSLoad =
5101        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5102                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5103                                LD->getMemoryVT(), LD->getMemOperand());
5104
5105      // If this is an i16 load, insert the truncate.
5106      SDValue ResVal = BSLoad;
5107      if (N->getValueType(0) == MVT::i16)
5108        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5109
5110      // First, combine the bswap away.  This makes the value produced by the
5111      // load dead.
5112      DCI.CombineTo(N, ResVal);
5113
5114      // Next, combine the load away, we give it a bogus result value but a real
5115      // chain result.  The result value is dead because the bswap is dead.
5116      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5117
5118      // Return N so it doesn't get rechecked!
5119      return SDValue(N, 0);
5120    }
5121
5122    break;
5123  case PPCISD::VCMP: {
5124    // If a VCMPo node already exists with exactly the same operands as this
5125    // node, use its result instead of this node (VCMPo computes both a CR6 and
5126    // a normal output).
5127    //
5128    if (!N->getOperand(0).hasOneUse() &&
5129        !N->getOperand(1).hasOneUse() &&
5130        !N->getOperand(2).hasOneUse()) {
5131
5132      // Scan all of the users of the LHS, looking for VCMPo's that match.
5133      SDNode *VCMPoNode = 0;
5134
5135      SDNode *LHSN = N->getOperand(0).getNode();
5136      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5137           UI != E; ++UI)
5138        if (UI->getOpcode() == PPCISD::VCMPo &&
5139            UI->getOperand(1) == N->getOperand(1) &&
5140            UI->getOperand(2) == N->getOperand(2) &&
5141            UI->getOperand(0) == N->getOperand(0)) {
5142          VCMPoNode = *UI;
5143          break;
5144        }
5145
5146      // If there is no VCMPo node, or if the flag value has a single use, don't
5147      // transform this.
5148      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5149        break;
5150
5151      // Look at the (necessarily single) use of the flag value.  If it has a
5152      // chain, this transformation is more complex.  Note that multiple things
5153      // could use the value result, which we should ignore.
5154      SDNode *FlagUser = 0;
5155      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5156           FlagUser == 0; ++UI) {
5157        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5158        SDNode *User = *UI;
5159        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5160          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5161            FlagUser = User;
5162            break;
5163          }
5164        }
5165      }
5166
5167      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5168      // give up for right now.
5169      if (FlagUser->getOpcode() == PPCISD::MFCR)
5170        return SDValue(VCMPoNode, 0);
5171    }
5172    break;
5173  }
5174  case ISD::BR_CC: {
5175    // If this is a branch on an altivec predicate comparison, lower this so
5176    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5177    // lowering is done pre-legalize, because the legalizer lowers the predicate
5178    // compare down to code that is difficult to reassemble.
5179    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5180    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5181    int CompareOpc;
5182    bool isDot;
5183
5184    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5185        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5186        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5187      assert(isDot && "Can't compare against a vector result!");
5188
5189      // If this is a comparison against something other than 0/1, then we know
5190      // that the condition is never/always true.
5191      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5192      if (Val != 0 && Val != 1) {
5193        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5194          return N->getOperand(0);
5195        // Always !=, turn it into an unconditional branch.
5196        return DAG.getNode(ISD::BR, dl, MVT::Other,
5197                           N->getOperand(0), N->getOperand(4));
5198      }
5199
5200      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5201
5202      // Create the PPCISD altivec 'dot' comparison node.
5203      std::vector<EVT> VTs;
5204      SDValue Ops[] = {
5205        LHS.getOperand(2),  // LHS of compare
5206        LHS.getOperand(3),  // RHS of compare
5207        DAG.getConstant(CompareOpc, MVT::i32)
5208      };
5209      VTs.push_back(LHS.getOperand(2).getValueType());
5210      VTs.push_back(MVT::Flag);
5211      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5212
5213      // Unpack the result based on how the target uses it.
5214      PPC::Predicate CompOpc;
5215      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5216      default:  // Can't happen, don't crash on invalid number though.
5217      case 0:   // Branch on the value of the EQ bit of CR6.
5218        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5219        break;
5220      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5221        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5222        break;
5223      case 2:   // Branch on the value of the LT bit of CR6.
5224        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5225        break;
5226      case 3:   // Branch on the inverted value of the LT bit of CR6.
5227        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5228        break;
5229      }
5230
5231      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5232                         DAG.getConstant(CompOpc, MVT::i32),
5233                         DAG.getRegister(PPC::CR6, MVT::i32),
5234                         N->getOperand(4), CompNode.getValue(1));
5235    }
5236    break;
5237  }
5238  }
5239
5240  return SDValue();
5241}
5242
5243//===----------------------------------------------------------------------===//
5244// Inline Assembly Support
5245//===----------------------------------------------------------------------===//
5246
5247void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5248                                                       const APInt &Mask,
5249                                                       APInt &KnownZero,
5250                                                       APInt &KnownOne,
5251                                                       const SelectionDAG &DAG,
5252                                                       unsigned Depth) const {
5253  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5254  switch (Op.getOpcode()) {
5255  default: break;
5256  case PPCISD::LBRX: {
5257    // lhbrx is known to have the top bits cleared out.
5258    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5259      KnownZero = 0xFFFF0000;
5260    break;
5261  }
5262  case ISD::INTRINSIC_WO_CHAIN: {
5263    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5264    default: break;
5265    case Intrinsic::ppc_altivec_vcmpbfp_p:
5266    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5267    case Intrinsic::ppc_altivec_vcmpequb_p:
5268    case Intrinsic::ppc_altivec_vcmpequh_p:
5269    case Intrinsic::ppc_altivec_vcmpequw_p:
5270    case Intrinsic::ppc_altivec_vcmpgefp_p:
5271    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5272    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5273    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5274    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5275    case Intrinsic::ppc_altivec_vcmpgtub_p:
5276    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5277    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5278      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5279      break;
5280    }
5281  }
5282  }
5283}
5284
5285
5286/// getConstraintType - Given a constraint, return the type of
5287/// constraint it is for this target.
5288PPCTargetLowering::ConstraintType
5289PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5290  if (Constraint.size() == 1) {
5291    switch (Constraint[0]) {
5292    default: break;
5293    case 'b':
5294    case 'r':
5295    case 'f':
5296    case 'v':
5297    case 'y':
5298      return C_RegisterClass;
5299    }
5300  }
5301  return TargetLowering::getConstraintType(Constraint);
5302}
5303
5304std::pair<unsigned, const TargetRegisterClass*>
5305PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5306                                                EVT VT) const {
5307  if (Constraint.size() == 1) {
5308    // GCC RS6000 Constraint Letters
5309    switch (Constraint[0]) {
5310    case 'b':   // R1-R31
5311    case 'r':   // R0-R31
5312      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5313        return std::make_pair(0U, PPC::G8RCRegisterClass);
5314      return std::make_pair(0U, PPC::GPRCRegisterClass);
5315    case 'f':
5316      if (VT == MVT::f32)
5317        return std::make_pair(0U, PPC::F4RCRegisterClass);
5318      else if (VT == MVT::f64)
5319        return std::make_pair(0U, PPC::F8RCRegisterClass);
5320      break;
5321    case 'v':
5322      return std::make_pair(0U, PPC::VRRCRegisterClass);
5323    case 'y':   // crrc
5324      return std::make_pair(0U, PPC::CRRCRegisterClass);
5325    }
5326  }
5327
5328  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5329}
5330
5331
5332/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5333/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5334/// it means one of the asm constraint of the inline asm instruction being
5335/// processed is 'm'.
5336void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5337                                                     bool hasMemory,
5338                                                     std::vector<SDValue>&Ops,
5339                                                     SelectionDAG &DAG) const {
5340  SDValue Result(0,0);
5341  switch (Letter) {
5342  default: break;
5343  case 'I':
5344  case 'J':
5345  case 'K':
5346  case 'L':
5347  case 'M':
5348  case 'N':
5349  case 'O':
5350  case 'P': {
5351    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5352    if (!CST) return; // Must be an immediate to match.
5353    unsigned Value = CST->getZExtValue();
5354    switch (Letter) {
5355    default: llvm_unreachable("Unknown constraint letter!");
5356    case 'I':  // "I" is a signed 16-bit constant.
5357      if ((short)Value == (int)Value)
5358        Result = DAG.getTargetConstant(Value, Op.getValueType());
5359      break;
5360    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5361    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5362      if ((short)Value == 0)
5363        Result = DAG.getTargetConstant(Value, Op.getValueType());
5364      break;
5365    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5366      if ((Value >> 16) == 0)
5367        Result = DAG.getTargetConstant(Value, Op.getValueType());
5368      break;
5369    case 'M':  // "M" is a constant that is greater than 31.
5370      if (Value > 31)
5371        Result = DAG.getTargetConstant(Value, Op.getValueType());
5372      break;
5373    case 'N':  // "N" is a positive constant that is an exact power of two.
5374      if ((int)Value > 0 && isPowerOf2_32(Value))
5375        Result = DAG.getTargetConstant(Value, Op.getValueType());
5376      break;
5377    case 'O':  // "O" is the constant zero.
5378      if (Value == 0)
5379        Result = DAG.getTargetConstant(Value, Op.getValueType());
5380      break;
5381    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5382      if ((short)-Value == (int)-Value)
5383        Result = DAG.getTargetConstant(Value, Op.getValueType());
5384      break;
5385    }
5386    break;
5387  }
5388  }
5389
5390  if (Result.getNode()) {
5391    Ops.push_back(Result);
5392    return;
5393  }
5394
5395  // Handle standard constraint letters.
5396  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5397}
5398
5399// isLegalAddressingMode - Return true if the addressing mode represented
5400// by AM is legal for this target, for a load/store of the specified type.
5401bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5402                                              const Type *Ty) const {
5403  // FIXME: PPC does not allow r+i addressing modes for vectors!
5404
5405  // PPC allows a sign-extended 16-bit immediate field.
5406  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5407    return false;
5408
5409  // No global is ever allowed as a base.
5410  if (AM.BaseGV)
5411    return false;
5412
5413  // PPC only support r+r,
5414  switch (AM.Scale) {
5415  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5416    break;
5417  case 1:
5418    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5419      return false;
5420    // Otherwise we have r+r or r+i.
5421    break;
5422  case 2:
5423    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5424      return false;
5425    // Allow 2*r as r+r.
5426    break;
5427  default:
5428    // No other scales are supported.
5429    return false;
5430  }
5431
5432  return true;
5433}
5434
5435/// isLegalAddressImmediate - Return true if the integer value can be used
5436/// as the offset of the target addressing mode for load / store of the
5437/// given type.
5438bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5439  // PPC allows a sign-extended 16-bit immediate field.
5440  return (V > -(1 << 16) && V < (1 << 16)-1);
5441}
5442
5443bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5444  return false;
5445}
5446
5447SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5448  DebugLoc dl = Op.getDebugLoc();
5449  // Depths > 0 not supported yet!
5450  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5451    return SDValue();
5452
5453  MachineFunction &MF = DAG.getMachineFunction();
5454  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5455
5456  // Just load the return address off the stack.
5457  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5458
5459  // Make sure the function really does not optimize away the store of the RA
5460  // to the stack.
5461  FuncInfo->setLRStoreRequired();
5462  return DAG.getLoad(getPointerTy(), dl,
5463                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5464}
5465
5466SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5467  DebugLoc dl = Op.getDebugLoc();
5468  // Depths > 0 not supported yet!
5469  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5470    return SDValue();
5471
5472  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5473  bool isPPC64 = PtrVT == MVT::i64;
5474
5475  MachineFunction &MF = DAG.getMachineFunction();
5476  MachineFrameInfo *MFI = MF.getFrameInfo();
5477  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5478                  && MFI->getStackSize();
5479
5480  if (isPPC64)
5481    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5482      MVT::i64);
5483  else
5484    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5485      MVT::i32);
5486}
5487
5488bool
5489PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5490  // The PowerPC target isn't yet aware of offsets.
5491  return false;
5492}
5493
5494EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5495                                           bool isSrcConst, bool isSrcStr,
5496                                           SelectionDAG &DAG) const {
5497  if (this->PPCSubTarget.isPPC64()) {
5498    return MVT::i64;
5499  } else {
5500    return MVT::i32;
5501  }
5502}
5503