PPCISelLowering.cpp revision 95771afbfd604ad003fa3723cac66c9370fed55d
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FSIN , MVT::f32, Expand);
129  setOperationAction(ISD::FCOS , MVT::f32, Expand);
130  setOperationAction(ISD::FREM , MVT::f32, Expand);
131  setOperationAction(ISD::FPOW , MVT::f32, Expand);
132
133  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134
135  // If we're enabling GP optimizations, use hardware square root
136  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139  }
140
141  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143
144  // PowerPC does not have BSWAP, CTPOP or CTTZ
145  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151
152  // PowerPC does not have ROTR
153  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155
156  // PowerPC does not have Select
157  setOperationAction(ISD::SELECT, MVT::i32, Expand);
158  setOperationAction(ISD::SELECT, MVT::i64, Expand);
159  setOperationAction(ISD::SELECT, MVT::f32, Expand);
160  setOperationAction(ISD::SELECT, MVT::f64, Expand);
161
162  // PowerPC wants to turn select_cc of FP into fsel when possible.
163  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165
166  // PowerPC wants to optimize integer setcc a bit
167  setOperationAction(ISD::SETCC, MVT::i32, Custom);
168
169  // PowerPC does not have BRCOND which requires SetCC
170  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173
174  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176
177  // PowerPC does not have [U|S]INT_TO_FP
178  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180
181  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
182  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
183  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
184  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
185
186  // We cannot sextinreg(i1).  Expand to shifts.
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setBooleanContents(ZeroOrOneBooleanContent);
366
367  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
368    setStackPointerRegisterToSaveRestore(PPC::X1);
369    setExceptionPointerRegister(PPC::X3);
370    setExceptionSelectorRegister(PPC::X4);
371  } else {
372    setStackPointerRegisterToSaveRestore(PPC::R1);
373    setExceptionPointerRegister(PPC::R3);
374    setExceptionSelectorRegister(PPC::R4);
375  }
376
377  // We have target-specific dag combine patterns for the following nodes:
378  setTargetDAGCombine(ISD::SINT_TO_FP);
379  setTargetDAGCombine(ISD::STORE);
380  setTargetDAGCombine(ISD::BR_CC);
381  setTargetDAGCombine(ISD::BSWAP);
382
383  // Darwin long double math library functions have $LDBL128 appended.
384  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
385    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
386    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
387    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
388    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
389    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
390    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
391    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
392    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
393    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
394    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
395  }
396
397  computeRegisterProperties();
398}
399
400/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
401/// function arguments in the caller parameter area.
402unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
403  const TargetMachine &TM = getTargetMachine();
404  // Darwin passes everything on 4 byte boundary.
405  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
406    return 4;
407  // FIXME SVR4 TBD
408  return 4;
409}
410
411const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
412  switch (Opcode) {
413  default: return 0;
414  case PPCISD::FSEL:            return "PPCISD::FSEL";
415  case PPCISD::FCFID:           return "PPCISD::FCFID";
416  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
417  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
418  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
419  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
420  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
421  case PPCISD::VPERM:           return "PPCISD::VPERM";
422  case PPCISD::Hi:              return "PPCISD::Hi";
423  case PPCISD::Lo:              return "PPCISD::Lo";
424  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
425  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
426  case PPCISD::LOAD:            return "PPCISD::LOAD";
427  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
428  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
429  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
430  case PPCISD::SRL:             return "PPCISD::SRL";
431  case PPCISD::SRA:             return "PPCISD::SRA";
432  case PPCISD::SHL:             return "PPCISD::SHL";
433  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
434  case PPCISD::STD_32:          return "PPCISD::STD_32";
435  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
436  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
437  case PPCISD::NOP:             return "PPCISD::NOP";
438  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
439  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
440  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
441  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
442  case PPCISD::MFCR:            return "PPCISD::MFCR";
443  case PPCISD::VCMP:            return "PPCISD::VCMP";
444  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
445  case PPCISD::LBRX:            return "PPCISD::LBRX";
446  case PPCISD::STBRX:           return "PPCISD::STBRX";
447  case PPCISD::LARX:            return "PPCISD::LARX";
448  case PPCISD::STCX:            return "PPCISD::STCX";
449  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
450  case PPCISD::MFFS:            return "PPCISD::MFFS";
451  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
452  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
453  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
454  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
455  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
456  }
457}
458
459MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
460  return MVT::i32;
461}
462
463/// getFunctionAlignment - Return the Log2 alignment of this function.
464unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
465  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
466    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
467  else
468    return 2;
469}
470
471//===----------------------------------------------------------------------===//
472// Node matching predicates, for use by the tblgen matching code.
473//===----------------------------------------------------------------------===//
474
475/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
476static bool isFloatingPointZero(SDValue Op) {
477  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
478    return CFP->getValueAPF().isZero();
479  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
480    // Maybe this has already been legalized into the constant pool?
481    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
482      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
483        return CFP->getValueAPF().isZero();
484  }
485  return false;
486}
487
488/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
489/// true if Op is undef or if it matches the specified value.
490static bool isConstantOrUndef(int Op, int Val) {
491  return Op < 0 || Op == Val;
492}
493
494/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
495/// VPKUHUM instruction.
496bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
497  if (!isUnary) {
498    for (unsigned i = 0; i != 16; ++i)
499      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
500        return false;
501  } else {
502    for (unsigned i = 0; i != 8; ++i)
503      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
504          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
505        return false;
506  }
507  return true;
508}
509
510/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
511/// VPKUWUM instruction.
512bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
513  if (!isUnary) {
514    for (unsigned i = 0; i != 16; i += 2)
515      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
516          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
517        return false;
518  } else {
519    for (unsigned i = 0; i != 8; i += 2)
520      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
521          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
522          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
523          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
524        return false;
525  }
526  return true;
527}
528
529/// isVMerge - Common function, used to match vmrg* shuffles.
530///
531static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
532                     unsigned LHSStart, unsigned RHSStart) {
533  assert(N->getValueType(0) == MVT::v16i8 &&
534         "PPC only supports shuffles by bytes!");
535  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
536         "Unsupported merge size!");
537
538  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
539    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
540      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
541                             LHSStart+j+i*UnitSize) ||
542          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
543                             RHSStart+j+i*UnitSize))
544        return false;
545    }
546  return true;
547}
548
549/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
550/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
551bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
552                             bool isUnary) {
553  if (!isUnary)
554    return isVMerge(N, UnitSize, 8, 24);
555  return isVMerge(N, UnitSize, 8, 8);
556}
557
558/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
559/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
560bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
561                             bool isUnary) {
562  if (!isUnary)
563    return isVMerge(N, UnitSize, 0, 16);
564  return isVMerge(N, UnitSize, 0, 0);
565}
566
567
568/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
569/// amount, otherwise return -1.
570int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
571  assert(N->getValueType(0) == MVT::v16i8 &&
572         "PPC only supports shuffles by bytes!");
573
574  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
575
576  // Find the first non-undef value in the shuffle mask.
577  unsigned i;
578  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
579    /*search*/;
580
581  if (i == 16) return -1;  // all undef.
582
583  // Otherwise, check to see if the rest of the elements are consecutively
584  // numbered from this value.
585  unsigned ShiftAmt = SVOp->getMaskElt(i);
586  if (ShiftAmt < i) return -1;
587  ShiftAmt -= i;
588
589  if (!isUnary) {
590    // Check the rest of the elements to see if they are consecutive.
591    for (++i; i != 16; ++i)
592      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
593        return -1;
594  } else {
595    // Check the rest of the elements to see if they are consecutive.
596    for (++i; i != 16; ++i)
597      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
598        return -1;
599  }
600  return ShiftAmt;
601}
602
603/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
604/// specifies a splat of a single element that is suitable for input to
605/// VSPLTB/VSPLTH/VSPLTW.
606bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
607  assert(N->getValueType(0) == MVT::v16i8 &&
608         (EltSize == 1 || EltSize == 2 || EltSize == 4));
609
610  // This is a splat operation if each element of the permute is the same, and
611  // if the value doesn't reference the second vector.
612  unsigned ElementBase = N->getMaskElt(0);
613
614  // FIXME: Handle UNDEF elements too!
615  if (ElementBase >= 16)
616    return false;
617
618  // Check that the indices are consecutive, in the case of a multi-byte element
619  // splatted with a v16i8 mask.
620  for (unsigned i = 1; i != EltSize; ++i)
621    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
622      return false;
623
624  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
625    if (N->getMaskElt(i) < 0) continue;
626    for (unsigned j = 0; j != EltSize; ++j)
627      if (N->getMaskElt(i+j) != N->getMaskElt(j))
628        return false;
629  }
630  return true;
631}
632
633/// isAllNegativeZeroVector - Returns true if all elements of build_vector
634/// are -0.0.
635bool PPC::isAllNegativeZeroVector(SDNode *N) {
636  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
637
638  APInt APVal, APUndef;
639  unsigned BitSize;
640  bool HasAnyUndefs;
641
642  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
643    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
644      return CFP->getValueAPF().isNegZero();
645
646  return false;
647}
648
649/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
650/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
651unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
652  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
653  assert(isSplatShuffleMask(SVOp, EltSize));
654  return SVOp->getMaskElt(0) / EltSize;
655}
656
657/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
658/// by using a vspltis[bhw] instruction of the specified element size, return
659/// the constant being splatted.  The ByteSize field indicates the number of
660/// bytes of each element [124] -> [bhw].
661SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
662  SDValue OpVal(0, 0);
663
664  // If ByteSize of the splat is bigger than the element size of the
665  // build_vector, then we have a case where we are checking for a splat where
666  // multiple elements of the buildvector are folded together into a single
667  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
668  unsigned EltSize = 16/N->getNumOperands();
669  if (EltSize < ByteSize) {
670    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
671    SDValue UniquedVals[4];
672    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
673
674    // See if all of the elements in the buildvector agree across.
675    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
676      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
677      // If the element isn't a constant, bail fully out.
678      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
679
680
681      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
682        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
683      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
684        return SDValue();  // no match.
685    }
686
687    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
688    // either constant or undef values that are identical for each chunk.  See
689    // if these chunks can form into a larger vspltis*.
690
691    // Check to see if all of the leading entries are either 0 or -1.  If
692    // neither, then this won't fit into the immediate field.
693    bool LeadingZero = true;
694    bool LeadingOnes = true;
695    for (unsigned i = 0; i != Multiple-1; ++i) {
696      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
697
698      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
699      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
700    }
701    // Finally, check the least significant entry.
702    if (LeadingZero) {
703      if (UniquedVals[Multiple-1].getNode() == 0)
704        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
705      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
706      if (Val < 16)
707        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
708    }
709    if (LeadingOnes) {
710      if (UniquedVals[Multiple-1].getNode() == 0)
711        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
712      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
713      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
714        return DAG.getTargetConstant(Val, MVT::i32);
715    }
716
717    return SDValue();
718  }
719
720  // Check to see if this buildvec has a single non-undef value in its elements.
721  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
722    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
723    if (OpVal.getNode() == 0)
724      OpVal = N->getOperand(i);
725    else if (OpVal != N->getOperand(i))
726      return SDValue();
727  }
728
729  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
730
731  unsigned ValSizeInBytes = EltSize;
732  uint64_t Value = 0;
733  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
734    Value = CN->getZExtValue();
735  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
736    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
737    Value = FloatToBits(CN->getValueAPF().convertToFloat());
738  }
739
740  // If the splat value is larger than the element value, then we can never do
741  // this splat.  The only case that we could fit the replicated bits into our
742  // immediate field for would be zero, and we prefer to use vxor for it.
743  if (ValSizeInBytes < ByteSize) return SDValue();
744
745  // If the element value is larger than the splat value, cut it in half and
746  // check to see if the two halves are equal.  Continue doing this until we
747  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
748  while (ValSizeInBytes > ByteSize) {
749    ValSizeInBytes >>= 1;
750
751    // If the top half equals the bottom half, we're still ok.
752    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
753         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
754      return SDValue();
755  }
756
757  // Properly sign extend the value.
758  int ShAmt = (4-ByteSize)*8;
759  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
760
761  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
762  if (MaskVal == 0) return SDValue();
763
764  // Finally, if this value fits in a 5 bit sext field, return it
765  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
766    return DAG.getTargetConstant(MaskVal, MVT::i32);
767  return SDValue();
768}
769
770//===----------------------------------------------------------------------===//
771//  Addressing Mode Selection
772//===----------------------------------------------------------------------===//
773
774/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
775/// or 64-bit immediate, and if the value can be accurately represented as a
776/// sign extension from a 16-bit value.  If so, this returns true and the
777/// immediate.
778static bool isIntS16Immediate(SDNode *N, short &Imm) {
779  if (N->getOpcode() != ISD::Constant)
780    return false;
781
782  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
783  if (N->getValueType(0) == MVT::i32)
784    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
785  else
786    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
787}
788static bool isIntS16Immediate(SDValue Op, short &Imm) {
789  return isIntS16Immediate(Op.getNode(), Imm);
790}
791
792
793/// SelectAddressRegReg - Given the specified addressed, check to see if it
794/// can be represented as an indexed [r+r] operation.  Returns false if it
795/// can be more efficiently represented with [r+imm].
796bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
797                                            SDValue &Index,
798                                            SelectionDAG &DAG) const {
799  short imm = 0;
800  if (N.getOpcode() == ISD::ADD) {
801    if (isIntS16Immediate(N.getOperand(1), imm))
802      return false;    // r+i
803    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
804      return false;    // r+i
805
806    Base = N.getOperand(0);
807    Index = N.getOperand(1);
808    return true;
809  } else if (N.getOpcode() == ISD::OR) {
810    if (isIntS16Immediate(N.getOperand(1), imm))
811      return false;    // r+i can fold it if we can.
812
813    // If this is an or of disjoint bitfields, we can codegen this as an add
814    // (for better address arithmetic) if the LHS and RHS of the OR are provably
815    // disjoint.
816    APInt LHSKnownZero, LHSKnownOne;
817    APInt RHSKnownZero, RHSKnownOne;
818    DAG.ComputeMaskedBits(N.getOperand(0),
819                          APInt::getAllOnesValue(N.getOperand(0)
820                            .getValueSizeInBits()),
821                          LHSKnownZero, LHSKnownOne);
822
823    if (LHSKnownZero.getBoolValue()) {
824      DAG.ComputeMaskedBits(N.getOperand(1),
825                            APInt::getAllOnesValue(N.getOperand(1)
826                              .getValueSizeInBits()),
827                            RHSKnownZero, RHSKnownOne);
828      // If all of the bits are known zero on the LHS or RHS, the add won't
829      // carry.
830      if (~(LHSKnownZero | RHSKnownZero) == 0) {
831        Base = N.getOperand(0);
832        Index = N.getOperand(1);
833        return true;
834      }
835    }
836  }
837
838  return false;
839}
840
841/// Returns true if the address N can be represented by a base register plus
842/// a signed 16-bit displacement [r+imm], and if it is not better
843/// represented as reg+reg.
844bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
845                                            SDValue &Base,
846                                            SelectionDAG &DAG) const {
847  // FIXME dl should come from parent load or store, not from address
848  DebugLoc dl = N.getDebugLoc();
849  // If this can be more profitably realized as r+r, fail.
850  if (SelectAddressRegReg(N, Disp, Base, DAG))
851    return false;
852
853  if (N.getOpcode() == ISD::ADD) {
854    short imm = 0;
855    if (isIntS16Immediate(N.getOperand(1), imm)) {
856      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
857      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
858        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
859      } else {
860        Base = N.getOperand(0);
861      }
862      return true; // [r+i]
863    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
864      // Match LOAD (ADD (X, Lo(G))).
865     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
866             && "Cannot handle constant offsets yet!");
867      Disp = N.getOperand(1).getOperand(0);  // The global address.
868      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
869             Disp.getOpcode() == ISD::TargetConstantPool ||
870             Disp.getOpcode() == ISD::TargetJumpTable);
871      Base = N.getOperand(0);
872      return true;  // [&g+r]
873    }
874  } else if (N.getOpcode() == ISD::OR) {
875    short imm = 0;
876    if (isIntS16Immediate(N.getOperand(1), imm)) {
877      // If this is an or of disjoint bitfields, we can codegen this as an add
878      // (for better address arithmetic) if the LHS and RHS of the OR are
879      // provably disjoint.
880      APInt LHSKnownZero, LHSKnownOne;
881      DAG.ComputeMaskedBits(N.getOperand(0),
882                            APInt::getAllOnesValue(N.getOperand(0)
883                                                   .getValueSizeInBits()),
884                            LHSKnownZero, LHSKnownOne);
885
886      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
887        // If all of the bits are known zero on the LHS or RHS, the add won't
888        // carry.
889        Base = N.getOperand(0);
890        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
891        return true;
892      }
893    }
894  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
895    // Loading from a constant address.
896
897    // If this address fits entirely in a 16-bit sext immediate field, codegen
898    // this as "d, 0"
899    short Imm;
900    if (isIntS16Immediate(CN, Imm)) {
901      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
902      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
903      return true;
904    }
905
906    // Handle 32-bit sext immediates with LIS + addr mode.
907    if (CN->getValueType(0) == MVT::i32 ||
908        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
909      int Addr = (int)CN->getZExtValue();
910
911      // Otherwise, break this down into an LIS + disp.
912      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
913
914      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
915      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
916      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
917      return true;
918    }
919  }
920
921  Disp = DAG.getTargetConstant(0, getPointerTy());
922  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
923    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
924  else
925    Base = N;
926  return true;      // [r+0]
927}
928
929/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
930/// represented as an indexed [r+r] operation.
931bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
932                                                SDValue &Index,
933                                                SelectionDAG &DAG) const {
934  // Check to see if we can easily represent this as an [r+r] address.  This
935  // will fail if it thinks that the address is more profitably represented as
936  // reg+imm, e.g. where imm = 0.
937  if (SelectAddressRegReg(N, Base, Index, DAG))
938    return true;
939
940  // If the operand is an addition, always emit this as [r+r], since this is
941  // better (for code size, and execution, as the memop does the add for free)
942  // than emitting an explicit add.
943  if (N.getOpcode() == ISD::ADD) {
944    Base = N.getOperand(0);
945    Index = N.getOperand(1);
946    return true;
947  }
948
949  // Otherwise, do it the hard way, using R0 as the base register.
950  Base = DAG.getRegister(PPC::R0, N.getValueType());
951  Index = N;
952  return true;
953}
954
955/// SelectAddressRegImmShift - Returns true if the address N can be
956/// represented by a base register plus a signed 14-bit displacement
957/// [r+imm*4].  Suitable for use by STD and friends.
958bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
959                                                 SDValue &Base,
960                                                 SelectionDAG &DAG) const {
961  // FIXME dl should come from the parent load or store, not the address
962  DebugLoc dl = N.getDebugLoc();
963  // If this can be more profitably realized as r+r, fail.
964  if (SelectAddressRegReg(N, Disp, Base, DAG))
965    return false;
966
967  if (N.getOpcode() == ISD::ADD) {
968    short imm = 0;
969    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
970      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
971      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
972        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
973      } else {
974        Base = N.getOperand(0);
975      }
976      return true; // [r+i]
977    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
978      // Match LOAD (ADD (X, Lo(G))).
979     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
980             && "Cannot handle constant offsets yet!");
981      Disp = N.getOperand(1).getOperand(0);  // The global address.
982      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
983             Disp.getOpcode() == ISD::TargetConstantPool ||
984             Disp.getOpcode() == ISD::TargetJumpTable);
985      Base = N.getOperand(0);
986      return true;  // [&g+r]
987    }
988  } else if (N.getOpcode() == ISD::OR) {
989    short imm = 0;
990    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
991      // If this is an or of disjoint bitfields, we can codegen this as an add
992      // (for better address arithmetic) if the LHS and RHS of the OR are
993      // provably disjoint.
994      APInt LHSKnownZero, LHSKnownOne;
995      DAG.ComputeMaskedBits(N.getOperand(0),
996                            APInt::getAllOnesValue(N.getOperand(0)
997                                                   .getValueSizeInBits()),
998                            LHSKnownZero, LHSKnownOne);
999      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1000        // If all of the bits are known zero on the LHS or RHS, the add won't
1001        // carry.
1002        Base = N.getOperand(0);
1003        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1004        return true;
1005      }
1006    }
1007  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1008    // Loading from a constant address.  Verify low two bits are clear.
1009    if ((CN->getZExtValue() & 3) == 0) {
1010      // If this address fits entirely in a 14-bit sext immediate field, codegen
1011      // this as "d, 0"
1012      short Imm;
1013      if (isIntS16Immediate(CN, Imm)) {
1014        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1015        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1016        return true;
1017      }
1018
1019      // Fold the low-part of 32-bit absolute addresses into addr mode.
1020      if (CN->getValueType(0) == MVT::i32 ||
1021          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1022        int Addr = (int)CN->getZExtValue();
1023
1024        // Otherwise, break this down into an LIS + disp.
1025        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1026        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1027        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1028        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1029        return true;
1030      }
1031    }
1032  }
1033
1034  Disp = DAG.getTargetConstant(0, getPointerTy());
1035  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1036    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1037  else
1038    Base = N;
1039  return true;      // [r+0]
1040}
1041
1042
1043/// getPreIndexedAddressParts - returns true by value, base pointer and
1044/// offset pointer and addressing mode by reference if the node's address
1045/// can be legally represented as pre-indexed load / store address.
1046bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1047                                                  SDValue &Offset,
1048                                                  ISD::MemIndexedMode &AM,
1049                                                  SelectionDAG &DAG) const {
1050  // Disabled by default for now.
1051  if (!EnablePPCPreinc) return false;
1052
1053  SDValue Ptr;
1054  EVT VT;
1055  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1056    Ptr = LD->getBasePtr();
1057    VT = LD->getMemoryVT();
1058
1059  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1060    Ptr = ST->getBasePtr();
1061    VT  = ST->getMemoryVT();
1062  } else
1063    return false;
1064
1065  // PowerPC doesn't have preinc load/store instructions for vectors.
1066  if (VT.isVector())
1067    return false;
1068
1069  // TODO: Check reg+reg first.
1070
1071  // LDU/STU use reg+imm*4, others use reg+imm.
1072  if (VT != MVT::i64) {
1073    // reg + imm
1074    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1075      return false;
1076  } else {
1077    // reg + imm * 4.
1078    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1079      return false;
1080  }
1081
1082  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1083    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1084    // sext i32 to i64 when addr mode is r+i.
1085    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1086        LD->getExtensionType() == ISD::SEXTLOAD &&
1087        isa<ConstantSDNode>(Offset))
1088      return false;
1089  }
1090
1091  AM = ISD::PRE_INC;
1092  return true;
1093}
1094
1095//===----------------------------------------------------------------------===//
1096//  LowerOperation implementation
1097//===----------------------------------------------------------------------===//
1098
1099/// GetLabelAccessInfo - Return true if we should reference labels using a
1100/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1101static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1102                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1103  HiOpFlags = PPCII::MO_HA16;
1104  LoOpFlags = PPCII::MO_LO16;
1105
1106  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1107  // non-darwin platform.  We don't support PIC on other platforms yet.
1108  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1109               TM.getSubtarget<PPCSubtarget>().isDarwin();
1110  if (isPIC) {
1111    HiOpFlags |= PPCII::MO_PIC_FLAG;
1112    LoOpFlags |= PPCII::MO_PIC_FLAG;
1113  }
1114
1115  // If this is a reference to a global value that requires a non-lazy-ptr, make
1116  // sure that instruction lowering adds it.
1117  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1118    HiOpFlags |= PPCII::MO_NLP_FLAG;
1119    LoOpFlags |= PPCII::MO_NLP_FLAG;
1120
1121    if (GV->hasHiddenVisibility()) {
1122      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1123      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1124    }
1125  }
1126
1127  return isPIC;
1128}
1129
1130static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1131                             SelectionDAG &DAG) {
1132  EVT PtrVT = HiPart.getValueType();
1133  SDValue Zero = DAG.getConstant(0, PtrVT);
1134  DebugLoc DL = HiPart.getDebugLoc();
1135
1136  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1137  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1138
1139  // With PIC, the first instruction is actually "GR+hi(&G)".
1140  if (isPIC)
1141    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1142                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1143
1144  // Generate non-pic code that has direct accesses to the constant pool.
1145  // The address of the global is just (hi(&g)+lo(&g)).
1146  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1147}
1148
1149SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1150                                             SelectionDAG &DAG) const {
1151  EVT PtrVT = Op.getValueType();
1152  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1153  const Constant *C = CP->getConstVal();
1154
1155  unsigned MOHiFlag, MOLoFlag;
1156  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1157  SDValue CPIHi =
1158    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1159  SDValue CPILo =
1160    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1161  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1162}
1163
1164SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1165  EVT PtrVT = Op.getValueType();
1166  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1167
1168  unsigned MOHiFlag, MOLoFlag;
1169  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1170  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1171  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1172  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1173}
1174
1175SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1176                                             SelectionDAG &DAG) const {
1177  EVT PtrVT = Op.getValueType();
1178
1179  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1180
1181  unsigned MOHiFlag, MOLoFlag;
1182  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1183  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1184  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1185  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1186}
1187
1188SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1189                                              SelectionDAG &DAG) const {
1190  EVT PtrVT = Op.getValueType();
1191  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1192  DebugLoc DL = GSDN->getDebugLoc();
1193  const GlobalValue *GV = GSDN->getGlobal();
1194
1195  // 64-bit SVR4 ABI code is always position-independent.
1196  // The actual address of the GlobalValue is stored in the TOC.
1197  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1198    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1199    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1200                       DAG.getRegister(PPC::X2, MVT::i64));
1201  }
1202
1203  unsigned MOHiFlag, MOLoFlag;
1204  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1205
1206  SDValue GAHi =
1207    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1208  SDValue GALo =
1209    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1210
1211  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1212
1213  // If the global reference is actually to a non-lazy-pointer, we have to do an
1214  // extra load to get the address of the global.
1215  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1216    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1217                      false, false, 0);
1218  return Ptr;
1219}
1220
1221SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1222  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1223  DebugLoc dl = Op.getDebugLoc();
1224
1225  // If we're comparing for equality to zero, expose the fact that this is
1226  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1227  // fold the new nodes.
1228  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1229    if (C->isNullValue() && CC == ISD::SETEQ) {
1230      EVT VT = Op.getOperand(0).getValueType();
1231      SDValue Zext = Op.getOperand(0);
1232      if (VT.bitsLT(MVT::i32)) {
1233        VT = MVT::i32;
1234        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1235      }
1236      unsigned Log2b = Log2_32(VT.getSizeInBits());
1237      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1238      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1239                                DAG.getConstant(Log2b, MVT::i32));
1240      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1241    }
1242    // Leave comparisons against 0 and -1 alone for now, since they're usually
1243    // optimized.  FIXME: revisit this when we can custom lower all setcc
1244    // optimizations.
1245    if (C->isAllOnesValue() || C->isNullValue())
1246      return SDValue();
1247  }
1248
1249  // If we have an integer seteq/setne, turn it into a compare against zero
1250  // by xor'ing the rhs with the lhs, which is faster than setting a
1251  // condition register, reading it back out, and masking the correct bit.  The
1252  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1253  // the result to other bit-twiddling opportunities.
1254  EVT LHSVT = Op.getOperand(0).getValueType();
1255  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1256    EVT VT = Op.getValueType();
1257    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1258                                Op.getOperand(1));
1259    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1260  }
1261  return SDValue();
1262}
1263
1264SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1265                                      const PPCSubtarget &Subtarget) const {
1266
1267  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1268  return SDValue(); // Not reached
1269}
1270
1271SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1272                                           SelectionDAG &DAG) const {
1273  SDValue Chain = Op.getOperand(0);
1274  SDValue Trmp = Op.getOperand(1); // trampoline
1275  SDValue FPtr = Op.getOperand(2); // nested function
1276  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1277  DebugLoc dl = Op.getDebugLoc();
1278
1279  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1280  bool isPPC64 = (PtrVT == MVT::i64);
1281  const Type *IntPtrTy =
1282    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1283                                                             *DAG.getContext());
1284
1285  TargetLowering::ArgListTy Args;
1286  TargetLowering::ArgListEntry Entry;
1287
1288  Entry.Ty = IntPtrTy;
1289  Entry.Node = Trmp; Args.push_back(Entry);
1290
1291  // TrampSize == (isPPC64 ? 48 : 40);
1292  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1293                               isPPC64 ? MVT::i64 : MVT::i32);
1294  Args.push_back(Entry);
1295
1296  Entry.Node = FPtr; Args.push_back(Entry);
1297  Entry.Node = Nest; Args.push_back(Entry);
1298
1299  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1300  std::pair<SDValue, SDValue> CallResult =
1301    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1302                false, false, false, false, 0, CallingConv::C, false,
1303                /*isReturnValueUsed=*/true,
1304                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1305                Args, DAG, dl);
1306
1307  SDValue Ops[] =
1308    { CallResult.first, CallResult.second };
1309
1310  return DAG.getMergeValues(Ops, 2, dl);
1311}
1312
1313SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1314                                        const PPCSubtarget &Subtarget) const {
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1317
1318  DebugLoc dl = Op.getDebugLoc();
1319
1320  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1321    // vastart just stores the address of the VarArgsFrameIndex slot into the
1322    // memory location argument.
1323    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1324    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1325    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1326    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1327                        MachinePointerInfo(SV),
1328                        false, false, 0);
1329  }
1330
1331  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1332  // We suppose the given va_list is already allocated.
1333  //
1334  // typedef struct {
1335  //  char gpr;     /* index into the array of 8 GPRs
1336  //                 * stored in the register save area
1337  //                 * gpr=0 corresponds to r3,
1338  //                 * gpr=1 to r4, etc.
1339  //                 */
1340  //  char fpr;     /* index into the array of 8 FPRs
1341  //                 * stored in the register save area
1342  //                 * fpr=0 corresponds to f1,
1343  //                 * fpr=1 to f2, etc.
1344  //                 */
1345  //  char *overflow_arg_area;
1346  //                /* location on stack that holds
1347  //                 * the next overflow argument
1348  //                 */
1349  //  char *reg_save_area;
1350  //               /* where r3:r10 and f1:f8 (if saved)
1351  //                * are stored
1352  //                */
1353  // } va_list[1];
1354
1355
1356  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1357  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1358
1359
1360  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1361
1362  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1363                                            PtrVT);
1364  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1365                                 PtrVT);
1366
1367  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1368  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1369
1370  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1371  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1372
1373  uint64_t FPROffset = 1;
1374  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1375
1376  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1377
1378  // Store first byte : number of int regs
1379  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1380                                         Op.getOperand(1),
1381                                         MachinePointerInfo(SV),
1382                                         MVT::i8, false, false, 0);
1383  uint64_t nextOffset = FPROffset;
1384  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1385                                  ConstFPROffset);
1386
1387  // Store second byte : number of float regs
1388  SDValue secondStore =
1389    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1390                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1391                      false, false, 0);
1392  nextOffset += StackOffset;
1393  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1394
1395  // Store second word : arguments given on stack
1396  SDValue thirdStore =
1397    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1398                 MachinePointerInfo(SV, nextOffset),
1399                 false, false, 0);
1400  nextOffset += FrameOffset;
1401  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1402
1403  // Store third word : arguments given in registers
1404  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1405                      MachinePointerInfo(SV, nextOffset),
1406                      false, false, 0);
1407
1408}
1409
1410#include "PPCGenCallingConv.inc"
1411
1412static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1413                                     CCValAssign::LocInfo &LocInfo,
1414                                     ISD::ArgFlagsTy &ArgFlags,
1415                                     CCState &State) {
1416  return true;
1417}
1418
1419static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1420                                            MVT &LocVT,
1421                                            CCValAssign::LocInfo &LocInfo,
1422                                            ISD::ArgFlagsTy &ArgFlags,
1423                                            CCState &State) {
1424  static const unsigned ArgRegs[] = {
1425    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1426    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1427  };
1428  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1429
1430  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1431
1432  // Skip one register if the first unallocated register has an even register
1433  // number and there are still argument registers available which have not been
1434  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1435  // need to skip a register if RegNum is odd.
1436  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1437    State.AllocateReg(ArgRegs[RegNum]);
1438  }
1439
1440  // Always return false here, as this function only makes sure that the first
1441  // unallocated register has an odd register number and does not actually
1442  // allocate a register for the current argument.
1443  return false;
1444}
1445
1446static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1447                                              MVT &LocVT,
1448                                              CCValAssign::LocInfo &LocInfo,
1449                                              ISD::ArgFlagsTy &ArgFlags,
1450                                              CCState &State) {
1451  static const unsigned ArgRegs[] = {
1452    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1453    PPC::F8
1454  };
1455
1456  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1457
1458  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1459
1460  // If there is only one Floating-point register left we need to put both f64
1461  // values of a split ppc_fp128 value on the stack.
1462  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1463    State.AllocateReg(ArgRegs[RegNum]);
1464  }
1465
1466  // Always return false here, as this function only makes sure that the two f64
1467  // values a ppc_fp128 value is split into are both passed in registers or both
1468  // passed on the stack and does not actually allocate a register for the
1469  // current argument.
1470  return false;
1471}
1472
1473/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1474/// on Darwin.
1475static const unsigned *GetFPR() {
1476  static const unsigned FPR[] = {
1477    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1478    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1479  };
1480
1481  return FPR;
1482}
1483
1484/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1485/// the stack.
1486static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1487                                       unsigned PtrByteSize) {
1488  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1489  if (Flags.isByVal())
1490    ArgSize = Flags.getByValSize();
1491  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1492
1493  return ArgSize;
1494}
1495
1496SDValue
1497PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1498                                        CallingConv::ID CallConv, bool isVarArg,
1499                                        const SmallVectorImpl<ISD::InputArg>
1500                                          &Ins,
1501                                        DebugLoc dl, SelectionDAG &DAG,
1502                                        SmallVectorImpl<SDValue> &InVals)
1503                                          const {
1504  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1505    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1506                                     dl, DAG, InVals);
1507  } else {
1508    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1509                                       dl, DAG, InVals);
1510  }
1511}
1512
1513SDValue
1514PPCTargetLowering::LowerFormalArguments_SVR4(
1515                                      SDValue Chain,
1516                                      CallingConv::ID CallConv, bool isVarArg,
1517                                      const SmallVectorImpl<ISD::InputArg>
1518                                        &Ins,
1519                                      DebugLoc dl, SelectionDAG &DAG,
1520                                      SmallVectorImpl<SDValue> &InVals) const {
1521
1522  // 32-bit SVR4 ABI Stack Frame Layout:
1523  //              +-----------------------------------+
1524  //        +-->  |            Back chain             |
1525  //        |     +-----------------------------------+
1526  //        |     | Floating-point register save area |
1527  //        |     +-----------------------------------+
1528  //        |     |    General register save area     |
1529  //        |     +-----------------------------------+
1530  //        |     |          CR save word             |
1531  //        |     +-----------------------------------+
1532  //        |     |         VRSAVE save word          |
1533  //        |     +-----------------------------------+
1534  //        |     |         Alignment padding         |
1535  //        |     +-----------------------------------+
1536  //        |     |     Vector register save area     |
1537  //        |     +-----------------------------------+
1538  //        |     |       Local variable space        |
1539  //        |     +-----------------------------------+
1540  //        |     |        Parameter list area        |
1541  //        |     +-----------------------------------+
1542  //        |     |           LR save word            |
1543  //        |     +-----------------------------------+
1544  // SP-->  +---  |            Back chain             |
1545  //              +-----------------------------------+
1546  //
1547  // Specifications:
1548  //   System V Application Binary Interface PowerPC Processor Supplement
1549  //   AltiVec Technology Programming Interface Manual
1550
1551  MachineFunction &MF = DAG.getMachineFunction();
1552  MachineFrameInfo *MFI = MF.getFrameInfo();
1553  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1554
1555  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1556  // Potential tail calls could cause overwriting of argument stack slots.
1557  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1558  unsigned PtrByteSize = 4;
1559
1560  // Assign locations to all of the incoming arguments.
1561  SmallVector<CCValAssign, 16> ArgLocs;
1562  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1563                 *DAG.getContext());
1564
1565  // Reserve space for the linkage area on the stack.
1566  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1567
1568  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1569
1570  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1571    CCValAssign &VA = ArgLocs[i];
1572
1573    // Arguments stored in registers.
1574    if (VA.isRegLoc()) {
1575      TargetRegisterClass *RC;
1576      EVT ValVT = VA.getValVT();
1577
1578      switch (ValVT.getSimpleVT().SimpleTy) {
1579        default:
1580          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1581        case MVT::i32:
1582          RC = PPC::GPRCRegisterClass;
1583          break;
1584        case MVT::f32:
1585          RC = PPC::F4RCRegisterClass;
1586          break;
1587        case MVT::f64:
1588          RC = PPC::F8RCRegisterClass;
1589          break;
1590        case MVT::v16i8:
1591        case MVT::v8i16:
1592        case MVT::v4i32:
1593        case MVT::v4f32:
1594          RC = PPC::VRRCRegisterClass;
1595          break;
1596      }
1597
1598      // Transform the arguments stored in physical registers into virtual ones.
1599      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1600      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1601
1602      InVals.push_back(ArgValue);
1603    } else {
1604      // Argument stored in memory.
1605      assert(VA.isMemLoc());
1606
1607      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1608      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1609                                      isImmutable);
1610
1611      // Create load nodes to retrieve arguments from the stack.
1612      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1613      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1614                                   MachinePointerInfo(),
1615                                   false, false, 0));
1616    }
1617  }
1618
1619  // Assign locations to all of the incoming aggregate by value arguments.
1620  // Aggregates passed by value are stored in the local variable space of the
1621  // caller's stack frame, right above the parameter list area.
1622  SmallVector<CCValAssign, 16> ByValArgLocs;
1623  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1624                      ByValArgLocs, *DAG.getContext());
1625
1626  // Reserve stack space for the allocations in CCInfo.
1627  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1628
1629  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1630
1631  // Area that is at least reserved in the caller of this function.
1632  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1633
1634  // Set the size that is at least reserved in caller of this function.  Tail
1635  // call optimized function's reserved stack space needs to be aligned so that
1636  // taking the difference between two stack areas will result in an aligned
1637  // stack.
1638  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1639
1640  MinReservedArea =
1641    std::max(MinReservedArea,
1642             PPCFrameLowering::getMinCallFrameSize(false, false));
1643
1644  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1645    getStackAlignment();
1646  unsigned AlignMask = TargetAlign-1;
1647  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1648
1649  FI->setMinReservedArea(MinReservedArea);
1650
1651  SmallVector<SDValue, 8> MemOps;
1652
1653  // If the function takes variable number of arguments, make a frame index for
1654  // the start of the first vararg value... for expansion of llvm.va_start.
1655  if (isVarArg) {
1656    static const unsigned GPArgRegs[] = {
1657      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1658      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1659    };
1660    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1661
1662    static const unsigned FPArgRegs[] = {
1663      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1664      PPC::F8
1665    };
1666    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1667
1668    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1669                                                          NumGPArgRegs));
1670    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1671                                                          NumFPArgRegs));
1672
1673    // Make room for NumGPArgRegs and NumFPArgRegs.
1674    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1675                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1676
1677    FuncInfo->setVarArgsStackOffset(
1678      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1679                             CCInfo.getNextStackOffset(), true));
1680
1681    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1682    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1683
1684    // The fixed integer arguments of a variadic function are stored to the
1685    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1686    // the result of va_next.
1687    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1688      // Get an existing live-in vreg, or add a new one.
1689      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1690      if (!VReg)
1691        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1692
1693      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1694      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1695                                   MachinePointerInfo(), false, false, 0);
1696      MemOps.push_back(Store);
1697      // Increment the address by four for the next argument to store
1698      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1699      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1700    }
1701
1702    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1703    // is set.
1704    // The double arguments are stored to the VarArgsFrameIndex
1705    // on the stack.
1706    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1707      // Get an existing live-in vreg, or add a new one.
1708      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1709      if (!VReg)
1710        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1711
1712      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1713      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1714                                   MachinePointerInfo(), false, false, 0);
1715      MemOps.push_back(Store);
1716      // Increment the address by eight for the next argument to store
1717      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1718                                         PtrVT);
1719      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1720    }
1721  }
1722
1723  if (!MemOps.empty())
1724    Chain = DAG.getNode(ISD::TokenFactor, dl,
1725                        MVT::Other, &MemOps[0], MemOps.size());
1726
1727  return Chain;
1728}
1729
1730SDValue
1731PPCTargetLowering::LowerFormalArguments_Darwin(
1732                                      SDValue Chain,
1733                                      CallingConv::ID CallConv, bool isVarArg,
1734                                      const SmallVectorImpl<ISD::InputArg>
1735                                        &Ins,
1736                                      DebugLoc dl, SelectionDAG &DAG,
1737                                      SmallVectorImpl<SDValue> &InVals) const {
1738  // TODO: add description of PPC stack frame format, or at least some docs.
1739  //
1740  MachineFunction &MF = DAG.getMachineFunction();
1741  MachineFrameInfo *MFI = MF.getFrameInfo();
1742  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1743
1744  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1745  bool isPPC64 = PtrVT == MVT::i64;
1746  // Potential tail calls could cause overwriting of argument stack slots.
1747  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1748  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1749
1750  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1751  // Area that is at least reserved in caller of this function.
1752  unsigned MinReservedArea = ArgOffset;
1753
1754  static const unsigned GPR_32[] = {           // 32-bit registers.
1755    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1756    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1757  };
1758  static const unsigned GPR_64[] = {           // 64-bit registers.
1759    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1760    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1761  };
1762
1763  static const unsigned *FPR = GetFPR();
1764
1765  static const unsigned VR[] = {
1766    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1767    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1768  };
1769
1770  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1771  const unsigned Num_FPR_Regs = 13;
1772  const unsigned Num_VR_Regs  = array_lengthof( VR);
1773
1774  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1775
1776  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1777
1778  // In 32-bit non-varargs functions, the stack space for vectors is after the
1779  // stack space for non-vectors.  We do not use this space unless we have
1780  // too many vectors to fit in registers, something that only occurs in
1781  // constructed examples:), but we have to walk the arglist to figure
1782  // that out...for the pathological case, compute VecArgOffset as the
1783  // start of the vector parameter area.  Computing VecArgOffset is the
1784  // entire point of the following loop.
1785  unsigned VecArgOffset = ArgOffset;
1786  if (!isVarArg && !isPPC64) {
1787    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1788         ++ArgNo) {
1789      EVT ObjectVT = Ins[ArgNo].VT;
1790      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1791      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1792
1793      if (Flags.isByVal()) {
1794        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1795        ObjSize = Flags.getByValSize();
1796        unsigned ArgSize =
1797                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1798        VecArgOffset += ArgSize;
1799        continue;
1800      }
1801
1802      switch(ObjectVT.getSimpleVT().SimpleTy) {
1803      default: llvm_unreachable("Unhandled argument type!");
1804      case MVT::i32:
1805      case MVT::f32:
1806        VecArgOffset += isPPC64 ? 8 : 4;
1807        break;
1808      case MVT::i64:  // PPC64
1809      case MVT::f64:
1810        VecArgOffset += 8;
1811        break;
1812      case MVT::v4f32:
1813      case MVT::v4i32:
1814      case MVT::v8i16:
1815      case MVT::v16i8:
1816        // Nothing to do, we're only looking at Nonvector args here.
1817        break;
1818      }
1819    }
1820  }
1821  // We've found where the vector parameter area in memory is.  Skip the
1822  // first 12 parameters; these don't use that memory.
1823  VecArgOffset = ((VecArgOffset+15)/16)*16;
1824  VecArgOffset += 12*16;
1825
1826  // Add DAG nodes to load the arguments or copy them out of registers.  On
1827  // entry to a function on PPC, the arguments start after the linkage area,
1828  // although the first ones are often in registers.
1829
1830  SmallVector<SDValue, 8> MemOps;
1831  unsigned nAltivecParamsAtEnd = 0;
1832  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1833    SDValue ArgVal;
1834    bool needsLoad = false;
1835    EVT ObjectVT = Ins[ArgNo].VT;
1836    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1837    unsigned ArgSize = ObjSize;
1838    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1839
1840    unsigned CurArgOffset = ArgOffset;
1841
1842    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1843    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1844        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1845      if (isVarArg || isPPC64) {
1846        MinReservedArea = ((MinReservedArea+15)/16)*16;
1847        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1848                                                  Flags,
1849                                                  PtrByteSize);
1850      } else  nAltivecParamsAtEnd++;
1851    } else
1852      // Calculate min reserved area.
1853      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1854                                                Flags,
1855                                                PtrByteSize);
1856
1857    // FIXME the codegen can be much improved in some cases.
1858    // We do not have to keep everything in memory.
1859    if (Flags.isByVal()) {
1860      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1861      ObjSize = Flags.getByValSize();
1862      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1863      // Objects of size 1 and 2 are right justified, everything else is
1864      // left justified.  This means the memory address is adjusted forwards.
1865      if (ObjSize==1 || ObjSize==2) {
1866        CurArgOffset = CurArgOffset + (4 - ObjSize);
1867      }
1868      // The value of the object is its address.
1869      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1870      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1871      InVals.push_back(FIN);
1872      if (ObjSize==1 || ObjSize==2) {
1873        if (GPR_idx != Num_GPR_Regs) {
1874          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1875          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1876          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1877                                            MachinePointerInfo(),
1878                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1879                                            false, false, 0);
1880          MemOps.push_back(Store);
1881          ++GPR_idx;
1882        }
1883
1884        ArgOffset += PtrByteSize;
1885
1886        continue;
1887      }
1888      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1889        // Store whatever pieces of the object are in registers
1890        // to memory.  ArgVal will be address of the beginning of
1891        // the object.
1892        if (GPR_idx != Num_GPR_Regs) {
1893          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1894          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1895          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1896          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1897          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1898                                       MachinePointerInfo(),
1899                                       false, false, 0);
1900          MemOps.push_back(Store);
1901          ++GPR_idx;
1902          ArgOffset += PtrByteSize;
1903        } else {
1904          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1905          break;
1906        }
1907      }
1908      continue;
1909    }
1910
1911    switch (ObjectVT.getSimpleVT().SimpleTy) {
1912    default: llvm_unreachable("Unhandled argument type!");
1913    case MVT::i32:
1914      if (!isPPC64) {
1915        if (GPR_idx != Num_GPR_Regs) {
1916          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1917          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1918          ++GPR_idx;
1919        } else {
1920          needsLoad = true;
1921          ArgSize = PtrByteSize;
1922        }
1923        // All int arguments reserve stack space in the Darwin ABI.
1924        ArgOffset += PtrByteSize;
1925        break;
1926      }
1927      // FALLTHROUGH
1928    case MVT::i64:  // PPC64
1929      if (GPR_idx != Num_GPR_Regs) {
1930        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1931        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1932
1933        if (ObjectVT == MVT::i32) {
1934          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1935          // value to MVT::i64 and then truncate to the correct register size.
1936          if (Flags.isSExt())
1937            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1938                                 DAG.getValueType(ObjectVT));
1939          else if (Flags.isZExt())
1940            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1941                                 DAG.getValueType(ObjectVT));
1942
1943          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1944        }
1945
1946        ++GPR_idx;
1947      } else {
1948        needsLoad = true;
1949        ArgSize = PtrByteSize;
1950      }
1951      // All int arguments reserve stack space in the Darwin ABI.
1952      ArgOffset += 8;
1953      break;
1954
1955    case MVT::f32:
1956    case MVT::f64:
1957      // Every 4 bytes of argument space consumes one of the GPRs available for
1958      // argument passing.
1959      if (GPR_idx != Num_GPR_Regs) {
1960        ++GPR_idx;
1961        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1962          ++GPR_idx;
1963      }
1964      if (FPR_idx != Num_FPR_Regs) {
1965        unsigned VReg;
1966
1967        if (ObjectVT == MVT::f32)
1968          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1969        else
1970          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1971
1972        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1973        ++FPR_idx;
1974      } else {
1975        needsLoad = true;
1976      }
1977
1978      // All FP arguments reserve stack space in the Darwin ABI.
1979      ArgOffset += isPPC64 ? 8 : ObjSize;
1980      break;
1981    case MVT::v4f32:
1982    case MVT::v4i32:
1983    case MVT::v8i16:
1984    case MVT::v16i8:
1985      // Note that vector arguments in registers don't reserve stack space,
1986      // except in varargs functions.
1987      if (VR_idx != Num_VR_Regs) {
1988        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1989        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1990        if (isVarArg) {
1991          while ((ArgOffset % 16) != 0) {
1992            ArgOffset += PtrByteSize;
1993            if (GPR_idx != Num_GPR_Regs)
1994              GPR_idx++;
1995          }
1996          ArgOffset += 16;
1997          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
1998        }
1999        ++VR_idx;
2000      } else {
2001        if (!isVarArg && !isPPC64) {
2002          // Vectors go after all the nonvectors.
2003          CurArgOffset = VecArgOffset;
2004          VecArgOffset += 16;
2005        } else {
2006          // Vectors are aligned.
2007          ArgOffset = ((ArgOffset+15)/16)*16;
2008          CurArgOffset = ArgOffset;
2009          ArgOffset += 16;
2010        }
2011        needsLoad = true;
2012      }
2013      break;
2014    }
2015
2016    // We need to load the argument to a virtual register if we determined above
2017    // that we ran out of physical registers of the appropriate type.
2018    if (needsLoad) {
2019      int FI = MFI->CreateFixedObject(ObjSize,
2020                                      CurArgOffset + (ArgSize - ObjSize),
2021                                      isImmutable);
2022      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2023      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2024                           false, false, 0);
2025    }
2026
2027    InVals.push_back(ArgVal);
2028  }
2029
2030  // Set the size that is at least reserved in caller of this function.  Tail
2031  // call optimized function's reserved stack space needs to be aligned so that
2032  // taking the difference between two stack areas will result in an aligned
2033  // stack.
2034  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2035  // Add the Altivec parameters at the end, if needed.
2036  if (nAltivecParamsAtEnd) {
2037    MinReservedArea = ((MinReservedArea+15)/16)*16;
2038    MinReservedArea += 16*nAltivecParamsAtEnd;
2039  }
2040  MinReservedArea =
2041    std::max(MinReservedArea,
2042             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2043  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2044    getStackAlignment();
2045  unsigned AlignMask = TargetAlign-1;
2046  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2047  FI->setMinReservedArea(MinReservedArea);
2048
2049  // If the function takes variable number of arguments, make a frame index for
2050  // the start of the first vararg value... for expansion of llvm.va_start.
2051  if (isVarArg) {
2052    int Depth = ArgOffset;
2053
2054    FuncInfo->setVarArgsFrameIndex(
2055      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2056                             Depth, true));
2057    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2058
2059    // If this function is vararg, store any remaining integer argument regs
2060    // to their spots on the stack so that they may be loaded by deferencing the
2061    // result of va_next.
2062    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2063      unsigned VReg;
2064
2065      if (isPPC64)
2066        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2067      else
2068        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2069
2070      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2071      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2072                                   MachinePointerInfo(), false, false, 0);
2073      MemOps.push_back(Store);
2074      // Increment the address by four for the next argument to store
2075      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2076      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2077    }
2078  }
2079
2080  if (!MemOps.empty())
2081    Chain = DAG.getNode(ISD::TokenFactor, dl,
2082                        MVT::Other, &MemOps[0], MemOps.size());
2083
2084  return Chain;
2085}
2086
2087/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2088/// linkage area for the Darwin ABI.
2089static unsigned
2090CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2091                                     bool isPPC64,
2092                                     bool isVarArg,
2093                                     unsigned CC,
2094                                     const SmallVectorImpl<ISD::OutputArg>
2095                                       &Outs,
2096                                     const SmallVectorImpl<SDValue> &OutVals,
2097                                     unsigned &nAltivecParamsAtEnd) {
2098  // Count how many bytes are to be pushed on the stack, including the linkage
2099  // area, and parameter passing area.  We start with 24/48 bytes, which is
2100  // prereserved space for [SP][CR][LR][3 x unused].
2101  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2102  unsigned NumOps = Outs.size();
2103  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2104
2105  // Add up all the space actually used.
2106  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2107  // they all go in registers, but we must reserve stack space for them for
2108  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2109  // assigned stack space in order, with padding so Altivec parameters are
2110  // 16-byte aligned.
2111  nAltivecParamsAtEnd = 0;
2112  for (unsigned i = 0; i != NumOps; ++i) {
2113    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2114    EVT ArgVT = Outs[i].VT;
2115    // Varargs Altivec parameters are padded to a 16 byte boundary.
2116    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2117        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2118      if (!isVarArg && !isPPC64) {
2119        // Non-varargs Altivec parameters go after all the non-Altivec
2120        // parameters; handle those later so we know how much padding we need.
2121        nAltivecParamsAtEnd++;
2122        continue;
2123      }
2124      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2125      NumBytes = ((NumBytes+15)/16)*16;
2126    }
2127    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2128  }
2129
2130   // Allow for Altivec parameters at the end, if needed.
2131  if (nAltivecParamsAtEnd) {
2132    NumBytes = ((NumBytes+15)/16)*16;
2133    NumBytes += 16*nAltivecParamsAtEnd;
2134  }
2135
2136  // The prolog code of the callee may store up to 8 GPR argument registers to
2137  // the stack, allowing va_start to index over them in memory if its varargs.
2138  // Because we cannot tell if this is needed on the caller side, we have to
2139  // conservatively assume that it is needed.  As such, make sure we have at
2140  // least enough stack space for the caller to store the 8 GPRs.
2141  NumBytes = std::max(NumBytes,
2142                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2143
2144  // Tail call needs the stack to be aligned.
2145  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2146    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2147      getStackAlignment();
2148    unsigned AlignMask = TargetAlign-1;
2149    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2150  }
2151
2152  return NumBytes;
2153}
2154
2155/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2156/// adjusted to accomodate the arguments for the tailcall.
2157static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2158                                   unsigned ParamSize) {
2159
2160  if (!isTailCall) return 0;
2161
2162  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2163  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2164  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2165  // Remember only if the new adjustement is bigger.
2166  if (SPDiff < FI->getTailCallSPDelta())
2167    FI->setTailCallSPDelta(SPDiff);
2168
2169  return SPDiff;
2170}
2171
2172/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2173/// for tail call optimization. Targets which want to do tail call
2174/// optimization should implement this function.
2175bool
2176PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2177                                                     CallingConv::ID CalleeCC,
2178                                                     bool isVarArg,
2179                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2180                                                     SelectionDAG& DAG) const {
2181  if (!GuaranteedTailCallOpt)
2182    return false;
2183
2184  // Variable argument functions are not supported.
2185  if (isVarArg)
2186    return false;
2187
2188  MachineFunction &MF = DAG.getMachineFunction();
2189  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2190  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2191    // Functions containing by val parameters are not supported.
2192    for (unsigned i = 0; i != Ins.size(); i++) {
2193       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2194       if (Flags.isByVal()) return false;
2195    }
2196
2197    // Non PIC/GOT  tail calls are supported.
2198    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2199      return true;
2200
2201    // At the moment we can only do local tail calls (in same module, hidden
2202    // or protected) if we are generating PIC.
2203    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2204      return G->getGlobal()->hasHiddenVisibility()
2205          || G->getGlobal()->hasProtectedVisibility();
2206  }
2207
2208  return false;
2209}
2210
2211/// isCallCompatibleAddress - Return the immediate to use if the specified
2212/// 32-bit value is representable in the immediate field of a BxA instruction.
2213static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2214  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2215  if (!C) return 0;
2216
2217  int Addr = C->getZExtValue();
2218  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2219      (Addr << 6 >> 6) != Addr)
2220    return 0;  // Top 6 bits have to be sext of immediate.
2221
2222  return DAG.getConstant((int)C->getZExtValue() >> 2,
2223                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2224}
2225
2226namespace {
2227
2228struct TailCallArgumentInfo {
2229  SDValue Arg;
2230  SDValue FrameIdxOp;
2231  int       FrameIdx;
2232
2233  TailCallArgumentInfo() : FrameIdx(0) {}
2234};
2235
2236}
2237
2238/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2239static void
2240StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2241                                           SDValue Chain,
2242                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2243                   SmallVector<SDValue, 8> &MemOpChains,
2244                   DebugLoc dl) {
2245  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2246    SDValue Arg = TailCallArgs[i].Arg;
2247    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2248    int FI = TailCallArgs[i].FrameIdx;
2249    // Store relative to framepointer.
2250    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2251                                       MachinePointerInfo::getFixedStack(FI),
2252                                       false, false, 0));
2253  }
2254}
2255
2256/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2257/// the appropriate stack slot for the tail call optimized function call.
2258static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2259                                               MachineFunction &MF,
2260                                               SDValue Chain,
2261                                               SDValue OldRetAddr,
2262                                               SDValue OldFP,
2263                                               int SPDiff,
2264                                               bool isPPC64,
2265                                               bool isDarwinABI,
2266                                               DebugLoc dl) {
2267  if (SPDiff) {
2268    // Calculate the new stack slot for the return address.
2269    int SlotSize = isPPC64 ? 8 : 4;
2270    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2271                                                                   isDarwinABI);
2272    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2273                                                          NewRetAddrLoc, true);
2274    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2275    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2276    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2277                         MachinePointerInfo::getFixedStack(NewRetAddr),
2278                         false, false, 0);
2279
2280    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2281    // slot as the FP is never overwritten.
2282    if (isDarwinABI) {
2283      int NewFPLoc =
2284        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2285      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2286                                                          true);
2287      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2288      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2289                           MachinePointerInfo::getFixedStack(NewFPIdx),
2290                           false, false, 0);
2291    }
2292  }
2293  return Chain;
2294}
2295
2296/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2297/// the position of the argument.
2298static void
2299CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2300                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2301                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2302  int Offset = ArgOffset + SPDiff;
2303  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2304  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2305  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2306  SDValue FIN = DAG.getFrameIndex(FI, VT);
2307  TailCallArgumentInfo Info;
2308  Info.Arg = Arg;
2309  Info.FrameIdxOp = FIN;
2310  Info.FrameIdx = FI;
2311  TailCallArguments.push_back(Info);
2312}
2313
2314/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2315/// stack slot. Returns the chain as result and the loaded frame pointers in
2316/// LROpOut/FPOpout. Used when tail calling.
2317SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2318                                                        int SPDiff,
2319                                                        SDValue Chain,
2320                                                        SDValue &LROpOut,
2321                                                        SDValue &FPOpOut,
2322                                                        bool isDarwinABI,
2323                                                        DebugLoc dl) const {
2324  if (SPDiff) {
2325    // Load the LR and FP stack slot for later adjusting.
2326    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2327    LROpOut = getReturnAddrFrameIndex(DAG);
2328    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2329                          false, false, 0);
2330    Chain = SDValue(LROpOut.getNode(), 1);
2331
2332    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2333    // slot as the FP is never overwritten.
2334    if (isDarwinABI) {
2335      FPOpOut = getFramePointerFrameIndex(DAG);
2336      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2337                            false, false, 0);
2338      Chain = SDValue(FPOpOut.getNode(), 1);
2339    }
2340  }
2341  return Chain;
2342}
2343
2344/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2345/// by "Src" to address "Dst" of size "Size".  Alignment information is
2346/// specified by the specific parameter attribute. The copy will be passed as
2347/// a byval function parameter.
2348/// Sometimes what we are copying is the end of a larger object, the part that
2349/// does not fit in registers.
2350static SDValue
2351CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2352                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2353                          DebugLoc dl) {
2354  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2355  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2356                       false, false, MachinePointerInfo(0),
2357                       MachinePointerInfo(0));
2358}
2359
2360/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2361/// tail calls.
2362static void
2363LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2364                 SDValue Arg, SDValue PtrOff, int SPDiff,
2365                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2366                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2367                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2368                 DebugLoc dl) {
2369  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2370  if (!isTailCall) {
2371    if (isVector) {
2372      SDValue StackPtr;
2373      if (isPPC64)
2374        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2375      else
2376        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2377      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2378                           DAG.getConstant(ArgOffset, PtrVT));
2379    }
2380    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2381                                       MachinePointerInfo(), false, false, 0));
2382  // Calculate and remember argument location.
2383  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2384                                  TailCallArguments);
2385}
2386
2387static
2388void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2389                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2390                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2391                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2392  MachineFunction &MF = DAG.getMachineFunction();
2393
2394  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2395  // might overwrite each other in case of tail call optimization.
2396  SmallVector<SDValue, 8> MemOpChains2;
2397  // Do not flag preceeding copytoreg stuff together with the following stuff.
2398  InFlag = SDValue();
2399  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2400                                    MemOpChains2, dl);
2401  if (!MemOpChains2.empty())
2402    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2403                        &MemOpChains2[0], MemOpChains2.size());
2404
2405  // Store the return address to the appropriate stack slot.
2406  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2407                                        isPPC64, isDarwinABI, dl);
2408
2409  // Emit callseq_end just before tailcall node.
2410  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2411                             DAG.getIntPtrConstant(0, true), InFlag);
2412  InFlag = Chain.getValue(1);
2413}
2414
2415static
2416unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2417                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2418                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2419                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2420                     const PPCSubtarget &PPCSubTarget) {
2421
2422  bool isPPC64 = PPCSubTarget.isPPC64();
2423  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2424
2425  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2426  NodeTys.push_back(MVT::Other);   // Returns a chain
2427  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2428
2429  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2430
2431  bool needIndirectCall = true;
2432  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2433    // If this is an absolute destination address, use the munged value.
2434    Callee = SDValue(Dest, 0);
2435    needIndirectCall = false;
2436  }
2437
2438  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2439    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2440    // Use indirect calls for ALL functions calls in JIT mode, since the
2441    // far-call stubs may be outside relocation limits for a BL instruction.
2442    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2443      unsigned OpFlags = 0;
2444      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2445          PPCSubTarget.getDarwinVers() < 9 &&
2446          (G->getGlobal()->isDeclaration() ||
2447           G->getGlobal()->isWeakForLinker())) {
2448        // PC-relative references to external symbols should go through $stub,
2449        // unless we're building with the leopard linker or later, which
2450        // automatically synthesizes these stubs.
2451        OpFlags = PPCII::MO_DARWIN_STUB;
2452      }
2453
2454      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2455      // every direct call is) turn it into a TargetGlobalAddress /
2456      // TargetExternalSymbol node so that legalize doesn't hack it.
2457      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2458                                          Callee.getValueType(),
2459                                          0, OpFlags);
2460      needIndirectCall = false;
2461    }
2462  }
2463
2464  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2465    unsigned char OpFlags = 0;
2466
2467    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2468        PPCSubTarget.getDarwinVers() < 9) {
2469      // PC-relative references to external symbols should go through $stub,
2470      // unless we're building with the leopard linker or later, which
2471      // automatically synthesizes these stubs.
2472      OpFlags = PPCII::MO_DARWIN_STUB;
2473    }
2474
2475    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2476                                         OpFlags);
2477    needIndirectCall = false;
2478  }
2479
2480  if (needIndirectCall) {
2481    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2482    // to do the call, we can't use PPCISD::CALL.
2483    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2484
2485    if (isSVR4ABI && isPPC64) {
2486      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2487      // entry point, but to the function descriptor (the function entry point
2488      // address is part of the function descriptor though).
2489      // The function descriptor is a three doubleword structure with the
2490      // following fields: function entry point, TOC base address and
2491      // environment pointer.
2492      // Thus for a call through a function pointer, the following actions need
2493      // to be performed:
2494      //   1. Save the TOC of the caller in the TOC save area of its stack
2495      //      frame (this is done in LowerCall_Darwin()).
2496      //   2. Load the address of the function entry point from the function
2497      //      descriptor.
2498      //   3. Load the TOC of the callee from the function descriptor into r2.
2499      //   4. Load the environment pointer from the function descriptor into
2500      //      r11.
2501      //   5. Branch to the function entry point address.
2502      //   6. On return of the callee, the TOC of the caller needs to be
2503      //      restored (this is done in FinishCall()).
2504      //
2505      // All those operations are flagged together to ensure that no other
2506      // operations can be scheduled in between. E.g. without flagging the
2507      // operations together, a TOC access in the caller could be scheduled
2508      // between the load of the callee TOC and the branch to the callee, which
2509      // results in the TOC access going through the TOC of the callee instead
2510      // of going through the TOC of the caller, which leads to incorrect code.
2511
2512      // Load the address of the function entry point from the function
2513      // descriptor.
2514      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2515      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2516                                        InFlag.getNode() ? 3 : 2);
2517      Chain = LoadFuncPtr.getValue(1);
2518      InFlag = LoadFuncPtr.getValue(2);
2519
2520      // Load environment pointer into r11.
2521      // Offset of the environment pointer within the function descriptor.
2522      SDValue PtrOff = DAG.getIntPtrConstant(16);
2523
2524      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2525      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2526                                       InFlag);
2527      Chain = LoadEnvPtr.getValue(1);
2528      InFlag = LoadEnvPtr.getValue(2);
2529
2530      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2531                                        InFlag);
2532      Chain = EnvVal.getValue(0);
2533      InFlag = EnvVal.getValue(1);
2534
2535      // Load TOC of the callee into r2. We are using a target-specific load
2536      // with r2 hard coded, because the result of a target-independent load
2537      // would never go directly into r2, since r2 is a reserved register (which
2538      // prevents the register allocator from allocating it), resulting in an
2539      // additional register being allocated and an unnecessary move instruction
2540      // being generated.
2541      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2542      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2543                                       Callee, InFlag);
2544      Chain = LoadTOCPtr.getValue(0);
2545      InFlag = LoadTOCPtr.getValue(1);
2546
2547      MTCTROps[0] = Chain;
2548      MTCTROps[1] = LoadFuncPtr;
2549      MTCTROps[2] = InFlag;
2550    }
2551
2552    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2553                        2 + (InFlag.getNode() != 0));
2554    InFlag = Chain.getValue(1);
2555
2556    NodeTys.clear();
2557    NodeTys.push_back(MVT::Other);
2558    NodeTys.push_back(MVT::Glue);
2559    Ops.push_back(Chain);
2560    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2561    Callee.setNode(0);
2562    // Add CTR register as callee so a bctr can be emitted later.
2563    if (isTailCall)
2564      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2565  }
2566
2567  // If this is a direct call, pass the chain and the callee.
2568  if (Callee.getNode()) {
2569    Ops.push_back(Chain);
2570    Ops.push_back(Callee);
2571  }
2572  // If this is a tail call add stack pointer delta.
2573  if (isTailCall)
2574    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2575
2576  // Add argument registers to the end of the list so that they are known live
2577  // into the call.
2578  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2579    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2580                                  RegsToPass[i].second.getValueType()));
2581
2582  return CallOpc;
2583}
2584
2585SDValue
2586PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2587                                   CallingConv::ID CallConv, bool isVarArg,
2588                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2589                                   DebugLoc dl, SelectionDAG &DAG,
2590                                   SmallVectorImpl<SDValue> &InVals) const {
2591
2592  SmallVector<CCValAssign, 16> RVLocs;
2593  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2594                    RVLocs, *DAG.getContext());
2595  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2596
2597  // Copy all of the result registers out of their specified physreg.
2598  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2599    CCValAssign &VA = RVLocs[i];
2600    EVT VT = VA.getValVT();
2601    assert(VA.isRegLoc() && "Can only return in registers!");
2602    Chain = DAG.getCopyFromReg(Chain, dl,
2603                               VA.getLocReg(), VT, InFlag).getValue(1);
2604    InVals.push_back(Chain.getValue(0));
2605    InFlag = Chain.getValue(2);
2606  }
2607
2608  return Chain;
2609}
2610
2611SDValue
2612PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2613                              bool isTailCall, bool isVarArg,
2614                              SelectionDAG &DAG,
2615                              SmallVector<std::pair<unsigned, SDValue>, 8>
2616                                &RegsToPass,
2617                              SDValue InFlag, SDValue Chain,
2618                              SDValue &Callee,
2619                              int SPDiff, unsigned NumBytes,
2620                              const SmallVectorImpl<ISD::InputArg> &Ins,
2621                              SmallVectorImpl<SDValue> &InVals) const {
2622  std::vector<EVT> NodeTys;
2623  SmallVector<SDValue, 8> Ops;
2624  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2625                                 isTailCall, RegsToPass, Ops, NodeTys,
2626                                 PPCSubTarget);
2627
2628  // When performing tail call optimization the callee pops its arguments off
2629  // the stack. Account for this here so these bytes can be pushed back on in
2630  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2631  int BytesCalleePops =
2632    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2633
2634  if (InFlag.getNode())
2635    Ops.push_back(InFlag);
2636
2637  // Emit tail call.
2638  if (isTailCall) {
2639    // If this is the first return lowered for this function, add the regs
2640    // to the liveout set for the function.
2641    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2642      SmallVector<CCValAssign, 16> RVLocs;
2643      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2644                     *DAG.getContext());
2645      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2646      for (unsigned i = 0; i != RVLocs.size(); ++i)
2647        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2648    }
2649
2650    assert(((Callee.getOpcode() == ISD::Register &&
2651             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2652            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2653            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2654            isa<ConstantSDNode>(Callee)) &&
2655    "Expecting an global address, external symbol, absolute value or register");
2656
2657    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2658  }
2659
2660  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2661  InFlag = Chain.getValue(1);
2662
2663  // Add a NOP immediately after the branch instruction when using the 64-bit
2664  // SVR4 ABI. At link time, if caller and callee are in a different module and
2665  // thus have a different TOC, the call will be replaced with a call to a stub
2666  // function which saves the current TOC, loads the TOC of the callee and
2667  // branches to the callee. The NOP will be replaced with a load instruction
2668  // which restores the TOC of the caller from the TOC save slot of the current
2669  // stack frame. If caller and callee belong to the same module (and have the
2670  // same TOC), the NOP will remain unchanged.
2671  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2672    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2673    if (CallOpc == PPCISD::BCTRL_SVR4) {
2674      // This is a call through a function pointer.
2675      // Restore the caller TOC from the save area into R2.
2676      // See PrepareCall() for more information about calls through function
2677      // pointers in the 64-bit SVR4 ABI.
2678      // We are using a target-specific load with r2 hard coded, because the
2679      // result of a target-independent load would never go directly into r2,
2680      // since r2 is a reserved register (which prevents the register allocator
2681      // from allocating it), resulting in an additional register being
2682      // allocated and an unnecessary move instruction being generated.
2683      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2684      InFlag = Chain.getValue(1);
2685    } else {
2686      // Otherwise insert NOP.
2687      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2688    }
2689  }
2690
2691  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2692                             DAG.getIntPtrConstant(BytesCalleePops, true),
2693                             InFlag);
2694  if (!Ins.empty())
2695    InFlag = Chain.getValue(1);
2696
2697  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2698                         Ins, dl, DAG, InVals);
2699}
2700
2701SDValue
2702PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2703                             CallingConv::ID CallConv, bool isVarArg,
2704                             bool &isTailCall,
2705                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2706                             const SmallVectorImpl<SDValue> &OutVals,
2707                             const SmallVectorImpl<ISD::InputArg> &Ins,
2708                             DebugLoc dl, SelectionDAG &DAG,
2709                             SmallVectorImpl<SDValue> &InVals) const {
2710  if (isTailCall)
2711    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2712                                                   Ins, DAG);
2713
2714  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2715    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2716                          isTailCall, Outs, OutVals, Ins,
2717                          dl, DAG, InVals);
2718
2719  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2720                          isTailCall, Outs, OutVals, Ins,
2721                          dl, DAG, InVals);
2722}
2723
2724SDValue
2725PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2726                                  CallingConv::ID CallConv, bool isVarArg,
2727                                  bool isTailCall,
2728                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2729                                  const SmallVectorImpl<SDValue> &OutVals,
2730                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2731                                  DebugLoc dl, SelectionDAG &DAG,
2732                                  SmallVectorImpl<SDValue> &InVals) const {
2733  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2734  // of the 32-bit SVR4 ABI stack frame layout.
2735
2736  assert((CallConv == CallingConv::C ||
2737          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2738
2739  unsigned PtrByteSize = 4;
2740
2741  MachineFunction &MF = DAG.getMachineFunction();
2742
2743  // Mark this function as potentially containing a function that contains a
2744  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2745  // and restoring the callers stack pointer in this functions epilog. This is
2746  // done because by tail calling the called function might overwrite the value
2747  // in this function's (MF) stack pointer stack slot 0(SP).
2748  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2749    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2750
2751  // Count how many bytes are to be pushed on the stack, including the linkage
2752  // area, parameter list area and the part of the local variable space which
2753  // contains copies of aggregates which are passed by value.
2754
2755  // Assign locations to all of the outgoing arguments.
2756  SmallVector<CCValAssign, 16> ArgLocs;
2757  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2758                 ArgLocs, *DAG.getContext());
2759
2760  // Reserve space for the linkage area on the stack.
2761  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2762
2763  if (isVarArg) {
2764    // Handle fixed and variable vector arguments differently.
2765    // Fixed vector arguments go into registers as long as registers are
2766    // available. Variable vector arguments always go into memory.
2767    unsigned NumArgs = Outs.size();
2768
2769    for (unsigned i = 0; i != NumArgs; ++i) {
2770      MVT ArgVT = Outs[i].VT;
2771      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2772      bool Result;
2773
2774      if (Outs[i].IsFixed) {
2775        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2776                             CCInfo);
2777      } else {
2778        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2779                                    ArgFlags, CCInfo);
2780      }
2781
2782      if (Result) {
2783#ifndef NDEBUG
2784        errs() << "Call operand #" << i << " has unhandled type "
2785             << EVT(ArgVT).getEVTString() << "\n";
2786#endif
2787        llvm_unreachable(0);
2788      }
2789    }
2790  } else {
2791    // All arguments are treated the same.
2792    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2793  }
2794
2795  // Assign locations to all of the outgoing aggregate by value arguments.
2796  SmallVector<CCValAssign, 16> ByValArgLocs;
2797  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2798                      *DAG.getContext());
2799
2800  // Reserve stack space for the allocations in CCInfo.
2801  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2802
2803  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2804
2805  // Size of the linkage area, parameter list area and the part of the local
2806  // space variable where copies of aggregates which are passed by value are
2807  // stored.
2808  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2809
2810  // Calculate by how many bytes the stack has to be adjusted in case of tail
2811  // call optimization.
2812  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2813
2814  // Adjust the stack pointer for the new arguments...
2815  // These operations are automatically eliminated by the prolog/epilog pass
2816  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2817  SDValue CallSeqStart = Chain;
2818
2819  // Load the return address and frame pointer so it can be moved somewhere else
2820  // later.
2821  SDValue LROp, FPOp;
2822  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2823                                       dl);
2824
2825  // Set up a copy of the stack pointer for use loading and storing any
2826  // arguments that may not fit in the registers available for argument
2827  // passing.
2828  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2829
2830  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2831  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2832  SmallVector<SDValue, 8> MemOpChains;
2833
2834  // Walk the register/memloc assignments, inserting copies/loads.
2835  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2836       i != e;
2837       ++i) {
2838    CCValAssign &VA = ArgLocs[i];
2839    SDValue Arg = OutVals[i];
2840    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2841
2842    if (Flags.isByVal()) {
2843      // Argument is an aggregate which is passed by value, thus we need to
2844      // create a copy of it in the local variable space of the current stack
2845      // frame (which is the stack frame of the caller) and pass the address of
2846      // this copy to the callee.
2847      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2848      CCValAssign &ByValVA = ByValArgLocs[j++];
2849      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2850
2851      // Memory reserved in the local variable space of the callers stack frame.
2852      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2853
2854      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2855      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2856
2857      // Create a copy of the argument in the local area of the current
2858      // stack frame.
2859      SDValue MemcpyCall =
2860        CreateCopyOfByValArgument(Arg, PtrOff,
2861                                  CallSeqStart.getNode()->getOperand(0),
2862                                  Flags, DAG, dl);
2863
2864      // This must go outside the CALLSEQ_START..END.
2865      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2866                           CallSeqStart.getNode()->getOperand(1));
2867      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2868                             NewCallSeqStart.getNode());
2869      Chain = CallSeqStart = NewCallSeqStart;
2870
2871      // Pass the address of the aggregate copy on the stack either in a
2872      // physical register or in the parameter list area of the current stack
2873      // frame to the callee.
2874      Arg = PtrOff;
2875    }
2876
2877    if (VA.isRegLoc()) {
2878      // Put argument in a physical register.
2879      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2880    } else {
2881      // Put argument in the parameter list area of the current stack frame.
2882      assert(VA.isMemLoc());
2883      unsigned LocMemOffset = VA.getLocMemOffset();
2884
2885      if (!isTailCall) {
2886        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2887        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2888
2889        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2890                                           MachinePointerInfo(),
2891                                           false, false, 0));
2892      } else {
2893        // Calculate and remember argument location.
2894        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2895                                 TailCallArguments);
2896      }
2897    }
2898  }
2899
2900  if (!MemOpChains.empty())
2901    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2902                        &MemOpChains[0], MemOpChains.size());
2903
2904  // Build a sequence of copy-to-reg nodes chained together with token chain
2905  // and flag operands which copy the outgoing args into the appropriate regs.
2906  SDValue InFlag;
2907  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2908    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2909                             RegsToPass[i].second, InFlag);
2910    InFlag = Chain.getValue(1);
2911  }
2912
2913  // Set CR6 to true if this is a vararg call.
2914  if (isVarArg) {
2915    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2916    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2917    InFlag = Chain.getValue(1);
2918  }
2919
2920  if (isTailCall)
2921    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2922                    false, TailCallArguments);
2923
2924  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2925                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2926                    Ins, InVals);
2927}
2928
2929SDValue
2930PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2931                                    CallingConv::ID CallConv, bool isVarArg,
2932                                    bool isTailCall,
2933                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2934                                    const SmallVectorImpl<SDValue> &OutVals,
2935                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2936                                    DebugLoc dl, SelectionDAG &DAG,
2937                                    SmallVectorImpl<SDValue> &InVals) const {
2938
2939  unsigned NumOps  = Outs.size();
2940
2941  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2942  bool isPPC64 = PtrVT == MVT::i64;
2943  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2944
2945  MachineFunction &MF = DAG.getMachineFunction();
2946
2947  // Mark this function as potentially containing a function that contains a
2948  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2949  // and restoring the callers stack pointer in this functions epilog. This is
2950  // done because by tail calling the called function might overwrite the value
2951  // in this function's (MF) stack pointer stack slot 0(SP).
2952  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2953    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2954
2955  unsigned nAltivecParamsAtEnd = 0;
2956
2957  // Count how many bytes are to be pushed on the stack, including the linkage
2958  // area, and parameter passing area.  We start with 24/48 bytes, which is
2959  // prereserved space for [SP][CR][LR][3 x unused].
2960  unsigned NumBytes =
2961    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2962                                         Outs, OutVals,
2963                                         nAltivecParamsAtEnd);
2964
2965  // Calculate by how many bytes the stack has to be adjusted in case of tail
2966  // call optimization.
2967  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2968
2969  // To protect arguments on the stack from being clobbered in a tail call,
2970  // force all the loads to happen before doing any other lowering.
2971  if (isTailCall)
2972    Chain = DAG.getStackArgumentTokenFactor(Chain);
2973
2974  // Adjust the stack pointer for the new arguments...
2975  // These operations are automatically eliminated by the prolog/epilog pass
2976  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2977  SDValue CallSeqStart = Chain;
2978
2979  // Load the return address and frame pointer so it can be move somewhere else
2980  // later.
2981  SDValue LROp, FPOp;
2982  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2983                                       dl);
2984
2985  // Set up a copy of the stack pointer for use loading and storing any
2986  // arguments that may not fit in the registers available for argument
2987  // passing.
2988  SDValue StackPtr;
2989  if (isPPC64)
2990    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2991  else
2992    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2993
2994  // Figure out which arguments are going to go in registers, and which in
2995  // memory.  Also, if this is a vararg function, floating point operations
2996  // must be stored to our stack, and loaded into integer regs as well, if
2997  // any integer regs are available for argument passing.
2998  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2999  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3000
3001  static const unsigned GPR_32[] = {           // 32-bit registers.
3002    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3003    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3004  };
3005  static const unsigned GPR_64[] = {           // 64-bit registers.
3006    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3007    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3008  };
3009  static const unsigned *FPR = GetFPR();
3010
3011  static const unsigned VR[] = {
3012    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3013    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3014  };
3015  const unsigned NumGPRs = array_lengthof(GPR_32);
3016  const unsigned NumFPRs = 13;
3017  const unsigned NumVRs  = array_lengthof(VR);
3018
3019  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3020
3021  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3022  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3023
3024  SmallVector<SDValue, 8> MemOpChains;
3025  for (unsigned i = 0; i != NumOps; ++i) {
3026    SDValue Arg = OutVals[i];
3027    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3028
3029    // PtrOff will be used to store the current argument to the stack if a
3030    // register cannot be found for it.
3031    SDValue PtrOff;
3032
3033    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3034
3035    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3036
3037    // On PPC64, promote integers to 64-bit values.
3038    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3039      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3040      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3041      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3042    }
3043
3044    // FIXME memcpy is used way more than necessary.  Correctness first.
3045    if (Flags.isByVal()) {
3046      unsigned Size = Flags.getByValSize();
3047      if (Size==1 || Size==2) {
3048        // Very small objects are passed right-justified.
3049        // Everything else is passed left-justified.
3050        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3051        if (GPR_idx != NumGPRs) {
3052          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3053                                        MachinePointerInfo(), VT,
3054                                        false, false, 0);
3055          MemOpChains.push_back(Load.getValue(1));
3056          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3057
3058          ArgOffset += PtrByteSize;
3059        } else {
3060          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3061          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3062          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3063                                CallSeqStart.getNode()->getOperand(0),
3064                                Flags, DAG, dl);
3065          // This must go outside the CALLSEQ_START..END.
3066          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3067                               CallSeqStart.getNode()->getOperand(1));
3068          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3069                                 NewCallSeqStart.getNode());
3070          Chain = CallSeqStart = NewCallSeqStart;
3071          ArgOffset += PtrByteSize;
3072        }
3073        continue;
3074      }
3075      // Copy entire object into memory.  There are cases where gcc-generated
3076      // code assumes it is there, even if it could be put entirely into
3077      // registers.  (This is not what the doc says.)
3078      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3079                            CallSeqStart.getNode()->getOperand(0),
3080                            Flags, DAG, dl);
3081      // This must go outside the CALLSEQ_START..END.
3082      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3083                           CallSeqStart.getNode()->getOperand(1));
3084      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3085      Chain = CallSeqStart = NewCallSeqStart;
3086      // And copy the pieces of it that fit into registers.
3087      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3088        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3089        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3090        if (GPR_idx != NumGPRs) {
3091          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3092                                     MachinePointerInfo(),
3093                                     false, false, 0);
3094          MemOpChains.push_back(Load.getValue(1));
3095          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3096          ArgOffset += PtrByteSize;
3097        } else {
3098          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3099          break;
3100        }
3101      }
3102      continue;
3103    }
3104
3105    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3106    default: llvm_unreachable("Unexpected ValueType for argument!");
3107    case MVT::i32:
3108    case MVT::i64:
3109      if (GPR_idx != NumGPRs) {
3110        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3111      } else {
3112        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3113                         isPPC64, isTailCall, false, MemOpChains,
3114                         TailCallArguments, dl);
3115      }
3116      ArgOffset += PtrByteSize;
3117      break;
3118    case MVT::f32:
3119    case MVT::f64:
3120      if (FPR_idx != NumFPRs) {
3121        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3122
3123        if (isVarArg) {
3124          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3125                                       MachinePointerInfo(), false, false, 0);
3126          MemOpChains.push_back(Store);
3127
3128          // Float varargs are always shadowed in available integer registers
3129          if (GPR_idx != NumGPRs) {
3130            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3131                                       MachinePointerInfo(), false, false, 0);
3132            MemOpChains.push_back(Load.getValue(1));
3133            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3134          }
3135          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3136            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3137            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3138            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3139                                       MachinePointerInfo(),
3140                                       false, false, 0);
3141            MemOpChains.push_back(Load.getValue(1));
3142            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3143          }
3144        } else {
3145          // If we have any FPRs remaining, we may also have GPRs remaining.
3146          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3147          // GPRs.
3148          if (GPR_idx != NumGPRs)
3149            ++GPR_idx;
3150          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3151              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3152            ++GPR_idx;
3153        }
3154      } else {
3155        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3156                         isPPC64, isTailCall, false, MemOpChains,
3157                         TailCallArguments, dl);
3158      }
3159      if (isPPC64)
3160        ArgOffset += 8;
3161      else
3162        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3163      break;
3164    case MVT::v4f32:
3165    case MVT::v4i32:
3166    case MVT::v8i16:
3167    case MVT::v16i8:
3168      if (isVarArg) {
3169        // These go aligned on the stack, or in the corresponding R registers
3170        // when within range.  The Darwin PPC ABI doc claims they also go in
3171        // V registers; in fact gcc does this only for arguments that are
3172        // prototyped, not for those that match the ...  We do it for all
3173        // arguments, seems to work.
3174        while (ArgOffset % 16 !=0) {
3175          ArgOffset += PtrByteSize;
3176          if (GPR_idx != NumGPRs)
3177            GPR_idx++;
3178        }
3179        // We could elide this store in the case where the object fits
3180        // entirely in R registers.  Maybe later.
3181        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3182                            DAG.getConstant(ArgOffset, PtrVT));
3183        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3184                                     MachinePointerInfo(), false, false, 0);
3185        MemOpChains.push_back(Store);
3186        if (VR_idx != NumVRs) {
3187          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3188                                     MachinePointerInfo(),
3189                                     false, false, 0);
3190          MemOpChains.push_back(Load.getValue(1));
3191          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3192        }
3193        ArgOffset += 16;
3194        for (unsigned i=0; i<16; i+=PtrByteSize) {
3195          if (GPR_idx == NumGPRs)
3196            break;
3197          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3198                                  DAG.getConstant(i, PtrVT));
3199          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3200                                     false, false, 0);
3201          MemOpChains.push_back(Load.getValue(1));
3202          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3203        }
3204        break;
3205      }
3206
3207      // Non-varargs Altivec params generally go in registers, but have
3208      // stack space allocated at the end.
3209      if (VR_idx != NumVRs) {
3210        // Doesn't have GPR space allocated.
3211        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3212      } else if (nAltivecParamsAtEnd==0) {
3213        // We are emitting Altivec params in order.
3214        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3215                         isPPC64, isTailCall, true, MemOpChains,
3216                         TailCallArguments, dl);
3217        ArgOffset += 16;
3218      }
3219      break;
3220    }
3221  }
3222  // If all Altivec parameters fit in registers, as they usually do,
3223  // they get stack space following the non-Altivec parameters.  We
3224  // don't track this here because nobody below needs it.
3225  // If there are more Altivec parameters than fit in registers emit
3226  // the stores here.
3227  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3228    unsigned j = 0;
3229    // Offset is aligned; skip 1st 12 params which go in V registers.
3230    ArgOffset = ((ArgOffset+15)/16)*16;
3231    ArgOffset += 12*16;
3232    for (unsigned i = 0; i != NumOps; ++i) {
3233      SDValue Arg = OutVals[i];
3234      EVT ArgType = Outs[i].VT;
3235      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3236          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3237        if (++j > NumVRs) {
3238          SDValue PtrOff;
3239          // We are emitting Altivec params in order.
3240          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3241                           isPPC64, isTailCall, true, MemOpChains,
3242                           TailCallArguments, dl);
3243          ArgOffset += 16;
3244        }
3245      }
3246    }
3247  }
3248
3249  if (!MemOpChains.empty())
3250    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3251                        &MemOpChains[0], MemOpChains.size());
3252
3253  // Check if this is an indirect call (MTCTR/BCTRL).
3254  // See PrepareCall() for more information about calls through function
3255  // pointers in the 64-bit SVR4 ABI.
3256  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3257      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3258      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3259      !isBLACompatibleAddress(Callee, DAG)) {
3260    // Load r2 into a virtual register and store it to the TOC save area.
3261    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3262    // TOC save area offset.
3263    SDValue PtrOff = DAG.getIntPtrConstant(40);
3264    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3265    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3266                         false, false, 0);
3267  }
3268
3269  // On Darwin, R12 must contain the address of an indirect callee.  This does
3270  // not mean the MTCTR instruction must use R12; it's easier to model this as
3271  // an extra parameter, so do that.
3272  if (!isTailCall &&
3273      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3274      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3275      !isBLACompatibleAddress(Callee, DAG))
3276    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3277                                                   PPC::R12), Callee));
3278
3279  // Build a sequence of copy-to-reg nodes chained together with token chain
3280  // and flag operands which copy the outgoing args into the appropriate regs.
3281  SDValue InFlag;
3282  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3283    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3284                             RegsToPass[i].second, InFlag);
3285    InFlag = Chain.getValue(1);
3286  }
3287
3288  if (isTailCall)
3289    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3290                    FPOp, true, TailCallArguments);
3291
3292  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3293                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3294                    Ins, InVals);
3295}
3296
3297SDValue
3298PPCTargetLowering::LowerReturn(SDValue Chain,
3299                               CallingConv::ID CallConv, bool isVarArg,
3300                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3301                               const SmallVectorImpl<SDValue> &OutVals,
3302                               DebugLoc dl, SelectionDAG &DAG) const {
3303
3304  SmallVector<CCValAssign, 16> RVLocs;
3305  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3306                 RVLocs, *DAG.getContext());
3307  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3308
3309  // If this is the first return lowered for this function, add the regs to the
3310  // liveout set for the function.
3311  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3312    for (unsigned i = 0; i != RVLocs.size(); ++i)
3313      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3314  }
3315
3316  SDValue Flag;
3317
3318  // Copy the result values into the output registers.
3319  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3320    CCValAssign &VA = RVLocs[i];
3321    assert(VA.isRegLoc() && "Can only return in registers!");
3322    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3323                             OutVals[i], Flag);
3324    Flag = Chain.getValue(1);
3325  }
3326
3327  if (Flag.getNode())
3328    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3329  else
3330    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3331}
3332
3333SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3334                                   const PPCSubtarget &Subtarget) const {
3335  // When we pop the dynamic allocation we need to restore the SP link.
3336  DebugLoc dl = Op.getDebugLoc();
3337
3338  // Get the corect type for pointers.
3339  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3340
3341  // Construct the stack pointer operand.
3342  bool isPPC64 = Subtarget.isPPC64();
3343  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3344  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3345
3346  // Get the operands for the STACKRESTORE.
3347  SDValue Chain = Op.getOperand(0);
3348  SDValue SaveSP = Op.getOperand(1);
3349
3350  // Load the old link SP.
3351  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3352                                   MachinePointerInfo(),
3353                                   false, false, 0);
3354
3355  // Restore the stack pointer.
3356  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3357
3358  // Store the old link SP.
3359  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3360                      false, false, 0);
3361}
3362
3363
3364
3365SDValue
3366PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3367  MachineFunction &MF = DAG.getMachineFunction();
3368  bool isPPC64 = PPCSubTarget.isPPC64();
3369  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3370  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3371
3372  // Get current frame pointer save index.  The users of this index will be
3373  // primarily DYNALLOC instructions.
3374  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3375  int RASI = FI->getReturnAddrSaveIndex();
3376
3377  // If the frame pointer save index hasn't been defined yet.
3378  if (!RASI) {
3379    // Find out what the fix offset of the frame pointer save area.
3380    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3381    // Allocate the frame index for frame pointer save area.
3382    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3383    // Save the result.
3384    FI->setReturnAddrSaveIndex(RASI);
3385  }
3386  return DAG.getFrameIndex(RASI, PtrVT);
3387}
3388
3389SDValue
3390PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3391  MachineFunction &MF = DAG.getMachineFunction();
3392  bool isPPC64 = PPCSubTarget.isPPC64();
3393  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3394  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3395
3396  // Get current frame pointer save index.  The users of this index will be
3397  // primarily DYNALLOC instructions.
3398  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3399  int FPSI = FI->getFramePointerSaveIndex();
3400
3401  // If the frame pointer save index hasn't been defined yet.
3402  if (!FPSI) {
3403    // Find out what the fix offset of the frame pointer save area.
3404    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3405                                                           isDarwinABI);
3406
3407    // Allocate the frame index for frame pointer save area.
3408    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3409    // Save the result.
3410    FI->setFramePointerSaveIndex(FPSI);
3411  }
3412  return DAG.getFrameIndex(FPSI, PtrVT);
3413}
3414
3415SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3416                                         SelectionDAG &DAG,
3417                                         const PPCSubtarget &Subtarget) const {
3418  // Get the inputs.
3419  SDValue Chain = Op.getOperand(0);
3420  SDValue Size  = Op.getOperand(1);
3421  DebugLoc dl = Op.getDebugLoc();
3422
3423  // Get the corect type for pointers.
3424  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3425  // Negate the size.
3426  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3427                                  DAG.getConstant(0, PtrVT), Size);
3428  // Construct a node for the frame pointer save index.
3429  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3430  // Build a DYNALLOC node.
3431  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3432  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3433  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3434}
3435
3436/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3437/// possible.
3438SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3439  // Not FP? Not a fsel.
3440  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3441      !Op.getOperand(2).getValueType().isFloatingPoint())
3442    return Op;
3443
3444  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3445
3446  // Cannot handle SETEQ/SETNE.
3447  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3448
3449  EVT ResVT = Op.getValueType();
3450  EVT CmpVT = Op.getOperand(0).getValueType();
3451  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3452  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3453  DebugLoc dl = Op.getDebugLoc();
3454
3455  // If the RHS of the comparison is a 0.0, we don't need to do the
3456  // subtraction at all.
3457  if (isFloatingPointZero(RHS))
3458    switch (CC) {
3459    default: break;       // SETUO etc aren't handled by fsel.
3460    case ISD::SETULT:
3461    case ISD::SETLT:
3462      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3463    case ISD::SETOGE:
3464    case ISD::SETGE:
3465      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3466        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3467      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3468    case ISD::SETUGT:
3469    case ISD::SETGT:
3470      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3471    case ISD::SETOLE:
3472    case ISD::SETLE:
3473      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3474        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3475      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3476                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3477    }
3478
3479  SDValue Cmp;
3480  switch (CC) {
3481  default: break;       // SETUO etc aren't handled by fsel.
3482  case ISD::SETULT:
3483  case ISD::SETLT:
3484    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3485    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3486      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3487      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3488  case ISD::SETOGE:
3489  case ISD::SETGE:
3490    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3491    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3492      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3493      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3494  case ISD::SETUGT:
3495  case ISD::SETGT:
3496    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3497    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3498      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3499      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3500  case ISD::SETOLE:
3501  case ISD::SETLE:
3502    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3503    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3504      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3505      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3506  }
3507  return Op;
3508}
3509
3510// FIXME: Split this code up when LegalizeDAGTypes lands.
3511SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3512                                           DebugLoc dl) const {
3513  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3514  SDValue Src = Op.getOperand(0);
3515  if (Src.getValueType() == MVT::f32)
3516    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3517
3518  SDValue Tmp;
3519  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3520  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3521  case MVT::i32:
3522    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3523                                                         PPCISD::FCTIDZ,
3524                      dl, MVT::f64, Src);
3525    break;
3526  case MVT::i64:
3527    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3528    break;
3529  }
3530
3531  // Convert the FP value to an int value through memory.
3532  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3533
3534  // Emit a store to the stack slot.
3535  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3536                               MachinePointerInfo(), false, false, 0);
3537
3538  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3539  // add in a bias.
3540  if (Op.getValueType() == MVT::i32)
3541    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3542                        DAG.getConstant(4, FIPtr.getValueType()));
3543  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3544                     false, false, 0);
3545}
3546
3547SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3548                                           SelectionDAG &DAG) const {
3549  DebugLoc dl = Op.getDebugLoc();
3550  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3551  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3552    return SDValue();
3553
3554  if (Op.getOperand(0).getValueType() == MVT::i64) {
3555    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3556    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3557    if (Op.getValueType() == MVT::f32)
3558      FP = DAG.getNode(ISD::FP_ROUND, dl,
3559                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3560    return FP;
3561  }
3562
3563  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3564         "Unhandled SINT_TO_FP type in custom expander!");
3565  // Since we only generate this in 64-bit mode, we can take advantage of
3566  // 64-bit registers.  In particular, sign extend the input value into the
3567  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3568  // then lfd it and fcfid it.
3569  MachineFunction &MF = DAG.getMachineFunction();
3570  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3571  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3572  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3573  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3574
3575  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3576                                Op.getOperand(0));
3577
3578  // STD the extended value into the stack slot.
3579  MachineMemOperand *MMO =
3580    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3581                            MachineMemOperand::MOStore, 8, 8);
3582  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3583  SDValue Store =
3584    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3585                            Ops, 4, MVT::i64, MMO);
3586  // Load the value as a double.
3587  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3588                           false, false, 0);
3589
3590  // FCFID it and return it.
3591  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3592  if (Op.getValueType() == MVT::f32)
3593    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3594  return FP;
3595}
3596
3597SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3598                                            SelectionDAG &DAG) const {
3599  DebugLoc dl = Op.getDebugLoc();
3600  /*
3601   The rounding mode is in bits 30:31 of FPSR, and has the following
3602   settings:
3603     00 Round to nearest
3604     01 Round to 0
3605     10 Round to +inf
3606     11 Round to -inf
3607
3608  FLT_ROUNDS, on the other hand, expects the following:
3609    -1 Undefined
3610     0 Round to 0
3611     1 Round to nearest
3612     2 Round to +inf
3613     3 Round to -inf
3614
3615  To perform the conversion, we do:
3616    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3617  */
3618
3619  MachineFunction &MF = DAG.getMachineFunction();
3620  EVT VT = Op.getValueType();
3621  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3622  std::vector<EVT> NodeTys;
3623  SDValue MFFSreg, InFlag;
3624
3625  // Save FP Control Word to register
3626  NodeTys.push_back(MVT::f64);    // return register
3627  NodeTys.push_back(MVT::Glue);   // unused in this context
3628  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3629
3630  // Save FP register to stack slot
3631  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3632  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3633  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3634                               StackSlot, MachinePointerInfo(), false, false,0);
3635
3636  // Load FP Control Word from low 32 bits of stack slot.
3637  SDValue Four = DAG.getConstant(4, PtrVT);
3638  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3639  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3640                            false, false, 0);
3641
3642  // Transform as necessary
3643  SDValue CWD1 =
3644    DAG.getNode(ISD::AND, dl, MVT::i32,
3645                CWD, DAG.getConstant(3, MVT::i32));
3646  SDValue CWD2 =
3647    DAG.getNode(ISD::SRL, dl, MVT::i32,
3648                DAG.getNode(ISD::AND, dl, MVT::i32,
3649                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3650                                        CWD, DAG.getConstant(3, MVT::i32)),
3651                            DAG.getConstant(3, MVT::i32)),
3652                DAG.getConstant(1, MVT::i32));
3653
3654  SDValue RetVal =
3655    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3656
3657  return DAG.getNode((VT.getSizeInBits() < 16 ?
3658                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3659}
3660
3661SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3662  EVT VT = Op.getValueType();
3663  unsigned BitWidth = VT.getSizeInBits();
3664  DebugLoc dl = Op.getDebugLoc();
3665  assert(Op.getNumOperands() == 3 &&
3666         VT == Op.getOperand(1).getValueType() &&
3667         "Unexpected SHL!");
3668
3669  // Expand into a bunch of logical ops.  Note that these ops
3670  // depend on the PPC behavior for oversized shift amounts.
3671  SDValue Lo = Op.getOperand(0);
3672  SDValue Hi = Op.getOperand(1);
3673  SDValue Amt = Op.getOperand(2);
3674  EVT AmtVT = Amt.getValueType();
3675
3676  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3677                             DAG.getConstant(BitWidth, AmtVT), Amt);
3678  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3679  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3680  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3681  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3682                             DAG.getConstant(-BitWidth, AmtVT));
3683  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3684  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3685  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3686  SDValue OutOps[] = { OutLo, OutHi };
3687  return DAG.getMergeValues(OutOps, 2, dl);
3688}
3689
3690SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3691  EVT VT = Op.getValueType();
3692  DebugLoc dl = Op.getDebugLoc();
3693  unsigned BitWidth = VT.getSizeInBits();
3694  assert(Op.getNumOperands() == 3 &&
3695         VT == Op.getOperand(1).getValueType() &&
3696         "Unexpected SRL!");
3697
3698  // Expand into a bunch of logical ops.  Note that these ops
3699  // depend on the PPC behavior for oversized shift amounts.
3700  SDValue Lo = Op.getOperand(0);
3701  SDValue Hi = Op.getOperand(1);
3702  SDValue Amt = Op.getOperand(2);
3703  EVT AmtVT = Amt.getValueType();
3704
3705  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3706                             DAG.getConstant(BitWidth, AmtVT), Amt);
3707  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3708  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3709  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3710  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3711                             DAG.getConstant(-BitWidth, AmtVT));
3712  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3713  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3714  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3715  SDValue OutOps[] = { OutLo, OutHi };
3716  return DAG.getMergeValues(OutOps, 2, dl);
3717}
3718
3719SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3720  DebugLoc dl = Op.getDebugLoc();
3721  EVT VT = Op.getValueType();
3722  unsigned BitWidth = VT.getSizeInBits();
3723  assert(Op.getNumOperands() == 3 &&
3724         VT == Op.getOperand(1).getValueType() &&
3725         "Unexpected SRA!");
3726
3727  // Expand into a bunch of logical ops, followed by a select_cc.
3728  SDValue Lo = Op.getOperand(0);
3729  SDValue Hi = Op.getOperand(1);
3730  SDValue Amt = Op.getOperand(2);
3731  EVT AmtVT = Amt.getValueType();
3732
3733  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3734                             DAG.getConstant(BitWidth, AmtVT), Amt);
3735  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3736  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3737  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3738  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3739                             DAG.getConstant(-BitWidth, AmtVT));
3740  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3741  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3742  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3743                                  Tmp4, Tmp6, ISD::SETLE);
3744  SDValue OutOps[] = { OutLo, OutHi };
3745  return DAG.getMergeValues(OutOps, 2, dl);
3746}
3747
3748//===----------------------------------------------------------------------===//
3749// Vector related lowering.
3750//
3751
3752/// BuildSplatI - Build a canonical splati of Val with an element size of
3753/// SplatSize.  Cast the result to VT.
3754static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3755                             SelectionDAG &DAG, DebugLoc dl) {
3756  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3757
3758  static const EVT VTys[] = { // canonical VT to use for each size.
3759    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3760  };
3761
3762  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3763
3764  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3765  if (Val == -1)
3766    SplatSize = 1;
3767
3768  EVT CanonicalVT = VTys[SplatSize-1];
3769
3770  // Build a canonical splat for this value.
3771  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3772  SmallVector<SDValue, 8> Ops;
3773  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3774  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3775                              &Ops[0], Ops.size());
3776  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3777}
3778
3779/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3780/// specified intrinsic ID.
3781static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3782                                SelectionDAG &DAG, DebugLoc dl,
3783                                EVT DestVT = MVT::Other) {
3784  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3785  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3786                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3787}
3788
3789/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3790/// specified intrinsic ID.
3791static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3792                                SDValue Op2, SelectionDAG &DAG,
3793                                DebugLoc dl, EVT DestVT = MVT::Other) {
3794  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3795  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3796                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3797}
3798
3799
3800/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3801/// amount.  The result has the specified value type.
3802static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3803                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3804  // Force LHS/RHS to be the right type.
3805  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3806  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3807
3808  int Ops[16];
3809  for (unsigned i = 0; i != 16; ++i)
3810    Ops[i] = i + Amt;
3811  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3812  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3813}
3814
3815// If this is a case we can't handle, return null and let the default
3816// expansion code take care of it.  If we CAN select this case, and if it
3817// selects to a single instruction, return Op.  Otherwise, if we can codegen
3818// this case more efficiently than a constant pool load, lower it to the
3819// sequence of ops that should be used.
3820SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3821                                             SelectionDAG &DAG) const {
3822  DebugLoc dl = Op.getDebugLoc();
3823  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3824  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3825
3826  // Check if this is a splat of a constant value.
3827  APInt APSplatBits, APSplatUndef;
3828  unsigned SplatBitSize;
3829  bool HasAnyUndefs;
3830  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3831                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3832    return SDValue();
3833
3834  unsigned SplatBits = APSplatBits.getZExtValue();
3835  unsigned SplatUndef = APSplatUndef.getZExtValue();
3836  unsigned SplatSize = SplatBitSize / 8;
3837
3838  // First, handle single instruction cases.
3839
3840  // All zeros?
3841  if (SplatBits == 0) {
3842    // Canonicalize all zero vectors to be v4i32.
3843    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3844      SDValue Z = DAG.getConstant(0, MVT::i32);
3845      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3846      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3847    }
3848    return Op;
3849  }
3850
3851  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3852  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3853                    (32-SplatBitSize));
3854  if (SextVal >= -16 && SextVal <= 15)
3855    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3856
3857
3858  // Two instruction sequences.
3859
3860  // If this value is in the range [-32,30] and is even, use:
3861  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3862  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3863    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3864    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3865    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3866  }
3867
3868  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3869  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3870  // for fneg/fabs.
3871  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3872    // Make -1 and vspltisw -1:
3873    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3874
3875    // Make the VSLW intrinsic, computing 0x8000_0000.
3876    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3877                                   OnesV, DAG, dl);
3878
3879    // xor by OnesV to invert it.
3880    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3881    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3882  }
3883
3884  // Check to see if this is a wide variety of vsplti*, binop self cases.
3885  static const signed char SplatCsts[] = {
3886    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3887    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3888  };
3889
3890  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3891    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3892    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3893    int i = SplatCsts[idx];
3894
3895    // Figure out what shift amount will be used by altivec if shifted by i in
3896    // this splat size.
3897    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3898
3899    // vsplti + shl self.
3900    if (SextVal == (i << (int)TypeShiftAmt)) {
3901      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3902      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3903        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3904        Intrinsic::ppc_altivec_vslw
3905      };
3906      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3907      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3908    }
3909
3910    // vsplti + srl self.
3911    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3912      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3913      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3914        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3915        Intrinsic::ppc_altivec_vsrw
3916      };
3917      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3918      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3919    }
3920
3921    // vsplti + sra self.
3922    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3923      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3924      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3925        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3926        Intrinsic::ppc_altivec_vsraw
3927      };
3928      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3929      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3930    }
3931
3932    // vsplti + rol self.
3933    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3934                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3935      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3936      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3937        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3938        Intrinsic::ppc_altivec_vrlw
3939      };
3940      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3941      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3942    }
3943
3944    // t = vsplti c, result = vsldoi t, t, 1
3945    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3946      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3947      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3948    }
3949    // t = vsplti c, result = vsldoi t, t, 2
3950    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3951      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3952      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3953    }
3954    // t = vsplti c, result = vsldoi t, t, 3
3955    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3956      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3957      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3958    }
3959  }
3960
3961  // Three instruction sequences.
3962
3963  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3964  if (SextVal >= 0 && SextVal <= 31) {
3965    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3966    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3967    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3968    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3969  }
3970  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3971  if (SextVal >= -31 && SextVal <= 0) {
3972    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3973    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3974    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3975    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3976  }
3977
3978  return SDValue();
3979}
3980
3981/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3982/// the specified operations to build the shuffle.
3983static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3984                                      SDValue RHS, SelectionDAG &DAG,
3985                                      DebugLoc dl) {
3986  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3987  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3988  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3989
3990  enum {
3991    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3992    OP_VMRGHW,
3993    OP_VMRGLW,
3994    OP_VSPLTISW0,
3995    OP_VSPLTISW1,
3996    OP_VSPLTISW2,
3997    OP_VSPLTISW3,
3998    OP_VSLDOI4,
3999    OP_VSLDOI8,
4000    OP_VSLDOI12
4001  };
4002
4003  if (OpNum == OP_COPY) {
4004    if (LHSID == (1*9+2)*9+3) return LHS;
4005    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4006    return RHS;
4007  }
4008
4009  SDValue OpLHS, OpRHS;
4010  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4011  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4012
4013  int ShufIdxs[16];
4014  switch (OpNum) {
4015  default: llvm_unreachable("Unknown i32 permute!");
4016  case OP_VMRGHW:
4017    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4018    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4019    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4020    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4021    break;
4022  case OP_VMRGLW:
4023    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4024    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4025    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4026    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4027    break;
4028  case OP_VSPLTISW0:
4029    for (unsigned i = 0; i != 16; ++i)
4030      ShufIdxs[i] = (i&3)+0;
4031    break;
4032  case OP_VSPLTISW1:
4033    for (unsigned i = 0; i != 16; ++i)
4034      ShufIdxs[i] = (i&3)+4;
4035    break;
4036  case OP_VSPLTISW2:
4037    for (unsigned i = 0; i != 16; ++i)
4038      ShufIdxs[i] = (i&3)+8;
4039    break;
4040  case OP_VSPLTISW3:
4041    for (unsigned i = 0; i != 16; ++i)
4042      ShufIdxs[i] = (i&3)+12;
4043    break;
4044  case OP_VSLDOI4:
4045    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4046  case OP_VSLDOI8:
4047    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4048  case OP_VSLDOI12:
4049    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4050  }
4051  EVT VT = OpLHS.getValueType();
4052  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4053  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4054  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4055  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4056}
4057
4058/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4059/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4060/// return the code it can be lowered into.  Worst case, it can always be
4061/// lowered into a vperm.
4062SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4063                                               SelectionDAG &DAG) const {
4064  DebugLoc dl = Op.getDebugLoc();
4065  SDValue V1 = Op.getOperand(0);
4066  SDValue V2 = Op.getOperand(1);
4067  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4068  EVT VT = Op.getValueType();
4069
4070  // Cases that are handled by instructions that take permute immediates
4071  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4072  // selected by the instruction selector.
4073  if (V2.getOpcode() == ISD::UNDEF) {
4074    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4075        PPC::isSplatShuffleMask(SVOp, 2) ||
4076        PPC::isSplatShuffleMask(SVOp, 4) ||
4077        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4078        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4079        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4080        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4081        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4082        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4083        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4084        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4085        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4086      return Op;
4087    }
4088  }
4089
4090  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4091  // and produce a fixed permutation.  If any of these match, do not lower to
4092  // VPERM.
4093  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4094      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4095      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4096      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4097      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4098      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4099      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4100      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4101      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4102    return Op;
4103
4104  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4105  // perfect shuffle table to emit an optimal matching sequence.
4106  SmallVector<int, 16> PermMask;
4107  SVOp->getMask(PermMask);
4108
4109  unsigned PFIndexes[4];
4110  bool isFourElementShuffle = true;
4111  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4112    unsigned EltNo = 8;   // Start out undef.
4113    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4114      if (PermMask[i*4+j] < 0)
4115        continue;   // Undef, ignore it.
4116
4117      unsigned ByteSource = PermMask[i*4+j];
4118      if ((ByteSource & 3) != j) {
4119        isFourElementShuffle = false;
4120        break;
4121      }
4122
4123      if (EltNo == 8) {
4124        EltNo = ByteSource/4;
4125      } else if (EltNo != ByteSource/4) {
4126        isFourElementShuffle = false;
4127        break;
4128      }
4129    }
4130    PFIndexes[i] = EltNo;
4131  }
4132
4133  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4134  // perfect shuffle vector to determine if it is cost effective to do this as
4135  // discrete instructions, or whether we should use a vperm.
4136  if (isFourElementShuffle) {
4137    // Compute the index in the perfect shuffle table.
4138    unsigned PFTableIndex =
4139      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4140
4141    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4142    unsigned Cost  = (PFEntry >> 30);
4143
4144    // Determining when to avoid vperm is tricky.  Many things affect the cost
4145    // of vperm, particularly how many times the perm mask needs to be computed.
4146    // For example, if the perm mask can be hoisted out of a loop or is already
4147    // used (perhaps because there are multiple permutes with the same shuffle
4148    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4149    // the loop requires an extra register.
4150    //
4151    // As a compromise, we only emit discrete instructions if the shuffle can be
4152    // generated in 3 or fewer operations.  When we have loop information
4153    // available, if this block is within a loop, we should avoid using vperm
4154    // for 3-operation perms and use a constant pool load instead.
4155    if (Cost < 3)
4156      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4157  }
4158
4159  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4160  // vector that will get spilled to the constant pool.
4161  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4162
4163  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4164  // that it is in input element units, not in bytes.  Convert now.
4165  EVT EltVT = V1.getValueType().getVectorElementType();
4166  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4167
4168  SmallVector<SDValue, 16> ResultMask;
4169  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4170    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4171
4172    for (unsigned j = 0; j != BytesPerElement; ++j)
4173      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4174                                           MVT::i32));
4175  }
4176
4177  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4178                                    &ResultMask[0], ResultMask.size());
4179  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4180}
4181
4182/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4183/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4184/// information about the intrinsic.
4185static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4186                                  bool &isDot) {
4187  unsigned IntrinsicID =
4188    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4189  CompareOpc = -1;
4190  isDot = false;
4191  switch (IntrinsicID) {
4192  default: return false;
4193    // Comparison predicates.
4194  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4195  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4196  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4197  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4198  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4199  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4200  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4201  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4202  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4203  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4204  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4205  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4206  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4207
4208    // Normal Comparisons.
4209  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4210  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4211  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4212  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4213  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4214  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4215  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4216  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4217  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4218  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4219  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4220  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4221  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4222  }
4223  return true;
4224}
4225
4226/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4227/// lower, do it, otherwise return null.
4228SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4229                                                   SelectionDAG &DAG) const {
4230  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4231  // opcode number of the comparison.
4232  DebugLoc dl = Op.getDebugLoc();
4233  int CompareOpc;
4234  bool isDot;
4235  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4236    return SDValue();    // Don't custom lower most intrinsics.
4237
4238  // If this is a non-dot comparison, make the VCMP node and we are done.
4239  if (!isDot) {
4240    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4241                              Op.getOperand(1), Op.getOperand(2),
4242                              DAG.getConstant(CompareOpc, MVT::i32));
4243    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4244  }
4245
4246  // Create the PPCISD altivec 'dot' comparison node.
4247  SDValue Ops[] = {
4248    Op.getOperand(2),  // LHS
4249    Op.getOperand(3),  // RHS
4250    DAG.getConstant(CompareOpc, MVT::i32)
4251  };
4252  std::vector<EVT> VTs;
4253  VTs.push_back(Op.getOperand(2).getValueType());
4254  VTs.push_back(MVT::Glue);
4255  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4256
4257  // Now that we have the comparison, emit a copy from the CR to a GPR.
4258  // This is flagged to the above dot comparison.
4259  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4260                                DAG.getRegister(PPC::CR6, MVT::i32),
4261                                CompNode.getValue(1));
4262
4263  // Unpack the result based on how the target uses it.
4264  unsigned BitNo;   // Bit # of CR6.
4265  bool InvertBit;   // Invert result?
4266  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4267  default:  // Can't happen, don't crash on invalid number though.
4268  case 0:   // Return the value of the EQ bit of CR6.
4269    BitNo = 0; InvertBit = false;
4270    break;
4271  case 1:   // Return the inverted value of the EQ bit of CR6.
4272    BitNo = 0; InvertBit = true;
4273    break;
4274  case 2:   // Return the value of the LT bit of CR6.
4275    BitNo = 2; InvertBit = false;
4276    break;
4277  case 3:   // Return the inverted value of the LT bit of CR6.
4278    BitNo = 2; InvertBit = true;
4279    break;
4280  }
4281
4282  // Shift the bit into the low position.
4283  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4284                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4285  // Isolate the bit.
4286  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4287                      DAG.getConstant(1, MVT::i32));
4288
4289  // If we are supposed to, toggle the bit.
4290  if (InvertBit)
4291    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4292                        DAG.getConstant(1, MVT::i32));
4293  return Flags;
4294}
4295
4296SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4297                                                   SelectionDAG &DAG) const {
4298  DebugLoc dl = Op.getDebugLoc();
4299  // Create a stack slot that is 16-byte aligned.
4300  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4301  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4302  EVT PtrVT = getPointerTy();
4303  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4304
4305  // Store the input value into Value#0 of the stack slot.
4306  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4307                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4308                               false, false, 0);
4309  // Load it out.
4310  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4311                     false, false, 0);
4312}
4313
4314SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4315  DebugLoc dl = Op.getDebugLoc();
4316  if (Op.getValueType() == MVT::v4i32) {
4317    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4318
4319    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4320    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4321
4322    SDValue RHSSwap =   // = vrlw RHS, 16
4323      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4324
4325    // Shrinkify inputs to v8i16.
4326    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4327    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4328    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4329
4330    // Low parts multiplied together, generating 32-bit results (we ignore the
4331    // top parts).
4332    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4333                                        LHS, RHS, DAG, dl, MVT::v4i32);
4334
4335    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4336                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4337    // Shift the high parts up 16 bits.
4338    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4339                              Neg16, DAG, dl);
4340    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4341  } else if (Op.getValueType() == MVT::v8i16) {
4342    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4343
4344    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4345
4346    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4347                            LHS, RHS, Zero, DAG, dl);
4348  } else if (Op.getValueType() == MVT::v16i8) {
4349    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4350
4351    // Multiply the even 8-bit parts, producing 16-bit sums.
4352    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4353                                           LHS, RHS, DAG, dl, MVT::v8i16);
4354    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4355
4356    // Multiply the odd 8-bit parts, producing 16-bit sums.
4357    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4358                                          LHS, RHS, DAG, dl, MVT::v8i16);
4359    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4360
4361    // Merge the results together.
4362    int Ops[16];
4363    for (unsigned i = 0; i != 8; ++i) {
4364      Ops[i*2  ] = 2*i+1;
4365      Ops[i*2+1] = 2*i+1+16;
4366    }
4367    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4368  } else {
4369    llvm_unreachable("Unknown mul to lower!");
4370  }
4371}
4372
4373/// LowerOperation - Provide custom lowering hooks for some operations.
4374///
4375SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4376  switch (Op.getOpcode()) {
4377  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4378  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4379  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4380  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4381  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4382  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4383  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4384  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4385  case ISD::VASTART:
4386    return LowerVASTART(Op, DAG, PPCSubTarget);
4387
4388  case ISD::VAARG:
4389    return LowerVAARG(Op, DAG, PPCSubTarget);
4390
4391  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4392  case ISD::DYNAMIC_STACKALLOC:
4393    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4394
4395  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4396  case ISD::FP_TO_UINT:
4397  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4398                                                       Op.getDebugLoc());
4399  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4400  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4401
4402  // Lower 64-bit shifts.
4403  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4404  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4405  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4406
4407  // Vector-related lowering.
4408  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4409  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4410  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4411  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4412  case ISD::MUL:                return LowerMUL(Op, DAG);
4413
4414  // Frame & Return address.
4415  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4416  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4417  }
4418  return SDValue();
4419}
4420
4421void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4422                                           SmallVectorImpl<SDValue>&Results,
4423                                           SelectionDAG &DAG) const {
4424  DebugLoc dl = N->getDebugLoc();
4425  switch (N->getOpcode()) {
4426  default:
4427    assert(false && "Do not know how to custom type legalize this operation!");
4428    return;
4429  case ISD::FP_ROUND_INREG: {
4430    assert(N->getValueType(0) == MVT::ppcf128);
4431    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4432    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4433                             MVT::f64, N->getOperand(0),
4434                             DAG.getIntPtrConstant(0));
4435    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4436                             MVT::f64, N->getOperand(0),
4437                             DAG.getIntPtrConstant(1));
4438
4439    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4440    // of the long double, and puts FPSCR back the way it was.  We do not
4441    // actually model FPSCR.
4442    std::vector<EVT> NodeTys;
4443    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4444
4445    NodeTys.push_back(MVT::f64);   // Return register
4446    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4447    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4448    MFFSreg = Result.getValue(0);
4449    InFlag = Result.getValue(1);
4450
4451    NodeTys.clear();
4452    NodeTys.push_back(MVT::Glue);   // Returns a flag
4453    Ops[0] = DAG.getConstant(31, MVT::i32);
4454    Ops[1] = InFlag;
4455    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4456    InFlag = Result.getValue(0);
4457
4458    NodeTys.clear();
4459    NodeTys.push_back(MVT::Glue);   // Returns a flag
4460    Ops[0] = DAG.getConstant(30, MVT::i32);
4461    Ops[1] = InFlag;
4462    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4463    InFlag = Result.getValue(0);
4464
4465    NodeTys.clear();
4466    NodeTys.push_back(MVT::f64);    // result of add
4467    NodeTys.push_back(MVT::Glue);   // Returns a flag
4468    Ops[0] = Lo;
4469    Ops[1] = Hi;
4470    Ops[2] = InFlag;
4471    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4472    FPreg = Result.getValue(0);
4473    InFlag = Result.getValue(1);
4474
4475    NodeTys.clear();
4476    NodeTys.push_back(MVT::f64);
4477    Ops[0] = DAG.getConstant(1, MVT::i32);
4478    Ops[1] = MFFSreg;
4479    Ops[2] = FPreg;
4480    Ops[3] = InFlag;
4481    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4482    FPreg = Result.getValue(0);
4483
4484    // We know the low half is about to be thrown away, so just use something
4485    // convenient.
4486    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4487                                FPreg, FPreg));
4488    return;
4489  }
4490  case ISD::FP_TO_SINT:
4491    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4492    return;
4493  }
4494}
4495
4496
4497//===----------------------------------------------------------------------===//
4498//  Other Lowering Code
4499//===----------------------------------------------------------------------===//
4500
4501MachineBasicBlock *
4502PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4503                                    bool is64bit, unsigned BinOpcode) const {
4504  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4505  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4506
4507  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4508  MachineFunction *F = BB->getParent();
4509  MachineFunction::iterator It = BB;
4510  ++It;
4511
4512  unsigned dest = MI->getOperand(0).getReg();
4513  unsigned ptrA = MI->getOperand(1).getReg();
4514  unsigned ptrB = MI->getOperand(2).getReg();
4515  unsigned incr = MI->getOperand(3).getReg();
4516  DebugLoc dl = MI->getDebugLoc();
4517
4518  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4519  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4520  F->insert(It, loopMBB);
4521  F->insert(It, exitMBB);
4522  exitMBB->splice(exitMBB->begin(), BB,
4523                  llvm::next(MachineBasicBlock::iterator(MI)),
4524                  BB->end());
4525  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4526
4527  MachineRegisterInfo &RegInfo = F->getRegInfo();
4528  unsigned TmpReg = (!BinOpcode) ? incr :
4529    RegInfo.createVirtualRegister(
4530       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4531                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4532
4533  //  thisMBB:
4534  //   ...
4535  //   fallthrough --> loopMBB
4536  BB->addSuccessor(loopMBB);
4537
4538  //  loopMBB:
4539  //   l[wd]arx dest, ptr
4540  //   add r0, dest, incr
4541  //   st[wd]cx. r0, ptr
4542  //   bne- loopMBB
4543  //   fallthrough --> exitMBB
4544  BB = loopMBB;
4545  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4546    .addReg(ptrA).addReg(ptrB);
4547  if (BinOpcode)
4548    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4549  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4550    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4551  BuildMI(BB, dl, TII->get(PPC::BCC))
4552    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4553  BB->addSuccessor(loopMBB);
4554  BB->addSuccessor(exitMBB);
4555
4556  //  exitMBB:
4557  //   ...
4558  BB = exitMBB;
4559  return BB;
4560}
4561
4562MachineBasicBlock *
4563PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4564                                            MachineBasicBlock *BB,
4565                                            bool is8bit,    // operation
4566                                            unsigned BinOpcode) const {
4567  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4568  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4569  // In 64 bit mode we have to use 64 bits for addresses, even though the
4570  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4571  // registers without caring whether they're 32 or 64, but here we're
4572  // doing actual arithmetic on the addresses.
4573  bool is64bit = PPCSubTarget.isPPC64();
4574
4575  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4576  MachineFunction *F = BB->getParent();
4577  MachineFunction::iterator It = BB;
4578  ++It;
4579
4580  unsigned dest = MI->getOperand(0).getReg();
4581  unsigned ptrA = MI->getOperand(1).getReg();
4582  unsigned ptrB = MI->getOperand(2).getReg();
4583  unsigned incr = MI->getOperand(3).getReg();
4584  DebugLoc dl = MI->getDebugLoc();
4585
4586  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4587  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4588  F->insert(It, loopMBB);
4589  F->insert(It, exitMBB);
4590  exitMBB->splice(exitMBB->begin(), BB,
4591                  llvm::next(MachineBasicBlock::iterator(MI)),
4592                  BB->end());
4593  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4594
4595  MachineRegisterInfo &RegInfo = F->getRegInfo();
4596  const TargetRegisterClass *RC =
4597    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4598              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4599  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4600  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4601  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4602  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4603  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4604  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4605  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4606  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4607  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4608  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4609  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4610  unsigned Ptr1Reg;
4611  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4612
4613  //  thisMBB:
4614  //   ...
4615  //   fallthrough --> loopMBB
4616  BB->addSuccessor(loopMBB);
4617
4618  // The 4-byte load must be aligned, while a char or short may be
4619  // anywhere in the word.  Hence all this nasty bookkeeping code.
4620  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4621  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4622  //   xori shift, shift1, 24 [16]
4623  //   rlwinm ptr, ptr1, 0, 0, 29
4624  //   slw incr2, incr, shift
4625  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4626  //   slw mask, mask2, shift
4627  //  loopMBB:
4628  //   lwarx tmpDest, ptr
4629  //   add tmp, tmpDest, incr2
4630  //   andc tmp2, tmpDest, mask
4631  //   and tmp3, tmp, mask
4632  //   or tmp4, tmp3, tmp2
4633  //   stwcx. tmp4, ptr
4634  //   bne- loopMBB
4635  //   fallthrough --> exitMBB
4636  //   srw dest, tmpDest, shift
4637
4638  if (ptrA!=PPC::R0) {
4639    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4640    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4641      .addReg(ptrA).addReg(ptrB);
4642  } else {
4643    Ptr1Reg = ptrB;
4644  }
4645  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4646      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4647  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4648      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4649  if (is64bit)
4650    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4651      .addReg(Ptr1Reg).addImm(0).addImm(61);
4652  else
4653    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4654      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4655  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4656      .addReg(incr).addReg(ShiftReg);
4657  if (is8bit)
4658    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4659  else {
4660    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4661    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4662  }
4663  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4664      .addReg(Mask2Reg).addReg(ShiftReg);
4665
4666  BB = loopMBB;
4667  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4668    .addReg(PPC::R0).addReg(PtrReg);
4669  if (BinOpcode)
4670    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4671      .addReg(Incr2Reg).addReg(TmpDestReg);
4672  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4673    .addReg(TmpDestReg).addReg(MaskReg);
4674  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4675    .addReg(TmpReg).addReg(MaskReg);
4676  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4677    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4678  BuildMI(BB, dl, TII->get(PPC::STWCX))
4679    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4680  BuildMI(BB, dl, TII->get(PPC::BCC))
4681    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4682  BB->addSuccessor(loopMBB);
4683  BB->addSuccessor(exitMBB);
4684
4685  //  exitMBB:
4686  //   ...
4687  BB = exitMBB;
4688  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4689  return BB;
4690}
4691
4692MachineBasicBlock *
4693PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4694                                               MachineBasicBlock *BB) const {
4695  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4696
4697  // To "insert" these instructions we actually have to insert their
4698  // control-flow patterns.
4699  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4700  MachineFunction::iterator It = BB;
4701  ++It;
4702
4703  MachineFunction *F = BB->getParent();
4704
4705  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4706      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4707      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4708      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4709      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4710
4711    // The incoming instruction knows the destination vreg to set, the
4712    // condition code register to branch on, the true/false values to
4713    // select between, and a branch opcode to use.
4714
4715    //  thisMBB:
4716    //  ...
4717    //   TrueVal = ...
4718    //   cmpTY ccX, r1, r2
4719    //   bCC copy1MBB
4720    //   fallthrough --> copy0MBB
4721    MachineBasicBlock *thisMBB = BB;
4722    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4723    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4724    unsigned SelectPred = MI->getOperand(4).getImm();
4725    DebugLoc dl = MI->getDebugLoc();
4726    F->insert(It, copy0MBB);
4727    F->insert(It, sinkMBB);
4728
4729    // Transfer the remainder of BB and its successor edges to sinkMBB.
4730    sinkMBB->splice(sinkMBB->begin(), BB,
4731                    llvm::next(MachineBasicBlock::iterator(MI)),
4732                    BB->end());
4733    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4734
4735    // Next, add the true and fallthrough blocks as its successors.
4736    BB->addSuccessor(copy0MBB);
4737    BB->addSuccessor(sinkMBB);
4738
4739    BuildMI(BB, dl, TII->get(PPC::BCC))
4740      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4741
4742    //  copy0MBB:
4743    //   %FalseValue = ...
4744    //   # fallthrough to sinkMBB
4745    BB = copy0MBB;
4746
4747    // Update machine-CFG edges
4748    BB->addSuccessor(sinkMBB);
4749
4750    //  sinkMBB:
4751    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4752    //  ...
4753    BB = sinkMBB;
4754    BuildMI(*BB, BB->begin(), dl,
4755            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4756      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4757      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4758  }
4759  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4760    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4761  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4762    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4763  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4764    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4765  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4766    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4767
4768  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4769    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4770  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4771    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4772  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4773    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4774  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4775    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4776
4777  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4778    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4779  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4780    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4781  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4782    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4783  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4784    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4785
4786  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4787    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4788  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4789    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4790  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4791    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4792  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4793    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4794
4795  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4796    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4797  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4798    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4799  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4800    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4801  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4802    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4803
4804  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4805    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4806  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4807    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4808  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4809    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4810  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4811    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4812
4813  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4814    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4815  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4816    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4817  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4818    BB = EmitAtomicBinary(MI, BB, false, 0);
4819  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4820    BB = EmitAtomicBinary(MI, BB, true, 0);
4821
4822  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4823           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4824    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4825
4826    unsigned dest   = MI->getOperand(0).getReg();
4827    unsigned ptrA   = MI->getOperand(1).getReg();
4828    unsigned ptrB   = MI->getOperand(2).getReg();
4829    unsigned oldval = MI->getOperand(3).getReg();
4830    unsigned newval = MI->getOperand(4).getReg();
4831    DebugLoc dl     = MI->getDebugLoc();
4832
4833    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4834    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4835    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4836    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4837    F->insert(It, loop1MBB);
4838    F->insert(It, loop2MBB);
4839    F->insert(It, midMBB);
4840    F->insert(It, exitMBB);
4841    exitMBB->splice(exitMBB->begin(), BB,
4842                    llvm::next(MachineBasicBlock::iterator(MI)),
4843                    BB->end());
4844    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4845
4846    //  thisMBB:
4847    //   ...
4848    //   fallthrough --> loopMBB
4849    BB->addSuccessor(loop1MBB);
4850
4851    // loop1MBB:
4852    //   l[wd]arx dest, ptr
4853    //   cmp[wd] dest, oldval
4854    //   bne- midMBB
4855    // loop2MBB:
4856    //   st[wd]cx. newval, ptr
4857    //   bne- loopMBB
4858    //   b exitBB
4859    // midMBB:
4860    //   st[wd]cx. dest, ptr
4861    // exitBB:
4862    BB = loop1MBB;
4863    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4864      .addReg(ptrA).addReg(ptrB);
4865    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4866      .addReg(oldval).addReg(dest);
4867    BuildMI(BB, dl, TII->get(PPC::BCC))
4868      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4869    BB->addSuccessor(loop2MBB);
4870    BB->addSuccessor(midMBB);
4871
4872    BB = loop2MBB;
4873    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4874      .addReg(newval).addReg(ptrA).addReg(ptrB);
4875    BuildMI(BB, dl, TII->get(PPC::BCC))
4876      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4877    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4878    BB->addSuccessor(loop1MBB);
4879    BB->addSuccessor(exitMBB);
4880
4881    BB = midMBB;
4882    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4883      .addReg(dest).addReg(ptrA).addReg(ptrB);
4884    BB->addSuccessor(exitMBB);
4885
4886    //  exitMBB:
4887    //   ...
4888    BB = exitMBB;
4889  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4890             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4891    // We must use 64-bit registers for addresses when targeting 64-bit,
4892    // since we're actually doing arithmetic on them.  Other registers
4893    // can be 32-bit.
4894    bool is64bit = PPCSubTarget.isPPC64();
4895    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4896
4897    unsigned dest   = MI->getOperand(0).getReg();
4898    unsigned ptrA   = MI->getOperand(1).getReg();
4899    unsigned ptrB   = MI->getOperand(2).getReg();
4900    unsigned oldval = MI->getOperand(3).getReg();
4901    unsigned newval = MI->getOperand(4).getReg();
4902    DebugLoc dl     = MI->getDebugLoc();
4903
4904    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4905    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4906    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4907    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4908    F->insert(It, loop1MBB);
4909    F->insert(It, loop2MBB);
4910    F->insert(It, midMBB);
4911    F->insert(It, exitMBB);
4912    exitMBB->splice(exitMBB->begin(), BB,
4913                    llvm::next(MachineBasicBlock::iterator(MI)),
4914                    BB->end());
4915    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4916
4917    MachineRegisterInfo &RegInfo = F->getRegInfo();
4918    const TargetRegisterClass *RC =
4919      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4920                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4921    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4922    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4923    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4924    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4925    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4926    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4927    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4928    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4929    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4930    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4931    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4932    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4933    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4934    unsigned Ptr1Reg;
4935    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4936    //  thisMBB:
4937    //   ...
4938    //   fallthrough --> loopMBB
4939    BB->addSuccessor(loop1MBB);
4940
4941    // The 4-byte load must be aligned, while a char or short may be
4942    // anywhere in the word.  Hence all this nasty bookkeeping code.
4943    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4944    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4945    //   xori shift, shift1, 24 [16]
4946    //   rlwinm ptr, ptr1, 0, 0, 29
4947    //   slw newval2, newval, shift
4948    //   slw oldval2, oldval,shift
4949    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4950    //   slw mask, mask2, shift
4951    //   and newval3, newval2, mask
4952    //   and oldval3, oldval2, mask
4953    // loop1MBB:
4954    //   lwarx tmpDest, ptr
4955    //   and tmp, tmpDest, mask
4956    //   cmpw tmp, oldval3
4957    //   bne- midMBB
4958    // loop2MBB:
4959    //   andc tmp2, tmpDest, mask
4960    //   or tmp4, tmp2, newval3
4961    //   stwcx. tmp4, ptr
4962    //   bne- loop1MBB
4963    //   b exitBB
4964    // midMBB:
4965    //   stwcx. tmpDest, ptr
4966    // exitBB:
4967    //   srw dest, tmpDest, shift
4968    if (ptrA!=PPC::R0) {
4969      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4970      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4971        .addReg(ptrA).addReg(ptrB);
4972    } else {
4973      Ptr1Reg = ptrB;
4974    }
4975    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4976        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4977    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4978        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4979    if (is64bit)
4980      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4981        .addReg(Ptr1Reg).addImm(0).addImm(61);
4982    else
4983      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4984        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4985    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4986        .addReg(newval).addReg(ShiftReg);
4987    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4988        .addReg(oldval).addReg(ShiftReg);
4989    if (is8bit)
4990      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4991    else {
4992      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4993      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4994        .addReg(Mask3Reg).addImm(65535);
4995    }
4996    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4997        .addReg(Mask2Reg).addReg(ShiftReg);
4998    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4999        .addReg(NewVal2Reg).addReg(MaskReg);
5000    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5001        .addReg(OldVal2Reg).addReg(MaskReg);
5002
5003    BB = loop1MBB;
5004    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5005        .addReg(PPC::R0).addReg(PtrReg);
5006    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5007        .addReg(TmpDestReg).addReg(MaskReg);
5008    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5009        .addReg(TmpReg).addReg(OldVal3Reg);
5010    BuildMI(BB, dl, TII->get(PPC::BCC))
5011        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5012    BB->addSuccessor(loop2MBB);
5013    BB->addSuccessor(midMBB);
5014
5015    BB = loop2MBB;
5016    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5017        .addReg(TmpDestReg).addReg(MaskReg);
5018    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5019        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5020    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5021        .addReg(PPC::R0).addReg(PtrReg);
5022    BuildMI(BB, dl, TII->get(PPC::BCC))
5023      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5024    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5025    BB->addSuccessor(loop1MBB);
5026    BB->addSuccessor(exitMBB);
5027
5028    BB = midMBB;
5029    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5030      .addReg(PPC::R0).addReg(PtrReg);
5031    BB->addSuccessor(exitMBB);
5032
5033    //  exitMBB:
5034    //   ...
5035    BB = exitMBB;
5036    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5037  } else {
5038    llvm_unreachable("Unexpected instr type to insert");
5039  }
5040
5041  MI->eraseFromParent();   // The pseudo instruction is gone now.
5042  return BB;
5043}
5044
5045//===----------------------------------------------------------------------===//
5046// Target Optimization Hooks
5047//===----------------------------------------------------------------------===//
5048
5049SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5050                                             DAGCombinerInfo &DCI) const {
5051  const TargetMachine &TM = getTargetMachine();
5052  SelectionDAG &DAG = DCI.DAG;
5053  DebugLoc dl = N->getDebugLoc();
5054  switch (N->getOpcode()) {
5055  default: break;
5056  case PPCISD::SHL:
5057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5058      if (C->isNullValue())   // 0 << V -> 0.
5059        return N->getOperand(0);
5060    }
5061    break;
5062  case PPCISD::SRL:
5063    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5064      if (C->isNullValue())   // 0 >>u V -> 0.
5065        return N->getOperand(0);
5066    }
5067    break;
5068  case PPCISD::SRA:
5069    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5070      if (C->isNullValue() ||   //  0 >>s V -> 0.
5071          C->isAllOnesValue())    // -1 >>s V -> -1.
5072        return N->getOperand(0);
5073    }
5074    break;
5075
5076  case ISD::SINT_TO_FP:
5077    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5078      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5079        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5080        // We allow the src/dst to be either f32/f64, but the intermediate
5081        // type must be i64.
5082        if (N->getOperand(0).getValueType() == MVT::i64 &&
5083            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5084          SDValue Val = N->getOperand(0).getOperand(0);
5085          if (Val.getValueType() == MVT::f32) {
5086            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5087            DCI.AddToWorklist(Val.getNode());
5088          }
5089
5090          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5091          DCI.AddToWorklist(Val.getNode());
5092          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5093          DCI.AddToWorklist(Val.getNode());
5094          if (N->getValueType(0) == MVT::f32) {
5095            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5096                              DAG.getIntPtrConstant(0));
5097            DCI.AddToWorklist(Val.getNode());
5098          }
5099          return Val;
5100        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5101          // If the intermediate type is i32, we can avoid the load/store here
5102          // too.
5103        }
5104      }
5105    }
5106    break;
5107  case ISD::STORE:
5108    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5109    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5110        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5111        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5112        N->getOperand(1).getValueType() == MVT::i32 &&
5113        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5114      SDValue Val = N->getOperand(1).getOperand(0);
5115      if (Val.getValueType() == MVT::f32) {
5116        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5117        DCI.AddToWorklist(Val.getNode());
5118      }
5119      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5120      DCI.AddToWorklist(Val.getNode());
5121
5122      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5123                        N->getOperand(2), N->getOperand(3));
5124      DCI.AddToWorklist(Val.getNode());
5125      return Val;
5126    }
5127
5128    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5129    if (cast<StoreSDNode>(N)->isUnindexed() &&
5130        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5131        N->getOperand(1).getNode()->hasOneUse() &&
5132        (N->getOperand(1).getValueType() == MVT::i32 ||
5133         N->getOperand(1).getValueType() == MVT::i16)) {
5134      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5135      // Do an any-extend to 32-bits if this is a half-word input.
5136      if (BSwapOp.getValueType() == MVT::i16)
5137        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5138
5139      SDValue Ops[] = {
5140        N->getOperand(0), BSwapOp, N->getOperand(2),
5141        DAG.getValueType(N->getOperand(1).getValueType())
5142      };
5143      return
5144        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5145                                Ops, array_lengthof(Ops),
5146                                cast<StoreSDNode>(N)->getMemoryVT(),
5147                                cast<StoreSDNode>(N)->getMemOperand());
5148    }
5149    break;
5150  case ISD::BSWAP:
5151    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5152    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5153        N->getOperand(0).hasOneUse() &&
5154        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5155      SDValue Load = N->getOperand(0);
5156      LoadSDNode *LD = cast<LoadSDNode>(Load);
5157      // Create the byte-swapping load.
5158      SDValue Ops[] = {
5159        LD->getChain(),    // Chain
5160        LD->getBasePtr(),  // Ptr
5161        DAG.getValueType(N->getValueType(0)) // VT
5162      };
5163      SDValue BSLoad =
5164        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5165                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5166                                LD->getMemoryVT(), LD->getMemOperand());
5167
5168      // If this is an i16 load, insert the truncate.
5169      SDValue ResVal = BSLoad;
5170      if (N->getValueType(0) == MVT::i16)
5171        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5172
5173      // First, combine the bswap away.  This makes the value produced by the
5174      // load dead.
5175      DCI.CombineTo(N, ResVal);
5176
5177      // Next, combine the load away, we give it a bogus result value but a real
5178      // chain result.  The result value is dead because the bswap is dead.
5179      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5180
5181      // Return N so it doesn't get rechecked!
5182      return SDValue(N, 0);
5183    }
5184
5185    break;
5186  case PPCISD::VCMP: {
5187    // If a VCMPo node already exists with exactly the same operands as this
5188    // node, use its result instead of this node (VCMPo computes both a CR6 and
5189    // a normal output).
5190    //
5191    if (!N->getOperand(0).hasOneUse() &&
5192        !N->getOperand(1).hasOneUse() &&
5193        !N->getOperand(2).hasOneUse()) {
5194
5195      // Scan all of the users of the LHS, looking for VCMPo's that match.
5196      SDNode *VCMPoNode = 0;
5197
5198      SDNode *LHSN = N->getOperand(0).getNode();
5199      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5200           UI != E; ++UI)
5201        if (UI->getOpcode() == PPCISD::VCMPo &&
5202            UI->getOperand(1) == N->getOperand(1) &&
5203            UI->getOperand(2) == N->getOperand(2) &&
5204            UI->getOperand(0) == N->getOperand(0)) {
5205          VCMPoNode = *UI;
5206          break;
5207        }
5208
5209      // If there is no VCMPo node, or if the flag value has a single use, don't
5210      // transform this.
5211      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5212        break;
5213
5214      // Look at the (necessarily single) use of the flag value.  If it has a
5215      // chain, this transformation is more complex.  Note that multiple things
5216      // could use the value result, which we should ignore.
5217      SDNode *FlagUser = 0;
5218      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5219           FlagUser == 0; ++UI) {
5220        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5221        SDNode *User = *UI;
5222        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5223          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5224            FlagUser = User;
5225            break;
5226          }
5227        }
5228      }
5229
5230      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5231      // give up for right now.
5232      if (FlagUser->getOpcode() == PPCISD::MFCR)
5233        return SDValue(VCMPoNode, 0);
5234    }
5235    break;
5236  }
5237  case ISD::BR_CC: {
5238    // If this is a branch on an altivec predicate comparison, lower this so
5239    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5240    // lowering is done pre-legalize, because the legalizer lowers the predicate
5241    // compare down to code that is difficult to reassemble.
5242    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5243    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5244    int CompareOpc;
5245    bool isDot;
5246
5247    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5248        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5249        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5250      assert(isDot && "Can't compare against a vector result!");
5251
5252      // If this is a comparison against something other than 0/1, then we know
5253      // that the condition is never/always true.
5254      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5255      if (Val != 0 && Val != 1) {
5256        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5257          return N->getOperand(0);
5258        // Always !=, turn it into an unconditional branch.
5259        return DAG.getNode(ISD::BR, dl, MVT::Other,
5260                           N->getOperand(0), N->getOperand(4));
5261      }
5262
5263      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5264
5265      // Create the PPCISD altivec 'dot' comparison node.
5266      std::vector<EVT> VTs;
5267      SDValue Ops[] = {
5268        LHS.getOperand(2),  // LHS of compare
5269        LHS.getOperand(3),  // RHS of compare
5270        DAG.getConstant(CompareOpc, MVT::i32)
5271      };
5272      VTs.push_back(LHS.getOperand(2).getValueType());
5273      VTs.push_back(MVT::Glue);
5274      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5275
5276      // Unpack the result based on how the target uses it.
5277      PPC::Predicate CompOpc;
5278      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5279      default:  // Can't happen, don't crash on invalid number though.
5280      case 0:   // Branch on the value of the EQ bit of CR6.
5281        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5282        break;
5283      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5284        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5285        break;
5286      case 2:   // Branch on the value of the LT bit of CR6.
5287        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5288        break;
5289      case 3:   // Branch on the inverted value of the LT bit of CR6.
5290        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5291        break;
5292      }
5293
5294      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5295                         DAG.getConstant(CompOpc, MVT::i32),
5296                         DAG.getRegister(PPC::CR6, MVT::i32),
5297                         N->getOperand(4), CompNode.getValue(1));
5298    }
5299    break;
5300  }
5301  }
5302
5303  return SDValue();
5304}
5305
5306//===----------------------------------------------------------------------===//
5307// Inline Assembly Support
5308//===----------------------------------------------------------------------===//
5309
5310void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5311                                                       const APInt &Mask,
5312                                                       APInt &KnownZero,
5313                                                       APInt &KnownOne,
5314                                                       const SelectionDAG &DAG,
5315                                                       unsigned Depth) const {
5316  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5317  switch (Op.getOpcode()) {
5318  default: break;
5319  case PPCISD::LBRX: {
5320    // lhbrx is known to have the top bits cleared out.
5321    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5322      KnownZero = 0xFFFF0000;
5323    break;
5324  }
5325  case ISD::INTRINSIC_WO_CHAIN: {
5326    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5327    default: break;
5328    case Intrinsic::ppc_altivec_vcmpbfp_p:
5329    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5330    case Intrinsic::ppc_altivec_vcmpequb_p:
5331    case Intrinsic::ppc_altivec_vcmpequh_p:
5332    case Intrinsic::ppc_altivec_vcmpequw_p:
5333    case Intrinsic::ppc_altivec_vcmpgefp_p:
5334    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5335    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5336    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5337    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5338    case Intrinsic::ppc_altivec_vcmpgtub_p:
5339    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5340    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5341      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5342      break;
5343    }
5344  }
5345  }
5346}
5347
5348
5349/// getConstraintType - Given a constraint, return the type of
5350/// constraint it is for this target.
5351PPCTargetLowering::ConstraintType
5352PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5353  if (Constraint.size() == 1) {
5354    switch (Constraint[0]) {
5355    default: break;
5356    case 'b':
5357    case 'r':
5358    case 'f':
5359    case 'v':
5360    case 'y':
5361      return C_RegisterClass;
5362    }
5363  }
5364  return TargetLowering::getConstraintType(Constraint);
5365}
5366
5367/// Examine constraint type and operand type and determine a weight value.
5368/// This object must already have been set up with the operand type
5369/// and the current alternative constraint selected.
5370TargetLowering::ConstraintWeight
5371PPCTargetLowering::getSingleConstraintMatchWeight(
5372    AsmOperandInfo &info, const char *constraint) const {
5373  ConstraintWeight weight = CW_Invalid;
5374  Value *CallOperandVal = info.CallOperandVal;
5375    // If we don't have a value, we can't do a match,
5376    // but allow it at the lowest weight.
5377  if (CallOperandVal == NULL)
5378    return CW_Default;
5379  const Type *type = CallOperandVal->getType();
5380  // Look at the constraint type.
5381  switch (*constraint) {
5382  default:
5383    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5384    break;
5385  case 'b':
5386    if (type->isIntegerTy())
5387      weight = CW_Register;
5388    break;
5389  case 'f':
5390    if (type->isFloatTy())
5391      weight = CW_Register;
5392    break;
5393  case 'd':
5394    if (type->isDoubleTy())
5395      weight = CW_Register;
5396    break;
5397  case 'v':
5398    if (type->isVectorTy())
5399      weight = CW_Register;
5400    break;
5401  case 'y':
5402    weight = CW_Register;
5403    break;
5404  }
5405  return weight;
5406}
5407
5408std::pair<unsigned, const TargetRegisterClass*>
5409PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5410                                                EVT VT) const {
5411  if (Constraint.size() == 1) {
5412    // GCC RS6000 Constraint Letters
5413    switch (Constraint[0]) {
5414    case 'b':   // R1-R31
5415    case 'r':   // R0-R31
5416      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5417        return std::make_pair(0U, PPC::G8RCRegisterClass);
5418      return std::make_pair(0U, PPC::GPRCRegisterClass);
5419    case 'f':
5420      if (VT == MVT::f32)
5421        return std::make_pair(0U, PPC::F4RCRegisterClass);
5422      else if (VT == MVT::f64)
5423        return std::make_pair(0U, PPC::F8RCRegisterClass);
5424      break;
5425    case 'v':
5426      return std::make_pair(0U, PPC::VRRCRegisterClass);
5427    case 'y':   // crrc
5428      return std::make_pair(0U, PPC::CRRCRegisterClass);
5429    }
5430  }
5431
5432  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5433}
5434
5435
5436/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5437/// vector.  If it is invalid, don't add anything to Ops.
5438void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5439                                                     std::vector<SDValue>&Ops,
5440                                                     SelectionDAG &DAG) const {
5441  SDValue Result(0,0);
5442  switch (Letter) {
5443  default: break;
5444  case 'I':
5445  case 'J':
5446  case 'K':
5447  case 'L':
5448  case 'M':
5449  case 'N':
5450  case 'O':
5451  case 'P': {
5452    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5453    if (!CST) return; // Must be an immediate to match.
5454    unsigned Value = CST->getZExtValue();
5455    switch (Letter) {
5456    default: llvm_unreachable("Unknown constraint letter!");
5457    case 'I':  // "I" is a signed 16-bit constant.
5458      if ((short)Value == (int)Value)
5459        Result = DAG.getTargetConstant(Value, Op.getValueType());
5460      break;
5461    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5462    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5463      if ((short)Value == 0)
5464        Result = DAG.getTargetConstant(Value, Op.getValueType());
5465      break;
5466    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5467      if ((Value >> 16) == 0)
5468        Result = DAG.getTargetConstant(Value, Op.getValueType());
5469      break;
5470    case 'M':  // "M" is a constant that is greater than 31.
5471      if (Value > 31)
5472        Result = DAG.getTargetConstant(Value, Op.getValueType());
5473      break;
5474    case 'N':  // "N" is a positive constant that is an exact power of two.
5475      if ((int)Value > 0 && isPowerOf2_32(Value))
5476        Result = DAG.getTargetConstant(Value, Op.getValueType());
5477      break;
5478    case 'O':  // "O" is the constant zero.
5479      if (Value == 0)
5480        Result = DAG.getTargetConstant(Value, Op.getValueType());
5481      break;
5482    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5483      if ((short)-Value == (int)-Value)
5484        Result = DAG.getTargetConstant(Value, Op.getValueType());
5485      break;
5486    }
5487    break;
5488  }
5489  }
5490
5491  if (Result.getNode()) {
5492    Ops.push_back(Result);
5493    return;
5494  }
5495
5496  // Handle standard constraint letters.
5497  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
5498}
5499
5500// isLegalAddressingMode - Return true if the addressing mode represented
5501// by AM is legal for this target, for a load/store of the specified type.
5502bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5503                                              const Type *Ty) const {
5504  // FIXME: PPC does not allow r+i addressing modes for vectors!
5505
5506  // PPC allows a sign-extended 16-bit immediate field.
5507  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5508    return false;
5509
5510  // No global is ever allowed as a base.
5511  if (AM.BaseGV)
5512    return false;
5513
5514  // PPC only support r+r,
5515  switch (AM.Scale) {
5516  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5517    break;
5518  case 1:
5519    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5520      return false;
5521    // Otherwise we have r+r or r+i.
5522    break;
5523  case 2:
5524    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5525      return false;
5526    // Allow 2*r as r+r.
5527    break;
5528  default:
5529    // No other scales are supported.
5530    return false;
5531  }
5532
5533  return true;
5534}
5535
5536/// isLegalAddressImmediate - Return true if the integer value can be used
5537/// as the offset of the target addressing mode for load / store of the
5538/// given type.
5539bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5540  // PPC allows a sign-extended 16-bit immediate field.
5541  return (V > -(1 << 16) && V < (1 << 16)-1);
5542}
5543
5544bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5545  return false;
5546}
5547
5548SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5549                                           SelectionDAG &DAG) const {
5550  MachineFunction &MF = DAG.getMachineFunction();
5551  MachineFrameInfo *MFI = MF.getFrameInfo();
5552  MFI->setReturnAddressIsTaken(true);
5553
5554  DebugLoc dl = Op.getDebugLoc();
5555  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5556
5557  // Make sure the function does not optimize away the store of the RA to
5558  // the stack.
5559  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5560  FuncInfo->setLRStoreRequired();
5561  bool isPPC64 = PPCSubTarget.isPPC64();
5562  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5563
5564  if (Depth > 0) {
5565    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5566    SDValue Offset =
5567
5568      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5569                      isPPC64? MVT::i64 : MVT::i32);
5570    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5571                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5572                                   FrameAddr, Offset),
5573                       MachinePointerInfo(), false, false, 0);
5574  }
5575
5576  // Just load the return address off the stack.
5577  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5578  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5579                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5580}
5581
5582SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5583                                          SelectionDAG &DAG) const {
5584  DebugLoc dl = Op.getDebugLoc();
5585  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5586
5587  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5588  bool isPPC64 = PtrVT == MVT::i64;
5589
5590  MachineFunction &MF = DAG.getMachineFunction();
5591  MachineFrameInfo *MFI = MF.getFrameInfo();
5592  MFI->setFrameAddressIsTaken(true);
5593  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5594                  MFI->getStackSize() &&
5595                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5596  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5597                                (is31 ? PPC::R31 : PPC::R1);
5598  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5599                                         PtrVT);
5600  while (Depth--)
5601    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5602                            FrameAddr, MachinePointerInfo(), false, false, 0);
5603  return FrameAddr;
5604}
5605
5606bool
5607PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5608  // The PowerPC target isn't yet aware of offsets.
5609  return false;
5610}
5611
5612/// getOptimalMemOpType - Returns the target specific optimal type for load
5613/// and store operations as a result of memset, memcpy, and memmove
5614/// lowering. If DstAlign is zero that means it's safe to destination
5615/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5616/// means there isn't a need to check it against alignment requirement,
5617/// probably because the source does not need to be loaded. If
5618/// 'NonScalarIntSafe' is true, that means it's safe to return a
5619/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5620/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5621/// constant so it does not need to be loaded.
5622/// It returns EVT::Other if the type should be determined using generic
5623/// target-independent logic.
5624EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5625                                           unsigned DstAlign, unsigned SrcAlign,
5626                                           bool NonScalarIntSafe,
5627                                           bool MemcpyStrSrc,
5628                                           MachineFunction &MF) const {
5629  if (this->PPCSubTarget.isPPC64()) {
5630    return MVT::i64;
5631  } else {
5632    return MVT::i32;
5633  }
5634}
5635