PPCISelLowering.cpp revision b4202b84d7e54efe5e144885c7da63e6cc465f80
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/DerivedTypes.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // This is used in the ppcf128->int sequence.  Note it has different semantics
75  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
76  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
77
78  // PowerPC has no SREM/UREM instructions
79  setOperationAction(ISD::SREM, MVT::i32, Expand);
80  setOperationAction(ISD::UREM, MVT::i32, Expand);
81  setOperationAction(ISD::SREM, MVT::i64, Expand);
82  setOperationAction(ISD::UREM, MVT::i64, Expand);
83
84  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
85  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
86  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
87  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
88  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
89  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
90  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
91  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
92  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
93
94  // We don't support sin/cos/sqrt/fmod/pow
95  setOperationAction(ISD::FSIN , MVT::f64, Expand);
96  setOperationAction(ISD::FCOS , MVT::f64, Expand);
97  setOperationAction(ISD::FREM , MVT::f64, Expand);
98  setOperationAction(ISD::FPOW , MVT::f64, Expand);
99  setOperationAction(ISD::FSIN , MVT::f32, Expand);
100  setOperationAction(ISD::FCOS , MVT::f32, Expand);
101  setOperationAction(ISD::FREM , MVT::f32, Expand);
102  setOperationAction(ISD::FPOW , MVT::f32, Expand);
103
104  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
105
106  // If we're enabling GP optimizations, use hardware square root
107  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
108    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
109    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
110  }
111
112  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
113  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
114
115  // PowerPC does not have BSWAP, CTPOP or CTTZ
116  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
117  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
118  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
119  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
120  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
121  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
122
123  // PowerPC does not have ROTR
124  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
125  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
126
127  // PowerPC does not have Select
128  setOperationAction(ISD::SELECT, MVT::i32, Expand);
129  setOperationAction(ISD::SELECT, MVT::i64, Expand);
130  setOperationAction(ISD::SELECT, MVT::f32, Expand);
131  setOperationAction(ISD::SELECT, MVT::f64, Expand);
132
133  // PowerPC wants to turn select_cc of FP into fsel when possible.
134  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
135  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
136
137  // PowerPC wants to optimize integer setcc a bit
138  setOperationAction(ISD::SETCC, MVT::i32, Custom);
139
140  // PowerPC does not have BRCOND which requires SetCC
141  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
144
145  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
146  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
147
148  // PowerPC does not have [U|S]INT_TO_FP
149  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
150  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
151
152  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
153  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
154  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
156
157  // We cannot sextinreg(i1).  Expand to shifts.
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
159
160  // Support label based line numbers.
161  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
162  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
163
164  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
165  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
166  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
167  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
168
169
170  // We want to legalize GlobalAddress and ConstantPool nodes into the
171  // appropriate instructions to materialize the address.
172  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
173  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
174  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
175  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
176  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
177  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
178  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
179  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
180
181  // RET must be custom lowered, to meet ABI requirements.
182  setOperationAction(ISD::RET               , MVT::Other, Custom);
183
184  // TRAP is legal.
185  setOperationAction(ISD::TRAP, MVT::Other, Legal);
186
187  // TRAMPOLINE is custom lowered.
188  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
189
190  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
191  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
192
193  // VAARG is custom lowered with ELF 32 ABI
194  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
195    setOperationAction(ISD::VAARG, MVT::Other, Custom);
196  else
197    setOperationAction(ISD::VAARG, MVT::Other, Expand);
198
199  // Use the default implementation.
200  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
201  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
202  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
203  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
206
207  // We want to custom lower some of our intrinsics.
208  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
209
210  // Comparisons that require checking two conditions.
211  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
212  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
213  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
214  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
215  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
216  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
217  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
218  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
219  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
220  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
221  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
222  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
223
224  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
225    // They also have instructions for converting between i64 and fp.
226    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
227    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
228    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
229    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
230    // This is just the low 32 bits of a (signed) fp->i64 conversion.
231    // We cannot do this with Promote because i64 is not a legal type.
232    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
233
234    // FIXME: disable this lowered code.  This generates 64-bit register values,
235    // and we don't model the fact that the top part is clobbered by calls.  We
236    // need to flag these together so that the value isn't live across a call.
237    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
238  } else {
239    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
240    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
241  }
242
243  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
244    // 64-bit PowerPC implementations can support i64 types directly
245    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
246    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
247    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
248    // 64-bit PowerPC wants to expand i128 shifts itself.
249    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
250    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
251    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
252  } else {
253    // 32-bit PowerPC wants to expand i64 shifts itself.
254    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
255    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
256    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
257  }
258
259  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
260    // First set operation action for all vector types to expand. Then we
261    // will selectively turn on ones that can be effectively codegen'd.
262    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
263         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
264      MVT VT = (MVT::SimpleValueType)i;
265
266      // add/sub are legal for all supported vector VT's.
267      setOperationAction(ISD::ADD , VT, Legal);
268      setOperationAction(ISD::SUB , VT, Legal);
269
270      // We promote all shuffles to v16i8.
271      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
272      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
273
274      // We promote all non-typed operations to v4i32.
275      setOperationAction(ISD::AND   , VT, Promote);
276      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
277      setOperationAction(ISD::OR    , VT, Promote);
278      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
279      setOperationAction(ISD::XOR   , VT, Promote);
280      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
281      setOperationAction(ISD::LOAD  , VT, Promote);
282      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
283      setOperationAction(ISD::SELECT, VT, Promote);
284      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
285      setOperationAction(ISD::STORE, VT, Promote);
286      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
287
288      // No other operations are legal.
289      setOperationAction(ISD::MUL , VT, Expand);
290      setOperationAction(ISD::SDIV, VT, Expand);
291      setOperationAction(ISD::SREM, VT, Expand);
292      setOperationAction(ISD::UDIV, VT, Expand);
293      setOperationAction(ISD::UREM, VT, Expand);
294      setOperationAction(ISD::FDIV, VT, Expand);
295      setOperationAction(ISD::FNEG, VT, Expand);
296      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
297      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
298      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
299      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
300      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
301      setOperationAction(ISD::UDIVREM, VT, Expand);
302      setOperationAction(ISD::SDIVREM, VT, Expand);
303      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
304      setOperationAction(ISD::FPOW, VT, Expand);
305      setOperationAction(ISD::CTPOP, VT, Expand);
306      setOperationAction(ISD::CTLZ, VT, Expand);
307      setOperationAction(ISD::CTTZ, VT, Expand);
308    }
309
310    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
311    // with merges, splats, etc.
312    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
313
314    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
315    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
316    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
317    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
318    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
319    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
320
321    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
322    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
323    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
324    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
325
326    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
327    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
328    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
329    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
330
331    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
332    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
333
334    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
335    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
336    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
337    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
338  }
339
340  setShiftAmountType(MVT::i32);
341  setBooleanContents(ZeroOrOneBooleanContent);
342
343  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
344    setStackPointerRegisterToSaveRestore(PPC::X1);
345    setExceptionPointerRegister(PPC::X3);
346    setExceptionSelectorRegister(PPC::X4);
347  } else {
348    setStackPointerRegisterToSaveRestore(PPC::R1);
349    setExceptionPointerRegister(PPC::R3);
350    setExceptionSelectorRegister(PPC::R4);
351  }
352
353  // We have target-specific dag combine patterns for the following nodes:
354  setTargetDAGCombine(ISD::SINT_TO_FP);
355  setTargetDAGCombine(ISD::STORE);
356  setTargetDAGCombine(ISD::BR_CC);
357  setTargetDAGCombine(ISD::BSWAP);
358
359  // Darwin long double math library functions have $LDBL128 appended.
360  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
361    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
362    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
363    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
364    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
365    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
366    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
367    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
368    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
369    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
370    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
371  }
372
373  computeRegisterProperties();
374}
375
376/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
377/// function arguments in the caller parameter area.
378unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
379  TargetMachine &TM = getTargetMachine();
380  // Darwin passes everything on 4 byte boundary.
381  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
382    return 4;
383  // FIXME Elf TBD
384  return 4;
385}
386
387const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
388  switch (Opcode) {
389  default: return 0;
390  case PPCISD::FSEL:            return "PPCISD::FSEL";
391  case PPCISD::FCFID:           return "PPCISD::FCFID";
392  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
393  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
394  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
395  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
396  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
397  case PPCISD::VPERM:           return "PPCISD::VPERM";
398  case PPCISD::Hi:              return "PPCISD::Hi";
399  case PPCISD::Lo:              return "PPCISD::Lo";
400  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
401  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
402  case PPCISD::SRL:             return "PPCISD::SRL";
403  case PPCISD::SRA:             return "PPCISD::SRA";
404  case PPCISD::SHL:             return "PPCISD::SHL";
405  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
406  case PPCISD::STD_32:          return "PPCISD::STD_32";
407  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
408  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
409  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
410  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
411  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
412  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
413  case PPCISD::MFCR:            return "PPCISD::MFCR";
414  case PPCISD::VCMP:            return "PPCISD::VCMP";
415  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
416  case PPCISD::LBRX:            return "PPCISD::LBRX";
417  case PPCISD::STBRX:           return "PPCISD::STBRX";
418  case PPCISD::LARX:            return "PPCISD::LARX";
419  case PPCISD::STCX:            return "PPCISD::STCX";
420  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
421  case PPCISD::MFFS:            return "PPCISD::MFFS";
422  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
423  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
424  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
425  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
426  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
427  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
428  }
429}
430
431MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
432  return MVT::i32;
433}
434
435/// getFunctionAlignment - Return the Log2 alignment of this function.
436unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
437  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
438    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
439  else
440    return 2;
441}
442
443//===----------------------------------------------------------------------===//
444// Node matching predicates, for use by the tblgen matching code.
445//===----------------------------------------------------------------------===//
446
447/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
448static bool isFloatingPointZero(SDValue Op) {
449  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
450    return CFP->getValueAPF().isZero();
451  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
452    // Maybe this has already been legalized into the constant pool?
453    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
454      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
455        return CFP->getValueAPF().isZero();
456  }
457  return false;
458}
459
460/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
461/// true if Op is undef or if it matches the specified value.
462static bool isConstantOrUndef(int Op, int Val) {
463  return Op < 0 || Op == Val;
464}
465
466/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
467/// VPKUHUM instruction.
468bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
469  if (!isUnary) {
470    for (unsigned i = 0; i != 16; ++i)
471      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
472        return false;
473  } else {
474    for (unsigned i = 0; i != 8; ++i)
475      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
476          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
477        return false;
478  }
479  return true;
480}
481
482/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
483/// VPKUWUM instruction.
484bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
485  if (!isUnary) {
486    for (unsigned i = 0; i != 16; i += 2)
487      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
488          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
489        return false;
490  } else {
491    for (unsigned i = 0; i != 8; i += 2)
492      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
493          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
494          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
495          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
496        return false;
497  }
498  return true;
499}
500
501/// isVMerge - Common function, used to match vmrg* shuffles.
502///
503static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
504                     unsigned LHSStart, unsigned RHSStart) {
505  assert(N->getValueType(0) == MVT::v16i8 &&
506         "PPC only supports shuffles by bytes!");
507  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
508         "Unsupported merge size!");
509
510  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
511    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
512      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
513                             LHSStart+j+i*UnitSize) ||
514          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
515                             RHSStart+j+i*UnitSize))
516        return false;
517    }
518  return true;
519}
520
521/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
522/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
523bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
524                             bool isUnary) {
525  if (!isUnary)
526    return isVMerge(N, UnitSize, 8, 24);
527  return isVMerge(N, UnitSize, 8, 8);
528}
529
530/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
531/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
532bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
533                             bool isUnary) {
534  if (!isUnary)
535    return isVMerge(N, UnitSize, 0, 16);
536  return isVMerge(N, UnitSize, 0, 0);
537}
538
539
540/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
541/// amount, otherwise return -1.
542int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
543  assert(N->getValueType(0) == MVT::v16i8 &&
544         "PPC only supports shuffles by bytes!");
545
546  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
547
548  // Find the first non-undef value in the shuffle mask.
549  unsigned i;
550  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
551    /*search*/;
552
553  if (i == 16) return -1;  // all undef.
554
555  // Otherwise, check to see if the rest of the elements are consecutively
556  // numbered from this value.
557  unsigned ShiftAmt = SVOp->getMaskElt(i);
558  if (ShiftAmt < i) return -1;
559  ShiftAmt -= i;
560
561  if (!isUnary) {
562    // Check the rest of the elements to see if they are consecutive.
563    for (++i; i != 16; ++i)
564      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
565        return -1;
566  } else {
567    // Check the rest of the elements to see if they are consecutive.
568    for (++i; i != 16; ++i)
569      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
570        return -1;
571  }
572  return ShiftAmt;
573}
574
575/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
576/// specifies a splat of a single element that is suitable for input to
577/// VSPLTB/VSPLTH/VSPLTW.
578bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
579  assert(N->getValueType(0) == MVT::v16i8 &&
580         (EltSize == 1 || EltSize == 2 || EltSize == 4));
581
582  // This is a splat operation if each element of the permute is the same, and
583  // if the value doesn't reference the second vector.
584  unsigned ElementBase = N->getMaskElt(0);
585
586  // FIXME: Handle UNDEF elements too!
587  if (ElementBase >= 16)
588    return false;
589
590  // Check that the indices are consecutive, in the case of a multi-byte element
591  // splatted with a v16i8 mask.
592  for (unsigned i = 1; i != EltSize; ++i)
593    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
594      return false;
595
596  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
597    if (N->getMaskElt(i) < 0) continue;
598    for (unsigned j = 0; j != EltSize; ++j)
599      if (N->getMaskElt(i+j) != N->getMaskElt(j))
600        return false;
601  }
602  return true;
603}
604
605/// isAllNegativeZeroVector - Returns true if all elements of build_vector
606/// are -0.0.
607bool PPC::isAllNegativeZeroVector(SDNode *N) {
608  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
609
610  APInt APVal, APUndef;
611  unsigned BitSize;
612  bool HasAnyUndefs;
613
614  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
615    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
616      return CFP->getValueAPF().isNegZero();
617
618  return false;
619}
620
621/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
622/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
623unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
624  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
625  assert(isSplatShuffleMask(SVOp, EltSize));
626  return SVOp->getMaskElt(0) / EltSize;
627}
628
629/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
630/// by using a vspltis[bhw] instruction of the specified element size, return
631/// the constant being splatted.  The ByteSize field indicates the number of
632/// bytes of each element [124] -> [bhw].
633SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
634  SDValue OpVal(0, 0);
635
636  // If ByteSize of the splat is bigger than the element size of the
637  // build_vector, then we have a case where we are checking for a splat where
638  // multiple elements of the buildvector are folded together into a single
639  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
640  unsigned EltSize = 16/N->getNumOperands();
641  if (EltSize < ByteSize) {
642    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
643    SDValue UniquedVals[4];
644    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
645
646    // See if all of the elements in the buildvector agree across.
647    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
648      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
649      // If the element isn't a constant, bail fully out.
650      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
651
652
653      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
654        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
655      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
656        return SDValue();  // no match.
657    }
658
659    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
660    // either constant or undef values that are identical for each chunk.  See
661    // if these chunks can form into a larger vspltis*.
662
663    // Check to see if all of the leading entries are either 0 or -1.  If
664    // neither, then this won't fit into the immediate field.
665    bool LeadingZero = true;
666    bool LeadingOnes = true;
667    for (unsigned i = 0; i != Multiple-1; ++i) {
668      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
669
670      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
671      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
672    }
673    // Finally, check the least significant entry.
674    if (LeadingZero) {
675      if (UniquedVals[Multiple-1].getNode() == 0)
676        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
677      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
678      if (Val < 16)
679        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
680    }
681    if (LeadingOnes) {
682      if (UniquedVals[Multiple-1].getNode() == 0)
683        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
684      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
685      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
686        return DAG.getTargetConstant(Val, MVT::i32);
687    }
688
689    return SDValue();
690  }
691
692  // Check to see if this buildvec has a single non-undef value in its elements.
693  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
694    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
695    if (OpVal.getNode() == 0)
696      OpVal = N->getOperand(i);
697    else if (OpVal != N->getOperand(i))
698      return SDValue();
699  }
700
701  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
702
703  unsigned ValSizeInBytes = EltSize;
704  uint64_t Value = 0;
705  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
706    Value = CN->getZExtValue();
707  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
708    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
709    Value = FloatToBits(CN->getValueAPF().convertToFloat());
710  }
711
712  // If the splat value is larger than the element value, then we can never do
713  // this splat.  The only case that we could fit the replicated bits into our
714  // immediate field for would be zero, and we prefer to use vxor for it.
715  if (ValSizeInBytes < ByteSize) return SDValue();
716
717  // If the element value is larger than the splat value, cut it in half and
718  // check to see if the two halves are equal.  Continue doing this until we
719  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
720  while (ValSizeInBytes > ByteSize) {
721    ValSizeInBytes >>= 1;
722
723    // If the top half equals the bottom half, we're still ok.
724    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
725         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
726      return SDValue();
727  }
728
729  // Properly sign extend the value.
730  int ShAmt = (4-ByteSize)*8;
731  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
732
733  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
734  if (MaskVal == 0) return SDValue();
735
736  // Finally, if this value fits in a 5 bit sext field, return it
737  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
738    return DAG.getTargetConstant(MaskVal, MVT::i32);
739  return SDValue();
740}
741
742//===----------------------------------------------------------------------===//
743//  Addressing Mode Selection
744//===----------------------------------------------------------------------===//
745
746/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
747/// or 64-bit immediate, and if the value can be accurately represented as a
748/// sign extension from a 16-bit value.  If so, this returns true and the
749/// immediate.
750static bool isIntS16Immediate(SDNode *N, short &Imm) {
751  if (N->getOpcode() != ISD::Constant)
752    return false;
753
754  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
755  if (N->getValueType(0) == MVT::i32)
756    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
757  else
758    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
759}
760static bool isIntS16Immediate(SDValue Op, short &Imm) {
761  return isIntS16Immediate(Op.getNode(), Imm);
762}
763
764
765/// SelectAddressRegReg - Given the specified addressed, check to see if it
766/// can be represented as an indexed [r+r] operation.  Returns false if it
767/// can be more efficiently represented with [r+imm].
768bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
769                                            SDValue &Index,
770                                            SelectionDAG &DAG) const {
771  short imm = 0;
772  if (N.getOpcode() == ISD::ADD) {
773    if (isIntS16Immediate(N.getOperand(1), imm))
774      return false;    // r+i
775    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
776      return false;    // r+i
777
778    Base = N.getOperand(0);
779    Index = N.getOperand(1);
780    return true;
781  } else if (N.getOpcode() == ISD::OR) {
782    if (isIntS16Immediate(N.getOperand(1), imm))
783      return false;    // r+i can fold it if we can.
784
785    // If this is an or of disjoint bitfields, we can codegen this as an add
786    // (for better address arithmetic) if the LHS and RHS of the OR are provably
787    // disjoint.
788    APInt LHSKnownZero, LHSKnownOne;
789    APInt RHSKnownZero, RHSKnownOne;
790    DAG.ComputeMaskedBits(N.getOperand(0),
791                          APInt::getAllOnesValue(N.getOperand(0)
792                            .getValueSizeInBits()),
793                          LHSKnownZero, LHSKnownOne);
794
795    if (LHSKnownZero.getBoolValue()) {
796      DAG.ComputeMaskedBits(N.getOperand(1),
797                            APInt::getAllOnesValue(N.getOperand(1)
798                              .getValueSizeInBits()),
799                            RHSKnownZero, RHSKnownOne);
800      // If all of the bits are known zero on the LHS or RHS, the add won't
801      // carry.
802      if (~(LHSKnownZero | RHSKnownZero) == 0) {
803        Base = N.getOperand(0);
804        Index = N.getOperand(1);
805        return true;
806      }
807    }
808  }
809
810  return false;
811}
812
813/// Returns true if the address N can be represented by a base register plus
814/// a signed 16-bit displacement [r+imm], and if it is not better
815/// represented as reg+reg.
816bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
817                                            SDValue &Base,
818                                            SelectionDAG &DAG) const {
819  // FIXME dl should come from parent load or store, not from address
820  DebugLoc dl = N.getDebugLoc();
821  // If this can be more profitably realized as r+r, fail.
822  if (SelectAddressRegReg(N, Disp, Base, DAG))
823    return false;
824
825  if (N.getOpcode() == ISD::ADD) {
826    short imm = 0;
827    if (isIntS16Immediate(N.getOperand(1), imm)) {
828      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
829      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
830        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
831      } else {
832        Base = N.getOperand(0);
833      }
834      return true; // [r+i]
835    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
836      // Match LOAD (ADD (X, Lo(G))).
837     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
838             && "Cannot handle constant offsets yet!");
839      Disp = N.getOperand(1).getOperand(0);  // The global address.
840      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
841             Disp.getOpcode() == ISD::TargetConstantPool ||
842             Disp.getOpcode() == ISD::TargetJumpTable);
843      Base = N.getOperand(0);
844      return true;  // [&g+r]
845    }
846  } else if (N.getOpcode() == ISD::OR) {
847    short imm = 0;
848    if (isIntS16Immediate(N.getOperand(1), imm)) {
849      // If this is an or of disjoint bitfields, we can codegen this as an add
850      // (for better address arithmetic) if the LHS and RHS of the OR are
851      // provably disjoint.
852      APInt LHSKnownZero, LHSKnownOne;
853      DAG.ComputeMaskedBits(N.getOperand(0),
854                            APInt::getAllOnesValue(N.getOperand(0)
855                                                   .getValueSizeInBits()),
856                            LHSKnownZero, LHSKnownOne);
857
858      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
859        // If all of the bits are known zero on the LHS or RHS, the add won't
860        // carry.
861        Base = N.getOperand(0);
862        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
863        return true;
864      }
865    }
866  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
867    // Loading from a constant address.
868
869    // If this address fits entirely in a 16-bit sext immediate field, codegen
870    // this as "d, 0"
871    short Imm;
872    if (isIntS16Immediate(CN, Imm)) {
873      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
874      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
875      return true;
876    }
877
878    // Handle 32-bit sext immediates with LIS + addr mode.
879    if (CN->getValueType(0) == MVT::i32 ||
880        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
881      int Addr = (int)CN->getZExtValue();
882
883      // Otherwise, break this down into an LIS + disp.
884      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
885
886      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
887      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
888      Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
889      return true;
890    }
891  }
892
893  Disp = DAG.getTargetConstant(0, getPointerTy());
894  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
895    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
896  else
897    Base = N;
898  return true;      // [r+0]
899}
900
901/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
902/// represented as an indexed [r+r] operation.
903bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
904                                                SDValue &Index,
905                                                SelectionDAG &DAG) const {
906  // Check to see if we can easily represent this as an [r+r] address.  This
907  // will fail if it thinks that the address is more profitably represented as
908  // reg+imm, e.g. where imm = 0.
909  if (SelectAddressRegReg(N, Base, Index, DAG))
910    return true;
911
912  // If the operand is an addition, always emit this as [r+r], since this is
913  // better (for code size, and execution, as the memop does the add for free)
914  // than emitting an explicit add.
915  if (N.getOpcode() == ISD::ADD) {
916    Base = N.getOperand(0);
917    Index = N.getOperand(1);
918    return true;
919  }
920
921  // Otherwise, do it the hard way, using R0 as the base register.
922  Base = DAG.getRegister(PPC::R0, N.getValueType());
923  Index = N;
924  return true;
925}
926
927/// SelectAddressRegImmShift - Returns true if the address N can be
928/// represented by a base register plus a signed 14-bit displacement
929/// [r+imm*4].  Suitable for use by STD and friends.
930bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
931                                                 SDValue &Base,
932                                                 SelectionDAG &DAG) const {
933  // FIXME dl should come from the parent load or store, not the address
934  DebugLoc dl = N.getDebugLoc();
935  // If this can be more profitably realized as r+r, fail.
936  if (SelectAddressRegReg(N, Disp, Base, DAG))
937    return false;
938
939  if (N.getOpcode() == ISD::ADD) {
940    short imm = 0;
941    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
942      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
943      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
944        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
945      } else {
946        Base = N.getOperand(0);
947      }
948      return true; // [r+i]
949    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
950      // Match LOAD (ADD (X, Lo(G))).
951     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
952             && "Cannot handle constant offsets yet!");
953      Disp = N.getOperand(1).getOperand(0);  // The global address.
954      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
955             Disp.getOpcode() == ISD::TargetConstantPool ||
956             Disp.getOpcode() == ISD::TargetJumpTable);
957      Base = N.getOperand(0);
958      return true;  // [&g+r]
959    }
960  } else if (N.getOpcode() == ISD::OR) {
961    short imm = 0;
962    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
963      // If this is an or of disjoint bitfields, we can codegen this as an add
964      // (for better address arithmetic) if the LHS and RHS of the OR are
965      // provably disjoint.
966      APInt LHSKnownZero, LHSKnownOne;
967      DAG.ComputeMaskedBits(N.getOperand(0),
968                            APInt::getAllOnesValue(N.getOperand(0)
969                                                   .getValueSizeInBits()),
970                            LHSKnownZero, LHSKnownOne);
971      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
972        // If all of the bits are known zero on the LHS or RHS, the add won't
973        // carry.
974        Base = N.getOperand(0);
975        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
976        return true;
977      }
978    }
979  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
980    // Loading from a constant address.  Verify low two bits are clear.
981    if ((CN->getZExtValue() & 3) == 0) {
982      // If this address fits entirely in a 14-bit sext immediate field, codegen
983      // this as "d, 0"
984      short Imm;
985      if (isIntS16Immediate(CN, Imm)) {
986        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
987        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
988        return true;
989      }
990
991      // Fold the low-part of 32-bit absolute addresses into addr mode.
992      if (CN->getValueType(0) == MVT::i32 ||
993          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
994        int Addr = (int)CN->getZExtValue();
995
996        // Otherwise, break this down into an LIS + disp.
997        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
998        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
999        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1000        Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1001        return true;
1002      }
1003    }
1004  }
1005
1006  Disp = DAG.getTargetConstant(0, getPointerTy());
1007  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1008    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1009  else
1010    Base = N;
1011  return true;      // [r+0]
1012}
1013
1014
1015/// getPreIndexedAddressParts - returns true by value, base pointer and
1016/// offset pointer and addressing mode by reference if the node's address
1017/// can be legally represented as pre-indexed load / store address.
1018bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1019                                                  SDValue &Offset,
1020                                                  ISD::MemIndexedMode &AM,
1021                                                  SelectionDAG &DAG) const {
1022  // Disabled by default for now.
1023  if (!EnablePPCPreinc) return false;
1024
1025  SDValue Ptr;
1026  MVT VT;
1027  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1028    Ptr = LD->getBasePtr();
1029    VT = LD->getMemoryVT();
1030
1031  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1032    ST = ST;
1033    Ptr = ST->getBasePtr();
1034    VT  = ST->getMemoryVT();
1035  } else
1036    return false;
1037
1038  // PowerPC doesn't have preinc load/store instructions for vectors.
1039  if (VT.isVector())
1040    return false;
1041
1042  // TODO: Check reg+reg first.
1043
1044  // LDU/STU use reg+imm*4, others use reg+imm.
1045  if (VT != MVT::i64) {
1046    // reg + imm
1047    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1048      return false;
1049  } else {
1050    // reg + imm * 4.
1051    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1052      return false;
1053  }
1054
1055  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1056    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1057    // sext i32 to i64 when addr mode is r+i.
1058    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1059        LD->getExtensionType() == ISD::SEXTLOAD &&
1060        isa<ConstantSDNode>(Offset))
1061      return false;
1062  }
1063
1064  AM = ISD::PRE_INC;
1065  return true;
1066}
1067
1068//===----------------------------------------------------------------------===//
1069//  LowerOperation implementation
1070//===----------------------------------------------------------------------===//
1071
1072SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1073                                             SelectionDAG &DAG) {
1074  MVT PtrVT = Op.getValueType();
1075  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1076  Constant *C = CP->getConstVal();
1077  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1078  SDValue Zero = DAG.getConstant(0, PtrVT);
1079  // FIXME there isn't really any debug info here
1080  DebugLoc dl = Op.getDebugLoc();
1081
1082  const TargetMachine &TM = DAG.getTarget();
1083
1084  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1085  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1086
1087  // If this is a non-darwin platform, we don't support non-static relo models
1088  // yet.
1089  if (TM.getRelocationModel() == Reloc::Static ||
1090      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1091    // Generate non-pic code that has direct accesses to the constant pool.
1092    // The address of the global is just (hi(&g)+lo(&g)).
1093    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1094  }
1095
1096  if (TM.getRelocationModel() == Reloc::PIC_) {
1097    // With PIC, the first instruction is actually "GR+hi(&G)".
1098    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1099                     DAG.getNode(PPCISD::GlobalBaseReg,
1100                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1101  }
1102
1103  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1104  return Lo;
1105}
1106
1107SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1108  MVT PtrVT = Op.getValueType();
1109  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1110  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1111  SDValue Zero = DAG.getConstant(0, PtrVT);
1112  // FIXME there isn't really any debug loc here
1113  DebugLoc dl = Op.getDebugLoc();
1114
1115  const TargetMachine &TM = DAG.getTarget();
1116
1117  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1118  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1119
1120  // If this is a non-darwin platform, we don't support non-static relo models
1121  // yet.
1122  if (TM.getRelocationModel() == Reloc::Static ||
1123      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1124    // Generate non-pic code that has direct accesses to the constant pool.
1125    // The address of the global is just (hi(&g)+lo(&g)).
1126    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1127  }
1128
1129  if (TM.getRelocationModel() == Reloc::PIC_) {
1130    // With PIC, the first instruction is actually "GR+hi(&G)".
1131    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1132                     DAG.getNode(PPCISD::GlobalBaseReg,
1133                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1134  }
1135
1136  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1137  return Lo;
1138}
1139
1140SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1141                                                   SelectionDAG &DAG) {
1142  assert(0 && "TLS not implemented for PPC.");
1143  return SDValue(); // Not reached
1144}
1145
1146SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1147                                              SelectionDAG &DAG) {
1148  MVT PtrVT = Op.getValueType();
1149  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1150  GlobalValue *GV = GSDN->getGlobal();
1151  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1152  SDValue Zero = DAG.getConstant(0, PtrVT);
1153  // FIXME there isn't really any debug info here
1154  DebugLoc dl = GSDN->getDebugLoc();
1155
1156  const TargetMachine &TM = DAG.getTarget();
1157
1158  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1159  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1160
1161  // If this is a non-darwin platform, we don't support non-static relo models
1162  // yet.
1163  if (TM.getRelocationModel() == Reloc::Static ||
1164      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1165    // Generate non-pic code that has direct accesses to globals.
1166    // The address of the global is just (hi(&g)+lo(&g)).
1167    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1168  }
1169
1170  if (TM.getRelocationModel() == Reloc::PIC_) {
1171    // With PIC, the first instruction is actually "GR+hi(&G)".
1172    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1173                     DAG.getNode(PPCISD::GlobalBaseReg,
1174                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1175  }
1176
1177  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1178
1179  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1180    return Lo;
1181
1182  // If the global is weak or external, we have to go through the lazy
1183  // resolution stub.
1184  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1185}
1186
1187SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1188  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1189  DebugLoc dl = Op.getDebugLoc();
1190
1191  // If we're comparing for equality to zero, expose the fact that this is
1192  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1193  // fold the new nodes.
1194  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1195    if (C->isNullValue() && CC == ISD::SETEQ) {
1196      MVT VT = Op.getOperand(0).getValueType();
1197      SDValue Zext = Op.getOperand(0);
1198      if (VT.bitsLT(MVT::i32)) {
1199        VT = MVT::i32;
1200        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1201      }
1202      unsigned Log2b = Log2_32(VT.getSizeInBits());
1203      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1204      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1205                                DAG.getConstant(Log2b, MVT::i32));
1206      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1207    }
1208    // Leave comparisons against 0 and -1 alone for now, since they're usually
1209    // optimized.  FIXME: revisit this when we can custom lower all setcc
1210    // optimizations.
1211    if (C->isAllOnesValue() || C->isNullValue())
1212      return SDValue();
1213  }
1214
1215  // If we have an integer seteq/setne, turn it into a compare against zero
1216  // by xor'ing the rhs with the lhs, which is faster than setting a
1217  // condition register, reading it back out, and masking the correct bit.  The
1218  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1219  // the result to other bit-twiddling opportunities.
1220  MVT LHSVT = Op.getOperand(0).getValueType();
1221  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1222    MVT VT = Op.getValueType();
1223    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1224                                Op.getOperand(1));
1225    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1226  }
1227  return SDValue();
1228}
1229
1230SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1231                              int VarArgsFrameIndex,
1232                              int VarArgsStackOffset,
1233                              unsigned VarArgsNumGPR,
1234                              unsigned VarArgsNumFPR,
1235                              const PPCSubtarget &Subtarget) {
1236
1237  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1238  return SDValue(); // Not reached
1239}
1240
1241SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1242  SDValue Chain = Op.getOperand(0);
1243  SDValue Trmp = Op.getOperand(1); // trampoline
1244  SDValue FPtr = Op.getOperand(2); // nested function
1245  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1246  DebugLoc dl = Op.getDebugLoc();
1247
1248  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1249  bool isPPC64 = (PtrVT == MVT::i64);
1250  const Type *IntPtrTy =
1251    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1252
1253  TargetLowering::ArgListTy Args;
1254  TargetLowering::ArgListEntry Entry;
1255
1256  Entry.Ty = IntPtrTy;
1257  Entry.Node = Trmp; Args.push_back(Entry);
1258
1259  // TrampSize == (isPPC64 ? 48 : 40);
1260  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1261                               isPPC64 ? MVT::i64 : MVT::i32);
1262  Args.push_back(Entry);
1263
1264  Entry.Node = FPtr; Args.push_back(Entry);
1265  Entry.Node = Nest; Args.push_back(Entry);
1266
1267  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1268  std::pair<SDValue, SDValue> CallResult =
1269    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
1270                false, false, CallingConv::C, false,
1271                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1272                Args, DAG, dl);
1273
1274  SDValue Ops[] =
1275    { CallResult.first, CallResult.second };
1276
1277  return DAG.getMergeValues(Ops, 2, dl);
1278}
1279
1280SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1281                                        int VarArgsFrameIndex,
1282                                        int VarArgsStackOffset,
1283                                        unsigned VarArgsNumGPR,
1284                                        unsigned VarArgsNumFPR,
1285                                        const PPCSubtarget &Subtarget) {
1286  DebugLoc dl = Op.getDebugLoc();
1287
1288  if (Subtarget.isMachoABI()) {
1289    // vastart just stores the address of the VarArgsFrameIndex slot into the
1290    // memory location argument.
1291    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1292    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1293    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1294    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1295  }
1296
1297  // For ELF 32 ABI we follow the layout of the va_list struct.
1298  // We suppose the given va_list is already allocated.
1299  //
1300  // typedef struct {
1301  //  char gpr;     /* index into the array of 8 GPRs
1302  //                 * stored in the register save area
1303  //                 * gpr=0 corresponds to r3,
1304  //                 * gpr=1 to r4, etc.
1305  //                 */
1306  //  char fpr;     /* index into the array of 8 FPRs
1307  //                 * stored in the register save area
1308  //                 * fpr=0 corresponds to f1,
1309  //                 * fpr=1 to f2, etc.
1310  //                 */
1311  //  char *overflow_arg_area;
1312  //                /* location on stack that holds
1313  //                 * the next overflow argument
1314  //                 */
1315  //  char *reg_save_area;
1316  //               /* where r3:r10 and f1:f8 (if saved)
1317  //                * are stored
1318  //                */
1319  // } va_list[1];
1320
1321
1322  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1323  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1324
1325
1326  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1327
1328  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1329  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1330
1331  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1332  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1333
1334  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1335  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1336
1337  uint64_t FPROffset = 1;
1338  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1339
1340  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1341
1342  // Store first byte : number of int regs
1343  SDValue firstStore = DAG.getStore(Op.getOperand(0), dl, ArgGPR,
1344                                      Op.getOperand(1), SV, 0);
1345  uint64_t nextOffset = FPROffset;
1346  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1347                                  ConstFPROffset);
1348
1349  // Store second byte : number of float regs
1350  SDValue secondStore =
1351    DAG.getStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset);
1352  nextOffset += StackOffset;
1353  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1354
1355  // Store second word : arguments given on stack
1356  SDValue thirdStore =
1357    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1358  nextOffset += FrameOffset;
1359  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1360
1361  // Store third word : arguments given in registers
1362  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1363
1364}
1365
1366#include "PPCGenCallingConv.inc"
1367
1368/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1369/// depending on which subtarget is selected.
1370static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1371  if (Subtarget.isMachoABI()) {
1372    static const unsigned FPR[] = {
1373      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1374      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1375    };
1376    return FPR;
1377  }
1378
1379
1380  static const unsigned FPR[] = {
1381    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1382    PPC::F8
1383  };
1384  return FPR;
1385}
1386
1387/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1388/// the stack.
1389static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1390                                       bool isVarArg, unsigned PtrByteSize) {
1391  MVT ArgVT = Arg.getValueType();
1392  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1393  if (Flags.isByVal())
1394    ArgSize = Flags.getByValSize();
1395  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1396
1397  return ArgSize;
1398}
1399
1400SDValue
1401PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1402                                         SelectionDAG &DAG,
1403                                         int &VarArgsFrameIndex,
1404                                         int &VarArgsStackOffset,
1405                                         unsigned &VarArgsNumGPR,
1406                                         unsigned &VarArgsNumFPR,
1407                                         const PPCSubtarget &Subtarget) {
1408  // TODO: add description of PPC stack frame format, or at least some docs.
1409  //
1410  MachineFunction &MF = DAG.getMachineFunction();
1411  MachineFrameInfo *MFI = MF.getFrameInfo();
1412  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1413  SmallVector<SDValue, 8> ArgValues;
1414  SDValue Root = Op.getOperand(0);
1415  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1416  DebugLoc dl = Op.getDebugLoc();
1417
1418  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1419  bool isPPC64 = PtrVT == MVT::i64;
1420  bool isMachoABI = Subtarget.isMachoABI();
1421  bool isELF32_ABI = Subtarget.isELF32_ABI();
1422  // Potential tail calls could cause overwriting of argument stack slots.
1423  unsigned CC = MF.getFunction()->getCallingConv();
1424  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1425  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1426
1427  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1428  // Area that is at least reserved in caller of this function.
1429  unsigned MinReservedArea = ArgOffset;
1430
1431  static const unsigned GPR_32[] = {           // 32-bit registers.
1432    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1433    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1434  };
1435  static const unsigned GPR_64[] = {           // 64-bit registers.
1436    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1437    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1438  };
1439
1440  static const unsigned *FPR = GetFPR(Subtarget);
1441
1442  static const unsigned VR[] = {
1443    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1444    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1445  };
1446
1447  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1448  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1449  const unsigned Num_VR_Regs  = array_lengthof( VR);
1450
1451  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1452
1453  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1454
1455  // In 32-bit non-varargs functions, the stack space for vectors is after the
1456  // stack space for non-vectors.  We do not use this space unless we have
1457  // too many vectors to fit in registers, something that only occurs in
1458  // constructed examples:), but we have to walk the arglist to figure
1459  // that out...for the pathological case, compute VecArgOffset as the
1460  // start of the vector parameter area.  Computing VecArgOffset is the
1461  // entire point of the following loop.
1462  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1463  // to handle Elf here.
1464  unsigned VecArgOffset = ArgOffset;
1465  if (!isVarArg && !isPPC64) {
1466    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1467         ++ArgNo) {
1468      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1469      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1470      ISD::ArgFlagsTy Flags =
1471        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1472
1473      if (Flags.isByVal()) {
1474        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1475        ObjSize = Flags.getByValSize();
1476        unsigned ArgSize =
1477                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1478        VecArgOffset += ArgSize;
1479        continue;
1480      }
1481
1482      switch(ObjectVT.getSimpleVT()) {
1483      default: assert(0 && "Unhandled argument type!");
1484      case MVT::i32:
1485      case MVT::f32:
1486        VecArgOffset += isPPC64 ? 8 : 4;
1487        break;
1488      case MVT::i64:  // PPC64
1489      case MVT::f64:
1490        VecArgOffset += 8;
1491        break;
1492      case MVT::v4f32:
1493      case MVT::v4i32:
1494      case MVT::v8i16:
1495      case MVT::v16i8:
1496        // Nothing to do, we're only looking at Nonvector args here.
1497        break;
1498      }
1499    }
1500  }
1501  // We've found where the vector parameter area in memory is.  Skip the
1502  // first 12 parameters; these don't use that memory.
1503  VecArgOffset = ((VecArgOffset+15)/16)*16;
1504  VecArgOffset += 12*16;
1505
1506  // Add DAG nodes to load the arguments or copy them out of registers.  On
1507  // entry to a function on PPC, the arguments start after the linkage area,
1508  // although the first ones are often in registers.
1509  //
1510  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1511  // represented with two words (long long or double) must be copied to an
1512  // even GPR_idx value or to an even ArgOffset value.
1513
1514  SmallVector<SDValue, 8> MemOps;
1515  unsigned nAltivecParamsAtEnd = 0;
1516  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1517       ArgNo != e; ++ArgNo) {
1518    SDValue ArgVal;
1519    bool needsLoad = false;
1520    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1521    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1522    unsigned ArgSize = ObjSize;
1523    ISD::ArgFlagsTy Flags =
1524      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1525    // See if next argument requires stack alignment in ELF
1526    bool Align = Flags.isSplit();
1527
1528    unsigned CurArgOffset = ArgOffset;
1529
1530    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1531    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1532        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1533      if (isVarArg || isPPC64) {
1534        MinReservedArea = ((MinReservedArea+15)/16)*16;
1535        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1536                                                  Flags,
1537                                                  isVarArg,
1538                                                  PtrByteSize);
1539      } else  nAltivecParamsAtEnd++;
1540    } else
1541      // Calculate min reserved area.
1542      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1543                                                Flags,
1544                                                isVarArg,
1545                                                PtrByteSize);
1546
1547    // FIXME alignment for ELF may not be right
1548    // FIXME the codegen can be much improved in some cases.
1549    // We do not have to keep everything in memory.
1550    if (Flags.isByVal()) {
1551      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1552      ObjSize = Flags.getByValSize();
1553      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1554      // Double word align in ELF
1555      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1556      // Objects of size 1 and 2 are right justified, everything else is
1557      // left justified.  This means the memory address is adjusted forwards.
1558      if (ObjSize==1 || ObjSize==2) {
1559        CurArgOffset = CurArgOffset + (4 - ObjSize);
1560      }
1561      // The value of the object is its address.
1562      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1563      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1564      ArgValues.push_back(FIN);
1565      if (ObjSize==1 || ObjSize==2) {
1566        if (GPR_idx != Num_GPR_Regs) {
1567          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1568          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1569          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1570          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1571                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1572          MemOps.push_back(Store);
1573          ++GPR_idx;
1574          if (isMachoABI) ArgOffset += PtrByteSize;
1575        } else {
1576          ArgOffset += PtrByteSize;
1577        }
1578        continue;
1579      }
1580      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1581        // Store whatever pieces of the object are in registers
1582        // to memory.  ArgVal will be address of the beginning of
1583        // the object.
1584        if (GPR_idx != Num_GPR_Regs) {
1585          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1586          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1587          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1588          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1589          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1590          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1591          MemOps.push_back(Store);
1592          ++GPR_idx;
1593          if (isMachoABI) ArgOffset += PtrByteSize;
1594        } else {
1595          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1596          break;
1597        }
1598      }
1599      continue;
1600    }
1601
1602    switch (ObjectVT.getSimpleVT()) {
1603    default: assert(0 && "Unhandled argument type!");
1604    case MVT::i32:
1605      if (!isPPC64) {
1606        // Double word align in ELF
1607        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1608
1609        if (GPR_idx != Num_GPR_Regs) {
1610          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1611          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1612          ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1613          ++GPR_idx;
1614        } else {
1615          needsLoad = true;
1616          ArgSize = PtrByteSize;
1617        }
1618        // Stack align in ELF
1619        if (needsLoad && Align && isELF32_ABI)
1620          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1621        // All int arguments reserve stack space in Macho ABI.
1622        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1623        break;
1624      }
1625      // FALLTHROUGH
1626    case MVT::i64:  // PPC64
1627      if (GPR_idx != Num_GPR_Regs) {
1628        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1629        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1630        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1631
1632        if (ObjectVT == MVT::i32) {
1633          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1634          // value to MVT::i64 and then truncate to the correct register size.
1635          if (Flags.isSExt())
1636            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1637                                 DAG.getValueType(ObjectVT));
1638          else if (Flags.isZExt())
1639            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1640                                 DAG.getValueType(ObjectVT));
1641
1642          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1643        }
1644
1645        ++GPR_idx;
1646      } else {
1647        needsLoad = true;
1648        ArgSize = PtrByteSize;
1649      }
1650      // All int arguments reserve stack space in Macho ABI.
1651      if (isMachoABI || needsLoad) ArgOffset += 8;
1652      break;
1653
1654    case MVT::f32:
1655    case MVT::f64:
1656      // Every 4 bytes of argument space consumes one of the GPRs available for
1657      // argument passing.
1658      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1659        ++GPR_idx;
1660        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1661          ++GPR_idx;
1662      }
1663      if (FPR_idx != Num_FPR_Regs) {
1664        unsigned VReg;
1665        if (ObjectVT == MVT::f32)
1666          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1667        else
1668          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1669        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1670        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1671        ++FPR_idx;
1672      } else {
1673        needsLoad = true;
1674      }
1675
1676      // Stack align in ELF
1677      if (needsLoad && Align && isELF32_ABI)
1678        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1679      // All FP arguments reserve stack space in Macho ABI.
1680      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1681      break;
1682    case MVT::v4f32:
1683    case MVT::v4i32:
1684    case MVT::v8i16:
1685    case MVT::v16i8:
1686      // Note that vector arguments in registers don't reserve stack space,
1687      // except in varargs functions.
1688      if (VR_idx != Num_VR_Regs) {
1689        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1690        RegInfo.addLiveIn(VR[VR_idx], VReg);
1691        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1692        if (isVarArg) {
1693          while ((ArgOffset % 16) != 0) {
1694            ArgOffset += PtrByteSize;
1695            if (GPR_idx != Num_GPR_Regs)
1696              GPR_idx++;
1697          }
1698          ArgOffset += 16;
1699          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1700        }
1701        ++VR_idx;
1702      } else {
1703        if (!isVarArg && !isPPC64) {
1704          // Vectors go after all the nonvectors.
1705          CurArgOffset = VecArgOffset;
1706          VecArgOffset += 16;
1707        } else {
1708          // Vectors are aligned.
1709          ArgOffset = ((ArgOffset+15)/16)*16;
1710          CurArgOffset = ArgOffset;
1711          ArgOffset += 16;
1712        }
1713        needsLoad = true;
1714      }
1715      break;
1716    }
1717
1718    // We need to load the argument to a virtual register if we determined above
1719    // that we ran out of physical registers of the appropriate type.
1720    if (needsLoad) {
1721      int FI = MFI->CreateFixedObject(ObjSize,
1722                                      CurArgOffset + (ArgSize - ObjSize),
1723                                      isImmutable);
1724      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1725      ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
1726    }
1727
1728    ArgValues.push_back(ArgVal);
1729  }
1730
1731  // Set the size that is at least reserved in caller of this function.  Tail
1732  // call optimized function's reserved stack space needs to be aligned so that
1733  // taking the difference between two stack areas will result in an aligned
1734  // stack.
1735  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1736  // Add the Altivec parameters at the end, if needed.
1737  if (nAltivecParamsAtEnd) {
1738    MinReservedArea = ((MinReservedArea+15)/16)*16;
1739    MinReservedArea += 16*nAltivecParamsAtEnd;
1740  }
1741  MinReservedArea =
1742    std::max(MinReservedArea,
1743             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1744  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1745    getStackAlignment();
1746  unsigned AlignMask = TargetAlign-1;
1747  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1748  FI->setMinReservedArea(MinReservedArea);
1749
1750  // If the function takes variable number of arguments, make a frame index for
1751  // the start of the first vararg value... for expansion of llvm.va_start.
1752  if (isVarArg) {
1753
1754    int depth;
1755    if (isELF32_ABI) {
1756      VarArgsNumGPR = GPR_idx;
1757      VarArgsNumFPR = FPR_idx;
1758
1759      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1760      // pointer.
1761      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1762                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1763                PtrVT.getSizeInBits()/8);
1764
1765      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1766                                                  ArgOffset);
1767
1768    }
1769    else
1770      depth = ArgOffset;
1771
1772    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1773                                               depth);
1774    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1775
1776    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1777    // stored to the VarArgsFrameIndex on the stack.
1778    if (isELF32_ABI) {
1779      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1780        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1781        SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1782        MemOps.push_back(Store);
1783        // Increment the address by four for the next argument to store
1784        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1785        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1786      }
1787    }
1788
1789    // If this function is vararg, store any remaining integer argument regs
1790    // to their spots on the stack so that they may be loaded by deferencing the
1791    // result of va_next.
1792    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1793      unsigned VReg;
1794      if (isPPC64)
1795        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1796      else
1797        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1798
1799      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1800      SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1801      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1802      MemOps.push_back(Store);
1803      // Increment the address by four for the next argument to store
1804      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1805      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1806    }
1807
1808    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1809    // on the stack.
1810    if (isELF32_ABI) {
1811      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1812        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1813        SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1814        MemOps.push_back(Store);
1815        // Increment the address by eight for the next argument to store
1816        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1817                                           PtrVT);
1818        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1819      }
1820
1821      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1822        unsigned VReg;
1823        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1824
1825        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1826        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::f64);
1827        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1828        MemOps.push_back(Store);
1829        // Increment the address by eight for the next argument to store
1830        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1831                                           PtrVT);
1832        FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1833      }
1834    }
1835  }
1836
1837  if (!MemOps.empty())
1838    Root = DAG.getNode(ISD::TokenFactor, dl,
1839                       MVT::Other, &MemOps[0], MemOps.size());
1840
1841  ArgValues.push_back(Root);
1842
1843  // Return the new list of results.
1844  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1845                     &ArgValues[0], ArgValues.size());
1846}
1847
1848/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1849/// linkage area.
1850static unsigned
1851CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1852                                     bool isPPC64,
1853                                     bool isMachoABI,
1854                                     bool isVarArg,
1855                                     unsigned CC,
1856                                     CallSDNode *TheCall,
1857                                     unsigned &nAltivecParamsAtEnd) {
1858  // Count how many bytes are to be pushed on the stack, including the linkage
1859  // area, and parameter passing area.  We start with 24/48 bytes, which is
1860  // prereserved space for [SP][CR][LR][3 x unused].
1861  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1862  unsigned NumOps = TheCall->getNumArgs();
1863  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1864
1865  // Add up all the space actually used.
1866  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1867  // they all go in registers, but we must reserve stack space for them for
1868  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1869  // assigned stack space in order, with padding so Altivec parameters are
1870  // 16-byte aligned.
1871  nAltivecParamsAtEnd = 0;
1872  for (unsigned i = 0; i != NumOps; ++i) {
1873    SDValue Arg = TheCall->getArg(i);
1874    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1875    MVT ArgVT = Arg.getValueType();
1876    // Varargs Altivec parameters are padded to a 16 byte boundary.
1877    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1878        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1879      if (!isVarArg && !isPPC64) {
1880        // Non-varargs Altivec parameters go after all the non-Altivec
1881        // parameters; handle those later so we know how much padding we need.
1882        nAltivecParamsAtEnd++;
1883        continue;
1884      }
1885      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1886      NumBytes = ((NumBytes+15)/16)*16;
1887    }
1888    NumBytes += CalculateStackSlotSize(Arg, Flags, isVarArg, PtrByteSize);
1889  }
1890
1891   // Allow for Altivec parameters at the end, if needed.
1892  if (nAltivecParamsAtEnd) {
1893    NumBytes = ((NumBytes+15)/16)*16;
1894    NumBytes += 16*nAltivecParamsAtEnd;
1895  }
1896
1897  // The prolog code of the callee may store up to 8 GPR argument registers to
1898  // the stack, allowing va_start to index over them in memory if its varargs.
1899  // Because we cannot tell if this is needed on the caller side, we have to
1900  // conservatively assume that it is needed.  As such, make sure we have at
1901  // least enough stack space for the caller to store the 8 GPRs.
1902  NumBytes = std::max(NumBytes,
1903                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1904
1905  // Tail call needs the stack to be aligned.
1906  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1907    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1908      getStackAlignment();
1909    unsigned AlignMask = TargetAlign-1;
1910    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1911  }
1912
1913  return NumBytes;
1914}
1915
1916/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1917/// adjusted to accomodate the arguments for the tailcall.
1918static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1919                                   unsigned ParamSize) {
1920
1921  if (!IsTailCall) return 0;
1922
1923  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1924  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1925  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1926  // Remember only if the new adjustement is bigger.
1927  if (SPDiff < FI->getTailCallSPDelta())
1928    FI->setTailCallSPDelta(SPDiff);
1929
1930  return SPDiff;
1931}
1932
1933/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1934/// following the call is a return. A function is eligible if caller/callee
1935/// calling conventions match, currently only fastcc supports tail calls, and
1936/// the function CALL is immediatly followed by a RET.
1937bool
1938PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1939                                                     SDValue Ret,
1940                                                     SelectionDAG& DAG) const {
1941  // Variable argument functions are not supported.
1942  if (!PerformTailCallOpt || TheCall->isVarArg())
1943    return false;
1944
1945  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1946    MachineFunction &MF = DAG.getMachineFunction();
1947    unsigned CallerCC = MF.getFunction()->getCallingConv();
1948    unsigned CalleeCC = TheCall->getCallingConv();
1949    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1950      // Functions containing by val parameters are not supported.
1951      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1952         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1953         if (Flags.isByVal()) return false;
1954      }
1955
1956      SDValue Callee = TheCall->getCallee();
1957      // Non PIC/GOT  tail calls are supported.
1958      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1959        return true;
1960
1961      // At the moment we can only do local tail calls (in same module, hidden
1962      // or protected) if we are generating PIC.
1963      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1964        return G->getGlobal()->hasHiddenVisibility()
1965            || G->getGlobal()->hasProtectedVisibility();
1966    }
1967  }
1968
1969  return false;
1970}
1971
1972/// isCallCompatibleAddress - Return the immediate to use if the specified
1973/// 32-bit value is representable in the immediate field of a BxA instruction.
1974static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1975  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1976  if (!C) return 0;
1977
1978  int Addr = C->getZExtValue();
1979  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1980      (Addr << 6 >> 6) != Addr)
1981    return 0;  // Top 6 bits have to be sext of immediate.
1982
1983  return DAG.getConstant((int)C->getZExtValue() >> 2,
1984                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1985}
1986
1987namespace {
1988
1989struct TailCallArgumentInfo {
1990  SDValue Arg;
1991  SDValue FrameIdxOp;
1992  int       FrameIdx;
1993
1994  TailCallArgumentInfo() : FrameIdx(0) {}
1995};
1996
1997}
1998
1999/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2000static void
2001StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2002                                           SDValue Chain,
2003                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2004                   SmallVector<SDValue, 8> &MemOpChains,
2005                   DebugLoc dl) {
2006  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2007    SDValue Arg = TailCallArgs[i].Arg;
2008    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2009    int FI = TailCallArgs[i].FrameIdx;
2010    // Store relative to framepointer.
2011    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2012                                       PseudoSourceValue::getFixedStack(FI),
2013                                       0));
2014  }
2015}
2016
2017/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2018/// the appropriate stack slot for the tail call optimized function call.
2019static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2020                                               MachineFunction &MF,
2021                                               SDValue Chain,
2022                                               SDValue OldRetAddr,
2023                                               SDValue OldFP,
2024                                               int SPDiff,
2025                                               bool isPPC64,
2026                                               bool isMachoABI,
2027                                               DebugLoc dl) {
2028  if (SPDiff) {
2029    // Calculate the new stack slot for the return address.
2030    int SlotSize = isPPC64 ? 8 : 4;
2031    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2032                                                                   isMachoABI);
2033    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2034                                                          NewRetAddrLoc);
2035    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
2036                                                                    isMachoABI);
2037    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2038
2039    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2040    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2041    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2042                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2043    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2044    Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2045                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2046  }
2047  return Chain;
2048}
2049
2050/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2051/// the position of the argument.
2052static void
2053CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2054                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2055                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2056  int Offset = ArgOffset + SPDiff;
2057  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2058  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2059  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2060  SDValue FIN = DAG.getFrameIndex(FI, VT);
2061  TailCallArgumentInfo Info;
2062  Info.Arg = Arg;
2063  Info.FrameIdxOp = FIN;
2064  Info.FrameIdx = FI;
2065  TailCallArguments.push_back(Info);
2066}
2067
2068/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2069/// stack slot. Returns the chain as result and the loaded frame pointers in
2070/// LROpOut/FPOpout. Used when tail calling.
2071SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2072                                                        int SPDiff,
2073                                                        SDValue Chain,
2074                                                        SDValue &LROpOut,
2075                                                        SDValue &FPOpOut,
2076                                                        DebugLoc dl) {
2077  if (SPDiff) {
2078    // Load the LR and FP stack slot for later adjusting.
2079    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2080    LROpOut = getReturnAddrFrameIndex(DAG);
2081    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2082    Chain = SDValue(LROpOut.getNode(), 1);
2083    FPOpOut = getFramePointerFrameIndex(DAG);
2084    FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2085    Chain = SDValue(FPOpOut.getNode(), 1);
2086  }
2087  return Chain;
2088}
2089
2090/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2091/// by "Src" to address "Dst" of size "Size".  Alignment information is
2092/// specified by the specific parameter attribute. The copy will be passed as
2093/// a byval function parameter.
2094/// Sometimes what we are copying is the end of a larger object, the part that
2095/// does not fit in registers.
2096static SDValue
2097CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2098                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2099                          unsigned Size, DebugLoc dl) {
2100  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2101  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2102                       false, NULL, 0, NULL, 0);
2103}
2104
2105/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2106/// tail calls.
2107static void
2108LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2109                 SDValue Arg, SDValue PtrOff, int SPDiff,
2110                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2111                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2112                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2113                 DebugLoc dl) {
2114  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2115  if (!isTailCall) {
2116    if (isVector) {
2117      SDValue StackPtr;
2118      if (isPPC64)
2119        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2120      else
2121        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2122      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2123                           DAG.getConstant(ArgOffset, PtrVT));
2124    }
2125    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2126  // Calculate and remember argument location.
2127  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2128                                  TailCallArguments);
2129}
2130
2131SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2132                                       const PPCSubtarget &Subtarget,
2133                                       TargetMachine &TM) {
2134  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2135  SDValue Chain  = TheCall->getChain();
2136  bool isVarArg   = TheCall->isVarArg();
2137  unsigned CC     = TheCall->getCallingConv();
2138  bool isTailCall = TheCall->isTailCall()
2139                 && CC == CallingConv::Fast && PerformTailCallOpt;
2140  SDValue Callee = TheCall->getCallee();
2141  unsigned NumOps  = TheCall->getNumArgs();
2142  DebugLoc dl = TheCall->getDebugLoc();
2143
2144  bool isMachoABI = Subtarget.isMachoABI();
2145  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2146
2147  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2148  bool isPPC64 = PtrVT == MVT::i64;
2149  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2150
2151  MachineFunction &MF = DAG.getMachineFunction();
2152
2153  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2154  // SelectExpr to use to put the arguments in the appropriate registers.
2155  std::vector<SDValue> args_to_use;
2156
2157  // Mark this function as potentially containing a function that contains a
2158  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2159  // and restoring the callers stack pointer in this functions epilog. This is
2160  // done because by tail calling the called function might overwrite the value
2161  // in this function's (MF) stack pointer stack slot 0(SP).
2162  if (PerformTailCallOpt && CC==CallingConv::Fast)
2163    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2164
2165  unsigned nAltivecParamsAtEnd = 0;
2166
2167  // Count how many bytes are to be pushed on the stack, including the linkage
2168  // area, and parameter passing area.  We start with 24/48 bytes, which is
2169  // prereserved space for [SP][CR][LR][3 x unused].
2170  unsigned NumBytes =
2171    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2172                                         TheCall, nAltivecParamsAtEnd);
2173
2174  // Calculate by how many bytes the stack has to be adjusted in case of tail
2175  // call optimization.
2176  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2177
2178  // Adjust the stack pointer for the new arguments...
2179  // These operations are automatically eliminated by the prolog/epilog pass
2180  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2181  SDValue CallSeqStart = Chain;
2182
2183  // Load the return address and frame pointer so it can be move somewhere else
2184  // later.
2185  SDValue LROp, FPOp;
2186  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
2187
2188  // Set up a copy of the stack pointer for use loading and storing any
2189  // arguments that may not fit in the registers available for argument
2190  // passing.
2191  SDValue StackPtr;
2192  if (isPPC64)
2193    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2194  else
2195    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2196
2197  // Figure out which arguments are going to go in registers, and which in
2198  // memory.  Also, if this is a vararg function, floating point operations
2199  // must be stored to our stack, and loaded into integer regs as well, if
2200  // any integer regs are available for argument passing.
2201  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2202  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2203
2204  static const unsigned GPR_32[] = {           // 32-bit registers.
2205    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2206    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2207  };
2208  static const unsigned GPR_64[] = {           // 64-bit registers.
2209    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2210    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2211  };
2212  static const unsigned *FPR = GetFPR(Subtarget);
2213
2214  static const unsigned VR[] = {
2215    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2216    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2217  };
2218  const unsigned NumGPRs = array_lengthof(GPR_32);
2219  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2220  const unsigned NumVRs  = array_lengthof( VR);
2221
2222  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2223
2224  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2225  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2226
2227  SmallVector<SDValue, 8> MemOpChains;
2228  for (unsigned i = 0; i != NumOps; ++i) {
2229    bool inMem = false;
2230    SDValue Arg = TheCall->getArg(i);
2231    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2232    // See if next argument requires stack alignment in ELF
2233    bool Align = Flags.isSplit();
2234
2235    // PtrOff will be used to store the current argument to the stack if a
2236    // register cannot be found for it.
2237    SDValue PtrOff;
2238
2239    // Stack align in ELF 32
2240    if (isELF32_ABI && Align)
2241      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2242                               StackPtr.getValueType());
2243    else
2244      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2245
2246    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2247
2248    // On PPC64, promote integers to 64-bit values.
2249    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2250      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2251      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2252      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2253    }
2254
2255    // FIXME Elf untested, what are alignment rules?
2256    // FIXME memcpy is used way more than necessary.  Correctness first.
2257    if (Flags.isByVal()) {
2258      unsigned Size = Flags.getByValSize();
2259      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2260      if (Size==1 || Size==2) {
2261        // Very small objects are passed right-justified.
2262        // Everything else is passed left-justified.
2263        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2264        if (GPR_idx != NumGPRs) {
2265          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2266                                          NULL, 0, VT);
2267          MemOpChains.push_back(Load.getValue(1));
2268          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2269          if (isMachoABI)
2270            ArgOffset += PtrByteSize;
2271        } else {
2272          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2273          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2274          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2275                                CallSeqStart.getNode()->getOperand(0),
2276                                Flags, DAG, Size, dl);
2277          // This must go outside the CALLSEQ_START..END.
2278          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2279                               CallSeqStart.getNode()->getOperand(1));
2280          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2281                                 NewCallSeqStart.getNode());
2282          Chain = CallSeqStart = NewCallSeqStart;
2283          ArgOffset += PtrByteSize;
2284        }
2285        continue;
2286      }
2287      // Copy entire object into memory.  There are cases where gcc-generated
2288      // code assumes it is there, even if it could be put entirely into
2289      // registers.  (This is not what the doc says.)
2290      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2291                            CallSeqStart.getNode()->getOperand(0),
2292                            Flags, DAG, Size, dl);
2293      // This must go outside the CALLSEQ_START..END.
2294      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2295                           CallSeqStart.getNode()->getOperand(1));
2296      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2297      Chain = CallSeqStart = NewCallSeqStart;
2298      // And copy the pieces of it that fit into registers.
2299      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2300        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2301        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2302        if (GPR_idx != NumGPRs) {
2303          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2304          MemOpChains.push_back(Load.getValue(1));
2305          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2306          if (isMachoABI)
2307            ArgOffset += PtrByteSize;
2308        } else {
2309          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2310          break;
2311        }
2312      }
2313      continue;
2314    }
2315
2316    switch (Arg.getValueType().getSimpleVT()) {
2317    default: assert(0 && "Unexpected ValueType for argument!");
2318    case MVT::i32:
2319    case MVT::i64:
2320      // Double word align in ELF
2321      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2322      if (GPR_idx != NumGPRs) {
2323        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2324      } else {
2325        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2326                         isPPC64, isTailCall, false, MemOpChains,
2327                         TailCallArguments, dl);
2328        inMem = true;
2329      }
2330      if (inMem || isMachoABI) {
2331        // Stack align in ELF
2332        if (isELF32_ABI && Align)
2333          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2334
2335        ArgOffset += PtrByteSize;
2336      }
2337      break;
2338    case MVT::f32:
2339    case MVT::f64:
2340      if (FPR_idx != NumFPRs) {
2341        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2342
2343        if (isVarArg) {
2344          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2345          MemOpChains.push_back(Store);
2346
2347          // Float varargs are always shadowed in available integer registers
2348          if (GPR_idx != NumGPRs) {
2349            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2350            MemOpChains.push_back(Load.getValue(1));
2351            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2352                                                                Load));
2353          }
2354          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2355            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2356            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2357            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2358            MemOpChains.push_back(Load.getValue(1));
2359            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2360                                                                Load));
2361          }
2362        } else {
2363          // If we have any FPRs remaining, we may also have GPRs remaining.
2364          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2365          // GPRs.
2366          if (isMachoABI) {
2367            if (GPR_idx != NumGPRs)
2368              ++GPR_idx;
2369            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2370                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2371              ++GPR_idx;
2372          }
2373        }
2374      } else {
2375        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2376                         isPPC64, isTailCall, false, MemOpChains,
2377                         TailCallArguments, dl);
2378        inMem = true;
2379      }
2380      if (inMem || isMachoABI) {
2381        // Stack align in ELF
2382        if (isELF32_ABI && Align)
2383          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2384        if (isPPC64)
2385          ArgOffset += 8;
2386        else
2387          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2388      }
2389      break;
2390    case MVT::v4f32:
2391    case MVT::v4i32:
2392    case MVT::v8i16:
2393    case MVT::v16i8:
2394      if (isVarArg) {
2395        // These go aligned on the stack, or in the corresponding R registers
2396        // when within range.  The Darwin PPC ABI doc claims they also go in
2397        // V registers; in fact gcc does this only for arguments that are
2398        // prototyped, not for those that match the ...  We do it for all
2399        // arguments, seems to work.
2400        while (ArgOffset % 16 !=0) {
2401          ArgOffset += PtrByteSize;
2402          if (GPR_idx != NumGPRs)
2403            GPR_idx++;
2404        }
2405        // We could elide this store in the case where the object fits
2406        // entirely in R registers.  Maybe later.
2407        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2408                            DAG.getConstant(ArgOffset, PtrVT));
2409        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2410        MemOpChains.push_back(Store);
2411        if (VR_idx != NumVRs) {
2412          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
2413          MemOpChains.push_back(Load.getValue(1));
2414          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2415        }
2416        ArgOffset += 16;
2417        for (unsigned i=0; i<16; i+=PtrByteSize) {
2418          if (GPR_idx == NumGPRs)
2419            break;
2420          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
2421                                  DAG.getConstant(i, PtrVT));
2422          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
2423          MemOpChains.push_back(Load.getValue(1));
2424          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2425        }
2426        break;
2427      }
2428
2429      // Non-varargs Altivec params generally go in registers, but have
2430      // stack space allocated at the end.
2431      if (VR_idx != NumVRs) {
2432        // Doesn't have GPR space allocated.
2433        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2434      } else if (nAltivecParamsAtEnd==0) {
2435        // We are emitting Altivec params in order.
2436        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2437                         isPPC64, isTailCall, true, MemOpChains,
2438                         TailCallArguments, dl);
2439        ArgOffset += 16;
2440      }
2441      break;
2442    }
2443  }
2444  // If all Altivec parameters fit in registers, as they usually do,
2445  // they get stack space following the non-Altivec parameters.  We
2446  // don't track this here because nobody below needs it.
2447  // If there are more Altivec parameters than fit in registers emit
2448  // the stores here.
2449  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2450    unsigned j = 0;
2451    // Offset is aligned; skip 1st 12 params which go in V registers.
2452    ArgOffset = ((ArgOffset+15)/16)*16;
2453    ArgOffset += 12*16;
2454    for (unsigned i = 0; i != NumOps; ++i) {
2455      SDValue Arg = TheCall->getArg(i);
2456      MVT ArgType = Arg.getValueType();
2457      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2458          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2459        if (++j > NumVRs) {
2460          SDValue PtrOff;
2461          // We are emitting Altivec params in order.
2462          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2463                           isPPC64, isTailCall, true, MemOpChains,
2464                           TailCallArguments, dl);
2465          ArgOffset += 16;
2466        }
2467      }
2468    }
2469  }
2470
2471  if (!MemOpChains.empty())
2472    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2473                        &MemOpChains[0], MemOpChains.size());
2474
2475  // Build a sequence of copy-to-reg nodes chained together with token chain
2476  // and flag operands which copy the outgoing args into the appropriate regs.
2477  SDValue InFlag;
2478  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2479    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2480                             RegsToPass[i].second, InFlag);
2481    InFlag = Chain.getValue(1);
2482  }
2483
2484  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2485  if (isVarArg && isELF32_ABI) {
2486    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2487    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2488    InFlag = Chain.getValue(1);
2489  }
2490
2491  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2492  // might overwrite each other in case of tail call optimization.
2493  if (isTailCall) {
2494    SmallVector<SDValue, 8> MemOpChains2;
2495    // Do not flag preceeding copytoreg stuff together with the following stuff.
2496    InFlag = SDValue();
2497    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2498                                      MemOpChains2, dl);
2499    if (!MemOpChains2.empty())
2500      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2501                          &MemOpChains2[0], MemOpChains2.size());
2502
2503    // Store the return address to the appropriate stack slot.
2504    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2505                                          isPPC64, isMachoABI, dl);
2506  }
2507
2508  // Emit callseq_end just before tailcall node.
2509  if (isTailCall) {
2510    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2511                               DAG.getIntPtrConstant(0, true), InFlag);
2512    InFlag = Chain.getValue(1);
2513  }
2514
2515  std::vector<MVT> NodeTys;
2516  NodeTys.push_back(MVT::Other);   // Returns a chain
2517  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2518
2519  SmallVector<SDValue, 8> Ops;
2520  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2521
2522  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2523  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2524  // node so that legalize doesn't hack it.
2525  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2526    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2527  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2528    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2529  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2530    // If this is an absolute destination address, use the munged value.
2531    Callee = SDValue(Dest, 0);
2532  else {
2533    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2534    // to do the call, we can't use PPCISD::CALL.
2535    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2536    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2537                        2 + (InFlag.getNode() != 0));
2538    InFlag = Chain.getValue(1);
2539
2540    // Copy the callee address into R12/X12 on darwin.
2541    if (isMachoABI) {
2542      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2543      Chain = DAG.getCopyToReg(Chain, dl, Reg, Callee, InFlag);
2544      InFlag = Chain.getValue(1);
2545    }
2546
2547    NodeTys.clear();
2548    NodeTys.push_back(MVT::Other);
2549    NodeTys.push_back(MVT::Flag);
2550    Ops.push_back(Chain);
2551    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2552    Callee.setNode(0);
2553    // Add CTR register as callee so a bctr can be emitted later.
2554    if (isTailCall)
2555      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2556  }
2557
2558  // If this is a direct call, pass the chain and the callee.
2559  if (Callee.getNode()) {
2560    Ops.push_back(Chain);
2561    Ops.push_back(Callee);
2562  }
2563  // If this is a tail call add stack pointer delta.
2564  if (isTailCall)
2565    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2566
2567  // Add argument registers to the end of the list so that they are known live
2568  // into the call.
2569  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2570    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2571                                  RegsToPass[i].second.getValueType()));
2572
2573  // When performing tail call optimization the callee pops its arguments off
2574  // the stack. Account for this here so these bytes can be pushed back on in
2575  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2576  int BytesCalleePops =
2577    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2578
2579  if (InFlag.getNode())
2580    Ops.push_back(InFlag);
2581
2582  // Emit tail call.
2583  if (isTailCall) {
2584    assert(InFlag.getNode() &&
2585           "Flag must be set. Depend on flag being set in LowerRET");
2586    Chain = DAG.getNode(PPCISD::TAILCALL, dl,
2587                        TheCall->getVTList(), &Ops[0], Ops.size());
2588    return SDValue(Chain.getNode(), Op.getResNo());
2589  }
2590
2591  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2592  InFlag = Chain.getValue(1);
2593
2594  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2595                             DAG.getIntPtrConstant(BytesCalleePops, true),
2596                             InFlag);
2597  if (TheCall->getValueType(0) != MVT::Other)
2598    InFlag = Chain.getValue(1);
2599
2600  SmallVector<SDValue, 16> ResultVals;
2601  SmallVector<CCValAssign, 16> RVLocs;
2602  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2603  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2604  CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2605
2606  // Copy all of the result registers out of their specified physreg.
2607  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2608    CCValAssign &VA = RVLocs[i];
2609    MVT VT = VA.getValVT();
2610    assert(VA.isRegLoc() && "Can only return in registers!");
2611    Chain = DAG.getCopyFromReg(Chain, dl,
2612                               VA.getLocReg(), VT, InFlag).getValue(1);
2613    ResultVals.push_back(Chain.getValue(0));
2614    InFlag = Chain.getValue(2);
2615  }
2616
2617  // If the function returns void, just return the chain.
2618  if (RVLocs.empty())
2619    return Chain;
2620
2621  // Otherwise, merge everything together with a MERGE_VALUES node.
2622  ResultVals.push_back(Chain);
2623  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
2624                            &ResultVals[0], ResultVals.size());
2625  return Res.getValue(Op.getResNo());
2626}
2627
2628SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2629                                      TargetMachine &TM) {
2630  SmallVector<CCValAssign, 16> RVLocs;
2631  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2632  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2633  DebugLoc dl = Op.getDebugLoc();
2634  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2635  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2636
2637  // If this is the first return lowered for this function, add the regs to the
2638  // liveout set for the function.
2639  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2640    for (unsigned i = 0; i != RVLocs.size(); ++i)
2641      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2642  }
2643
2644  SDValue Chain = Op.getOperand(0);
2645
2646  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2647  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2648    SDValue TailCall = Chain;
2649    SDValue TargetAddress = TailCall.getOperand(1);
2650    SDValue StackAdjustment = TailCall.getOperand(2);
2651
2652    assert(((TargetAddress.getOpcode() == ISD::Register &&
2653             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2654            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2655            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2656            isa<ConstantSDNode>(TargetAddress)) &&
2657    "Expecting an global address, external symbol, absolute value or register");
2658
2659    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2660           "Expecting a const value");
2661
2662    SmallVector<SDValue,8> Operands;
2663    Operands.push_back(Chain.getOperand(0));
2664    Operands.push_back(TargetAddress);
2665    Operands.push_back(StackAdjustment);
2666    // Copy registers used by the call. Last operand is a flag so it is not
2667    // copied.
2668    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2669      Operands.push_back(Chain.getOperand(i));
2670    }
2671    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Operands[0],
2672                       Operands.size());
2673  }
2674
2675  SDValue Flag;
2676
2677  // Copy the result values into the output registers.
2678  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2679    CCValAssign &VA = RVLocs[i];
2680    assert(VA.isRegLoc() && "Can only return in registers!");
2681    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2682                             Op.getOperand(i*2+1), Flag);
2683    Flag = Chain.getValue(1);
2684  }
2685
2686  if (Flag.getNode())
2687    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
2688  else
2689    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
2690}
2691
2692SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2693                                   const PPCSubtarget &Subtarget) {
2694  // When we pop the dynamic allocation we need to restore the SP link.
2695  DebugLoc dl = Op.getDebugLoc();
2696
2697  // Get the corect type for pointers.
2698  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2699
2700  // Construct the stack pointer operand.
2701  bool IsPPC64 = Subtarget.isPPC64();
2702  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2703  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2704
2705  // Get the operands for the STACKRESTORE.
2706  SDValue Chain = Op.getOperand(0);
2707  SDValue SaveSP = Op.getOperand(1);
2708
2709  // Load the old link SP.
2710  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
2711
2712  // Restore the stack pointer.
2713  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
2714
2715  // Store the old link SP.
2716  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
2717}
2718
2719
2720
2721SDValue
2722PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2723  MachineFunction &MF = DAG.getMachineFunction();
2724  bool IsPPC64 = PPCSubTarget.isPPC64();
2725  bool isMachoABI = PPCSubTarget.isMachoABI();
2726  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2727
2728  // Get current frame pointer save index.  The users of this index will be
2729  // primarily DYNALLOC instructions.
2730  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2731  int RASI = FI->getReturnAddrSaveIndex();
2732
2733  // If the frame pointer save index hasn't been defined yet.
2734  if (!RASI) {
2735    // Find out what the fix offset of the frame pointer save area.
2736    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2737    // Allocate the frame index for frame pointer save area.
2738    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2739    // Save the result.
2740    FI->setReturnAddrSaveIndex(RASI);
2741  }
2742  return DAG.getFrameIndex(RASI, PtrVT);
2743}
2744
2745SDValue
2746PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2747  MachineFunction &MF = DAG.getMachineFunction();
2748  bool IsPPC64 = PPCSubTarget.isPPC64();
2749  bool isMachoABI = PPCSubTarget.isMachoABI();
2750  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2751
2752  // Get current frame pointer save index.  The users of this index will be
2753  // primarily DYNALLOC instructions.
2754  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2755  int FPSI = FI->getFramePointerSaveIndex();
2756
2757  // If the frame pointer save index hasn't been defined yet.
2758  if (!FPSI) {
2759    // Find out what the fix offset of the frame pointer save area.
2760    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2761
2762    // Allocate the frame index for frame pointer save area.
2763    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2764    // Save the result.
2765    FI->setFramePointerSaveIndex(FPSI);
2766  }
2767  return DAG.getFrameIndex(FPSI, PtrVT);
2768}
2769
2770SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2771                                         SelectionDAG &DAG,
2772                                         const PPCSubtarget &Subtarget) {
2773  // Get the inputs.
2774  SDValue Chain = Op.getOperand(0);
2775  SDValue Size  = Op.getOperand(1);
2776  DebugLoc dl = Op.getDebugLoc();
2777
2778  // Get the corect type for pointers.
2779  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2780  // Negate the size.
2781  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
2782                                  DAG.getConstant(0, PtrVT), Size);
2783  // Construct a node for the frame pointer save index.
2784  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2785  // Build a DYNALLOC node.
2786  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2787  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2788  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
2789}
2790
2791/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2792/// possible.
2793SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2794  // Not FP? Not a fsel.
2795  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2796      !Op.getOperand(2).getValueType().isFloatingPoint())
2797    return Op;
2798
2799  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2800
2801  // Cannot handle SETEQ/SETNE.
2802  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
2803
2804  MVT ResVT = Op.getValueType();
2805  MVT CmpVT = Op.getOperand(0).getValueType();
2806  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2807  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2808  DebugLoc dl = Op.getDebugLoc();
2809
2810  // If the RHS of the comparison is a 0.0, we don't need to do the
2811  // subtraction at all.
2812  if (isFloatingPointZero(RHS))
2813    switch (CC) {
2814    default: break;       // SETUO etc aren't handled by fsel.
2815    case ISD::SETULT:
2816    case ISD::SETLT:
2817      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2818    case ISD::SETOGE:
2819    case ISD::SETGE:
2820      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2821        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
2822      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
2823    case ISD::SETUGT:
2824    case ISD::SETGT:
2825      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2826    case ISD::SETOLE:
2827    case ISD::SETLE:
2828      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2829        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
2830      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
2831                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
2832    }
2833
2834  SDValue Cmp;
2835  switch (CC) {
2836  default: break;       // SETUO etc aren't handled by fsel.
2837  case ISD::SETULT:
2838  case ISD::SETLT:
2839    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
2840    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2841      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2842      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
2843  case ISD::SETOGE:
2844  case ISD::SETGE:
2845    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
2846    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2847      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2848      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
2849  case ISD::SETUGT:
2850  case ISD::SETGT:
2851    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
2852    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2853      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2854      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
2855  case ISD::SETOLE:
2856  case ISD::SETLE:
2857    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
2858    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2859      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2860      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
2861  }
2862  return Op;
2863}
2864
2865// FIXME: Split this code up when LegalizeDAGTypes lands.
2866SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
2867                                           DebugLoc dl) {
2868  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2869  SDValue Src = Op.getOperand(0);
2870  if (Src.getValueType() == MVT::f32)
2871    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
2872
2873  SDValue Tmp;
2874  switch (Op.getValueType().getSimpleVT()) {
2875  default: assert(0 && "Unhandled FP_TO_INT type in custom expander!");
2876  case MVT::i32:
2877    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
2878                                                         PPCISD::FCTIDZ,
2879                      dl, MVT::f64, Src);
2880    break;
2881  case MVT::i64:
2882    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
2883    break;
2884  }
2885
2886  // Convert the FP value to an int value through memory.
2887  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2888
2889  // Emit a store to the stack slot.
2890  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
2891
2892  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2893  // add in a bias.
2894  if (Op.getValueType() == MVT::i32)
2895    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
2896                        DAG.getConstant(4, FIPtr.getValueType()));
2897  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
2898}
2899
2900SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2901  DebugLoc dl = Op.getDebugLoc();
2902  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2903  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2904    return SDValue();
2905
2906  if (Op.getOperand(0).getValueType() == MVT::i64) {
2907    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
2908                               MVT::f64, Op.getOperand(0));
2909    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
2910    if (Op.getValueType() == MVT::f32)
2911      FP = DAG.getNode(ISD::FP_ROUND, dl,
2912                       MVT::f32, FP, DAG.getIntPtrConstant(0));
2913    return FP;
2914  }
2915
2916  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2917         "Unhandled SINT_TO_FP type in custom expander!");
2918  // Since we only generate this in 64-bit mode, we can take advantage of
2919  // 64-bit registers.  In particular, sign extend the input value into the
2920  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2921  // then lfd it and fcfid it.
2922  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2923  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2924  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2925  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2926
2927  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
2928                                Op.getOperand(0));
2929
2930  // STD the extended value into the stack slot.
2931  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2932                       MachineMemOperand::MOStore, 0, 8, 8);
2933  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
2934                                DAG.getEntryNode(), Ext64, FIdx,
2935                                DAG.getMemOperand(MO));
2936  // Load the value as a double.
2937  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
2938
2939  // FCFID it and return it.
2940  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
2941  if (Op.getValueType() == MVT::f32)
2942    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
2943  return FP;
2944}
2945
2946SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2947  DebugLoc dl = Op.getDebugLoc();
2948  /*
2949   The rounding mode is in bits 30:31 of FPSR, and has the following
2950   settings:
2951     00 Round to nearest
2952     01 Round to 0
2953     10 Round to +inf
2954     11 Round to -inf
2955
2956  FLT_ROUNDS, on the other hand, expects the following:
2957    -1 Undefined
2958     0 Round to 0
2959     1 Round to nearest
2960     2 Round to +inf
2961     3 Round to -inf
2962
2963  To perform the conversion, we do:
2964    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2965  */
2966
2967  MachineFunction &MF = DAG.getMachineFunction();
2968  MVT VT = Op.getValueType();
2969  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2970  std::vector<MVT> NodeTys;
2971  SDValue MFFSreg, InFlag;
2972
2973  // Save FP Control Word to register
2974  NodeTys.push_back(MVT::f64);    // return register
2975  NodeTys.push_back(MVT::Flag);   // unused in this context
2976  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
2977
2978  // Save FP register to stack slot
2979  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2980  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2981  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
2982                                 StackSlot, NULL, 0);
2983
2984  // Load FP Control Word from low 32 bits of stack slot.
2985  SDValue Four = DAG.getConstant(4, PtrVT);
2986  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
2987  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
2988
2989  // Transform as necessary
2990  SDValue CWD1 =
2991    DAG.getNode(ISD::AND, dl, MVT::i32,
2992                CWD, DAG.getConstant(3, MVT::i32));
2993  SDValue CWD2 =
2994    DAG.getNode(ISD::SRL, dl, MVT::i32,
2995                DAG.getNode(ISD::AND, dl, MVT::i32,
2996                            DAG.getNode(ISD::XOR, dl, MVT::i32,
2997                                        CWD, DAG.getConstant(3, MVT::i32)),
2998                            DAG.getConstant(3, MVT::i32)),
2999                DAG.getConstant(1, MVT::i32));
3000
3001  SDValue RetVal =
3002    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3003
3004  return DAG.getNode((VT.getSizeInBits() < 16 ?
3005                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3006}
3007
3008SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3009  MVT VT = Op.getValueType();
3010  unsigned BitWidth = VT.getSizeInBits();
3011  DebugLoc dl = Op.getDebugLoc();
3012  assert(Op.getNumOperands() == 3 &&
3013         VT == Op.getOperand(1).getValueType() &&
3014         "Unexpected SHL!");
3015
3016  // Expand into a bunch of logical ops.  Note that these ops
3017  // depend on the PPC behavior for oversized shift amounts.
3018  SDValue Lo = Op.getOperand(0);
3019  SDValue Hi = Op.getOperand(1);
3020  SDValue Amt = Op.getOperand(2);
3021  MVT AmtVT = Amt.getValueType();
3022
3023  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3024                             DAG.getConstant(BitWidth, AmtVT), Amt);
3025  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3026  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3027  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3028  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3029                             DAG.getConstant(-BitWidth, AmtVT));
3030  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3031  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3032  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3033  SDValue OutOps[] = { OutLo, OutHi };
3034  return DAG.getMergeValues(OutOps, 2, dl);
3035}
3036
3037SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3038  MVT VT = Op.getValueType();
3039  DebugLoc dl = Op.getDebugLoc();
3040  unsigned BitWidth = VT.getSizeInBits();
3041  assert(Op.getNumOperands() == 3 &&
3042         VT == Op.getOperand(1).getValueType() &&
3043         "Unexpected SRL!");
3044
3045  // Expand into a bunch of logical ops.  Note that these ops
3046  // depend on the PPC behavior for oversized shift amounts.
3047  SDValue Lo = Op.getOperand(0);
3048  SDValue Hi = Op.getOperand(1);
3049  SDValue Amt = Op.getOperand(2);
3050  MVT AmtVT = Amt.getValueType();
3051
3052  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3053                             DAG.getConstant(BitWidth, AmtVT), Amt);
3054  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3055  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3056  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3057  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3058                             DAG.getConstant(-BitWidth, AmtVT));
3059  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3060  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3061  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3062  SDValue OutOps[] = { OutLo, OutHi };
3063  return DAG.getMergeValues(OutOps, 2, dl);
3064}
3065
3066SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3067  DebugLoc dl = Op.getDebugLoc();
3068  MVT VT = Op.getValueType();
3069  unsigned BitWidth = VT.getSizeInBits();
3070  assert(Op.getNumOperands() == 3 &&
3071         VT == Op.getOperand(1).getValueType() &&
3072         "Unexpected SRA!");
3073
3074  // Expand into a bunch of logical ops, followed by a select_cc.
3075  SDValue Lo = Op.getOperand(0);
3076  SDValue Hi = Op.getOperand(1);
3077  SDValue Amt = Op.getOperand(2);
3078  MVT AmtVT = Amt.getValueType();
3079
3080  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3081                             DAG.getConstant(BitWidth, AmtVT), Amt);
3082  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3083  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3084  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3085  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3086                             DAG.getConstant(-BitWidth, AmtVT));
3087  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3088  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3089  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3090                                  Tmp4, Tmp6, ISD::SETLE);
3091  SDValue OutOps[] = { OutLo, OutHi };
3092  return DAG.getMergeValues(OutOps, 2, dl);
3093}
3094
3095//===----------------------------------------------------------------------===//
3096// Vector related lowering.
3097//
3098
3099/// BuildSplatI - Build a canonical splati of Val with an element size of
3100/// SplatSize.  Cast the result to VT.
3101static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3102                             SelectionDAG &DAG, DebugLoc dl) {
3103  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3104
3105  static const MVT VTys[] = { // canonical VT to use for each size.
3106    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3107  };
3108
3109  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3110
3111  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3112  if (Val == -1)
3113    SplatSize = 1;
3114
3115  MVT CanonicalVT = VTys[SplatSize-1];
3116
3117  // Build a canonical splat for this value.
3118  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3119  SmallVector<SDValue, 8> Ops;
3120  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3121  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3122                              &Ops[0], Ops.size());
3123  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3124}
3125
3126/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3127/// specified intrinsic ID.
3128static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3129                                SelectionDAG &DAG, DebugLoc dl,
3130                                MVT DestVT = MVT::Other) {
3131  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3132  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3133                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3134}
3135
3136/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3137/// specified intrinsic ID.
3138static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3139                                SDValue Op2, SelectionDAG &DAG,
3140                                DebugLoc dl, MVT DestVT = MVT::Other) {
3141  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3142  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3143                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3144}
3145
3146
3147/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3148/// amount.  The result has the specified value type.
3149static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3150                             MVT VT, SelectionDAG &DAG, DebugLoc dl) {
3151  // Force LHS/RHS to be the right type.
3152  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3153  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3154
3155  int Ops[16];
3156  for (unsigned i = 0; i != 16; ++i)
3157    Ops[i] = i + Amt;
3158  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3159  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3160}
3161
3162// If this is a case we can't handle, return null and let the default
3163// expansion code take care of it.  If we CAN select this case, and if it
3164// selects to a single instruction, return Op.  Otherwise, if we can codegen
3165// this case more efficiently than a constant pool load, lower it to the
3166// sequence of ops that should be used.
3167SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3168  DebugLoc dl = Op.getDebugLoc();
3169  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3170  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3171
3172  // Check if this is a splat of a constant value.
3173  APInt APSplatBits, APSplatUndef;
3174  unsigned SplatBitSize;
3175  bool HasAnyUndefs;
3176  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3177                             HasAnyUndefs) || SplatBitSize > 32)
3178    return SDValue();
3179
3180  unsigned SplatBits = APSplatBits.getZExtValue();
3181  unsigned SplatUndef = APSplatUndef.getZExtValue();
3182  unsigned SplatSize = SplatBitSize / 8;
3183
3184  // First, handle single instruction cases.
3185
3186  // All zeros?
3187  if (SplatBits == 0) {
3188    // Canonicalize all zero vectors to be v4i32.
3189    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3190      SDValue Z = DAG.getConstant(0, MVT::i32);
3191      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3192      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3193    }
3194    return Op;
3195  }
3196
3197  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3198  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3199                    (32-SplatBitSize));
3200  if (SextVal >= -16 && SextVal <= 15)
3201    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3202
3203
3204  // Two instruction sequences.
3205
3206  // If this value is in the range [-32,30] and is even, use:
3207  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3208  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3209    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3210    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3211    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3212  }
3213
3214  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3215  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3216  // for fneg/fabs.
3217  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3218    // Make -1 and vspltisw -1:
3219    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3220
3221    // Make the VSLW intrinsic, computing 0x8000_0000.
3222    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3223                                   OnesV, DAG, dl);
3224
3225    // xor by OnesV to invert it.
3226    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3227    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3228  }
3229
3230  // Check to see if this is a wide variety of vsplti*, binop self cases.
3231  static const signed char SplatCsts[] = {
3232    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3233    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3234  };
3235
3236  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3237    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3238    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3239    int i = SplatCsts[idx];
3240
3241    // Figure out what shift amount will be used by altivec if shifted by i in
3242    // this splat size.
3243    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3244
3245    // vsplti + shl self.
3246    if (SextVal == (i << (int)TypeShiftAmt)) {
3247      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3248      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3249        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3250        Intrinsic::ppc_altivec_vslw
3251      };
3252      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3253      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3254    }
3255
3256    // vsplti + srl self.
3257    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3258      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3259      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3260        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3261        Intrinsic::ppc_altivec_vsrw
3262      };
3263      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3264      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3265    }
3266
3267    // vsplti + sra self.
3268    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3269      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3270      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3271        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3272        Intrinsic::ppc_altivec_vsraw
3273      };
3274      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3275      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3276    }
3277
3278    // vsplti + rol self.
3279    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3280                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3281      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3282      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3283        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3284        Intrinsic::ppc_altivec_vrlw
3285      };
3286      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3287      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3288    }
3289
3290    // t = vsplti c, result = vsldoi t, t, 1
3291    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3292      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3293      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3294    }
3295    // t = vsplti c, result = vsldoi t, t, 2
3296    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3297      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3298      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3299    }
3300    // t = vsplti c, result = vsldoi t, t, 3
3301    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3302      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3303      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3304    }
3305  }
3306
3307  // Three instruction sequences.
3308
3309  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3310  if (SextVal >= 0 && SextVal <= 31) {
3311    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3312    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3313    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3314    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3315  }
3316  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3317  if (SextVal >= -31 && SextVal <= 0) {
3318    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3319    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3320    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3321    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3322  }
3323
3324  return SDValue();
3325}
3326
3327/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3328/// the specified operations to build the shuffle.
3329static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3330                                      SDValue RHS, SelectionDAG &DAG,
3331                                      DebugLoc dl) {
3332  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3333  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3334  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3335
3336  enum {
3337    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3338    OP_VMRGHW,
3339    OP_VMRGLW,
3340    OP_VSPLTISW0,
3341    OP_VSPLTISW1,
3342    OP_VSPLTISW2,
3343    OP_VSPLTISW3,
3344    OP_VSLDOI4,
3345    OP_VSLDOI8,
3346    OP_VSLDOI12
3347  };
3348
3349  if (OpNum == OP_COPY) {
3350    if (LHSID == (1*9+2)*9+3) return LHS;
3351    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3352    return RHS;
3353  }
3354
3355  SDValue OpLHS, OpRHS;
3356  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3357  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3358
3359  int ShufIdxs[16];
3360  switch (OpNum) {
3361  default: assert(0 && "Unknown i32 permute!");
3362  case OP_VMRGHW:
3363    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3364    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3365    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3366    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3367    break;
3368  case OP_VMRGLW:
3369    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3370    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3371    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3372    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3373    break;
3374  case OP_VSPLTISW0:
3375    for (unsigned i = 0; i != 16; ++i)
3376      ShufIdxs[i] = (i&3)+0;
3377    break;
3378  case OP_VSPLTISW1:
3379    for (unsigned i = 0; i != 16; ++i)
3380      ShufIdxs[i] = (i&3)+4;
3381    break;
3382  case OP_VSPLTISW2:
3383    for (unsigned i = 0; i != 16; ++i)
3384      ShufIdxs[i] = (i&3)+8;
3385    break;
3386  case OP_VSPLTISW3:
3387    for (unsigned i = 0; i != 16; ++i)
3388      ShufIdxs[i] = (i&3)+12;
3389    break;
3390  case OP_VSLDOI4:
3391    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3392  case OP_VSLDOI8:
3393    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3394  case OP_VSLDOI12:
3395    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3396  }
3397  MVT VT = OpLHS.getValueType();
3398  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3399  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3400  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3401  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3402}
3403
3404/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3405/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3406/// return the code it can be lowered into.  Worst case, it can always be
3407/// lowered into a vperm.
3408SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3409                                               SelectionDAG &DAG) {
3410  DebugLoc dl = Op.getDebugLoc();
3411  SDValue V1 = Op.getOperand(0);
3412  SDValue V2 = Op.getOperand(1);
3413  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3414  MVT VT = Op.getValueType();
3415
3416  // Cases that are handled by instructions that take permute immediates
3417  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3418  // selected by the instruction selector.
3419  if (V2.getOpcode() == ISD::UNDEF) {
3420    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3421        PPC::isSplatShuffleMask(SVOp, 2) ||
3422        PPC::isSplatShuffleMask(SVOp, 4) ||
3423        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3424        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3425        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3426        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3427        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3428        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3429        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3430        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3431        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3432      return Op;
3433    }
3434  }
3435
3436  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3437  // and produce a fixed permutation.  If any of these match, do not lower to
3438  // VPERM.
3439  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3440      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3441      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3442      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3443      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3444      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3445      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3446      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3447      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3448    return Op;
3449
3450  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3451  // perfect shuffle table to emit an optimal matching sequence.
3452  SmallVector<int, 16> PermMask;
3453  SVOp->getMask(PermMask);
3454
3455  unsigned PFIndexes[4];
3456  bool isFourElementShuffle = true;
3457  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3458    unsigned EltNo = 8;   // Start out undef.
3459    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3460      if (PermMask[i*4+j] < 0)
3461        continue;   // Undef, ignore it.
3462
3463      unsigned ByteSource = PermMask[i*4+j];
3464      if ((ByteSource & 3) != j) {
3465        isFourElementShuffle = false;
3466        break;
3467      }
3468
3469      if (EltNo == 8) {
3470        EltNo = ByteSource/4;
3471      } else if (EltNo != ByteSource/4) {
3472        isFourElementShuffle = false;
3473        break;
3474      }
3475    }
3476    PFIndexes[i] = EltNo;
3477  }
3478
3479  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3480  // perfect shuffle vector to determine if it is cost effective to do this as
3481  // discrete instructions, or whether we should use a vperm.
3482  if (isFourElementShuffle) {
3483    // Compute the index in the perfect shuffle table.
3484    unsigned PFTableIndex =
3485      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3486
3487    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3488    unsigned Cost  = (PFEntry >> 30);
3489
3490    // Determining when to avoid vperm is tricky.  Many things affect the cost
3491    // of vperm, particularly how many times the perm mask needs to be computed.
3492    // For example, if the perm mask can be hoisted out of a loop or is already
3493    // used (perhaps because there are multiple permutes with the same shuffle
3494    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3495    // the loop requires an extra register.
3496    //
3497    // As a compromise, we only emit discrete instructions if the shuffle can be
3498    // generated in 3 or fewer operations.  When we have loop information
3499    // available, if this block is within a loop, we should avoid using vperm
3500    // for 3-operation perms and use a constant pool load instead.
3501    if (Cost < 3)
3502      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3503  }
3504
3505  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3506  // vector that will get spilled to the constant pool.
3507  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3508
3509  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3510  // that it is in input element units, not in bytes.  Convert now.
3511  MVT EltVT = V1.getValueType().getVectorElementType();
3512  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3513
3514  SmallVector<SDValue, 16> ResultMask;
3515  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3516    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3517
3518    for (unsigned j = 0; j != BytesPerElement; ++j)
3519      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3520                                           MVT::i32));
3521  }
3522
3523  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3524                                    &ResultMask[0], ResultMask.size());
3525  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3526}
3527
3528/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3529/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3530/// information about the intrinsic.
3531static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3532                                  bool &isDot) {
3533  unsigned IntrinsicID =
3534    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3535  CompareOpc = -1;
3536  isDot = false;
3537  switch (IntrinsicID) {
3538  default: return false;
3539    // Comparison predicates.
3540  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3541  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3542  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3543  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3544  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3545  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3546  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3547  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3548  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3549  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3550  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3551  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3552  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3553
3554    // Normal Comparisons.
3555  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3556  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3557  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3558  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3559  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3560  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3561  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3562  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3563  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3564  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3565  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3566  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3567  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3568  }
3569  return true;
3570}
3571
3572/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3573/// lower, do it, otherwise return null.
3574SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3575                                                     SelectionDAG &DAG) {
3576  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3577  // opcode number of the comparison.
3578  DebugLoc dl = Op.getDebugLoc();
3579  int CompareOpc;
3580  bool isDot;
3581  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3582    return SDValue();    // Don't custom lower most intrinsics.
3583
3584  // If this is a non-dot comparison, make the VCMP node and we are done.
3585  if (!isDot) {
3586    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
3587                                Op.getOperand(1), Op.getOperand(2),
3588                                DAG.getConstant(CompareOpc, MVT::i32));
3589    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
3590  }
3591
3592  // Create the PPCISD altivec 'dot' comparison node.
3593  SDValue Ops[] = {
3594    Op.getOperand(2),  // LHS
3595    Op.getOperand(3),  // RHS
3596    DAG.getConstant(CompareOpc, MVT::i32)
3597  };
3598  std::vector<MVT> VTs;
3599  VTs.push_back(Op.getOperand(2).getValueType());
3600  VTs.push_back(MVT::Flag);
3601  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
3602
3603  // Now that we have the comparison, emit a copy from the CR to a GPR.
3604  // This is flagged to the above dot comparison.
3605  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
3606                                DAG.getRegister(PPC::CR6, MVT::i32),
3607                                CompNode.getValue(1));
3608
3609  // Unpack the result based on how the target uses it.
3610  unsigned BitNo;   // Bit # of CR6.
3611  bool InvertBit;   // Invert result?
3612  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3613  default:  // Can't happen, don't crash on invalid number though.
3614  case 0:   // Return the value of the EQ bit of CR6.
3615    BitNo = 0; InvertBit = false;
3616    break;
3617  case 1:   // Return the inverted value of the EQ bit of CR6.
3618    BitNo = 0; InvertBit = true;
3619    break;
3620  case 2:   // Return the value of the LT bit of CR6.
3621    BitNo = 2; InvertBit = false;
3622    break;
3623  case 3:   // Return the inverted value of the LT bit of CR6.
3624    BitNo = 2; InvertBit = true;
3625    break;
3626  }
3627
3628  // Shift the bit into the low position.
3629  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
3630                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3631  // Isolate the bit.
3632  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
3633                      DAG.getConstant(1, MVT::i32));
3634
3635  // If we are supposed to, toggle the bit.
3636  if (InvertBit)
3637    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
3638                        DAG.getConstant(1, MVT::i32));
3639  return Flags;
3640}
3641
3642SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3643                                                   SelectionDAG &DAG) {
3644  DebugLoc dl = Op.getDebugLoc();
3645  // Create a stack slot that is 16-byte aligned.
3646  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3647  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3648  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3649  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3650
3651  // Store the input value into Value#0 of the stack slot.
3652  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
3653                                 Op.getOperand(0), FIdx, NULL, 0);
3654  // Load it out.
3655  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
3656}
3657
3658SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3659  DebugLoc dl = Op.getDebugLoc();
3660  if (Op.getValueType() == MVT::v4i32) {
3661    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3662
3663    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
3664    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
3665
3666    SDValue RHSSwap =   // = vrlw RHS, 16
3667      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
3668
3669    // Shrinkify inputs to v8i16.
3670    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
3671    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
3672    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
3673
3674    // Low parts multiplied together, generating 32-bit results (we ignore the
3675    // top parts).
3676    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3677                                        LHS, RHS, DAG, dl, MVT::v4i32);
3678
3679    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3680                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
3681    // Shift the high parts up 16 bits.
3682    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
3683                              Neg16, DAG, dl);
3684    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
3685  } else if (Op.getValueType() == MVT::v8i16) {
3686    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3687
3688    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
3689
3690    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3691                            LHS, RHS, Zero, DAG, dl);
3692  } else if (Op.getValueType() == MVT::v16i8) {
3693    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3694
3695    // Multiply the even 8-bit parts, producing 16-bit sums.
3696    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3697                                           LHS, RHS, DAG, dl, MVT::v8i16);
3698    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
3699
3700    // Multiply the odd 8-bit parts, producing 16-bit sums.
3701    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3702                                          LHS, RHS, DAG, dl, MVT::v8i16);
3703    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
3704
3705    // Merge the results together.
3706    int Ops[16];
3707    for (unsigned i = 0; i != 8; ++i) {
3708      Ops[i*2  ] = 2*i+1;
3709      Ops[i*2+1] = 2*i+1+16;
3710    }
3711    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
3712  } else {
3713    assert(0 && "Unknown mul to lower!");
3714    abort();
3715  }
3716}
3717
3718/// LowerOperation - Provide custom lowering hooks for some operations.
3719///
3720SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3721  switch (Op.getOpcode()) {
3722  default: assert(0 && "Wasn't expecting to be able to lower this!");
3723  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3724  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3725  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3726  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3727  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3728  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
3729  case ISD::VASTART:
3730    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3731                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3732
3733  case ISD::VAARG:
3734    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3735                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3736
3737  case ISD::FORMAL_ARGUMENTS:
3738    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3739                                 VarArgsStackOffset, VarArgsNumGPR,
3740                                 VarArgsNumFPR, PPCSubTarget);
3741
3742  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3743                                                 getTargetMachine());
3744  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3745  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3746  case ISD::DYNAMIC_STACKALLOC:
3747    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3748
3749  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3750  case ISD::FP_TO_UINT:
3751  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
3752                                                       Op.getDebugLoc());
3753  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3754  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3755
3756  // Lower 64-bit shifts.
3757  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3758  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3759  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3760
3761  // Vector-related lowering.
3762  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3763  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3764  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3765  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3766  case ISD::MUL:                return LowerMUL(Op, DAG);
3767
3768  // Frame & Return address.
3769  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3770  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3771  }
3772  return SDValue();
3773}
3774
3775void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
3776                                           SmallVectorImpl<SDValue>&Results,
3777                                           SelectionDAG &DAG) {
3778  DebugLoc dl = N->getDebugLoc();
3779  switch (N->getOpcode()) {
3780  default:
3781    assert(false && "Do not know how to custom type legalize this operation!");
3782    return;
3783  case ISD::FP_ROUND_INREG: {
3784    assert(N->getValueType(0) == MVT::ppcf128);
3785    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
3786    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3787                             MVT::f64, N->getOperand(0),
3788                             DAG.getIntPtrConstant(0));
3789    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3790                             MVT::f64, N->getOperand(0),
3791                             DAG.getIntPtrConstant(1));
3792
3793    // This sequence changes FPSCR to do round-to-zero, adds the two halves
3794    // of the long double, and puts FPSCR back the way it was.  We do not
3795    // actually model FPSCR.
3796    std::vector<MVT> NodeTys;
3797    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
3798
3799    NodeTys.push_back(MVT::f64);   // Return register
3800    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
3801    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3802    MFFSreg = Result.getValue(0);
3803    InFlag = Result.getValue(1);
3804
3805    NodeTys.clear();
3806    NodeTys.push_back(MVT::Flag);   // Returns a flag
3807    Ops[0] = DAG.getConstant(31, MVT::i32);
3808    Ops[1] = InFlag;
3809    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
3810    InFlag = Result.getValue(0);
3811
3812    NodeTys.clear();
3813    NodeTys.push_back(MVT::Flag);   // Returns a flag
3814    Ops[0] = DAG.getConstant(30, MVT::i32);
3815    Ops[1] = InFlag;
3816    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
3817    InFlag = Result.getValue(0);
3818
3819    NodeTys.clear();
3820    NodeTys.push_back(MVT::f64);    // result of add
3821    NodeTys.push_back(MVT::Flag);   // Returns a flag
3822    Ops[0] = Lo;
3823    Ops[1] = Hi;
3824    Ops[2] = InFlag;
3825    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
3826    FPreg = Result.getValue(0);
3827    InFlag = Result.getValue(1);
3828
3829    NodeTys.clear();
3830    NodeTys.push_back(MVT::f64);
3831    Ops[0] = DAG.getConstant(1, MVT::i32);
3832    Ops[1] = MFFSreg;
3833    Ops[2] = FPreg;
3834    Ops[3] = InFlag;
3835    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
3836    FPreg = Result.getValue(0);
3837
3838    // We know the low half is about to be thrown away, so just use something
3839    // convenient.
3840    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
3841                                FPreg, FPreg));
3842    return;
3843  }
3844  case ISD::FP_TO_SINT:
3845    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
3846    return;
3847  }
3848}
3849
3850
3851//===----------------------------------------------------------------------===//
3852//  Other Lowering Code
3853//===----------------------------------------------------------------------===//
3854
3855MachineBasicBlock *
3856PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3857                                    bool is64bit, unsigned BinOpcode) const {
3858  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3859  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3860
3861  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3862  MachineFunction *F = BB->getParent();
3863  MachineFunction::iterator It = BB;
3864  ++It;
3865
3866  unsigned dest = MI->getOperand(0).getReg();
3867  unsigned ptrA = MI->getOperand(1).getReg();
3868  unsigned ptrB = MI->getOperand(2).getReg();
3869  unsigned incr = MI->getOperand(3).getReg();
3870  DebugLoc dl = MI->getDebugLoc();
3871
3872  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3873  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3874  F->insert(It, loopMBB);
3875  F->insert(It, exitMBB);
3876  exitMBB->transferSuccessors(BB);
3877
3878  MachineRegisterInfo &RegInfo = F->getRegInfo();
3879  unsigned TmpReg = (!BinOpcode) ? incr :
3880    RegInfo.createVirtualRegister(
3881       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3882                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3883
3884  //  thisMBB:
3885  //   ...
3886  //   fallthrough --> loopMBB
3887  BB->addSuccessor(loopMBB);
3888
3889  //  loopMBB:
3890  //   l[wd]arx dest, ptr
3891  //   add r0, dest, incr
3892  //   st[wd]cx. r0, ptr
3893  //   bne- loopMBB
3894  //   fallthrough --> exitMBB
3895  BB = loopMBB;
3896  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3897    .addReg(ptrA).addReg(ptrB);
3898  if (BinOpcode)
3899    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3900  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3901    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3902  BuildMI(BB, dl, TII->get(PPC::BCC))
3903    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3904  BB->addSuccessor(loopMBB);
3905  BB->addSuccessor(exitMBB);
3906
3907  //  exitMBB:
3908  //   ...
3909  BB = exitMBB;
3910  return BB;
3911}
3912
3913MachineBasicBlock *
3914PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3915                                            MachineBasicBlock *BB,
3916                                            bool is8bit,    // operation
3917                                            unsigned BinOpcode) const {
3918  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3919  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3920  // In 64 bit mode we have to use 64 bits for addresses, even though the
3921  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3922  // registers without caring whether they're 32 or 64, but here we're
3923  // doing actual arithmetic on the addresses.
3924  bool is64bit = PPCSubTarget.isPPC64();
3925
3926  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3927  MachineFunction *F = BB->getParent();
3928  MachineFunction::iterator It = BB;
3929  ++It;
3930
3931  unsigned dest = MI->getOperand(0).getReg();
3932  unsigned ptrA = MI->getOperand(1).getReg();
3933  unsigned ptrB = MI->getOperand(2).getReg();
3934  unsigned incr = MI->getOperand(3).getReg();
3935  DebugLoc dl = MI->getDebugLoc();
3936
3937  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3938  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3939  F->insert(It, loopMBB);
3940  F->insert(It, exitMBB);
3941  exitMBB->transferSuccessors(BB);
3942
3943  MachineRegisterInfo &RegInfo = F->getRegInfo();
3944  const TargetRegisterClass *RC =
3945    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3946              (const TargetRegisterClass *) &PPC::GPRCRegClass;
3947  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3948  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3949  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3950  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3951  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3952  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3953  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3954  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3955  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3956  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3957  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
3958  unsigned Ptr1Reg;
3959  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
3960
3961  //  thisMBB:
3962  //   ...
3963  //   fallthrough --> loopMBB
3964  BB->addSuccessor(loopMBB);
3965
3966  // The 4-byte load must be aligned, while a char or short may be
3967  // anywhere in the word.  Hence all this nasty bookkeeping code.
3968  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
3969  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3970  //   xori shift, shift1, 24 [16]
3971  //   rlwinm ptr, ptr1, 0, 0, 29
3972  //   slw incr2, incr, shift
3973  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3974  //   slw mask, mask2, shift
3975  //  loopMBB:
3976  //   lwarx tmpDest, ptr
3977  //   add tmp, tmpDest, incr2
3978  //   andc tmp2, tmpDest, mask
3979  //   and tmp3, tmp, mask
3980  //   or tmp4, tmp3, tmp2
3981  //   stwcx. tmp4, ptr
3982  //   bne- loopMBB
3983  //   fallthrough --> exitMBB
3984  //   srw dest, tmpDest, shift
3985
3986  if (ptrA!=PPC::R0) {
3987    Ptr1Reg = RegInfo.createVirtualRegister(RC);
3988    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
3989      .addReg(ptrA).addReg(ptrB);
3990  } else {
3991    Ptr1Reg = ptrB;
3992  }
3993  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
3994      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
3995  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
3996      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
3997  if (is64bit)
3998    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
3999      .addReg(Ptr1Reg).addImm(0).addImm(61);
4000  else
4001    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4002      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4003  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4004      .addReg(incr).addReg(ShiftReg);
4005  if (is8bit)
4006    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4007  else {
4008    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4009    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4010  }
4011  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4012      .addReg(Mask2Reg).addReg(ShiftReg);
4013
4014  BB = loopMBB;
4015  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4016    .addReg(PPC::R0).addReg(PtrReg);
4017  if (BinOpcode)
4018    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4019      .addReg(Incr2Reg).addReg(TmpDestReg);
4020  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4021    .addReg(TmpDestReg).addReg(MaskReg);
4022  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4023    .addReg(TmpReg).addReg(MaskReg);
4024  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4025    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4026  BuildMI(BB, dl, TII->get(PPC::STWCX))
4027    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4028  BuildMI(BB, dl, TII->get(PPC::BCC))
4029    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4030  BB->addSuccessor(loopMBB);
4031  BB->addSuccessor(exitMBB);
4032
4033  //  exitMBB:
4034  //   ...
4035  BB = exitMBB;
4036  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4037  return BB;
4038}
4039
4040MachineBasicBlock *
4041PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4042                                               MachineBasicBlock *BB) const {
4043  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4044
4045  // To "insert" these instructions we actually have to insert their
4046  // control-flow patterns.
4047  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4048  MachineFunction::iterator It = BB;
4049  ++It;
4050
4051  MachineFunction *F = BB->getParent();
4052
4053  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4054      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4055      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4056      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4057      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4058
4059    // The incoming instruction knows the destination vreg to set, the
4060    // condition code register to branch on, the true/false values to
4061    // select between, and a branch opcode to use.
4062
4063    //  thisMBB:
4064    //  ...
4065    //   TrueVal = ...
4066    //   cmpTY ccX, r1, r2
4067    //   bCC copy1MBB
4068    //   fallthrough --> copy0MBB
4069    MachineBasicBlock *thisMBB = BB;
4070    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4071    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4072    unsigned SelectPred = MI->getOperand(4).getImm();
4073    DebugLoc dl = MI->getDebugLoc();
4074    BuildMI(BB, dl, TII->get(PPC::BCC))
4075      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4076    F->insert(It, copy0MBB);
4077    F->insert(It, sinkMBB);
4078    // Update machine-CFG edges by transferring all successors of the current
4079    // block to the new block which will contain the Phi node for the select.
4080    sinkMBB->transferSuccessors(BB);
4081    // Next, add the true and fallthrough blocks as its successors.
4082    BB->addSuccessor(copy0MBB);
4083    BB->addSuccessor(sinkMBB);
4084
4085    //  copy0MBB:
4086    //   %FalseValue = ...
4087    //   # fallthrough to sinkMBB
4088    BB = copy0MBB;
4089
4090    // Update machine-CFG edges
4091    BB->addSuccessor(sinkMBB);
4092
4093    //  sinkMBB:
4094    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4095    //  ...
4096    BB = sinkMBB;
4097    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4098      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4099      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4100  }
4101  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4102    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4103  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4104    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4105  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4106    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4107  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4108    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4109
4110  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4111    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4112  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4113    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4114  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4115    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4116  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4117    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4118
4119  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4120    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4121  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4122    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4123  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4124    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4125  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4126    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4127
4128  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4129    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4130  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4131    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4132  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4133    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4134  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4135    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4136
4137  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4138    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4139  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4140    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4141  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4142    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4143  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4144    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4145
4146  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4147    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4148  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4149    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4150  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4151    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4152  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4153    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4154
4155  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4156    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4157  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4158    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4159  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4160    BB = EmitAtomicBinary(MI, BB, false, 0);
4161  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4162    BB = EmitAtomicBinary(MI, BB, true, 0);
4163
4164  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4165           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4166    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4167
4168    unsigned dest   = MI->getOperand(0).getReg();
4169    unsigned ptrA   = MI->getOperand(1).getReg();
4170    unsigned ptrB   = MI->getOperand(2).getReg();
4171    unsigned oldval = MI->getOperand(3).getReg();
4172    unsigned newval = MI->getOperand(4).getReg();
4173    DebugLoc dl     = MI->getDebugLoc();
4174
4175    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4176    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4177    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4178    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4179    F->insert(It, loop1MBB);
4180    F->insert(It, loop2MBB);
4181    F->insert(It, midMBB);
4182    F->insert(It, exitMBB);
4183    exitMBB->transferSuccessors(BB);
4184
4185    //  thisMBB:
4186    //   ...
4187    //   fallthrough --> loopMBB
4188    BB->addSuccessor(loop1MBB);
4189
4190    // loop1MBB:
4191    //   l[wd]arx dest, ptr
4192    //   cmp[wd] dest, oldval
4193    //   bne- midMBB
4194    // loop2MBB:
4195    //   st[wd]cx. newval, ptr
4196    //   bne- loopMBB
4197    //   b exitBB
4198    // midMBB:
4199    //   st[wd]cx. dest, ptr
4200    // exitBB:
4201    BB = loop1MBB;
4202    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4203      .addReg(ptrA).addReg(ptrB);
4204    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4205      .addReg(oldval).addReg(dest);
4206    BuildMI(BB, dl, TII->get(PPC::BCC))
4207      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4208    BB->addSuccessor(loop2MBB);
4209    BB->addSuccessor(midMBB);
4210
4211    BB = loop2MBB;
4212    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4213      .addReg(newval).addReg(ptrA).addReg(ptrB);
4214    BuildMI(BB, dl, TII->get(PPC::BCC))
4215      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4216    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4217    BB->addSuccessor(loop1MBB);
4218    BB->addSuccessor(exitMBB);
4219
4220    BB = midMBB;
4221    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4222      .addReg(dest).addReg(ptrA).addReg(ptrB);
4223    BB->addSuccessor(exitMBB);
4224
4225    //  exitMBB:
4226    //   ...
4227    BB = exitMBB;
4228  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4229             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4230    // We must use 64-bit registers for addresses when targeting 64-bit,
4231    // since we're actually doing arithmetic on them.  Other registers
4232    // can be 32-bit.
4233    bool is64bit = PPCSubTarget.isPPC64();
4234    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4235
4236    unsigned dest   = MI->getOperand(0).getReg();
4237    unsigned ptrA   = MI->getOperand(1).getReg();
4238    unsigned ptrB   = MI->getOperand(2).getReg();
4239    unsigned oldval = MI->getOperand(3).getReg();
4240    unsigned newval = MI->getOperand(4).getReg();
4241    DebugLoc dl     = MI->getDebugLoc();
4242
4243    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4244    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4245    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4246    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4247    F->insert(It, loop1MBB);
4248    F->insert(It, loop2MBB);
4249    F->insert(It, midMBB);
4250    F->insert(It, exitMBB);
4251    exitMBB->transferSuccessors(BB);
4252
4253    MachineRegisterInfo &RegInfo = F->getRegInfo();
4254    const TargetRegisterClass *RC =
4255      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4256                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4257    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4258    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4259    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4260    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4261    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4262    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4263    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4264    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4265    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4266    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4267    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4268    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4269    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4270    unsigned Ptr1Reg;
4271    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4272    //  thisMBB:
4273    //   ...
4274    //   fallthrough --> loopMBB
4275    BB->addSuccessor(loop1MBB);
4276
4277    // The 4-byte load must be aligned, while a char or short may be
4278    // anywhere in the word.  Hence all this nasty bookkeeping code.
4279    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4280    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4281    //   xori shift, shift1, 24 [16]
4282    //   rlwinm ptr, ptr1, 0, 0, 29
4283    //   slw newval2, newval, shift
4284    //   slw oldval2, oldval,shift
4285    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4286    //   slw mask, mask2, shift
4287    //   and newval3, newval2, mask
4288    //   and oldval3, oldval2, mask
4289    // loop1MBB:
4290    //   lwarx tmpDest, ptr
4291    //   and tmp, tmpDest, mask
4292    //   cmpw tmp, oldval3
4293    //   bne- midMBB
4294    // loop2MBB:
4295    //   andc tmp2, tmpDest, mask
4296    //   or tmp4, tmp2, newval3
4297    //   stwcx. tmp4, ptr
4298    //   bne- loop1MBB
4299    //   b exitBB
4300    // midMBB:
4301    //   stwcx. tmpDest, ptr
4302    // exitBB:
4303    //   srw dest, tmpDest, shift
4304    if (ptrA!=PPC::R0) {
4305      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4306      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4307        .addReg(ptrA).addReg(ptrB);
4308    } else {
4309      Ptr1Reg = ptrB;
4310    }
4311    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4312        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4313    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4314        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4315    if (is64bit)
4316      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4317        .addReg(Ptr1Reg).addImm(0).addImm(61);
4318    else
4319      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4320        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4321    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4322        .addReg(newval).addReg(ShiftReg);
4323    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4324        .addReg(oldval).addReg(ShiftReg);
4325    if (is8bit)
4326      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4327    else {
4328      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4329      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4330        .addReg(Mask3Reg).addImm(65535);
4331    }
4332    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4333        .addReg(Mask2Reg).addReg(ShiftReg);
4334    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4335        .addReg(NewVal2Reg).addReg(MaskReg);
4336    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4337        .addReg(OldVal2Reg).addReg(MaskReg);
4338
4339    BB = loop1MBB;
4340    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4341        .addReg(PPC::R0).addReg(PtrReg);
4342    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4343        .addReg(TmpDestReg).addReg(MaskReg);
4344    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4345        .addReg(TmpReg).addReg(OldVal3Reg);
4346    BuildMI(BB, dl, TII->get(PPC::BCC))
4347        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4348    BB->addSuccessor(loop2MBB);
4349    BB->addSuccessor(midMBB);
4350
4351    BB = loop2MBB;
4352    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4353        .addReg(TmpDestReg).addReg(MaskReg);
4354    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4355        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4356    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4357        .addReg(PPC::R0).addReg(PtrReg);
4358    BuildMI(BB, dl, TII->get(PPC::BCC))
4359      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4360    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4361    BB->addSuccessor(loop1MBB);
4362    BB->addSuccessor(exitMBB);
4363
4364    BB = midMBB;
4365    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4366      .addReg(PPC::R0).addReg(PtrReg);
4367    BB->addSuccessor(exitMBB);
4368
4369    //  exitMBB:
4370    //   ...
4371    BB = exitMBB;
4372    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4373  } else {
4374    assert(0 && "Unexpected instr type to insert");
4375  }
4376
4377  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4378  return BB;
4379}
4380
4381//===----------------------------------------------------------------------===//
4382// Target Optimization Hooks
4383//===----------------------------------------------------------------------===//
4384
4385SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4386                                             DAGCombinerInfo &DCI) const {
4387  TargetMachine &TM = getTargetMachine();
4388  SelectionDAG &DAG = DCI.DAG;
4389  DebugLoc dl = N->getDebugLoc();
4390  switch (N->getOpcode()) {
4391  default: break;
4392  case PPCISD::SHL:
4393    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4394      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4395        return N->getOperand(0);
4396    }
4397    break;
4398  case PPCISD::SRL:
4399    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4400      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4401        return N->getOperand(0);
4402    }
4403    break;
4404  case PPCISD::SRA:
4405    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4406      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4407          C->isAllOnesValue())    // -1 >>s V -> -1.
4408        return N->getOperand(0);
4409    }
4410    break;
4411
4412  case ISD::SINT_TO_FP:
4413    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4414      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4415        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4416        // We allow the src/dst to be either f32/f64, but the intermediate
4417        // type must be i64.
4418        if (N->getOperand(0).getValueType() == MVT::i64 &&
4419            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4420          SDValue Val = N->getOperand(0).getOperand(0);
4421          if (Val.getValueType() == MVT::f32) {
4422            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4423            DCI.AddToWorklist(Val.getNode());
4424          }
4425
4426          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4427          DCI.AddToWorklist(Val.getNode());
4428          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4429          DCI.AddToWorklist(Val.getNode());
4430          if (N->getValueType(0) == MVT::f32) {
4431            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4432                              DAG.getIntPtrConstant(0));
4433            DCI.AddToWorklist(Val.getNode());
4434          }
4435          return Val;
4436        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4437          // If the intermediate type is i32, we can avoid the load/store here
4438          // too.
4439        }
4440      }
4441    }
4442    break;
4443  case ISD::STORE:
4444    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4445    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4446        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4447        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4448        N->getOperand(1).getValueType() == MVT::i32 &&
4449        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4450      SDValue Val = N->getOperand(1).getOperand(0);
4451      if (Val.getValueType() == MVT::f32) {
4452        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4453        DCI.AddToWorklist(Val.getNode());
4454      }
4455      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4456      DCI.AddToWorklist(Val.getNode());
4457
4458      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4459                        N->getOperand(2), N->getOperand(3));
4460      DCI.AddToWorklist(Val.getNode());
4461      return Val;
4462    }
4463
4464    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4465    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4466        N->getOperand(1).getNode()->hasOneUse() &&
4467        (N->getOperand(1).getValueType() == MVT::i32 ||
4468         N->getOperand(1).getValueType() == MVT::i16)) {
4469      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4470      // Do an any-extend to 32-bits if this is a half-word input.
4471      if (BSwapOp.getValueType() == MVT::i16)
4472        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4473
4474      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4475                         BSwapOp, N->getOperand(2), N->getOperand(3),
4476                         DAG.getValueType(N->getOperand(1).getValueType()));
4477    }
4478    break;
4479  case ISD::BSWAP:
4480    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4481    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4482        N->getOperand(0).hasOneUse() &&
4483        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4484      SDValue Load = N->getOperand(0);
4485      LoadSDNode *LD = cast<LoadSDNode>(Load);
4486      // Create the byte-swapping load.
4487      std::vector<MVT> VTs;
4488      VTs.push_back(MVT::i32);
4489      VTs.push_back(MVT::Other);
4490      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4491      SDValue Ops[] = {
4492        LD->getChain(),    // Chain
4493        LD->getBasePtr(),  // Ptr
4494        MO,                // MemOperand
4495        DAG.getValueType(N->getValueType(0)) // VT
4496      };
4497      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4498
4499      // If this is an i16 load, insert the truncate.
4500      SDValue ResVal = BSLoad;
4501      if (N->getValueType(0) == MVT::i16)
4502        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4503
4504      // First, combine the bswap away.  This makes the value produced by the
4505      // load dead.
4506      DCI.CombineTo(N, ResVal);
4507
4508      // Next, combine the load away, we give it a bogus result value but a real
4509      // chain result.  The result value is dead because the bswap is dead.
4510      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4511
4512      // Return N so it doesn't get rechecked!
4513      return SDValue(N, 0);
4514    }
4515
4516    break;
4517  case PPCISD::VCMP: {
4518    // If a VCMPo node already exists with exactly the same operands as this
4519    // node, use its result instead of this node (VCMPo computes both a CR6 and
4520    // a normal output).
4521    //
4522    if (!N->getOperand(0).hasOneUse() &&
4523        !N->getOperand(1).hasOneUse() &&
4524        !N->getOperand(2).hasOneUse()) {
4525
4526      // Scan all of the users of the LHS, looking for VCMPo's that match.
4527      SDNode *VCMPoNode = 0;
4528
4529      SDNode *LHSN = N->getOperand(0).getNode();
4530      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4531           UI != E; ++UI)
4532        if (UI->getOpcode() == PPCISD::VCMPo &&
4533            UI->getOperand(1) == N->getOperand(1) &&
4534            UI->getOperand(2) == N->getOperand(2) &&
4535            UI->getOperand(0) == N->getOperand(0)) {
4536          VCMPoNode = *UI;
4537          break;
4538        }
4539
4540      // If there is no VCMPo node, or if the flag value has a single use, don't
4541      // transform this.
4542      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4543        break;
4544
4545      // Look at the (necessarily single) use of the flag value.  If it has a
4546      // chain, this transformation is more complex.  Note that multiple things
4547      // could use the value result, which we should ignore.
4548      SDNode *FlagUser = 0;
4549      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4550           FlagUser == 0; ++UI) {
4551        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4552        SDNode *User = *UI;
4553        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4554          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4555            FlagUser = User;
4556            break;
4557          }
4558        }
4559      }
4560
4561      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4562      // give up for right now.
4563      if (FlagUser->getOpcode() == PPCISD::MFCR)
4564        return SDValue(VCMPoNode, 0);
4565    }
4566    break;
4567  }
4568  case ISD::BR_CC: {
4569    // If this is a branch on an altivec predicate comparison, lower this so
4570    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4571    // lowering is done pre-legalize, because the legalizer lowers the predicate
4572    // compare down to code that is difficult to reassemble.
4573    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4574    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4575    int CompareOpc;
4576    bool isDot;
4577
4578    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4579        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4580        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4581      assert(isDot && "Can't compare against a vector result!");
4582
4583      // If this is a comparison against something other than 0/1, then we know
4584      // that the condition is never/always true.
4585      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4586      if (Val != 0 && Val != 1) {
4587        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4588          return N->getOperand(0);
4589        // Always !=, turn it into an unconditional branch.
4590        return DAG.getNode(ISD::BR, dl, MVT::Other,
4591                           N->getOperand(0), N->getOperand(4));
4592      }
4593
4594      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4595
4596      // Create the PPCISD altivec 'dot' comparison node.
4597      std::vector<MVT> VTs;
4598      SDValue Ops[] = {
4599        LHS.getOperand(2),  // LHS of compare
4600        LHS.getOperand(3),  // RHS of compare
4601        DAG.getConstant(CompareOpc, MVT::i32)
4602      };
4603      VTs.push_back(LHS.getOperand(2).getValueType());
4604      VTs.push_back(MVT::Flag);
4605      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4606
4607      // Unpack the result based on how the target uses it.
4608      PPC::Predicate CompOpc;
4609      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4610      default:  // Can't happen, don't crash on invalid number though.
4611      case 0:   // Branch on the value of the EQ bit of CR6.
4612        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4613        break;
4614      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4615        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4616        break;
4617      case 2:   // Branch on the value of the LT bit of CR6.
4618        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4619        break;
4620      case 3:   // Branch on the inverted value of the LT bit of CR6.
4621        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4622        break;
4623      }
4624
4625      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
4626                         DAG.getConstant(CompOpc, MVT::i32),
4627                         DAG.getRegister(PPC::CR6, MVT::i32),
4628                         N->getOperand(4), CompNode.getValue(1));
4629    }
4630    break;
4631  }
4632  }
4633
4634  return SDValue();
4635}
4636
4637//===----------------------------------------------------------------------===//
4638// Inline Assembly Support
4639//===----------------------------------------------------------------------===//
4640
4641void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4642                                                       const APInt &Mask,
4643                                                       APInt &KnownZero,
4644                                                       APInt &KnownOne,
4645                                                       const SelectionDAG &DAG,
4646                                                       unsigned Depth) const {
4647  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4648  switch (Op.getOpcode()) {
4649  default: break;
4650  case PPCISD::LBRX: {
4651    // lhbrx is known to have the top bits cleared out.
4652    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4653      KnownZero = 0xFFFF0000;
4654    break;
4655  }
4656  case ISD::INTRINSIC_WO_CHAIN: {
4657    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4658    default: break;
4659    case Intrinsic::ppc_altivec_vcmpbfp_p:
4660    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4661    case Intrinsic::ppc_altivec_vcmpequb_p:
4662    case Intrinsic::ppc_altivec_vcmpequh_p:
4663    case Intrinsic::ppc_altivec_vcmpequw_p:
4664    case Intrinsic::ppc_altivec_vcmpgefp_p:
4665    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4666    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4667    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4668    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4669    case Intrinsic::ppc_altivec_vcmpgtub_p:
4670    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4671    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4672      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4673      break;
4674    }
4675  }
4676  }
4677}
4678
4679
4680/// getConstraintType - Given a constraint, return the type of
4681/// constraint it is for this target.
4682PPCTargetLowering::ConstraintType
4683PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4684  if (Constraint.size() == 1) {
4685    switch (Constraint[0]) {
4686    default: break;
4687    case 'b':
4688    case 'r':
4689    case 'f':
4690    case 'v':
4691    case 'y':
4692      return C_RegisterClass;
4693    }
4694  }
4695  return TargetLowering::getConstraintType(Constraint);
4696}
4697
4698std::pair<unsigned, const TargetRegisterClass*>
4699PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4700                                                MVT VT) const {
4701  if (Constraint.size() == 1) {
4702    // GCC RS6000 Constraint Letters
4703    switch (Constraint[0]) {
4704    case 'b':   // R1-R31
4705    case 'r':   // R0-R31
4706      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4707        return std::make_pair(0U, PPC::G8RCRegisterClass);
4708      return std::make_pair(0U, PPC::GPRCRegisterClass);
4709    case 'f':
4710      if (VT == MVT::f32)
4711        return std::make_pair(0U, PPC::F4RCRegisterClass);
4712      else if (VT == MVT::f64)
4713        return std::make_pair(0U, PPC::F8RCRegisterClass);
4714      break;
4715    case 'v':
4716      return std::make_pair(0U, PPC::VRRCRegisterClass);
4717    case 'y':   // crrc
4718      return std::make_pair(0U, PPC::CRRCRegisterClass);
4719    }
4720  }
4721
4722  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4723}
4724
4725
4726/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4727/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
4728/// it means one of the asm constraint of the inline asm instruction being
4729/// processed is 'm'.
4730void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4731                                                     bool hasMemory,
4732                                                     std::vector<SDValue>&Ops,
4733                                                     SelectionDAG &DAG) const {
4734  SDValue Result(0,0);
4735  switch (Letter) {
4736  default: break;
4737  case 'I':
4738  case 'J':
4739  case 'K':
4740  case 'L':
4741  case 'M':
4742  case 'N':
4743  case 'O':
4744  case 'P': {
4745    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4746    if (!CST) return; // Must be an immediate to match.
4747    unsigned Value = CST->getZExtValue();
4748    switch (Letter) {
4749    default: assert(0 && "Unknown constraint letter!");
4750    case 'I':  // "I" is a signed 16-bit constant.
4751      if ((short)Value == (int)Value)
4752        Result = DAG.getTargetConstant(Value, Op.getValueType());
4753      break;
4754    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4755    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4756      if ((short)Value == 0)
4757        Result = DAG.getTargetConstant(Value, Op.getValueType());
4758      break;
4759    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4760      if ((Value >> 16) == 0)
4761        Result = DAG.getTargetConstant(Value, Op.getValueType());
4762      break;
4763    case 'M':  // "M" is a constant that is greater than 31.
4764      if (Value > 31)
4765        Result = DAG.getTargetConstant(Value, Op.getValueType());
4766      break;
4767    case 'N':  // "N" is a positive constant that is an exact power of two.
4768      if ((int)Value > 0 && isPowerOf2_32(Value))
4769        Result = DAG.getTargetConstant(Value, Op.getValueType());
4770      break;
4771    case 'O':  // "O" is the constant zero.
4772      if (Value == 0)
4773        Result = DAG.getTargetConstant(Value, Op.getValueType());
4774      break;
4775    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4776      if ((short)-Value == (int)-Value)
4777        Result = DAG.getTargetConstant(Value, Op.getValueType());
4778      break;
4779    }
4780    break;
4781  }
4782  }
4783
4784  if (Result.getNode()) {
4785    Ops.push_back(Result);
4786    return;
4787  }
4788
4789  // Handle standard constraint letters.
4790  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
4791}
4792
4793// isLegalAddressingMode - Return true if the addressing mode represented
4794// by AM is legal for this target, for a load/store of the specified type.
4795bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4796                                              const Type *Ty) const {
4797  // FIXME: PPC does not allow r+i addressing modes for vectors!
4798
4799  // PPC allows a sign-extended 16-bit immediate field.
4800  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4801    return false;
4802
4803  // No global is ever allowed as a base.
4804  if (AM.BaseGV)
4805    return false;
4806
4807  // PPC only support r+r,
4808  switch (AM.Scale) {
4809  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4810    break;
4811  case 1:
4812    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4813      return false;
4814    // Otherwise we have r+r or r+i.
4815    break;
4816  case 2:
4817    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4818      return false;
4819    // Allow 2*r as r+r.
4820    break;
4821  default:
4822    // No other scales are supported.
4823    return false;
4824  }
4825
4826  return true;
4827}
4828
4829/// isLegalAddressImmediate - Return true if the integer value can be used
4830/// as the offset of the target addressing mode for load / store of the
4831/// given type.
4832bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4833  // PPC allows a sign-extended 16-bit immediate field.
4834  return (V > -(1 << 16) && V < (1 << 16)-1);
4835}
4836
4837bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4838  return false;
4839}
4840
4841SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4842  DebugLoc dl = Op.getDebugLoc();
4843  // Depths > 0 not supported yet!
4844  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4845    return SDValue();
4846
4847  MachineFunction &MF = DAG.getMachineFunction();
4848  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4849
4850  // Just load the return address off the stack.
4851  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4852
4853  // Make sure the function really does not optimize away the store of the RA
4854  // to the stack.
4855  FuncInfo->setLRStoreRequired();
4856  return DAG.getLoad(getPointerTy(), dl,
4857                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
4858}
4859
4860SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4861  DebugLoc dl = Op.getDebugLoc();
4862  // Depths > 0 not supported yet!
4863  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4864    return SDValue();
4865
4866  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4867  bool isPPC64 = PtrVT == MVT::i64;
4868
4869  MachineFunction &MF = DAG.getMachineFunction();
4870  MachineFrameInfo *MFI = MF.getFrameInfo();
4871  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4872                  && MFI->getStackSize();
4873
4874  if (isPPC64)
4875    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
4876      MVT::i64);
4877  else
4878    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
4879      MVT::i32);
4880}
4881
4882bool
4883PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4884  // The PowerPC target isn't yet aware of offsets.
4885  return false;
4886}
4887