PPCISelLowering.cpp revision a619d012c13bee0572b96b045723dff5a117a5c2
12949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
22949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
32949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//                     The LLVM Compiler Infrastructure
42949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
52949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// This file is distributed under the University of Illinois Open Source
62949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// License. See LICENSE.TXT for details.
72949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
82949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//===----------------------------------------------------------------------===//
92949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
102949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// This file implements the PPCISelLowering class.
112949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
122949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//===----------------------------------------------------------------------===//
132949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
142949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "PPCISelLowering.h"
152949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "PPCMachineFunctionInfo.h"
162949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "PPCPredicates.h"
172949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "PPCTargetMachine.h"
182949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "PPCPerfectShuffle.h"
192949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/ADT/STLExtras.h"
202949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/ADT/VectorExtras.h"
212949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/CallingConvLower.h"
222949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/MachineFrameInfo.h"
232949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/MachineFunction.h"
242949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/MachineInstrBuilder.h"
252949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/MachineRegisterInfo.h"
262949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/PseudoSourceValue.h"
272949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CodeGen/SelectionDAG.h"
282949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/CallingConv.h"
292949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/Constants.h"
302949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/Function.h"
312949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/Intrinsics.h"
322949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/ParameterAttributes.h"
332949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/Support/MathExtras.h"
342949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/Target/TargetOptions.h"
352949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "llvm/Support/CommandLine.h"
362949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Projectusing namespace llvm;
372949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
382949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Projectstatic cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
392949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Projectcl::desc("enable preincrement load/store generation on PPC (experimental)"),
402949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project                                     cl::Hidden);
412949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
422949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source ProjectPPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
432949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
442949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
452949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setPow2DivIsCheap();
462949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
472949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Use _setjmp/_longjmp instead of setjmp/longjmp.
482949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setUseUnderscoreSetJmp(true);
492949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setUseUnderscoreLongJmp(true);
502949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
512949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Set up the register classes.
522949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
532949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
542949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
552949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
562949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
572949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
582949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
592949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
602949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
612949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
622949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC has pre-inc load and store's.
632949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
642949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
652949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
662949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
672949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
682949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
692949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
702949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
712949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
722949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
732949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
742949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
752949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
762949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
772949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // This is used in the ppcf128->int sequence.  Note it has different semantics
782949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
792949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
802949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
812949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC has no SREM/UREM instructions
822949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SREM, MVT::i32, Expand);
832949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UREM, MVT::i32, Expand);
842949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SREM, MVT::i64, Expand);
852949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UREM, MVT::i64, Expand);
862949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
872949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
882949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
892949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
902949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
912949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
922949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
932949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
942949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
952949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
962949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
972949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // We don't support sin/cos/sqrt/fmod/pow
982949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FSIN , MVT::f64, Expand);
992949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FCOS , MVT::f64, Expand);
1002949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FREM , MVT::f64, Expand);
1012949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FPOW , MVT::f64, Expand);
1022949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FSIN , MVT::f32, Expand);
1032949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FCOS , MVT::f32, Expand);
1042949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FREM , MVT::f32, Expand);
1052949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FPOW , MVT::f32, Expand);
1062949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1072949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1082949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1092949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // If we're enabling GP optimizations, use hardware square root
1102949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
1112949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
1122949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
1132949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  }
1142949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1152949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1162949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1172949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1182949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC does not have BSWAP, CTPOP or CTTZ
1192949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
1202949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
1212949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
1222949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
1232949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
1242949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
1252949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1262949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC does not have ROTR
1272949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
1282949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
1292949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1302949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC does not have Select
1312949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SELECT, MVT::i32, Expand);
1322949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SELECT, MVT::i64, Expand);
1332949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SELECT, MVT::f32, Expand);
1342949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SELECT, MVT::f64, Expand);
1352949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1362949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC wants to turn select_cc of FP into fsel when possible.
1372949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1382949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1392949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1402949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC wants to optimize integer setcc a bit
1412949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SETCC, MVT::i32, Custom);
1422949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1432949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC does not have BRCOND which requires SetCC
1442949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1452949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1462949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
1472949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1482949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
1492949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1502949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1512949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // PowerPC does not have [U|S]INT_TO_FP
1522949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
1532949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
1542949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1552949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
1562949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
1572949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
1582949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
1592949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1602949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // We cannot sextinreg(i1).  Expand to shifts.
1612949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1622949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1632949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Support label based line numbers.
1642949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
1652949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
1662949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1672949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
1682949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
1692949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
1702949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
1712949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1722949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1732949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // We want to legalize GlobalAddress and ConstantPool nodes into the
1742949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // appropriate instructions to materialize the address.
1752949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1762949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1772949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
1782949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
1792949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
1802949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
1812949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
1822949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
1832949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1842949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // RET must be custom lowered, to meet ABI requirements.
1852949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::RET               , MVT::Other, Custom);
1862949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1872949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // TRAP is legal.
1882949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::TRAP, MVT::Other, Legal);
1892949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1902949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
1912949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1922949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1932949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // VAARG is custom lowered with ELF 32 ABI
1942949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
1952949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::VAARG, MVT::Other, Custom);
1962949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  else
1972949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::VAARG, MVT::Other, Expand);
1982949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
1992949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Use the default implementation.
2002949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
2012949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
2022949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
2032949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
2042949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
2052949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
2062949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2072949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // We want to custom lower some of our intrinsics.
2082949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
2092949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2102949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2112949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // They also have instructions for converting between i64 and fp.
2122949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
2132949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
2142949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
2152949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
2162949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
2172949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2182949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // FIXME: disable this lowered code.  This generates 64-bit register values,
2192949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // and we don't model the fact that the top part is clobbered by calls.  We
2202949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // need to flag these together so that the value isn't live across a call.
2212949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
2222949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2232949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
2242949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
2252949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  } else {
2262949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
2272949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
2282949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  }
2292949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2302949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
2312949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // 64-bit PowerPC implementations can support i64 types directly
2322949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
2332949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
2342949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
2352949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // 64-bit PowerPC wants to expand i128 shifts itself.
2362949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
2372949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
2382949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
2392949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  } else {
2402949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // 32-bit PowerPC wants to expand i64 shifts itself.
2412949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
2422949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
2432949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
2442949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  }
2452949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2462949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
2472949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // First set operation action for all vector types to expand. Then we
2482949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // will selectively turn on ones that can be effectively codegen'd.
2492949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
2502949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
2512949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      MVT VT = (MVT::SimpleValueType)i;
2522949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2532949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      // add/sub are legal for all supported vector VT's.
2542949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::ADD , VT, Legal);
2552949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SUB , VT, Legal);
2562949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2572949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      // We promote all shuffles to v16i8.
2582949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
2592949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
2602949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2612949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      // We promote all non-typed operations to v4i32.
2622949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::AND   , VT, Promote);
2632949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
2642949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::OR    , VT, Promote);
2652949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
2662949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::XOR   , VT, Promote);
2672949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
2682949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::LOAD  , VT, Promote);
2692949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
2702949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SELECT, VT, Promote);
2712949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
2722949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::STORE, VT, Promote);
2732949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
2742949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2752949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      // No other operations are legal.
2762949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::MUL , VT, Expand);
2772949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SDIV, VT, Expand);
2782949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SREM, VT, Expand);
2792949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::UDIV, VT, Expand);
2802949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::UREM, VT, Expand);
2812949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::FDIV, VT, Expand);
2822949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::FNEG, VT, Expand);
2832949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
2842949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
2852949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
2862949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
2872949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
2882949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::UDIVREM, VT, Expand);
2892949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SDIVREM, VT, Expand);
2902949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
2912949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::FPOW, VT, Expand);
2922949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::CTPOP, VT, Expand);
2932949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::CTLZ, VT, Expand);
2942949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project      setOperationAction(ISD::CTTZ, VT, Expand);
2952949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    }
2962949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
2972949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
2982949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    // with merges, splats, etc.
2992949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
3002949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3012949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
3022949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
3032949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
3042949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
3052949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
3062949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
3072949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3082949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
3092949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
3102949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
3112949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
3122949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3132949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
3142949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
3152949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
3162949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
3172949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3182949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
3192949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
3202949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3212949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
3222949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
3232949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
3242949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
3252949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  }
3262949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3272949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setShiftAmountType(MVT::i32);
3282949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setSetCCResultContents(ZeroOrOneSetCCResult);
3292949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3302949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
3312949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setStackPointerRegisterToSaveRestore(PPC::X1);
3322949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setExceptionPointerRegister(PPC::X3);
3332949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setExceptionSelectorRegister(PPC::X4);
3342949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  } else {
3352949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setStackPointerRegisterToSaveRestore(PPC::R1);
3362949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setExceptionPointerRegister(PPC::R3);
3372949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setExceptionSelectorRegister(PPC::R4);
3382949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  }
3392949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3402949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // We have target-specific dag combine patterns for the following nodes:
3412949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setTargetDAGCombine(ISD::SINT_TO_FP);
3422949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setTargetDAGCombine(ISD::STORE);
3432949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setTargetDAGCombine(ISD::BR_CC);
3442949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  setTargetDAGCombine(ISD::BSWAP);
3452949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3462949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Darwin long double math library functions have $LDBL128 appended.
3472949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
3482949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
3492949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
3502949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
3512949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
3522949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
3532949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  }
3542949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3552949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  computeRegisterProperties();
3562949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project}
3572949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3582949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
3592949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project/// function arguments in the caller parameter area.
3602949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Projectunsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
3612949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  TargetMachine &TM = getTargetMachine();
3622949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // Darwin passes everything on 4 byte boundary.
3632949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
3642949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project    return 4;
3652949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  // FIXME Elf TBD
3662949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project  return 4;
3672949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project}
3682949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
3692949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Projectconst char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
370  switch (Opcode) {
371  default: return 0;
372  case PPCISD::FSEL:            return "PPCISD::FSEL";
373  case PPCISD::FCFID:           return "PPCISD::FCFID";
374  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
375  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
376  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
377  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
378  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
379  case PPCISD::VPERM:           return "PPCISD::VPERM";
380  case PPCISD::Hi:              return "PPCISD::Hi";
381  case PPCISD::Lo:              return "PPCISD::Lo";
382  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
383  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
384  case PPCISD::SRL:             return "PPCISD::SRL";
385  case PPCISD::SRA:             return "PPCISD::SRA";
386  case PPCISD::SHL:             return "PPCISD::SHL";
387  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
388  case PPCISD::STD_32:          return "PPCISD::STD_32";
389  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
390  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
391  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
392  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
393  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
394  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
395  case PPCISD::MFCR:            return "PPCISD::MFCR";
396  case PPCISD::VCMP:            return "PPCISD::VCMP";
397  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
398  case PPCISD::LBRX:            return "PPCISD::LBRX";
399  case PPCISD::STBRX:           return "PPCISD::STBRX";
400  case PPCISD::LARX:            return "PPCISD::LARX";
401  case PPCISD::STCX:            return "PPCISD::STCX";
402  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
403  case PPCISD::MFFS:            return "PPCISD::MFFS";
404  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
405  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
406  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
407  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
408  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
409  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
410  }
411}
412
413
414MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
415  return MVT::i32;
416}
417
418
419//===----------------------------------------------------------------------===//
420// Node matching predicates, for use by the tblgen matching code.
421//===----------------------------------------------------------------------===//
422
423/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
424static bool isFloatingPointZero(SDValue Op) {
425  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
426    return CFP->getValueAPF().isZero();
427  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
428    // Maybe this has already been legalized into the constant pool?
429    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
430      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
431        return CFP->getValueAPF().isZero();
432  }
433  return false;
434}
435
436/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
437/// true if Op is undef or if it matches the specified value.
438static bool isConstantOrUndef(SDValue Op, unsigned Val) {
439  return Op.getOpcode() == ISD::UNDEF ||
440         cast<ConstantSDNode>(Op)->getValue() == Val;
441}
442
443/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
444/// VPKUHUM instruction.
445bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
446  if (!isUnary) {
447    for (unsigned i = 0; i != 16; ++i)
448      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
449        return false;
450  } else {
451    for (unsigned i = 0; i != 8; ++i)
452      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
453          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
454        return false;
455  }
456  return true;
457}
458
459/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
460/// VPKUWUM instruction.
461bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
462  if (!isUnary) {
463    for (unsigned i = 0; i != 16; i += 2)
464      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
465          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
466        return false;
467  } else {
468    for (unsigned i = 0; i != 8; i += 2)
469      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
470          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
471          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
472          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
473        return false;
474  }
475  return true;
476}
477
478/// isVMerge - Common function, used to match vmrg* shuffles.
479///
480static bool isVMerge(SDNode *N, unsigned UnitSize,
481                     unsigned LHSStart, unsigned RHSStart) {
482  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
483         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
484  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
485         "Unsupported merge size!");
486
487  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
488    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
489      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
490                             LHSStart+j+i*UnitSize) ||
491          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
492                             RHSStart+j+i*UnitSize))
493        return false;
494    }
495      return true;
496}
497
498/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
499/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
500bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
501  if (!isUnary)
502    return isVMerge(N, UnitSize, 8, 24);
503  return isVMerge(N, UnitSize, 8, 8);
504}
505
506/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
507/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
508bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
509  if (!isUnary)
510    return isVMerge(N, UnitSize, 0, 16);
511  return isVMerge(N, UnitSize, 0, 0);
512}
513
514
515/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
516/// amount, otherwise return -1.
517int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
518  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
519         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
520  // Find the first non-undef value in the shuffle mask.
521  unsigned i;
522  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
523    /*search*/;
524
525  if (i == 16) return -1;  // all undef.
526
527  // Otherwise, check to see if the rest of the elements are consequtively
528  // numbered from this value.
529  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
530  if (ShiftAmt < i) return -1;
531  ShiftAmt -= i;
532
533  if (!isUnary) {
534    // Check the rest of the elements to see if they are consequtive.
535    for (++i; i != 16; ++i)
536      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
537        return -1;
538  } else {
539    // Check the rest of the elements to see if they are consequtive.
540    for (++i; i != 16; ++i)
541      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
542        return -1;
543  }
544
545  return ShiftAmt;
546}
547
548/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
549/// specifies a splat of a single element that is suitable for input to
550/// VSPLTB/VSPLTH/VSPLTW.
551bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
552  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
553         N->getNumOperands() == 16 &&
554         (EltSize == 1 || EltSize == 2 || EltSize == 4));
555
556  // This is a splat operation if each element of the permute is the same, and
557  // if the value doesn't reference the second vector.
558  unsigned ElementBase = 0;
559  SDValue Elt = N->getOperand(0);
560  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
561    ElementBase = EltV->getValue();
562  else
563    return false;   // FIXME: Handle UNDEF elements too!
564
565  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
566    return false;
567
568  // Check that they are consequtive.
569  for (unsigned i = 1; i != EltSize; ++i) {
570    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
571        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
572      return false;
573  }
574
575  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
576  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
577    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
578    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
579           "Invalid VECTOR_SHUFFLE mask!");
580    for (unsigned j = 0; j != EltSize; ++j)
581      if (N->getOperand(i+j) != N->getOperand(j))
582        return false;
583  }
584
585  return true;
586}
587
588/// isAllNegativeZeroVector - Returns true if all elements of build_vector
589/// are -0.0.
590bool PPC::isAllNegativeZeroVector(SDNode *N) {
591  assert(N->getOpcode() == ISD::BUILD_VECTOR);
592  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
593    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
594      return CFP->getValueAPF().isNegZero();
595  return false;
596}
597
598/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
599/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
600unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
601  assert(isSplatShuffleMask(N, EltSize));
602  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
603}
604
605/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
606/// by using a vspltis[bhw] instruction of the specified element size, return
607/// the constant being splatted.  The ByteSize field indicates the number of
608/// bytes of each element [124] -> [bhw].
609SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
610  SDValue OpVal(0, 0);
611
612  // If ByteSize of the splat is bigger than the element size of the
613  // build_vector, then we have a case where we are checking for a splat where
614  // multiple elements of the buildvector are folded together into a single
615  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
616  unsigned EltSize = 16/N->getNumOperands();
617  if (EltSize < ByteSize) {
618    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
619    SDValue UniquedVals[4];
620    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
621
622    // See if all of the elements in the buildvector agree across.
623    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
624      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
625      // If the element isn't a constant, bail fully out.
626      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
627
628
629      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
630        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
631      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
632        return SDValue();  // no match.
633    }
634
635    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
636    // either constant or undef values that are identical for each chunk.  See
637    // if these chunks can form into a larger vspltis*.
638
639    // Check to see if all of the leading entries are either 0 or -1.  If
640    // neither, then this won't fit into the immediate field.
641    bool LeadingZero = true;
642    bool LeadingOnes = true;
643    for (unsigned i = 0; i != Multiple-1; ++i) {
644      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
645
646      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
647      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
648    }
649    // Finally, check the least significant entry.
650    if (LeadingZero) {
651      if (UniquedVals[Multiple-1].getNode() == 0)
652        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
653      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
654      if (Val < 16)
655        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
656    }
657    if (LeadingOnes) {
658      if (UniquedVals[Multiple-1].getNode() == 0)
659        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
660      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
661      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
662        return DAG.getTargetConstant(Val, MVT::i32);
663    }
664
665    return SDValue();
666  }
667
668  // Check to see if this buildvec has a single non-undef value in its elements.
669  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
670    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
671    if (OpVal.getNode() == 0)
672      OpVal = N->getOperand(i);
673    else if (OpVal != N->getOperand(i))
674      return SDValue();
675  }
676
677  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
678
679  unsigned ValSizeInBytes = 0;
680  uint64_t Value = 0;
681  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
682    Value = CN->getValue();
683    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
684  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
685    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
686    Value = FloatToBits(CN->getValueAPF().convertToFloat());
687    ValSizeInBytes = 4;
688  }
689
690  // If the splat value is larger than the element value, then we can never do
691  // this splat.  The only case that we could fit the replicated bits into our
692  // immediate field for would be zero, and we prefer to use vxor for it.
693  if (ValSizeInBytes < ByteSize) return SDValue();
694
695  // If the element value is larger than the splat value, cut it in half and
696  // check to see if the two halves are equal.  Continue doing this until we
697  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
698  while (ValSizeInBytes > ByteSize) {
699    ValSizeInBytes >>= 1;
700
701    // If the top half equals the bottom half, we're still ok.
702    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
703         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
704      return SDValue();
705  }
706
707  // Properly sign extend the value.
708  int ShAmt = (4-ByteSize)*8;
709  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
710
711  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
712  if (MaskVal == 0) return SDValue();
713
714  // Finally, if this value fits in a 5 bit sext field, return it
715  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
716    return DAG.getTargetConstant(MaskVal, MVT::i32);
717  return SDValue();
718}
719
720//===----------------------------------------------------------------------===//
721//  Addressing Mode Selection
722//===----------------------------------------------------------------------===//
723
724/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
725/// or 64-bit immediate, and if the value can be accurately represented as a
726/// sign extension from a 16-bit value.  If so, this returns true and the
727/// immediate.
728static bool isIntS16Immediate(SDNode *N, short &Imm) {
729  if (N->getOpcode() != ISD::Constant)
730    return false;
731
732  Imm = (short)cast<ConstantSDNode>(N)->getValue();
733  if (N->getValueType(0) == MVT::i32)
734    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
735  else
736    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
737}
738static bool isIntS16Immediate(SDValue Op, short &Imm) {
739  return isIntS16Immediate(Op.getNode(), Imm);
740}
741
742
743/// SelectAddressRegReg - Given the specified addressed, check to see if it
744/// can be represented as an indexed [r+r] operation.  Returns false if it
745/// can be more efficiently represented with [r+imm].
746bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
747                                            SDValue &Index,
748                                            SelectionDAG &DAG) {
749  short imm = 0;
750  if (N.getOpcode() == ISD::ADD) {
751    if (isIntS16Immediate(N.getOperand(1), imm))
752      return false;    // r+i
753    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
754      return false;    // r+i
755
756    Base = N.getOperand(0);
757    Index = N.getOperand(1);
758    return true;
759  } else if (N.getOpcode() == ISD::OR) {
760    if (isIntS16Immediate(N.getOperand(1), imm))
761      return false;    // r+i can fold it if we can.
762
763    // If this is an or of disjoint bitfields, we can codegen this as an add
764    // (for better address arithmetic) if the LHS and RHS of the OR are provably
765    // disjoint.
766    APInt LHSKnownZero, LHSKnownOne;
767    APInt RHSKnownZero, RHSKnownOne;
768    DAG.ComputeMaskedBits(N.getOperand(0),
769                          APInt::getAllOnesValue(N.getOperand(0)
770                            .getValueSizeInBits()),
771                          LHSKnownZero, LHSKnownOne);
772
773    if (LHSKnownZero.getBoolValue()) {
774      DAG.ComputeMaskedBits(N.getOperand(1),
775                            APInt::getAllOnesValue(N.getOperand(1)
776                              .getValueSizeInBits()),
777                            RHSKnownZero, RHSKnownOne);
778      // If all of the bits are known zero on the LHS or RHS, the add won't
779      // carry.
780      if (~(LHSKnownZero | RHSKnownZero) == 0) {
781        Base = N.getOperand(0);
782        Index = N.getOperand(1);
783        return true;
784      }
785    }
786  }
787
788  return false;
789}
790
791/// Returns true if the address N can be represented by a base register plus
792/// a signed 16-bit displacement [r+imm], and if it is not better
793/// represented as reg+reg.
794bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
795                                            SDValue &Base, SelectionDAG &DAG){
796  // If this can be more profitably realized as r+r, fail.
797  if (SelectAddressRegReg(N, Disp, Base, DAG))
798    return false;
799
800  if (N.getOpcode() == ISD::ADD) {
801    short imm = 0;
802    if (isIntS16Immediate(N.getOperand(1), imm)) {
803      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
804      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
805        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
806      } else {
807        Base = N.getOperand(0);
808      }
809      return true; // [r+i]
810    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
811      // Match LOAD (ADD (X, Lo(G))).
812      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
813             && "Cannot handle constant offsets yet!");
814      Disp = N.getOperand(1).getOperand(0);  // The global address.
815      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
816             Disp.getOpcode() == ISD::TargetConstantPool ||
817             Disp.getOpcode() == ISD::TargetJumpTable);
818      Base = N.getOperand(0);
819      return true;  // [&g+r]
820    }
821  } else if (N.getOpcode() == ISD::OR) {
822    short imm = 0;
823    if (isIntS16Immediate(N.getOperand(1), imm)) {
824      // If this is an or of disjoint bitfields, we can codegen this as an add
825      // (for better address arithmetic) if the LHS and RHS of the OR are
826      // provably disjoint.
827      APInt LHSKnownZero, LHSKnownOne;
828      DAG.ComputeMaskedBits(N.getOperand(0),
829                            APInt::getAllOnesValue(N.getOperand(0)
830                                                   .getValueSizeInBits()),
831                            LHSKnownZero, LHSKnownOne);
832
833      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
834        // If all of the bits are known zero on the LHS or RHS, the add won't
835        // carry.
836        Base = N.getOperand(0);
837        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
838        return true;
839      }
840    }
841  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
842    // Loading from a constant address.
843
844    // If this address fits entirely in a 16-bit sext immediate field, codegen
845    // this as "d, 0"
846    short Imm;
847    if (isIntS16Immediate(CN, Imm)) {
848      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
849      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
850      return true;
851    }
852
853    // Handle 32-bit sext immediates with LIS + addr mode.
854    if (CN->getValueType(0) == MVT::i32 ||
855        (int64_t)CN->getValue() == (int)CN->getValue()) {
856      int Addr = (int)CN->getValue();
857
858      // Otherwise, break this down into an LIS + disp.
859      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
860
861      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
862      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
863      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
864      return true;
865    }
866  }
867
868  Disp = DAG.getTargetConstant(0, getPointerTy());
869  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
870    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
871  else
872    Base = N;
873  return true;      // [r+0]
874}
875
876/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
877/// represented as an indexed [r+r] operation.
878bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
879                                                SDValue &Index,
880                                                SelectionDAG &DAG) {
881  // Check to see if we can easily represent this as an [r+r] address.  This
882  // will fail if it thinks that the address is more profitably represented as
883  // reg+imm, e.g. where imm = 0.
884  if (SelectAddressRegReg(N, Base, Index, DAG))
885    return true;
886
887  // If the operand is an addition, always emit this as [r+r], since this is
888  // better (for code size, and execution, as the memop does the add for free)
889  // than emitting an explicit add.
890  if (N.getOpcode() == ISD::ADD) {
891    Base = N.getOperand(0);
892    Index = N.getOperand(1);
893    return true;
894  }
895
896  // Otherwise, do it the hard way, using R0 as the base register.
897  Base = DAG.getRegister(PPC::R0, N.getValueType());
898  Index = N;
899  return true;
900}
901
902/// SelectAddressRegImmShift - Returns true if the address N can be
903/// represented by a base register plus a signed 14-bit displacement
904/// [r+imm*4].  Suitable for use by STD and friends.
905bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
906                                                 SDValue &Base,
907                                                 SelectionDAG &DAG) {
908  // If this can be more profitably realized as r+r, fail.
909  if (SelectAddressRegReg(N, Disp, Base, DAG))
910    return false;
911
912  if (N.getOpcode() == ISD::ADD) {
913    short imm = 0;
914    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
915      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
916      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
917        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
918      } else {
919        Base = N.getOperand(0);
920      }
921      return true; // [r+i]
922    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
923      // Match LOAD (ADD (X, Lo(G))).
924      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
925             && "Cannot handle constant offsets yet!");
926      Disp = N.getOperand(1).getOperand(0);  // The global address.
927      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
928             Disp.getOpcode() == ISD::TargetConstantPool ||
929             Disp.getOpcode() == ISD::TargetJumpTable);
930      Base = N.getOperand(0);
931      return true;  // [&g+r]
932    }
933  } else if (N.getOpcode() == ISD::OR) {
934    short imm = 0;
935    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
936      // If this is an or of disjoint bitfields, we can codegen this as an add
937      // (for better address arithmetic) if the LHS and RHS of the OR are
938      // provably disjoint.
939      APInt LHSKnownZero, LHSKnownOne;
940      DAG.ComputeMaskedBits(N.getOperand(0),
941                            APInt::getAllOnesValue(N.getOperand(0)
942                                                   .getValueSizeInBits()),
943                            LHSKnownZero, LHSKnownOne);
944      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
945        // If all of the bits are known zero on the LHS or RHS, the add won't
946        // carry.
947        Base = N.getOperand(0);
948        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
949        return true;
950      }
951    }
952  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
953    // Loading from a constant address.  Verify low two bits are clear.
954    if ((CN->getValue() & 3) == 0) {
955      // If this address fits entirely in a 14-bit sext immediate field, codegen
956      // this as "d, 0"
957      short Imm;
958      if (isIntS16Immediate(CN, Imm)) {
959        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
960        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
961        return true;
962      }
963
964      // Fold the low-part of 32-bit absolute addresses into addr mode.
965      if (CN->getValueType(0) == MVT::i32 ||
966          (int64_t)CN->getValue() == (int)CN->getValue()) {
967        int Addr = (int)CN->getValue();
968
969        // Otherwise, break this down into an LIS + disp.
970        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
971
972        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
973        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
974        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
975        return true;
976      }
977    }
978  }
979
980  Disp = DAG.getTargetConstant(0, getPointerTy());
981  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
982    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
983  else
984    Base = N;
985  return true;      // [r+0]
986}
987
988
989/// getPreIndexedAddressParts - returns true by value, base pointer and
990/// offset pointer and addressing mode by reference if the node's address
991/// can be legally represented as pre-indexed load / store address.
992bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
993                                                  SDValue &Offset,
994                                                  ISD::MemIndexedMode &AM,
995                                                  SelectionDAG &DAG) {
996  // Disabled by default for now.
997  if (!EnablePPCPreinc) return false;
998
999  SDValue Ptr;
1000  MVT VT;
1001  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1002    Ptr = LD->getBasePtr();
1003    VT = LD->getMemoryVT();
1004
1005  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1006    ST = ST;
1007    Ptr = ST->getBasePtr();
1008    VT  = ST->getMemoryVT();
1009  } else
1010    return false;
1011
1012  // PowerPC doesn't have preinc load/store instructions for vectors.
1013  if (VT.isVector())
1014    return false;
1015
1016  // TODO: Check reg+reg first.
1017
1018  // LDU/STU use reg+imm*4, others use reg+imm.
1019  if (VT != MVT::i64) {
1020    // reg + imm
1021    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1022      return false;
1023  } else {
1024    // reg + imm * 4.
1025    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1026      return false;
1027  }
1028
1029  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1030    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1031    // sext i32 to i64 when addr mode is r+i.
1032    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1033        LD->getExtensionType() == ISD::SEXTLOAD &&
1034        isa<ConstantSDNode>(Offset))
1035      return false;
1036  }
1037
1038  AM = ISD::PRE_INC;
1039  return true;
1040}
1041
1042//===----------------------------------------------------------------------===//
1043//  LowerOperation implementation
1044//===----------------------------------------------------------------------===//
1045
1046SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1047                                             SelectionDAG &DAG) {
1048  MVT PtrVT = Op.getValueType();
1049  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1050  Constant *C = CP->getConstVal();
1051  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1052  SDValue Zero = DAG.getConstant(0, PtrVT);
1053
1054  const TargetMachine &TM = DAG.getTarget();
1055
1056  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1057  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1058
1059  // If this is a non-darwin platform, we don't support non-static relo models
1060  // yet.
1061  if (TM.getRelocationModel() == Reloc::Static ||
1062      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1063    // Generate non-pic code that has direct accesses to the constant pool.
1064    // The address of the global is just (hi(&g)+lo(&g)).
1065    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1066  }
1067
1068  if (TM.getRelocationModel() == Reloc::PIC_) {
1069    // With PIC, the first instruction is actually "GR+hi(&G)".
1070    Hi = DAG.getNode(ISD::ADD, PtrVT,
1071                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1072  }
1073
1074  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1075  return Lo;
1076}
1077
1078SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1079  MVT PtrVT = Op.getValueType();
1080  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1081  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1082  SDValue Zero = DAG.getConstant(0, PtrVT);
1083
1084  const TargetMachine &TM = DAG.getTarget();
1085
1086  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1087  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1088
1089  // If this is a non-darwin platform, we don't support non-static relo models
1090  // yet.
1091  if (TM.getRelocationModel() == Reloc::Static ||
1092      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1093    // Generate non-pic code that has direct accesses to the constant pool.
1094    // The address of the global is just (hi(&g)+lo(&g)).
1095    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1096  }
1097
1098  if (TM.getRelocationModel() == Reloc::PIC_) {
1099    // With PIC, the first instruction is actually "GR+hi(&G)".
1100    Hi = DAG.getNode(ISD::ADD, PtrVT,
1101                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1102  }
1103
1104  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1105  return Lo;
1106}
1107
1108SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1109                                                   SelectionDAG &DAG) {
1110  assert(0 && "TLS not implemented for PPC.");
1111  return SDValue(); // Not reached
1112}
1113
1114SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1115                                                SelectionDAG &DAG) {
1116  MVT PtrVT = Op.getValueType();
1117  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1118  GlobalValue *GV = GSDN->getGlobal();
1119  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1120  // If it's a debug information descriptor, don't mess with it.
1121  if (DAG.isVerifiedDebugInfoDesc(Op))
1122    return GA;
1123  SDValue Zero = DAG.getConstant(0, PtrVT);
1124
1125  const TargetMachine &TM = DAG.getTarget();
1126
1127  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1128  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1129
1130  // If this is a non-darwin platform, we don't support non-static relo models
1131  // yet.
1132  if (TM.getRelocationModel() == Reloc::Static ||
1133      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1134    // Generate non-pic code that has direct accesses to globals.
1135    // The address of the global is just (hi(&g)+lo(&g)).
1136    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1137  }
1138
1139  if (TM.getRelocationModel() == Reloc::PIC_) {
1140    // With PIC, the first instruction is actually "GR+hi(&G)".
1141    Hi = DAG.getNode(ISD::ADD, PtrVT,
1142                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1143  }
1144
1145  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1146
1147  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1148    return Lo;
1149
1150  // If the global is weak or external, we have to go through the lazy
1151  // resolution stub.
1152  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1153}
1154
1155SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1156  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1157
1158  // If we're comparing for equality to zero, expose the fact that this is
1159  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1160  // fold the new nodes.
1161  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1162    if (C->isNullValue() && CC == ISD::SETEQ) {
1163      MVT VT = Op.getOperand(0).getValueType();
1164      SDValue Zext = Op.getOperand(0);
1165      if (VT.bitsLT(MVT::i32)) {
1166        VT = MVT::i32;
1167        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1168      }
1169      unsigned Log2b = Log2_32(VT.getSizeInBits());
1170      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1171      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1172                                  DAG.getConstant(Log2b, MVT::i32));
1173      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1174    }
1175    // Leave comparisons against 0 and -1 alone for now, since they're usually
1176    // optimized.  FIXME: revisit this when we can custom lower all setcc
1177    // optimizations.
1178    if (C->isAllOnesValue() || C->isNullValue())
1179      return SDValue();
1180  }
1181
1182  // If we have an integer seteq/setne, turn it into a compare against zero
1183  // by xor'ing the rhs with the lhs, which is faster than setting a
1184  // condition register, reading it back out, and masking the correct bit.  The
1185  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1186  // the result to other bit-twiddling opportunities.
1187  MVT LHSVT = Op.getOperand(0).getValueType();
1188  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1189    MVT VT = Op.getValueType();
1190    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1191                                Op.getOperand(1));
1192    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1193  }
1194  return SDValue();
1195}
1196
1197SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1198                              int VarArgsFrameIndex,
1199                              int VarArgsStackOffset,
1200                              unsigned VarArgsNumGPR,
1201                              unsigned VarArgsNumFPR,
1202                              const PPCSubtarget &Subtarget) {
1203
1204  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1205  return SDValue(); // Not reached
1206}
1207
1208SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1209                              int VarArgsFrameIndex,
1210                              int VarArgsStackOffset,
1211                              unsigned VarArgsNumGPR,
1212                              unsigned VarArgsNumFPR,
1213                              const PPCSubtarget &Subtarget) {
1214
1215  if (Subtarget.isMachoABI()) {
1216    // vastart just stores the address of the VarArgsFrameIndex slot into the
1217    // memory location argument.
1218    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1219    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1220    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1221    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1222  }
1223
1224  // For ELF 32 ABI we follow the layout of the va_list struct.
1225  // We suppose the given va_list is already allocated.
1226  //
1227  // typedef struct {
1228  //  char gpr;     /* index into the array of 8 GPRs
1229  //                 * stored in the register save area
1230  //                 * gpr=0 corresponds to r3,
1231  //                 * gpr=1 to r4, etc.
1232  //                 */
1233  //  char fpr;     /* index into the array of 8 FPRs
1234  //                 * stored in the register save area
1235  //                 * fpr=0 corresponds to f1,
1236  //                 * fpr=1 to f2, etc.
1237  //                 */
1238  //  char *overflow_arg_area;
1239  //                /* location on stack that holds
1240  //                 * the next overflow argument
1241  //                 */
1242  //  char *reg_save_area;
1243  //               /* where r3:r10 and f1:f8 (if saved)
1244  //                * are stored
1245  //                */
1246  // } va_list[1];
1247
1248
1249  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1250  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1251
1252
1253  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1254
1255  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1256  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1257
1258  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1259  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1260
1261  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1262  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1263
1264  uint64_t FPROffset = 1;
1265  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1266
1267  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1268
1269  // Store first byte : number of int regs
1270  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1271                                      Op.getOperand(1), SV, 0);
1272  uint64_t nextOffset = FPROffset;
1273  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1274                                  ConstFPROffset);
1275
1276  // Store second byte : number of float regs
1277  SDValue secondStore =
1278    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1279  nextOffset += StackOffset;
1280  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1281
1282  // Store second word : arguments given on stack
1283  SDValue thirdStore =
1284    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1285  nextOffset += FrameOffset;
1286  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1287
1288  // Store third word : arguments given in registers
1289  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1290
1291}
1292
1293#include "PPCGenCallingConv.inc"
1294
1295/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1296/// depending on which subtarget is selected.
1297static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1298  if (Subtarget.isMachoABI()) {
1299    static const unsigned FPR[] = {
1300      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1301      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1302    };
1303    return FPR;
1304  }
1305
1306
1307  static const unsigned FPR[] = {
1308    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1309    PPC::F8
1310  };
1311  return FPR;
1312}
1313
1314/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1315/// the stack.
1316static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag,
1317                                       bool isVarArg, unsigned PtrByteSize) {
1318  MVT ArgVT = Arg.getValueType();
1319  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
1320  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1321  if (Flags.isByVal())
1322    ArgSize = Flags.getByValSize();
1323  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1324
1325  return ArgSize;
1326}
1327
1328SDValue
1329PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1330                                         SelectionDAG &DAG,
1331                                         int &VarArgsFrameIndex,
1332                                         int &VarArgsStackOffset,
1333                                         unsigned &VarArgsNumGPR,
1334                                         unsigned &VarArgsNumFPR,
1335                                         const PPCSubtarget &Subtarget) {
1336  // TODO: add description of PPC stack frame format, or at least some docs.
1337  //
1338  MachineFunction &MF = DAG.getMachineFunction();
1339  MachineFrameInfo *MFI = MF.getFrameInfo();
1340  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1341  SmallVector<SDValue, 8> ArgValues;
1342  SDValue Root = Op.getOperand(0);
1343  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1344
1345  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1346  bool isPPC64 = PtrVT == MVT::i64;
1347  bool isMachoABI = Subtarget.isMachoABI();
1348  bool isELF32_ABI = Subtarget.isELF32_ABI();
1349  // Potential tail calls could cause overwriting of argument stack slots.
1350  unsigned CC = MF.getFunction()->getCallingConv();
1351  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1352  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1353
1354  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1355  // Area that is at least reserved in caller of this function.
1356  unsigned MinReservedArea = ArgOffset;
1357
1358  static const unsigned GPR_32[] = {           // 32-bit registers.
1359    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1360    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1361  };
1362  static const unsigned GPR_64[] = {           // 64-bit registers.
1363    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1364    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1365  };
1366
1367  static const unsigned *FPR = GetFPR(Subtarget);
1368
1369  static const unsigned VR[] = {
1370    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1371    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1372  };
1373
1374  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1375  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1376  const unsigned Num_VR_Regs  = array_lengthof( VR);
1377
1378  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1379
1380  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1381
1382  // In 32-bit non-varargs functions, the stack space for vectors is after the
1383  // stack space for non-vectors.  We do not use this space unless we have
1384  // too many vectors to fit in registers, something that only occurs in
1385  // constructed examples:), but we have to walk the arglist to figure
1386  // that out...for the pathological case, compute VecArgOffset as the
1387  // start of the vector parameter area.  Computing VecArgOffset is the
1388  // entire point of the following loop.
1389  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1390  // to handle Elf here.
1391  unsigned VecArgOffset = ArgOffset;
1392  if (!isVarArg && !isPPC64) {
1393    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1394         ++ArgNo) {
1395      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1396      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1397      ISD::ArgFlagsTy Flags =
1398        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1399
1400      if (Flags.isByVal()) {
1401        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1402        ObjSize = Flags.getByValSize();
1403        unsigned ArgSize =
1404                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1405        VecArgOffset += ArgSize;
1406        continue;
1407      }
1408
1409      switch(ObjectVT.getSimpleVT()) {
1410      default: assert(0 && "Unhandled argument type!");
1411      case MVT::i32:
1412      case MVT::f32:
1413        VecArgOffset += isPPC64 ? 8 : 4;
1414        break;
1415      case MVT::i64:  // PPC64
1416      case MVT::f64:
1417        VecArgOffset += 8;
1418        break;
1419      case MVT::v4f32:
1420      case MVT::v4i32:
1421      case MVT::v8i16:
1422      case MVT::v16i8:
1423        // Nothing to do, we're only looking at Nonvector args here.
1424        break;
1425      }
1426    }
1427  }
1428  // We've found where the vector parameter area in memory is.  Skip the
1429  // first 12 parameters; these don't use that memory.
1430  VecArgOffset = ((VecArgOffset+15)/16)*16;
1431  VecArgOffset += 12*16;
1432
1433  // Add DAG nodes to load the arguments or copy them out of registers.  On
1434  // entry to a function on PPC, the arguments start after the linkage area,
1435  // although the first ones are often in registers.
1436  //
1437  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1438  // represented with two words (long long or double) must be copied to an
1439  // even GPR_idx value or to an even ArgOffset value.
1440
1441  SmallVector<SDValue, 8> MemOps;
1442  unsigned nAltivecParamsAtEnd = 0;
1443  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1444       ArgNo != e; ++ArgNo) {
1445    SDValue ArgVal;
1446    bool needsLoad = false;
1447    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1448    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1449    unsigned ArgSize = ObjSize;
1450    ISD::ArgFlagsTy Flags =
1451      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1452    // See if next argument requires stack alignment in ELF
1453    bool Align = Flags.isSplit();
1454
1455    unsigned CurArgOffset = ArgOffset;
1456
1457    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1458    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1459        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1460      if (isVarArg || isPPC64) {
1461        MinReservedArea = ((MinReservedArea+15)/16)*16;
1462        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1463                                                  Op.getOperand(ArgNo+3),
1464                                                  isVarArg,
1465                                                  PtrByteSize);
1466      } else  nAltivecParamsAtEnd++;
1467    } else
1468      // Calculate min reserved area.
1469      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1470                                                Op.getOperand(ArgNo+3),
1471                                                isVarArg,
1472                                                PtrByteSize);
1473
1474    // FIXME alignment for ELF may not be right
1475    // FIXME the codegen can be much improved in some cases.
1476    // We do not have to keep everything in memory.
1477    if (Flags.isByVal()) {
1478      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1479      ObjSize = Flags.getByValSize();
1480      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1481      // Double word align in ELF
1482      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1483      // Objects of size 1 and 2 are right justified, everything else is
1484      // left justified.  This means the memory address is adjusted forwards.
1485      if (ObjSize==1 || ObjSize==2) {
1486        CurArgOffset = CurArgOffset + (4 - ObjSize);
1487      }
1488      // The value of the object is its address.
1489      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1490      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1491      ArgValues.push_back(FIN);
1492      if (ObjSize==1 || ObjSize==2) {
1493        if (GPR_idx != Num_GPR_Regs) {
1494          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1495          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1496          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1497          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1498                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1499          MemOps.push_back(Store);
1500          ++GPR_idx;
1501          if (isMachoABI) ArgOffset += PtrByteSize;
1502        } else {
1503          ArgOffset += PtrByteSize;
1504        }
1505        continue;
1506      }
1507      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1508        // Store whatever pieces of the object are in registers
1509        // to memory.  ArgVal will be address of the beginning of
1510        // the object.
1511        if (GPR_idx != Num_GPR_Regs) {
1512          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1513          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1514          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1515          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1516          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1517          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1518          MemOps.push_back(Store);
1519          ++GPR_idx;
1520          if (isMachoABI) ArgOffset += PtrByteSize;
1521        } else {
1522          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1523          break;
1524        }
1525      }
1526      continue;
1527    }
1528
1529    switch (ObjectVT.getSimpleVT()) {
1530    default: assert(0 && "Unhandled argument type!");
1531    case MVT::i32:
1532      if (!isPPC64) {
1533        // Double word align in ELF
1534        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1535
1536        if (GPR_idx != Num_GPR_Regs) {
1537          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1538          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1539          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1540          ++GPR_idx;
1541        } else {
1542          needsLoad = true;
1543          ArgSize = PtrByteSize;
1544        }
1545        // Stack align in ELF
1546        if (needsLoad && Align && isELF32_ABI)
1547          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1548        // All int arguments reserve stack space in Macho ABI.
1549        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1550        break;
1551      }
1552      // FALLTHROUGH
1553    case MVT::i64:  // PPC64
1554      if (GPR_idx != Num_GPR_Regs) {
1555        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1556        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1557        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1558
1559        if (ObjectVT == MVT::i32) {
1560          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1561          // value to MVT::i64 and then truncate to the correct register size.
1562          if (Flags.isSExt())
1563            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1564                                 DAG.getValueType(ObjectVT));
1565          else if (Flags.isZExt())
1566            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1567                                 DAG.getValueType(ObjectVT));
1568
1569          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1570        }
1571
1572        ++GPR_idx;
1573      } else {
1574        needsLoad = true;
1575        ArgSize = PtrByteSize;
1576      }
1577      // All int arguments reserve stack space in Macho ABI.
1578      if (isMachoABI || needsLoad) ArgOffset += 8;
1579      break;
1580
1581    case MVT::f32:
1582    case MVT::f64:
1583      // Every 4 bytes of argument space consumes one of the GPRs available for
1584      // argument passing.
1585      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1586        ++GPR_idx;
1587        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1588          ++GPR_idx;
1589      }
1590      if (FPR_idx != Num_FPR_Regs) {
1591        unsigned VReg;
1592        if (ObjectVT == MVT::f32)
1593          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1594        else
1595          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1596        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1597        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1598        ++FPR_idx;
1599      } else {
1600        needsLoad = true;
1601      }
1602
1603      // Stack align in ELF
1604      if (needsLoad && Align && isELF32_ABI)
1605        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1606      // All FP arguments reserve stack space in Macho ABI.
1607      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1608      break;
1609    case MVT::v4f32:
1610    case MVT::v4i32:
1611    case MVT::v8i16:
1612    case MVT::v16i8:
1613      // Note that vector arguments in registers don't reserve stack space,
1614      // except in varargs functions.
1615      if (VR_idx != Num_VR_Regs) {
1616        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1617        RegInfo.addLiveIn(VR[VR_idx], VReg);
1618        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1619        if (isVarArg) {
1620          while ((ArgOffset % 16) != 0) {
1621            ArgOffset += PtrByteSize;
1622            if (GPR_idx != Num_GPR_Regs)
1623              GPR_idx++;
1624          }
1625          ArgOffset += 16;
1626          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1627        }
1628        ++VR_idx;
1629      } else {
1630        if (!isVarArg && !isPPC64) {
1631          // Vectors go after all the nonvectors.
1632          CurArgOffset = VecArgOffset;
1633          VecArgOffset += 16;
1634        } else {
1635          // Vectors are aligned.
1636          ArgOffset = ((ArgOffset+15)/16)*16;
1637          CurArgOffset = ArgOffset;
1638          ArgOffset += 16;
1639        }
1640        needsLoad = true;
1641      }
1642      break;
1643    }
1644
1645    // We need to load the argument to a virtual register if we determined above
1646    // that we ran out of physical registers of the appropriate type.
1647    if (needsLoad) {
1648      int FI = MFI->CreateFixedObject(ObjSize,
1649                                      CurArgOffset + (ArgSize - ObjSize),
1650                                      isImmutable);
1651      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1652      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1653    }
1654
1655    ArgValues.push_back(ArgVal);
1656  }
1657
1658  // Set the size that is at least reserved in caller of this function.  Tail
1659  // call optimized function's reserved stack space needs to be aligned so that
1660  // taking the difference between two stack areas will result in an aligned
1661  // stack.
1662  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1663  // Add the Altivec parameters at the end, if needed.
1664  if (nAltivecParamsAtEnd) {
1665    MinReservedArea = ((MinReservedArea+15)/16)*16;
1666    MinReservedArea += 16*nAltivecParamsAtEnd;
1667  }
1668  MinReservedArea =
1669    std::max(MinReservedArea,
1670             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1671  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1672    getStackAlignment();
1673  unsigned AlignMask = TargetAlign-1;
1674  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1675  FI->setMinReservedArea(MinReservedArea);
1676
1677  // If the function takes variable number of arguments, make a frame index for
1678  // the start of the first vararg value... for expansion of llvm.va_start.
1679  if (isVarArg) {
1680
1681    int depth;
1682    if (isELF32_ABI) {
1683      VarArgsNumGPR = GPR_idx;
1684      VarArgsNumFPR = FPR_idx;
1685
1686      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1687      // pointer.
1688      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1689                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1690                PtrVT.getSizeInBits()/8);
1691
1692      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1693                                                  ArgOffset);
1694
1695    }
1696    else
1697      depth = ArgOffset;
1698
1699    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1700                                               depth);
1701    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1702
1703    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1704    // stored to the VarArgsFrameIndex on the stack.
1705    if (isELF32_ABI) {
1706      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1707        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1708        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1709        MemOps.push_back(Store);
1710        // Increment the address by four for the next argument to store
1711        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1712        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1713      }
1714    }
1715
1716    // If this function is vararg, store any remaining integer argument regs
1717    // to their spots on the stack so that they may be loaded by deferencing the
1718    // result of va_next.
1719    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1720      unsigned VReg;
1721      if (isPPC64)
1722        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1723      else
1724        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1725
1726      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1727      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1728      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1729      MemOps.push_back(Store);
1730      // Increment the address by four for the next argument to store
1731      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1732      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1733    }
1734
1735    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1736    // on the stack.
1737    if (isELF32_ABI) {
1738      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1739        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1740        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1741        MemOps.push_back(Store);
1742        // Increment the address by eight for the next argument to store
1743        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1744                                           PtrVT);
1745        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1746      }
1747
1748      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1749        unsigned VReg;
1750        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1751
1752        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1753        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1754        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1755        MemOps.push_back(Store);
1756        // Increment the address by eight for the next argument to store
1757        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1758                                           PtrVT);
1759        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1760      }
1761    }
1762  }
1763
1764  if (!MemOps.empty())
1765    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1766
1767  ArgValues.push_back(Root);
1768
1769  // Return the new list of results.
1770  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1771                            ArgValues.size());
1772}
1773
1774/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1775/// linkage area.
1776static unsigned
1777CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1778                                     bool isPPC64,
1779                                     bool isMachoABI,
1780                                     bool isVarArg,
1781                                     unsigned CC,
1782                                     SDValue Call,
1783                                     unsigned &nAltivecParamsAtEnd) {
1784  // Count how many bytes are to be pushed on the stack, including the linkage
1785  // area, and parameter passing area.  We start with 24/48 bytes, which is
1786  // prereserved space for [SP][CR][LR][3 x unused].
1787  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1788  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
1789  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1790
1791  // Add up all the space actually used.
1792  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1793  // they all go in registers, but we must reserve stack space for them for
1794  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1795  // assigned stack space in order, with padding so Altivec parameters are
1796  // 16-byte aligned.
1797  nAltivecParamsAtEnd = 0;
1798  for (unsigned i = 0; i != NumOps; ++i) {
1799    SDValue Arg = Call.getOperand(5+2*i);
1800    SDValue Flag = Call.getOperand(5+2*i+1);
1801    MVT ArgVT = Arg.getValueType();
1802    // Varargs Altivec parameters are padded to a 16 byte boundary.
1803    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1804        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1805      if (!isVarArg && !isPPC64) {
1806        // Non-varargs Altivec parameters go after all the non-Altivec
1807        // parameters; handle those later so we know how much padding we need.
1808        nAltivecParamsAtEnd++;
1809        continue;
1810      }
1811      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1812      NumBytes = ((NumBytes+15)/16)*16;
1813    }
1814    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
1815  }
1816
1817   // Allow for Altivec parameters at the end, if needed.
1818  if (nAltivecParamsAtEnd) {
1819    NumBytes = ((NumBytes+15)/16)*16;
1820    NumBytes += 16*nAltivecParamsAtEnd;
1821  }
1822
1823  // The prolog code of the callee may store up to 8 GPR argument registers to
1824  // the stack, allowing va_start to index over them in memory if its varargs.
1825  // Because we cannot tell if this is needed on the caller side, we have to
1826  // conservatively assume that it is needed.  As such, make sure we have at
1827  // least enough stack space for the caller to store the 8 GPRs.
1828  NumBytes = std::max(NumBytes,
1829                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1830
1831  // Tail call needs the stack to be aligned.
1832  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1833    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1834      getStackAlignment();
1835    unsigned AlignMask = TargetAlign-1;
1836    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1837  }
1838
1839  return NumBytes;
1840}
1841
1842/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1843/// adjusted to accomodate the arguments for the tailcall.
1844static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1845                                   unsigned ParamSize) {
1846
1847  if (!IsTailCall) return 0;
1848
1849  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1850  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1851  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1852  // Remember only if the new adjustement is bigger.
1853  if (SPDiff < FI->getTailCallSPDelta())
1854    FI->setTailCallSPDelta(SPDiff);
1855
1856  return SPDiff;
1857}
1858
1859/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1860/// following the call is a return. A function is eligible if caller/callee
1861/// calling conventions match, currently only fastcc supports tail calls, and
1862/// the function CALL is immediatly followed by a RET.
1863bool
1864PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1865                                                     SDValue Ret,
1866                                                     SelectionDAG& DAG) const {
1867  // Variable argument functions are not supported.
1868  if (!PerformTailCallOpt ||
1869      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
1870
1871  if (CheckTailCallReturnConstraints(Call, Ret)) {
1872    MachineFunction &MF = DAG.getMachineFunction();
1873    unsigned CallerCC = MF.getFunction()->getCallingConv();
1874    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1875    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1876      // Functions containing by val parameters are not supported.
1877      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
1878         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
1879           ->getArgFlags();
1880         if (Flags.isByVal()) return false;
1881      }
1882
1883      SDValue Callee = Call.getOperand(4);
1884      // Non PIC/GOT  tail calls are supported.
1885      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1886        return true;
1887
1888      // At the moment we can only do local tail calls (in same module, hidden
1889      // or protected) if we are generating PIC.
1890      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1891        return G->getGlobal()->hasHiddenVisibility()
1892            || G->getGlobal()->hasProtectedVisibility();
1893    }
1894  }
1895
1896  return false;
1897}
1898
1899/// isCallCompatibleAddress - Return the immediate to use if the specified
1900/// 32-bit value is representable in the immediate field of a BxA instruction.
1901static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1902  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1903  if (!C) return 0;
1904
1905  int Addr = C->getValue();
1906  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1907      (Addr << 6 >> 6) != Addr)
1908    return 0;  // Top 6 bits have to be sext of immediate.
1909
1910  return DAG.getConstant((int)C->getValue() >> 2,
1911                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1912}
1913
1914namespace {
1915
1916struct TailCallArgumentInfo {
1917  SDValue Arg;
1918  SDValue FrameIdxOp;
1919  int       FrameIdx;
1920
1921  TailCallArgumentInfo() : FrameIdx(0) {}
1922};
1923
1924}
1925
1926/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1927static void
1928StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1929                                           SDValue Chain,
1930                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1931                   SmallVector<SDValue, 8> &MemOpChains) {
1932  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1933    SDValue Arg = TailCallArgs[i].Arg;
1934    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1935    int FI = TailCallArgs[i].FrameIdx;
1936    // Store relative to framepointer.
1937    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1938                                       PseudoSourceValue::getFixedStack(FI),
1939                                       0));
1940  }
1941}
1942
1943/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1944/// the appropriate stack slot for the tail call optimized function call.
1945static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1946                                               MachineFunction &MF,
1947                                               SDValue Chain,
1948                                               SDValue OldRetAddr,
1949                                               SDValue OldFP,
1950                                               int SPDiff,
1951                                               bool isPPC64,
1952                                               bool isMachoABI) {
1953  if (SPDiff) {
1954    // Calculate the new stack slot for the return address.
1955    int SlotSize = isPPC64 ? 8 : 4;
1956    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1957                                                                   isMachoABI);
1958    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1959                                                          NewRetAddrLoc);
1960    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1961                                                                    isMachoABI);
1962    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1963
1964    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1965    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1966    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1967                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
1968    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1969    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1970                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
1971  }
1972  return Chain;
1973}
1974
1975/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1976/// the position of the argument.
1977static void
1978CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1979                         SDValue Arg, int SPDiff, unsigned ArgOffset,
1980                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1981  int Offset = ArgOffset + SPDiff;
1982  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1983  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1984  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1985  SDValue FIN = DAG.getFrameIndex(FI, VT);
1986  TailCallArgumentInfo Info;
1987  Info.Arg = Arg;
1988  Info.FrameIdxOp = FIN;
1989  Info.FrameIdx = FI;
1990  TailCallArguments.push_back(Info);
1991}
1992
1993/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
1994/// stack slot. Returns the chain as result and the loaded frame pointers in
1995/// LROpOut/FPOpout. Used when tail calling.
1996SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
1997                                                          int SPDiff,
1998                                                          SDValue Chain,
1999                                                          SDValue &LROpOut,
2000                                                          SDValue &FPOpOut) {
2001  if (SPDiff) {
2002    // Load the LR and FP stack slot for later adjusting.
2003    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2004    LROpOut = getReturnAddrFrameIndex(DAG);
2005    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2006    Chain = SDValue(LROpOut.getNode(), 1);
2007    FPOpOut = getFramePointerFrameIndex(DAG);
2008    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2009    Chain = SDValue(FPOpOut.getNode(), 1);
2010  }
2011  return Chain;
2012}
2013
2014/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2015/// by "Src" to address "Dst" of size "Size".  Alignment information is
2016/// specified by the specific parameter attribute. The copy will be passed as
2017/// a byval function parameter.
2018/// Sometimes what we are copying is the end of a larger object, the part that
2019/// does not fit in registers.
2020static SDValue
2021CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2022                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2023                          unsigned Size) {
2024  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2025  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2026                       NULL, 0, NULL, 0);
2027}
2028
2029/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2030/// tail calls.
2031static void
2032LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2033                 SDValue Arg, SDValue PtrOff, int SPDiff,
2034                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2035                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2036                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2037  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2038  if (!isTailCall) {
2039    if (isVector) {
2040      SDValue StackPtr;
2041      if (isPPC64)
2042        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2043      else
2044        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2045      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2046                           DAG.getConstant(ArgOffset, PtrVT));
2047    }
2048    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2049  // Calculate and remember argument location.
2050  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2051                                  TailCallArguments);
2052}
2053
2054SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2055                                       const PPCSubtarget &Subtarget,
2056                                       TargetMachine &TM) {
2057  SDValue Chain  = Op.getOperand(0);
2058  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
2059  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2060  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
2061                     CC == CallingConv::Fast && PerformTailCallOpt;
2062  SDValue Callee = Op.getOperand(4);
2063  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
2064
2065  bool isMachoABI = Subtarget.isMachoABI();
2066  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2067
2068  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2069  bool isPPC64 = PtrVT == MVT::i64;
2070  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2071
2072  MachineFunction &MF = DAG.getMachineFunction();
2073
2074  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2075  // SelectExpr to use to put the arguments in the appropriate registers.
2076  std::vector<SDValue> args_to_use;
2077
2078  // Mark this function as potentially containing a function that contains a
2079  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2080  // and restoring the callers stack pointer in this functions epilog. This is
2081  // done because by tail calling the called function might overwrite the value
2082  // in this function's (MF) stack pointer stack slot 0(SP).
2083  if (PerformTailCallOpt && CC==CallingConv::Fast)
2084    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2085
2086  unsigned nAltivecParamsAtEnd = 0;
2087
2088  // Count how many bytes are to be pushed on the stack, including the linkage
2089  // area, and parameter passing area.  We start with 24/48 bytes, which is
2090  // prereserved space for [SP][CR][LR][3 x unused].
2091  unsigned NumBytes =
2092    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2093                                         Op, nAltivecParamsAtEnd);
2094
2095  // Calculate by how many bytes the stack has to be adjusted in case of tail
2096  // call optimization.
2097  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2098
2099  // Adjust the stack pointer for the new arguments...
2100  // These operations are automatically eliminated by the prolog/epilog pass
2101  Chain = DAG.getCALLSEQ_START(Chain,
2102                               DAG.getConstant(NumBytes, PtrVT));
2103  SDValue CallSeqStart = Chain;
2104
2105  // Load the return address and frame pointer so it can be move somewhere else
2106  // later.
2107  SDValue LROp, FPOp;
2108  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2109
2110  // Set up a copy of the stack pointer for use loading and storing any
2111  // arguments that may not fit in the registers available for argument
2112  // passing.
2113  SDValue StackPtr;
2114  if (isPPC64)
2115    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2116  else
2117    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2118
2119  // Figure out which arguments are going to go in registers, and which in
2120  // memory.  Also, if this is a vararg function, floating point operations
2121  // must be stored to our stack, and loaded into integer regs as well, if
2122  // any integer regs are available for argument passing.
2123  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2124  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2125
2126  static const unsigned GPR_32[] = {           // 32-bit registers.
2127    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2128    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2129  };
2130  static const unsigned GPR_64[] = {           // 64-bit registers.
2131    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2132    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2133  };
2134  static const unsigned *FPR = GetFPR(Subtarget);
2135
2136  static const unsigned VR[] = {
2137    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2138    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2139  };
2140  const unsigned NumGPRs = array_lengthof(GPR_32);
2141  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2142  const unsigned NumVRs  = array_lengthof( VR);
2143
2144  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2145
2146  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2147  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2148
2149  SmallVector<SDValue, 8> MemOpChains;
2150  for (unsigned i = 0; i != NumOps; ++i) {
2151    bool inMem = false;
2152    SDValue Arg = Op.getOperand(5+2*i);
2153    ISD::ArgFlagsTy Flags =
2154      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
2155    // See if next argument requires stack alignment in ELF
2156    bool Align = Flags.isSplit();
2157
2158    // PtrOff will be used to store the current argument to the stack if a
2159    // register cannot be found for it.
2160    SDValue PtrOff;
2161
2162    // Stack align in ELF 32
2163    if (isELF32_ABI && Align)
2164      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2165                               StackPtr.getValueType());
2166    else
2167      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2168
2169    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2170
2171    // On PPC64, promote integers to 64-bit values.
2172    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2173      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2174      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2175      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2176    }
2177
2178    // FIXME Elf untested, what are alignment rules?
2179    // FIXME memcpy is used way more than necessary.  Correctness first.
2180    if (Flags.isByVal()) {
2181      unsigned Size = Flags.getByValSize();
2182      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2183      if (Size==1 || Size==2) {
2184        // Very small objects are passed right-justified.
2185        // Everything else is passed left-justified.
2186        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2187        if (GPR_idx != NumGPRs) {
2188          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2189                                          NULL, 0, VT);
2190          MemOpChains.push_back(Load.getValue(1));
2191          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2192          if (isMachoABI)
2193            ArgOffset += PtrByteSize;
2194        } else {
2195          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2196          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2197          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2198                                CallSeqStart.getNode()->getOperand(0),
2199                                Flags, DAG, Size);
2200          // This must go outside the CALLSEQ_START..END.
2201          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2202                               CallSeqStart.getNode()->getOperand(1));
2203          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2204                                 NewCallSeqStart.getNode());
2205          Chain = CallSeqStart = NewCallSeqStart;
2206          ArgOffset += PtrByteSize;
2207        }
2208        continue;
2209      }
2210      // Copy entire object into memory.  There are cases where gcc-generated
2211      // code assumes it is there, even if it could be put entirely into
2212      // registers.  (This is not what the doc says.)
2213      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2214                            CallSeqStart.getNode()->getOperand(0),
2215                            Flags, DAG, Size);
2216      // This must go outside the CALLSEQ_START..END.
2217      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2218                           CallSeqStart.getNode()->getOperand(1));
2219      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2220      Chain = CallSeqStart = NewCallSeqStart;
2221      // And copy the pieces of it that fit into registers.
2222      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2223        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2224        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2225        if (GPR_idx != NumGPRs) {
2226          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2227          MemOpChains.push_back(Load.getValue(1));
2228          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2229          if (isMachoABI)
2230            ArgOffset += PtrByteSize;
2231        } else {
2232          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2233          break;
2234        }
2235      }
2236      continue;
2237    }
2238
2239    switch (Arg.getValueType().getSimpleVT()) {
2240    default: assert(0 && "Unexpected ValueType for argument!");
2241    case MVT::i32:
2242    case MVT::i64:
2243      // Double word align in ELF
2244      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2245      if (GPR_idx != NumGPRs) {
2246        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2247      } else {
2248        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2249                         isPPC64, isTailCall, false, MemOpChains,
2250                         TailCallArguments);
2251        inMem = true;
2252      }
2253      if (inMem || isMachoABI) {
2254        // Stack align in ELF
2255        if (isELF32_ABI && Align)
2256          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2257
2258        ArgOffset += PtrByteSize;
2259      }
2260      break;
2261    case MVT::f32:
2262    case MVT::f64:
2263      if (FPR_idx != NumFPRs) {
2264        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2265
2266        if (isVarArg) {
2267          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2268          MemOpChains.push_back(Store);
2269
2270          // Float varargs are always shadowed in available integer registers
2271          if (GPR_idx != NumGPRs) {
2272            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2273            MemOpChains.push_back(Load.getValue(1));
2274            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2275                                                                Load));
2276          }
2277          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2278            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2279            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2280            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2281            MemOpChains.push_back(Load.getValue(1));
2282            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2283                                                                Load));
2284          }
2285        } else {
2286          // If we have any FPRs remaining, we may also have GPRs remaining.
2287          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2288          // GPRs.
2289          if (isMachoABI) {
2290            if (GPR_idx != NumGPRs)
2291              ++GPR_idx;
2292            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2293                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2294              ++GPR_idx;
2295          }
2296        }
2297      } else {
2298        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2299                         isPPC64, isTailCall, false, MemOpChains,
2300                         TailCallArguments);
2301        inMem = true;
2302      }
2303      if (inMem || isMachoABI) {
2304        // Stack align in ELF
2305        if (isELF32_ABI && Align)
2306          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2307        if (isPPC64)
2308          ArgOffset += 8;
2309        else
2310          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2311      }
2312      break;
2313    case MVT::v4f32:
2314    case MVT::v4i32:
2315    case MVT::v8i16:
2316    case MVT::v16i8:
2317      if (isVarArg) {
2318        // These go aligned on the stack, or in the corresponding R registers
2319        // when within range.  The Darwin PPC ABI doc claims they also go in
2320        // V registers; in fact gcc does this only for arguments that are
2321        // prototyped, not for those that match the ...  We do it for all
2322        // arguments, seems to work.
2323        while (ArgOffset % 16 !=0) {
2324          ArgOffset += PtrByteSize;
2325          if (GPR_idx != NumGPRs)
2326            GPR_idx++;
2327        }
2328        // We could elide this store in the case where the object fits
2329        // entirely in R registers.  Maybe later.
2330        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2331                            DAG.getConstant(ArgOffset, PtrVT));
2332        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2333        MemOpChains.push_back(Store);
2334        if (VR_idx != NumVRs) {
2335          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2336          MemOpChains.push_back(Load.getValue(1));
2337          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2338        }
2339        ArgOffset += 16;
2340        for (unsigned i=0; i<16; i+=PtrByteSize) {
2341          if (GPR_idx == NumGPRs)
2342            break;
2343          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2344                                  DAG.getConstant(i, PtrVT));
2345          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2346          MemOpChains.push_back(Load.getValue(1));
2347          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2348        }
2349        break;
2350      }
2351
2352      // Non-varargs Altivec params generally go in registers, but have
2353      // stack space allocated at the end.
2354      if (VR_idx != NumVRs) {
2355        // Doesn't have GPR space allocated.
2356        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2357      } else if (nAltivecParamsAtEnd==0) {
2358        // We are emitting Altivec params in order.
2359        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2360                         isPPC64, isTailCall, true, MemOpChains,
2361                         TailCallArguments);
2362        ArgOffset += 16;
2363      }
2364      break;
2365    }
2366  }
2367  // If all Altivec parameters fit in registers, as they usually do,
2368  // they get stack space following the non-Altivec parameters.  We
2369  // don't track this here because nobody below needs it.
2370  // If there are more Altivec parameters than fit in registers emit
2371  // the stores here.
2372  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2373    unsigned j = 0;
2374    // Offset is aligned; skip 1st 12 params which go in V registers.
2375    ArgOffset = ((ArgOffset+15)/16)*16;
2376    ArgOffset += 12*16;
2377    for (unsigned i = 0; i != NumOps; ++i) {
2378      SDValue Arg = Op.getOperand(5+2*i);
2379      MVT ArgType = Arg.getValueType();
2380      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2381          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2382        if (++j > NumVRs) {
2383          SDValue PtrOff;
2384          // We are emitting Altivec params in order.
2385          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2386                           isPPC64, isTailCall, true, MemOpChains,
2387                           TailCallArguments);
2388          ArgOffset += 16;
2389        }
2390      }
2391    }
2392  }
2393
2394  if (!MemOpChains.empty())
2395    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2396                        &MemOpChains[0], MemOpChains.size());
2397
2398  // Build a sequence of copy-to-reg nodes chained together with token chain
2399  // and flag operands which copy the outgoing args into the appropriate regs.
2400  SDValue InFlag;
2401  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2402    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2403                             InFlag);
2404    InFlag = Chain.getValue(1);
2405  }
2406
2407  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2408  if (isVarArg && isELF32_ABI) {
2409    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2410    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2411    InFlag = Chain.getValue(1);
2412  }
2413
2414  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2415  // might overwrite each other in case of tail call optimization.
2416  if (isTailCall) {
2417    SmallVector<SDValue, 8> MemOpChains2;
2418    // Do not flag preceeding copytoreg stuff together with the following stuff.
2419    InFlag = SDValue();
2420    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2421                                      MemOpChains2);
2422    if (!MemOpChains2.empty())
2423      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2424                          &MemOpChains2[0], MemOpChains2.size());
2425
2426    // Store the return address to the appropriate stack slot.
2427    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2428                                          isPPC64, isMachoABI);
2429  }
2430
2431  // Emit callseq_end just before tailcall node.
2432  if (isTailCall) {
2433    SmallVector<SDValue, 8> CallSeqOps;
2434    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2435    CallSeqOps.push_back(Chain);
2436    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2437    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2438    if (InFlag.getNode())
2439      CallSeqOps.push_back(InFlag);
2440    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2441                        CallSeqOps.size());
2442    InFlag = Chain.getValue(1);
2443  }
2444
2445  std::vector<MVT> NodeTys;
2446  NodeTys.push_back(MVT::Other);   // Returns a chain
2447  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2448
2449  SmallVector<SDValue, 8> Ops;
2450  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2451
2452  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2453  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2454  // node so that legalize doesn't hack it.
2455  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2456    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2457  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2458    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2459  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2460    // If this is an absolute destination address, use the munged value.
2461    Callee = SDValue(Dest, 0);
2462  else {
2463    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2464    // to do the call, we can't use PPCISD::CALL.
2465    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2466    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps,
2467                        2 + (InFlag.getNode() != 0));
2468    InFlag = Chain.getValue(1);
2469
2470    // Copy the callee address into R12/X12 on darwin.
2471    if (isMachoABI) {
2472      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2473      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2474      InFlag = Chain.getValue(1);
2475    }
2476
2477    NodeTys.clear();
2478    NodeTys.push_back(MVT::Other);
2479    NodeTys.push_back(MVT::Flag);
2480    Ops.push_back(Chain);
2481    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2482    Callee.setNode(0);
2483    // Add CTR register as callee so a bctr can be emitted later.
2484    if (isTailCall)
2485      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2486  }
2487
2488  // If this is a direct call, pass the chain and the callee.
2489  if (Callee.getNode()) {
2490    Ops.push_back(Chain);
2491    Ops.push_back(Callee);
2492  }
2493  // If this is a tail call add stack pointer delta.
2494  if (isTailCall)
2495    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2496
2497  // Add argument registers to the end of the list so that they are known live
2498  // into the call.
2499  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2500    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2501                                  RegsToPass[i].second.getValueType()));
2502
2503  // When performing tail call optimization the callee pops its arguments off
2504  // the stack. Account for this here so these bytes can be pushed back on in
2505  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2506  int BytesCalleePops =
2507    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2508
2509  if (InFlag.getNode())
2510    Ops.push_back(InFlag);
2511
2512  // Emit tail call.
2513  if (isTailCall) {
2514    assert(InFlag.getNode() &&
2515           "Flag must be set. Depend on flag being set in LowerRET");
2516    Chain = DAG.getNode(PPCISD::TAILCALL,
2517                        Op.getNode()->getVTList(), &Ops[0], Ops.size());
2518    return SDValue(Chain.getNode(), Op.getResNo());
2519  }
2520
2521  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2522  InFlag = Chain.getValue(1);
2523
2524  Chain = DAG.getCALLSEQ_END(Chain,
2525                             DAG.getConstant(NumBytes, PtrVT),
2526                             DAG.getConstant(BytesCalleePops, PtrVT),
2527                             InFlag);
2528  if (Op.getNode()->getValueType(0) != MVT::Other)
2529    InFlag = Chain.getValue(1);
2530
2531  SmallVector<SDValue, 16> ResultVals;
2532  SmallVector<CCValAssign, 16> RVLocs;
2533  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2534  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2535  CCInfo.AnalyzeCallResult(Op.getNode(), RetCC_PPC);
2536
2537  // Copy all of the result registers out of their specified physreg.
2538  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2539    CCValAssign &VA = RVLocs[i];
2540    MVT VT = VA.getValVT();
2541    assert(VA.isRegLoc() && "Can only return in registers!");
2542    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2543    ResultVals.push_back(Chain.getValue(0));
2544    InFlag = Chain.getValue(2);
2545  }
2546
2547  // If the function returns void, just return the chain.
2548  if (RVLocs.empty())
2549    return Chain;
2550
2551  // Otherwise, merge everything together with a MERGE_VALUES node.
2552  ResultVals.push_back(Chain);
2553  SDValue Res = DAG.getMergeValues(Op.getNode()->getVTList(), &ResultVals[0],
2554                                     ResultVals.size());
2555  return Res.getValue(Op.getResNo());
2556}
2557
2558SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2559                                      TargetMachine &TM) {
2560  SmallVector<CCValAssign, 16> RVLocs;
2561  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2562  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2563  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2564  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2565
2566  // If this is the first return lowered for this function, add the regs to the
2567  // liveout set for the function.
2568  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2569    for (unsigned i = 0; i != RVLocs.size(); ++i)
2570      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2571  }
2572
2573  SDValue Chain = Op.getOperand(0);
2574
2575  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2576  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2577    SDValue TailCall = Chain;
2578    SDValue TargetAddress = TailCall.getOperand(1);
2579    SDValue StackAdjustment = TailCall.getOperand(2);
2580
2581    assert(((TargetAddress.getOpcode() == ISD::Register &&
2582             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2583            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2584            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2585            isa<ConstantSDNode>(TargetAddress)) &&
2586    "Expecting an global address, external symbol, absolute value or register");
2587
2588    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2589           "Expecting a const value");
2590
2591    SmallVector<SDValue,8> Operands;
2592    Operands.push_back(Chain.getOperand(0));
2593    Operands.push_back(TargetAddress);
2594    Operands.push_back(StackAdjustment);
2595    // Copy registers used by the call. Last operand is a flag so it is not
2596    // copied.
2597    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2598      Operands.push_back(Chain.getOperand(i));
2599    }
2600    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2601                       Operands.size());
2602  }
2603
2604  SDValue Flag;
2605
2606  // Copy the result values into the output registers.
2607  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2608    CCValAssign &VA = RVLocs[i];
2609    assert(VA.isRegLoc() && "Can only return in registers!");
2610    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2611    Flag = Chain.getValue(1);
2612  }
2613
2614  if (Flag.getNode())
2615    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2616  else
2617    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2618}
2619
2620SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2621                                   const PPCSubtarget &Subtarget) {
2622  // When we pop the dynamic allocation we need to restore the SP link.
2623
2624  // Get the corect type for pointers.
2625  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2626
2627  // Construct the stack pointer operand.
2628  bool IsPPC64 = Subtarget.isPPC64();
2629  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2630  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2631
2632  // Get the operands for the STACKRESTORE.
2633  SDValue Chain = Op.getOperand(0);
2634  SDValue SaveSP = Op.getOperand(1);
2635
2636  // Load the old link SP.
2637  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2638
2639  // Restore the stack pointer.
2640  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2641
2642  // Store the old link SP.
2643  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2644}
2645
2646
2647
2648SDValue
2649PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2650  MachineFunction &MF = DAG.getMachineFunction();
2651  bool IsPPC64 = PPCSubTarget.isPPC64();
2652  bool isMachoABI = PPCSubTarget.isMachoABI();
2653  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2654
2655  // Get current frame pointer save index.  The users of this index will be
2656  // primarily DYNALLOC instructions.
2657  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2658  int RASI = FI->getReturnAddrSaveIndex();
2659
2660  // If the frame pointer save index hasn't been defined yet.
2661  if (!RASI) {
2662    // Find out what the fix offset of the frame pointer save area.
2663    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2664    // Allocate the frame index for frame pointer save area.
2665    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2666    // Save the result.
2667    FI->setReturnAddrSaveIndex(RASI);
2668  }
2669  return DAG.getFrameIndex(RASI, PtrVT);
2670}
2671
2672SDValue
2673PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2674  MachineFunction &MF = DAG.getMachineFunction();
2675  bool IsPPC64 = PPCSubTarget.isPPC64();
2676  bool isMachoABI = PPCSubTarget.isMachoABI();
2677  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2678
2679  // Get current frame pointer save index.  The users of this index will be
2680  // primarily DYNALLOC instructions.
2681  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2682  int FPSI = FI->getFramePointerSaveIndex();
2683
2684  // If the frame pointer save index hasn't been defined yet.
2685  if (!FPSI) {
2686    // Find out what the fix offset of the frame pointer save area.
2687    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2688
2689    // Allocate the frame index for frame pointer save area.
2690    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2691    // Save the result.
2692    FI->setFramePointerSaveIndex(FPSI);
2693  }
2694  return DAG.getFrameIndex(FPSI, PtrVT);
2695}
2696
2697SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2698                                         SelectionDAG &DAG,
2699                                         const PPCSubtarget &Subtarget) {
2700  // Get the inputs.
2701  SDValue Chain = Op.getOperand(0);
2702  SDValue Size  = Op.getOperand(1);
2703
2704  // Get the corect type for pointers.
2705  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2706  // Negate the size.
2707  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2708                                  DAG.getConstant(0, PtrVT), Size);
2709  // Construct a node for the frame pointer save index.
2710  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2711  // Build a DYNALLOC node.
2712  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2713  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2714  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2715}
2716
2717/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2718/// possible.
2719SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2720  // Not FP? Not a fsel.
2721  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2722      !Op.getOperand(2).getValueType().isFloatingPoint())
2723    return SDValue();
2724
2725  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2726
2727  // Cannot handle SETEQ/SETNE.
2728  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2729
2730  MVT ResVT = Op.getValueType();
2731  MVT CmpVT = Op.getOperand(0).getValueType();
2732  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2733  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2734
2735  // If the RHS of the comparison is a 0.0, we don't need to do the
2736  // subtraction at all.
2737  if (isFloatingPointZero(RHS))
2738    switch (CC) {
2739    default: break;       // SETUO etc aren't handled by fsel.
2740    case ISD::SETULT:
2741    case ISD::SETLT:
2742      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2743    case ISD::SETOGE:
2744    case ISD::SETGE:
2745      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2746        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2747      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2748    case ISD::SETUGT:
2749    case ISD::SETGT:
2750      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2751    case ISD::SETOLE:
2752    case ISD::SETLE:
2753      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2754        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2755      return DAG.getNode(PPCISD::FSEL, ResVT,
2756                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2757    }
2758
2759  SDValue Cmp;
2760  switch (CC) {
2761  default: break;       // SETUO etc aren't handled by fsel.
2762  case ISD::SETULT:
2763  case ISD::SETLT:
2764    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2765    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2766      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2767      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2768  case ISD::SETOGE:
2769  case ISD::SETGE:
2770    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2771    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2772      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2773      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2774  case ISD::SETUGT:
2775  case ISD::SETGT:
2776    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2777    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2778      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2779      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2780  case ISD::SETOLE:
2781  case ISD::SETLE:
2782    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2783    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2784      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2785      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2786  }
2787  return SDValue();
2788}
2789
2790// FIXME: Split this code up when LegalizeDAGTypes lands.
2791SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2792  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2793  SDValue Src = Op.getOperand(0);
2794  if (Src.getValueType() == MVT::f32)
2795    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2796
2797  SDValue Tmp;
2798  switch (Op.getValueType().getSimpleVT()) {
2799  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2800  case MVT::i32:
2801    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2802    break;
2803  case MVT::i64:
2804    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2805    break;
2806  }
2807
2808  // Convert the FP value to an int value through memory.
2809  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2810
2811  // Emit a store to the stack slot.
2812  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2813
2814  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2815  // add in a bias.
2816  if (Op.getValueType() == MVT::i32)
2817    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2818                        DAG.getConstant(4, FIPtr.getValueType()));
2819  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2820}
2821
2822SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2823                                                 SelectionDAG &DAG) {
2824  assert(Op.getValueType() == MVT::ppcf128);
2825  SDNode *Node = Op.getNode();
2826  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2827  assert(Node->getOperand(0).getNode()->getOpcode() == ISD::BUILD_PAIR);
2828  SDValue Lo = Node->getOperand(0).getNode()->getOperand(0);
2829  SDValue Hi = Node->getOperand(0).getNode()->getOperand(1);
2830
2831  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2832  // of the long double, and puts FPSCR back the way it was.  We do not
2833  // actually model FPSCR.
2834  std::vector<MVT> NodeTys;
2835  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2836
2837  NodeTys.push_back(MVT::f64);   // Return register
2838  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2839  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2840  MFFSreg = Result.getValue(0);
2841  InFlag = Result.getValue(1);
2842
2843  NodeTys.clear();
2844  NodeTys.push_back(MVT::Flag);   // Returns a flag
2845  Ops[0] = DAG.getConstant(31, MVT::i32);
2846  Ops[1] = InFlag;
2847  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2848  InFlag = Result.getValue(0);
2849
2850  NodeTys.clear();
2851  NodeTys.push_back(MVT::Flag);   // Returns a flag
2852  Ops[0] = DAG.getConstant(30, MVT::i32);
2853  Ops[1] = InFlag;
2854  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2855  InFlag = Result.getValue(0);
2856
2857  NodeTys.clear();
2858  NodeTys.push_back(MVT::f64);    // result of add
2859  NodeTys.push_back(MVT::Flag);   // Returns a flag
2860  Ops[0] = Lo;
2861  Ops[1] = Hi;
2862  Ops[2] = InFlag;
2863  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2864  FPreg = Result.getValue(0);
2865  InFlag = Result.getValue(1);
2866
2867  NodeTys.clear();
2868  NodeTys.push_back(MVT::f64);
2869  Ops[0] = DAG.getConstant(1, MVT::i32);
2870  Ops[1] = MFFSreg;
2871  Ops[2] = FPreg;
2872  Ops[3] = InFlag;
2873  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2874  FPreg = Result.getValue(0);
2875
2876  // We know the low half is about to be thrown away, so just use something
2877  // convenient.
2878  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2879}
2880
2881SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2882  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2883  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2884    return SDValue();
2885
2886  if (Op.getOperand(0).getValueType() == MVT::i64) {
2887    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2888    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2889    if (Op.getValueType() == MVT::f32)
2890      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2891    return FP;
2892  }
2893
2894  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2895         "Unhandled SINT_TO_FP type in custom expander!");
2896  // Since we only generate this in 64-bit mode, we can take advantage of
2897  // 64-bit registers.  In particular, sign extend the input value into the
2898  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2899  // then lfd it and fcfid it.
2900  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2901  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2902  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2903  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2904
2905  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2906                                Op.getOperand(0));
2907
2908  // STD the extended value into the stack slot.
2909  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2910                       MachineMemOperand::MOStore, 0, 8, 8);
2911  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2912                                DAG.getEntryNode(), Ext64, FIdx,
2913                                DAG.getMemOperand(MO));
2914  // Load the value as a double.
2915  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2916
2917  // FCFID it and return it.
2918  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2919  if (Op.getValueType() == MVT::f32)
2920    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2921  return FP;
2922}
2923
2924SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2925  /*
2926   The rounding mode is in bits 30:31 of FPSR, and has the following
2927   settings:
2928     00 Round to nearest
2929     01 Round to 0
2930     10 Round to +inf
2931     11 Round to -inf
2932
2933  FLT_ROUNDS, on the other hand, expects the following:
2934    -1 Undefined
2935     0 Round to 0
2936     1 Round to nearest
2937     2 Round to +inf
2938     3 Round to -inf
2939
2940  To perform the conversion, we do:
2941    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2942  */
2943
2944  MachineFunction &MF = DAG.getMachineFunction();
2945  MVT VT = Op.getValueType();
2946  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2947  std::vector<MVT> NodeTys;
2948  SDValue MFFSreg, InFlag;
2949
2950  // Save FP Control Word to register
2951  NodeTys.push_back(MVT::f64);    // return register
2952  NodeTys.push_back(MVT::Flag);   // unused in this context
2953  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2954
2955  // Save FP register to stack slot
2956  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2957  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2958  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
2959                                 StackSlot, NULL, 0);
2960
2961  // Load FP Control Word from low 32 bits of stack slot.
2962  SDValue Four = DAG.getConstant(4, PtrVT);
2963  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2964  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2965
2966  // Transform as necessary
2967  SDValue CWD1 =
2968    DAG.getNode(ISD::AND, MVT::i32,
2969                CWD, DAG.getConstant(3, MVT::i32));
2970  SDValue CWD2 =
2971    DAG.getNode(ISD::SRL, MVT::i32,
2972                DAG.getNode(ISD::AND, MVT::i32,
2973                            DAG.getNode(ISD::XOR, MVT::i32,
2974                                        CWD, DAG.getConstant(3, MVT::i32)),
2975                            DAG.getConstant(3, MVT::i32)),
2976                DAG.getConstant(1, MVT::i8));
2977
2978  SDValue RetVal =
2979    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2980
2981  return DAG.getNode((VT.getSizeInBits() < 16 ?
2982                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2983}
2984
2985SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
2986  MVT VT = Op.getValueType();
2987  unsigned BitWidth = VT.getSizeInBits();
2988  assert(Op.getNumOperands() == 3 &&
2989         VT == Op.getOperand(1).getValueType() &&
2990         "Unexpected SHL!");
2991
2992  // Expand into a bunch of logical ops.  Note that these ops
2993  // depend on the PPC behavior for oversized shift amounts.
2994  SDValue Lo = Op.getOperand(0);
2995  SDValue Hi = Op.getOperand(1);
2996  SDValue Amt = Op.getOperand(2);
2997  MVT AmtVT = Amt.getValueType();
2998
2999  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3000                               DAG.getConstant(BitWidth, AmtVT), Amt);
3001  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3002  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3003  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3004  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3005                               DAG.getConstant(-BitWidth, AmtVT));
3006  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3007  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3008  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3009  SDValue OutOps[] = { OutLo, OutHi };
3010  return DAG.getMergeValues(OutOps, 2);
3011}
3012
3013SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3014  MVT VT = Op.getValueType();
3015  unsigned BitWidth = VT.getSizeInBits();
3016  assert(Op.getNumOperands() == 3 &&
3017         VT == Op.getOperand(1).getValueType() &&
3018         "Unexpected SRL!");
3019
3020  // Expand into a bunch of logical ops.  Note that these ops
3021  // depend on the PPC behavior for oversized shift amounts.
3022  SDValue Lo = Op.getOperand(0);
3023  SDValue Hi = Op.getOperand(1);
3024  SDValue Amt = Op.getOperand(2);
3025  MVT AmtVT = Amt.getValueType();
3026
3027  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3028                               DAG.getConstant(BitWidth, AmtVT), Amt);
3029  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3030  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3031  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3032  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3033                               DAG.getConstant(-BitWidth, AmtVT));
3034  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3035  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3036  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3037  SDValue OutOps[] = { OutLo, OutHi };
3038  return DAG.getMergeValues(OutOps, 2);
3039}
3040
3041SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3042  MVT VT = Op.getValueType();
3043  unsigned BitWidth = VT.getSizeInBits();
3044  assert(Op.getNumOperands() == 3 &&
3045         VT == Op.getOperand(1).getValueType() &&
3046         "Unexpected SRA!");
3047
3048  // Expand into a bunch of logical ops, followed by a select_cc.
3049  SDValue Lo = Op.getOperand(0);
3050  SDValue Hi = Op.getOperand(1);
3051  SDValue Amt = Op.getOperand(2);
3052  MVT AmtVT = Amt.getValueType();
3053
3054  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3055                               DAG.getConstant(BitWidth, AmtVT), Amt);
3056  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3057  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3058  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3059  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3060                               DAG.getConstant(-BitWidth, AmtVT));
3061  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3062  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3063  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3064                                    Tmp4, Tmp6, ISD::SETLE);
3065  SDValue OutOps[] = { OutLo, OutHi };
3066  return DAG.getMergeValues(OutOps, 2);
3067}
3068
3069//===----------------------------------------------------------------------===//
3070// Vector related lowering.
3071//
3072
3073// If this is a vector of constants or undefs, get the bits.  A bit in
3074// UndefBits is set if the corresponding element of the vector is an
3075// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3076// zero.   Return true if this is not an array of constants, false if it is.
3077//
3078static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3079                                       uint64_t UndefBits[2]) {
3080  // Start with zero'd results.
3081  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3082
3083  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3084  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3085    SDValue OpVal = BV->getOperand(i);
3086
3087    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3088    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3089
3090    uint64_t EltBits = 0;
3091    if (OpVal.getOpcode() == ISD::UNDEF) {
3092      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3093      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3094      continue;
3095    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3096      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
3097    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3098      assert(CN->getValueType(0) == MVT::f32 &&
3099             "Only one legal FP vector type!");
3100      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3101    } else {
3102      // Nonconstant element.
3103      return true;
3104    }
3105
3106    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3107  }
3108
3109  //printf("%llx %llx  %llx %llx\n",
3110  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3111  return false;
3112}
3113
3114// If this is a splat (repetition) of a value across the whole vector, return
3115// the smallest size that splats it.  For example, "0x01010101010101..." is a
3116// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3117// SplatSize = 1 byte.
3118static bool isConstantSplat(const uint64_t Bits128[2],
3119                            const uint64_t Undef128[2],
3120                            unsigned &SplatBits, unsigned &SplatUndef,
3121                            unsigned &SplatSize) {
3122
3123  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3124  // the same as the lower 64-bits, ignoring undefs.
3125  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3126    return false;  // Can't be a splat if two pieces don't match.
3127
3128  uint64_t Bits64  = Bits128[0] | Bits128[1];
3129  uint64_t Undef64 = Undef128[0] & Undef128[1];
3130
3131  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3132  // undefs.
3133  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3134    return false;  // Can't be a splat if two pieces don't match.
3135
3136  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3137  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3138
3139  // If the top 16-bits are different than the lower 16-bits, ignoring
3140  // undefs, we have an i32 splat.
3141  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3142    SplatBits = Bits32;
3143    SplatUndef = Undef32;
3144    SplatSize = 4;
3145    return true;
3146  }
3147
3148  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3149  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3150
3151  // If the top 8-bits are different than the lower 8-bits, ignoring
3152  // undefs, we have an i16 splat.
3153  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3154    SplatBits = Bits16;
3155    SplatUndef = Undef16;
3156    SplatSize = 2;
3157    return true;
3158  }
3159
3160  // Otherwise, we have an 8-bit splat.
3161  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3162  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3163  SplatSize = 1;
3164  return true;
3165}
3166
3167/// BuildSplatI - Build a canonical splati of Val with an element size of
3168/// SplatSize.  Cast the result to VT.
3169static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3170                             SelectionDAG &DAG) {
3171  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3172
3173  static const MVT VTys[] = { // canonical VT to use for each size.
3174    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3175  };
3176
3177  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3178
3179  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3180  if (Val == -1)
3181    SplatSize = 1;
3182
3183  MVT CanonicalVT = VTys[SplatSize-1];
3184
3185  // Build a canonical splat for this value.
3186  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3187  SmallVector<SDValue, 8> Ops;
3188  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3189  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3190                              &Ops[0], Ops.size());
3191  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3192}
3193
3194/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3195/// specified intrinsic ID.
3196static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3197                                  SelectionDAG &DAG,
3198                                  MVT DestVT = MVT::Other) {
3199  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3200  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3201                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3202}
3203
3204/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3205/// specified intrinsic ID.
3206static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3207                                  SDValue Op2, SelectionDAG &DAG,
3208                                  MVT DestVT = MVT::Other) {
3209  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3210  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3211                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3212}
3213
3214
3215/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3216/// amount.  The result has the specified value type.
3217static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3218                             MVT VT, SelectionDAG &DAG) {
3219  // Force LHS/RHS to be the right type.
3220  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3221  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3222
3223  SDValue Ops[16];
3224  for (unsigned i = 0; i != 16; ++i)
3225    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3226  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3227                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3228  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3229}
3230
3231// If this is a case we can't handle, return null and let the default
3232// expansion code take care of it.  If we CAN select this case, and if it
3233// selects to a single instruction, return Op.  Otherwise, if we can codegen
3234// this case more efficiently than a constant pool load, lower it to the
3235// sequence of ops that should be used.
3236SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3237                                               SelectionDAG &DAG) {
3238  // If this is a vector of constants or undefs, get the bits.  A bit in
3239  // UndefBits is set if the corresponding element of the vector is an
3240  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3241  // zero.
3242  uint64_t VectorBits[2];
3243  uint64_t UndefBits[2];
3244  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
3245    return SDValue();   // Not a constant vector.
3246
3247  // If this is a splat (repetition) of a value across the whole vector, return
3248  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3249  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3250  // SplatSize = 1 byte.
3251  unsigned SplatBits, SplatUndef, SplatSize;
3252  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3253    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3254
3255    // First, handle single instruction cases.
3256
3257    // All zeros?
3258    if (SplatBits == 0) {
3259      // Canonicalize all zero vectors to be v4i32.
3260      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3261        SDValue Z = DAG.getConstant(0, MVT::i32);
3262        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3263        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3264      }
3265      return Op;
3266    }
3267
3268    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3269    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3270    if (SextVal >= -16 && SextVal <= 15)
3271      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3272
3273
3274    // Two instruction sequences.
3275
3276    // If this value is in the range [-32,30] and is even, use:
3277    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3278    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3279      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3280      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3281      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3282    }
3283
3284    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3285    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3286    // for fneg/fabs.
3287    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3288      // Make -1 and vspltisw -1:
3289      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3290
3291      // Make the VSLW intrinsic, computing 0x8000_0000.
3292      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3293                                       OnesV, DAG);
3294
3295      // xor by OnesV to invert it.
3296      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3297      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3298    }
3299
3300    // Check to see if this is a wide variety of vsplti*, binop self cases.
3301    unsigned SplatBitSize = SplatSize*8;
3302    static const signed char SplatCsts[] = {
3303      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3304      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3305    };
3306
3307    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3308      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3309      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3310      int i = SplatCsts[idx];
3311
3312      // Figure out what shift amount will be used by altivec if shifted by i in
3313      // this splat size.
3314      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3315
3316      // vsplti + shl self.
3317      if (SextVal == (i << (int)TypeShiftAmt)) {
3318        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3319        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3320          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3321          Intrinsic::ppc_altivec_vslw
3322        };
3323        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3324        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3325      }
3326
3327      // vsplti + srl self.
3328      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3329        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3330        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3331          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3332          Intrinsic::ppc_altivec_vsrw
3333        };
3334        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3335        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3336      }
3337
3338      // vsplti + sra self.
3339      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3340        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3341        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3342          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3343          Intrinsic::ppc_altivec_vsraw
3344        };
3345        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3346        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3347      }
3348
3349      // vsplti + rol self.
3350      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3351                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3352        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3353        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3354          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3355          Intrinsic::ppc_altivec_vrlw
3356        };
3357        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3358        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3359      }
3360
3361      // t = vsplti c, result = vsldoi t, t, 1
3362      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3363        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3364        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3365      }
3366      // t = vsplti c, result = vsldoi t, t, 2
3367      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3368        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3369        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3370      }
3371      // t = vsplti c, result = vsldoi t, t, 3
3372      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3373        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3374        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3375      }
3376    }
3377
3378    // Three instruction sequences.
3379
3380    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3381    if (SextVal >= 0 && SextVal <= 31) {
3382      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3383      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3384      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3385      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3386    }
3387    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3388    if (SextVal >= -31 && SextVal <= 0) {
3389      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3390      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3391      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3392      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3393    }
3394  }
3395
3396  return SDValue();
3397}
3398
3399/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3400/// the specified operations to build the shuffle.
3401static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3402                                        SDValue RHS, SelectionDAG &DAG) {
3403  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3404  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3405  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3406
3407  enum {
3408    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3409    OP_VMRGHW,
3410    OP_VMRGLW,
3411    OP_VSPLTISW0,
3412    OP_VSPLTISW1,
3413    OP_VSPLTISW2,
3414    OP_VSPLTISW3,
3415    OP_VSLDOI4,
3416    OP_VSLDOI8,
3417    OP_VSLDOI12
3418  };
3419
3420  if (OpNum == OP_COPY) {
3421    if (LHSID == (1*9+2)*9+3) return LHS;
3422    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3423    return RHS;
3424  }
3425
3426  SDValue OpLHS, OpRHS;
3427  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3428  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3429
3430  unsigned ShufIdxs[16];
3431  switch (OpNum) {
3432  default: assert(0 && "Unknown i32 permute!");
3433  case OP_VMRGHW:
3434    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3435    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3436    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3437    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3438    break;
3439  case OP_VMRGLW:
3440    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3441    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3442    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3443    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3444    break;
3445  case OP_VSPLTISW0:
3446    for (unsigned i = 0; i != 16; ++i)
3447      ShufIdxs[i] = (i&3)+0;
3448    break;
3449  case OP_VSPLTISW1:
3450    for (unsigned i = 0; i != 16; ++i)
3451      ShufIdxs[i] = (i&3)+4;
3452    break;
3453  case OP_VSPLTISW2:
3454    for (unsigned i = 0; i != 16; ++i)
3455      ShufIdxs[i] = (i&3)+8;
3456    break;
3457  case OP_VSPLTISW3:
3458    for (unsigned i = 0; i != 16; ++i)
3459      ShufIdxs[i] = (i&3)+12;
3460    break;
3461  case OP_VSLDOI4:
3462    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3463  case OP_VSLDOI8:
3464    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3465  case OP_VSLDOI12:
3466    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3467  }
3468  SDValue Ops[16];
3469  for (unsigned i = 0; i != 16; ++i)
3470    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3471
3472  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3473                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3474}
3475
3476/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3477/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3478/// return the code it can be lowered into.  Worst case, it can always be
3479/// lowered into a vperm.
3480SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3481                                                 SelectionDAG &DAG) {
3482  SDValue V1 = Op.getOperand(0);
3483  SDValue V2 = Op.getOperand(1);
3484  SDValue PermMask = Op.getOperand(2);
3485
3486  // Cases that are handled by instructions that take permute immediates
3487  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3488  // selected by the instruction selector.
3489  if (V2.getOpcode() == ISD::UNDEF) {
3490    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
3491        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
3492        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
3493        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
3494        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
3495        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
3496        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
3497        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
3498        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
3499        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
3500        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
3501        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
3502      return Op;
3503    }
3504  }
3505
3506  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3507  // and produce a fixed permutation.  If any of these match, do not lower to
3508  // VPERM.
3509  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
3510      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
3511      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
3512      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
3513      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
3514      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
3515      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
3516      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
3517      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
3518    return Op;
3519
3520  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3521  // perfect shuffle table to emit an optimal matching sequence.
3522  unsigned PFIndexes[4];
3523  bool isFourElementShuffle = true;
3524  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3525    unsigned EltNo = 8;   // Start out undef.
3526    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3527      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3528        continue;   // Undef, ignore it.
3529
3530      unsigned ByteSource =
3531        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3532      if ((ByteSource & 3) != j) {
3533        isFourElementShuffle = false;
3534        break;
3535      }
3536
3537      if (EltNo == 8) {
3538        EltNo = ByteSource/4;
3539      } else if (EltNo != ByteSource/4) {
3540        isFourElementShuffle = false;
3541        break;
3542      }
3543    }
3544    PFIndexes[i] = EltNo;
3545  }
3546
3547  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3548  // perfect shuffle vector to determine if it is cost effective to do this as
3549  // discrete instructions, or whether we should use a vperm.
3550  if (isFourElementShuffle) {
3551    // Compute the index in the perfect shuffle table.
3552    unsigned PFTableIndex =
3553      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3554
3555    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3556    unsigned Cost  = (PFEntry >> 30);
3557
3558    // Determining when to avoid vperm is tricky.  Many things affect the cost
3559    // of vperm, particularly how many times the perm mask needs to be computed.
3560    // For example, if the perm mask can be hoisted out of a loop or is already
3561    // used (perhaps because there are multiple permutes with the same shuffle
3562    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3563    // the loop requires an extra register.
3564    //
3565    // As a compromise, we only emit discrete instructions if the shuffle can be
3566    // generated in 3 or fewer operations.  When we have loop information
3567    // available, if this block is within a loop, we should avoid using vperm
3568    // for 3-operation perms and use a constant pool load instead.
3569    if (Cost < 3)
3570      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3571  }
3572
3573  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3574  // vector that will get spilled to the constant pool.
3575  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3576
3577  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3578  // that it is in input element units, not in bytes.  Convert now.
3579  MVT EltVT = V1.getValueType().getVectorElementType();
3580  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3581
3582  SmallVector<SDValue, 16> ResultMask;
3583  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3584    unsigned SrcElt;
3585    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3586      SrcElt = 0;
3587    else
3588      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3589
3590    for (unsigned j = 0; j != BytesPerElement; ++j)
3591      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3592                                           MVT::i8));
3593  }
3594
3595  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3596                                    &ResultMask[0], ResultMask.size());
3597  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3598}
3599
3600/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3601/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3602/// information about the intrinsic.
3603static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3604                                  bool &isDot) {
3605  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3606  CompareOpc = -1;
3607  isDot = false;
3608  switch (IntrinsicID) {
3609  default: return false;
3610    // Comparison predicates.
3611  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3612  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3613  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3614  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3615  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3616  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3617  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3618  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3619  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3620  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3621  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3622  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3623  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3624
3625    // Normal Comparisons.
3626  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3627  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3628  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3629  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3630  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3631  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3632  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3633  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3634  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3635  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3636  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3637  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3638  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3639  }
3640  return true;
3641}
3642
3643/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3644/// lower, do it, otherwise return null.
3645SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3646                                                     SelectionDAG &DAG) {
3647  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3648  // opcode number of the comparison.
3649  int CompareOpc;
3650  bool isDot;
3651  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3652    return SDValue();    // Don't custom lower most intrinsics.
3653
3654  // If this is a non-dot comparison, make the VCMP node and we are done.
3655  if (!isDot) {
3656    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3657                                Op.getOperand(1), Op.getOperand(2),
3658                                DAG.getConstant(CompareOpc, MVT::i32));
3659    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3660  }
3661
3662  // Create the PPCISD altivec 'dot' comparison node.
3663  SDValue Ops[] = {
3664    Op.getOperand(2),  // LHS
3665    Op.getOperand(3),  // RHS
3666    DAG.getConstant(CompareOpc, MVT::i32)
3667  };
3668  std::vector<MVT> VTs;
3669  VTs.push_back(Op.getOperand(2).getValueType());
3670  VTs.push_back(MVT::Flag);
3671  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3672
3673  // Now that we have the comparison, emit a copy from the CR to a GPR.
3674  // This is flagged to the above dot comparison.
3675  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3676                                DAG.getRegister(PPC::CR6, MVT::i32),
3677                                CompNode.getValue(1));
3678
3679  // Unpack the result based on how the target uses it.
3680  unsigned BitNo;   // Bit # of CR6.
3681  bool InvertBit;   // Invert result?
3682  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3683  default:  // Can't happen, don't crash on invalid number though.
3684  case 0:   // Return the value of the EQ bit of CR6.
3685    BitNo = 0; InvertBit = false;
3686    break;
3687  case 1:   // Return the inverted value of the EQ bit of CR6.
3688    BitNo = 0; InvertBit = true;
3689    break;
3690  case 2:   // Return the value of the LT bit of CR6.
3691    BitNo = 2; InvertBit = false;
3692    break;
3693  case 3:   // Return the inverted value of the LT bit of CR6.
3694    BitNo = 2; InvertBit = true;
3695    break;
3696  }
3697
3698  // Shift the bit into the low position.
3699  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3700                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3701  // Isolate the bit.
3702  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3703                      DAG.getConstant(1, MVT::i32));
3704
3705  // If we are supposed to, toggle the bit.
3706  if (InvertBit)
3707    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3708                        DAG.getConstant(1, MVT::i32));
3709  return Flags;
3710}
3711
3712SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3713                                                   SelectionDAG &DAG) {
3714  // Create a stack slot that is 16-byte aligned.
3715  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3716  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3717  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3718  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3719
3720  // Store the input value into Value#0 of the stack slot.
3721  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3722                                 Op.getOperand(0), FIdx, NULL, 0);
3723  // Load it out.
3724  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3725}
3726
3727SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3728  if (Op.getValueType() == MVT::v4i32) {
3729    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3730
3731    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3732    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3733
3734    SDValue RHSSwap =   // = vrlw RHS, 16
3735      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3736
3737    // Shrinkify inputs to v8i16.
3738    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3739    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3740    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3741
3742    // Low parts multiplied together, generating 32-bit results (we ignore the
3743    // top parts).
3744    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3745                                        LHS, RHS, DAG, MVT::v4i32);
3746
3747    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3748                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3749    // Shift the high parts up 16 bits.
3750    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3751    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3752  } else if (Op.getValueType() == MVT::v8i16) {
3753    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3754
3755    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3756
3757    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3758                            LHS, RHS, Zero, DAG);
3759  } else if (Op.getValueType() == MVT::v16i8) {
3760    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3761
3762    // Multiply the even 8-bit parts, producing 16-bit sums.
3763    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3764                                           LHS, RHS, DAG, MVT::v8i16);
3765    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3766
3767    // Multiply the odd 8-bit parts, producing 16-bit sums.
3768    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3769                                          LHS, RHS, DAG, MVT::v8i16);
3770    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3771
3772    // Merge the results together.
3773    SDValue Ops[16];
3774    for (unsigned i = 0; i != 8; ++i) {
3775      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3776      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3777    }
3778    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3779                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3780  } else {
3781    assert(0 && "Unknown mul to lower!");
3782    abort();
3783  }
3784}
3785
3786/// LowerOperation - Provide custom lowering hooks for some operations.
3787///
3788SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3789  switch (Op.getOpcode()) {
3790  default: assert(0 && "Wasn't expecting to be able to lower this!");
3791  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3792  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3793  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3794  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3795  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3796  case ISD::VASTART:
3797    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3798                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3799
3800  case ISD::VAARG:
3801    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3802                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3803
3804  case ISD::FORMAL_ARGUMENTS:
3805    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3806                                 VarArgsStackOffset, VarArgsNumGPR,
3807                                 VarArgsNumFPR, PPCSubTarget);
3808
3809  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3810                                                 getTargetMachine());
3811  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3812  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3813  case ISD::DYNAMIC_STACKALLOC:
3814    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3815
3816  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3817  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3818  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3819  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3820  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3821
3822  // Lower 64-bit shifts.
3823  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3824  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3825  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3826
3827  // Vector-related lowering.
3828  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3829  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3830  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3831  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3832  case ISD::MUL:                return LowerMUL(Op, DAG);
3833
3834  // Frame & Return address.
3835  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3836  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3837  }
3838  return SDValue();
3839}
3840
3841SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3842  switch (N->getOpcode()) {
3843  default: assert(0 && "Wasn't expecting to be able to lower this!");
3844  case ISD::FP_TO_SINT: {
3845    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3846    // Use MERGE_VALUES to drop the chain result value and get a node with one
3847    // result.  This requires turning off getMergeValues simplification, since
3848    // otherwise it will give us Res back.
3849    return DAG.getMergeValues(&Res, 1, false).getNode();
3850  }
3851  }
3852}
3853
3854
3855//===----------------------------------------------------------------------===//
3856//  Other Lowering Code
3857//===----------------------------------------------------------------------===//
3858
3859MachineBasicBlock *
3860PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3861                                    bool is64bit, unsigned BinOpcode) {
3862  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3863  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3864
3865  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3866  MachineFunction *F = BB->getParent();
3867  MachineFunction::iterator It = BB;
3868  ++It;
3869
3870  unsigned dest = MI->getOperand(0).getReg();
3871  unsigned ptrA = MI->getOperand(1).getReg();
3872  unsigned ptrB = MI->getOperand(2).getReg();
3873  unsigned incr = MI->getOperand(3).getReg();
3874
3875  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3876  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3877  F->insert(It, loopMBB);
3878  F->insert(It, exitMBB);
3879  exitMBB->transferSuccessors(BB);
3880
3881  MachineRegisterInfo &RegInfo = F->getRegInfo();
3882  unsigned TmpReg = (!BinOpcode) ? incr :
3883    RegInfo.createVirtualRegister(
3884       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3885                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3886
3887  //  thisMBB:
3888  //   ...
3889  //   fallthrough --> loopMBB
3890  BB->addSuccessor(loopMBB);
3891
3892  //  loopMBB:
3893  //   l[wd]arx dest, ptr
3894  //   add r0, dest, incr
3895  //   st[wd]cx. r0, ptr
3896  //   bne- loopMBB
3897  //   fallthrough --> exitMBB
3898  BB = loopMBB;
3899  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3900    .addReg(ptrA).addReg(ptrB);
3901  if (BinOpcode)
3902    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3903  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3904    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3905  BuildMI(BB, TII->get(PPC::BCC))
3906    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3907  BB->addSuccessor(loopMBB);
3908  BB->addSuccessor(exitMBB);
3909
3910  //  exitMBB:
3911  //   ...
3912  BB = exitMBB;
3913  return BB;
3914}
3915
3916MachineBasicBlock *
3917PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3918                                            MachineBasicBlock *BB,
3919                                            bool is8bit,    // operation
3920                                            unsigned BinOpcode) {
3921  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3922  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3923  // In 64 bit mode we have to use 64 bits for addresses, even though the
3924  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3925  // registers without caring whether they're 32 or 64, but here we're
3926  // doing actual arithmetic on the addresses.
3927  bool is64bit = PPCSubTarget.isPPC64();
3928
3929  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3930  MachineFunction *F = BB->getParent();
3931  MachineFunction::iterator It = BB;
3932  ++It;
3933
3934  unsigned dest = MI->getOperand(0).getReg();
3935  unsigned ptrA = MI->getOperand(1).getReg();
3936  unsigned ptrB = MI->getOperand(2).getReg();
3937  unsigned incr = MI->getOperand(3).getReg();
3938
3939  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3940  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3941  F->insert(It, loopMBB);
3942  F->insert(It, exitMBB);
3943  exitMBB->transferSuccessors(BB);
3944
3945  MachineRegisterInfo &RegInfo = F->getRegInfo();
3946  const TargetRegisterClass *RC =
3947    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3948              (const TargetRegisterClass *) &PPC::GPRCRegClass;
3949  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3950  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3951  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3952  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3953  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3954  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3955  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3956  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3957  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3958  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3959  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
3960  unsigned Ptr1Reg;
3961  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
3962
3963  //  thisMBB:
3964  //   ...
3965  //   fallthrough --> loopMBB
3966  BB->addSuccessor(loopMBB);
3967
3968  // The 4-byte load must be aligned, while a char or short may be
3969  // anywhere in the word.  Hence all this nasty bookkeeping code.
3970  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
3971  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3972  //   xori shift, shift1, 24 [16]
3973  //   rlwinm ptr, ptr1, 0, 0, 29
3974  //   slw incr2, incr, shift
3975  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3976  //   slw mask, mask2, shift
3977  //  loopMBB:
3978  //   lwarx tmpDest, ptr
3979  //   add tmp, tmpDest, incr2
3980  //   andc tmp2, tmpDest, mask
3981  //   and tmp3, tmp, mask
3982  //   or tmp4, tmp3, tmp2
3983  //   stwcx. tmp4, ptr
3984  //   bne- loopMBB
3985  //   fallthrough --> exitMBB
3986  //   srw dest, tmpDest, shift
3987
3988  if (ptrA!=PPC::R0) {
3989    Ptr1Reg = RegInfo.createVirtualRegister(RC);
3990    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
3991      .addReg(ptrA).addReg(ptrB);
3992  } else {
3993    Ptr1Reg = ptrB;
3994  }
3995  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
3996      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
3997  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
3998      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
3999  if (is64bit)
4000    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4001      .addReg(Ptr1Reg).addImm(0).addImm(61);
4002  else
4003    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4004      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4005  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4006      .addReg(incr).addReg(ShiftReg);
4007  if (is8bit)
4008    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4009  else {
4010    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4011    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4012  }
4013  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4014      .addReg(Mask2Reg).addReg(ShiftReg);
4015
4016  BB = loopMBB;
4017  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4018    .addReg(PPC::R0).addReg(PtrReg);
4019  if (BinOpcode)
4020    BuildMI(BB, TII->get(BinOpcode), TmpReg)
4021      .addReg(Incr2Reg).addReg(TmpDestReg);
4022  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4023    .addReg(TmpDestReg).addReg(MaskReg);
4024  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4025    .addReg(TmpReg).addReg(MaskReg);
4026  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4027    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4028  BuildMI(BB, TII->get(PPC::STWCX))
4029    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4030  BuildMI(BB, TII->get(PPC::BCC))
4031    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4032  BB->addSuccessor(loopMBB);
4033  BB->addSuccessor(exitMBB);
4034
4035  //  exitMBB:
4036  //   ...
4037  BB = exitMBB;
4038  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4039  return BB;
4040}
4041
4042MachineBasicBlock *
4043PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4044                                               MachineBasicBlock *BB) {
4045  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4046
4047  // To "insert" these instructions we actually have to insert their
4048  // control-flow patterns.
4049  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4050  MachineFunction::iterator It = BB;
4051  ++It;
4052
4053  MachineFunction *F = BB->getParent();
4054
4055  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4056      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4057      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4058      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4059      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4060
4061    // The incoming instruction knows the destination vreg to set, the
4062    // condition code register to branch on, the true/false values to
4063    // select between, and a branch opcode to use.
4064
4065    //  thisMBB:
4066    //  ...
4067    //   TrueVal = ...
4068    //   cmpTY ccX, r1, r2
4069    //   bCC copy1MBB
4070    //   fallthrough --> copy0MBB
4071    MachineBasicBlock *thisMBB = BB;
4072    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4073    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4074    unsigned SelectPred = MI->getOperand(4).getImm();
4075    BuildMI(BB, TII->get(PPC::BCC))
4076      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4077    F->insert(It, copy0MBB);
4078    F->insert(It, sinkMBB);
4079    // Update machine-CFG edges by transferring all successors of the current
4080    // block to the new block which will contain the Phi node for the select.
4081    sinkMBB->transferSuccessors(BB);
4082    // Next, add the true and fallthrough blocks as its successors.
4083    BB->addSuccessor(copy0MBB);
4084    BB->addSuccessor(sinkMBB);
4085
4086    //  copy0MBB:
4087    //   %FalseValue = ...
4088    //   # fallthrough to sinkMBB
4089    BB = copy0MBB;
4090
4091    // Update machine-CFG edges
4092    BB->addSuccessor(sinkMBB);
4093
4094    //  sinkMBB:
4095    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4096    //  ...
4097    BB = sinkMBB;
4098    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4099      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4100      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4101  }
4102  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4103    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4104  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4105    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4106  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4107    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4108  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4109    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4110
4111  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4112    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4113  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4114    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4115  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4116    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4117  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4118    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4119
4120  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4121    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4122  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4123    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4124  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4125    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4126  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4127    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4128
4129  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4130    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4131  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4132    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4133  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4134    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4135  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4136    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4137
4138  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4139    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
4140  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4141    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
4142  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4143    BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
4144  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4145    BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
4146
4147  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4148    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4149  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4150    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4151  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4152    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4153  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4154    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4155
4156  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4157    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4158  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4159    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4160  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4161    BB = EmitAtomicBinary(MI, BB, false, 0);
4162  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4163    BB = EmitAtomicBinary(MI, BB, true, 0);
4164
4165  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4166           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4167    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4168
4169    unsigned dest   = MI->getOperand(0).getReg();
4170    unsigned ptrA   = MI->getOperand(1).getReg();
4171    unsigned ptrB   = MI->getOperand(2).getReg();
4172    unsigned oldval = MI->getOperand(3).getReg();
4173    unsigned newval = MI->getOperand(4).getReg();
4174
4175    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4176    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4177    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4178    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4179    F->insert(It, loop1MBB);
4180    F->insert(It, loop2MBB);
4181    F->insert(It, midMBB);
4182    F->insert(It, exitMBB);
4183    exitMBB->transferSuccessors(BB);
4184
4185    //  thisMBB:
4186    //   ...
4187    //   fallthrough --> loopMBB
4188    BB->addSuccessor(loop1MBB);
4189
4190    // loop1MBB:
4191    //   l[wd]arx dest, ptr
4192    //   cmp[wd] dest, oldval
4193    //   bne- midMBB
4194    // loop2MBB:
4195    //   st[wd]cx. newval, ptr
4196    //   bne- loopMBB
4197    //   b exitBB
4198    // midMBB:
4199    //   st[wd]cx. dest, ptr
4200    // exitBB:
4201    BB = loop1MBB;
4202    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4203      .addReg(ptrA).addReg(ptrB);
4204    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4205      .addReg(oldval).addReg(dest);
4206    BuildMI(BB, TII->get(PPC::BCC))
4207      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4208    BB->addSuccessor(loop2MBB);
4209    BB->addSuccessor(midMBB);
4210
4211    BB = loop2MBB;
4212    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4213      .addReg(newval).addReg(ptrA).addReg(ptrB);
4214    BuildMI(BB, TII->get(PPC::BCC))
4215      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4216    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4217    BB->addSuccessor(loop1MBB);
4218    BB->addSuccessor(exitMBB);
4219
4220    BB = midMBB;
4221    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4222      .addReg(dest).addReg(ptrA).addReg(ptrB);
4223    BB->addSuccessor(exitMBB);
4224
4225    //  exitMBB:
4226    //   ...
4227    BB = exitMBB;
4228  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4229             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4230    // We must use 64-bit registers for addresses when targeting 64-bit,
4231    // since we're actually doing arithmetic on them.  Other registers
4232    // can be 32-bit.
4233    bool is64bit = PPCSubTarget.isPPC64();
4234    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4235
4236    unsigned dest   = MI->getOperand(0).getReg();
4237    unsigned ptrA   = MI->getOperand(1).getReg();
4238    unsigned ptrB   = MI->getOperand(2).getReg();
4239    unsigned oldval = MI->getOperand(3).getReg();
4240    unsigned newval = MI->getOperand(4).getReg();
4241
4242    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4243    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4244    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4245    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4246    F->insert(It, loop1MBB);
4247    F->insert(It, loop2MBB);
4248    F->insert(It, midMBB);
4249    F->insert(It, exitMBB);
4250    exitMBB->transferSuccessors(BB);
4251
4252    MachineRegisterInfo &RegInfo = F->getRegInfo();
4253    const TargetRegisterClass *RC =
4254      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4255                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4256    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4257    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4258    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4259    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4260    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4261    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4262    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4263    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4264    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4265    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4266    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4267    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4268    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4269    unsigned Ptr1Reg;
4270    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4271    //  thisMBB:
4272    //   ...
4273    //   fallthrough --> loopMBB
4274    BB->addSuccessor(loop1MBB);
4275
4276    // The 4-byte load must be aligned, while a char or short may be
4277    // anywhere in the word.  Hence all this nasty bookkeeping code.
4278    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4279    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4280    //   xori shift, shift1, 24 [16]
4281    //   rlwinm ptr, ptr1, 0, 0, 29
4282    //   slw newval2, newval, shift
4283    //   slw oldval2, oldval,shift
4284    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4285    //   slw mask, mask2, shift
4286    //   and newval3, newval2, mask
4287    //   and oldval3, oldval2, mask
4288    // loop1MBB:
4289    //   lwarx tmpDest, ptr
4290    //   and tmp, tmpDest, mask
4291    //   cmpw tmp, oldval3
4292    //   bne- midMBB
4293    // loop2MBB:
4294    //   andc tmp2, tmpDest, mask
4295    //   or tmp4, tmp2, newval3
4296    //   stwcx. tmp4, ptr
4297    //   bne- loop1MBB
4298    //   b exitBB
4299    // midMBB:
4300    //   stwcx. tmpDest, ptr
4301    // exitBB:
4302    //   srw dest, tmpDest, shift
4303    if (ptrA!=PPC::R0) {
4304      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4305      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4306        .addReg(ptrA).addReg(ptrB);
4307    } else {
4308      Ptr1Reg = ptrB;
4309    }
4310    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4311        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4312    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4313        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4314    if (is64bit)
4315      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4316        .addReg(Ptr1Reg).addImm(0).addImm(61);
4317    else
4318      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4319        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4320    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
4321        .addReg(newval).addReg(ShiftReg);
4322    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
4323        .addReg(oldval).addReg(ShiftReg);
4324    if (is8bit)
4325      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4326    else {
4327      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4328      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4329    }
4330    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4331        .addReg(Mask2Reg).addReg(ShiftReg);
4332    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
4333        .addReg(NewVal2Reg).addReg(MaskReg);
4334    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
4335        .addReg(OldVal2Reg).addReg(MaskReg);
4336
4337    BB = loop1MBB;
4338    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4339        .addReg(PPC::R0).addReg(PtrReg);
4340    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
4341    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
4342        .addReg(TmpReg).addReg(OldVal3Reg);
4343    BuildMI(BB, TII->get(PPC::BCC))
4344        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4345    BB->addSuccessor(loop2MBB);
4346    BB->addSuccessor(midMBB);
4347
4348    BB = loop2MBB;
4349    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
4350    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
4351    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4352        .addReg(PPC::R0).addReg(PtrReg);
4353    BuildMI(BB, TII->get(PPC::BCC))
4354      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4355    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4356    BB->addSuccessor(loop1MBB);
4357    BB->addSuccessor(exitMBB);
4358
4359    BB = midMBB;
4360    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4361      .addReg(PPC::R0).addReg(PtrReg);
4362    BB->addSuccessor(exitMBB);
4363
4364    //  exitMBB:
4365    //   ...
4366    BB = exitMBB;
4367    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4368  } else {
4369    assert(0 && "Unexpected instr type to insert");
4370  }
4371
4372  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4373  return BB;
4374}
4375
4376//===----------------------------------------------------------------------===//
4377// Target Optimization Hooks
4378//===----------------------------------------------------------------------===//
4379
4380SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4381                                               DAGCombinerInfo &DCI) const {
4382  TargetMachine &TM = getTargetMachine();
4383  SelectionDAG &DAG = DCI.DAG;
4384  switch (N->getOpcode()) {
4385  default: break;
4386  case PPCISD::SHL:
4387    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4388      if (C->getValue() == 0)   // 0 << V -> 0.
4389        return N->getOperand(0);
4390    }
4391    break;
4392  case PPCISD::SRL:
4393    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4394      if (C->getValue() == 0)   // 0 >>u V -> 0.
4395        return N->getOperand(0);
4396    }
4397    break;
4398  case PPCISD::SRA:
4399    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4400      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
4401          C->isAllOnesValue())    // -1 >>s V -> -1.
4402        return N->getOperand(0);
4403    }
4404    break;
4405
4406  case ISD::SINT_TO_FP:
4407    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4408      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4409        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4410        // We allow the src/dst to be either f32/f64, but the intermediate
4411        // type must be i64.
4412        if (N->getOperand(0).getValueType() == MVT::i64 &&
4413            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4414          SDValue Val = N->getOperand(0).getOperand(0);
4415          if (Val.getValueType() == MVT::f32) {
4416            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4417            DCI.AddToWorklist(Val.getNode());
4418          }
4419
4420          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4421          DCI.AddToWorklist(Val.getNode());
4422          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4423          DCI.AddToWorklist(Val.getNode());
4424          if (N->getValueType(0) == MVT::f32) {
4425            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4426                              DAG.getIntPtrConstant(0));
4427            DCI.AddToWorklist(Val.getNode());
4428          }
4429          return Val;
4430        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4431          // If the intermediate type is i32, we can avoid the load/store here
4432          // too.
4433        }
4434      }
4435    }
4436    break;
4437  case ISD::STORE:
4438    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4439    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4440        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4441        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4442        N->getOperand(1).getValueType() == MVT::i32 &&
4443        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4444      SDValue Val = N->getOperand(1).getOperand(0);
4445      if (Val.getValueType() == MVT::f32) {
4446        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4447        DCI.AddToWorklist(Val.getNode());
4448      }
4449      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4450      DCI.AddToWorklist(Val.getNode());
4451
4452      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4453                        N->getOperand(2), N->getOperand(3));
4454      DCI.AddToWorklist(Val.getNode());
4455      return Val;
4456    }
4457
4458    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4459    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4460        N->getOperand(1).getNode()->hasOneUse() &&
4461        (N->getOperand(1).getValueType() == MVT::i32 ||
4462         N->getOperand(1).getValueType() == MVT::i16)) {
4463      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4464      // Do an any-extend to 32-bits if this is a half-word input.
4465      if (BSwapOp.getValueType() == MVT::i16)
4466        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4467
4468      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4469                         N->getOperand(2), N->getOperand(3),
4470                         DAG.getValueType(N->getOperand(1).getValueType()));
4471    }
4472    break;
4473  case ISD::BSWAP:
4474    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4475    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4476        N->getOperand(0).hasOneUse() &&
4477        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4478      SDValue Load = N->getOperand(0);
4479      LoadSDNode *LD = cast<LoadSDNode>(Load);
4480      // Create the byte-swapping load.
4481      std::vector<MVT> VTs;
4482      VTs.push_back(MVT::i32);
4483      VTs.push_back(MVT::Other);
4484      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4485      SDValue Ops[] = {
4486        LD->getChain(),    // Chain
4487        LD->getBasePtr(),  // Ptr
4488        MO,                // MemOperand
4489        DAG.getValueType(N->getValueType(0)) // VT
4490      };
4491      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4492
4493      // If this is an i16 load, insert the truncate.
4494      SDValue ResVal = BSLoad;
4495      if (N->getValueType(0) == MVT::i16)
4496        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4497
4498      // First, combine the bswap away.  This makes the value produced by the
4499      // load dead.
4500      DCI.CombineTo(N, ResVal);
4501
4502      // Next, combine the load away, we give it a bogus result value but a real
4503      // chain result.  The result value is dead because the bswap is dead.
4504      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4505
4506      // Return N so it doesn't get rechecked!
4507      return SDValue(N, 0);
4508    }
4509
4510    break;
4511  case PPCISD::VCMP: {
4512    // If a VCMPo node already exists with exactly the same operands as this
4513    // node, use its result instead of this node (VCMPo computes both a CR6 and
4514    // a normal output).
4515    //
4516    if (!N->getOperand(0).hasOneUse() &&
4517        !N->getOperand(1).hasOneUse() &&
4518        !N->getOperand(2).hasOneUse()) {
4519
4520      // Scan all of the users of the LHS, looking for VCMPo's that match.
4521      SDNode *VCMPoNode = 0;
4522
4523      SDNode *LHSN = N->getOperand(0).getNode();
4524      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4525           UI != E; ++UI)
4526        if (UI->getOpcode() == PPCISD::VCMPo &&
4527            UI->getOperand(1) == N->getOperand(1) &&
4528            UI->getOperand(2) == N->getOperand(2) &&
4529            UI->getOperand(0) == N->getOperand(0)) {
4530          VCMPoNode = *UI;
4531          break;
4532        }
4533
4534      // If there is no VCMPo node, or if the flag value has a single use, don't
4535      // transform this.
4536      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4537        break;
4538
4539      // Look at the (necessarily single) use of the flag value.  If it has a
4540      // chain, this transformation is more complex.  Note that multiple things
4541      // could use the value result, which we should ignore.
4542      SDNode *FlagUser = 0;
4543      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4544           FlagUser == 0; ++UI) {
4545        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4546        SDNode *User = *UI;
4547        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4548          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4549            FlagUser = User;
4550            break;
4551          }
4552        }
4553      }
4554
4555      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4556      // give up for right now.
4557      if (FlagUser->getOpcode() == PPCISD::MFCR)
4558        return SDValue(VCMPoNode, 0);
4559    }
4560    break;
4561  }
4562  case ISD::BR_CC: {
4563    // If this is a branch on an altivec predicate comparison, lower this so
4564    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4565    // lowering is done pre-legalize, because the legalizer lowers the predicate
4566    // compare down to code that is difficult to reassemble.
4567    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4568    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4569    int CompareOpc;
4570    bool isDot;
4571
4572    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4573        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4574        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4575      assert(isDot && "Can't compare against a vector result!");
4576
4577      // If this is a comparison against something other than 0/1, then we know
4578      // that the condition is never/always true.
4579      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
4580      if (Val != 0 && Val != 1) {
4581        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4582          return N->getOperand(0);
4583        // Always !=, turn it into an unconditional branch.
4584        return DAG.getNode(ISD::BR, MVT::Other,
4585                           N->getOperand(0), N->getOperand(4));
4586      }
4587
4588      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4589
4590      // Create the PPCISD altivec 'dot' comparison node.
4591      std::vector<MVT> VTs;
4592      SDValue Ops[] = {
4593        LHS.getOperand(2),  // LHS of compare
4594        LHS.getOperand(3),  // RHS of compare
4595        DAG.getConstant(CompareOpc, MVT::i32)
4596      };
4597      VTs.push_back(LHS.getOperand(2).getValueType());
4598      VTs.push_back(MVT::Flag);
4599      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4600
4601      // Unpack the result based on how the target uses it.
4602      PPC::Predicate CompOpc;
4603      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
4604      default:  // Can't happen, don't crash on invalid number though.
4605      case 0:   // Branch on the value of the EQ bit of CR6.
4606        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4607        break;
4608      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4609        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4610        break;
4611      case 2:   // Branch on the value of the LT bit of CR6.
4612        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4613        break;
4614      case 3:   // Branch on the inverted value of the LT bit of CR6.
4615        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4616        break;
4617      }
4618
4619      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4620                         DAG.getConstant(CompOpc, MVT::i32),
4621                         DAG.getRegister(PPC::CR6, MVT::i32),
4622                         N->getOperand(4), CompNode.getValue(1));
4623    }
4624    break;
4625  }
4626  }
4627
4628  return SDValue();
4629}
4630
4631//===----------------------------------------------------------------------===//
4632// Inline Assembly Support
4633//===----------------------------------------------------------------------===//
4634
4635void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4636                                                       const APInt &Mask,
4637                                                       APInt &KnownZero,
4638                                                       APInt &KnownOne,
4639                                                       const SelectionDAG &DAG,
4640                                                       unsigned Depth) const {
4641  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4642  switch (Op.getOpcode()) {
4643  default: break;
4644  case PPCISD::LBRX: {
4645    // lhbrx is known to have the top bits cleared out.
4646    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4647      KnownZero = 0xFFFF0000;
4648    break;
4649  }
4650  case ISD::INTRINSIC_WO_CHAIN: {
4651    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
4652    default: break;
4653    case Intrinsic::ppc_altivec_vcmpbfp_p:
4654    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4655    case Intrinsic::ppc_altivec_vcmpequb_p:
4656    case Intrinsic::ppc_altivec_vcmpequh_p:
4657    case Intrinsic::ppc_altivec_vcmpequw_p:
4658    case Intrinsic::ppc_altivec_vcmpgefp_p:
4659    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4660    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4661    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4662    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4663    case Intrinsic::ppc_altivec_vcmpgtub_p:
4664    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4665    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4666      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4667      break;
4668    }
4669  }
4670  }
4671}
4672
4673
4674/// getConstraintType - Given a constraint, return the type of
4675/// constraint it is for this target.
4676PPCTargetLowering::ConstraintType
4677PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4678  if (Constraint.size() == 1) {
4679    switch (Constraint[0]) {
4680    default: break;
4681    case 'b':
4682    case 'r':
4683    case 'f':
4684    case 'v':
4685    case 'y':
4686      return C_RegisterClass;
4687    }
4688  }
4689  return TargetLowering::getConstraintType(Constraint);
4690}
4691
4692std::pair<unsigned, const TargetRegisterClass*>
4693PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4694                                                MVT VT) const {
4695  if (Constraint.size() == 1) {
4696    // GCC RS6000 Constraint Letters
4697    switch (Constraint[0]) {
4698    case 'b':   // R1-R31
4699    case 'r':   // R0-R31
4700      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4701        return std::make_pair(0U, PPC::G8RCRegisterClass);
4702      return std::make_pair(0U, PPC::GPRCRegisterClass);
4703    case 'f':
4704      if (VT == MVT::f32)
4705        return std::make_pair(0U, PPC::F4RCRegisterClass);
4706      else if (VT == MVT::f64)
4707        return std::make_pair(0U, PPC::F8RCRegisterClass);
4708      break;
4709    case 'v':
4710      return std::make_pair(0U, PPC::VRRCRegisterClass);
4711    case 'y':   // crrc
4712      return std::make_pair(0U, PPC::CRRCRegisterClass);
4713    }
4714  }
4715
4716  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4717}
4718
4719
4720/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4721/// vector.  If it is invalid, don't add anything to Ops.
4722void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4723                                                     std::vector<SDValue>&Ops,
4724                                                     SelectionDAG &DAG) const {
4725  SDValue Result(0,0);
4726  switch (Letter) {
4727  default: break;
4728  case 'I':
4729  case 'J':
4730  case 'K':
4731  case 'L':
4732  case 'M':
4733  case 'N':
4734  case 'O':
4735  case 'P': {
4736    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4737    if (!CST) return; // Must be an immediate to match.
4738    unsigned Value = CST->getValue();
4739    switch (Letter) {
4740    default: assert(0 && "Unknown constraint letter!");
4741    case 'I':  // "I" is a signed 16-bit constant.
4742      if ((short)Value == (int)Value)
4743        Result = DAG.getTargetConstant(Value, Op.getValueType());
4744      break;
4745    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4746    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4747      if ((short)Value == 0)
4748        Result = DAG.getTargetConstant(Value, Op.getValueType());
4749      break;
4750    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4751      if ((Value >> 16) == 0)
4752        Result = DAG.getTargetConstant(Value, Op.getValueType());
4753      break;
4754    case 'M':  // "M" is a constant that is greater than 31.
4755      if (Value > 31)
4756        Result = DAG.getTargetConstant(Value, Op.getValueType());
4757      break;
4758    case 'N':  // "N" is a positive constant that is an exact power of two.
4759      if ((int)Value > 0 && isPowerOf2_32(Value))
4760        Result = DAG.getTargetConstant(Value, Op.getValueType());
4761      break;
4762    case 'O':  // "O" is the constant zero.
4763      if (Value == 0)
4764        Result = DAG.getTargetConstant(Value, Op.getValueType());
4765      break;
4766    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4767      if ((short)-Value == (int)-Value)
4768        Result = DAG.getTargetConstant(Value, Op.getValueType());
4769      break;
4770    }
4771    break;
4772  }
4773  }
4774
4775  if (Result.getNode()) {
4776    Ops.push_back(Result);
4777    return;
4778  }
4779
4780  // Handle standard constraint letters.
4781  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4782}
4783
4784// isLegalAddressingMode - Return true if the addressing mode represented
4785// by AM is legal for this target, for a load/store of the specified type.
4786bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4787                                              const Type *Ty) const {
4788  // FIXME: PPC does not allow r+i addressing modes for vectors!
4789
4790  // PPC allows a sign-extended 16-bit immediate field.
4791  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4792    return false;
4793
4794  // No global is ever allowed as a base.
4795  if (AM.BaseGV)
4796    return false;
4797
4798  // PPC only support r+r,
4799  switch (AM.Scale) {
4800  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4801    break;
4802  case 1:
4803    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4804      return false;
4805    // Otherwise we have r+r or r+i.
4806    break;
4807  case 2:
4808    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4809      return false;
4810    // Allow 2*r as r+r.
4811    break;
4812  default:
4813    // No other scales are supported.
4814    return false;
4815  }
4816
4817  return true;
4818}
4819
4820/// isLegalAddressImmediate - Return true if the integer value can be used
4821/// as the offset of the target addressing mode for load / store of the
4822/// given type.
4823bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4824  // PPC allows a sign-extended 16-bit immediate field.
4825  return (V > -(1 << 16) && V < (1 << 16)-1);
4826}
4827
4828bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4829  return false;
4830}
4831
4832SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4833  // Depths > 0 not supported yet!
4834  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4835    return SDValue();
4836
4837  MachineFunction &MF = DAG.getMachineFunction();
4838  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4839
4840  // Just load the return address off the stack.
4841  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4842
4843  // Make sure the function really does not optimize away the store of the RA
4844  // to the stack.
4845  FuncInfo->setLRStoreRequired();
4846  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4847}
4848
4849SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4850  // Depths > 0 not supported yet!
4851  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4852    return SDValue();
4853
4854  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4855  bool isPPC64 = PtrVT == MVT::i64;
4856
4857  MachineFunction &MF = DAG.getMachineFunction();
4858  MachineFrameInfo *MFI = MF.getFrameInfo();
4859  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4860                  && MFI->getStackSize();
4861
4862  if (isPPC64)
4863    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4864      MVT::i64);
4865  else
4866    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4867      MVT::i32);
4868}
4869