PPCISelLowering.cpp revision 98ca4f2a325f72374a477f9deba7d09e8999c29b
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF(false, true);
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  // Support label based line numbers.
186  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
187  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
200  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
201  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
203  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
204  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
205
206  // TRAP is legal.
207  setOperationAction(ISD::TRAP, MVT::Other, Legal);
208
209  // TRAMPOLINE is custom lowered.
210  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
211
212  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
213  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
214
215  // VAARG is custom lowered with the SVR4 ABI
216  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI())
217    setOperationAction(ISD::VAARG, MVT::Other, Custom);
218  else
219    setOperationAction(ISD::VAARG, MVT::Other, Expand);
220
221  // Use the default implementation.
222  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
223  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
224  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
225  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
226  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
227  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
228
229  // We want to custom lower some of our intrinsics.
230  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
231
232  // Comparisons that require checking two conditions.
233  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
234  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
235  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
238  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
239  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
245
246  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
247    // They also have instructions for converting between i64 and fp.
248    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
249    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
250    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
251    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
252    // This is just the low 32 bits of a (signed) fp->i64 conversion.
253    // We cannot do this with Promote because i64 is not a legal type.
254    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
255
256    // FIXME: disable this lowered code.  This generates 64-bit register values,
257    // and we don't model the fact that the top part is clobbered by calls.  We
258    // need to flag these together so that the value isn't live across a call.
259    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
260  } else {
261    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
262    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
263  }
264
265  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
266    // 64-bit PowerPC implementations can support i64 types directly
267    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
268    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
269    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
270    // 64-bit PowerPC wants to expand i128 shifts itself.
271    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
272    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
273    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
274  } else {
275    // 32-bit PowerPC wants to expand i64 shifts itself.
276    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
277    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
278    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
279  }
280
281  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
282    // First set operation action for all vector types to expand. Then we
283    // will selectively turn on ones that can be effectively codegen'd.
284    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
285         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
286      MVT VT = (MVT::SimpleValueType)i;
287
288      // add/sub are legal for all supported vector VT's.
289      setOperationAction(ISD::ADD , VT, Legal);
290      setOperationAction(ISD::SUB , VT, Legal);
291
292      // We promote all shuffles to v16i8.
293      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
294      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
295
296      // We promote all non-typed operations to v4i32.
297      setOperationAction(ISD::AND   , VT, Promote);
298      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
299      setOperationAction(ISD::OR    , VT, Promote);
300      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
301      setOperationAction(ISD::XOR   , VT, Promote);
302      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
303      setOperationAction(ISD::LOAD  , VT, Promote);
304      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
305      setOperationAction(ISD::SELECT, VT, Promote);
306      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
307      setOperationAction(ISD::STORE, VT, Promote);
308      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
309
310      // No other operations are legal.
311      setOperationAction(ISD::MUL , VT, Expand);
312      setOperationAction(ISD::SDIV, VT, Expand);
313      setOperationAction(ISD::SREM, VT, Expand);
314      setOperationAction(ISD::UDIV, VT, Expand);
315      setOperationAction(ISD::UREM, VT, Expand);
316      setOperationAction(ISD::FDIV, VT, Expand);
317      setOperationAction(ISD::FNEG, VT, Expand);
318      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
319      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
320      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
321      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
322      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
323      setOperationAction(ISD::UDIVREM, VT, Expand);
324      setOperationAction(ISD::SDIVREM, VT, Expand);
325      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
326      setOperationAction(ISD::FPOW, VT, Expand);
327      setOperationAction(ISD::CTPOP, VT, Expand);
328      setOperationAction(ISD::CTLZ, VT, Expand);
329      setOperationAction(ISD::CTTZ, VT, Expand);
330    }
331
332    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
333    // with merges, splats, etc.
334    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
335
336    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
337    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
338    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
339    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
340    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
341    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
342
343    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
344    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
346    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
347
348    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
349    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
350    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
351    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
352
353    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
354    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
355
356    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
360  }
361
362  setShiftAmountType(MVT::i32);
363  setBooleanContents(ZeroOrOneBooleanContent);
364
365  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
366    setStackPointerRegisterToSaveRestore(PPC::X1);
367    setExceptionPointerRegister(PPC::X3);
368    setExceptionSelectorRegister(PPC::X4);
369  } else {
370    setStackPointerRegisterToSaveRestore(PPC::R1);
371    setExceptionPointerRegister(PPC::R3);
372    setExceptionSelectorRegister(PPC::R4);
373  }
374
375  // We have target-specific dag combine patterns for the following nodes:
376  setTargetDAGCombine(ISD::SINT_TO_FP);
377  setTargetDAGCombine(ISD::STORE);
378  setTargetDAGCombine(ISD::BR_CC);
379  setTargetDAGCombine(ISD::BSWAP);
380
381  // Darwin long double math library functions have $LDBL128 appended.
382  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
383    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
384    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
385    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
386    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
387    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
388    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
389    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
390    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
391    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
392    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
393  }
394
395  computeRegisterProperties();
396}
397
398/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
399/// function arguments in the caller parameter area.
400unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
401  TargetMachine &TM = getTargetMachine();
402  // Darwin passes everything on 4 byte boundary.
403  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
404    return 4;
405  // FIXME SVR4 TBD
406  return 4;
407}
408
409const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
410  switch (Opcode) {
411  default: return 0;
412  case PPCISD::FSEL:            return "PPCISD::FSEL";
413  case PPCISD::FCFID:           return "PPCISD::FCFID";
414  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
415  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
416  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
417  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
418  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
419  case PPCISD::VPERM:           return "PPCISD::VPERM";
420  case PPCISD::Hi:              return "PPCISD::Hi";
421  case PPCISD::Lo:              return "PPCISD::Lo";
422  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
423  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
424  case PPCISD::SRL:             return "PPCISD::SRL";
425  case PPCISD::SRA:             return "PPCISD::SRA";
426  case PPCISD::SHL:             return "PPCISD::SHL";
427  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
428  case PPCISD::STD_32:          return "PPCISD::STD_32";
429  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
430  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
431  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
432  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
433  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
434  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
435  case PPCISD::MFCR:            return "PPCISD::MFCR";
436  case PPCISD::VCMP:            return "PPCISD::VCMP";
437  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
438  case PPCISD::LBRX:            return "PPCISD::LBRX";
439  case PPCISD::STBRX:           return "PPCISD::STBRX";
440  case PPCISD::LARX:            return "PPCISD::LARX";
441  case PPCISD::STCX:            return "PPCISD::STCX";
442  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
443  case PPCISD::MFFS:            return "PPCISD::MFFS";
444  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
445  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
446  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
447  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
448  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
449  }
450}
451
452MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
453  return MVT::i32;
454}
455
456/// getFunctionAlignment - Return the Log2 alignment of this function.
457unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
458  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
459    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
460  else
461    return 2;
462}
463
464//===----------------------------------------------------------------------===//
465// Node matching predicates, for use by the tblgen matching code.
466//===----------------------------------------------------------------------===//
467
468/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
469static bool isFloatingPointZero(SDValue Op) {
470  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
471    return CFP->getValueAPF().isZero();
472  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
473    // Maybe this has already been legalized into the constant pool?
474    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
475      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
476        return CFP->getValueAPF().isZero();
477  }
478  return false;
479}
480
481/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
482/// true if Op is undef or if it matches the specified value.
483static bool isConstantOrUndef(int Op, int Val) {
484  return Op < 0 || Op == Val;
485}
486
487/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
488/// VPKUHUM instruction.
489bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
490  if (!isUnary) {
491    for (unsigned i = 0; i != 16; ++i)
492      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
493        return false;
494  } else {
495    for (unsigned i = 0; i != 8; ++i)
496      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
497          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
498        return false;
499  }
500  return true;
501}
502
503/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
504/// VPKUWUM instruction.
505bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
506  if (!isUnary) {
507    for (unsigned i = 0; i != 16; i += 2)
508      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
509          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
510        return false;
511  } else {
512    for (unsigned i = 0; i != 8; i += 2)
513      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
514          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
515          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
516          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
517        return false;
518  }
519  return true;
520}
521
522/// isVMerge - Common function, used to match vmrg* shuffles.
523///
524static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
525                     unsigned LHSStart, unsigned RHSStart) {
526  assert(N->getValueType(0) == MVT::v16i8 &&
527         "PPC only supports shuffles by bytes!");
528  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
529         "Unsupported merge size!");
530
531  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
532    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
533      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
534                             LHSStart+j+i*UnitSize) ||
535          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
536                             RHSStart+j+i*UnitSize))
537        return false;
538    }
539  return true;
540}
541
542/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
543/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
544bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
545                             bool isUnary) {
546  if (!isUnary)
547    return isVMerge(N, UnitSize, 8, 24);
548  return isVMerge(N, UnitSize, 8, 8);
549}
550
551/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
552/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
553bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
554                             bool isUnary) {
555  if (!isUnary)
556    return isVMerge(N, UnitSize, 0, 16);
557  return isVMerge(N, UnitSize, 0, 0);
558}
559
560
561/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
562/// amount, otherwise return -1.
563int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
564  assert(N->getValueType(0) == MVT::v16i8 &&
565         "PPC only supports shuffles by bytes!");
566
567  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
568
569  // Find the first non-undef value in the shuffle mask.
570  unsigned i;
571  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
572    /*search*/;
573
574  if (i == 16) return -1;  // all undef.
575
576  // Otherwise, check to see if the rest of the elements are consecutively
577  // numbered from this value.
578  unsigned ShiftAmt = SVOp->getMaskElt(i);
579  if (ShiftAmt < i) return -1;
580  ShiftAmt -= i;
581
582  if (!isUnary) {
583    // Check the rest of the elements to see if they are consecutive.
584    for (++i; i != 16; ++i)
585      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
586        return -1;
587  } else {
588    // Check the rest of the elements to see if they are consecutive.
589    for (++i; i != 16; ++i)
590      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
591        return -1;
592  }
593  return ShiftAmt;
594}
595
596/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
597/// specifies a splat of a single element that is suitable for input to
598/// VSPLTB/VSPLTH/VSPLTW.
599bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
600  assert(N->getValueType(0) == MVT::v16i8 &&
601         (EltSize == 1 || EltSize == 2 || EltSize == 4));
602
603  // This is a splat operation if each element of the permute is the same, and
604  // if the value doesn't reference the second vector.
605  unsigned ElementBase = N->getMaskElt(0);
606
607  // FIXME: Handle UNDEF elements too!
608  if (ElementBase >= 16)
609    return false;
610
611  // Check that the indices are consecutive, in the case of a multi-byte element
612  // splatted with a v16i8 mask.
613  for (unsigned i = 1; i != EltSize; ++i)
614    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
615      return false;
616
617  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
618    if (N->getMaskElt(i) < 0) continue;
619    for (unsigned j = 0; j != EltSize; ++j)
620      if (N->getMaskElt(i+j) != N->getMaskElt(j))
621        return false;
622  }
623  return true;
624}
625
626/// isAllNegativeZeroVector - Returns true if all elements of build_vector
627/// are -0.0.
628bool PPC::isAllNegativeZeroVector(SDNode *N) {
629  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
630
631  APInt APVal, APUndef;
632  unsigned BitSize;
633  bool HasAnyUndefs;
634
635  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
636    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
637      return CFP->getValueAPF().isNegZero();
638
639  return false;
640}
641
642/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
643/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
644unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
645  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
646  assert(isSplatShuffleMask(SVOp, EltSize));
647  return SVOp->getMaskElt(0) / EltSize;
648}
649
650/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
651/// by using a vspltis[bhw] instruction of the specified element size, return
652/// the constant being splatted.  The ByteSize field indicates the number of
653/// bytes of each element [124] -> [bhw].
654SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
655  SDValue OpVal(0, 0);
656
657  // If ByteSize of the splat is bigger than the element size of the
658  // build_vector, then we have a case where we are checking for a splat where
659  // multiple elements of the buildvector are folded together into a single
660  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
661  unsigned EltSize = 16/N->getNumOperands();
662  if (EltSize < ByteSize) {
663    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
664    SDValue UniquedVals[4];
665    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
666
667    // See if all of the elements in the buildvector agree across.
668    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
669      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
670      // If the element isn't a constant, bail fully out.
671      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
672
673
674      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
675        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
676      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
677        return SDValue();  // no match.
678    }
679
680    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
681    // either constant or undef values that are identical for each chunk.  See
682    // if these chunks can form into a larger vspltis*.
683
684    // Check to see if all of the leading entries are either 0 or -1.  If
685    // neither, then this won't fit into the immediate field.
686    bool LeadingZero = true;
687    bool LeadingOnes = true;
688    for (unsigned i = 0; i != Multiple-1; ++i) {
689      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
690
691      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
692      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
693    }
694    // Finally, check the least significant entry.
695    if (LeadingZero) {
696      if (UniquedVals[Multiple-1].getNode() == 0)
697        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
698      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
699      if (Val < 16)
700        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
701    }
702    if (LeadingOnes) {
703      if (UniquedVals[Multiple-1].getNode() == 0)
704        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
705      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
706      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
707        return DAG.getTargetConstant(Val, MVT::i32);
708    }
709
710    return SDValue();
711  }
712
713  // Check to see if this buildvec has a single non-undef value in its elements.
714  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
715    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
716    if (OpVal.getNode() == 0)
717      OpVal = N->getOperand(i);
718    else if (OpVal != N->getOperand(i))
719      return SDValue();
720  }
721
722  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
723
724  unsigned ValSizeInBytes = EltSize;
725  uint64_t Value = 0;
726  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
727    Value = CN->getZExtValue();
728  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
729    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
730    Value = FloatToBits(CN->getValueAPF().convertToFloat());
731  }
732
733  // If the splat value is larger than the element value, then we can never do
734  // this splat.  The only case that we could fit the replicated bits into our
735  // immediate field for would be zero, and we prefer to use vxor for it.
736  if (ValSizeInBytes < ByteSize) return SDValue();
737
738  // If the element value is larger than the splat value, cut it in half and
739  // check to see if the two halves are equal.  Continue doing this until we
740  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
741  while (ValSizeInBytes > ByteSize) {
742    ValSizeInBytes >>= 1;
743
744    // If the top half equals the bottom half, we're still ok.
745    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
746         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
747      return SDValue();
748  }
749
750  // Properly sign extend the value.
751  int ShAmt = (4-ByteSize)*8;
752  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
753
754  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
755  if (MaskVal == 0) return SDValue();
756
757  // Finally, if this value fits in a 5 bit sext field, return it
758  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
759    return DAG.getTargetConstant(MaskVal, MVT::i32);
760  return SDValue();
761}
762
763//===----------------------------------------------------------------------===//
764//  Addressing Mode Selection
765//===----------------------------------------------------------------------===//
766
767/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
768/// or 64-bit immediate, and if the value can be accurately represented as a
769/// sign extension from a 16-bit value.  If so, this returns true and the
770/// immediate.
771static bool isIntS16Immediate(SDNode *N, short &Imm) {
772  if (N->getOpcode() != ISD::Constant)
773    return false;
774
775  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
776  if (N->getValueType(0) == MVT::i32)
777    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
778  else
779    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
780}
781static bool isIntS16Immediate(SDValue Op, short &Imm) {
782  return isIntS16Immediate(Op.getNode(), Imm);
783}
784
785
786/// SelectAddressRegReg - Given the specified addressed, check to see if it
787/// can be represented as an indexed [r+r] operation.  Returns false if it
788/// can be more efficiently represented with [r+imm].
789bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
790                                            SDValue &Index,
791                                            SelectionDAG &DAG) const {
792  short imm = 0;
793  if (N.getOpcode() == ISD::ADD) {
794    if (isIntS16Immediate(N.getOperand(1), imm))
795      return false;    // r+i
796    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
797      return false;    // r+i
798
799    Base = N.getOperand(0);
800    Index = N.getOperand(1);
801    return true;
802  } else if (N.getOpcode() == ISD::OR) {
803    if (isIntS16Immediate(N.getOperand(1), imm))
804      return false;    // r+i can fold it if we can.
805
806    // If this is an or of disjoint bitfields, we can codegen this as an add
807    // (for better address arithmetic) if the LHS and RHS of the OR are provably
808    // disjoint.
809    APInt LHSKnownZero, LHSKnownOne;
810    APInt RHSKnownZero, RHSKnownOne;
811    DAG.ComputeMaskedBits(N.getOperand(0),
812                          APInt::getAllOnesValue(N.getOperand(0)
813                            .getValueSizeInBits()),
814                          LHSKnownZero, LHSKnownOne);
815
816    if (LHSKnownZero.getBoolValue()) {
817      DAG.ComputeMaskedBits(N.getOperand(1),
818                            APInt::getAllOnesValue(N.getOperand(1)
819                              .getValueSizeInBits()),
820                            RHSKnownZero, RHSKnownOne);
821      // If all of the bits are known zero on the LHS or RHS, the add won't
822      // carry.
823      if (~(LHSKnownZero | RHSKnownZero) == 0) {
824        Base = N.getOperand(0);
825        Index = N.getOperand(1);
826        return true;
827      }
828    }
829  }
830
831  return false;
832}
833
834/// Returns true if the address N can be represented by a base register plus
835/// a signed 16-bit displacement [r+imm], and if it is not better
836/// represented as reg+reg.
837bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
838                                            SDValue &Base,
839                                            SelectionDAG &DAG) const {
840  // FIXME dl should come from parent load or store, not from address
841  DebugLoc dl = N.getDebugLoc();
842  // If this can be more profitably realized as r+r, fail.
843  if (SelectAddressRegReg(N, Disp, Base, DAG))
844    return false;
845
846  if (N.getOpcode() == ISD::ADD) {
847    short imm = 0;
848    if (isIntS16Immediate(N.getOperand(1), imm)) {
849      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
850      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
851        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
852      } else {
853        Base = N.getOperand(0);
854      }
855      return true; // [r+i]
856    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
857      // Match LOAD (ADD (X, Lo(G))).
858     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
859             && "Cannot handle constant offsets yet!");
860      Disp = N.getOperand(1).getOperand(0);  // The global address.
861      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
862             Disp.getOpcode() == ISD::TargetConstantPool ||
863             Disp.getOpcode() == ISD::TargetJumpTable);
864      Base = N.getOperand(0);
865      return true;  // [&g+r]
866    }
867  } else if (N.getOpcode() == ISD::OR) {
868    short imm = 0;
869    if (isIntS16Immediate(N.getOperand(1), imm)) {
870      // If this is an or of disjoint bitfields, we can codegen this as an add
871      // (for better address arithmetic) if the LHS and RHS of the OR are
872      // provably disjoint.
873      APInt LHSKnownZero, LHSKnownOne;
874      DAG.ComputeMaskedBits(N.getOperand(0),
875                            APInt::getAllOnesValue(N.getOperand(0)
876                                                   .getValueSizeInBits()),
877                            LHSKnownZero, LHSKnownOne);
878
879      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
880        // If all of the bits are known zero on the LHS or RHS, the add won't
881        // carry.
882        Base = N.getOperand(0);
883        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
884        return true;
885      }
886    }
887  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
888    // Loading from a constant address.
889
890    // If this address fits entirely in a 16-bit sext immediate field, codegen
891    // this as "d, 0"
892    short Imm;
893    if (isIntS16Immediate(CN, Imm)) {
894      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
895      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
896      return true;
897    }
898
899    // Handle 32-bit sext immediates with LIS + addr mode.
900    if (CN->getValueType(0) == MVT::i32 ||
901        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
902      int Addr = (int)CN->getZExtValue();
903
904      // Otherwise, break this down into an LIS + disp.
905      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
906
907      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
908      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
909      Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
910      return true;
911    }
912  }
913
914  Disp = DAG.getTargetConstant(0, getPointerTy());
915  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
916    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
917  else
918    Base = N;
919  return true;      // [r+0]
920}
921
922/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
923/// represented as an indexed [r+r] operation.
924bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
925                                                SDValue &Index,
926                                                SelectionDAG &DAG) const {
927  // Check to see if we can easily represent this as an [r+r] address.  This
928  // will fail if it thinks that the address is more profitably represented as
929  // reg+imm, e.g. where imm = 0.
930  if (SelectAddressRegReg(N, Base, Index, DAG))
931    return true;
932
933  // If the operand is an addition, always emit this as [r+r], since this is
934  // better (for code size, and execution, as the memop does the add for free)
935  // than emitting an explicit add.
936  if (N.getOpcode() == ISD::ADD) {
937    Base = N.getOperand(0);
938    Index = N.getOperand(1);
939    return true;
940  }
941
942  // Otherwise, do it the hard way, using R0 as the base register.
943  Base = DAG.getRegister(PPC::R0, N.getValueType());
944  Index = N;
945  return true;
946}
947
948/// SelectAddressRegImmShift - Returns true if the address N can be
949/// represented by a base register plus a signed 14-bit displacement
950/// [r+imm*4].  Suitable for use by STD and friends.
951bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
952                                                 SDValue &Base,
953                                                 SelectionDAG &DAG) const {
954  // FIXME dl should come from the parent load or store, not the address
955  DebugLoc dl = N.getDebugLoc();
956  // If this can be more profitably realized as r+r, fail.
957  if (SelectAddressRegReg(N, Disp, Base, DAG))
958    return false;
959
960  if (N.getOpcode() == ISD::ADD) {
961    short imm = 0;
962    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
963      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
964      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
965        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
966      } else {
967        Base = N.getOperand(0);
968      }
969      return true; // [r+i]
970    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
971      // Match LOAD (ADD (X, Lo(G))).
972     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
973             && "Cannot handle constant offsets yet!");
974      Disp = N.getOperand(1).getOperand(0);  // The global address.
975      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
976             Disp.getOpcode() == ISD::TargetConstantPool ||
977             Disp.getOpcode() == ISD::TargetJumpTable);
978      Base = N.getOperand(0);
979      return true;  // [&g+r]
980    }
981  } else if (N.getOpcode() == ISD::OR) {
982    short imm = 0;
983    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
984      // If this is an or of disjoint bitfields, we can codegen this as an add
985      // (for better address arithmetic) if the LHS and RHS of the OR are
986      // provably disjoint.
987      APInt LHSKnownZero, LHSKnownOne;
988      DAG.ComputeMaskedBits(N.getOperand(0),
989                            APInt::getAllOnesValue(N.getOperand(0)
990                                                   .getValueSizeInBits()),
991                            LHSKnownZero, LHSKnownOne);
992      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
993        // If all of the bits are known zero on the LHS or RHS, the add won't
994        // carry.
995        Base = N.getOperand(0);
996        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
997        return true;
998      }
999    }
1000  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1001    // Loading from a constant address.  Verify low two bits are clear.
1002    if ((CN->getZExtValue() & 3) == 0) {
1003      // If this address fits entirely in a 14-bit sext immediate field, codegen
1004      // this as "d, 0"
1005      short Imm;
1006      if (isIntS16Immediate(CN, Imm)) {
1007        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1008        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1009        return true;
1010      }
1011
1012      // Fold the low-part of 32-bit absolute addresses into addr mode.
1013      if (CN->getValueType(0) == MVT::i32 ||
1014          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1015        int Addr = (int)CN->getZExtValue();
1016
1017        // Otherwise, break this down into an LIS + disp.
1018        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1019        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1020        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1021        Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1022        return true;
1023      }
1024    }
1025  }
1026
1027  Disp = DAG.getTargetConstant(0, getPointerTy());
1028  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1029    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1030  else
1031    Base = N;
1032  return true;      // [r+0]
1033}
1034
1035
1036/// getPreIndexedAddressParts - returns true by value, base pointer and
1037/// offset pointer and addressing mode by reference if the node's address
1038/// can be legally represented as pre-indexed load / store address.
1039bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1040                                                  SDValue &Offset,
1041                                                  ISD::MemIndexedMode &AM,
1042                                                  SelectionDAG &DAG) const {
1043  // Disabled by default for now.
1044  if (!EnablePPCPreinc) return false;
1045
1046  SDValue Ptr;
1047  MVT VT;
1048  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1049    Ptr = LD->getBasePtr();
1050    VT = LD->getMemoryVT();
1051
1052  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1053    ST = ST;
1054    Ptr = ST->getBasePtr();
1055    VT  = ST->getMemoryVT();
1056  } else
1057    return false;
1058
1059  // PowerPC doesn't have preinc load/store instructions for vectors.
1060  if (VT.isVector())
1061    return false;
1062
1063  // TODO: Check reg+reg first.
1064
1065  // LDU/STU use reg+imm*4, others use reg+imm.
1066  if (VT != MVT::i64) {
1067    // reg + imm
1068    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1069      return false;
1070  } else {
1071    // reg + imm * 4.
1072    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1073      return false;
1074  }
1075
1076  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1077    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1078    // sext i32 to i64 when addr mode is r+i.
1079    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1080        LD->getExtensionType() == ISD::SEXTLOAD &&
1081        isa<ConstantSDNode>(Offset))
1082      return false;
1083  }
1084
1085  AM = ISD::PRE_INC;
1086  return true;
1087}
1088
1089//===----------------------------------------------------------------------===//
1090//  LowerOperation implementation
1091//===----------------------------------------------------------------------===//
1092
1093SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1094                                             SelectionDAG &DAG) {
1095  MVT PtrVT = Op.getValueType();
1096  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1097  Constant *C = CP->getConstVal();
1098  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1099  SDValue Zero = DAG.getConstant(0, PtrVT);
1100  // FIXME there isn't really any debug info here
1101  DebugLoc dl = Op.getDebugLoc();
1102
1103  const TargetMachine &TM = DAG.getTarget();
1104
1105  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1106  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1107
1108  // If this is a non-darwin platform, we don't support non-static relo models
1109  // yet.
1110  if (TM.getRelocationModel() == Reloc::Static ||
1111      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1112    // Generate non-pic code that has direct accesses to the constant pool.
1113    // The address of the global is just (hi(&g)+lo(&g)).
1114    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1115  }
1116
1117  if (TM.getRelocationModel() == Reloc::PIC_) {
1118    // With PIC, the first instruction is actually "GR+hi(&G)".
1119    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1120                     DAG.getNode(PPCISD::GlobalBaseReg,
1121                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1122  }
1123
1124  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1125  return Lo;
1126}
1127
1128SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1129  MVT PtrVT = Op.getValueType();
1130  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1131  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1132  SDValue Zero = DAG.getConstant(0, PtrVT);
1133  // FIXME there isn't really any debug loc here
1134  DebugLoc dl = Op.getDebugLoc();
1135
1136  const TargetMachine &TM = DAG.getTarget();
1137
1138  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1139  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1140
1141  // If this is a non-darwin platform, we don't support non-static relo models
1142  // yet.
1143  if (TM.getRelocationModel() == Reloc::Static ||
1144      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1145    // Generate non-pic code that has direct accesses to the constant pool.
1146    // The address of the global is just (hi(&g)+lo(&g)).
1147    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1148  }
1149
1150  if (TM.getRelocationModel() == Reloc::PIC_) {
1151    // With PIC, the first instruction is actually "GR+hi(&G)".
1152    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1153                     DAG.getNode(PPCISD::GlobalBaseReg,
1154                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1155  }
1156
1157  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1158  return Lo;
1159}
1160
1161SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1162                                                   SelectionDAG &DAG) {
1163  llvm_unreachable("TLS not implemented for PPC.");
1164  return SDValue(); // Not reached
1165}
1166
1167SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1168                                              SelectionDAG &DAG) {
1169  MVT PtrVT = Op.getValueType();
1170  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1171  GlobalValue *GV = GSDN->getGlobal();
1172  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1173  SDValue Zero = DAG.getConstant(0, PtrVT);
1174  // FIXME there isn't really any debug info here
1175  DebugLoc dl = GSDN->getDebugLoc();
1176
1177  const TargetMachine &TM = DAG.getTarget();
1178
1179  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1180  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1181
1182  // If this is a non-darwin platform, we don't support non-static relo models
1183  // yet.
1184  if (TM.getRelocationModel() == Reloc::Static ||
1185      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1186    // Generate non-pic code that has direct accesses to globals.
1187    // The address of the global is just (hi(&g)+lo(&g)).
1188    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1189  }
1190
1191  if (TM.getRelocationModel() == Reloc::PIC_) {
1192    // With PIC, the first instruction is actually "GR+hi(&G)".
1193    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1194                     DAG.getNode(PPCISD::GlobalBaseReg,
1195                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1196  }
1197
1198  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1199
1200  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1201    return Lo;
1202
1203  // If the global is weak or external, we have to go through the lazy
1204  // resolution stub.
1205  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1206}
1207
1208SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1209  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1210  DebugLoc dl = Op.getDebugLoc();
1211
1212  // If we're comparing for equality to zero, expose the fact that this is
1213  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1214  // fold the new nodes.
1215  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1216    if (C->isNullValue() && CC == ISD::SETEQ) {
1217      MVT VT = Op.getOperand(0).getValueType();
1218      SDValue Zext = Op.getOperand(0);
1219      if (VT.bitsLT(MVT::i32)) {
1220        VT = MVT::i32;
1221        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1222      }
1223      unsigned Log2b = Log2_32(VT.getSizeInBits());
1224      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1225      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1226                                DAG.getConstant(Log2b, MVT::i32));
1227      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1228    }
1229    // Leave comparisons against 0 and -1 alone for now, since they're usually
1230    // optimized.  FIXME: revisit this when we can custom lower all setcc
1231    // optimizations.
1232    if (C->isAllOnesValue() || C->isNullValue())
1233      return SDValue();
1234  }
1235
1236  // If we have an integer seteq/setne, turn it into a compare against zero
1237  // by xor'ing the rhs with the lhs, which is faster than setting a
1238  // condition register, reading it back out, and masking the correct bit.  The
1239  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1240  // the result to other bit-twiddling opportunities.
1241  MVT LHSVT = Op.getOperand(0).getValueType();
1242  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1243    MVT VT = Op.getValueType();
1244    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1245                                Op.getOperand(1));
1246    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1247  }
1248  return SDValue();
1249}
1250
1251SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1252                              int VarArgsFrameIndex,
1253                              int VarArgsStackOffset,
1254                              unsigned VarArgsNumGPR,
1255                              unsigned VarArgsNumFPR,
1256                              const PPCSubtarget &Subtarget) {
1257
1258  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1259  return SDValue(); // Not reached
1260}
1261
1262SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1263  SDValue Chain = Op.getOperand(0);
1264  SDValue Trmp = Op.getOperand(1); // trampoline
1265  SDValue FPtr = Op.getOperand(2); // nested function
1266  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1267  DebugLoc dl = Op.getDebugLoc();
1268
1269  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1270  bool isPPC64 = (PtrVT == MVT::i64);
1271  const Type *IntPtrTy =
1272    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1273
1274  TargetLowering::ArgListTy Args;
1275  TargetLowering::ArgListEntry Entry;
1276
1277  Entry.Ty = IntPtrTy;
1278  Entry.Node = Trmp; Args.push_back(Entry);
1279
1280  // TrampSize == (isPPC64 ? 48 : 40);
1281  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1282                               isPPC64 ? MVT::i64 : MVT::i32);
1283  Args.push_back(Entry);
1284
1285  Entry.Node = FPtr; Args.push_back(Entry);
1286  Entry.Node = Nest; Args.push_back(Entry);
1287
1288  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1289  std::pair<SDValue, SDValue> CallResult =
1290    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(),
1291                false, false, false, false, 0, CallingConv::C, false,
1292                /*isReturnValueUsed=*/true,
1293                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1294                Args, DAG, dl);
1295
1296  SDValue Ops[] =
1297    { CallResult.first, CallResult.second };
1298
1299  return DAG.getMergeValues(Ops, 2, dl);
1300}
1301
1302SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1303                                        int VarArgsFrameIndex,
1304                                        int VarArgsStackOffset,
1305                                        unsigned VarArgsNumGPR,
1306                                        unsigned VarArgsNumFPR,
1307                                        const PPCSubtarget &Subtarget) {
1308  DebugLoc dl = Op.getDebugLoc();
1309
1310  if (Subtarget.isDarwinABI()) {
1311    // vastart just stores the address of the VarArgsFrameIndex slot into the
1312    // memory location argument.
1313    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1314    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1315    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1316    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1317  }
1318
1319  // For the SVR4 ABI we follow the layout of the va_list struct.
1320  // We suppose the given va_list is already allocated.
1321  //
1322  // typedef struct {
1323  //  char gpr;     /* index into the array of 8 GPRs
1324  //                 * stored in the register save area
1325  //                 * gpr=0 corresponds to r3,
1326  //                 * gpr=1 to r4, etc.
1327  //                 */
1328  //  char fpr;     /* index into the array of 8 FPRs
1329  //                 * stored in the register save area
1330  //                 * fpr=0 corresponds to f1,
1331  //                 * fpr=1 to f2, etc.
1332  //                 */
1333  //  char *overflow_arg_area;
1334  //                /* location on stack that holds
1335  //                 * the next overflow argument
1336  //                 */
1337  //  char *reg_save_area;
1338  //               /* where r3:r10 and f1:f8 (if saved)
1339  //                * are stored
1340  //                */
1341  // } va_list[1];
1342
1343
1344  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1345  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1346
1347
1348  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1349
1350  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1351  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1352
1353  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1354  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1355
1356  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1357  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1358
1359  uint64_t FPROffset = 1;
1360  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1361
1362  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1363
1364  // Store first byte : number of int regs
1365  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1366                                         Op.getOperand(1), SV, 0, MVT::i8);
1367  uint64_t nextOffset = FPROffset;
1368  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1369                                  ConstFPROffset);
1370
1371  // Store second byte : number of float regs
1372  SDValue secondStore =
1373    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1374  nextOffset += StackOffset;
1375  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1376
1377  // Store second word : arguments given on stack
1378  SDValue thirdStore =
1379    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1380  nextOffset += FrameOffset;
1381  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1382
1383  // Store third word : arguments given in registers
1384  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1385
1386}
1387
1388#include "PPCGenCallingConv.inc"
1389
1390static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1391                                     CCValAssign::LocInfo &LocInfo,
1392                                     ISD::ArgFlagsTy &ArgFlags,
1393                                     CCState &State) {
1394  return true;
1395}
1396
1397static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1398                                            MVT &LocVT,
1399                                            CCValAssign::LocInfo &LocInfo,
1400                                            ISD::ArgFlagsTy &ArgFlags,
1401                                            CCState &State) {
1402  static const unsigned ArgRegs[] = {
1403    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1404    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1405  };
1406  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1407
1408  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1409
1410  // Skip one register if the first unallocated register has an even register
1411  // number and there are still argument registers available which have not been
1412  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1413  // need to skip a register if RegNum is odd.
1414  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1415    State.AllocateReg(ArgRegs[RegNum]);
1416  }
1417
1418  // Always return false here, as this function only makes sure that the first
1419  // unallocated register has an odd register number and does not actually
1420  // allocate a register for the current argument.
1421  return false;
1422}
1423
1424static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1425                                              MVT &LocVT,
1426                                              CCValAssign::LocInfo &LocInfo,
1427                                              ISD::ArgFlagsTy &ArgFlags,
1428                                              CCState &State) {
1429  static const unsigned ArgRegs[] = {
1430    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1431    PPC::F8
1432  };
1433
1434  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1435
1436  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1437
1438  // If there is only one Floating-point register left we need to put both f64
1439  // values of a split ppc_fp128 value on the stack.
1440  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1441    State.AllocateReg(ArgRegs[RegNum]);
1442  }
1443
1444  // Always return false here, as this function only makes sure that the two f64
1445  // values a ppc_fp128 value is split into are both passed in registers or both
1446  // passed on the stack and does not actually allocate a register for the
1447  // current argument.
1448  return false;
1449}
1450
1451/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1452/// depending on which subtarget is selected.
1453static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1454  if (Subtarget.isDarwinABI()) {
1455    static const unsigned FPR[] = {
1456      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1457      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1458    };
1459    return FPR;
1460  }
1461
1462
1463  static const unsigned FPR[] = {
1464    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1465    PPC::F8
1466  };
1467  return FPR;
1468}
1469
1470/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1471/// the stack.
1472static unsigned CalculateStackSlotSize(MVT ArgVT, ISD::ArgFlagsTy Flags,
1473                                       unsigned PtrByteSize) {
1474  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1475  if (Flags.isByVal())
1476    ArgSize = Flags.getByValSize();
1477  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1478
1479  return ArgSize;
1480}
1481
1482SDValue
1483PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1484                                        unsigned CallConv, bool isVarArg,
1485                                        const SmallVectorImpl<ISD::InputArg>
1486                                          &Ins,
1487                                        DebugLoc dl, SelectionDAG &DAG,
1488                                        SmallVectorImpl<SDValue> &InVals) {
1489  if (PPCSubTarget.isSVR4ABI()) {
1490    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1491                                     dl, DAG, InVals);
1492  } else {
1493    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1494                                       dl, DAG, InVals);
1495  }
1496}
1497
1498SDValue
1499PPCTargetLowering::LowerFormalArguments_SVR4(
1500                                      SDValue Chain,
1501                                      unsigned CallConv, bool isVarArg,
1502                                      const SmallVectorImpl<ISD::InputArg>
1503                                        &Ins,
1504                                      DebugLoc dl, SelectionDAG &DAG,
1505                                      SmallVectorImpl<SDValue> &InVals) {
1506
1507  // SVR4 ABI Stack Frame Layout:
1508  //              +-----------------------------------+
1509  //        +-->  |            Back chain             |
1510  //        |     +-----------------------------------+
1511  //        |     | Floating-point register save area |
1512  //        |     +-----------------------------------+
1513  //        |     |    General register save area     |
1514  //        |     +-----------------------------------+
1515  //        |     |          CR save word             |
1516  //        |     +-----------------------------------+
1517  //        |     |         VRSAVE save word          |
1518  //        |     +-----------------------------------+
1519  //        |     |         Alignment padding         |
1520  //        |     +-----------------------------------+
1521  //        |     |     Vector register save area     |
1522  //        |     +-----------------------------------+
1523  //        |     |       Local variable space        |
1524  //        |     +-----------------------------------+
1525  //        |     |        Parameter list area        |
1526  //        |     +-----------------------------------+
1527  //        |     |           LR save word            |
1528  //        |     +-----------------------------------+
1529  // SP-->  +---  |            Back chain             |
1530  //              +-----------------------------------+
1531  //
1532  // Specifications:
1533  //   System V Application Binary Interface PowerPC Processor Supplement
1534  //   AltiVec Technology Programming Interface Manual
1535
1536  MachineFunction &MF = DAG.getMachineFunction();
1537  MachineFrameInfo *MFI = MF.getFrameInfo();
1538
1539  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1540  // Potential tail calls could cause overwriting of argument stack slots.
1541  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1542  unsigned PtrByteSize = 4;
1543
1544  // Assign locations to all of the incoming arguments.
1545  SmallVector<CCValAssign, 16> ArgLocs;
1546  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1547                 *DAG.getContext());
1548
1549  // Reserve space for the linkage area on the stack.
1550  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1551
1552  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1553
1554  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1555    CCValAssign &VA = ArgLocs[i];
1556
1557    // Arguments stored in registers.
1558    if (VA.isRegLoc()) {
1559      TargetRegisterClass *RC;
1560      MVT ValVT = VA.getValVT();
1561
1562      switch (ValVT.getSimpleVT()) {
1563        default:
1564          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1565        case MVT::i32:
1566          RC = PPC::GPRCRegisterClass;
1567          break;
1568        case MVT::f32:
1569          RC = PPC::F4RCRegisterClass;
1570          break;
1571        case MVT::f64:
1572          RC = PPC::F8RCRegisterClass;
1573          break;
1574        case MVT::v16i8:
1575        case MVT::v8i16:
1576        case MVT::v4i32:
1577        case MVT::v4f32:
1578          RC = PPC::VRRCRegisterClass;
1579          break;
1580      }
1581
1582      // Transform the arguments stored in physical registers into virtual ones.
1583      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1584      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1585
1586      InVals.push_back(ArgValue);
1587    } else {
1588      // Argument stored in memory.
1589      assert(VA.isMemLoc());
1590
1591      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1592      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1593                                      isImmutable);
1594
1595      // Create load nodes to retrieve arguments from the stack.
1596      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1597      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1598    }
1599  }
1600
1601  // Assign locations to all of the incoming aggregate by value arguments.
1602  // Aggregates passed by value are stored in the local variable space of the
1603  // caller's stack frame, right above the parameter list area.
1604  SmallVector<CCValAssign, 16> ByValArgLocs;
1605  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1606                      ByValArgLocs, *DAG.getContext());
1607
1608  // Reserve stack space for the allocations in CCInfo.
1609  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1610
1611  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1612
1613  // Area that is at least reserved in the caller of this function.
1614  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1615
1616  // Set the size that is at least reserved in caller of this function.  Tail
1617  // call optimized function's reserved stack space needs to be aligned so that
1618  // taking the difference between two stack areas will result in an aligned
1619  // stack.
1620  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1621
1622  MinReservedArea =
1623    std::max(MinReservedArea,
1624             PPCFrameInfo::getMinCallFrameSize(false, false));
1625
1626  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1627    getStackAlignment();
1628  unsigned AlignMask = TargetAlign-1;
1629  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1630
1631  FI->setMinReservedArea(MinReservedArea);
1632
1633  SmallVector<SDValue, 8> MemOps;
1634
1635  // If the function takes variable number of arguments, make a frame index for
1636  // the start of the first vararg value... for expansion of llvm.va_start.
1637  if (isVarArg) {
1638    static const unsigned GPArgRegs[] = {
1639      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1640      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1641    };
1642    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1643
1644    static const unsigned FPArgRegs[] = {
1645      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1646      PPC::F8
1647    };
1648    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1649
1650    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1651    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1652
1653    // Make room for NumGPArgRegs and NumFPArgRegs.
1654    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1655                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
1656
1657    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1658                                                CCInfo.getNextStackOffset());
1659
1660    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1661    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1662
1663    // The fixed integer arguments of a variadic function are
1664    // stored to the VarArgsFrameIndex on the stack.
1665    unsigned GPRIndex = 0;
1666    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1667      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1668      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1669      MemOps.push_back(Store);
1670      // Increment the address by four for the next argument to store
1671      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1672      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1673    }
1674
1675    // If this function is vararg, store any remaining integer argument regs
1676    // to their spots on the stack so that they may be loaded by deferencing the
1677    // result of va_next.
1678    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1679      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1680
1681      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1682      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1683      MemOps.push_back(Store);
1684      // Increment the address by four for the next argument to store
1685      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1686      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1687    }
1688
1689    // FIXME SVR4: We only need to save FP argument registers if CR bit 6 is
1690    // set.
1691
1692    // The double arguments are stored to the VarArgsFrameIndex
1693    // on the stack.
1694    unsigned FPRIndex = 0;
1695    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1696      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1697      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1698      MemOps.push_back(Store);
1699      // Increment the address by eight for the next argument to store
1700      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1701                                         PtrVT);
1702      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1703    }
1704
1705    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1706      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1707
1708      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1709      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1710      MemOps.push_back(Store);
1711      // Increment the address by eight for the next argument to store
1712      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1713                                         PtrVT);
1714      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1715    }
1716  }
1717
1718  if (!MemOps.empty())
1719    Chain = DAG.getNode(ISD::TokenFactor, dl,
1720                        MVT::Other, &MemOps[0], MemOps.size());
1721
1722  return Chain;
1723}
1724
1725SDValue
1726PPCTargetLowering::LowerFormalArguments_Darwin(
1727                                      SDValue Chain,
1728                                      unsigned CallConv, bool isVarArg,
1729                                      const SmallVectorImpl<ISD::InputArg>
1730                                        &Ins,
1731                                      DebugLoc dl, SelectionDAG &DAG,
1732                                      SmallVectorImpl<SDValue> &InVals) {
1733
1734  // TODO: add description of PPC stack frame format, or at least some docs.
1735  //
1736  MachineFunction &MF = DAG.getMachineFunction();
1737  MachineFrameInfo *MFI = MF.getFrameInfo();
1738
1739  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1740  bool isPPC64 = PtrVT == MVT::i64;
1741  // Potential tail calls could cause overwriting of argument stack slots.
1742  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1743  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1744
1745  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1746  // Area that is at least reserved in caller of this function.
1747  unsigned MinReservedArea = ArgOffset;
1748
1749  static const unsigned GPR_32[] = {           // 32-bit registers.
1750    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1751    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1752  };
1753  static const unsigned GPR_64[] = {           // 64-bit registers.
1754    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1755    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1756  };
1757
1758  static const unsigned *FPR = GetFPR(PPCSubTarget);
1759
1760  static const unsigned VR[] = {
1761    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1762    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1763  };
1764
1765  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1766  const unsigned Num_FPR_Regs = 13;
1767  const unsigned Num_VR_Regs  = array_lengthof( VR);
1768
1769  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1770
1771  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1772
1773  // In 32-bit non-varargs functions, the stack space for vectors is after the
1774  // stack space for non-vectors.  We do not use this space unless we have
1775  // too many vectors to fit in registers, something that only occurs in
1776  // constructed examples:), but we have to walk the arglist to figure
1777  // that out...for the pathological case, compute VecArgOffset as the
1778  // start of the vector parameter area.  Computing VecArgOffset is the
1779  // entire point of the following loop.
1780  unsigned VecArgOffset = ArgOffset;
1781  if (!isVarArg && !isPPC64) {
1782    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1783         ++ArgNo) {
1784      MVT ObjectVT = Ins[ArgNo].VT;
1785      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1786      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1787
1788      if (Flags.isByVal()) {
1789        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1790        ObjSize = Flags.getByValSize();
1791        unsigned ArgSize =
1792                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1793        VecArgOffset += ArgSize;
1794        continue;
1795      }
1796
1797      switch(ObjectVT.getSimpleVT()) {
1798      default: llvm_unreachable("Unhandled argument type!");
1799      case MVT::i32:
1800      case MVT::f32:
1801        VecArgOffset += isPPC64 ? 8 : 4;
1802        break;
1803      case MVT::i64:  // PPC64
1804      case MVT::f64:
1805        VecArgOffset += 8;
1806        break;
1807      case MVT::v4f32:
1808      case MVT::v4i32:
1809      case MVT::v8i16:
1810      case MVT::v16i8:
1811        // Nothing to do, we're only looking at Nonvector args here.
1812        break;
1813      }
1814    }
1815  }
1816  // We've found where the vector parameter area in memory is.  Skip the
1817  // first 12 parameters; these don't use that memory.
1818  VecArgOffset = ((VecArgOffset+15)/16)*16;
1819  VecArgOffset += 12*16;
1820
1821  // Add DAG nodes to load the arguments or copy them out of registers.  On
1822  // entry to a function on PPC, the arguments start after the linkage area,
1823  // although the first ones are often in registers.
1824
1825  SmallVector<SDValue, 8> MemOps;
1826  unsigned nAltivecParamsAtEnd = 0;
1827  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1828    SDValue ArgVal;
1829    bool needsLoad = false;
1830    MVT ObjectVT = Ins[ArgNo].VT;
1831    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1832    unsigned ArgSize = ObjSize;
1833    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1834
1835    unsigned CurArgOffset = ArgOffset;
1836
1837    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1838    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1839        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1840      if (isVarArg || isPPC64) {
1841        MinReservedArea = ((MinReservedArea+15)/16)*16;
1842        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1843                                                  Flags,
1844                                                  PtrByteSize);
1845      } else  nAltivecParamsAtEnd++;
1846    } else
1847      // Calculate min reserved area.
1848      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1849                                                Flags,
1850                                                PtrByteSize);
1851
1852    // FIXME the codegen can be much improved in some cases.
1853    // We do not have to keep everything in memory.
1854    if (Flags.isByVal()) {
1855      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1856      ObjSize = Flags.getByValSize();
1857      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1858      // Objects of size 1 and 2 are right justified, everything else is
1859      // left justified.  This means the memory address is adjusted forwards.
1860      if (ObjSize==1 || ObjSize==2) {
1861        CurArgOffset = CurArgOffset + (4 - ObjSize);
1862      }
1863      // The value of the object is its address.
1864      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1865      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1866      InVals.push_back(FIN);
1867      if (ObjSize==1 || ObjSize==2) {
1868        if (GPR_idx != Num_GPR_Regs) {
1869          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1870          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1871          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1872                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1873          MemOps.push_back(Store);
1874          ++GPR_idx;
1875        }
1876
1877        ArgOffset += PtrByteSize;
1878
1879        continue;
1880      }
1881      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1882        // Store whatever pieces of the object are in registers
1883        // to memory.  ArgVal will be address of the beginning of
1884        // the object.
1885        if (GPR_idx != Num_GPR_Regs) {
1886          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1887          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1888          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1889          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1890          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1891          MemOps.push_back(Store);
1892          ++GPR_idx;
1893          ArgOffset += PtrByteSize;
1894        } else {
1895          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1896          break;
1897        }
1898      }
1899      continue;
1900    }
1901
1902    switch (ObjectVT.getSimpleVT()) {
1903    default: llvm_unreachable("Unhandled argument type!");
1904    case MVT::i32:
1905      if (!isPPC64) {
1906        if (GPR_idx != Num_GPR_Regs) {
1907          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1908          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1909          ++GPR_idx;
1910        } else {
1911          needsLoad = true;
1912          ArgSize = PtrByteSize;
1913        }
1914        // All int arguments reserve stack space in the Darwin ABI.
1915        ArgOffset += PtrByteSize;
1916        break;
1917      }
1918      // FALLTHROUGH
1919    case MVT::i64:  // PPC64
1920      if (GPR_idx != Num_GPR_Regs) {
1921        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1922        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1923
1924        if (ObjectVT == MVT::i32) {
1925          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1926          // value to MVT::i64 and then truncate to the correct register size.
1927          if (Flags.isSExt())
1928            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1929                                 DAG.getValueType(ObjectVT));
1930          else if (Flags.isZExt())
1931            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1932                                 DAG.getValueType(ObjectVT));
1933
1934          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1935        }
1936
1937        ++GPR_idx;
1938      } else {
1939        needsLoad = true;
1940        ArgSize = PtrByteSize;
1941      }
1942      // All int arguments reserve stack space in the Darwin ABI.
1943      ArgOffset += 8;
1944      break;
1945
1946    case MVT::f32:
1947    case MVT::f64:
1948      // Every 4 bytes of argument space consumes one of the GPRs available for
1949      // argument passing.
1950      if (GPR_idx != Num_GPR_Regs) {
1951        ++GPR_idx;
1952        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1953          ++GPR_idx;
1954      }
1955      if (FPR_idx != Num_FPR_Regs) {
1956        unsigned VReg;
1957
1958        if (ObjectVT == MVT::f32)
1959          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1960        else
1961          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1962
1963        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1964        ++FPR_idx;
1965      } else {
1966        needsLoad = true;
1967      }
1968
1969      // All FP arguments reserve stack space in the Darwin ABI.
1970      ArgOffset += isPPC64 ? 8 : ObjSize;
1971      break;
1972    case MVT::v4f32:
1973    case MVT::v4i32:
1974    case MVT::v8i16:
1975    case MVT::v16i8:
1976      // Note that vector arguments in registers don't reserve stack space,
1977      // except in varargs functions.
1978      if (VR_idx != Num_VR_Regs) {
1979        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1980        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1981        if (isVarArg) {
1982          while ((ArgOffset % 16) != 0) {
1983            ArgOffset += PtrByteSize;
1984            if (GPR_idx != Num_GPR_Regs)
1985              GPR_idx++;
1986          }
1987          ArgOffset += 16;
1988          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1989        }
1990        ++VR_idx;
1991      } else {
1992        if (!isVarArg && !isPPC64) {
1993          // Vectors go after all the nonvectors.
1994          CurArgOffset = VecArgOffset;
1995          VecArgOffset += 16;
1996        } else {
1997          // Vectors are aligned.
1998          ArgOffset = ((ArgOffset+15)/16)*16;
1999          CurArgOffset = ArgOffset;
2000          ArgOffset += 16;
2001        }
2002        needsLoad = true;
2003      }
2004      break;
2005    }
2006
2007    // We need to load the argument to a virtual register if we determined above
2008    // that we ran out of physical registers of the appropriate type.
2009    if (needsLoad) {
2010      int FI = MFI->CreateFixedObject(ObjSize,
2011                                      CurArgOffset + (ArgSize - ObjSize),
2012                                      isImmutable);
2013      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2014      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2015    }
2016
2017    InVals.push_back(ArgVal);
2018  }
2019
2020  // Set the size that is at least reserved in caller of this function.  Tail
2021  // call optimized function's reserved stack space needs to be aligned so that
2022  // taking the difference between two stack areas will result in an aligned
2023  // stack.
2024  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2025  // Add the Altivec parameters at the end, if needed.
2026  if (nAltivecParamsAtEnd) {
2027    MinReservedArea = ((MinReservedArea+15)/16)*16;
2028    MinReservedArea += 16*nAltivecParamsAtEnd;
2029  }
2030  MinReservedArea =
2031    std::max(MinReservedArea,
2032             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2033  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2034    getStackAlignment();
2035  unsigned AlignMask = TargetAlign-1;
2036  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2037  FI->setMinReservedArea(MinReservedArea);
2038
2039  // If the function takes variable number of arguments, make a frame index for
2040  // the start of the first vararg value... for expansion of llvm.va_start.
2041  if (isVarArg) {
2042    int Depth = ArgOffset;
2043
2044    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2045                                               Depth);
2046    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2047
2048    // If this function is vararg, store any remaining integer argument regs
2049    // to their spots on the stack so that they may be loaded by deferencing the
2050    // result of va_next.
2051    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2052      unsigned VReg;
2053
2054      if (isPPC64)
2055        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2056      else
2057        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2058
2059      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2060      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2061      MemOps.push_back(Store);
2062      // Increment the address by four for the next argument to store
2063      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2064      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2065    }
2066  }
2067
2068  if (!MemOps.empty())
2069    Chain = DAG.getNode(ISD::TokenFactor, dl,
2070                        MVT::Other, &MemOps[0], MemOps.size());
2071
2072  return Chain;
2073}
2074
2075/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2076/// linkage area for the Darwin ABI.
2077static unsigned
2078CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2079                                     bool isPPC64,
2080                                     bool isVarArg,
2081                                     unsigned CC,
2082                                     const SmallVectorImpl<ISD::OutputArg>
2083                                       &Outs,
2084                                     unsigned &nAltivecParamsAtEnd) {
2085  // Count how many bytes are to be pushed on the stack, including the linkage
2086  // area, and parameter passing area.  We start with 24/48 bytes, which is
2087  // prereserved space for [SP][CR][LR][3 x unused].
2088  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2089  unsigned NumOps = Outs.size();
2090  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2091
2092  // Add up all the space actually used.
2093  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2094  // they all go in registers, but we must reserve stack space for them for
2095  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2096  // assigned stack space in order, with padding so Altivec parameters are
2097  // 16-byte aligned.
2098  nAltivecParamsAtEnd = 0;
2099  for (unsigned i = 0; i != NumOps; ++i) {
2100    SDValue Arg = Outs[i].Val;
2101    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2102    MVT ArgVT = Arg.getValueType();
2103    // Varargs Altivec parameters are padded to a 16 byte boundary.
2104    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2105        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2106      if (!isVarArg && !isPPC64) {
2107        // Non-varargs Altivec parameters go after all the non-Altivec
2108        // parameters; handle those later so we know how much padding we need.
2109        nAltivecParamsAtEnd++;
2110        continue;
2111      }
2112      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2113      NumBytes = ((NumBytes+15)/16)*16;
2114    }
2115    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2116  }
2117
2118   // Allow for Altivec parameters at the end, if needed.
2119  if (nAltivecParamsAtEnd) {
2120    NumBytes = ((NumBytes+15)/16)*16;
2121    NumBytes += 16*nAltivecParamsAtEnd;
2122  }
2123
2124  // The prolog code of the callee may store up to 8 GPR argument registers to
2125  // the stack, allowing va_start to index over them in memory if its varargs.
2126  // Because we cannot tell if this is needed on the caller side, we have to
2127  // conservatively assume that it is needed.  As such, make sure we have at
2128  // least enough stack space for the caller to store the 8 GPRs.
2129  NumBytes = std::max(NumBytes,
2130                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2131
2132  // Tail call needs the stack to be aligned.
2133  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2134    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2135      getStackAlignment();
2136    unsigned AlignMask = TargetAlign-1;
2137    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2138  }
2139
2140  return NumBytes;
2141}
2142
2143/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2144/// adjusted to accomodate the arguments for the tailcall.
2145static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2146                                   unsigned ParamSize) {
2147
2148  if (!IsTailCall) return 0;
2149
2150  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2151  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2152  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2153  // Remember only if the new adjustement is bigger.
2154  if (SPDiff < FI->getTailCallSPDelta())
2155    FI->setTailCallSPDelta(SPDiff);
2156
2157  return SPDiff;
2158}
2159
2160/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2161/// for tail call optimization. Targets which want to do tail call
2162/// optimization should implement this function.
2163bool
2164PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2165                                                     unsigned CalleeCC,
2166                                                     bool isVarArg,
2167                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2168                                                     SelectionDAG& DAG) const {
2169  // Variable argument functions are not supported.
2170  if (isVarArg)
2171    return false;
2172
2173  MachineFunction &MF = DAG.getMachineFunction();
2174  unsigned CallerCC = MF.getFunction()->getCallingConv();
2175  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2176    // Functions containing by val parameters are not supported.
2177    for (unsigned i = 0; i != Ins.size(); i++) {
2178       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2179       if (Flags.isByVal()) return false;
2180    }
2181
2182    // Non PIC/GOT  tail calls are supported.
2183    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2184      return true;
2185
2186    // At the moment we can only do local tail calls (in same module, hidden
2187    // or protected) if we are generating PIC.
2188    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2189      return G->getGlobal()->hasHiddenVisibility()
2190          || G->getGlobal()->hasProtectedVisibility();
2191  }
2192
2193  return false;
2194}
2195
2196/// isCallCompatibleAddress - Return the immediate to use if the specified
2197/// 32-bit value is representable in the immediate field of a BxA instruction.
2198static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2199  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2200  if (!C) return 0;
2201
2202  int Addr = C->getZExtValue();
2203  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2204      (Addr << 6 >> 6) != Addr)
2205    return 0;  // Top 6 bits have to be sext of immediate.
2206
2207  return DAG.getConstant((int)C->getZExtValue() >> 2,
2208                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2209}
2210
2211namespace {
2212
2213struct TailCallArgumentInfo {
2214  SDValue Arg;
2215  SDValue FrameIdxOp;
2216  int       FrameIdx;
2217
2218  TailCallArgumentInfo() : FrameIdx(0) {}
2219};
2220
2221}
2222
2223/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2224static void
2225StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2226                                           SDValue Chain,
2227                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2228                   SmallVector<SDValue, 8> &MemOpChains,
2229                   DebugLoc dl) {
2230  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2231    SDValue Arg = TailCallArgs[i].Arg;
2232    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2233    int FI = TailCallArgs[i].FrameIdx;
2234    // Store relative to framepointer.
2235    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2236                                       PseudoSourceValue::getFixedStack(FI),
2237                                       0));
2238  }
2239}
2240
2241/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2242/// the appropriate stack slot for the tail call optimized function call.
2243static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2244                                               MachineFunction &MF,
2245                                               SDValue Chain,
2246                                               SDValue OldRetAddr,
2247                                               SDValue OldFP,
2248                                               int SPDiff,
2249                                               bool isPPC64,
2250                                               bool isDarwinABI,
2251                                               DebugLoc dl) {
2252  if (SPDiff) {
2253    // Calculate the new stack slot for the return address.
2254    int SlotSize = isPPC64 ? 8 : 4;
2255    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2256                                                                   isDarwinABI);
2257    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2258                                                          NewRetAddrLoc);
2259    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2260    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2261    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2262                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2263
2264    // When using the SVR4 ABI there is no need to move the FP stack slot
2265    // as the FP is never overwritten.
2266    if (isDarwinABI) {
2267      int NewFPLoc =
2268        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2269      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2270      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2271      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2272                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2273    }
2274  }
2275  return Chain;
2276}
2277
2278/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2279/// the position of the argument.
2280static void
2281CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2282                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2283                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2284  int Offset = ArgOffset + SPDiff;
2285  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2286  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2287  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2288  SDValue FIN = DAG.getFrameIndex(FI, VT);
2289  TailCallArgumentInfo Info;
2290  Info.Arg = Arg;
2291  Info.FrameIdxOp = FIN;
2292  Info.FrameIdx = FI;
2293  TailCallArguments.push_back(Info);
2294}
2295
2296/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2297/// stack slot. Returns the chain as result and the loaded frame pointers in
2298/// LROpOut/FPOpout. Used when tail calling.
2299SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2300                                                        int SPDiff,
2301                                                        SDValue Chain,
2302                                                        SDValue &LROpOut,
2303                                                        SDValue &FPOpOut,
2304                                                        bool isDarwinABI,
2305                                                        DebugLoc dl) {
2306  if (SPDiff) {
2307    // Load the LR and FP stack slot for later adjusting.
2308    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2309    LROpOut = getReturnAddrFrameIndex(DAG);
2310    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2311    Chain = SDValue(LROpOut.getNode(), 1);
2312
2313    // When using the SVR4 ABI there is no need to load the FP stack slot
2314    // as the FP is never overwritten.
2315    if (isDarwinABI) {
2316      FPOpOut = getFramePointerFrameIndex(DAG);
2317      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2318      Chain = SDValue(FPOpOut.getNode(), 1);
2319    }
2320  }
2321  return Chain;
2322}
2323
2324/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2325/// by "Src" to address "Dst" of size "Size".  Alignment information is
2326/// specified by the specific parameter attribute. The copy will be passed as
2327/// a byval function parameter.
2328/// Sometimes what we are copying is the end of a larger object, the part that
2329/// does not fit in registers.
2330static SDValue
2331CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2332                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2333                          DebugLoc dl) {
2334  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2335  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2336                       false, NULL, 0, NULL, 0);
2337}
2338
2339/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2340/// tail calls.
2341static void
2342LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2343                 SDValue Arg, SDValue PtrOff, int SPDiff,
2344                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2345                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2346                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2347                 DebugLoc dl) {
2348  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2349  if (!isTailCall) {
2350    if (isVector) {
2351      SDValue StackPtr;
2352      if (isPPC64)
2353        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2354      else
2355        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2356      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2357                           DAG.getConstant(ArgOffset, PtrVT));
2358    }
2359    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2360  // Calculate and remember argument location.
2361  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2362                                  TailCallArguments);
2363}
2364
2365static
2366void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2367                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2368                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2369                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2370  MachineFunction &MF = DAG.getMachineFunction();
2371
2372  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2373  // might overwrite each other in case of tail call optimization.
2374  SmallVector<SDValue, 8> MemOpChains2;
2375  // Do not flag preceeding copytoreg stuff together with the following stuff.
2376  InFlag = SDValue();
2377  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2378                                    MemOpChains2, dl);
2379  if (!MemOpChains2.empty())
2380    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2381                        &MemOpChains2[0], MemOpChains2.size());
2382
2383  // Store the return address to the appropriate stack slot.
2384  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2385                                        isPPC64, isDarwinABI, dl);
2386
2387  // Emit callseq_end just before tailcall node.
2388  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2389                             DAG.getIntPtrConstant(0, true), InFlag);
2390  InFlag = Chain.getValue(1);
2391}
2392
2393static
2394unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2395                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2396                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2397                     SmallVector<SDValue, 8> &Ops, std::vector<MVT> &NodeTys,
2398                     bool isSVR4ABI) {
2399  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2400  NodeTys.push_back(MVT::Other);   // Returns a chain
2401  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2402
2403  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2404
2405  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2406  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2407  // node so that legalize doesn't hack it.
2408  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2409    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2410  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2411    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2412  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2413    // If this is an absolute destination address, use the munged value.
2414    Callee = SDValue(Dest, 0);
2415  else {
2416    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2417    // to do the call, we can't use PPCISD::CALL.
2418    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2419    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2420                        2 + (InFlag.getNode() != 0));
2421    InFlag = Chain.getValue(1);
2422
2423    NodeTys.clear();
2424    NodeTys.push_back(MVT::Other);
2425    NodeTys.push_back(MVT::Flag);
2426    Ops.push_back(Chain);
2427    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2428    Callee.setNode(0);
2429    // Add CTR register as callee so a bctr can be emitted later.
2430    if (isTailCall)
2431      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2432  }
2433
2434  // If this is a direct call, pass the chain and the callee.
2435  if (Callee.getNode()) {
2436    Ops.push_back(Chain);
2437    Ops.push_back(Callee);
2438  }
2439  // If this is a tail call add stack pointer delta.
2440  if (isTailCall)
2441    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2442
2443  // Add argument registers to the end of the list so that they are known live
2444  // into the call.
2445  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2446    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2447                                  RegsToPass[i].second.getValueType()));
2448
2449  return CallOpc;
2450}
2451
2452SDValue
2453PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2454                                   unsigned CallConv, bool isVarArg,
2455                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2456                                   DebugLoc dl, SelectionDAG &DAG,
2457                                   SmallVectorImpl<SDValue> &InVals) {
2458
2459  SmallVector<CCValAssign, 16> RVLocs;
2460  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2461                    RVLocs, *DAG.getContext());
2462  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2463
2464  // Copy all of the result registers out of their specified physreg.
2465  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2466    CCValAssign &VA = RVLocs[i];
2467    MVT VT = VA.getValVT();
2468    assert(VA.isRegLoc() && "Can only return in registers!");
2469    Chain = DAG.getCopyFromReg(Chain, dl,
2470                               VA.getLocReg(), VT, InFlag).getValue(1);
2471    InVals.push_back(Chain.getValue(0));
2472    InFlag = Chain.getValue(2);
2473  }
2474
2475  return Chain;
2476}
2477
2478SDValue
2479PPCTargetLowering::FinishCall(unsigned CallConv, DebugLoc dl, bool isTailCall,
2480                              bool isVarArg,
2481                              SelectionDAG &DAG,
2482                              SmallVector<std::pair<unsigned, SDValue>, 8>
2483                                &RegsToPass,
2484                              SDValue InFlag, SDValue Chain,
2485                              SDValue &Callee,
2486                              int SPDiff, unsigned NumBytes,
2487                              const SmallVectorImpl<ISD::InputArg> &Ins,
2488                              SmallVectorImpl<SDValue> &InVals) {
2489
2490  std::vector<MVT> NodeTys;
2491  SmallVector<SDValue, 8> Ops;
2492  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2493                                 isTailCall, RegsToPass, Ops, NodeTys,
2494                                 PPCSubTarget.isSVR4ABI());
2495
2496  // When performing tail call optimization the callee pops its arguments off
2497  // the stack. Account for this here so these bytes can be pushed back on in
2498  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2499  int BytesCalleePops =
2500    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2501
2502  if (InFlag.getNode())
2503    Ops.push_back(InFlag);
2504
2505  // Emit tail call.
2506  if (isTailCall) {
2507    // If this is the first return lowered for this function, add the regs
2508    // to the liveout set for the function.
2509    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2510      SmallVector<CCValAssign, 16> RVLocs;
2511      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2512                     *DAG.getContext());
2513      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2514      for (unsigned i = 0; i != RVLocs.size(); ++i)
2515        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2516    }
2517
2518    assert(((Callee.getOpcode() == ISD::Register &&
2519             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2520            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2521            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2522            isa<ConstantSDNode>(Callee)) &&
2523    "Expecting an global address, external symbol, absolute value or register");
2524
2525    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2526  }
2527
2528  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2529  InFlag = Chain.getValue(1);
2530
2531  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2532                             DAG.getIntPtrConstant(BytesCalleePops, true),
2533                             InFlag);
2534  if (!Ins.empty())
2535    InFlag = Chain.getValue(1);
2536
2537  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2538                         Ins, dl, DAG, InVals);
2539}
2540
2541SDValue
2542PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2543                             unsigned CallConv, bool isVarArg,
2544                             bool isTailCall,
2545                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2546                             const SmallVectorImpl<ISD::InputArg> &Ins,
2547                             DebugLoc dl, SelectionDAG &DAG,
2548                             SmallVectorImpl<SDValue> &InVals) {
2549  if (PPCSubTarget.isSVR4ABI()) {
2550    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2551                          isTailCall, Outs, Ins,
2552                          dl, DAG, InVals);
2553  } else {
2554    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2555                            isTailCall, Outs, Ins,
2556                            dl, DAG, InVals);
2557  }
2558}
2559
2560SDValue
2561PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2562                                  unsigned CallConv, bool isVarArg,
2563                                  bool isTailCall,
2564                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2565                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2566                                  DebugLoc dl, SelectionDAG &DAG,
2567                                  SmallVectorImpl<SDValue> &InVals) {
2568  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2569  // of the SVR4 ABI stack frame layout.
2570
2571  assert((!isTailCall ||
2572          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2573         "IsEligibleForTailCallOptimization missed a case!");
2574
2575  assert((CallConv == CallingConv::C ||
2576          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2577
2578  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2579  unsigned PtrByteSize = 4;
2580
2581  MachineFunction &MF = DAG.getMachineFunction();
2582
2583  // Mark this function as potentially containing a function that contains a
2584  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2585  // and restoring the callers stack pointer in this functions epilog. This is
2586  // done because by tail calling the called function might overwrite the value
2587  // in this function's (MF) stack pointer stack slot 0(SP).
2588  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2589    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2590
2591  // Count how many bytes are to be pushed on the stack, including the linkage
2592  // area, parameter list area and the part of the local variable space which
2593  // contains copies of aggregates which are passed by value.
2594
2595  // Assign locations to all of the outgoing arguments.
2596  SmallVector<CCValAssign, 16> ArgLocs;
2597  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2598                 ArgLocs, *DAG.getContext());
2599
2600  // Reserve space for the linkage area on the stack.
2601  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2602
2603  if (isVarArg) {
2604    // Handle fixed and variable vector arguments differently.
2605    // Fixed vector arguments go into registers as long as registers are
2606    // available. Variable vector arguments always go into memory.
2607    unsigned NumArgs = Outs.size();
2608
2609    for (unsigned i = 0; i != NumArgs; ++i) {
2610      MVT ArgVT = Outs[i].Val.getValueType();
2611      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2612      bool Result;
2613
2614      if (Outs[i].IsFixed) {
2615        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2616                             CCInfo);
2617      } else {
2618        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2619                                    ArgFlags, CCInfo);
2620      }
2621
2622      if (Result) {
2623#ifndef NDEBUG
2624        cerr << "Call operand #" << i << " has unhandled type "
2625             << ArgVT.getMVTString() << "\n";
2626#endif
2627        llvm_unreachable(0);
2628      }
2629    }
2630  } else {
2631    // All arguments are treated the same.
2632    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2633  }
2634
2635  // Assign locations to all of the outgoing aggregate by value arguments.
2636  SmallVector<CCValAssign, 16> ByValArgLocs;
2637  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2638                      *DAG.getContext());
2639
2640  // Reserve stack space for the allocations in CCInfo.
2641  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2642
2643  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2644
2645  // Size of the linkage area, parameter list area and the part of the local
2646  // space variable where copies of aggregates which are passed by value are
2647  // stored.
2648  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2649
2650  // Calculate by how many bytes the stack has to be adjusted in case of tail
2651  // call optimization.
2652  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2653
2654  // Adjust the stack pointer for the new arguments...
2655  // These operations are automatically eliminated by the prolog/epilog pass
2656  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2657  SDValue CallSeqStart = Chain;
2658
2659  // Load the return address and frame pointer so it can be moved somewhere else
2660  // later.
2661  SDValue LROp, FPOp;
2662  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2663                                       dl);
2664
2665  // Set up a copy of the stack pointer for use loading and storing any
2666  // arguments that may not fit in the registers available for argument
2667  // passing.
2668  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2669
2670  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2671  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2672  SmallVector<SDValue, 8> MemOpChains;
2673
2674  // Walk the register/memloc assignments, inserting copies/loads.
2675  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2676       i != e;
2677       ++i) {
2678    CCValAssign &VA = ArgLocs[i];
2679    SDValue Arg = Outs[i].Val;
2680    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2681
2682    if (Flags.isByVal()) {
2683      // Argument is an aggregate which is passed by value, thus we need to
2684      // create a copy of it in the local variable space of the current stack
2685      // frame (which is the stack frame of the caller) and pass the address of
2686      // this copy to the callee.
2687      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2688      CCValAssign &ByValVA = ByValArgLocs[j++];
2689      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2690
2691      // Memory reserved in the local variable space of the callers stack frame.
2692      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2693
2694      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2695      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2696
2697      // Create a copy of the argument in the local area of the current
2698      // stack frame.
2699      SDValue MemcpyCall =
2700        CreateCopyOfByValArgument(Arg, PtrOff,
2701                                  CallSeqStart.getNode()->getOperand(0),
2702                                  Flags, DAG, dl);
2703
2704      // This must go outside the CALLSEQ_START..END.
2705      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2706                           CallSeqStart.getNode()->getOperand(1));
2707      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2708                             NewCallSeqStart.getNode());
2709      Chain = CallSeqStart = NewCallSeqStart;
2710
2711      // Pass the address of the aggregate copy on the stack either in a
2712      // physical register or in the parameter list area of the current stack
2713      // frame to the callee.
2714      Arg = PtrOff;
2715    }
2716
2717    if (VA.isRegLoc()) {
2718      // Put argument in a physical register.
2719      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2720    } else {
2721      // Put argument in the parameter list area of the current stack frame.
2722      assert(VA.isMemLoc());
2723      unsigned LocMemOffset = VA.getLocMemOffset();
2724
2725      if (!isTailCall) {
2726        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2727        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2728
2729        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2730                              PseudoSourceValue::getStack(), LocMemOffset));
2731      } else {
2732        // Calculate and remember argument location.
2733        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2734                                 TailCallArguments);
2735      }
2736    }
2737  }
2738
2739  if (!MemOpChains.empty())
2740    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2741                        &MemOpChains[0], MemOpChains.size());
2742
2743  // Build a sequence of copy-to-reg nodes chained together with token chain
2744  // and flag operands which copy the outgoing args into the appropriate regs.
2745  SDValue InFlag;
2746  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2747    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2748                             RegsToPass[i].second, InFlag);
2749    InFlag = Chain.getValue(1);
2750  }
2751
2752  // Set CR6 to true if this is a vararg call.
2753  if (isVarArg) {
2754    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2755    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2756    InFlag = Chain.getValue(1);
2757  }
2758
2759  if (isTailCall) {
2760    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2761                    false, TailCallArguments);
2762  }
2763
2764  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2765                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2766                    Ins, InVals);
2767}
2768
2769SDValue
2770PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2771                                    unsigned CallConv, bool isVarArg,
2772                                    bool isTailCall,
2773                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2774                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2775                                    DebugLoc dl, SelectionDAG &DAG,
2776                                    SmallVectorImpl<SDValue> &InVals) {
2777
2778  unsigned NumOps  = Outs.size();
2779
2780  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2781  bool isPPC64 = PtrVT == MVT::i64;
2782  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2783
2784  MachineFunction &MF = DAG.getMachineFunction();
2785
2786  // Mark this function as potentially containing a function that contains a
2787  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2788  // and restoring the callers stack pointer in this functions epilog. This is
2789  // done because by tail calling the called function might overwrite the value
2790  // in this function's (MF) stack pointer stack slot 0(SP).
2791  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2792    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2793
2794  unsigned nAltivecParamsAtEnd = 0;
2795
2796  // Count how many bytes are to be pushed on the stack, including the linkage
2797  // area, and parameter passing area.  We start with 24/48 bytes, which is
2798  // prereserved space for [SP][CR][LR][3 x unused].
2799  unsigned NumBytes =
2800    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2801                                         Outs,
2802                                         nAltivecParamsAtEnd);
2803
2804  // Calculate by how many bytes the stack has to be adjusted in case of tail
2805  // call optimization.
2806  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2807
2808  // To protect arguments on the stack from being clobbered in a tail call,
2809  // force all the loads to happen before doing any other lowering.
2810  if (isTailCall)
2811    Chain = DAG.getStackArgumentTokenFactor(Chain);
2812
2813  // Adjust the stack pointer for the new arguments...
2814  // These operations are automatically eliminated by the prolog/epilog pass
2815  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2816  SDValue CallSeqStart = Chain;
2817
2818  // Load the return address and frame pointer so it can be move somewhere else
2819  // later.
2820  SDValue LROp, FPOp;
2821  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2822                                       dl);
2823
2824  // Set up a copy of the stack pointer for use loading and storing any
2825  // arguments that may not fit in the registers available for argument
2826  // passing.
2827  SDValue StackPtr;
2828  if (isPPC64)
2829    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2830  else
2831    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2832
2833  // Figure out which arguments are going to go in registers, and which in
2834  // memory.  Also, if this is a vararg function, floating point operations
2835  // must be stored to our stack, and loaded into integer regs as well, if
2836  // any integer regs are available for argument passing.
2837  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2838  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2839
2840  static const unsigned GPR_32[] = {           // 32-bit registers.
2841    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2842    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2843  };
2844  static const unsigned GPR_64[] = {           // 64-bit registers.
2845    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2846    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2847  };
2848  static const unsigned *FPR = GetFPR(PPCSubTarget);
2849
2850  static const unsigned VR[] = {
2851    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2852    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2853  };
2854  const unsigned NumGPRs = array_lengthof(GPR_32);
2855  const unsigned NumFPRs = 13;
2856  const unsigned NumVRs  = array_lengthof(VR);
2857
2858  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2859
2860  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2861  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2862
2863  SmallVector<SDValue, 8> MemOpChains;
2864  for (unsigned i = 0; i != NumOps; ++i) {
2865    bool inMem = false;
2866    SDValue Arg = Outs[i].Val;
2867    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2868
2869    // PtrOff will be used to store the current argument to the stack if a
2870    // register cannot be found for it.
2871    SDValue PtrOff;
2872
2873    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2874
2875    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2876
2877    // On PPC64, promote integers to 64-bit values.
2878    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2879      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2880      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2881      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2882    }
2883
2884    // FIXME memcpy is used way more than necessary.  Correctness first.
2885    if (Flags.isByVal()) {
2886      unsigned Size = Flags.getByValSize();
2887      if (Size==1 || Size==2) {
2888        // Very small objects are passed right-justified.
2889        // Everything else is passed left-justified.
2890        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2891        if (GPR_idx != NumGPRs) {
2892          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2893                                          NULL, 0, VT);
2894          MemOpChains.push_back(Load.getValue(1));
2895          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2896
2897          ArgOffset += PtrByteSize;
2898        } else {
2899          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2900          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2901          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2902                                CallSeqStart.getNode()->getOperand(0),
2903                                Flags, DAG, dl);
2904          // This must go outside the CALLSEQ_START..END.
2905          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2906                               CallSeqStart.getNode()->getOperand(1));
2907          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2908                                 NewCallSeqStart.getNode());
2909          Chain = CallSeqStart = NewCallSeqStart;
2910          ArgOffset += PtrByteSize;
2911        }
2912        continue;
2913      }
2914      // Copy entire object into memory.  There are cases where gcc-generated
2915      // code assumes it is there, even if it could be put entirely into
2916      // registers.  (This is not what the doc says.)
2917      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2918                            CallSeqStart.getNode()->getOperand(0),
2919                            Flags, DAG, dl);
2920      // This must go outside the CALLSEQ_START..END.
2921      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2922                           CallSeqStart.getNode()->getOperand(1));
2923      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2924      Chain = CallSeqStart = NewCallSeqStart;
2925      // And copy the pieces of it that fit into registers.
2926      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2927        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2928        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2929        if (GPR_idx != NumGPRs) {
2930          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2931          MemOpChains.push_back(Load.getValue(1));
2932          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2933          ArgOffset += PtrByteSize;
2934        } else {
2935          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2936          break;
2937        }
2938      }
2939      continue;
2940    }
2941
2942    switch (Arg.getValueType().getSimpleVT()) {
2943    default: llvm_unreachable("Unexpected ValueType for argument!");
2944    case MVT::i32:
2945    case MVT::i64:
2946      if (GPR_idx != NumGPRs) {
2947        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2948      } else {
2949        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2950                         isPPC64, isTailCall, false, MemOpChains,
2951                         TailCallArguments, dl);
2952        inMem = true;
2953      }
2954      ArgOffset += PtrByteSize;
2955      break;
2956    case MVT::f32:
2957    case MVT::f64:
2958      if (FPR_idx != NumFPRs) {
2959        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2960
2961        if (isVarArg) {
2962          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2963          MemOpChains.push_back(Store);
2964
2965          // Float varargs are always shadowed in available integer registers
2966          if (GPR_idx != NumGPRs) {
2967            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2968            MemOpChains.push_back(Load.getValue(1));
2969            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2970          }
2971          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2972            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2973            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2974            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2975            MemOpChains.push_back(Load.getValue(1));
2976            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2977          }
2978        } else {
2979          // If we have any FPRs remaining, we may also have GPRs remaining.
2980          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2981          // GPRs.
2982          if (GPR_idx != NumGPRs)
2983            ++GPR_idx;
2984          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2985              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2986            ++GPR_idx;
2987        }
2988      } else {
2989        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2990                         isPPC64, isTailCall, false, MemOpChains,
2991                         TailCallArguments, dl);
2992        inMem = true;
2993      }
2994      if (isPPC64)
2995        ArgOffset += 8;
2996      else
2997        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2998      break;
2999    case MVT::v4f32:
3000    case MVT::v4i32:
3001    case MVT::v8i16:
3002    case MVT::v16i8:
3003      if (isVarArg) {
3004        // These go aligned on the stack, or in the corresponding R registers
3005        // when within range.  The Darwin PPC ABI doc claims they also go in
3006        // V registers; in fact gcc does this only for arguments that are
3007        // prototyped, not for those that match the ...  We do it for all
3008        // arguments, seems to work.
3009        while (ArgOffset % 16 !=0) {
3010          ArgOffset += PtrByteSize;
3011          if (GPR_idx != NumGPRs)
3012            GPR_idx++;
3013        }
3014        // We could elide this store in the case where the object fits
3015        // entirely in R registers.  Maybe later.
3016        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3017                            DAG.getConstant(ArgOffset, PtrVT));
3018        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3019        MemOpChains.push_back(Store);
3020        if (VR_idx != NumVRs) {
3021          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3022          MemOpChains.push_back(Load.getValue(1));
3023          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3024        }
3025        ArgOffset += 16;
3026        for (unsigned i=0; i<16; i+=PtrByteSize) {
3027          if (GPR_idx == NumGPRs)
3028            break;
3029          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3030                                  DAG.getConstant(i, PtrVT));
3031          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3032          MemOpChains.push_back(Load.getValue(1));
3033          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3034        }
3035        break;
3036      }
3037
3038      // Non-varargs Altivec params generally go in registers, but have
3039      // stack space allocated at the end.
3040      if (VR_idx != NumVRs) {
3041        // Doesn't have GPR space allocated.
3042        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3043      } else if (nAltivecParamsAtEnd==0) {
3044        // We are emitting Altivec params in order.
3045        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3046                         isPPC64, isTailCall, true, MemOpChains,
3047                         TailCallArguments, dl);
3048        ArgOffset += 16;
3049      }
3050      break;
3051    }
3052  }
3053  // If all Altivec parameters fit in registers, as they usually do,
3054  // they get stack space following the non-Altivec parameters.  We
3055  // don't track this here because nobody below needs it.
3056  // If there are more Altivec parameters than fit in registers emit
3057  // the stores here.
3058  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3059    unsigned j = 0;
3060    // Offset is aligned; skip 1st 12 params which go in V registers.
3061    ArgOffset = ((ArgOffset+15)/16)*16;
3062    ArgOffset += 12*16;
3063    for (unsigned i = 0; i != NumOps; ++i) {
3064      SDValue Arg = Outs[i].Val;
3065      MVT ArgType = Arg.getValueType();
3066      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3067          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3068        if (++j > NumVRs) {
3069          SDValue PtrOff;
3070          // We are emitting Altivec params in order.
3071          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3072                           isPPC64, isTailCall, true, MemOpChains,
3073                           TailCallArguments, dl);
3074          ArgOffset += 16;
3075        }
3076      }
3077    }
3078  }
3079
3080  if (!MemOpChains.empty())
3081    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3082                        &MemOpChains[0], MemOpChains.size());
3083
3084  // Build a sequence of copy-to-reg nodes chained together with token chain
3085  // and flag operands which copy the outgoing args into the appropriate regs.
3086  SDValue InFlag;
3087  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3088    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3089                             RegsToPass[i].second, InFlag);
3090    InFlag = Chain.getValue(1);
3091  }
3092
3093  if (isTailCall) {
3094    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3095                    FPOp, true, TailCallArguments);
3096  }
3097
3098  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3099                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3100                    Ins, InVals);
3101}
3102
3103SDValue
3104PPCTargetLowering::LowerReturn(SDValue Chain,
3105                               unsigned CallConv, bool isVarArg,
3106                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3107                               DebugLoc dl, SelectionDAG &DAG) {
3108
3109  SmallVector<CCValAssign, 16> RVLocs;
3110  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3111                 RVLocs, *DAG.getContext());
3112  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3113
3114  // If this is the first return lowered for this function, add the regs to the
3115  // liveout set for the function.
3116  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3117    for (unsigned i = 0; i != RVLocs.size(); ++i)
3118      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3119  }
3120
3121  SDValue Flag;
3122
3123  // Copy the result values into the output registers.
3124  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3125    CCValAssign &VA = RVLocs[i];
3126    assert(VA.isRegLoc() && "Can only return in registers!");
3127    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3128                             Outs[i].Val, Flag);
3129    Flag = Chain.getValue(1);
3130  }
3131
3132  if (Flag.getNode())
3133    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3134  else
3135    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3136}
3137
3138SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3139                                   const PPCSubtarget &Subtarget) {
3140  // When we pop the dynamic allocation we need to restore the SP link.
3141  DebugLoc dl = Op.getDebugLoc();
3142
3143  // Get the corect type for pointers.
3144  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3145
3146  // Construct the stack pointer operand.
3147  bool IsPPC64 = Subtarget.isPPC64();
3148  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3149  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3150
3151  // Get the operands for the STACKRESTORE.
3152  SDValue Chain = Op.getOperand(0);
3153  SDValue SaveSP = Op.getOperand(1);
3154
3155  // Load the old link SP.
3156  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3157
3158  // Restore the stack pointer.
3159  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3160
3161  // Store the old link SP.
3162  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3163}
3164
3165
3166
3167SDValue
3168PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3169  MachineFunction &MF = DAG.getMachineFunction();
3170  bool IsPPC64 = PPCSubTarget.isPPC64();
3171  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3172  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3173
3174  // Get current frame pointer save index.  The users of this index will be
3175  // primarily DYNALLOC instructions.
3176  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3177  int RASI = FI->getReturnAddrSaveIndex();
3178
3179  // If the frame pointer save index hasn't been defined yet.
3180  if (!RASI) {
3181    // Find out what the fix offset of the frame pointer save area.
3182    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3183    // Allocate the frame index for frame pointer save area.
3184    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3185    // Save the result.
3186    FI->setReturnAddrSaveIndex(RASI);
3187  }
3188  return DAG.getFrameIndex(RASI, PtrVT);
3189}
3190
3191SDValue
3192PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3193  MachineFunction &MF = DAG.getMachineFunction();
3194  bool IsPPC64 = PPCSubTarget.isPPC64();
3195  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3196  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3197
3198  // Get current frame pointer save index.  The users of this index will be
3199  // primarily DYNALLOC instructions.
3200  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3201  int FPSI = FI->getFramePointerSaveIndex();
3202
3203  // If the frame pointer save index hasn't been defined yet.
3204  if (!FPSI) {
3205    // Find out what the fix offset of the frame pointer save area.
3206    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3207                                                           isDarwinABI);
3208
3209    // Allocate the frame index for frame pointer save area.
3210    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3211    // Save the result.
3212    FI->setFramePointerSaveIndex(FPSI);
3213  }
3214  return DAG.getFrameIndex(FPSI, PtrVT);
3215}
3216
3217SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3218                                         SelectionDAG &DAG,
3219                                         const PPCSubtarget &Subtarget) {
3220  // Get the inputs.
3221  SDValue Chain = Op.getOperand(0);
3222  SDValue Size  = Op.getOperand(1);
3223  DebugLoc dl = Op.getDebugLoc();
3224
3225  // Get the corect type for pointers.
3226  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3227  // Negate the size.
3228  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3229                                  DAG.getConstant(0, PtrVT), Size);
3230  // Construct a node for the frame pointer save index.
3231  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3232  // Build a DYNALLOC node.
3233  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3234  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3235  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3236}
3237
3238/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3239/// possible.
3240SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3241  // Not FP? Not a fsel.
3242  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3243      !Op.getOperand(2).getValueType().isFloatingPoint())
3244    return Op;
3245
3246  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3247
3248  // Cannot handle SETEQ/SETNE.
3249  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3250
3251  MVT ResVT = Op.getValueType();
3252  MVT CmpVT = Op.getOperand(0).getValueType();
3253  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3254  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3255  DebugLoc dl = Op.getDebugLoc();
3256
3257  // If the RHS of the comparison is a 0.0, we don't need to do the
3258  // subtraction at all.
3259  if (isFloatingPointZero(RHS))
3260    switch (CC) {
3261    default: break;       // SETUO etc aren't handled by fsel.
3262    case ISD::SETULT:
3263    case ISD::SETLT:
3264      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3265    case ISD::SETOGE:
3266    case ISD::SETGE:
3267      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3268        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3269      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3270    case ISD::SETUGT:
3271    case ISD::SETGT:
3272      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3273    case ISD::SETOLE:
3274    case ISD::SETLE:
3275      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3276        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3277      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3278                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3279    }
3280
3281  SDValue Cmp;
3282  switch (CC) {
3283  default: break;       // SETUO etc aren't handled by fsel.
3284  case ISD::SETULT:
3285  case ISD::SETLT:
3286    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3287    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3288      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3289      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3290  case ISD::SETOGE:
3291  case ISD::SETGE:
3292    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3293    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3294      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3295      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3296  case ISD::SETUGT:
3297  case ISD::SETGT:
3298    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3299    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3300      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3301      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3302  case ISD::SETOLE:
3303  case ISD::SETLE:
3304    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3305    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3306      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3307      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3308  }
3309  return Op;
3310}
3311
3312// FIXME: Split this code up when LegalizeDAGTypes lands.
3313SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3314                                           DebugLoc dl) {
3315  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3316  SDValue Src = Op.getOperand(0);
3317  if (Src.getValueType() == MVT::f32)
3318    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3319
3320  SDValue Tmp;
3321  switch (Op.getValueType().getSimpleVT()) {
3322  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3323  case MVT::i32:
3324    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3325                                                         PPCISD::FCTIDZ,
3326                      dl, MVT::f64, Src);
3327    break;
3328  case MVT::i64:
3329    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3330    break;
3331  }
3332
3333  // Convert the FP value to an int value through memory.
3334  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3335
3336  // Emit a store to the stack slot.
3337  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3338
3339  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3340  // add in a bias.
3341  if (Op.getValueType() == MVT::i32)
3342    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3343                        DAG.getConstant(4, FIPtr.getValueType()));
3344  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3345}
3346
3347SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3348  DebugLoc dl = Op.getDebugLoc();
3349  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3350  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3351    return SDValue();
3352
3353  if (Op.getOperand(0).getValueType() == MVT::i64) {
3354    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3355                               MVT::f64, Op.getOperand(0));
3356    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3357    if (Op.getValueType() == MVT::f32)
3358      FP = DAG.getNode(ISD::FP_ROUND, dl,
3359                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3360    return FP;
3361  }
3362
3363  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3364         "Unhandled SINT_TO_FP type in custom expander!");
3365  // Since we only generate this in 64-bit mode, we can take advantage of
3366  // 64-bit registers.  In particular, sign extend the input value into the
3367  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3368  // then lfd it and fcfid it.
3369  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3370  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3371  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3372  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3373
3374  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3375                                Op.getOperand(0));
3376
3377  // STD the extended value into the stack slot.
3378  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
3379                       MachineMemOperand::MOStore, 0, 8, 8);
3380  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
3381                                DAG.getEntryNode(), Ext64, FIdx,
3382                                DAG.getMemOperand(MO));
3383  // Load the value as a double.
3384  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3385
3386  // FCFID it and return it.
3387  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3388  if (Op.getValueType() == MVT::f32)
3389    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3390  return FP;
3391}
3392
3393SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3394  DebugLoc dl = Op.getDebugLoc();
3395  /*
3396   The rounding mode is in bits 30:31 of FPSR, and has the following
3397   settings:
3398     00 Round to nearest
3399     01 Round to 0
3400     10 Round to +inf
3401     11 Round to -inf
3402
3403  FLT_ROUNDS, on the other hand, expects the following:
3404    -1 Undefined
3405     0 Round to 0
3406     1 Round to nearest
3407     2 Round to +inf
3408     3 Round to -inf
3409
3410  To perform the conversion, we do:
3411    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3412  */
3413
3414  MachineFunction &MF = DAG.getMachineFunction();
3415  MVT VT = Op.getValueType();
3416  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3417  std::vector<MVT> NodeTys;
3418  SDValue MFFSreg, InFlag;
3419
3420  // Save FP Control Word to register
3421  NodeTys.push_back(MVT::f64);    // return register
3422  NodeTys.push_back(MVT::Flag);   // unused in this context
3423  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3424
3425  // Save FP register to stack slot
3426  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3427  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3428  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3429                                 StackSlot, NULL, 0);
3430
3431  // Load FP Control Word from low 32 bits of stack slot.
3432  SDValue Four = DAG.getConstant(4, PtrVT);
3433  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3434  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3435
3436  // Transform as necessary
3437  SDValue CWD1 =
3438    DAG.getNode(ISD::AND, dl, MVT::i32,
3439                CWD, DAG.getConstant(3, MVT::i32));
3440  SDValue CWD2 =
3441    DAG.getNode(ISD::SRL, dl, MVT::i32,
3442                DAG.getNode(ISD::AND, dl, MVT::i32,
3443                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3444                                        CWD, DAG.getConstant(3, MVT::i32)),
3445                            DAG.getConstant(3, MVT::i32)),
3446                DAG.getConstant(1, MVT::i32));
3447
3448  SDValue RetVal =
3449    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3450
3451  return DAG.getNode((VT.getSizeInBits() < 16 ?
3452                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3453}
3454
3455SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3456  MVT VT = Op.getValueType();
3457  unsigned BitWidth = VT.getSizeInBits();
3458  DebugLoc dl = Op.getDebugLoc();
3459  assert(Op.getNumOperands() == 3 &&
3460         VT == Op.getOperand(1).getValueType() &&
3461         "Unexpected SHL!");
3462
3463  // Expand into a bunch of logical ops.  Note that these ops
3464  // depend on the PPC behavior for oversized shift amounts.
3465  SDValue Lo = Op.getOperand(0);
3466  SDValue Hi = Op.getOperand(1);
3467  SDValue Amt = Op.getOperand(2);
3468  MVT AmtVT = Amt.getValueType();
3469
3470  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3471                             DAG.getConstant(BitWidth, AmtVT), Amt);
3472  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3473  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3474  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3475  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3476                             DAG.getConstant(-BitWidth, AmtVT));
3477  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3478  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3479  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3480  SDValue OutOps[] = { OutLo, OutHi };
3481  return DAG.getMergeValues(OutOps, 2, dl);
3482}
3483
3484SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3485  MVT VT = Op.getValueType();
3486  DebugLoc dl = Op.getDebugLoc();
3487  unsigned BitWidth = VT.getSizeInBits();
3488  assert(Op.getNumOperands() == 3 &&
3489         VT == Op.getOperand(1).getValueType() &&
3490         "Unexpected SRL!");
3491
3492  // Expand into a bunch of logical ops.  Note that these ops
3493  // depend on the PPC behavior for oversized shift amounts.
3494  SDValue Lo = Op.getOperand(0);
3495  SDValue Hi = Op.getOperand(1);
3496  SDValue Amt = Op.getOperand(2);
3497  MVT AmtVT = Amt.getValueType();
3498
3499  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3500                             DAG.getConstant(BitWidth, AmtVT), Amt);
3501  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3502  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3503  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3504  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3505                             DAG.getConstant(-BitWidth, AmtVT));
3506  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3507  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3508  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3509  SDValue OutOps[] = { OutLo, OutHi };
3510  return DAG.getMergeValues(OutOps, 2, dl);
3511}
3512
3513SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3514  DebugLoc dl = Op.getDebugLoc();
3515  MVT VT = Op.getValueType();
3516  unsigned BitWidth = VT.getSizeInBits();
3517  assert(Op.getNumOperands() == 3 &&
3518         VT == Op.getOperand(1).getValueType() &&
3519         "Unexpected SRA!");
3520
3521  // Expand into a bunch of logical ops, followed by a select_cc.
3522  SDValue Lo = Op.getOperand(0);
3523  SDValue Hi = Op.getOperand(1);
3524  SDValue Amt = Op.getOperand(2);
3525  MVT AmtVT = Amt.getValueType();
3526
3527  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3528                             DAG.getConstant(BitWidth, AmtVT), Amt);
3529  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3530  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3531  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3532  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3533                             DAG.getConstant(-BitWidth, AmtVT));
3534  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3535  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3536  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3537                                  Tmp4, Tmp6, ISD::SETLE);
3538  SDValue OutOps[] = { OutLo, OutHi };
3539  return DAG.getMergeValues(OutOps, 2, dl);
3540}
3541
3542//===----------------------------------------------------------------------===//
3543// Vector related lowering.
3544//
3545
3546/// BuildSplatI - Build a canonical splati of Val with an element size of
3547/// SplatSize.  Cast the result to VT.
3548static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3549                             SelectionDAG &DAG, DebugLoc dl) {
3550  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3551
3552  static const MVT VTys[] = { // canonical VT to use for each size.
3553    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3554  };
3555
3556  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3557
3558  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3559  if (Val == -1)
3560    SplatSize = 1;
3561
3562  MVT CanonicalVT = VTys[SplatSize-1];
3563
3564  // Build a canonical splat for this value.
3565  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3566  SmallVector<SDValue, 8> Ops;
3567  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3568  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3569                              &Ops[0], Ops.size());
3570  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3571}
3572
3573/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3574/// specified intrinsic ID.
3575static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3576                                SelectionDAG &DAG, DebugLoc dl,
3577                                MVT DestVT = MVT::Other) {
3578  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3579  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3580                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3581}
3582
3583/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3584/// specified intrinsic ID.
3585static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3586                                SDValue Op2, SelectionDAG &DAG,
3587                                DebugLoc dl, MVT DestVT = MVT::Other) {
3588  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3589  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3590                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3591}
3592
3593
3594/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3595/// amount.  The result has the specified value type.
3596static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3597                             MVT VT, SelectionDAG &DAG, DebugLoc dl) {
3598  // Force LHS/RHS to be the right type.
3599  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3600  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3601
3602  int Ops[16];
3603  for (unsigned i = 0; i != 16; ++i)
3604    Ops[i] = i + Amt;
3605  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3606  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3607}
3608
3609// If this is a case we can't handle, return null and let the default
3610// expansion code take care of it.  If we CAN select this case, and if it
3611// selects to a single instruction, return Op.  Otherwise, if we can codegen
3612// this case more efficiently than a constant pool load, lower it to the
3613// sequence of ops that should be used.
3614SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3615  DebugLoc dl = Op.getDebugLoc();
3616  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3617  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3618
3619  // Check if this is a splat of a constant value.
3620  APInt APSplatBits, APSplatUndef;
3621  unsigned SplatBitSize;
3622  bool HasAnyUndefs;
3623  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3624                             HasAnyUndefs) || SplatBitSize > 32)
3625    return SDValue();
3626
3627  unsigned SplatBits = APSplatBits.getZExtValue();
3628  unsigned SplatUndef = APSplatUndef.getZExtValue();
3629  unsigned SplatSize = SplatBitSize / 8;
3630
3631  // First, handle single instruction cases.
3632
3633  // All zeros?
3634  if (SplatBits == 0) {
3635    // Canonicalize all zero vectors to be v4i32.
3636    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3637      SDValue Z = DAG.getConstant(0, MVT::i32);
3638      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3639      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3640    }
3641    return Op;
3642  }
3643
3644  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3645  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3646                    (32-SplatBitSize));
3647  if (SextVal >= -16 && SextVal <= 15)
3648    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3649
3650
3651  // Two instruction sequences.
3652
3653  // If this value is in the range [-32,30] and is even, use:
3654  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3655  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3656    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3657    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3658    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3659  }
3660
3661  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3662  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3663  // for fneg/fabs.
3664  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3665    // Make -1 and vspltisw -1:
3666    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3667
3668    // Make the VSLW intrinsic, computing 0x8000_0000.
3669    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3670                                   OnesV, DAG, dl);
3671
3672    // xor by OnesV to invert it.
3673    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3674    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3675  }
3676
3677  // Check to see if this is a wide variety of vsplti*, binop self cases.
3678  static const signed char SplatCsts[] = {
3679    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3680    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3681  };
3682
3683  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3684    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3685    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3686    int i = SplatCsts[idx];
3687
3688    // Figure out what shift amount will be used by altivec if shifted by i in
3689    // this splat size.
3690    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3691
3692    // vsplti + shl self.
3693    if (SextVal == (i << (int)TypeShiftAmt)) {
3694      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3695      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3696        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3697        Intrinsic::ppc_altivec_vslw
3698      };
3699      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3700      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3701    }
3702
3703    // vsplti + srl self.
3704    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3705      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3706      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3707        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3708        Intrinsic::ppc_altivec_vsrw
3709      };
3710      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3711      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3712    }
3713
3714    // vsplti + sra self.
3715    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3716      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3717      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3718        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3719        Intrinsic::ppc_altivec_vsraw
3720      };
3721      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3722      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3723    }
3724
3725    // vsplti + rol self.
3726    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3727                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3728      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3729      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3730        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3731        Intrinsic::ppc_altivec_vrlw
3732      };
3733      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3734      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3735    }
3736
3737    // t = vsplti c, result = vsldoi t, t, 1
3738    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3739      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3740      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3741    }
3742    // t = vsplti c, result = vsldoi t, t, 2
3743    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3744      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3745      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3746    }
3747    // t = vsplti c, result = vsldoi t, t, 3
3748    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3749      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3750      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3751    }
3752  }
3753
3754  // Three instruction sequences.
3755
3756  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3757  if (SextVal >= 0 && SextVal <= 31) {
3758    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3759    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3760    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3761    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3762  }
3763  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3764  if (SextVal >= -31 && SextVal <= 0) {
3765    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3766    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3767    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3768    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3769  }
3770
3771  return SDValue();
3772}
3773
3774/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3775/// the specified operations to build the shuffle.
3776static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3777                                      SDValue RHS, SelectionDAG &DAG,
3778                                      DebugLoc dl) {
3779  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3780  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3781  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3782
3783  enum {
3784    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3785    OP_VMRGHW,
3786    OP_VMRGLW,
3787    OP_VSPLTISW0,
3788    OP_VSPLTISW1,
3789    OP_VSPLTISW2,
3790    OP_VSPLTISW3,
3791    OP_VSLDOI4,
3792    OP_VSLDOI8,
3793    OP_VSLDOI12
3794  };
3795
3796  if (OpNum == OP_COPY) {
3797    if (LHSID == (1*9+2)*9+3) return LHS;
3798    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3799    return RHS;
3800  }
3801
3802  SDValue OpLHS, OpRHS;
3803  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3804  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3805
3806  int ShufIdxs[16];
3807  switch (OpNum) {
3808  default: llvm_unreachable("Unknown i32 permute!");
3809  case OP_VMRGHW:
3810    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3811    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3812    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3813    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3814    break;
3815  case OP_VMRGLW:
3816    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3817    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3818    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3819    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3820    break;
3821  case OP_VSPLTISW0:
3822    for (unsigned i = 0; i != 16; ++i)
3823      ShufIdxs[i] = (i&3)+0;
3824    break;
3825  case OP_VSPLTISW1:
3826    for (unsigned i = 0; i != 16; ++i)
3827      ShufIdxs[i] = (i&3)+4;
3828    break;
3829  case OP_VSPLTISW2:
3830    for (unsigned i = 0; i != 16; ++i)
3831      ShufIdxs[i] = (i&3)+8;
3832    break;
3833  case OP_VSPLTISW3:
3834    for (unsigned i = 0; i != 16; ++i)
3835      ShufIdxs[i] = (i&3)+12;
3836    break;
3837  case OP_VSLDOI4:
3838    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3839  case OP_VSLDOI8:
3840    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3841  case OP_VSLDOI12:
3842    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3843  }
3844  MVT VT = OpLHS.getValueType();
3845  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3846  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3847  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3848  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3849}
3850
3851/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3852/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3853/// return the code it can be lowered into.  Worst case, it can always be
3854/// lowered into a vperm.
3855SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3856                                               SelectionDAG &DAG) {
3857  DebugLoc dl = Op.getDebugLoc();
3858  SDValue V1 = Op.getOperand(0);
3859  SDValue V2 = Op.getOperand(1);
3860  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3861  MVT VT = Op.getValueType();
3862
3863  // Cases that are handled by instructions that take permute immediates
3864  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3865  // selected by the instruction selector.
3866  if (V2.getOpcode() == ISD::UNDEF) {
3867    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3868        PPC::isSplatShuffleMask(SVOp, 2) ||
3869        PPC::isSplatShuffleMask(SVOp, 4) ||
3870        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3871        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3872        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3873        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3874        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3875        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3876        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3877        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3878        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3879      return Op;
3880    }
3881  }
3882
3883  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3884  // and produce a fixed permutation.  If any of these match, do not lower to
3885  // VPERM.
3886  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3887      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3888      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3889      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3890      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3891      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3892      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3893      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3894      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3895    return Op;
3896
3897  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3898  // perfect shuffle table to emit an optimal matching sequence.
3899  SmallVector<int, 16> PermMask;
3900  SVOp->getMask(PermMask);
3901
3902  unsigned PFIndexes[4];
3903  bool isFourElementShuffle = true;
3904  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3905    unsigned EltNo = 8;   // Start out undef.
3906    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3907      if (PermMask[i*4+j] < 0)
3908        continue;   // Undef, ignore it.
3909
3910      unsigned ByteSource = PermMask[i*4+j];
3911      if ((ByteSource & 3) != j) {
3912        isFourElementShuffle = false;
3913        break;
3914      }
3915
3916      if (EltNo == 8) {
3917        EltNo = ByteSource/4;
3918      } else if (EltNo != ByteSource/4) {
3919        isFourElementShuffle = false;
3920        break;
3921      }
3922    }
3923    PFIndexes[i] = EltNo;
3924  }
3925
3926  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3927  // perfect shuffle vector to determine if it is cost effective to do this as
3928  // discrete instructions, or whether we should use a vperm.
3929  if (isFourElementShuffle) {
3930    // Compute the index in the perfect shuffle table.
3931    unsigned PFTableIndex =
3932      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3933
3934    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3935    unsigned Cost  = (PFEntry >> 30);
3936
3937    // Determining when to avoid vperm is tricky.  Many things affect the cost
3938    // of vperm, particularly how many times the perm mask needs to be computed.
3939    // For example, if the perm mask can be hoisted out of a loop or is already
3940    // used (perhaps because there are multiple permutes with the same shuffle
3941    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3942    // the loop requires an extra register.
3943    //
3944    // As a compromise, we only emit discrete instructions if the shuffle can be
3945    // generated in 3 or fewer operations.  When we have loop information
3946    // available, if this block is within a loop, we should avoid using vperm
3947    // for 3-operation perms and use a constant pool load instead.
3948    if (Cost < 3)
3949      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3950  }
3951
3952  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3953  // vector that will get spilled to the constant pool.
3954  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3955
3956  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3957  // that it is in input element units, not in bytes.  Convert now.
3958  MVT EltVT = V1.getValueType().getVectorElementType();
3959  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3960
3961  SmallVector<SDValue, 16> ResultMask;
3962  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3963    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3964
3965    for (unsigned j = 0; j != BytesPerElement; ++j)
3966      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3967                                           MVT::i32));
3968  }
3969
3970  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3971                                    &ResultMask[0], ResultMask.size());
3972  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3973}
3974
3975/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3976/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3977/// information about the intrinsic.
3978static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3979                                  bool &isDot) {
3980  unsigned IntrinsicID =
3981    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3982  CompareOpc = -1;
3983  isDot = false;
3984  switch (IntrinsicID) {
3985  default: return false;
3986    // Comparison predicates.
3987  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3988  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3989  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3990  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3991  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3992  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3993  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3994  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3995  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3996  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3997  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3998  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3999  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4000
4001    // Normal Comparisons.
4002  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4003  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4004  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4005  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4006  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4007  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4008  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4009  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4010  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4011  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4012  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4013  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4014  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4015  }
4016  return true;
4017}
4018
4019/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4020/// lower, do it, otherwise return null.
4021SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4022                                                     SelectionDAG &DAG) {
4023  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4024  // opcode number of the comparison.
4025  DebugLoc dl = Op.getDebugLoc();
4026  int CompareOpc;
4027  bool isDot;
4028  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4029    return SDValue();    // Don't custom lower most intrinsics.
4030
4031  // If this is a non-dot comparison, make the VCMP node and we are done.
4032  if (!isDot) {
4033    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4034                                Op.getOperand(1), Op.getOperand(2),
4035                                DAG.getConstant(CompareOpc, MVT::i32));
4036    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4037  }
4038
4039  // Create the PPCISD altivec 'dot' comparison node.
4040  SDValue Ops[] = {
4041    Op.getOperand(2),  // LHS
4042    Op.getOperand(3),  // RHS
4043    DAG.getConstant(CompareOpc, MVT::i32)
4044  };
4045  std::vector<MVT> VTs;
4046  VTs.push_back(Op.getOperand(2).getValueType());
4047  VTs.push_back(MVT::Flag);
4048  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4049
4050  // Now that we have the comparison, emit a copy from the CR to a GPR.
4051  // This is flagged to the above dot comparison.
4052  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4053                                DAG.getRegister(PPC::CR6, MVT::i32),
4054                                CompNode.getValue(1));
4055
4056  // Unpack the result based on how the target uses it.
4057  unsigned BitNo;   // Bit # of CR6.
4058  bool InvertBit;   // Invert result?
4059  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4060  default:  // Can't happen, don't crash on invalid number though.
4061  case 0:   // Return the value of the EQ bit of CR6.
4062    BitNo = 0; InvertBit = false;
4063    break;
4064  case 1:   // Return the inverted value of the EQ bit of CR6.
4065    BitNo = 0; InvertBit = true;
4066    break;
4067  case 2:   // Return the value of the LT bit of CR6.
4068    BitNo = 2; InvertBit = false;
4069    break;
4070  case 3:   // Return the inverted value of the LT bit of CR6.
4071    BitNo = 2; InvertBit = true;
4072    break;
4073  }
4074
4075  // Shift the bit into the low position.
4076  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4077                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4078  // Isolate the bit.
4079  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4080                      DAG.getConstant(1, MVT::i32));
4081
4082  // If we are supposed to, toggle the bit.
4083  if (InvertBit)
4084    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4085                        DAG.getConstant(1, MVT::i32));
4086  return Flags;
4087}
4088
4089SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4090                                                   SelectionDAG &DAG) {
4091  DebugLoc dl = Op.getDebugLoc();
4092  // Create a stack slot that is 16-byte aligned.
4093  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4094  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4095  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4096  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4097
4098  // Store the input value into Value#0 of the stack slot.
4099  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4100                                 Op.getOperand(0), FIdx, NULL, 0);
4101  // Load it out.
4102  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4103}
4104
4105SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4106  DebugLoc dl = Op.getDebugLoc();
4107  if (Op.getValueType() == MVT::v4i32) {
4108    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4109
4110    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4111    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4112
4113    SDValue RHSSwap =   // = vrlw RHS, 16
4114      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4115
4116    // Shrinkify inputs to v8i16.
4117    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4118    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4119    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4120
4121    // Low parts multiplied together, generating 32-bit results (we ignore the
4122    // top parts).
4123    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4124                                        LHS, RHS, DAG, dl, MVT::v4i32);
4125
4126    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4127                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4128    // Shift the high parts up 16 bits.
4129    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4130                              Neg16, DAG, dl);
4131    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4132  } else if (Op.getValueType() == MVT::v8i16) {
4133    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4134
4135    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4136
4137    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4138                            LHS, RHS, Zero, DAG, dl);
4139  } else if (Op.getValueType() == MVT::v16i8) {
4140    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4141
4142    // Multiply the even 8-bit parts, producing 16-bit sums.
4143    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4144                                           LHS, RHS, DAG, dl, MVT::v8i16);
4145    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4146
4147    // Multiply the odd 8-bit parts, producing 16-bit sums.
4148    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4149                                          LHS, RHS, DAG, dl, MVT::v8i16);
4150    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4151
4152    // Merge the results together.
4153    int Ops[16];
4154    for (unsigned i = 0; i != 8; ++i) {
4155      Ops[i*2  ] = 2*i+1;
4156      Ops[i*2+1] = 2*i+1+16;
4157    }
4158    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4159  } else {
4160    llvm_unreachable("Unknown mul to lower!");
4161  }
4162}
4163
4164/// LowerOperation - Provide custom lowering hooks for some operations.
4165///
4166SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4167  switch (Op.getOpcode()) {
4168  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4169  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4170  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4171  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4172  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4173  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4174  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4175  case ISD::VASTART:
4176    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4177                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4178
4179  case ISD::VAARG:
4180    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4181                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4182
4183  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4184  case ISD::DYNAMIC_STACKALLOC:
4185    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4186
4187  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4188  case ISD::FP_TO_UINT:
4189  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4190                                                       Op.getDebugLoc());
4191  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4192  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4193
4194  // Lower 64-bit shifts.
4195  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4196  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4197  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4198
4199  // Vector-related lowering.
4200  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4201  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4202  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4203  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4204  case ISD::MUL:                return LowerMUL(Op, DAG);
4205
4206  // Frame & Return address.
4207  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4208  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4209  }
4210  return SDValue();
4211}
4212
4213void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4214                                           SmallVectorImpl<SDValue>&Results,
4215                                           SelectionDAG &DAG) {
4216  DebugLoc dl = N->getDebugLoc();
4217  switch (N->getOpcode()) {
4218  default:
4219    assert(false && "Do not know how to custom type legalize this operation!");
4220    return;
4221  case ISD::FP_ROUND_INREG: {
4222    assert(N->getValueType(0) == MVT::ppcf128);
4223    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4224    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4225                             MVT::f64, N->getOperand(0),
4226                             DAG.getIntPtrConstant(0));
4227    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4228                             MVT::f64, N->getOperand(0),
4229                             DAG.getIntPtrConstant(1));
4230
4231    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4232    // of the long double, and puts FPSCR back the way it was.  We do not
4233    // actually model FPSCR.
4234    std::vector<MVT> NodeTys;
4235    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4236
4237    NodeTys.push_back(MVT::f64);   // Return register
4238    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4239    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4240    MFFSreg = Result.getValue(0);
4241    InFlag = Result.getValue(1);
4242
4243    NodeTys.clear();
4244    NodeTys.push_back(MVT::Flag);   // Returns a flag
4245    Ops[0] = DAG.getConstant(31, MVT::i32);
4246    Ops[1] = InFlag;
4247    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4248    InFlag = Result.getValue(0);
4249
4250    NodeTys.clear();
4251    NodeTys.push_back(MVT::Flag);   // Returns a flag
4252    Ops[0] = DAG.getConstant(30, MVT::i32);
4253    Ops[1] = InFlag;
4254    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4255    InFlag = Result.getValue(0);
4256
4257    NodeTys.clear();
4258    NodeTys.push_back(MVT::f64);    // result of add
4259    NodeTys.push_back(MVT::Flag);   // Returns a flag
4260    Ops[0] = Lo;
4261    Ops[1] = Hi;
4262    Ops[2] = InFlag;
4263    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4264    FPreg = Result.getValue(0);
4265    InFlag = Result.getValue(1);
4266
4267    NodeTys.clear();
4268    NodeTys.push_back(MVT::f64);
4269    Ops[0] = DAG.getConstant(1, MVT::i32);
4270    Ops[1] = MFFSreg;
4271    Ops[2] = FPreg;
4272    Ops[3] = InFlag;
4273    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4274    FPreg = Result.getValue(0);
4275
4276    // We know the low half is about to be thrown away, so just use something
4277    // convenient.
4278    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4279                                FPreg, FPreg));
4280    return;
4281  }
4282  case ISD::FP_TO_SINT:
4283    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4284    return;
4285  }
4286}
4287
4288
4289//===----------------------------------------------------------------------===//
4290//  Other Lowering Code
4291//===----------------------------------------------------------------------===//
4292
4293MachineBasicBlock *
4294PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4295                                    bool is64bit, unsigned BinOpcode) const {
4296  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4297  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4298
4299  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4300  MachineFunction *F = BB->getParent();
4301  MachineFunction::iterator It = BB;
4302  ++It;
4303
4304  unsigned dest = MI->getOperand(0).getReg();
4305  unsigned ptrA = MI->getOperand(1).getReg();
4306  unsigned ptrB = MI->getOperand(2).getReg();
4307  unsigned incr = MI->getOperand(3).getReg();
4308  DebugLoc dl = MI->getDebugLoc();
4309
4310  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4311  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4312  F->insert(It, loopMBB);
4313  F->insert(It, exitMBB);
4314  exitMBB->transferSuccessors(BB);
4315
4316  MachineRegisterInfo &RegInfo = F->getRegInfo();
4317  unsigned TmpReg = (!BinOpcode) ? incr :
4318    RegInfo.createVirtualRegister(
4319       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4320                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4321
4322  //  thisMBB:
4323  //   ...
4324  //   fallthrough --> loopMBB
4325  BB->addSuccessor(loopMBB);
4326
4327  //  loopMBB:
4328  //   l[wd]arx dest, ptr
4329  //   add r0, dest, incr
4330  //   st[wd]cx. r0, ptr
4331  //   bne- loopMBB
4332  //   fallthrough --> exitMBB
4333  BB = loopMBB;
4334  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4335    .addReg(ptrA).addReg(ptrB);
4336  if (BinOpcode)
4337    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4338  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4339    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4340  BuildMI(BB, dl, TII->get(PPC::BCC))
4341    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4342  BB->addSuccessor(loopMBB);
4343  BB->addSuccessor(exitMBB);
4344
4345  //  exitMBB:
4346  //   ...
4347  BB = exitMBB;
4348  return BB;
4349}
4350
4351MachineBasicBlock *
4352PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4353                                            MachineBasicBlock *BB,
4354                                            bool is8bit,    // operation
4355                                            unsigned BinOpcode) const {
4356  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4357  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4358  // In 64 bit mode we have to use 64 bits for addresses, even though the
4359  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4360  // registers without caring whether they're 32 or 64, but here we're
4361  // doing actual arithmetic on the addresses.
4362  bool is64bit = PPCSubTarget.isPPC64();
4363
4364  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4365  MachineFunction *F = BB->getParent();
4366  MachineFunction::iterator It = BB;
4367  ++It;
4368
4369  unsigned dest = MI->getOperand(0).getReg();
4370  unsigned ptrA = MI->getOperand(1).getReg();
4371  unsigned ptrB = MI->getOperand(2).getReg();
4372  unsigned incr = MI->getOperand(3).getReg();
4373  DebugLoc dl = MI->getDebugLoc();
4374
4375  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4376  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4377  F->insert(It, loopMBB);
4378  F->insert(It, exitMBB);
4379  exitMBB->transferSuccessors(BB);
4380
4381  MachineRegisterInfo &RegInfo = F->getRegInfo();
4382  const TargetRegisterClass *RC =
4383    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4384              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4385  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4386  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4387  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4388  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4389  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4390  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4391  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4392  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4393  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4394  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4395  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4396  unsigned Ptr1Reg;
4397  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4398
4399  //  thisMBB:
4400  //   ...
4401  //   fallthrough --> loopMBB
4402  BB->addSuccessor(loopMBB);
4403
4404  // The 4-byte load must be aligned, while a char or short may be
4405  // anywhere in the word.  Hence all this nasty bookkeeping code.
4406  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4407  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4408  //   xori shift, shift1, 24 [16]
4409  //   rlwinm ptr, ptr1, 0, 0, 29
4410  //   slw incr2, incr, shift
4411  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4412  //   slw mask, mask2, shift
4413  //  loopMBB:
4414  //   lwarx tmpDest, ptr
4415  //   add tmp, tmpDest, incr2
4416  //   andc tmp2, tmpDest, mask
4417  //   and tmp3, tmp, mask
4418  //   or tmp4, tmp3, tmp2
4419  //   stwcx. tmp4, ptr
4420  //   bne- loopMBB
4421  //   fallthrough --> exitMBB
4422  //   srw dest, tmpDest, shift
4423
4424  if (ptrA!=PPC::R0) {
4425    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4426    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4427      .addReg(ptrA).addReg(ptrB);
4428  } else {
4429    Ptr1Reg = ptrB;
4430  }
4431  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4432      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4433  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4434      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4435  if (is64bit)
4436    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4437      .addReg(Ptr1Reg).addImm(0).addImm(61);
4438  else
4439    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4440      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4441  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4442      .addReg(incr).addReg(ShiftReg);
4443  if (is8bit)
4444    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4445  else {
4446    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4447    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4448  }
4449  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4450      .addReg(Mask2Reg).addReg(ShiftReg);
4451
4452  BB = loopMBB;
4453  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4454    .addReg(PPC::R0).addReg(PtrReg);
4455  if (BinOpcode)
4456    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4457      .addReg(Incr2Reg).addReg(TmpDestReg);
4458  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4459    .addReg(TmpDestReg).addReg(MaskReg);
4460  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4461    .addReg(TmpReg).addReg(MaskReg);
4462  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4463    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4464  BuildMI(BB, dl, TII->get(PPC::STWCX))
4465    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4466  BuildMI(BB, dl, TII->get(PPC::BCC))
4467    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4468  BB->addSuccessor(loopMBB);
4469  BB->addSuccessor(exitMBB);
4470
4471  //  exitMBB:
4472  //   ...
4473  BB = exitMBB;
4474  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4475  return BB;
4476}
4477
4478MachineBasicBlock *
4479PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4480                                               MachineBasicBlock *BB) const {
4481  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4482
4483  // To "insert" these instructions we actually have to insert their
4484  // control-flow patterns.
4485  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4486  MachineFunction::iterator It = BB;
4487  ++It;
4488
4489  MachineFunction *F = BB->getParent();
4490
4491  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4492      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4493      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4494      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4495      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4496
4497    // The incoming instruction knows the destination vreg to set, the
4498    // condition code register to branch on, the true/false values to
4499    // select between, and a branch opcode to use.
4500
4501    //  thisMBB:
4502    //  ...
4503    //   TrueVal = ...
4504    //   cmpTY ccX, r1, r2
4505    //   bCC copy1MBB
4506    //   fallthrough --> copy0MBB
4507    MachineBasicBlock *thisMBB = BB;
4508    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4509    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4510    unsigned SelectPred = MI->getOperand(4).getImm();
4511    DebugLoc dl = MI->getDebugLoc();
4512    BuildMI(BB, dl, TII->get(PPC::BCC))
4513      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4514    F->insert(It, copy0MBB);
4515    F->insert(It, sinkMBB);
4516    // Update machine-CFG edges by transferring all successors of the current
4517    // block to the new block which will contain the Phi node for the select.
4518    sinkMBB->transferSuccessors(BB);
4519    // Next, add the true and fallthrough blocks as its successors.
4520    BB->addSuccessor(copy0MBB);
4521    BB->addSuccessor(sinkMBB);
4522
4523    //  copy0MBB:
4524    //   %FalseValue = ...
4525    //   # fallthrough to sinkMBB
4526    BB = copy0MBB;
4527
4528    // Update machine-CFG edges
4529    BB->addSuccessor(sinkMBB);
4530
4531    //  sinkMBB:
4532    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4533    //  ...
4534    BB = sinkMBB;
4535    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4536      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4537      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4538  }
4539  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4540    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4541  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4542    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4543  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4544    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4545  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4546    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4547
4548  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4549    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4550  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4551    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4552  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4553    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4554  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4555    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4556
4557  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4558    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4559  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4560    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4561  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4562    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4563  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4564    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4565
4566  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4567    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4568  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4569    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4570  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4571    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4572  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4573    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4574
4575  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4576    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4577  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4578    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4579  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4580    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4581  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4582    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4583
4584  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4585    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4586  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4587    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4588  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4589    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4590  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4591    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4592
4593  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4594    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4595  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4596    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4597  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4598    BB = EmitAtomicBinary(MI, BB, false, 0);
4599  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4600    BB = EmitAtomicBinary(MI, BB, true, 0);
4601
4602  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4603           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4604    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4605
4606    unsigned dest   = MI->getOperand(0).getReg();
4607    unsigned ptrA   = MI->getOperand(1).getReg();
4608    unsigned ptrB   = MI->getOperand(2).getReg();
4609    unsigned oldval = MI->getOperand(3).getReg();
4610    unsigned newval = MI->getOperand(4).getReg();
4611    DebugLoc dl     = MI->getDebugLoc();
4612
4613    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4614    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4615    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4616    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4617    F->insert(It, loop1MBB);
4618    F->insert(It, loop2MBB);
4619    F->insert(It, midMBB);
4620    F->insert(It, exitMBB);
4621    exitMBB->transferSuccessors(BB);
4622
4623    //  thisMBB:
4624    //   ...
4625    //   fallthrough --> loopMBB
4626    BB->addSuccessor(loop1MBB);
4627
4628    // loop1MBB:
4629    //   l[wd]arx dest, ptr
4630    //   cmp[wd] dest, oldval
4631    //   bne- midMBB
4632    // loop2MBB:
4633    //   st[wd]cx. newval, ptr
4634    //   bne- loopMBB
4635    //   b exitBB
4636    // midMBB:
4637    //   st[wd]cx. dest, ptr
4638    // exitBB:
4639    BB = loop1MBB;
4640    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4641      .addReg(ptrA).addReg(ptrB);
4642    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4643      .addReg(oldval).addReg(dest);
4644    BuildMI(BB, dl, TII->get(PPC::BCC))
4645      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4646    BB->addSuccessor(loop2MBB);
4647    BB->addSuccessor(midMBB);
4648
4649    BB = loop2MBB;
4650    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4651      .addReg(newval).addReg(ptrA).addReg(ptrB);
4652    BuildMI(BB, dl, TII->get(PPC::BCC))
4653      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4654    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4655    BB->addSuccessor(loop1MBB);
4656    BB->addSuccessor(exitMBB);
4657
4658    BB = midMBB;
4659    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4660      .addReg(dest).addReg(ptrA).addReg(ptrB);
4661    BB->addSuccessor(exitMBB);
4662
4663    //  exitMBB:
4664    //   ...
4665    BB = exitMBB;
4666  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4667             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4668    // We must use 64-bit registers for addresses when targeting 64-bit,
4669    // since we're actually doing arithmetic on them.  Other registers
4670    // can be 32-bit.
4671    bool is64bit = PPCSubTarget.isPPC64();
4672    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4673
4674    unsigned dest   = MI->getOperand(0).getReg();
4675    unsigned ptrA   = MI->getOperand(1).getReg();
4676    unsigned ptrB   = MI->getOperand(2).getReg();
4677    unsigned oldval = MI->getOperand(3).getReg();
4678    unsigned newval = MI->getOperand(4).getReg();
4679    DebugLoc dl     = MI->getDebugLoc();
4680
4681    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4682    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4683    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4684    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4685    F->insert(It, loop1MBB);
4686    F->insert(It, loop2MBB);
4687    F->insert(It, midMBB);
4688    F->insert(It, exitMBB);
4689    exitMBB->transferSuccessors(BB);
4690
4691    MachineRegisterInfo &RegInfo = F->getRegInfo();
4692    const TargetRegisterClass *RC =
4693      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4694                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4695    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4696    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4697    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4698    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4699    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4700    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4701    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4702    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4703    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4704    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4705    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4706    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4707    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4708    unsigned Ptr1Reg;
4709    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4710    //  thisMBB:
4711    //   ...
4712    //   fallthrough --> loopMBB
4713    BB->addSuccessor(loop1MBB);
4714
4715    // The 4-byte load must be aligned, while a char or short may be
4716    // anywhere in the word.  Hence all this nasty bookkeeping code.
4717    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4718    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4719    //   xori shift, shift1, 24 [16]
4720    //   rlwinm ptr, ptr1, 0, 0, 29
4721    //   slw newval2, newval, shift
4722    //   slw oldval2, oldval,shift
4723    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4724    //   slw mask, mask2, shift
4725    //   and newval3, newval2, mask
4726    //   and oldval3, oldval2, mask
4727    // loop1MBB:
4728    //   lwarx tmpDest, ptr
4729    //   and tmp, tmpDest, mask
4730    //   cmpw tmp, oldval3
4731    //   bne- midMBB
4732    // loop2MBB:
4733    //   andc tmp2, tmpDest, mask
4734    //   or tmp4, tmp2, newval3
4735    //   stwcx. tmp4, ptr
4736    //   bne- loop1MBB
4737    //   b exitBB
4738    // midMBB:
4739    //   stwcx. tmpDest, ptr
4740    // exitBB:
4741    //   srw dest, tmpDest, shift
4742    if (ptrA!=PPC::R0) {
4743      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4744      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4745        .addReg(ptrA).addReg(ptrB);
4746    } else {
4747      Ptr1Reg = ptrB;
4748    }
4749    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4750        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4751    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4752        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4753    if (is64bit)
4754      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4755        .addReg(Ptr1Reg).addImm(0).addImm(61);
4756    else
4757      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4758        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4759    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4760        .addReg(newval).addReg(ShiftReg);
4761    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4762        .addReg(oldval).addReg(ShiftReg);
4763    if (is8bit)
4764      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4765    else {
4766      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4767      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4768        .addReg(Mask3Reg).addImm(65535);
4769    }
4770    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4771        .addReg(Mask2Reg).addReg(ShiftReg);
4772    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4773        .addReg(NewVal2Reg).addReg(MaskReg);
4774    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4775        .addReg(OldVal2Reg).addReg(MaskReg);
4776
4777    BB = loop1MBB;
4778    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4779        .addReg(PPC::R0).addReg(PtrReg);
4780    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4781        .addReg(TmpDestReg).addReg(MaskReg);
4782    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4783        .addReg(TmpReg).addReg(OldVal3Reg);
4784    BuildMI(BB, dl, TII->get(PPC::BCC))
4785        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4786    BB->addSuccessor(loop2MBB);
4787    BB->addSuccessor(midMBB);
4788
4789    BB = loop2MBB;
4790    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4791        .addReg(TmpDestReg).addReg(MaskReg);
4792    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4793        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4794    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4795        .addReg(PPC::R0).addReg(PtrReg);
4796    BuildMI(BB, dl, TII->get(PPC::BCC))
4797      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4798    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4799    BB->addSuccessor(loop1MBB);
4800    BB->addSuccessor(exitMBB);
4801
4802    BB = midMBB;
4803    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4804      .addReg(PPC::R0).addReg(PtrReg);
4805    BB->addSuccessor(exitMBB);
4806
4807    //  exitMBB:
4808    //   ...
4809    BB = exitMBB;
4810    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4811  } else {
4812    llvm_unreachable("Unexpected instr type to insert");
4813  }
4814
4815  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4816  return BB;
4817}
4818
4819//===----------------------------------------------------------------------===//
4820// Target Optimization Hooks
4821//===----------------------------------------------------------------------===//
4822
4823SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4824                                             DAGCombinerInfo &DCI) const {
4825  TargetMachine &TM = getTargetMachine();
4826  SelectionDAG &DAG = DCI.DAG;
4827  DebugLoc dl = N->getDebugLoc();
4828  switch (N->getOpcode()) {
4829  default: break;
4830  case PPCISD::SHL:
4831    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4832      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4833        return N->getOperand(0);
4834    }
4835    break;
4836  case PPCISD::SRL:
4837    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4838      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4839        return N->getOperand(0);
4840    }
4841    break;
4842  case PPCISD::SRA:
4843    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4844      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4845          C->isAllOnesValue())    // -1 >>s V -> -1.
4846        return N->getOperand(0);
4847    }
4848    break;
4849
4850  case ISD::SINT_TO_FP:
4851    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4852      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4853        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4854        // We allow the src/dst to be either f32/f64, but the intermediate
4855        // type must be i64.
4856        if (N->getOperand(0).getValueType() == MVT::i64 &&
4857            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4858          SDValue Val = N->getOperand(0).getOperand(0);
4859          if (Val.getValueType() == MVT::f32) {
4860            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4861            DCI.AddToWorklist(Val.getNode());
4862          }
4863
4864          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4865          DCI.AddToWorklist(Val.getNode());
4866          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4867          DCI.AddToWorklist(Val.getNode());
4868          if (N->getValueType(0) == MVT::f32) {
4869            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4870                              DAG.getIntPtrConstant(0));
4871            DCI.AddToWorklist(Val.getNode());
4872          }
4873          return Val;
4874        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4875          // If the intermediate type is i32, we can avoid the load/store here
4876          // too.
4877        }
4878      }
4879    }
4880    break;
4881  case ISD::STORE:
4882    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4883    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4884        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4885        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4886        N->getOperand(1).getValueType() == MVT::i32 &&
4887        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4888      SDValue Val = N->getOperand(1).getOperand(0);
4889      if (Val.getValueType() == MVT::f32) {
4890        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4891        DCI.AddToWorklist(Val.getNode());
4892      }
4893      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4894      DCI.AddToWorklist(Val.getNode());
4895
4896      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4897                        N->getOperand(2), N->getOperand(3));
4898      DCI.AddToWorklist(Val.getNode());
4899      return Val;
4900    }
4901
4902    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4903    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4904        N->getOperand(1).getNode()->hasOneUse() &&
4905        (N->getOperand(1).getValueType() == MVT::i32 ||
4906         N->getOperand(1).getValueType() == MVT::i16)) {
4907      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4908      // Do an any-extend to 32-bits if this is a half-word input.
4909      if (BSwapOp.getValueType() == MVT::i16)
4910        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4911
4912      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4913                         BSwapOp, N->getOperand(2), N->getOperand(3),
4914                         DAG.getValueType(N->getOperand(1).getValueType()));
4915    }
4916    break;
4917  case ISD::BSWAP:
4918    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4919    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4920        N->getOperand(0).hasOneUse() &&
4921        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4922      SDValue Load = N->getOperand(0);
4923      LoadSDNode *LD = cast<LoadSDNode>(Load);
4924      // Create the byte-swapping load.
4925      std::vector<MVT> VTs;
4926      VTs.push_back(MVT::i32);
4927      VTs.push_back(MVT::Other);
4928      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4929      SDValue Ops[] = {
4930        LD->getChain(),    // Chain
4931        LD->getBasePtr(),  // Ptr
4932        MO,                // MemOperand
4933        DAG.getValueType(N->getValueType(0)) // VT
4934      };
4935      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4936
4937      // If this is an i16 load, insert the truncate.
4938      SDValue ResVal = BSLoad;
4939      if (N->getValueType(0) == MVT::i16)
4940        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4941
4942      // First, combine the bswap away.  This makes the value produced by the
4943      // load dead.
4944      DCI.CombineTo(N, ResVal);
4945
4946      // Next, combine the load away, we give it a bogus result value but a real
4947      // chain result.  The result value is dead because the bswap is dead.
4948      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4949
4950      // Return N so it doesn't get rechecked!
4951      return SDValue(N, 0);
4952    }
4953
4954    break;
4955  case PPCISD::VCMP: {
4956    // If a VCMPo node already exists with exactly the same operands as this
4957    // node, use its result instead of this node (VCMPo computes both a CR6 and
4958    // a normal output).
4959    //
4960    if (!N->getOperand(0).hasOneUse() &&
4961        !N->getOperand(1).hasOneUse() &&
4962        !N->getOperand(2).hasOneUse()) {
4963
4964      // Scan all of the users of the LHS, looking for VCMPo's that match.
4965      SDNode *VCMPoNode = 0;
4966
4967      SDNode *LHSN = N->getOperand(0).getNode();
4968      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4969           UI != E; ++UI)
4970        if (UI->getOpcode() == PPCISD::VCMPo &&
4971            UI->getOperand(1) == N->getOperand(1) &&
4972            UI->getOperand(2) == N->getOperand(2) &&
4973            UI->getOperand(0) == N->getOperand(0)) {
4974          VCMPoNode = *UI;
4975          break;
4976        }
4977
4978      // If there is no VCMPo node, or if the flag value has a single use, don't
4979      // transform this.
4980      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4981        break;
4982
4983      // Look at the (necessarily single) use of the flag value.  If it has a
4984      // chain, this transformation is more complex.  Note that multiple things
4985      // could use the value result, which we should ignore.
4986      SDNode *FlagUser = 0;
4987      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4988           FlagUser == 0; ++UI) {
4989        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4990        SDNode *User = *UI;
4991        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4992          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4993            FlagUser = User;
4994            break;
4995          }
4996        }
4997      }
4998
4999      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5000      // give up for right now.
5001      if (FlagUser->getOpcode() == PPCISD::MFCR)
5002        return SDValue(VCMPoNode, 0);
5003    }
5004    break;
5005  }
5006  case ISD::BR_CC: {
5007    // If this is a branch on an altivec predicate comparison, lower this so
5008    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5009    // lowering is done pre-legalize, because the legalizer lowers the predicate
5010    // compare down to code that is difficult to reassemble.
5011    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5012    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5013    int CompareOpc;
5014    bool isDot;
5015
5016    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5017        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5018        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5019      assert(isDot && "Can't compare against a vector result!");
5020
5021      // If this is a comparison against something other than 0/1, then we know
5022      // that the condition is never/always true.
5023      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5024      if (Val != 0 && Val != 1) {
5025        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5026          return N->getOperand(0);
5027        // Always !=, turn it into an unconditional branch.
5028        return DAG.getNode(ISD::BR, dl, MVT::Other,
5029                           N->getOperand(0), N->getOperand(4));
5030      }
5031
5032      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5033
5034      // Create the PPCISD altivec 'dot' comparison node.
5035      std::vector<MVT> VTs;
5036      SDValue Ops[] = {
5037        LHS.getOperand(2),  // LHS of compare
5038        LHS.getOperand(3),  // RHS of compare
5039        DAG.getConstant(CompareOpc, MVT::i32)
5040      };
5041      VTs.push_back(LHS.getOperand(2).getValueType());
5042      VTs.push_back(MVT::Flag);
5043      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5044
5045      // Unpack the result based on how the target uses it.
5046      PPC::Predicate CompOpc;
5047      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5048      default:  // Can't happen, don't crash on invalid number though.
5049      case 0:   // Branch on the value of the EQ bit of CR6.
5050        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5051        break;
5052      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5053        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5054        break;
5055      case 2:   // Branch on the value of the LT bit of CR6.
5056        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5057        break;
5058      case 3:   // Branch on the inverted value of the LT bit of CR6.
5059        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5060        break;
5061      }
5062
5063      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5064                         DAG.getConstant(CompOpc, MVT::i32),
5065                         DAG.getRegister(PPC::CR6, MVT::i32),
5066                         N->getOperand(4), CompNode.getValue(1));
5067    }
5068    break;
5069  }
5070  }
5071
5072  return SDValue();
5073}
5074
5075//===----------------------------------------------------------------------===//
5076// Inline Assembly Support
5077//===----------------------------------------------------------------------===//
5078
5079void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5080                                                       const APInt &Mask,
5081                                                       APInt &KnownZero,
5082                                                       APInt &KnownOne,
5083                                                       const SelectionDAG &DAG,
5084                                                       unsigned Depth) const {
5085  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5086  switch (Op.getOpcode()) {
5087  default: break;
5088  case PPCISD::LBRX: {
5089    // lhbrx is known to have the top bits cleared out.
5090    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
5091      KnownZero = 0xFFFF0000;
5092    break;
5093  }
5094  case ISD::INTRINSIC_WO_CHAIN: {
5095    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5096    default: break;
5097    case Intrinsic::ppc_altivec_vcmpbfp_p:
5098    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5099    case Intrinsic::ppc_altivec_vcmpequb_p:
5100    case Intrinsic::ppc_altivec_vcmpequh_p:
5101    case Intrinsic::ppc_altivec_vcmpequw_p:
5102    case Intrinsic::ppc_altivec_vcmpgefp_p:
5103    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5104    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5105    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5106    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5107    case Intrinsic::ppc_altivec_vcmpgtub_p:
5108    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5109    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5110      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5111      break;
5112    }
5113  }
5114  }
5115}
5116
5117
5118/// getConstraintType - Given a constraint, return the type of
5119/// constraint it is for this target.
5120PPCTargetLowering::ConstraintType
5121PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5122  if (Constraint.size() == 1) {
5123    switch (Constraint[0]) {
5124    default: break;
5125    case 'b':
5126    case 'r':
5127    case 'f':
5128    case 'v':
5129    case 'y':
5130      return C_RegisterClass;
5131    }
5132  }
5133  return TargetLowering::getConstraintType(Constraint);
5134}
5135
5136std::pair<unsigned, const TargetRegisterClass*>
5137PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5138                                                MVT VT) const {
5139  if (Constraint.size() == 1) {
5140    // GCC RS6000 Constraint Letters
5141    switch (Constraint[0]) {
5142    case 'b':   // R1-R31
5143    case 'r':   // R0-R31
5144      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5145        return std::make_pair(0U, PPC::G8RCRegisterClass);
5146      return std::make_pair(0U, PPC::GPRCRegisterClass);
5147    case 'f':
5148      if (VT == MVT::f32)
5149        return std::make_pair(0U, PPC::F4RCRegisterClass);
5150      else if (VT == MVT::f64)
5151        return std::make_pair(0U, PPC::F8RCRegisterClass);
5152      break;
5153    case 'v':
5154      return std::make_pair(0U, PPC::VRRCRegisterClass);
5155    case 'y':   // crrc
5156      return std::make_pair(0U, PPC::CRRCRegisterClass);
5157    }
5158  }
5159
5160  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5161}
5162
5163
5164/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5165/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5166/// it means one of the asm constraint of the inline asm instruction being
5167/// processed is 'm'.
5168void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5169                                                     bool hasMemory,
5170                                                     std::vector<SDValue>&Ops,
5171                                                     SelectionDAG &DAG) const {
5172  SDValue Result(0,0);
5173  switch (Letter) {
5174  default: break;
5175  case 'I':
5176  case 'J':
5177  case 'K':
5178  case 'L':
5179  case 'M':
5180  case 'N':
5181  case 'O':
5182  case 'P': {
5183    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5184    if (!CST) return; // Must be an immediate to match.
5185    unsigned Value = CST->getZExtValue();
5186    switch (Letter) {
5187    default: llvm_unreachable("Unknown constraint letter!");
5188    case 'I':  // "I" is a signed 16-bit constant.
5189      if ((short)Value == (int)Value)
5190        Result = DAG.getTargetConstant(Value, Op.getValueType());
5191      break;
5192    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5193    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5194      if ((short)Value == 0)
5195        Result = DAG.getTargetConstant(Value, Op.getValueType());
5196      break;
5197    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5198      if ((Value >> 16) == 0)
5199        Result = DAG.getTargetConstant(Value, Op.getValueType());
5200      break;
5201    case 'M':  // "M" is a constant that is greater than 31.
5202      if (Value > 31)
5203        Result = DAG.getTargetConstant(Value, Op.getValueType());
5204      break;
5205    case 'N':  // "N" is a positive constant that is an exact power of two.
5206      if ((int)Value > 0 && isPowerOf2_32(Value))
5207        Result = DAG.getTargetConstant(Value, Op.getValueType());
5208      break;
5209    case 'O':  // "O" is the constant zero.
5210      if (Value == 0)
5211        Result = DAG.getTargetConstant(Value, Op.getValueType());
5212      break;
5213    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5214      if ((short)-Value == (int)-Value)
5215        Result = DAG.getTargetConstant(Value, Op.getValueType());
5216      break;
5217    }
5218    break;
5219  }
5220  }
5221
5222  if (Result.getNode()) {
5223    Ops.push_back(Result);
5224    return;
5225  }
5226
5227  // Handle standard constraint letters.
5228  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5229}
5230
5231// isLegalAddressingMode - Return true if the addressing mode represented
5232// by AM is legal for this target, for a load/store of the specified type.
5233bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5234                                              const Type *Ty) const {
5235  // FIXME: PPC does not allow r+i addressing modes for vectors!
5236
5237  // PPC allows a sign-extended 16-bit immediate field.
5238  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5239    return false;
5240
5241  // No global is ever allowed as a base.
5242  if (AM.BaseGV)
5243    return false;
5244
5245  // PPC only support r+r,
5246  switch (AM.Scale) {
5247  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5248    break;
5249  case 1:
5250    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5251      return false;
5252    // Otherwise we have r+r or r+i.
5253    break;
5254  case 2:
5255    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5256      return false;
5257    // Allow 2*r as r+r.
5258    break;
5259  default:
5260    // No other scales are supported.
5261    return false;
5262  }
5263
5264  return true;
5265}
5266
5267/// isLegalAddressImmediate - Return true if the integer value can be used
5268/// as the offset of the target addressing mode for load / store of the
5269/// given type.
5270bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5271  // PPC allows a sign-extended 16-bit immediate field.
5272  return (V > -(1 << 16) && V < (1 << 16)-1);
5273}
5274
5275bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5276  return false;
5277}
5278
5279SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5280  DebugLoc dl = Op.getDebugLoc();
5281  // Depths > 0 not supported yet!
5282  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5283    return SDValue();
5284
5285  MachineFunction &MF = DAG.getMachineFunction();
5286  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5287
5288  // Just load the return address off the stack.
5289  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5290
5291  // Make sure the function really does not optimize away the store of the RA
5292  // to the stack.
5293  FuncInfo->setLRStoreRequired();
5294  return DAG.getLoad(getPointerTy(), dl,
5295                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5296}
5297
5298SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5299  DebugLoc dl = Op.getDebugLoc();
5300  // Depths > 0 not supported yet!
5301  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5302    return SDValue();
5303
5304  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5305  bool isPPC64 = PtrVT == MVT::i64;
5306
5307  MachineFunction &MF = DAG.getMachineFunction();
5308  MachineFrameInfo *MFI = MF.getFrameInfo();
5309  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5310                  && MFI->getStackSize();
5311
5312  if (isPPC64)
5313    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5314      MVT::i64);
5315  else
5316    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5317      MVT::i32);
5318}
5319
5320bool
5321PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5322  // The PowerPC target isn't yet aware of offsets.
5323  return false;
5324}
5325
5326MVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5327                                           bool isSrcConst, bool isSrcStr,
5328                                           SelectionDAG &DAG) const {
5329  if (this->PPCSubTarget.isPPC64()) {
5330    return MVT::i64;
5331  } else {
5332    return MVT::i32;
5333  }
5334}
5335