PPCISelLowering.cpp revision b453e16855f347e300f1dc0cd0dfbdd65c27b0d2
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/Constants.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                     CCValAssign::LocInfo &LocInfo,
41                                     ISD::ArgFlagsTy &ArgFlags,
42                                     CCState &State);
43static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                            MVT &LocVT,
45                                            CCValAssign::LocInfo &LocInfo,
46                                            ISD::ArgFlagsTy &ArgFlags,
47                                            CCState &State);
48static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                              MVT &LocVT,
50                                              CCValAssign::LocInfo &LocInfo,
51                                              ISD::ArgFlagsTy &ArgFlags,
52                                              CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
70
71  setPow2DivIsCheap();
72
73  // Use _setjmp/_longjmp instead of setjmp/longjmp.
74  setUseUnderscoreSetJmp(true);
75  setUseUnderscoreLongJmp(true);
76
77  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
78  // arguments are at least 4/8 bytes aligned.
79  bool isPPC64 = Subtarget->isPPC64();
80  setMinStackArgumentAlignment(isPPC64 ? 8:4);
81
82  // Set up the register classes.
83  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
84  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86
87  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
88  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
89  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
90
91  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
92
93  // PowerPC has pre-inc load and store's.
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
97  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
102  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
104
105  // This is used in the ppcf128->int sequence.  Note it has different semantics
106  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
107  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
108
109  // We do not currently implement these libm ops for PowerPC.
110  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
111  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
112  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
113  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
114  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
115
116  // PowerPC has no SREM/UREM instructions
117  setOperationAction(ISD::SREM, MVT::i32, Expand);
118  setOperationAction(ISD::UREM, MVT::i32, Expand);
119  setOperationAction(ISD::SREM, MVT::i64, Expand);
120  setOperationAction(ISD::UREM, MVT::i64, Expand);
121
122  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
123  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
124  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
125  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
126  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
127  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
128  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
129  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
130  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
131
132  // We don't support sin/cos/sqrt/fmod/pow
133  setOperationAction(ISD::FSIN , MVT::f64, Expand);
134  setOperationAction(ISD::FCOS , MVT::f64, Expand);
135  setOperationAction(ISD::FREM , MVT::f64, Expand);
136  setOperationAction(ISD::FPOW , MVT::f64, Expand);
137  setOperationAction(ISD::FMA  , MVT::f64, Legal);
138  setOperationAction(ISD::FSIN , MVT::f32, Expand);
139  setOperationAction(ISD::FCOS , MVT::f32, Expand);
140  setOperationAction(ISD::FREM , MVT::f32, Expand);
141  setOperationAction(ISD::FPOW , MVT::f32, Expand);
142  setOperationAction(ISD::FMA  , MVT::f32, Legal);
143
144  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
145
146  // If we're enabling GP optimizations, use hardware square root
147  if (!Subtarget->hasFSQRT()) {
148    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
149    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
150  }
151
152  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
153  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
154
155  // PowerPC does not have BSWAP, CTPOP or CTTZ
156  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
157  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
158  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
159  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
160  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
161  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
162  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
163  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
164  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
165  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
166
167  // PowerPC does not have ROTR
168  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
169  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
170
171  // PowerPC does not have Select
172  setOperationAction(ISD::SELECT, MVT::i32, Expand);
173  setOperationAction(ISD::SELECT, MVT::i64, Expand);
174  setOperationAction(ISD::SELECT, MVT::f32, Expand);
175  setOperationAction(ISD::SELECT, MVT::f64, Expand);
176
177  // PowerPC wants to turn select_cc of FP into fsel when possible.
178  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
179  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
180
181  // PowerPC wants to optimize integer setcc a bit
182  setOperationAction(ISD::SETCC, MVT::i32, Custom);
183
184  // PowerPC does not have BRCOND which requires SetCC
185  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
186
187  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
188
189  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
190  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
191
192  // PowerPC does not have [U|S]INT_TO_FP
193  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
194  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
195
196  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
197  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
198  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
199  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
200
201  // We cannot sextinreg(i1).  Expand to shifts.
202  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
203
204  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
205  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
206  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
207  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
208
209
210  // We want to legalize GlobalAddress and ConstantPool nodes into the
211  // appropriate instructions to materialize the address.
212  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
213  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
214  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
215  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
216  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
217  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
218  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
219  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
220  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
221  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
222
223  // TRAP is legal.
224  setOperationAction(ISD::TRAP, MVT::Other, Legal);
225
226  // TRAMPOLINE is custom lowered.
227  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
228  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
229
230  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
231  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
232
233  if (Subtarget->isSVR4ABI()) {
234    if (isPPC64) {
235      // VAARG always uses double-word chunks, so promote anything smaller.
236      setOperationAction(ISD::VAARG, MVT::i1, Promote);
237      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
238      setOperationAction(ISD::VAARG, MVT::i8, Promote);
239      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
240      setOperationAction(ISD::VAARG, MVT::i16, Promote);
241      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
242      setOperationAction(ISD::VAARG, MVT::i32, Promote);
243      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
244      setOperationAction(ISD::VAARG, MVT::Other, Expand);
245    } else {
246      // VAARG is custom lowered with the 32-bit SVR4 ABI.
247      setOperationAction(ISD::VAARG, MVT::Other, Custom);
248      setOperationAction(ISD::VAARG, MVT::i64, Custom);
249    }
250  } else
251    setOperationAction(ISD::VAARG, MVT::Other, Expand);
252
253  // Use the default implementation.
254  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
255  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
256  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
257  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
258  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
259  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
260
261  // We want to custom lower some of our intrinsics.
262  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
263
264  // Comparisons that require checking two conditions.
265  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
266  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
267  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
268  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
269  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
272  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
273  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
276  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
277
278  if (Subtarget->has64BitSupport()) {
279    // They also have instructions for converting between i64 and fp.
280    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
281    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
282    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
283    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
284    // This is just the low 32 bits of a (signed) fp->i64 conversion.
285    // We cannot do this with Promote because i64 is not a legal type.
286    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
287
288    // FIXME: disable this lowered code.  This generates 64-bit register values,
289    // and we don't model the fact that the top part is clobbered by calls.  We
290    // need to flag these together so that the value isn't live across a call.
291    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
292  } else {
293    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
294    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
295  }
296
297  if (Subtarget->use64BitRegs()) {
298    // 64-bit PowerPC implementations can support i64 types directly
299    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
300    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
301    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
302    // 64-bit PowerPC wants to expand i128 shifts itself.
303    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
304    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
305    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
306  } else {
307    // 32-bit PowerPC wants to expand i64 shifts itself.
308    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
309    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
310    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
311  }
312
313  if (Subtarget->hasAltivec()) {
314    // First set operation action for all vector types to expand. Then we
315    // will selectively turn on ones that can be effectively codegen'd.
316    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
317         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
318      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
319
320      // add/sub are legal for all supported vector VT's.
321      setOperationAction(ISD::ADD , VT, Legal);
322      setOperationAction(ISD::SUB , VT, Legal);
323
324      // We promote all shuffles to v16i8.
325      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
326      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
327
328      // We promote all non-typed operations to v4i32.
329      setOperationAction(ISD::AND   , VT, Promote);
330      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
331      setOperationAction(ISD::OR    , VT, Promote);
332      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
333      setOperationAction(ISD::XOR   , VT, Promote);
334      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
335      setOperationAction(ISD::LOAD  , VT, Promote);
336      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
337      setOperationAction(ISD::SELECT, VT, Promote);
338      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
339      setOperationAction(ISD::STORE, VT, Promote);
340      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
341
342      // No other operations are legal.
343      setOperationAction(ISD::MUL , VT, Expand);
344      setOperationAction(ISD::SDIV, VT, Expand);
345      setOperationAction(ISD::SREM, VT, Expand);
346      setOperationAction(ISD::UDIV, VT, Expand);
347      setOperationAction(ISD::UREM, VT, Expand);
348      setOperationAction(ISD::FDIV, VT, Expand);
349      setOperationAction(ISD::FNEG, VT, Expand);
350      setOperationAction(ISD::FSQRT, VT, Expand);
351      setOperationAction(ISD::FLOG, VT, Expand);
352      setOperationAction(ISD::FLOG10, VT, Expand);
353      setOperationAction(ISD::FLOG2, VT, Expand);
354      setOperationAction(ISD::FEXP, VT, Expand);
355      setOperationAction(ISD::FEXP2, VT, Expand);
356      setOperationAction(ISD::FSIN, VT, Expand);
357      setOperationAction(ISD::FCOS, VT, Expand);
358      setOperationAction(ISD::FABS, VT, Expand);
359      setOperationAction(ISD::FPOWI, VT, Expand);
360      setOperationAction(ISD::FFLOOR, VT, Expand);
361      setOperationAction(ISD::FCEIL,  VT, Expand);
362      setOperationAction(ISD::FTRUNC, VT, Expand);
363      setOperationAction(ISD::FRINT,  VT, Expand);
364      setOperationAction(ISD::FNEARBYINT, VT, Expand);
365      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
366      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
367      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
368      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
369      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
370      setOperationAction(ISD::UDIVREM, VT, Expand);
371      setOperationAction(ISD::SDIVREM, VT, Expand);
372      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
373      setOperationAction(ISD::FPOW, VT, Expand);
374      setOperationAction(ISD::CTPOP, VT, Expand);
375      setOperationAction(ISD::CTLZ, VT, Expand);
376      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
377      setOperationAction(ISD::CTTZ, VT, Expand);
378      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
379      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
380
381      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
382           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
383        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
384        setTruncStoreAction(VT, InnerVT, Expand);
385      }
386      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
387      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
388      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
389    }
390
391    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
392    // with merges, splats, etc.
393    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
394
395    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
396    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
397    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
398    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
399    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
400    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
401    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
402    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
403    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
404    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
405    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
406    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
407    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
408    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
409
410    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
411    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
412    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
413    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
414
415    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
416    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
417    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
418    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
419    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
420
421    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
422    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
423
424    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
425    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
426    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
427    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
428
429    // Altivec does not contain unordered floating-point compare instructions
430    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
431    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
432    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
433    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
434    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
435    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
436  }
437
438  if (Subtarget->has64BitSupport()) {
439    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
440    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
441  }
442
443  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
444  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
445
446  setBooleanContents(ZeroOrOneBooleanContent);
447  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
448
449  if (isPPC64) {
450    setStackPointerRegisterToSaveRestore(PPC::X1);
451    setExceptionPointerRegister(PPC::X3);
452    setExceptionSelectorRegister(PPC::X4);
453  } else {
454    setStackPointerRegisterToSaveRestore(PPC::R1);
455    setExceptionPointerRegister(PPC::R3);
456    setExceptionSelectorRegister(PPC::R4);
457  }
458
459  // We have target-specific dag combine patterns for the following nodes:
460  setTargetDAGCombine(ISD::SINT_TO_FP);
461  setTargetDAGCombine(ISD::STORE);
462  setTargetDAGCombine(ISD::BR_CC);
463  setTargetDAGCombine(ISD::BSWAP);
464
465  // Darwin long double math library functions have $LDBL128 appended.
466  if (Subtarget->isDarwin()) {
467    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
468    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
469    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
470    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
471    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
472    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
473    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
474    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
475    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
476    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
477  }
478
479  setMinFunctionAlignment(2);
480  if (PPCSubTarget.isDarwin())
481    setPrefFunctionAlignment(4);
482
483  if (isPPC64 && Subtarget->isJITCodeModel())
484    // Temporary workaround for the inability of PPC64 JIT to handle jump
485    // tables.
486    setSupportJumpTables(false);
487
488  setInsertFencesForAtomic(true);
489
490  setSchedulingPreference(Sched::Hybrid);
491
492  computeRegisterProperties();
493
494  // The Freescale cores does better with aggressive inlining of memcpy and
495  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
496  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
497      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
498    maxStoresPerMemset = 32;
499    maxStoresPerMemsetOptSize = 16;
500    maxStoresPerMemcpy = 32;
501    maxStoresPerMemcpyOptSize = 8;
502    maxStoresPerMemmove = 32;
503    maxStoresPerMemmoveOptSize = 8;
504
505    setPrefFunctionAlignment(4);
506    benefitFromCodePlacementOpt = true;
507  }
508}
509
510/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
511/// function arguments in the caller parameter area.
512unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
513  const TargetMachine &TM = getTargetMachine();
514  // Darwin passes everything on 4 byte boundary.
515  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
516    return 4;
517
518  // 16byte and wider vectors are passed on 16byte boundary.
519  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
520    if (VTy->getBitWidth() >= 128)
521      return 16;
522
523  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
524   if (PPCSubTarget.isPPC64())
525     return 8;
526
527  return 4;
528}
529
530const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
531  switch (Opcode) {
532  default: return 0;
533  case PPCISD::FSEL:            return "PPCISD::FSEL";
534  case PPCISD::FCFID:           return "PPCISD::FCFID";
535  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
536  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
537  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
538  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
539  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
540  case PPCISD::VPERM:           return "PPCISD::VPERM";
541  case PPCISD::Hi:              return "PPCISD::Hi";
542  case PPCISD::Lo:              return "PPCISD::Lo";
543  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
544  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
545  case PPCISD::LOAD:            return "PPCISD::LOAD";
546  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
547  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
548  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
549  case PPCISD::SRL:             return "PPCISD::SRL";
550  case PPCISD::SRA:             return "PPCISD::SRA";
551  case PPCISD::SHL:             return "PPCISD::SHL";
552  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
553  case PPCISD::STD_32:          return "PPCISD::STD_32";
554  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
555  case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
556  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
557  case PPCISD::NOP:             return "PPCISD::NOP";
558  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
559  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
560  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
561  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
562  case PPCISD::MFCR:            return "PPCISD::MFCR";
563  case PPCISD::VCMP:            return "PPCISD::VCMP";
564  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
565  case PPCISD::LBRX:            return "PPCISD::LBRX";
566  case PPCISD::STBRX:           return "PPCISD::STBRX";
567  case PPCISD::LARX:            return "PPCISD::LARX";
568  case PPCISD::STCX:            return "PPCISD::STCX";
569  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
570  case PPCISD::MFFS:            return "PPCISD::MFFS";
571  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
572  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
573  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
574  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
575  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
576  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
577  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
578  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
579  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
580  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
581  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
582  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
583  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
584  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
585  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
586  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
587  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
588  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
589  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
590  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
591  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
592  }
593}
594
595EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
596  if (!VT.isVector())
597    return MVT::i32;
598  return VT.changeVectorElementTypeToInteger();
599}
600
601//===----------------------------------------------------------------------===//
602// Node matching predicates, for use by the tblgen matching code.
603//===----------------------------------------------------------------------===//
604
605/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
606static bool isFloatingPointZero(SDValue Op) {
607  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
608    return CFP->getValueAPF().isZero();
609  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
610    // Maybe this has already been legalized into the constant pool?
611    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
612      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
613        return CFP->getValueAPF().isZero();
614  }
615  return false;
616}
617
618/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
619/// true if Op is undef or if it matches the specified value.
620static bool isConstantOrUndef(int Op, int Val) {
621  return Op < 0 || Op == Val;
622}
623
624/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
625/// VPKUHUM instruction.
626bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
627  if (!isUnary) {
628    for (unsigned i = 0; i != 16; ++i)
629      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
630        return false;
631  } else {
632    for (unsigned i = 0; i != 8; ++i)
633      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
634          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
635        return false;
636  }
637  return true;
638}
639
640/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
641/// VPKUWUM instruction.
642bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
643  if (!isUnary) {
644    for (unsigned i = 0; i != 16; i += 2)
645      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
646          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
647        return false;
648  } else {
649    for (unsigned i = 0; i != 8; i += 2)
650      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
651          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
652          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
653          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
654        return false;
655  }
656  return true;
657}
658
659/// isVMerge - Common function, used to match vmrg* shuffles.
660///
661static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
662                     unsigned LHSStart, unsigned RHSStart) {
663  assert(N->getValueType(0) == MVT::v16i8 &&
664         "PPC only supports shuffles by bytes!");
665  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
666         "Unsupported merge size!");
667
668  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
669    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
670      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
671                             LHSStart+j+i*UnitSize) ||
672          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
673                             RHSStart+j+i*UnitSize))
674        return false;
675    }
676  return true;
677}
678
679/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
680/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
681bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
682                             bool isUnary) {
683  if (!isUnary)
684    return isVMerge(N, UnitSize, 8, 24);
685  return isVMerge(N, UnitSize, 8, 8);
686}
687
688/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
689/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
690bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
691                             bool isUnary) {
692  if (!isUnary)
693    return isVMerge(N, UnitSize, 0, 16);
694  return isVMerge(N, UnitSize, 0, 0);
695}
696
697
698/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
699/// amount, otherwise return -1.
700int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
701  assert(N->getValueType(0) == MVT::v16i8 &&
702         "PPC only supports shuffles by bytes!");
703
704  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
705
706  // Find the first non-undef value in the shuffle mask.
707  unsigned i;
708  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
709    /*search*/;
710
711  if (i == 16) return -1;  // all undef.
712
713  // Otherwise, check to see if the rest of the elements are consecutively
714  // numbered from this value.
715  unsigned ShiftAmt = SVOp->getMaskElt(i);
716  if (ShiftAmt < i) return -1;
717  ShiftAmt -= i;
718
719  if (!isUnary) {
720    // Check the rest of the elements to see if they are consecutive.
721    for (++i; i != 16; ++i)
722      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
723        return -1;
724  } else {
725    // Check the rest of the elements to see if they are consecutive.
726    for (++i; i != 16; ++i)
727      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
728        return -1;
729  }
730  return ShiftAmt;
731}
732
733/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
734/// specifies a splat of a single element that is suitable for input to
735/// VSPLTB/VSPLTH/VSPLTW.
736bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
737  assert(N->getValueType(0) == MVT::v16i8 &&
738         (EltSize == 1 || EltSize == 2 || EltSize == 4));
739
740  // This is a splat operation if each element of the permute is the same, and
741  // if the value doesn't reference the second vector.
742  unsigned ElementBase = N->getMaskElt(0);
743
744  // FIXME: Handle UNDEF elements too!
745  if (ElementBase >= 16)
746    return false;
747
748  // Check that the indices are consecutive, in the case of a multi-byte element
749  // splatted with a v16i8 mask.
750  for (unsigned i = 1; i != EltSize; ++i)
751    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
752      return false;
753
754  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
755    if (N->getMaskElt(i) < 0) continue;
756    for (unsigned j = 0; j != EltSize; ++j)
757      if (N->getMaskElt(i+j) != N->getMaskElt(j))
758        return false;
759  }
760  return true;
761}
762
763/// isAllNegativeZeroVector - Returns true if all elements of build_vector
764/// are -0.0.
765bool PPC::isAllNegativeZeroVector(SDNode *N) {
766  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
767
768  APInt APVal, APUndef;
769  unsigned BitSize;
770  bool HasAnyUndefs;
771
772  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
773    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
774      return CFP->getValueAPF().isNegZero();
775
776  return false;
777}
778
779/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
780/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
781unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
782  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
783  assert(isSplatShuffleMask(SVOp, EltSize));
784  return SVOp->getMaskElt(0) / EltSize;
785}
786
787/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
788/// by using a vspltis[bhw] instruction of the specified element size, return
789/// the constant being splatted.  The ByteSize field indicates the number of
790/// bytes of each element [124] -> [bhw].
791SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
792  SDValue OpVal(0, 0);
793
794  // If ByteSize of the splat is bigger than the element size of the
795  // build_vector, then we have a case where we are checking for a splat where
796  // multiple elements of the buildvector are folded together into a single
797  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
798  unsigned EltSize = 16/N->getNumOperands();
799  if (EltSize < ByteSize) {
800    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
801    SDValue UniquedVals[4];
802    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
803
804    // See if all of the elements in the buildvector agree across.
805    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
806      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
807      // If the element isn't a constant, bail fully out.
808      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
809
810
811      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
812        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
813      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
814        return SDValue();  // no match.
815    }
816
817    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
818    // either constant or undef values that are identical for each chunk.  See
819    // if these chunks can form into a larger vspltis*.
820
821    // Check to see if all of the leading entries are either 0 or -1.  If
822    // neither, then this won't fit into the immediate field.
823    bool LeadingZero = true;
824    bool LeadingOnes = true;
825    for (unsigned i = 0; i != Multiple-1; ++i) {
826      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
827
828      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
829      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
830    }
831    // Finally, check the least significant entry.
832    if (LeadingZero) {
833      if (UniquedVals[Multiple-1].getNode() == 0)
834        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
835      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
836      if (Val < 16)
837        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
838    }
839    if (LeadingOnes) {
840      if (UniquedVals[Multiple-1].getNode() == 0)
841        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
842      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
843      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
844        return DAG.getTargetConstant(Val, MVT::i32);
845    }
846
847    return SDValue();
848  }
849
850  // Check to see if this buildvec has a single non-undef value in its elements.
851  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
852    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
853    if (OpVal.getNode() == 0)
854      OpVal = N->getOperand(i);
855    else if (OpVal != N->getOperand(i))
856      return SDValue();
857  }
858
859  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
860
861  unsigned ValSizeInBytes = EltSize;
862  uint64_t Value = 0;
863  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
864    Value = CN->getZExtValue();
865  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
866    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
867    Value = FloatToBits(CN->getValueAPF().convertToFloat());
868  }
869
870  // If the splat value is larger than the element value, then we can never do
871  // this splat.  The only case that we could fit the replicated bits into our
872  // immediate field for would be zero, and we prefer to use vxor for it.
873  if (ValSizeInBytes < ByteSize) return SDValue();
874
875  // If the element value is larger than the splat value, cut it in half and
876  // check to see if the two halves are equal.  Continue doing this until we
877  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
878  while (ValSizeInBytes > ByteSize) {
879    ValSizeInBytes >>= 1;
880
881    // If the top half equals the bottom half, we're still ok.
882    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
883         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
884      return SDValue();
885  }
886
887  // Properly sign extend the value.
888  int MaskVal = SignExtend32(Value, ByteSize * 8);
889
890  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
891  if (MaskVal == 0) return SDValue();
892
893  // Finally, if this value fits in a 5 bit sext field, return it
894  if (SignExtend32<5>(MaskVal) == MaskVal)
895    return DAG.getTargetConstant(MaskVal, MVT::i32);
896  return SDValue();
897}
898
899//===----------------------------------------------------------------------===//
900//  Addressing Mode Selection
901//===----------------------------------------------------------------------===//
902
903/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
904/// or 64-bit immediate, and if the value can be accurately represented as a
905/// sign extension from a 16-bit value.  If so, this returns true and the
906/// immediate.
907static bool isIntS16Immediate(SDNode *N, short &Imm) {
908  if (N->getOpcode() != ISD::Constant)
909    return false;
910
911  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
912  if (N->getValueType(0) == MVT::i32)
913    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
914  else
915    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
916}
917static bool isIntS16Immediate(SDValue Op, short &Imm) {
918  return isIntS16Immediate(Op.getNode(), Imm);
919}
920
921
922/// SelectAddressRegReg - Given the specified addressed, check to see if it
923/// can be represented as an indexed [r+r] operation.  Returns false if it
924/// can be more efficiently represented with [r+imm].
925bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
926                                            SDValue &Index,
927                                            SelectionDAG &DAG) const {
928  short imm = 0;
929  if (N.getOpcode() == ISD::ADD) {
930    if (isIntS16Immediate(N.getOperand(1), imm))
931      return false;    // r+i
932    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
933      return false;    // r+i
934
935    Base = N.getOperand(0);
936    Index = N.getOperand(1);
937    return true;
938  } else if (N.getOpcode() == ISD::OR) {
939    if (isIntS16Immediate(N.getOperand(1), imm))
940      return false;    // r+i can fold it if we can.
941
942    // If this is an or of disjoint bitfields, we can codegen this as an add
943    // (for better address arithmetic) if the LHS and RHS of the OR are provably
944    // disjoint.
945    APInt LHSKnownZero, LHSKnownOne;
946    APInt RHSKnownZero, RHSKnownOne;
947    DAG.ComputeMaskedBits(N.getOperand(0),
948                          LHSKnownZero, LHSKnownOne);
949
950    if (LHSKnownZero.getBoolValue()) {
951      DAG.ComputeMaskedBits(N.getOperand(1),
952                            RHSKnownZero, RHSKnownOne);
953      // If all of the bits are known zero on the LHS or RHS, the add won't
954      // carry.
955      if (~(LHSKnownZero | RHSKnownZero) == 0) {
956        Base = N.getOperand(0);
957        Index = N.getOperand(1);
958        return true;
959      }
960    }
961  }
962
963  return false;
964}
965
966/// Returns true if the address N can be represented by a base register plus
967/// a signed 16-bit displacement [r+imm], and if it is not better
968/// represented as reg+reg.
969bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
970                                            SDValue &Base,
971                                            SelectionDAG &DAG) const {
972  // FIXME dl should come from parent load or store, not from address
973  DebugLoc dl = N.getDebugLoc();
974  // If this can be more profitably realized as r+r, fail.
975  if (SelectAddressRegReg(N, Disp, Base, DAG))
976    return false;
977
978  if (N.getOpcode() == ISD::ADD) {
979    short imm = 0;
980    if (isIntS16Immediate(N.getOperand(1), imm)) {
981      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
982      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
983        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
984      } else {
985        Base = N.getOperand(0);
986      }
987      return true; // [r+i]
988    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
989      // Match LOAD (ADD (X, Lo(G))).
990      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
991             && "Cannot handle constant offsets yet!");
992      Disp = N.getOperand(1).getOperand(0);  // The global address.
993      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
994             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
995             Disp.getOpcode() == ISD::TargetConstantPool ||
996             Disp.getOpcode() == ISD::TargetJumpTable);
997      Base = N.getOperand(0);
998      return true;  // [&g+r]
999    }
1000  } else if (N.getOpcode() == ISD::OR) {
1001    short imm = 0;
1002    if (isIntS16Immediate(N.getOperand(1), imm)) {
1003      // If this is an or of disjoint bitfields, we can codegen this as an add
1004      // (for better address arithmetic) if the LHS and RHS of the OR are
1005      // provably disjoint.
1006      APInt LHSKnownZero, LHSKnownOne;
1007      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1008
1009      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1010        // If all of the bits are known zero on the LHS or RHS, the add won't
1011        // carry.
1012        Base = N.getOperand(0);
1013        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1014        return true;
1015      }
1016    }
1017  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1018    // Loading from a constant address.
1019
1020    // If this address fits entirely in a 16-bit sext immediate field, codegen
1021    // this as "d, 0"
1022    short Imm;
1023    if (isIntS16Immediate(CN, Imm)) {
1024      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1025      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1026                             CN->getValueType(0));
1027      return true;
1028    }
1029
1030    // Handle 32-bit sext immediates with LIS + addr mode.
1031    if (CN->getValueType(0) == MVT::i32 ||
1032        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1033      int Addr = (int)CN->getZExtValue();
1034
1035      // Otherwise, break this down into an LIS + disp.
1036      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1037
1038      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1039      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1040      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1041      return true;
1042    }
1043  }
1044
1045  Disp = DAG.getTargetConstant(0, getPointerTy());
1046  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1047    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1048  else
1049    Base = N;
1050  return true;      // [r+0]
1051}
1052
1053/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1054/// represented as an indexed [r+r] operation.
1055bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1056                                                SDValue &Index,
1057                                                SelectionDAG &DAG) const {
1058  // Check to see if we can easily represent this as an [r+r] address.  This
1059  // will fail if it thinks that the address is more profitably represented as
1060  // reg+imm, e.g. where imm = 0.
1061  if (SelectAddressRegReg(N, Base, Index, DAG))
1062    return true;
1063
1064  // If the operand is an addition, always emit this as [r+r], since this is
1065  // better (for code size, and execution, as the memop does the add for free)
1066  // than emitting an explicit add.
1067  if (N.getOpcode() == ISD::ADD) {
1068    Base = N.getOperand(0);
1069    Index = N.getOperand(1);
1070    return true;
1071  }
1072
1073  // Otherwise, do it the hard way, using R0 as the base register.
1074  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1075                         N.getValueType());
1076  Index = N;
1077  return true;
1078}
1079
1080/// SelectAddressRegImmShift - Returns true if the address N can be
1081/// represented by a base register plus a signed 14-bit displacement
1082/// [r+imm*4].  Suitable for use by STD and friends.
1083bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1084                                                 SDValue &Base,
1085                                                 SelectionDAG &DAG) const {
1086  // FIXME dl should come from the parent load or store, not the address
1087  DebugLoc dl = N.getDebugLoc();
1088  // If this can be more profitably realized as r+r, fail.
1089  if (SelectAddressRegReg(N, Disp, Base, DAG))
1090    return false;
1091
1092  if (N.getOpcode() == ISD::ADD) {
1093    short imm = 0;
1094    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1095      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1096      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1097        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1098      } else {
1099        Base = N.getOperand(0);
1100      }
1101      return true; // [r+i]
1102    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1103      // Match LOAD (ADD (X, Lo(G))).
1104      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1105             && "Cannot handle constant offsets yet!");
1106      Disp = N.getOperand(1).getOperand(0);  // The global address.
1107      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1108             Disp.getOpcode() == ISD::TargetConstantPool ||
1109             Disp.getOpcode() == ISD::TargetJumpTable);
1110      Base = N.getOperand(0);
1111      return true;  // [&g+r]
1112    }
1113  } else if (N.getOpcode() == ISD::OR) {
1114    short imm = 0;
1115    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1116      // If this is an or of disjoint bitfields, we can codegen this as an add
1117      // (for better address arithmetic) if the LHS and RHS of the OR are
1118      // provably disjoint.
1119      APInt LHSKnownZero, LHSKnownOne;
1120      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1121      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1122        // If all of the bits are known zero on the LHS or RHS, the add won't
1123        // carry.
1124        Base = N.getOperand(0);
1125        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1126        return true;
1127      }
1128    }
1129  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1130    // Loading from a constant address.  Verify low two bits are clear.
1131    if ((CN->getZExtValue() & 3) == 0) {
1132      // If this address fits entirely in a 14-bit sext immediate field, codegen
1133      // this as "d, 0"
1134      short Imm;
1135      if (isIntS16Immediate(CN, Imm)) {
1136        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1137        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1138                               CN->getValueType(0));
1139        return true;
1140      }
1141
1142      // Fold the low-part of 32-bit absolute addresses into addr mode.
1143      if (CN->getValueType(0) == MVT::i32 ||
1144          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1145        int Addr = (int)CN->getZExtValue();
1146
1147        // Otherwise, break this down into an LIS + disp.
1148        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1149        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1150        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1151        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1152        return true;
1153      }
1154    }
1155  }
1156
1157  Disp = DAG.getTargetConstant(0, getPointerTy());
1158  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1159    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1160  else
1161    Base = N;
1162  return true;      // [r+0]
1163}
1164
1165
1166/// getPreIndexedAddressParts - returns true by value, base pointer and
1167/// offset pointer and addressing mode by reference if the node's address
1168/// can be legally represented as pre-indexed load / store address.
1169bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1170                                                  SDValue &Offset,
1171                                                  ISD::MemIndexedMode &AM,
1172                                                  SelectionDAG &DAG) const {
1173  if (DisablePPCPreinc) return false;
1174
1175  SDValue Ptr;
1176  EVT VT;
1177  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1178    Ptr = LD->getBasePtr();
1179    VT = LD->getMemoryVT();
1180
1181  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1182    Ptr = ST->getBasePtr();
1183    VT  = ST->getMemoryVT();
1184  } else
1185    return false;
1186
1187  // PowerPC doesn't have preinc load/store instructions for vectors.
1188  if (VT.isVector())
1189    return false;
1190
1191  if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
1192    AM = ISD::PRE_INC;
1193    return true;
1194  }
1195
1196  // LDU/STU use reg+imm*4, others use reg+imm.
1197  if (VT != MVT::i64) {
1198    // reg + imm
1199    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1200      return false;
1201  } else {
1202    // reg + imm * 4.
1203    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1204      return false;
1205  }
1206
1207  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1208    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1209    // sext i32 to i64 when addr mode is r+i.
1210    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1211        LD->getExtensionType() == ISD::SEXTLOAD &&
1212        isa<ConstantSDNode>(Offset))
1213      return false;
1214  }
1215
1216  AM = ISD::PRE_INC;
1217  return true;
1218}
1219
1220//===----------------------------------------------------------------------===//
1221//  LowerOperation implementation
1222//===----------------------------------------------------------------------===//
1223
1224/// GetLabelAccessInfo - Return true if we should reference labels using a
1225/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1226static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1227                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1228  HiOpFlags = PPCII::MO_HA16;
1229  LoOpFlags = PPCII::MO_LO16;
1230
1231  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1232  // non-darwin platform.  We don't support PIC on other platforms yet.
1233  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1234               TM.getSubtarget<PPCSubtarget>().isDarwin();
1235  if (isPIC) {
1236    HiOpFlags |= PPCII::MO_PIC_FLAG;
1237    LoOpFlags |= PPCII::MO_PIC_FLAG;
1238  }
1239
1240  // If this is a reference to a global value that requires a non-lazy-ptr, make
1241  // sure that instruction lowering adds it.
1242  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1243    HiOpFlags |= PPCII::MO_NLP_FLAG;
1244    LoOpFlags |= PPCII::MO_NLP_FLAG;
1245
1246    if (GV->hasHiddenVisibility()) {
1247      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1248      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1249    }
1250  }
1251
1252  return isPIC;
1253}
1254
1255static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1256                             SelectionDAG &DAG) {
1257  EVT PtrVT = HiPart.getValueType();
1258  SDValue Zero = DAG.getConstant(0, PtrVT);
1259  DebugLoc DL = HiPart.getDebugLoc();
1260
1261  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1262  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1263
1264  // With PIC, the first instruction is actually "GR+hi(&G)".
1265  if (isPIC)
1266    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1267                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1268
1269  // Generate non-pic code that has direct accesses to the constant pool.
1270  // The address of the global is just (hi(&g)+lo(&g)).
1271  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1272}
1273
1274SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1275                                             SelectionDAG &DAG) const {
1276  EVT PtrVT = Op.getValueType();
1277  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1278  const Constant *C = CP->getConstVal();
1279
1280  // 64-bit SVR4 ABI code is always position-independent.
1281  // The actual address of the GlobalValue is stored in the TOC.
1282  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1283    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1284    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1285                       DAG.getRegister(PPC::X2, MVT::i64));
1286  }
1287
1288  unsigned MOHiFlag, MOLoFlag;
1289  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1290  SDValue CPIHi =
1291    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1292  SDValue CPILo =
1293    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1294  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1295}
1296
1297SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1298  EVT PtrVT = Op.getValueType();
1299  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1300
1301  // 64-bit SVR4 ABI code is always position-independent.
1302  // The actual address of the GlobalValue is stored in the TOC.
1303  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1304    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1305    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1306                       DAG.getRegister(PPC::X2, MVT::i64));
1307  }
1308
1309  unsigned MOHiFlag, MOLoFlag;
1310  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1311  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1312  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1313  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1314}
1315
1316SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1317                                             SelectionDAG &DAG) const {
1318  EVT PtrVT = Op.getValueType();
1319
1320  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1321
1322  unsigned MOHiFlag, MOLoFlag;
1323  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1324  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1325  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1326  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1327}
1328
1329SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1330                                              SelectionDAG &DAG) const {
1331
1332  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1333  DebugLoc dl = GA->getDebugLoc();
1334  const GlobalValue *GV = GA->getGlobal();
1335  EVT PtrVT = getPointerTy();
1336  bool is64bit = PPCSubTarget.isPPC64();
1337
1338  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1339
1340  if (Model == TLSModel::LocalExec) {
1341    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1342                                               PPCII::MO_TPREL16_HA);
1343    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1344                                               PPCII::MO_TPREL16_LO);
1345    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1346                                     is64bit ? MVT::i64 : MVT::i32);
1347    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1348    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1349  }
1350
1351  if (!is64bit)
1352    llvm_unreachable("only local-exec is currently supported for ppc32");
1353
1354  if (Model == TLSModel::InitialExec) {
1355    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1356    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1357    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1358                                     PtrVT, GOTReg, TGA);
1359    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1360                                   PtrVT, TGA, TPOffsetHi);
1361    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1362  }
1363
1364  if (Model == TLSModel::GeneralDynamic) {
1365    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1366    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1367    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1368                                     GOTReg, TGA);
1369    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1370                                   GOTEntryHi, TGA);
1371
1372    // We need a chain node, and don't have one handy.  The underlying
1373    // call has no side effects, so using the function entry node
1374    // suffices.
1375    SDValue Chain = DAG.getEntryNode();
1376    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1377    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1378    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1379                                  PtrVT, ParmReg, TGA);
1380    // The return value from GET_TLS_ADDR really is in X3 already, but
1381    // some hacks are needed here to tie everything together.  The extra
1382    // copies dissolve during subsequent transforms.
1383    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1384    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1385  }
1386
1387  if (Model == TLSModel::LocalDynamic) {
1388    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1389    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1390    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1391                                     GOTReg, TGA);
1392    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1393                                   GOTEntryHi, TGA);
1394
1395    // We need a chain node, and don't have one handy.  The underlying
1396    // call has no side effects, so using the function entry node
1397    // suffices.
1398    SDValue Chain = DAG.getEntryNode();
1399    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1400    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1401    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1402                                  PtrVT, ParmReg, TGA);
1403    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1404    // some hacks are needed here to tie everything together.  The extra
1405    // copies dissolve during subsequent transforms.
1406    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1407    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1408                                      Chain, ParmReg, TGA);
1409    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1410  }
1411
1412  llvm_unreachable("Unknown TLS model!");
1413}
1414
1415SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1416                                              SelectionDAG &DAG) const {
1417  EVT PtrVT = Op.getValueType();
1418  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1419  DebugLoc DL = GSDN->getDebugLoc();
1420  const GlobalValue *GV = GSDN->getGlobal();
1421
1422  // 64-bit SVR4 ABI code is always position-independent.
1423  // The actual address of the GlobalValue is stored in the TOC.
1424  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1425    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1426    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1427                       DAG.getRegister(PPC::X2, MVT::i64));
1428  }
1429
1430  unsigned MOHiFlag, MOLoFlag;
1431  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1432
1433  SDValue GAHi =
1434    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1435  SDValue GALo =
1436    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1437
1438  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1439
1440  // If the global reference is actually to a non-lazy-pointer, we have to do an
1441  // extra load to get the address of the global.
1442  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1443    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1444                      false, false, false, 0);
1445  return Ptr;
1446}
1447
1448SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1449  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1450  DebugLoc dl = Op.getDebugLoc();
1451
1452  // If we're comparing for equality to zero, expose the fact that this is
1453  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1454  // fold the new nodes.
1455  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1456    if (C->isNullValue() && CC == ISD::SETEQ) {
1457      EVT VT = Op.getOperand(0).getValueType();
1458      SDValue Zext = Op.getOperand(0);
1459      if (VT.bitsLT(MVT::i32)) {
1460        VT = MVT::i32;
1461        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1462      }
1463      unsigned Log2b = Log2_32(VT.getSizeInBits());
1464      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1465      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1466                                DAG.getConstant(Log2b, MVT::i32));
1467      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1468    }
1469    // Leave comparisons against 0 and -1 alone for now, since they're usually
1470    // optimized.  FIXME: revisit this when we can custom lower all setcc
1471    // optimizations.
1472    if (C->isAllOnesValue() || C->isNullValue())
1473      return SDValue();
1474  }
1475
1476  // If we have an integer seteq/setne, turn it into a compare against zero
1477  // by xor'ing the rhs with the lhs, which is faster than setting a
1478  // condition register, reading it back out, and masking the correct bit.  The
1479  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1480  // the result to other bit-twiddling opportunities.
1481  EVT LHSVT = Op.getOperand(0).getValueType();
1482  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1483    EVT VT = Op.getValueType();
1484    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1485                                Op.getOperand(1));
1486    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1487  }
1488  return SDValue();
1489}
1490
1491SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1492                                      const PPCSubtarget &Subtarget) const {
1493  SDNode *Node = Op.getNode();
1494  EVT VT = Node->getValueType(0);
1495  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1496  SDValue InChain = Node->getOperand(0);
1497  SDValue VAListPtr = Node->getOperand(1);
1498  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1499  DebugLoc dl = Node->getDebugLoc();
1500
1501  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1502
1503  // gpr_index
1504  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1505                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1506                                    false, false, 0);
1507  InChain = GprIndex.getValue(1);
1508
1509  if (VT == MVT::i64) {
1510    // Check if GprIndex is even
1511    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1512                                 DAG.getConstant(1, MVT::i32));
1513    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1514                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1515    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1516                                          DAG.getConstant(1, MVT::i32));
1517    // Align GprIndex to be even if it isn't
1518    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1519                           GprIndex);
1520  }
1521
1522  // fpr index is 1 byte after gpr
1523  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1524                               DAG.getConstant(1, MVT::i32));
1525
1526  // fpr
1527  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1528                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1529                                    false, false, 0);
1530  InChain = FprIndex.getValue(1);
1531
1532  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1533                                       DAG.getConstant(8, MVT::i32));
1534
1535  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1536                                        DAG.getConstant(4, MVT::i32));
1537
1538  // areas
1539  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1540                                     MachinePointerInfo(), false, false,
1541                                     false, 0);
1542  InChain = OverflowArea.getValue(1);
1543
1544  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1545                                    MachinePointerInfo(), false, false,
1546                                    false, 0);
1547  InChain = RegSaveArea.getValue(1);
1548
1549  // select overflow_area if index > 8
1550  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1551                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1552
1553  // adjustment constant gpr_index * 4/8
1554  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1555                                    VT.isInteger() ? GprIndex : FprIndex,
1556                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1557                                                    MVT::i32));
1558
1559  // OurReg = RegSaveArea + RegConstant
1560  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1561                               RegConstant);
1562
1563  // Floating types are 32 bytes into RegSaveArea
1564  if (VT.isFloatingPoint())
1565    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1566                         DAG.getConstant(32, MVT::i32));
1567
1568  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1569  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1570                                   VT.isInteger() ? GprIndex : FprIndex,
1571                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1572                                                   MVT::i32));
1573
1574  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1575                              VT.isInteger() ? VAListPtr : FprPtr,
1576                              MachinePointerInfo(SV),
1577                              MVT::i8, false, false, 0);
1578
1579  // determine if we should load from reg_save_area or overflow_area
1580  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1581
1582  // increase overflow_area by 4/8 if gpr/fpr > 8
1583  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1584                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1585                                          MVT::i32));
1586
1587  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1588                             OverflowAreaPlusN);
1589
1590  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1591                              OverflowAreaPtr,
1592                              MachinePointerInfo(),
1593                              MVT::i32, false, false, 0);
1594
1595  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1596                     false, false, false, 0);
1597}
1598
1599SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1600                                                  SelectionDAG &DAG) const {
1601  return Op.getOperand(0);
1602}
1603
1604SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1605                                                SelectionDAG &DAG) const {
1606  SDValue Chain = Op.getOperand(0);
1607  SDValue Trmp = Op.getOperand(1); // trampoline
1608  SDValue FPtr = Op.getOperand(2); // nested function
1609  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1610  DebugLoc dl = Op.getDebugLoc();
1611
1612  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1613  bool isPPC64 = (PtrVT == MVT::i64);
1614  Type *IntPtrTy =
1615    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1616                                                             *DAG.getContext());
1617
1618  TargetLowering::ArgListTy Args;
1619  TargetLowering::ArgListEntry Entry;
1620
1621  Entry.Ty = IntPtrTy;
1622  Entry.Node = Trmp; Args.push_back(Entry);
1623
1624  // TrampSize == (isPPC64 ? 48 : 40);
1625  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1626                               isPPC64 ? MVT::i64 : MVT::i32);
1627  Args.push_back(Entry);
1628
1629  Entry.Node = FPtr; Args.push_back(Entry);
1630  Entry.Node = Nest; Args.push_back(Entry);
1631
1632  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1633  TargetLowering::CallLoweringInfo CLI(Chain,
1634                                       Type::getVoidTy(*DAG.getContext()),
1635                                       false, false, false, false, 0,
1636                                       CallingConv::C,
1637                /*isTailCall=*/false,
1638                                       /*doesNotRet=*/false,
1639                                       /*isReturnValueUsed=*/true,
1640                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1641                Args, DAG, dl);
1642  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1643
1644  return CallResult.second;
1645}
1646
1647SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1648                                        const PPCSubtarget &Subtarget) const {
1649  MachineFunction &MF = DAG.getMachineFunction();
1650  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1651
1652  DebugLoc dl = Op.getDebugLoc();
1653
1654  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1655    // vastart just stores the address of the VarArgsFrameIndex slot into the
1656    // memory location argument.
1657    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1658    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1659    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1660    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1661                        MachinePointerInfo(SV),
1662                        false, false, 0);
1663  }
1664
1665  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1666  // We suppose the given va_list is already allocated.
1667  //
1668  // typedef struct {
1669  //  char gpr;     /* index into the array of 8 GPRs
1670  //                 * stored in the register save area
1671  //                 * gpr=0 corresponds to r3,
1672  //                 * gpr=1 to r4, etc.
1673  //                 */
1674  //  char fpr;     /* index into the array of 8 FPRs
1675  //                 * stored in the register save area
1676  //                 * fpr=0 corresponds to f1,
1677  //                 * fpr=1 to f2, etc.
1678  //                 */
1679  //  char *overflow_arg_area;
1680  //                /* location on stack that holds
1681  //                 * the next overflow argument
1682  //                 */
1683  //  char *reg_save_area;
1684  //               /* where r3:r10 and f1:f8 (if saved)
1685  //                * are stored
1686  //                */
1687  // } va_list[1];
1688
1689
1690  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1691  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1692
1693
1694  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1695
1696  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1697                                            PtrVT);
1698  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1699                                 PtrVT);
1700
1701  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1702  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1703
1704  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1705  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1706
1707  uint64_t FPROffset = 1;
1708  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1709
1710  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1711
1712  // Store first byte : number of int regs
1713  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1714                                         Op.getOperand(1),
1715                                         MachinePointerInfo(SV),
1716                                         MVT::i8, false, false, 0);
1717  uint64_t nextOffset = FPROffset;
1718  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1719                                  ConstFPROffset);
1720
1721  // Store second byte : number of float regs
1722  SDValue secondStore =
1723    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1724                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1725                      false, false, 0);
1726  nextOffset += StackOffset;
1727  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1728
1729  // Store second word : arguments given on stack
1730  SDValue thirdStore =
1731    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1732                 MachinePointerInfo(SV, nextOffset),
1733                 false, false, 0);
1734  nextOffset += FrameOffset;
1735  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1736
1737  // Store third word : arguments given in registers
1738  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1739                      MachinePointerInfo(SV, nextOffset),
1740                      false, false, 0);
1741
1742}
1743
1744#include "PPCGenCallingConv.inc"
1745
1746static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1747                                     CCValAssign::LocInfo &LocInfo,
1748                                     ISD::ArgFlagsTy &ArgFlags,
1749                                     CCState &State) {
1750  return true;
1751}
1752
1753static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1754                                            MVT &LocVT,
1755                                            CCValAssign::LocInfo &LocInfo,
1756                                            ISD::ArgFlagsTy &ArgFlags,
1757                                            CCState &State) {
1758  static const uint16_t ArgRegs[] = {
1759    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1760    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1761  };
1762  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1763
1764  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1765
1766  // Skip one register if the first unallocated register has an even register
1767  // number and there are still argument registers available which have not been
1768  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1769  // need to skip a register if RegNum is odd.
1770  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1771    State.AllocateReg(ArgRegs[RegNum]);
1772  }
1773
1774  // Always return false here, as this function only makes sure that the first
1775  // unallocated register has an odd register number and does not actually
1776  // allocate a register for the current argument.
1777  return false;
1778}
1779
1780static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1781                                              MVT &LocVT,
1782                                              CCValAssign::LocInfo &LocInfo,
1783                                              ISD::ArgFlagsTy &ArgFlags,
1784                                              CCState &State) {
1785  static const uint16_t ArgRegs[] = {
1786    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1787    PPC::F8
1788  };
1789
1790  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1791
1792  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1793
1794  // If there is only one Floating-point register left we need to put both f64
1795  // values of a split ppc_fp128 value on the stack.
1796  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1797    State.AllocateReg(ArgRegs[RegNum]);
1798  }
1799
1800  // Always return false here, as this function only makes sure that the two f64
1801  // values a ppc_fp128 value is split into are both passed in registers or both
1802  // passed on the stack and does not actually allocate a register for the
1803  // current argument.
1804  return false;
1805}
1806
1807/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1808/// on Darwin.
1809static const uint16_t *GetFPR() {
1810  static const uint16_t FPR[] = {
1811    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1812    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1813  };
1814
1815  return FPR;
1816}
1817
1818/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1819/// the stack.
1820static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1821                                       unsigned PtrByteSize) {
1822  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1823  if (Flags.isByVal())
1824    ArgSize = Flags.getByValSize();
1825  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1826
1827  return ArgSize;
1828}
1829
1830SDValue
1831PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1832                                        CallingConv::ID CallConv, bool isVarArg,
1833                                        const SmallVectorImpl<ISD::InputArg>
1834                                          &Ins,
1835                                        DebugLoc dl, SelectionDAG &DAG,
1836                                        SmallVectorImpl<SDValue> &InVals)
1837                                          const {
1838  if (PPCSubTarget.isSVR4ABI()) {
1839    if (PPCSubTarget.isPPC64())
1840      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1841                                         dl, DAG, InVals);
1842    else
1843      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1844                                         dl, DAG, InVals);
1845  } else {
1846    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1847                                       dl, DAG, InVals);
1848  }
1849}
1850
1851SDValue
1852PPCTargetLowering::LowerFormalArguments_32SVR4(
1853                                      SDValue Chain,
1854                                      CallingConv::ID CallConv, bool isVarArg,
1855                                      const SmallVectorImpl<ISD::InputArg>
1856                                        &Ins,
1857                                      DebugLoc dl, SelectionDAG &DAG,
1858                                      SmallVectorImpl<SDValue> &InVals) const {
1859
1860  // 32-bit SVR4 ABI Stack Frame Layout:
1861  //              +-----------------------------------+
1862  //        +-->  |            Back chain             |
1863  //        |     +-----------------------------------+
1864  //        |     | Floating-point register save area |
1865  //        |     +-----------------------------------+
1866  //        |     |    General register save area     |
1867  //        |     +-----------------------------------+
1868  //        |     |          CR save word             |
1869  //        |     +-----------------------------------+
1870  //        |     |         VRSAVE save word          |
1871  //        |     +-----------------------------------+
1872  //        |     |         Alignment padding         |
1873  //        |     +-----------------------------------+
1874  //        |     |     Vector register save area     |
1875  //        |     +-----------------------------------+
1876  //        |     |       Local variable space        |
1877  //        |     +-----------------------------------+
1878  //        |     |        Parameter list area        |
1879  //        |     +-----------------------------------+
1880  //        |     |           LR save word            |
1881  //        |     +-----------------------------------+
1882  // SP-->  +---  |            Back chain             |
1883  //              +-----------------------------------+
1884  //
1885  // Specifications:
1886  //   System V Application Binary Interface PowerPC Processor Supplement
1887  //   AltiVec Technology Programming Interface Manual
1888
1889  MachineFunction &MF = DAG.getMachineFunction();
1890  MachineFrameInfo *MFI = MF.getFrameInfo();
1891  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1892
1893  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1894  // Potential tail calls could cause overwriting of argument stack slots.
1895  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1896                       (CallConv == CallingConv::Fast));
1897  unsigned PtrByteSize = 4;
1898
1899  // Assign locations to all of the incoming arguments.
1900  SmallVector<CCValAssign, 16> ArgLocs;
1901  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1902                 getTargetMachine(), ArgLocs, *DAG.getContext());
1903
1904  // Reserve space for the linkage area on the stack.
1905  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1906
1907  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1908
1909  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1910    CCValAssign &VA = ArgLocs[i];
1911
1912    // Arguments stored in registers.
1913    if (VA.isRegLoc()) {
1914      const TargetRegisterClass *RC;
1915      EVT ValVT = VA.getValVT();
1916
1917      switch (ValVT.getSimpleVT().SimpleTy) {
1918        default:
1919          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1920        case MVT::i32:
1921          RC = &PPC::GPRCRegClass;
1922          break;
1923        case MVT::f32:
1924          RC = &PPC::F4RCRegClass;
1925          break;
1926        case MVT::f64:
1927          RC = &PPC::F8RCRegClass;
1928          break;
1929        case MVT::v16i8:
1930        case MVT::v8i16:
1931        case MVT::v4i32:
1932        case MVT::v4f32:
1933          RC = &PPC::VRRCRegClass;
1934          break;
1935      }
1936
1937      // Transform the arguments stored in physical registers into virtual ones.
1938      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1939      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1940
1941      InVals.push_back(ArgValue);
1942    } else {
1943      // Argument stored in memory.
1944      assert(VA.isMemLoc());
1945
1946      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1947      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1948                                      isImmutable);
1949
1950      // Create load nodes to retrieve arguments from the stack.
1951      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1952      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1953                                   MachinePointerInfo(),
1954                                   false, false, false, 0));
1955    }
1956  }
1957
1958  // Assign locations to all of the incoming aggregate by value arguments.
1959  // Aggregates passed by value are stored in the local variable space of the
1960  // caller's stack frame, right above the parameter list area.
1961  SmallVector<CCValAssign, 16> ByValArgLocs;
1962  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1963                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1964
1965  // Reserve stack space for the allocations in CCInfo.
1966  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1967
1968  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1969
1970  // Area that is at least reserved in the caller of this function.
1971  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1972
1973  // Set the size that is at least reserved in caller of this function.  Tail
1974  // call optimized function's reserved stack space needs to be aligned so that
1975  // taking the difference between two stack areas will result in an aligned
1976  // stack.
1977  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1978
1979  MinReservedArea =
1980    std::max(MinReservedArea,
1981             PPCFrameLowering::getMinCallFrameSize(false, false));
1982
1983  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1984    getStackAlignment();
1985  unsigned AlignMask = TargetAlign-1;
1986  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1987
1988  FI->setMinReservedArea(MinReservedArea);
1989
1990  SmallVector<SDValue, 8> MemOps;
1991
1992  // If the function takes variable number of arguments, make a frame index for
1993  // the start of the first vararg value... for expansion of llvm.va_start.
1994  if (isVarArg) {
1995    static const uint16_t GPArgRegs[] = {
1996      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1997      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1998    };
1999    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2000
2001    static const uint16_t FPArgRegs[] = {
2002      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2003      PPC::F8
2004    };
2005    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2006
2007    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2008                                                          NumGPArgRegs));
2009    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2010                                                          NumFPArgRegs));
2011
2012    // Make room for NumGPArgRegs and NumFPArgRegs.
2013    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2014                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2015
2016    FuncInfo->setVarArgsStackOffset(
2017      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2018                             CCInfo.getNextStackOffset(), true));
2019
2020    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2021    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2022
2023    // The fixed integer arguments of a variadic function are stored to the
2024    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2025    // the result of va_next.
2026    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2027      // Get an existing live-in vreg, or add a new one.
2028      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2029      if (!VReg)
2030        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2031
2032      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2033      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2034                                   MachinePointerInfo(), false, false, 0);
2035      MemOps.push_back(Store);
2036      // Increment the address by four for the next argument to store
2037      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2038      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2039    }
2040
2041    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2042    // is set.
2043    // The double arguments are stored to the VarArgsFrameIndex
2044    // on the stack.
2045    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2046      // Get an existing live-in vreg, or add a new one.
2047      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2048      if (!VReg)
2049        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2050
2051      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2052      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2053                                   MachinePointerInfo(), false, false, 0);
2054      MemOps.push_back(Store);
2055      // Increment the address by eight for the next argument to store
2056      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2057                                         PtrVT);
2058      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2059    }
2060  }
2061
2062  if (!MemOps.empty())
2063    Chain = DAG.getNode(ISD::TokenFactor, dl,
2064                        MVT::Other, &MemOps[0], MemOps.size());
2065
2066  return Chain;
2067}
2068
2069// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2070// value to MVT::i64 and then truncate to the correct register size.
2071SDValue
2072PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2073                                     SelectionDAG &DAG, SDValue ArgVal,
2074                                     DebugLoc dl) const {
2075  if (Flags.isSExt())
2076    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2077                         DAG.getValueType(ObjectVT));
2078  else if (Flags.isZExt())
2079    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2080                         DAG.getValueType(ObjectVT));
2081
2082  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2083}
2084
2085// Set the size that is at least reserved in caller of this function.  Tail
2086// call optimized functions' reserved stack space needs to be aligned so that
2087// taking the difference between two stack areas will result in an aligned
2088// stack.
2089void
2090PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2091                                      unsigned nAltivecParamsAtEnd,
2092                                      unsigned MinReservedArea,
2093                                      bool isPPC64) const {
2094  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2095  // Add the Altivec parameters at the end, if needed.
2096  if (nAltivecParamsAtEnd) {
2097    MinReservedArea = ((MinReservedArea+15)/16)*16;
2098    MinReservedArea += 16*nAltivecParamsAtEnd;
2099  }
2100  MinReservedArea =
2101    std::max(MinReservedArea,
2102             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2103  unsigned TargetAlign
2104    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2105        getStackAlignment();
2106  unsigned AlignMask = TargetAlign-1;
2107  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2108  FI->setMinReservedArea(MinReservedArea);
2109}
2110
2111SDValue
2112PPCTargetLowering::LowerFormalArguments_64SVR4(
2113                                      SDValue Chain,
2114                                      CallingConv::ID CallConv, bool isVarArg,
2115                                      const SmallVectorImpl<ISD::InputArg>
2116                                        &Ins,
2117                                      DebugLoc dl, SelectionDAG &DAG,
2118                                      SmallVectorImpl<SDValue> &InVals) const {
2119  // TODO: add description of PPC stack frame format, or at least some docs.
2120  //
2121  MachineFunction &MF = DAG.getMachineFunction();
2122  MachineFrameInfo *MFI = MF.getFrameInfo();
2123  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2124
2125  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2126  // Potential tail calls could cause overwriting of argument stack slots.
2127  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2128                       (CallConv == CallingConv::Fast));
2129  unsigned PtrByteSize = 8;
2130
2131  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2132  // Area that is at least reserved in caller of this function.
2133  unsigned MinReservedArea = ArgOffset;
2134
2135  static const uint16_t GPR[] = {
2136    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2137    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2138  };
2139
2140  static const uint16_t *FPR = GetFPR();
2141
2142  static const uint16_t VR[] = {
2143    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2144    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2145  };
2146
2147  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2148  const unsigned Num_FPR_Regs = 13;
2149  const unsigned Num_VR_Regs  = array_lengthof(VR);
2150
2151  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2152
2153  // Add DAG nodes to load the arguments or copy them out of registers.  On
2154  // entry to a function on PPC, the arguments start after the linkage area,
2155  // although the first ones are often in registers.
2156
2157  SmallVector<SDValue, 8> MemOps;
2158  unsigned nAltivecParamsAtEnd = 0;
2159  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2160  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2161    SDValue ArgVal;
2162    bool needsLoad = false;
2163    EVT ObjectVT = Ins[ArgNo].VT;
2164    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2165    unsigned ArgSize = ObjSize;
2166    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2167
2168    unsigned CurArgOffset = ArgOffset;
2169
2170    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2171    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2172        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2173      if (isVarArg) {
2174        MinReservedArea = ((MinReservedArea+15)/16)*16;
2175        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2176                                                  Flags,
2177                                                  PtrByteSize);
2178      } else
2179        nAltivecParamsAtEnd++;
2180    } else
2181      // Calculate min reserved area.
2182      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2183                                                Flags,
2184                                                PtrByteSize);
2185
2186    // FIXME the codegen can be much improved in some cases.
2187    // We do not have to keep everything in memory.
2188    if (Flags.isByVal()) {
2189      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2190      ObjSize = Flags.getByValSize();
2191      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2192      // Empty aggregate parameters do not take up registers.  Examples:
2193      //   struct { } a;
2194      //   union  { } b;
2195      //   int c[0];
2196      // etc.  However, we have to provide a place-holder in InVals, so
2197      // pretend we have an 8-byte item at the current address for that
2198      // purpose.
2199      if (!ObjSize) {
2200        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2201        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2202        InVals.push_back(FIN);
2203        continue;
2204      }
2205      // All aggregates smaller than 8 bytes must be passed right-justified.
2206      if (ObjSize < PtrByteSize)
2207        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2208      // The value of the object is its address.
2209      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2210      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2211      InVals.push_back(FIN);
2212
2213      if (ObjSize < 8) {
2214        if (GPR_idx != Num_GPR_Regs) {
2215          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2216          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2217          SDValue Store;
2218
2219          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2220            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2221                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2222            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2223                                      MachinePointerInfo(FuncArg, CurArgOffset),
2224                                      ObjType, false, false, 0);
2225          } else {
2226            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2227            // store the whole register as-is to the parameter save area
2228            // slot.  The address of the parameter was already calculated
2229            // above (InVals.push_back(FIN)) to be the right-justified
2230            // offset within the slot.  For this store, we need a new
2231            // frame index that points at the beginning of the slot.
2232            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2233            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2234            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2235                                 MachinePointerInfo(FuncArg, ArgOffset),
2236                                 false, false, 0);
2237          }
2238
2239          MemOps.push_back(Store);
2240          ++GPR_idx;
2241        }
2242        // Whether we copied from a register or not, advance the offset
2243        // into the parameter save area by a full doubleword.
2244        ArgOffset += PtrByteSize;
2245        continue;
2246      }
2247
2248      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2249        // Store whatever pieces of the object are in registers
2250        // to memory.  ArgOffset will be the address of the beginning
2251        // of the object.
2252        if (GPR_idx != Num_GPR_Regs) {
2253          unsigned VReg;
2254          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2255          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2256          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2257          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2258          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2259                                       MachinePointerInfo(FuncArg, ArgOffset),
2260                                       false, false, 0);
2261          MemOps.push_back(Store);
2262          ++GPR_idx;
2263          ArgOffset += PtrByteSize;
2264        } else {
2265          ArgOffset += ArgSize - j;
2266          break;
2267        }
2268      }
2269      continue;
2270    }
2271
2272    switch (ObjectVT.getSimpleVT().SimpleTy) {
2273    default: llvm_unreachable("Unhandled argument type!");
2274    case MVT::i32:
2275    case MVT::i64:
2276      if (GPR_idx != Num_GPR_Regs) {
2277        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2278        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2279
2280        if (ObjectVT == MVT::i32)
2281          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2282          // value to MVT::i64 and then truncate to the correct register size.
2283          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2284
2285        ++GPR_idx;
2286      } else {
2287        needsLoad = true;
2288        ArgSize = PtrByteSize;
2289      }
2290      ArgOffset += 8;
2291      break;
2292
2293    case MVT::f32:
2294    case MVT::f64:
2295      // Every 8 bytes of argument space consumes one of the GPRs available for
2296      // argument passing.
2297      if (GPR_idx != Num_GPR_Regs) {
2298        ++GPR_idx;
2299      }
2300      if (FPR_idx != Num_FPR_Regs) {
2301        unsigned VReg;
2302
2303        if (ObjectVT == MVT::f32)
2304          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2305        else
2306          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2307
2308        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2309        ++FPR_idx;
2310      } else {
2311        needsLoad = true;
2312        ArgSize = PtrByteSize;
2313      }
2314
2315      ArgOffset += 8;
2316      break;
2317    case MVT::v4f32:
2318    case MVT::v4i32:
2319    case MVT::v8i16:
2320    case MVT::v16i8:
2321      // Note that vector arguments in registers don't reserve stack space,
2322      // except in varargs functions.
2323      if (VR_idx != Num_VR_Regs) {
2324        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2325        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2326        if (isVarArg) {
2327          while ((ArgOffset % 16) != 0) {
2328            ArgOffset += PtrByteSize;
2329            if (GPR_idx != Num_GPR_Regs)
2330              GPR_idx++;
2331          }
2332          ArgOffset += 16;
2333          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2334        }
2335        ++VR_idx;
2336      } else {
2337        // Vectors are aligned.
2338        ArgOffset = ((ArgOffset+15)/16)*16;
2339        CurArgOffset = ArgOffset;
2340        ArgOffset += 16;
2341        needsLoad = true;
2342      }
2343      break;
2344    }
2345
2346    // We need to load the argument to a virtual register if we determined
2347    // above that we ran out of physical registers of the appropriate type.
2348    if (needsLoad) {
2349      int FI = MFI->CreateFixedObject(ObjSize,
2350                                      CurArgOffset + (ArgSize - ObjSize),
2351                                      isImmutable);
2352      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2353      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2354                           false, false, false, 0);
2355    }
2356
2357    InVals.push_back(ArgVal);
2358  }
2359
2360  // Set the size that is at least reserved in caller of this function.  Tail
2361  // call optimized functions' reserved stack space needs to be aligned so that
2362  // taking the difference between two stack areas will result in an aligned
2363  // stack.
2364  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2365
2366  // If the function takes variable number of arguments, make a frame index for
2367  // the start of the first vararg value... for expansion of llvm.va_start.
2368  if (isVarArg) {
2369    int Depth = ArgOffset;
2370
2371    FuncInfo->setVarArgsFrameIndex(
2372      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2373    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2374
2375    // If this function is vararg, store any remaining integer argument regs
2376    // to their spots on the stack so that they may be loaded by deferencing the
2377    // result of va_next.
2378    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2379      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2380      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2381      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2382                                   MachinePointerInfo(), false, false, 0);
2383      MemOps.push_back(Store);
2384      // Increment the address by four for the next argument to store
2385      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2386      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2387    }
2388  }
2389
2390  if (!MemOps.empty())
2391    Chain = DAG.getNode(ISD::TokenFactor, dl,
2392                        MVT::Other, &MemOps[0], MemOps.size());
2393
2394  return Chain;
2395}
2396
2397SDValue
2398PPCTargetLowering::LowerFormalArguments_Darwin(
2399                                      SDValue Chain,
2400                                      CallingConv::ID CallConv, bool isVarArg,
2401                                      const SmallVectorImpl<ISD::InputArg>
2402                                        &Ins,
2403                                      DebugLoc dl, SelectionDAG &DAG,
2404                                      SmallVectorImpl<SDValue> &InVals) const {
2405  // TODO: add description of PPC stack frame format, or at least some docs.
2406  //
2407  MachineFunction &MF = DAG.getMachineFunction();
2408  MachineFrameInfo *MFI = MF.getFrameInfo();
2409  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2410
2411  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2412  bool isPPC64 = PtrVT == MVT::i64;
2413  // Potential tail calls could cause overwriting of argument stack slots.
2414  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2415                       (CallConv == CallingConv::Fast));
2416  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2417
2418  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2419  // Area that is at least reserved in caller of this function.
2420  unsigned MinReservedArea = ArgOffset;
2421
2422  static const uint16_t GPR_32[] = {           // 32-bit registers.
2423    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2424    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2425  };
2426  static const uint16_t GPR_64[] = {           // 64-bit registers.
2427    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2428    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2429  };
2430
2431  static const uint16_t *FPR = GetFPR();
2432
2433  static const uint16_t VR[] = {
2434    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2435    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2436  };
2437
2438  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2439  const unsigned Num_FPR_Regs = 13;
2440  const unsigned Num_VR_Regs  = array_lengthof( VR);
2441
2442  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2443
2444  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2445
2446  // In 32-bit non-varargs functions, the stack space for vectors is after the
2447  // stack space for non-vectors.  We do not use this space unless we have
2448  // too many vectors to fit in registers, something that only occurs in
2449  // constructed examples:), but we have to walk the arglist to figure
2450  // that out...for the pathological case, compute VecArgOffset as the
2451  // start of the vector parameter area.  Computing VecArgOffset is the
2452  // entire point of the following loop.
2453  unsigned VecArgOffset = ArgOffset;
2454  if (!isVarArg && !isPPC64) {
2455    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2456         ++ArgNo) {
2457      EVT ObjectVT = Ins[ArgNo].VT;
2458      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2459
2460      if (Flags.isByVal()) {
2461        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2462        unsigned ObjSize = Flags.getByValSize();
2463        unsigned ArgSize =
2464                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2465        VecArgOffset += ArgSize;
2466        continue;
2467      }
2468
2469      switch(ObjectVT.getSimpleVT().SimpleTy) {
2470      default: llvm_unreachable("Unhandled argument type!");
2471      case MVT::i32:
2472      case MVT::f32:
2473        VecArgOffset += 4;
2474        break;
2475      case MVT::i64:  // PPC64
2476      case MVT::f64:
2477        // FIXME: We are guaranteed to be !isPPC64 at this point.
2478        // Does MVT::i64 apply?
2479        VecArgOffset += 8;
2480        break;
2481      case MVT::v4f32:
2482      case MVT::v4i32:
2483      case MVT::v8i16:
2484      case MVT::v16i8:
2485        // Nothing to do, we're only looking at Nonvector args here.
2486        break;
2487      }
2488    }
2489  }
2490  // We've found where the vector parameter area in memory is.  Skip the
2491  // first 12 parameters; these don't use that memory.
2492  VecArgOffset = ((VecArgOffset+15)/16)*16;
2493  VecArgOffset += 12*16;
2494
2495  // Add DAG nodes to load the arguments or copy them out of registers.  On
2496  // entry to a function on PPC, the arguments start after the linkage area,
2497  // although the first ones are often in registers.
2498
2499  SmallVector<SDValue, 8> MemOps;
2500  unsigned nAltivecParamsAtEnd = 0;
2501  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2502  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2503    SDValue ArgVal;
2504    bool needsLoad = false;
2505    EVT ObjectVT = Ins[ArgNo].VT;
2506    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2507    unsigned ArgSize = ObjSize;
2508    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2509
2510    unsigned CurArgOffset = ArgOffset;
2511
2512    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2513    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2514        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2515      if (isVarArg || isPPC64) {
2516        MinReservedArea = ((MinReservedArea+15)/16)*16;
2517        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2518                                                  Flags,
2519                                                  PtrByteSize);
2520      } else  nAltivecParamsAtEnd++;
2521    } else
2522      // Calculate min reserved area.
2523      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2524                                                Flags,
2525                                                PtrByteSize);
2526
2527    // FIXME the codegen can be much improved in some cases.
2528    // We do not have to keep everything in memory.
2529    if (Flags.isByVal()) {
2530      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2531      ObjSize = Flags.getByValSize();
2532      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2533      // Objects of size 1 and 2 are right justified, everything else is
2534      // left justified.  This means the memory address is adjusted forwards.
2535      if (ObjSize==1 || ObjSize==2) {
2536        CurArgOffset = CurArgOffset + (4 - ObjSize);
2537      }
2538      // The value of the object is its address.
2539      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2540      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2541      InVals.push_back(FIN);
2542      if (ObjSize==1 || ObjSize==2) {
2543        if (GPR_idx != Num_GPR_Regs) {
2544          unsigned VReg;
2545          if (isPPC64)
2546            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2547          else
2548            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2549          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2550          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2551          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2552                                            MachinePointerInfo(FuncArg,
2553                                              CurArgOffset),
2554                                            ObjType, false, false, 0);
2555          MemOps.push_back(Store);
2556          ++GPR_idx;
2557        }
2558
2559        ArgOffset += PtrByteSize;
2560
2561        continue;
2562      }
2563      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2564        // Store whatever pieces of the object are in registers
2565        // to memory.  ArgOffset will be the address of the beginning
2566        // of the object.
2567        if (GPR_idx != Num_GPR_Regs) {
2568          unsigned VReg;
2569          if (isPPC64)
2570            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2571          else
2572            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2573          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2574          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2575          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2576          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2577                                       MachinePointerInfo(FuncArg, ArgOffset),
2578                                       false, false, 0);
2579          MemOps.push_back(Store);
2580          ++GPR_idx;
2581          ArgOffset += PtrByteSize;
2582        } else {
2583          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2584          break;
2585        }
2586      }
2587      continue;
2588    }
2589
2590    switch (ObjectVT.getSimpleVT().SimpleTy) {
2591    default: llvm_unreachable("Unhandled argument type!");
2592    case MVT::i32:
2593      if (!isPPC64) {
2594        if (GPR_idx != Num_GPR_Regs) {
2595          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2596          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2597          ++GPR_idx;
2598        } else {
2599          needsLoad = true;
2600          ArgSize = PtrByteSize;
2601        }
2602        // All int arguments reserve stack space in the Darwin ABI.
2603        ArgOffset += PtrByteSize;
2604        break;
2605      }
2606      // FALLTHROUGH
2607    case MVT::i64:  // PPC64
2608      if (GPR_idx != Num_GPR_Regs) {
2609        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2610        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2611
2612        if (ObjectVT == MVT::i32)
2613          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2614          // value to MVT::i64 and then truncate to the correct register size.
2615          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2616
2617        ++GPR_idx;
2618      } else {
2619        needsLoad = true;
2620        ArgSize = PtrByteSize;
2621      }
2622      // All int arguments reserve stack space in the Darwin ABI.
2623      ArgOffset += 8;
2624      break;
2625
2626    case MVT::f32:
2627    case MVT::f64:
2628      // Every 4 bytes of argument space consumes one of the GPRs available for
2629      // argument passing.
2630      if (GPR_idx != Num_GPR_Regs) {
2631        ++GPR_idx;
2632        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2633          ++GPR_idx;
2634      }
2635      if (FPR_idx != Num_FPR_Regs) {
2636        unsigned VReg;
2637
2638        if (ObjectVT == MVT::f32)
2639          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2640        else
2641          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2642
2643        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2644        ++FPR_idx;
2645      } else {
2646        needsLoad = true;
2647      }
2648
2649      // All FP arguments reserve stack space in the Darwin ABI.
2650      ArgOffset += isPPC64 ? 8 : ObjSize;
2651      break;
2652    case MVT::v4f32:
2653    case MVT::v4i32:
2654    case MVT::v8i16:
2655    case MVT::v16i8:
2656      // Note that vector arguments in registers don't reserve stack space,
2657      // except in varargs functions.
2658      if (VR_idx != Num_VR_Regs) {
2659        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2660        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2661        if (isVarArg) {
2662          while ((ArgOffset % 16) != 0) {
2663            ArgOffset += PtrByteSize;
2664            if (GPR_idx != Num_GPR_Regs)
2665              GPR_idx++;
2666          }
2667          ArgOffset += 16;
2668          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2669        }
2670        ++VR_idx;
2671      } else {
2672        if (!isVarArg && !isPPC64) {
2673          // Vectors go after all the nonvectors.
2674          CurArgOffset = VecArgOffset;
2675          VecArgOffset += 16;
2676        } else {
2677          // Vectors are aligned.
2678          ArgOffset = ((ArgOffset+15)/16)*16;
2679          CurArgOffset = ArgOffset;
2680          ArgOffset += 16;
2681        }
2682        needsLoad = true;
2683      }
2684      break;
2685    }
2686
2687    // We need to load the argument to a virtual register if we determined above
2688    // that we ran out of physical registers of the appropriate type.
2689    if (needsLoad) {
2690      int FI = MFI->CreateFixedObject(ObjSize,
2691                                      CurArgOffset + (ArgSize - ObjSize),
2692                                      isImmutable);
2693      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2694      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2695                           false, false, false, 0);
2696    }
2697
2698    InVals.push_back(ArgVal);
2699  }
2700
2701  // Set the size that is at least reserved in caller of this function.  Tail
2702  // call optimized functions' reserved stack space needs to be aligned so that
2703  // taking the difference between two stack areas will result in an aligned
2704  // stack.
2705  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2706
2707  // If the function takes variable number of arguments, make a frame index for
2708  // the start of the first vararg value... for expansion of llvm.va_start.
2709  if (isVarArg) {
2710    int Depth = ArgOffset;
2711
2712    FuncInfo->setVarArgsFrameIndex(
2713      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2714                             Depth, true));
2715    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2716
2717    // If this function is vararg, store any remaining integer argument regs
2718    // to their spots on the stack so that they may be loaded by deferencing the
2719    // result of va_next.
2720    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2721      unsigned VReg;
2722
2723      if (isPPC64)
2724        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2725      else
2726        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2727
2728      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2729      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2730                                   MachinePointerInfo(), false, false, 0);
2731      MemOps.push_back(Store);
2732      // Increment the address by four for the next argument to store
2733      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2734      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2735    }
2736  }
2737
2738  if (!MemOps.empty())
2739    Chain = DAG.getNode(ISD::TokenFactor, dl,
2740                        MVT::Other, &MemOps[0], MemOps.size());
2741
2742  return Chain;
2743}
2744
2745/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2746/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2747static unsigned
2748CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2749                                     bool isPPC64,
2750                                     bool isVarArg,
2751                                     unsigned CC,
2752                                     const SmallVectorImpl<ISD::OutputArg>
2753                                       &Outs,
2754                                     const SmallVectorImpl<SDValue> &OutVals,
2755                                     unsigned &nAltivecParamsAtEnd) {
2756  // Count how many bytes are to be pushed on the stack, including the linkage
2757  // area, and parameter passing area.  We start with 24/48 bytes, which is
2758  // prereserved space for [SP][CR][LR][3 x unused].
2759  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2760  unsigned NumOps = Outs.size();
2761  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2762
2763  // Add up all the space actually used.
2764  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2765  // they all go in registers, but we must reserve stack space for them for
2766  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2767  // assigned stack space in order, with padding so Altivec parameters are
2768  // 16-byte aligned.
2769  nAltivecParamsAtEnd = 0;
2770  for (unsigned i = 0; i != NumOps; ++i) {
2771    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2772    EVT ArgVT = Outs[i].VT;
2773    // Varargs Altivec parameters are padded to a 16 byte boundary.
2774    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2775        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2776      if (!isVarArg && !isPPC64) {
2777        // Non-varargs Altivec parameters go after all the non-Altivec
2778        // parameters; handle those later so we know how much padding we need.
2779        nAltivecParamsAtEnd++;
2780        continue;
2781      }
2782      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2783      NumBytes = ((NumBytes+15)/16)*16;
2784    }
2785    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2786  }
2787
2788   // Allow for Altivec parameters at the end, if needed.
2789  if (nAltivecParamsAtEnd) {
2790    NumBytes = ((NumBytes+15)/16)*16;
2791    NumBytes += 16*nAltivecParamsAtEnd;
2792  }
2793
2794  // The prolog code of the callee may store up to 8 GPR argument registers to
2795  // the stack, allowing va_start to index over them in memory if its varargs.
2796  // Because we cannot tell if this is needed on the caller side, we have to
2797  // conservatively assume that it is needed.  As such, make sure we have at
2798  // least enough stack space for the caller to store the 8 GPRs.
2799  NumBytes = std::max(NumBytes,
2800                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2801
2802  // Tail call needs the stack to be aligned.
2803  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2804    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2805      getFrameLowering()->getStackAlignment();
2806    unsigned AlignMask = TargetAlign-1;
2807    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2808  }
2809
2810  return NumBytes;
2811}
2812
2813/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2814/// adjusted to accommodate the arguments for the tailcall.
2815static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2816                                   unsigned ParamSize) {
2817
2818  if (!isTailCall) return 0;
2819
2820  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2821  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2822  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2823  // Remember only if the new adjustement is bigger.
2824  if (SPDiff < FI->getTailCallSPDelta())
2825    FI->setTailCallSPDelta(SPDiff);
2826
2827  return SPDiff;
2828}
2829
2830/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2831/// for tail call optimization. Targets which want to do tail call
2832/// optimization should implement this function.
2833bool
2834PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2835                                                     CallingConv::ID CalleeCC,
2836                                                     bool isVarArg,
2837                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2838                                                     SelectionDAG& DAG) const {
2839  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2840    return false;
2841
2842  // Variable argument functions are not supported.
2843  if (isVarArg)
2844    return false;
2845
2846  MachineFunction &MF = DAG.getMachineFunction();
2847  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2848  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2849    // Functions containing by val parameters are not supported.
2850    for (unsigned i = 0; i != Ins.size(); i++) {
2851       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2852       if (Flags.isByVal()) return false;
2853    }
2854
2855    // Non PIC/GOT  tail calls are supported.
2856    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2857      return true;
2858
2859    // At the moment we can only do local tail calls (in same module, hidden
2860    // or protected) if we are generating PIC.
2861    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2862      return G->getGlobal()->hasHiddenVisibility()
2863          || G->getGlobal()->hasProtectedVisibility();
2864  }
2865
2866  return false;
2867}
2868
2869/// isCallCompatibleAddress - Return the immediate to use if the specified
2870/// 32-bit value is representable in the immediate field of a BxA instruction.
2871static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2872  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2873  if (!C) return 0;
2874
2875  int Addr = C->getZExtValue();
2876  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2877      SignExtend32<26>(Addr) != Addr)
2878    return 0;  // Top 6 bits have to be sext of immediate.
2879
2880  return DAG.getConstant((int)C->getZExtValue() >> 2,
2881                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2882}
2883
2884namespace {
2885
2886struct TailCallArgumentInfo {
2887  SDValue Arg;
2888  SDValue FrameIdxOp;
2889  int       FrameIdx;
2890
2891  TailCallArgumentInfo() : FrameIdx(0) {}
2892};
2893
2894}
2895
2896/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2897static void
2898StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2899                                           SDValue Chain,
2900                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2901                   SmallVector<SDValue, 8> &MemOpChains,
2902                   DebugLoc dl) {
2903  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2904    SDValue Arg = TailCallArgs[i].Arg;
2905    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2906    int FI = TailCallArgs[i].FrameIdx;
2907    // Store relative to framepointer.
2908    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2909                                       MachinePointerInfo::getFixedStack(FI),
2910                                       false, false, 0));
2911  }
2912}
2913
2914/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2915/// the appropriate stack slot for the tail call optimized function call.
2916static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2917                                               MachineFunction &MF,
2918                                               SDValue Chain,
2919                                               SDValue OldRetAddr,
2920                                               SDValue OldFP,
2921                                               int SPDiff,
2922                                               bool isPPC64,
2923                                               bool isDarwinABI,
2924                                               DebugLoc dl) {
2925  if (SPDiff) {
2926    // Calculate the new stack slot for the return address.
2927    int SlotSize = isPPC64 ? 8 : 4;
2928    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2929                                                                   isDarwinABI);
2930    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2931                                                          NewRetAddrLoc, true);
2932    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2933    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2934    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2935                         MachinePointerInfo::getFixedStack(NewRetAddr),
2936                         false, false, 0);
2937
2938    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2939    // slot as the FP is never overwritten.
2940    if (isDarwinABI) {
2941      int NewFPLoc =
2942        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2943      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2944                                                          true);
2945      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2946      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2947                           MachinePointerInfo::getFixedStack(NewFPIdx),
2948                           false, false, 0);
2949    }
2950  }
2951  return Chain;
2952}
2953
2954/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2955/// the position of the argument.
2956static void
2957CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2958                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2959                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2960  int Offset = ArgOffset + SPDiff;
2961  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2962  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2963  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2964  SDValue FIN = DAG.getFrameIndex(FI, VT);
2965  TailCallArgumentInfo Info;
2966  Info.Arg = Arg;
2967  Info.FrameIdxOp = FIN;
2968  Info.FrameIdx = FI;
2969  TailCallArguments.push_back(Info);
2970}
2971
2972/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2973/// stack slot. Returns the chain as result and the loaded frame pointers in
2974/// LROpOut/FPOpout. Used when tail calling.
2975SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2976                                                        int SPDiff,
2977                                                        SDValue Chain,
2978                                                        SDValue &LROpOut,
2979                                                        SDValue &FPOpOut,
2980                                                        bool isDarwinABI,
2981                                                        DebugLoc dl) const {
2982  if (SPDiff) {
2983    // Load the LR and FP stack slot for later adjusting.
2984    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2985    LROpOut = getReturnAddrFrameIndex(DAG);
2986    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2987                          false, false, false, 0);
2988    Chain = SDValue(LROpOut.getNode(), 1);
2989
2990    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2991    // slot as the FP is never overwritten.
2992    if (isDarwinABI) {
2993      FPOpOut = getFramePointerFrameIndex(DAG);
2994      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2995                            false, false, false, 0);
2996      Chain = SDValue(FPOpOut.getNode(), 1);
2997    }
2998  }
2999  return Chain;
3000}
3001
3002/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3003/// by "Src" to address "Dst" of size "Size".  Alignment information is
3004/// specified by the specific parameter attribute. The copy will be passed as
3005/// a byval function parameter.
3006/// Sometimes what we are copying is the end of a larger object, the part that
3007/// does not fit in registers.
3008static SDValue
3009CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3010                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3011                          DebugLoc dl) {
3012  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3013  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3014                       false, false, MachinePointerInfo(0),
3015                       MachinePointerInfo(0));
3016}
3017
3018/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3019/// tail calls.
3020static void
3021LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3022                 SDValue Arg, SDValue PtrOff, int SPDiff,
3023                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3024                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3025                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3026                 DebugLoc dl) {
3027  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3028  if (!isTailCall) {
3029    if (isVector) {
3030      SDValue StackPtr;
3031      if (isPPC64)
3032        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3033      else
3034        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3035      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3036                           DAG.getConstant(ArgOffset, PtrVT));
3037    }
3038    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3039                                       MachinePointerInfo(), false, false, 0));
3040  // Calculate and remember argument location.
3041  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3042                                  TailCallArguments);
3043}
3044
3045static
3046void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3047                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3048                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3049                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3050  MachineFunction &MF = DAG.getMachineFunction();
3051
3052  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3053  // might overwrite each other in case of tail call optimization.
3054  SmallVector<SDValue, 8> MemOpChains2;
3055  // Do not flag preceding copytoreg stuff together with the following stuff.
3056  InFlag = SDValue();
3057  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3058                                    MemOpChains2, dl);
3059  if (!MemOpChains2.empty())
3060    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3061                        &MemOpChains2[0], MemOpChains2.size());
3062
3063  // Store the return address to the appropriate stack slot.
3064  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3065                                        isPPC64, isDarwinABI, dl);
3066
3067  // Emit callseq_end just before tailcall node.
3068  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3069                             DAG.getIntPtrConstant(0, true), InFlag);
3070  InFlag = Chain.getValue(1);
3071}
3072
3073static
3074unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3075                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3076                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3077                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3078                     const PPCSubtarget &PPCSubTarget) {
3079
3080  bool isPPC64 = PPCSubTarget.isPPC64();
3081  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3082
3083  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3084  NodeTys.push_back(MVT::Other);   // Returns a chain
3085  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3086
3087  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
3088
3089  bool needIndirectCall = true;
3090  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3091    // If this is an absolute destination address, use the munged value.
3092    Callee = SDValue(Dest, 0);
3093    needIndirectCall = false;
3094  }
3095
3096  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3097    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3098    // Use indirect calls for ALL functions calls in JIT mode, since the
3099    // far-call stubs may be outside relocation limits for a BL instruction.
3100    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3101      unsigned OpFlags = 0;
3102      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3103          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3104           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3105          (G->getGlobal()->isDeclaration() ||
3106           G->getGlobal()->isWeakForLinker())) {
3107        // PC-relative references to external symbols should go through $stub,
3108        // unless we're building with the leopard linker or later, which
3109        // automatically synthesizes these stubs.
3110        OpFlags = PPCII::MO_DARWIN_STUB;
3111      }
3112
3113      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3114      // every direct call is) turn it into a TargetGlobalAddress /
3115      // TargetExternalSymbol node so that legalize doesn't hack it.
3116      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3117                                          Callee.getValueType(),
3118                                          0, OpFlags);
3119      needIndirectCall = false;
3120    }
3121  }
3122
3123  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3124    unsigned char OpFlags = 0;
3125
3126    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3127        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3128         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3129      // PC-relative references to external symbols should go through $stub,
3130      // unless we're building with the leopard linker or later, which
3131      // automatically synthesizes these stubs.
3132      OpFlags = PPCII::MO_DARWIN_STUB;
3133    }
3134
3135    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3136                                         OpFlags);
3137    needIndirectCall = false;
3138  }
3139
3140  if (needIndirectCall) {
3141    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3142    // to do the call, we can't use PPCISD::CALL.
3143    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3144
3145    if (isSVR4ABI && isPPC64) {
3146      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3147      // entry point, but to the function descriptor (the function entry point
3148      // address is part of the function descriptor though).
3149      // The function descriptor is a three doubleword structure with the
3150      // following fields: function entry point, TOC base address and
3151      // environment pointer.
3152      // Thus for a call through a function pointer, the following actions need
3153      // to be performed:
3154      //   1. Save the TOC of the caller in the TOC save area of its stack
3155      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3156      //   2. Load the address of the function entry point from the function
3157      //      descriptor.
3158      //   3. Load the TOC of the callee from the function descriptor into r2.
3159      //   4. Load the environment pointer from the function descriptor into
3160      //      r11.
3161      //   5. Branch to the function entry point address.
3162      //   6. On return of the callee, the TOC of the caller needs to be
3163      //      restored (this is done in FinishCall()).
3164      //
3165      // All those operations are flagged together to ensure that no other
3166      // operations can be scheduled in between. E.g. without flagging the
3167      // operations together, a TOC access in the caller could be scheduled
3168      // between the load of the callee TOC and the branch to the callee, which
3169      // results in the TOC access going through the TOC of the callee instead
3170      // of going through the TOC of the caller, which leads to incorrect code.
3171
3172      // Load the address of the function entry point from the function
3173      // descriptor.
3174      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3175      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3176                                        InFlag.getNode() ? 3 : 2);
3177      Chain = LoadFuncPtr.getValue(1);
3178      InFlag = LoadFuncPtr.getValue(2);
3179
3180      // Load environment pointer into r11.
3181      // Offset of the environment pointer within the function descriptor.
3182      SDValue PtrOff = DAG.getIntPtrConstant(16);
3183
3184      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3185      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3186                                       InFlag);
3187      Chain = LoadEnvPtr.getValue(1);
3188      InFlag = LoadEnvPtr.getValue(2);
3189
3190      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3191                                        InFlag);
3192      Chain = EnvVal.getValue(0);
3193      InFlag = EnvVal.getValue(1);
3194
3195      // Load TOC of the callee into r2. We are using a target-specific load
3196      // with r2 hard coded, because the result of a target-independent load
3197      // would never go directly into r2, since r2 is a reserved register (which
3198      // prevents the register allocator from allocating it), resulting in an
3199      // additional register being allocated and an unnecessary move instruction
3200      // being generated.
3201      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3202      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3203                                       Callee, InFlag);
3204      Chain = LoadTOCPtr.getValue(0);
3205      InFlag = LoadTOCPtr.getValue(1);
3206
3207      MTCTROps[0] = Chain;
3208      MTCTROps[1] = LoadFuncPtr;
3209      MTCTROps[2] = InFlag;
3210    }
3211
3212    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3213                        2 + (InFlag.getNode() != 0));
3214    InFlag = Chain.getValue(1);
3215
3216    NodeTys.clear();
3217    NodeTys.push_back(MVT::Other);
3218    NodeTys.push_back(MVT::Glue);
3219    Ops.push_back(Chain);
3220    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
3221    Callee.setNode(0);
3222    // Add CTR register as callee so a bctr can be emitted later.
3223    if (isTailCall)
3224      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3225  }
3226
3227  // If this is a direct call, pass the chain and the callee.
3228  if (Callee.getNode()) {
3229    Ops.push_back(Chain);
3230    Ops.push_back(Callee);
3231  }
3232  // If this is a tail call add stack pointer delta.
3233  if (isTailCall)
3234    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3235
3236  // Add argument registers to the end of the list so that they are known live
3237  // into the call.
3238  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3239    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3240                                  RegsToPass[i].second.getValueType()));
3241
3242  return CallOpc;
3243}
3244
3245static
3246bool isLocalCall(const SDValue &Callee)
3247{
3248  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3249    return !G->getGlobal()->isDeclaration() &&
3250           !G->getGlobal()->isWeakForLinker();
3251  return false;
3252}
3253
3254SDValue
3255PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3256                                   CallingConv::ID CallConv, bool isVarArg,
3257                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3258                                   DebugLoc dl, SelectionDAG &DAG,
3259                                   SmallVectorImpl<SDValue> &InVals) const {
3260
3261  SmallVector<CCValAssign, 16> RVLocs;
3262  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3263                    getTargetMachine(), RVLocs, *DAG.getContext());
3264  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3265
3266  // Copy all of the result registers out of their specified physreg.
3267  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3268    CCValAssign &VA = RVLocs[i];
3269    assert(VA.isRegLoc() && "Can only return in registers!");
3270
3271    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3272                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3273    Chain = Val.getValue(1);
3274    InFlag = Val.getValue(2);
3275
3276    switch (VA.getLocInfo()) {
3277    default: llvm_unreachable("Unknown loc info!");
3278    case CCValAssign::Full: break;
3279    case CCValAssign::AExt:
3280      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3281      break;
3282    case CCValAssign::ZExt:
3283      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3284                        DAG.getValueType(VA.getValVT()));
3285      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3286      break;
3287    case CCValAssign::SExt:
3288      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3289                        DAG.getValueType(VA.getValVT()));
3290      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3291      break;
3292    }
3293
3294    InVals.push_back(Val);
3295  }
3296
3297  return Chain;
3298}
3299
3300SDValue
3301PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3302                              bool isTailCall, bool isVarArg,
3303                              SelectionDAG &DAG,
3304                              SmallVector<std::pair<unsigned, SDValue>, 8>
3305                                &RegsToPass,
3306                              SDValue InFlag, SDValue Chain,
3307                              SDValue &Callee,
3308                              int SPDiff, unsigned NumBytes,
3309                              const SmallVectorImpl<ISD::InputArg> &Ins,
3310                              SmallVectorImpl<SDValue> &InVals) const {
3311  std::vector<EVT> NodeTys;
3312  SmallVector<SDValue, 8> Ops;
3313  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3314                                 isTailCall, RegsToPass, Ops, NodeTys,
3315                                 PPCSubTarget);
3316
3317  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3318  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3319    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3320
3321  // When performing tail call optimization the callee pops its arguments off
3322  // the stack. Account for this here so these bytes can be pushed back on in
3323  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
3324  int BytesCalleePops =
3325    (CallConv == CallingConv::Fast &&
3326     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3327
3328  // Add a register mask operand representing the call-preserved registers.
3329  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3330  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3331  assert(Mask && "Missing call preserved mask for calling convention");
3332  Ops.push_back(DAG.getRegisterMask(Mask));
3333
3334  if (InFlag.getNode())
3335    Ops.push_back(InFlag);
3336
3337  // Emit tail call.
3338  if (isTailCall) {
3339    // If this is the first return lowered for this function, add the regs
3340    // to the liveout set for the function.
3341    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3342      SmallVector<CCValAssign, 16> RVLocs;
3343      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3344                     getTargetMachine(), RVLocs, *DAG.getContext());
3345      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3346      for (unsigned i = 0; i != RVLocs.size(); ++i)
3347        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3348    }
3349
3350    assert(((Callee.getOpcode() == ISD::Register &&
3351             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3352            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3353            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3354            isa<ConstantSDNode>(Callee)) &&
3355    "Expecting an global address, external symbol, absolute value or register");
3356
3357    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3358  }
3359
3360  // Add a NOP immediately after the branch instruction when using the 64-bit
3361  // SVR4 ABI. At link time, if caller and callee are in a different module and
3362  // thus have a different TOC, the call will be replaced with a call to a stub
3363  // function which saves the current TOC, loads the TOC of the callee and
3364  // branches to the callee. The NOP will be replaced with a load instruction
3365  // which restores the TOC of the caller from the TOC save slot of the current
3366  // stack frame. If caller and callee belong to the same module (and have the
3367  // same TOC), the NOP will remain unchanged.
3368
3369  bool needsTOCRestore = false;
3370  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3371    if (CallOpc == PPCISD::BCTRL_SVR4) {
3372      // This is a call through a function pointer.
3373      // Restore the caller TOC from the save area into R2.
3374      // See PrepareCall() for more information about calls through function
3375      // pointers in the 64-bit SVR4 ABI.
3376      // We are using a target-specific load with r2 hard coded, because the
3377      // result of a target-independent load would never go directly into r2,
3378      // since r2 is a reserved register (which prevents the register allocator
3379      // from allocating it), resulting in an additional register being
3380      // allocated and an unnecessary move instruction being generated.
3381      needsTOCRestore = true;
3382    } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
3383      // Otherwise insert NOP for non-local calls.
3384      CallOpc = PPCISD::CALL_NOP_SVR4;
3385    }
3386  }
3387
3388  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3389  InFlag = Chain.getValue(1);
3390
3391  if (needsTOCRestore) {
3392    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3393    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3394    InFlag = Chain.getValue(1);
3395  }
3396
3397  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3398                             DAG.getIntPtrConstant(BytesCalleePops, true),
3399                             InFlag);
3400  if (!Ins.empty())
3401    InFlag = Chain.getValue(1);
3402
3403  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3404                         Ins, dl, DAG, InVals);
3405}
3406
3407SDValue
3408PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3409                             SmallVectorImpl<SDValue> &InVals) const {
3410  SelectionDAG &DAG                     = CLI.DAG;
3411  DebugLoc &dl                          = CLI.DL;
3412  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3413  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3414  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3415  SDValue Chain                         = CLI.Chain;
3416  SDValue Callee                        = CLI.Callee;
3417  bool &isTailCall                      = CLI.IsTailCall;
3418  CallingConv::ID CallConv              = CLI.CallConv;
3419  bool isVarArg                         = CLI.IsVarArg;
3420
3421  if (isTailCall)
3422    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3423                                                   Ins, DAG);
3424
3425  if (PPCSubTarget.isSVR4ABI()) {
3426    if (PPCSubTarget.isPPC64())
3427      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3428                              isTailCall, Outs, OutVals, Ins,
3429                              dl, DAG, InVals);
3430    else
3431      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3432                              isTailCall, Outs, OutVals, Ins,
3433                              dl, DAG, InVals);
3434  }
3435
3436  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3437                          isTailCall, Outs, OutVals, Ins,
3438                          dl, DAG, InVals);
3439}
3440
3441SDValue
3442PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3443                                    CallingConv::ID CallConv, bool isVarArg,
3444                                    bool isTailCall,
3445                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3446                                    const SmallVectorImpl<SDValue> &OutVals,
3447                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3448                                    DebugLoc dl, SelectionDAG &DAG,
3449                                    SmallVectorImpl<SDValue> &InVals) const {
3450  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3451  // of the 32-bit SVR4 ABI stack frame layout.
3452
3453  assert((CallConv == CallingConv::C ||
3454          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3455
3456  unsigned PtrByteSize = 4;
3457
3458  MachineFunction &MF = DAG.getMachineFunction();
3459
3460  // Mark this function as potentially containing a function that contains a
3461  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3462  // and restoring the callers stack pointer in this functions epilog. This is
3463  // done because by tail calling the called function might overwrite the value
3464  // in this function's (MF) stack pointer stack slot 0(SP).
3465  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3466      CallConv == CallingConv::Fast)
3467    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3468
3469  // Count how many bytes are to be pushed on the stack, including the linkage
3470  // area, parameter list area and the part of the local variable space which
3471  // contains copies of aggregates which are passed by value.
3472
3473  // Assign locations to all of the outgoing arguments.
3474  SmallVector<CCValAssign, 16> ArgLocs;
3475  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3476                 getTargetMachine(), ArgLocs, *DAG.getContext());
3477
3478  // Reserve space for the linkage area on the stack.
3479  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3480
3481  if (isVarArg) {
3482    // Handle fixed and variable vector arguments differently.
3483    // Fixed vector arguments go into registers as long as registers are
3484    // available. Variable vector arguments always go into memory.
3485    unsigned NumArgs = Outs.size();
3486
3487    for (unsigned i = 0; i != NumArgs; ++i) {
3488      MVT ArgVT = Outs[i].VT;
3489      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3490      bool Result;
3491
3492      if (Outs[i].IsFixed) {
3493        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3494                             CCInfo);
3495      } else {
3496        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3497                                    ArgFlags, CCInfo);
3498      }
3499
3500      if (Result) {
3501#ifndef NDEBUG
3502        errs() << "Call operand #" << i << " has unhandled type "
3503             << EVT(ArgVT).getEVTString() << "\n";
3504#endif
3505        llvm_unreachable(0);
3506      }
3507    }
3508  } else {
3509    // All arguments are treated the same.
3510    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
3511  }
3512
3513  // Assign locations to all of the outgoing aggregate by value arguments.
3514  SmallVector<CCValAssign, 16> ByValArgLocs;
3515  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3516                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3517
3518  // Reserve stack space for the allocations in CCInfo.
3519  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3520
3521  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
3522
3523  // Size of the linkage area, parameter list area and the part of the local
3524  // space variable where copies of aggregates which are passed by value are
3525  // stored.
3526  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3527
3528  // Calculate by how many bytes the stack has to be adjusted in case of tail
3529  // call optimization.
3530  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3531
3532  // Adjust the stack pointer for the new arguments...
3533  // These operations are automatically eliminated by the prolog/epilog pass
3534  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3535  SDValue CallSeqStart = Chain;
3536
3537  // Load the return address and frame pointer so it can be moved somewhere else
3538  // later.
3539  SDValue LROp, FPOp;
3540  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3541                                       dl);
3542
3543  // Set up a copy of the stack pointer for use loading and storing any
3544  // arguments that may not fit in the registers available for argument
3545  // passing.
3546  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3547
3548  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3549  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3550  SmallVector<SDValue, 8> MemOpChains;
3551
3552  bool seenFloatArg = false;
3553  // Walk the register/memloc assignments, inserting copies/loads.
3554  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3555       i != e;
3556       ++i) {
3557    CCValAssign &VA = ArgLocs[i];
3558    SDValue Arg = OutVals[i];
3559    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3560
3561    if (Flags.isByVal()) {
3562      // Argument is an aggregate which is passed by value, thus we need to
3563      // create a copy of it in the local variable space of the current stack
3564      // frame (which is the stack frame of the caller) and pass the address of
3565      // this copy to the callee.
3566      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3567      CCValAssign &ByValVA = ByValArgLocs[j++];
3568      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3569
3570      // Memory reserved in the local variable space of the callers stack frame.
3571      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3572
3573      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3574      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3575
3576      // Create a copy of the argument in the local area of the current
3577      // stack frame.
3578      SDValue MemcpyCall =
3579        CreateCopyOfByValArgument(Arg, PtrOff,
3580                                  CallSeqStart.getNode()->getOperand(0),
3581                                  Flags, DAG, dl);
3582
3583      // This must go outside the CALLSEQ_START..END.
3584      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3585                           CallSeqStart.getNode()->getOperand(1));
3586      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3587                             NewCallSeqStart.getNode());
3588      Chain = CallSeqStart = NewCallSeqStart;
3589
3590      // Pass the address of the aggregate copy on the stack either in a
3591      // physical register or in the parameter list area of the current stack
3592      // frame to the callee.
3593      Arg = PtrOff;
3594    }
3595
3596    if (VA.isRegLoc()) {
3597      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3598      // Put argument in a physical register.
3599      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3600    } else {
3601      // Put argument in the parameter list area of the current stack frame.
3602      assert(VA.isMemLoc());
3603      unsigned LocMemOffset = VA.getLocMemOffset();
3604
3605      if (!isTailCall) {
3606        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3607        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3608
3609        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3610                                           MachinePointerInfo(),
3611                                           false, false, 0));
3612      } else {
3613        // Calculate and remember argument location.
3614        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3615                                 TailCallArguments);
3616      }
3617    }
3618  }
3619
3620  if (!MemOpChains.empty())
3621    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3622                        &MemOpChains[0], MemOpChains.size());
3623
3624  // Build a sequence of copy-to-reg nodes chained together with token chain
3625  // and flag operands which copy the outgoing args into the appropriate regs.
3626  SDValue InFlag;
3627  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3628    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3629                             RegsToPass[i].second, InFlag);
3630    InFlag = Chain.getValue(1);
3631  }
3632
3633  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3634  // registers.
3635  if (isVarArg) {
3636    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3637    SDValue Ops[] = { Chain, InFlag };
3638
3639    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3640                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3641
3642    InFlag = Chain.getValue(1);
3643  }
3644
3645  if (isTailCall)
3646    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3647                    false, TailCallArguments);
3648
3649  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3650                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3651                    Ins, InVals);
3652}
3653
3654// Copy an argument into memory, being careful to do this outside the
3655// call sequence for the call to which the argument belongs.
3656SDValue
3657PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3658                                              SDValue CallSeqStart,
3659                                              ISD::ArgFlagsTy Flags,
3660                                              SelectionDAG &DAG,
3661                                              DebugLoc dl) const {
3662  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3663                        CallSeqStart.getNode()->getOperand(0),
3664                        Flags, DAG, dl);
3665  // The MEMCPY must go outside the CALLSEQ_START..END.
3666  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3667                             CallSeqStart.getNode()->getOperand(1));
3668  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3669                         NewCallSeqStart.getNode());
3670  return NewCallSeqStart;
3671}
3672
3673SDValue
3674PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3675                                    CallingConv::ID CallConv, bool isVarArg,
3676                                    bool isTailCall,
3677                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3678                                    const SmallVectorImpl<SDValue> &OutVals,
3679                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3680                                    DebugLoc dl, SelectionDAG &DAG,
3681                                    SmallVectorImpl<SDValue> &InVals) const {
3682
3683  unsigned NumOps = Outs.size();
3684
3685  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3686  unsigned PtrByteSize = 8;
3687
3688  MachineFunction &MF = DAG.getMachineFunction();
3689
3690  // Mark this function as potentially containing a function that contains a
3691  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3692  // and restoring the callers stack pointer in this functions epilog. This is
3693  // done because by tail calling the called function might overwrite the value
3694  // in this function's (MF) stack pointer stack slot 0(SP).
3695  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3696      CallConv == CallingConv::Fast)
3697    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3698
3699  unsigned nAltivecParamsAtEnd = 0;
3700
3701  // Count how many bytes are to be pushed on the stack, including the linkage
3702  // area, and parameter passing area.  We start with at least 48 bytes, which
3703  // is reserved space for [SP][CR][LR][3 x unused].
3704  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3705  // of this call.
3706  unsigned NumBytes =
3707    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3708                                         Outs, OutVals, nAltivecParamsAtEnd);
3709
3710  // Calculate by how many bytes the stack has to be adjusted in case of tail
3711  // call optimization.
3712  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3713
3714  // To protect arguments on the stack from being clobbered in a tail call,
3715  // force all the loads to happen before doing any other lowering.
3716  if (isTailCall)
3717    Chain = DAG.getStackArgumentTokenFactor(Chain);
3718
3719  // Adjust the stack pointer for the new arguments...
3720  // These operations are automatically eliminated by the prolog/epilog pass
3721  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3722  SDValue CallSeqStart = Chain;
3723
3724  // Load the return address and frame pointer so it can be move somewhere else
3725  // later.
3726  SDValue LROp, FPOp;
3727  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3728                                       dl);
3729
3730  // Set up a copy of the stack pointer for use loading and storing any
3731  // arguments that may not fit in the registers available for argument
3732  // passing.
3733  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3734
3735  // Figure out which arguments are going to go in registers, and which in
3736  // memory.  Also, if this is a vararg function, floating point operations
3737  // must be stored to our stack, and loaded into integer regs as well, if
3738  // any integer regs are available for argument passing.
3739  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3740  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3741
3742  static const uint16_t GPR[] = {
3743    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3744    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3745  };
3746  static const uint16_t *FPR = GetFPR();
3747
3748  static const uint16_t VR[] = {
3749    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3750    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3751  };
3752  const unsigned NumGPRs = array_lengthof(GPR);
3753  const unsigned NumFPRs = 13;
3754  const unsigned NumVRs  = array_lengthof(VR);
3755
3756  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3757  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3758
3759  SmallVector<SDValue, 8> MemOpChains;
3760  for (unsigned i = 0; i != NumOps; ++i) {
3761    SDValue Arg = OutVals[i];
3762    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3763
3764    // PtrOff will be used to store the current argument to the stack if a
3765    // register cannot be found for it.
3766    SDValue PtrOff;
3767
3768    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3769
3770    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3771
3772    // Promote integers to 64-bit values.
3773    if (Arg.getValueType() == MVT::i32) {
3774      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3775      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3776      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3777    }
3778
3779    // FIXME memcpy is used way more than necessary.  Correctness first.
3780    // Note: "by value" is code for passing a structure by value, not
3781    // basic types.
3782    if (Flags.isByVal()) {
3783      // Note: Size includes alignment padding, so
3784      //   struct x { short a; char b; }
3785      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3786      // These are the proper values we need for right-justifying the
3787      // aggregate in a parameter register.
3788      unsigned Size = Flags.getByValSize();
3789
3790      // An empty aggregate parameter takes up no storage and no
3791      // registers.
3792      if (Size == 0)
3793        continue;
3794
3795      // All aggregates smaller than 8 bytes must be passed right-justified.
3796      if (Size==1 || Size==2 || Size==4) {
3797        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3798        if (GPR_idx != NumGPRs) {
3799          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3800                                        MachinePointerInfo(), VT,
3801                                        false, false, 0);
3802          MemOpChains.push_back(Load.getValue(1));
3803          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3804
3805          ArgOffset += PtrByteSize;
3806          continue;
3807        }
3808      }
3809
3810      if (GPR_idx == NumGPRs && Size < 8) {
3811        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3812                                        PtrOff.getValueType());
3813        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3814        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3815                                                          CallSeqStart,
3816                                                          Flags, DAG, dl);
3817        ArgOffset += PtrByteSize;
3818        continue;
3819      }
3820      // Copy entire object into memory.  There are cases where gcc-generated
3821      // code assumes it is there, even if it could be put entirely into
3822      // registers.  (This is not what the doc says.)
3823
3824      // FIXME: The above statement is likely due to a misunderstanding of the
3825      // documents.  All arguments must be copied into the parameter area BY
3826      // THE CALLEE in the event that the callee takes the address of any
3827      // formal argument.  That has not yet been implemented.  However, it is
3828      // reasonable to use the stack area as a staging area for the register
3829      // load.
3830
3831      // Skip this for small aggregates, as we will use the same slot for a
3832      // right-justified copy, below.
3833      if (Size >= 8)
3834        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3835                                                          CallSeqStart,
3836                                                          Flags, DAG, dl);
3837
3838      // When a register is available, pass a small aggregate right-justified.
3839      if (Size < 8 && GPR_idx != NumGPRs) {
3840        // The easiest way to get this right-justified in a register
3841        // is to copy the structure into the rightmost portion of a
3842        // local variable slot, then load the whole slot into the
3843        // register.
3844        // FIXME: The memcpy seems to produce pretty awful code for
3845        // small aggregates, particularly for packed ones.
3846        // FIXME: It would be preferable to use the slot in the
3847        // parameter save area instead of a new local variable.
3848        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3849        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3850        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3851                                                          CallSeqStart,
3852                                                          Flags, DAG, dl);
3853
3854        // Load the slot into the register.
3855        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3856                                   MachinePointerInfo(),
3857                                   false, false, false, 0);
3858        MemOpChains.push_back(Load.getValue(1));
3859        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3860
3861        // Done with this argument.
3862        ArgOffset += PtrByteSize;
3863        continue;
3864      }
3865
3866      // For aggregates larger than PtrByteSize, copy the pieces of the
3867      // object that fit into registers from the parameter save area.
3868      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3869        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3870        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3871        if (GPR_idx != NumGPRs) {
3872          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3873                                     MachinePointerInfo(),
3874                                     false, false, false, 0);
3875          MemOpChains.push_back(Load.getValue(1));
3876          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3877          ArgOffset += PtrByteSize;
3878        } else {
3879          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3880          break;
3881        }
3882      }
3883      continue;
3884    }
3885
3886    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3887    default: llvm_unreachable("Unexpected ValueType for argument!");
3888    case MVT::i32:
3889    case MVT::i64:
3890      if (GPR_idx != NumGPRs) {
3891        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3892      } else {
3893        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3894                         true, isTailCall, false, MemOpChains,
3895                         TailCallArguments, dl);
3896      }
3897      ArgOffset += PtrByteSize;
3898      break;
3899    case MVT::f32:
3900    case MVT::f64:
3901      if (FPR_idx != NumFPRs) {
3902        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3903
3904        if (isVarArg) {
3905          // A single float or an aggregate containing only a single float
3906          // must be passed right-justified in the stack doubleword, and
3907          // in the GPR, if one is available.
3908          SDValue StoreOff;
3909          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3910            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3911            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3912          } else
3913            StoreOff = PtrOff;
3914
3915          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3916                                       MachinePointerInfo(), false, false, 0);
3917          MemOpChains.push_back(Store);
3918
3919          // Float varargs are always shadowed in available integer registers
3920          if (GPR_idx != NumGPRs) {
3921            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3922                                       MachinePointerInfo(), false, false,
3923                                       false, 0);
3924            MemOpChains.push_back(Load.getValue(1));
3925            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3926          }
3927        } else if (GPR_idx != NumGPRs)
3928          // If we have any FPRs remaining, we may also have GPRs remaining.
3929          ++GPR_idx;
3930      } else {
3931        // Single-precision floating-point values are mapped to the
3932        // second (rightmost) word of the stack doubleword.
3933        if (Arg.getValueType() == MVT::f32) {
3934          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3935          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3936        }
3937
3938        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3939                         true, isTailCall, false, MemOpChains,
3940                         TailCallArguments, dl);
3941      }
3942      ArgOffset += 8;
3943      break;
3944    case MVT::v4f32:
3945    case MVT::v4i32:
3946    case MVT::v8i16:
3947    case MVT::v16i8:
3948      if (isVarArg) {
3949        // These go aligned on the stack, or in the corresponding R registers
3950        // when within range.  The Darwin PPC ABI doc claims they also go in
3951        // V registers; in fact gcc does this only for arguments that are
3952        // prototyped, not for those that match the ...  We do it for all
3953        // arguments, seems to work.
3954        while (ArgOffset % 16 !=0) {
3955          ArgOffset += PtrByteSize;
3956          if (GPR_idx != NumGPRs)
3957            GPR_idx++;
3958        }
3959        // We could elide this store in the case where the object fits
3960        // entirely in R registers.  Maybe later.
3961        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3962                            DAG.getConstant(ArgOffset, PtrVT));
3963        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3964                                     MachinePointerInfo(), false, false, 0);
3965        MemOpChains.push_back(Store);
3966        if (VR_idx != NumVRs) {
3967          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3968                                     MachinePointerInfo(),
3969                                     false, false, false, 0);
3970          MemOpChains.push_back(Load.getValue(1));
3971          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3972        }
3973        ArgOffset += 16;
3974        for (unsigned i=0; i<16; i+=PtrByteSize) {
3975          if (GPR_idx == NumGPRs)
3976            break;
3977          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3978                                  DAG.getConstant(i, PtrVT));
3979          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3980                                     false, false, false, 0);
3981          MemOpChains.push_back(Load.getValue(1));
3982          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3983        }
3984        break;
3985      }
3986
3987      // Non-varargs Altivec params generally go in registers, but have
3988      // stack space allocated at the end.
3989      if (VR_idx != NumVRs) {
3990        // Doesn't have GPR space allocated.
3991        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3992      } else {
3993        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3994                         true, isTailCall, true, MemOpChains,
3995                         TailCallArguments, dl);
3996        ArgOffset += 16;
3997      }
3998      break;
3999    }
4000  }
4001
4002  if (!MemOpChains.empty())
4003    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4004                        &MemOpChains[0], MemOpChains.size());
4005
4006  // Check if this is an indirect call (MTCTR/BCTRL).
4007  // See PrepareCall() for more information about calls through function
4008  // pointers in the 64-bit SVR4 ABI.
4009  if (!isTailCall &&
4010      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4011      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4012      !isBLACompatibleAddress(Callee, DAG)) {
4013    // Load r2 into a virtual register and store it to the TOC save area.
4014    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4015    // TOC save area offset.
4016    SDValue PtrOff = DAG.getIntPtrConstant(40);
4017    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4018    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4019                         false, false, 0);
4020    // R12 must contain the address of an indirect callee.  This does not
4021    // mean the MTCTR instruction must use R12; it's easier to model this
4022    // as an extra parameter, so do that.
4023    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4024  }
4025
4026  // Build a sequence of copy-to-reg nodes chained together with token chain
4027  // and flag operands which copy the outgoing args into the appropriate regs.
4028  SDValue InFlag;
4029  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4030    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4031                             RegsToPass[i].second, InFlag);
4032    InFlag = Chain.getValue(1);
4033  }
4034
4035  if (isTailCall)
4036    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4037                    FPOp, true, TailCallArguments);
4038
4039  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4040                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4041                    Ins, InVals);
4042}
4043
4044SDValue
4045PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4046                                    CallingConv::ID CallConv, bool isVarArg,
4047                                    bool isTailCall,
4048                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4049                                    const SmallVectorImpl<SDValue> &OutVals,
4050                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4051                                    DebugLoc dl, SelectionDAG &DAG,
4052                                    SmallVectorImpl<SDValue> &InVals) const {
4053
4054  unsigned NumOps = Outs.size();
4055
4056  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4057  bool isPPC64 = PtrVT == MVT::i64;
4058  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4059
4060  MachineFunction &MF = DAG.getMachineFunction();
4061
4062  // Mark this function as potentially containing a function that contains a
4063  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4064  // and restoring the callers stack pointer in this functions epilog. This is
4065  // done because by tail calling the called function might overwrite the value
4066  // in this function's (MF) stack pointer stack slot 0(SP).
4067  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4068      CallConv == CallingConv::Fast)
4069    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4070
4071  unsigned nAltivecParamsAtEnd = 0;
4072
4073  // Count how many bytes are to be pushed on the stack, including the linkage
4074  // area, and parameter passing area.  We start with 24/48 bytes, which is
4075  // prereserved space for [SP][CR][LR][3 x unused].
4076  unsigned NumBytes =
4077    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4078                                         Outs, OutVals,
4079                                         nAltivecParamsAtEnd);
4080
4081  // Calculate by how many bytes the stack has to be adjusted in case of tail
4082  // call optimization.
4083  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4084
4085  // To protect arguments on the stack from being clobbered in a tail call,
4086  // force all the loads to happen before doing any other lowering.
4087  if (isTailCall)
4088    Chain = DAG.getStackArgumentTokenFactor(Chain);
4089
4090  // Adjust the stack pointer for the new arguments...
4091  // These operations are automatically eliminated by the prolog/epilog pass
4092  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4093  SDValue CallSeqStart = Chain;
4094
4095  // Load the return address and frame pointer so it can be move somewhere else
4096  // later.
4097  SDValue LROp, FPOp;
4098  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4099                                       dl);
4100
4101  // Set up a copy of the stack pointer for use loading and storing any
4102  // arguments that may not fit in the registers available for argument
4103  // passing.
4104  SDValue StackPtr;
4105  if (isPPC64)
4106    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4107  else
4108    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4109
4110  // Figure out which arguments are going to go in registers, and which in
4111  // memory.  Also, if this is a vararg function, floating point operations
4112  // must be stored to our stack, and loaded into integer regs as well, if
4113  // any integer regs are available for argument passing.
4114  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4115  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4116
4117  static const uint16_t GPR_32[] = {           // 32-bit registers.
4118    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4119    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4120  };
4121  static const uint16_t GPR_64[] = {           // 64-bit registers.
4122    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4123    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4124  };
4125  static const uint16_t *FPR = GetFPR();
4126
4127  static const uint16_t VR[] = {
4128    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4129    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4130  };
4131  const unsigned NumGPRs = array_lengthof(GPR_32);
4132  const unsigned NumFPRs = 13;
4133  const unsigned NumVRs  = array_lengthof(VR);
4134
4135  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4136
4137  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4138  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4139
4140  SmallVector<SDValue, 8> MemOpChains;
4141  for (unsigned i = 0; i != NumOps; ++i) {
4142    SDValue Arg = OutVals[i];
4143    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4144
4145    // PtrOff will be used to store the current argument to the stack if a
4146    // register cannot be found for it.
4147    SDValue PtrOff;
4148
4149    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4150
4151    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4152
4153    // On PPC64, promote integers to 64-bit values.
4154    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4155      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4156      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4157      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4158    }
4159
4160    // FIXME memcpy is used way more than necessary.  Correctness first.
4161    // Note: "by value" is code for passing a structure by value, not
4162    // basic types.
4163    if (Flags.isByVal()) {
4164      unsigned Size = Flags.getByValSize();
4165      // Very small objects are passed right-justified.  Everything else is
4166      // passed left-justified.
4167      if (Size==1 || Size==2) {
4168        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4169        if (GPR_idx != NumGPRs) {
4170          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4171                                        MachinePointerInfo(), VT,
4172                                        false, false, 0);
4173          MemOpChains.push_back(Load.getValue(1));
4174          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4175
4176          ArgOffset += PtrByteSize;
4177        } else {
4178          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4179                                          PtrOff.getValueType());
4180          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4181          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4182                                                            CallSeqStart,
4183                                                            Flags, DAG, dl);
4184          ArgOffset += PtrByteSize;
4185        }
4186        continue;
4187      }
4188      // Copy entire object into memory.  There are cases where gcc-generated
4189      // code assumes it is there, even if it could be put entirely into
4190      // registers.  (This is not what the doc says.)
4191      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4192                                                        CallSeqStart,
4193                                                        Flags, DAG, dl);
4194
4195      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4196      // copy the pieces of the object that fit into registers from the
4197      // parameter save area.
4198      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4199        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4200        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4201        if (GPR_idx != NumGPRs) {
4202          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4203                                     MachinePointerInfo(),
4204                                     false, false, false, 0);
4205          MemOpChains.push_back(Load.getValue(1));
4206          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4207          ArgOffset += PtrByteSize;
4208        } else {
4209          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4210          break;
4211        }
4212      }
4213      continue;
4214    }
4215
4216    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4217    default: llvm_unreachable("Unexpected ValueType for argument!");
4218    case MVT::i32:
4219    case MVT::i64:
4220      if (GPR_idx != NumGPRs) {
4221        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4222      } else {
4223        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4224                         isPPC64, isTailCall, false, MemOpChains,
4225                         TailCallArguments, dl);
4226      }
4227      ArgOffset += PtrByteSize;
4228      break;
4229    case MVT::f32:
4230    case MVT::f64:
4231      if (FPR_idx != NumFPRs) {
4232        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4233
4234        if (isVarArg) {
4235          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4236                                       MachinePointerInfo(), false, false, 0);
4237          MemOpChains.push_back(Store);
4238
4239          // Float varargs are always shadowed in available integer registers
4240          if (GPR_idx != NumGPRs) {
4241            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4242                                       MachinePointerInfo(), false, false,
4243                                       false, 0);
4244            MemOpChains.push_back(Load.getValue(1));
4245            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4246          }
4247          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4248            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4249            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4250            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4251                                       MachinePointerInfo(),
4252                                       false, false, false, 0);
4253            MemOpChains.push_back(Load.getValue(1));
4254            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4255          }
4256        } else {
4257          // If we have any FPRs remaining, we may also have GPRs remaining.
4258          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4259          // GPRs.
4260          if (GPR_idx != NumGPRs)
4261            ++GPR_idx;
4262          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4263              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4264            ++GPR_idx;
4265        }
4266      } else
4267        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4268                         isPPC64, isTailCall, false, MemOpChains,
4269                         TailCallArguments, dl);
4270      if (isPPC64)
4271        ArgOffset += 8;
4272      else
4273        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4274      break;
4275    case MVT::v4f32:
4276    case MVT::v4i32:
4277    case MVT::v8i16:
4278    case MVT::v16i8:
4279      if (isVarArg) {
4280        // These go aligned on the stack, or in the corresponding R registers
4281        // when within range.  The Darwin PPC ABI doc claims they also go in
4282        // V registers; in fact gcc does this only for arguments that are
4283        // prototyped, not for those that match the ...  We do it for all
4284        // arguments, seems to work.
4285        while (ArgOffset % 16 !=0) {
4286          ArgOffset += PtrByteSize;
4287          if (GPR_idx != NumGPRs)
4288            GPR_idx++;
4289        }
4290        // We could elide this store in the case where the object fits
4291        // entirely in R registers.  Maybe later.
4292        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4293                            DAG.getConstant(ArgOffset, PtrVT));
4294        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4295                                     MachinePointerInfo(), false, false, 0);
4296        MemOpChains.push_back(Store);
4297        if (VR_idx != NumVRs) {
4298          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4299                                     MachinePointerInfo(),
4300                                     false, false, false, 0);
4301          MemOpChains.push_back(Load.getValue(1));
4302          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4303        }
4304        ArgOffset += 16;
4305        for (unsigned i=0; i<16; i+=PtrByteSize) {
4306          if (GPR_idx == NumGPRs)
4307            break;
4308          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4309                                  DAG.getConstant(i, PtrVT));
4310          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4311                                     false, false, false, 0);
4312          MemOpChains.push_back(Load.getValue(1));
4313          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4314        }
4315        break;
4316      }
4317
4318      // Non-varargs Altivec params generally go in registers, but have
4319      // stack space allocated at the end.
4320      if (VR_idx != NumVRs) {
4321        // Doesn't have GPR space allocated.
4322        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4323      } else if (nAltivecParamsAtEnd==0) {
4324        // We are emitting Altivec params in order.
4325        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4326                         isPPC64, isTailCall, true, MemOpChains,
4327                         TailCallArguments, dl);
4328        ArgOffset += 16;
4329      }
4330      break;
4331    }
4332  }
4333  // If all Altivec parameters fit in registers, as they usually do,
4334  // they get stack space following the non-Altivec parameters.  We
4335  // don't track this here because nobody below needs it.
4336  // If there are more Altivec parameters than fit in registers emit
4337  // the stores here.
4338  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4339    unsigned j = 0;
4340    // Offset is aligned; skip 1st 12 params which go in V registers.
4341    ArgOffset = ((ArgOffset+15)/16)*16;
4342    ArgOffset += 12*16;
4343    for (unsigned i = 0; i != NumOps; ++i) {
4344      SDValue Arg = OutVals[i];
4345      EVT ArgType = Outs[i].VT;
4346      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4347          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4348        if (++j > NumVRs) {
4349          SDValue PtrOff;
4350          // We are emitting Altivec params in order.
4351          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4352                           isPPC64, isTailCall, true, MemOpChains,
4353                           TailCallArguments, dl);
4354          ArgOffset += 16;
4355        }
4356      }
4357    }
4358  }
4359
4360  if (!MemOpChains.empty())
4361    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4362                        &MemOpChains[0], MemOpChains.size());
4363
4364  // On Darwin, R12 must contain the address of an indirect callee.  This does
4365  // not mean the MTCTR instruction must use R12; it's easier to model this as
4366  // an extra parameter, so do that.
4367  if (!isTailCall &&
4368      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4369      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4370      !isBLACompatibleAddress(Callee, DAG))
4371    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4372                                                   PPC::R12), Callee));
4373
4374  // Build a sequence of copy-to-reg nodes chained together with token chain
4375  // and flag operands which copy the outgoing args into the appropriate regs.
4376  SDValue InFlag;
4377  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4378    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4379                             RegsToPass[i].second, InFlag);
4380    InFlag = Chain.getValue(1);
4381  }
4382
4383  if (isTailCall)
4384    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4385                    FPOp, true, TailCallArguments);
4386
4387  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4388                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4389                    Ins, InVals);
4390}
4391
4392bool
4393PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4394                                  MachineFunction &MF, bool isVarArg,
4395                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4396                                  LLVMContext &Context) const {
4397  SmallVector<CCValAssign, 16> RVLocs;
4398  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4399                 RVLocs, Context);
4400  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4401}
4402
4403SDValue
4404PPCTargetLowering::LowerReturn(SDValue Chain,
4405                               CallingConv::ID CallConv, bool isVarArg,
4406                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4407                               const SmallVectorImpl<SDValue> &OutVals,
4408                               DebugLoc dl, SelectionDAG &DAG) const {
4409
4410  SmallVector<CCValAssign, 16> RVLocs;
4411  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4412                 getTargetMachine(), RVLocs, *DAG.getContext());
4413  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4414
4415  // If this is the first return lowered for this function, add the regs to the
4416  // liveout set for the function.
4417  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
4418    for (unsigned i = 0; i != RVLocs.size(); ++i)
4419      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
4420  }
4421
4422  SDValue Flag;
4423
4424  // Copy the result values into the output registers.
4425  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4426    CCValAssign &VA = RVLocs[i];
4427    assert(VA.isRegLoc() && "Can only return in registers!");
4428
4429    SDValue Arg = OutVals[i];
4430
4431    switch (VA.getLocInfo()) {
4432    default: llvm_unreachable("Unknown loc info!");
4433    case CCValAssign::Full: break;
4434    case CCValAssign::AExt:
4435      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4436      break;
4437    case CCValAssign::ZExt:
4438      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4439      break;
4440    case CCValAssign::SExt:
4441      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4442      break;
4443    }
4444
4445    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4446    Flag = Chain.getValue(1);
4447  }
4448
4449  if (Flag.getNode())
4450    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
4451  else
4452    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
4453}
4454
4455SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4456                                   const PPCSubtarget &Subtarget) const {
4457  // When we pop the dynamic allocation we need to restore the SP link.
4458  DebugLoc dl = Op.getDebugLoc();
4459
4460  // Get the corect type for pointers.
4461  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4462
4463  // Construct the stack pointer operand.
4464  bool isPPC64 = Subtarget.isPPC64();
4465  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4466  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4467
4468  // Get the operands for the STACKRESTORE.
4469  SDValue Chain = Op.getOperand(0);
4470  SDValue SaveSP = Op.getOperand(1);
4471
4472  // Load the old link SP.
4473  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4474                                   MachinePointerInfo(),
4475                                   false, false, false, 0);
4476
4477  // Restore the stack pointer.
4478  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4479
4480  // Store the old link SP.
4481  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4482                      false, false, 0);
4483}
4484
4485
4486
4487SDValue
4488PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4489  MachineFunction &MF = DAG.getMachineFunction();
4490  bool isPPC64 = PPCSubTarget.isPPC64();
4491  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4492  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4493
4494  // Get current frame pointer save index.  The users of this index will be
4495  // primarily DYNALLOC instructions.
4496  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4497  int RASI = FI->getReturnAddrSaveIndex();
4498
4499  // If the frame pointer save index hasn't been defined yet.
4500  if (!RASI) {
4501    // Find out what the fix offset of the frame pointer save area.
4502    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4503    // Allocate the frame index for frame pointer save area.
4504    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4505    // Save the result.
4506    FI->setReturnAddrSaveIndex(RASI);
4507  }
4508  return DAG.getFrameIndex(RASI, PtrVT);
4509}
4510
4511SDValue
4512PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4513  MachineFunction &MF = DAG.getMachineFunction();
4514  bool isPPC64 = PPCSubTarget.isPPC64();
4515  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4516  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4517
4518  // Get current frame pointer save index.  The users of this index will be
4519  // primarily DYNALLOC instructions.
4520  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4521  int FPSI = FI->getFramePointerSaveIndex();
4522
4523  // If the frame pointer save index hasn't been defined yet.
4524  if (!FPSI) {
4525    // Find out what the fix offset of the frame pointer save area.
4526    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4527                                                           isDarwinABI);
4528
4529    // Allocate the frame index for frame pointer save area.
4530    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4531    // Save the result.
4532    FI->setFramePointerSaveIndex(FPSI);
4533  }
4534  return DAG.getFrameIndex(FPSI, PtrVT);
4535}
4536
4537SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4538                                         SelectionDAG &DAG,
4539                                         const PPCSubtarget &Subtarget) const {
4540  // Get the inputs.
4541  SDValue Chain = Op.getOperand(0);
4542  SDValue Size  = Op.getOperand(1);
4543  DebugLoc dl = Op.getDebugLoc();
4544
4545  // Get the corect type for pointers.
4546  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4547  // Negate the size.
4548  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4549                                  DAG.getConstant(0, PtrVT), Size);
4550  // Construct a node for the frame pointer save index.
4551  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4552  // Build a DYNALLOC node.
4553  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4554  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4555  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4556}
4557
4558/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4559/// possible.
4560SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4561  // Not FP? Not a fsel.
4562  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4563      !Op.getOperand(2).getValueType().isFloatingPoint())
4564    return Op;
4565
4566  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4567
4568  // Cannot handle SETEQ/SETNE.
4569  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4570
4571  EVT ResVT = Op.getValueType();
4572  EVT CmpVT = Op.getOperand(0).getValueType();
4573  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4574  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4575  DebugLoc dl = Op.getDebugLoc();
4576
4577  // If the RHS of the comparison is a 0.0, we don't need to do the
4578  // subtraction at all.
4579  if (isFloatingPointZero(RHS))
4580    switch (CC) {
4581    default: break;       // SETUO etc aren't handled by fsel.
4582    case ISD::SETULT:
4583    case ISD::SETLT:
4584      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4585    case ISD::SETOGE:
4586    case ISD::SETGE:
4587      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4588        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4589      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4590    case ISD::SETUGT:
4591    case ISD::SETGT:
4592      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4593    case ISD::SETOLE:
4594    case ISD::SETLE:
4595      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4596        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4597      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4598                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4599    }
4600
4601  SDValue Cmp;
4602  switch (CC) {
4603  default: break;       // SETUO etc aren't handled by fsel.
4604  case ISD::SETULT:
4605  case ISD::SETLT:
4606    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4607    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4608      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4609      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4610  case ISD::SETOGE:
4611  case ISD::SETGE:
4612    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4613    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4614      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4615      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4616  case ISD::SETUGT:
4617  case ISD::SETGT:
4618    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4619    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4620      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4621      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4622  case ISD::SETOLE:
4623  case ISD::SETLE:
4624    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4625    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4626      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4627      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4628  }
4629  return Op;
4630}
4631
4632// FIXME: Split this code up when LegalizeDAGTypes lands.
4633SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4634                                           DebugLoc dl) const {
4635  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4636  SDValue Src = Op.getOperand(0);
4637  if (Src.getValueType() == MVT::f32)
4638    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4639
4640  SDValue Tmp;
4641  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4642  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4643  case MVT::i32:
4644    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4645                                                         PPCISD::FCTIDZ,
4646                      dl, MVT::f64, Src);
4647    break;
4648  case MVT::i64:
4649    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4650    break;
4651  }
4652
4653  // Convert the FP value to an int value through memory.
4654  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4655
4656  // Emit a store to the stack slot.
4657  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4658                               MachinePointerInfo(), false, false, 0);
4659
4660  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4661  // add in a bias.
4662  if (Op.getValueType() == MVT::i32)
4663    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4664                        DAG.getConstant(4, FIPtr.getValueType()));
4665  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4666                     false, false, false, 0);
4667}
4668
4669SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4670                                           SelectionDAG &DAG) const {
4671  DebugLoc dl = Op.getDebugLoc();
4672  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4673  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4674    return SDValue();
4675
4676  if (Op.getOperand(0).getValueType() == MVT::i64) {
4677    SDValue SINT = Op.getOperand(0);
4678    // When converting to single-precision, we actually need to convert
4679    // to double-precision first and then round to single-precision.
4680    // To avoid double-rounding effects during that operation, we have
4681    // to prepare the input operand.  Bits that might be truncated when
4682    // converting to double-precision are replaced by a bit that won't
4683    // be lost at this stage, but is below the single-precision rounding
4684    // position.
4685    //
4686    // However, if -enable-unsafe-fp-math is in effect, accept double
4687    // rounding to avoid the extra overhead.
4688    if (Op.getValueType() == MVT::f32 &&
4689        !DAG.getTarget().Options.UnsafeFPMath) {
4690
4691      // Twiddle input to make sure the low 11 bits are zero.  (If this
4692      // is the case, we are guaranteed the value will fit into the 53 bit
4693      // mantissa of an IEEE double-precision value without rounding.)
4694      // If any of those low 11 bits were not zero originally, make sure
4695      // bit 12 (value 2048) is set instead, so that the final rounding
4696      // to single-precision gets the correct result.
4697      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4698                                  SINT, DAG.getConstant(2047, MVT::i64));
4699      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4700                          Round, DAG.getConstant(2047, MVT::i64));
4701      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4702      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4703                          Round, DAG.getConstant(-2048, MVT::i64));
4704
4705      // However, we cannot use that value unconditionally: if the magnitude
4706      // of the input value is small, the bit-twiddling we did above might
4707      // end up visibly changing the output.  Fortunately, in that case, we
4708      // don't need to twiddle bits since the original input will convert
4709      // exactly to double-precision floating-point already.  Therefore,
4710      // construct a conditional to use the original value if the top 11
4711      // bits are all sign-bit copies, and use the rounded value computed
4712      // above otherwise.
4713      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4714                                 SINT, DAG.getConstant(53, MVT::i32));
4715      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4716                         Cond, DAG.getConstant(1, MVT::i64));
4717      Cond = DAG.getSetCC(dl, MVT::i32,
4718                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4719
4720      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4721    }
4722    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4723    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4724    if (Op.getValueType() == MVT::f32)
4725      FP = DAG.getNode(ISD::FP_ROUND, dl,
4726                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4727    return FP;
4728  }
4729
4730  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4731         "Unhandled SINT_TO_FP type in custom expander!");
4732  // Since we only generate this in 64-bit mode, we can take advantage of
4733  // 64-bit registers.  In particular, sign extend the input value into the
4734  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4735  // then lfd it and fcfid it.
4736  MachineFunction &MF = DAG.getMachineFunction();
4737  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4738  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4739  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4740  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4741
4742  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4743                                Op.getOperand(0));
4744
4745  // STD the extended value into the stack slot.
4746  MachineMemOperand *MMO =
4747    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4748                            MachineMemOperand::MOStore, 8, 8);
4749  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4750  SDValue Store =
4751    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4752                            Ops, 4, MVT::i64, MMO);
4753  // Load the value as a double.
4754  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4755                           false, false, false, 0);
4756
4757  // FCFID it and return it.
4758  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4759  if (Op.getValueType() == MVT::f32)
4760    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4761  return FP;
4762}
4763
4764SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4765                                            SelectionDAG &DAG) const {
4766  DebugLoc dl = Op.getDebugLoc();
4767  /*
4768   The rounding mode is in bits 30:31 of FPSR, and has the following
4769   settings:
4770     00 Round to nearest
4771     01 Round to 0
4772     10 Round to +inf
4773     11 Round to -inf
4774
4775  FLT_ROUNDS, on the other hand, expects the following:
4776    -1 Undefined
4777     0 Round to 0
4778     1 Round to nearest
4779     2 Round to +inf
4780     3 Round to -inf
4781
4782  To perform the conversion, we do:
4783    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4784  */
4785
4786  MachineFunction &MF = DAG.getMachineFunction();
4787  EVT VT = Op.getValueType();
4788  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4789  std::vector<EVT> NodeTys;
4790  SDValue MFFSreg, InFlag;
4791
4792  // Save FP Control Word to register
4793  NodeTys.push_back(MVT::f64);    // return register
4794  NodeTys.push_back(MVT::Glue);   // unused in this context
4795  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4796
4797  // Save FP register to stack slot
4798  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4799  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4800  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4801                               StackSlot, MachinePointerInfo(), false, false,0);
4802
4803  // Load FP Control Word from low 32 bits of stack slot.
4804  SDValue Four = DAG.getConstant(4, PtrVT);
4805  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4806  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4807                            false, false, false, 0);
4808
4809  // Transform as necessary
4810  SDValue CWD1 =
4811    DAG.getNode(ISD::AND, dl, MVT::i32,
4812                CWD, DAG.getConstant(3, MVT::i32));
4813  SDValue CWD2 =
4814    DAG.getNode(ISD::SRL, dl, MVT::i32,
4815                DAG.getNode(ISD::AND, dl, MVT::i32,
4816                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4817                                        CWD, DAG.getConstant(3, MVT::i32)),
4818                            DAG.getConstant(3, MVT::i32)),
4819                DAG.getConstant(1, MVT::i32));
4820
4821  SDValue RetVal =
4822    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4823
4824  return DAG.getNode((VT.getSizeInBits() < 16 ?
4825                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4826}
4827
4828SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4829  EVT VT = Op.getValueType();
4830  unsigned BitWidth = VT.getSizeInBits();
4831  DebugLoc dl = Op.getDebugLoc();
4832  assert(Op.getNumOperands() == 3 &&
4833         VT == Op.getOperand(1).getValueType() &&
4834         "Unexpected SHL!");
4835
4836  // Expand into a bunch of logical ops.  Note that these ops
4837  // depend on the PPC behavior for oversized shift amounts.
4838  SDValue Lo = Op.getOperand(0);
4839  SDValue Hi = Op.getOperand(1);
4840  SDValue Amt = Op.getOperand(2);
4841  EVT AmtVT = Amt.getValueType();
4842
4843  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4844                             DAG.getConstant(BitWidth, AmtVT), Amt);
4845  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4846  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4847  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4848  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4849                             DAG.getConstant(-BitWidth, AmtVT));
4850  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4851  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4852  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4853  SDValue OutOps[] = { OutLo, OutHi };
4854  return DAG.getMergeValues(OutOps, 2, dl);
4855}
4856
4857SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4858  EVT VT = Op.getValueType();
4859  DebugLoc dl = Op.getDebugLoc();
4860  unsigned BitWidth = VT.getSizeInBits();
4861  assert(Op.getNumOperands() == 3 &&
4862         VT == Op.getOperand(1).getValueType() &&
4863         "Unexpected SRL!");
4864
4865  // Expand into a bunch of logical ops.  Note that these ops
4866  // depend on the PPC behavior for oversized shift amounts.
4867  SDValue Lo = Op.getOperand(0);
4868  SDValue Hi = Op.getOperand(1);
4869  SDValue Amt = Op.getOperand(2);
4870  EVT AmtVT = Amt.getValueType();
4871
4872  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4873                             DAG.getConstant(BitWidth, AmtVT), Amt);
4874  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4875  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4876  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4877  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4878                             DAG.getConstant(-BitWidth, AmtVT));
4879  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4880  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4881  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4882  SDValue OutOps[] = { OutLo, OutHi };
4883  return DAG.getMergeValues(OutOps, 2, dl);
4884}
4885
4886SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4887  DebugLoc dl = Op.getDebugLoc();
4888  EVT VT = Op.getValueType();
4889  unsigned BitWidth = VT.getSizeInBits();
4890  assert(Op.getNumOperands() == 3 &&
4891         VT == Op.getOperand(1).getValueType() &&
4892         "Unexpected SRA!");
4893
4894  // Expand into a bunch of logical ops, followed by a select_cc.
4895  SDValue Lo = Op.getOperand(0);
4896  SDValue Hi = Op.getOperand(1);
4897  SDValue Amt = Op.getOperand(2);
4898  EVT AmtVT = Amt.getValueType();
4899
4900  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4901                             DAG.getConstant(BitWidth, AmtVT), Amt);
4902  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4903  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4904  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4905  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4906                             DAG.getConstant(-BitWidth, AmtVT));
4907  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4908  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4909  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4910                                  Tmp4, Tmp6, ISD::SETLE);
4911  SDValue OutOps[] = { OutLo, OutHi };
4912  return DAG.getMergeValues(OutOps, 2, dl);
4913}
4914
4915//===----------------------------------------------------------------------===//
4916// Vector related lowering.
4917//
4918
4919/// BuildSplatI - Build a canonical splati of Val with an element size of
4920/// SplatSize.  Cast the result to VT.
4921static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4922                             SelectionDAG &DAG, DebugLoc dl) {
4923  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
4924
4925  static const EVT VTys[] = { // canonical VT to use for each size.
4926    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
4927  };
4928
4929  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
4930
4931  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
4932  if (Val == -1)
4933    SplatSize = 1;
4934
4935  EVT CanonicalVT = VTys[SplatSize-1];
4936
4937  // Build a canonical splat for this value.
4938  SDValue Elt = DAG.getConstant(Val, MVT::i32);
4939  SmallVector<SDValue, 8> Ops;
4940  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
4941  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
4942                              &Ops[0], Ops.size());
4943  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
4944}
4945
4946/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
4947/// specified intrinsic ID.
4948static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
4949                                SelectionDAG &DAG, DebugLoc dl,
4950                                EVT DestVT = MVT::Other) {
4951  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
4952  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4953                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
4954}
4955
4956/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
4957/// specified intrinsic ID.
4958static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
4959                                SDValue Op2, SelectionDAG &DAG,
4960                                DebugLoc dl, EVT DestVT = MVT::Other) {
4961  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
4962  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4963                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
4964}
4965
4966
4967/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
4968/// amount.  The result has the specified value type.
4969static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
4970                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4971  // Force LHS/RHS to be the right type.
4972  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
4973  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
4974
4975  int Ops[16];
4976  for (unsigned i = 0; i != 16; ++i)
4977    Ops[i] = i + Amt;
4978  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
4979  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4980}
4981
4982// If this is a case we can't handle, return null and let the default
4983// expansion code take care of it.  If we CAN select this case, and if it
4984// selects to a single instruction, return Op.  Otherwise, if we can codegen
4985// this case more efficiently than a constant pool load, lower it to the
4986// sequence of ops that should be used.
4987SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4988                                             SelectionDAG &DAG) const {
4989  DebugLoc dl = Op.getDebugLoc();
4990  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4991  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
4992
4993  // Check if this is a splat of a constant value.
4994  APInt APSplatBits, APSplatUndef;
4995  unsigned SplatBitSize;
4996  bool HasAnyUndefs;
4997  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4998                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
4999    return SDValue();
5000
5001  unsigned SplatBits = APSplatBits.getZExtValue();
5002  unsigned SplatUndef = APSplatUndef.getZExtValue();
5003  unsigned SplatSize = SplatBitSize / 8;
5004
5005  // First, handle single instruction cases.
5006
5007  // All zeros?
5008  if (SplatBits == 0) {
5009    // Canonicalize all zero vectors to be v4i32.
5010    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5011      SDValue Z = DAG.getConstant(0, MVT::i32);
5012      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5013      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5014    }
5015    return Op;
5016  }
5017
5018  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5019  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5020                    (32-SplatBitSize));
5021  if (SextVal >= -16 && SextVal <= 15)
5022    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5023
5024
5025  // Two instruction sequences.
5026
5027  // If this value is in the range [-32,30] and is even, use:
5028  //    tmp = VSPLTI[bhw], result = add tmp, tmp
5029  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
5030    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
5031    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
5032    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5033  }
5034
5035  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5036  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5037  // for fneg/fabs.
5038  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5039    // Make -1 and vspltisw -1:
5040    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5041
5042    // Make the VSLW intrinsic, computing 0x8000_0000.
5043    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5044                                   OnesV, DAG, dl);
5045
5046    // xor by OnesV to invert it.
5047    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5048    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5049  }
5050
5051  // Check to see if this is a wide variety of vsplti*, binop self cases.
5052  static const signed char SplatCsts[] = {
5053    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5054    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5055  };
5056
5057  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5058    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5059    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5060    int i = SplatCsts[idx];
5061
5062    // Figure out what shift amount will be used by altivec if shifted by i in
5063    // this splat size.
5064    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5065
5066    // vsplti + shl self.
5067    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5068      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5069      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5070        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5071        Intrinsic::ppc_altivec_vslw
5072      };
5073      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5074      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5075    }
5076
5077    // vsplti + srl self.
5078    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5079      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5080      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5081        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5082        Intrinsic::ppc_altivec_vsrw
5083      };
5084      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5085      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5086    }
5087
5088    // vsplti + sra self.
5089    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5090      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5091      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5092        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5093        Intrinsic::ppc_altivec_vsraw
5094      };
5095      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5096      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5097    }
5098
5099    // vsplti + rol self.
5100    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5101                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5102      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5103      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5104        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5105        Intrinsic::ppc_altivec_vrlw
5106      };
5107      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5108      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5109    }
5110
5111    // t = vsplti c, result = vsldoi t, t, 1
5112    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5113      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5114      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5115    }
5116    // t = vsplti c, result = vsldoi t, t, 2
5117    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5118      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5119      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5120    }
5121    // t = vsplti c, result = vsldoi t, t, 3
5122    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5123      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5124      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5125    }
5126  }
5127
5128  // Three instruction sequences.
5129
5130  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
5131  if (SextVal >= 0 && SextVal <= 31) {
5132    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
5133    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
5134    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
5135    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
5136  }
5137  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
5138  if (SextVal >= -31 && SextVal <= 0) {
5139    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
5140    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
5141    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
5142    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
5143  }
5144
5145  return SDValue();
5146}
5147
5148/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5149/// the specified operations to build the shuffle.
5150static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5151                                      SDValue RHS, SelectionDAG &DAG,
5152                                      DebugLoc dl) {
5153  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5154  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5155  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5156
5157  enum {
5158    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5159    OP_VMRGHW,
5160    OP_VMRGLW,
5161    OP_VSPLTISW0,
5162    OP_VSPLTISW1,
5163    OP_VSPLTISW2,
5164    OP_VSPLTISW3,
5165    OP_VSLDOI4,
5166    OP_VSLDOI8,
5167    OP_VSLDOI12
5168  };
5169
5170  if (OpNum == OP_COPY) {
5171    if (LHSID == (1*9+2)*9+3) return LHS;
5172    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5173    return RHS;
5174  }
5175
5176  SDValue OpLHS, OpRHS;
5177  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5178  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5179
5180  int ShufIdxs[16];
5181  switch (OpNum) {
5182  default: llvm_unreachable("Unknown i32 permute!");
5183  case OP_VMRGHW:
5184    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5185    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5186    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5187    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5188    break;
5189  case OP_VMRGLW:
5190    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5191    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5192    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5193    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5194    break;
5195  case OP_VSPLTISW0:
5196    for (unsigned i = 0; i != 16; ++i)
5197      ShufIdxs[i] = (i&3)+0;
5198    break;
5199  case OP_VSPLTISW1:
5200    for (unsigned i = 0; i != 16; ++i)
5201      ShufIdxs[i] = (i&3)+4;
5202    break;
5203  case OP_VSPLTISW2:
5204    for (unsigned i = 0; i != 16; ++i)
5205      ShufIdxs[i] = (i&3)+8;
5206    break;
5207  case OP_VSPLTISW3:
5208    for (unsigned i = 0; i != 16; ++i)
5209      ShufIdxs[i] = (i&3)+12;
5210    break;
5211  case OP_VSLDOI4:
5212    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5213  case OP_VSLDOI8:
5214    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5215  case OP_VSLDOI12:
5216    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5217  }
5218  EVT VT = OpLHS.getValueType();
5219  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5220  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5221  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5222  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5223}
5224
5225/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5226/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5227/// return the code it can be lowered into.  Worst case, it can always be
5228/// lowered into a vperm.
5229SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5230                                               SelectionDAG &DAG) const {
5231  DebugLoc dl = Op.getDebugLoc();
5232  SDValue V1 = Op.getOperand(0);
5233  SDValue V2 = Op.getOperand(1);
5234  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5235  EVT VT = Op.getValueType();
5236
5237  // Cases that are handled by instructions that take permute immediates
5238  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5239  // selected by the instruction selector.
5240  if (V2.getOpcode() == ISD::UNDEF) {
5241    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5242        PPC::isSplatShuffleMask(SVOp, 2) ||
5243        PPC::isSplatShuffleMask(SVOp, 4) ||
5244        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5245        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5246        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5247        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5248        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5249        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5250        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5251        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5252        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5253      return Op;
5254    }
5255  }
5256
5257  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5258  // and produce a fixed permutation.  If any of these match, do not lower to
5259  // VPERM.
5260  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5261      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5262      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5263      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5264      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5265      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5266      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5267      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5268      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5269    return Op;
5270
5271  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5272  // perfect shuffle table to emit an optimal matching sequence.
5273  ArrayRef<int> PermMask = SVOp->getMask();
5274
5275  unsigned PFIndexes[4];
5276  bool isFourElementShuffle = true;
5277  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5278    unsigned EltNo = 8;   // Start out undef.
5279    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5280      if (PermMask[i*4+j] < 0)
5281        continue;   // Undef, ignore it.
5282
5283      unsigned ByteSource = PermMask[i*4+j];
5284      if ((ByteSource & 3) != j) {
5285        isFourElementShuffle = false;
5286        break;
5287      }
5288
5289      if (EltNo == 8) {
5290        EltNo = ByteSource/4;
5291      } else if (EltNo != ByteSource/4) {
5292        isFourElementShuffle = false;
5293        break;
5294      }
5295    }
5296    PFIndexes[i] = EltNo;
5297  }
5298
5299  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5300  // perfect shuffle vector to determine if it is cost effective to do this as
5301  // discrete instructions, or whether we should use a vperm.
5302  if (isFourElementShuffle) {
5303    // Compute the index in the perfect shuffle table.
5304    unsigned PFTableIndex =
5305      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5306
5307    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5308    unsigned Cost  = (PFEntry >> 30);
5309
5310    // Determining when to avoid vperm is tricky.  Many things affect the cost
5311    // of vperm, particularly how many times the perm mask needs to be computed.
5312    // For example, if the perm mask can be hoisted out of a loop or is already
5313    // used (perhaps because there are multiple permutes with the same shuffle
5314    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5315    // the loop requires an extra register.
5316    //
5317    // As a compromise, we only emit discrete instructions if the shuffle can be
5318    // generated in 3 or fewer operations.  When we have loop information
5319    // available, if this block is within a loop, we should avoid using vperm
5320    // for 3-operation perms and use a constant pool load instead.
5321    if (Cost < 3)
5322      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5323  }
5324
5325  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5326  // vector that will get spilled to the constant pool.
5327  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5328
5329  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5330  // that it is in input element units, not in bytes.  Convert now.
5331  EVT EltVT = V1.getValueType().getVectorElementType();
5332  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5333
5334  SmallVector<SDValue, 16> ResultMask;
5335  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5336    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5337
5338    for (unsigned j = 0; j != BytesPerElement; ++j)
5339      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5340                                           MVT::i32));
5341  }
5342
5343  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5344                                    &ResultMask[0], ResultMask.size());
5345  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5346}
5347
5348/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5349/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5350/// information about the intrinsic.
5351static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5352                                  bool &isDot) {
5353  unsigned IntrinsicID =
5354    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5355  CompareOpc = -1;
5356  isDot = false;
5357  switch (IntrinsicID) {
5358  default: return false;
5359    // Comparison predicates.
5360  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5361  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5362  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5363  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5364  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5365  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5366  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5367  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5368  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5369  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5370  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5371  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5372  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5373
5374    // Normal Comparisons.
5375  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5376  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5377  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5378  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5379  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5380  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5381  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5382  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5383  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5384  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5385  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5386  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5387  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5388  }
5389  return true;
5390}
5391
5392/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5393/// lower, do it, otherwise return null.
5394SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5395                                                   SelectionDAG &DAG) const {
5396  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5397  // opcode number of the comparison.
5398  DebugLoc dl = Op.getDebugLoc();
5399  int CompareOpc;
5400  bool isDot;
5401  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5402    return SDValue();    // Don't custom lower most intrinsics.
5403
5404  // If this is a non-dot comparison, make the VCMP node and we are done.
5405  if (!isDot) {
5406    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5407                              Op.getOperand(1), Op.getOperand(2),
5408                              DAG.getConstant(CompareOpc, MVT::i32));
5409    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5410  }
5411
5412  // Create the PPCISD altivec 'dot' comparison node.
5413  SDValue Ops[] = {
5414    Op.getOperand(2),  // LHS
5415    Op.getOperand(3),  // RHS
5416    DAG.getConstant(CompareOpc, MVT::i32)
5417  };
5418  std::vector<EVT> VTs;
5419  VTs.push_back(Op.getOperand(2).getValueType());
5420  VTs.push_back(MVT::Glue);
5421  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5422
5423  // Now that we have the comparison, emit a copy from the CR to a GPR.
5424  // This is flagged to the above dot comparison.
5425  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5426                                DAG.getRegister(PPC::CR6, MVT::i32),
5427                                CompNode.getValue(1));
5428
5429  // Unpack the result based on how the target uses it.
5430  unsigned BitNo;   // Bit # of CR6.
5431  bool InvertBit;   // Invert result?
5432  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5433  default:  // Can't happen, don't crash on invalid number though.
5434  case 0:   // Return the value of the EQ bit of CR6.
5435    BitNo = 0; InvertBit = false;
5436    break;
5437  case 1:   // Return the inverted value of the EQ bit of CR6.
5438    BitNo = 0; InvertBit = true;
5439    break;
5440  case 2:   // Return the value of the LT bit of CR6.
5441    BitNo = 2; InvertBit = false;
5442    break;
5443  case 3:   // Return the inverted value of the LT bit of CR6.
5444    BitNo = 2; InvertBit = true;
5445    break;
5446  }
5447
5448  // Shift the bit into the low position.
5449  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5450                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5451  // Isolate the bit.
5452  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5453                      DAG.getConstant(1, MVT::i32));
5454
5455  // If we are supposed to, toggle the bit.
5456  if (InvertBit)
5457    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5458                        DAG.getConstant(1, MVT::i32));
5459  return Flags;
5460}
5461
5462SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5463                                                   SelectionDAG &DAG) const {
5464  DebugLoc dl = Op.getDebugLoc();
5465  // Create a stack slot that is 16-byte aligned.
5466  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5467  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5468  EVT PtrVT = getPointerTy();
5469  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5470
5471  // Store the input value into Value#0 of the stack slot.
5472  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5473                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5474                               false, false, 0);
5475  // Load it out.
5476  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5477                     false, false, false, 0);
5478}
5479
5480SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5481  DebugLoc dl = Op.getDebugLoc();
5482  if (Op.getValueType() == MVT::v4i32) {
5483    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5484
5485    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5486    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5487
5488    SDValue RHSSwap =   // = vrlw RHS, 16
5489      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5490
5491    // Shrinkify inputs to v8i16.
5492    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5493    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5494    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5495
5496    // Low parts multiplied together, generating 32-bit results (we ignore the
5497    // top parts).
5498    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5499                                        LHS, RHS, DAG, dl, MVT::v4i32);
5500
5501    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5502                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5503    // Shift the high parts up 16 bits.
5504    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5505                              Neg16, DAG, dl);
5506    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5507  } else if (Op.getValueType() == MVT::v8i16) {
5508    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5509
5510    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5511
5512    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5513                            LHS, RHS, Zero, DAG, dl);
5514  } else if (Op.getValueType() == MVT::v16i8) {
5515    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5516
5517    // Multiply the even 8-bit parts, producing 16-bit sums.
5518    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5519                                           LHS, RHS, DAG, dl, MVT::v8i16);
5520    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5521
5522    // Multiply the odd 8-bit parts, producing 16-bit sums.
5523    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5524                                          LHS, RHS, DAG, dl, MVT::v8i16);
5525    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5526
5527    // Merge the results together.
5528    int Ops[16];
5529    for (unsigned i = 0; i != 8; ++i) {
5530      Ops[i*2  ] = 2*i+1;
5531      Ops[i*2+1] = 2*i+1+16;
5532    }
5533    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5534  } else {
5535    llvm_unreachable("Unknown mul to lower!");
5536  }
5537}
5538
5539/// LowerOperation - Provide custom lowering hooks for some operations.
5540///
5541SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5542  switch (Op.getOpcode()) {
5543  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5544  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5545  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5546  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5547  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5548  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5549  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5550  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5551  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5552  case ISD::VASTART:
5553    return LowerVASTART(Op, DAG, PPCSubTarget);
5554
5555  case ISD::VAARG:
5556    return LowerVAARG(Op, DAG, PPCSubTarget);
5557
5558  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5559  case ISD::DYNAMIC_STACKALLOC:
5560    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5561
5562  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5563  case ISD::FP_TO_UINT:
5564  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5565                                                       Op.getDebugLoc());
5566  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5567  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5568
5569  // Lower 64-bit shifts.
5570  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5571  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5572  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5573
5574  // Vector-related lowering.
5575  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5576  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5577  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5578  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5579  case ISD::MUL:                return LowerMUL(Op, DAG);
5580
5581  // Frame & Return address.
5582  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5583  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5584  }
5585}
5586
5587void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5588                                           SmallVectorImpl<SDValue>&Results,
5589                                           SelectionDAG &DAG) const {
5590  const TargetMachine &TM = getTargetMachine();
5591  DebugLoc dl = N->getDebugLoc();
5592  switch (N->getOpcode()) {
5593  default:
5594    llvm_unreachable("Do not know how to custom type legalize this operation!");
5595  case ISD::VAARG: {
5596    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5597        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5598      return;
5599
5600    EVT VT = N->getValueType(0);
5601
5602    if (VT == MVT::i64) {
5603      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5604
5605      Results.push_back(NewNode);
5606      Results.push_back(NewNode.getValue(1));
5607    }
5608    return;
5609  }
5610  case ISD::FP_ROUND_INREG: {
5611    assert(N->getValueType(0) == MVT::ppcf128);
5612    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5613    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5614                             MVT::f64, N->getOperand(0),
5615                             DAG.getIntPtrConstant(0));
5616    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5617                             MVT::f64, N->getOperand(0),
5618                             DAG.getIntPtrConstant(1));
5619
5620    // This sequence changes FPSCR to do round-to-zero, adds the two halves
5621    // of the long double, and puts FPSCR back the way it was.  We do not
5622    // actually model FPSCR.
5623    std::vector<EVT> NodeTys;
5624    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
5625
5626    NodeTys.push_back(MVT::f64);   // Return register
5627    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
5628    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
5629    MFFSreg = Result.getValue(0);
5630    InFlag = Result.getValue(1);
5631
5632    NodeTys.clear();
5633    NodeTys.push_back(MVT::Glue);   // Returns a flag
5634    Ops[0] = DAG.getConstant(31, MVT::i32);
5635    Ops[1] = InFlag;
5636    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
5637    InFlag = Result.getValue(0);
5638
5639    NodeTys.clear();
5640    NodeTys.push_back(MVT::Glue);   // Returns a flag
5641    Ops[0] = DAG.getConstant(30, MVT::i32);
5642    Ops[1] = InFlag;
5643    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
5644    InFlag = Result.getValue(0);
5645
5646    NodeTys.clear();
5647    NodeTys.push_back(MVT::f64);    // result of add
5648    NodeTys.push_back(MVT::Glue);   // Returns a flag
5649    Ops[0] = Lo;
5650    Ops[1] = Hi;
5651    Ops[2] = InFlag;
5652    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
5653    FPreg = Result.getValue(0);
5654    InFlag = Result.getValue(1);
5655
5656    NodeTys.clear();
5657    NodeTys.push_back(MVT::f64);
5658    Ops[0] = DAG.getConstant(1, MVT::i32);
5659    Ops[1] = MFFSreg;
5660    Ops[2] = FPreg;
5661    Ops[3] = InFlag;
5662    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
5663    FPreg = Result.getValue(0);
5664
5665    // We know the low half is about to be thrown away, so just use something
5666    // convenient.
5667    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5668                                FPreg, FPreg));
5669    return;
5670  }
5671  case ISD::FP_TO_SINT:
5672    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5673    return;
5674  }
5675}
5676
5677
5678//===----------------------------------------------------------------------===//
5679//  Other Lowering Code
5680//===----------------------------------------------------------------------===//
5681
5682MachineBasicBlock *
5683PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5684                                    bool is64bit, unsigned BinOpcode) const {
5685  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5686  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5687
5688  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5689  MachineFunction *F = BB->getParent();
5690  MachineFunction::iterator It = BB;
5691  ++It;
5692
5693  unsigned dest = MI->getOperand(0).getReg();
5694  unsigned ptrA = MI->getOperand(1).getReg();
5695  unsigned ptrB = MI->getOperand(2).getReg();
5696  unsigned incr = MI->getOperand(3).getReg();
5697  DebugLoc dl = MI->getDebugLoc();
5698
5699  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5700  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5701  F->insert(It, loopMBB);
5702  F->insert(It, exitMBB);
5703  exitMBB->splice(exitMBB->begin(), BB,
5704                  llvm::next(MachineBasicBlock::iterator(MI)),
5705                  BB->end());
5706  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5707
5708  MachineRegisterInfo &RegInfo = F->getRegInfo();
5709  unsigned TmpReg = (!BinOpcode) ? incr :
5710    RegInfo.createVirtualRegister(
5711       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5712                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5713
5714  //  thisMBB:
5715  //   ...
5716  //   fallthrough --> loopMBB
5717  BB->addSuccessor(loopMBB);
5718
5719  //  loopMBB:
5720  //   l[wd]arx dest, ptr
5721  //   add r0, dest, incr
5722  //   st[wd]cx. r0, ptr
5723  //   bne- loopMBB
5724  //   fallthrough --> exitMBB
5725  BB = loopMBB;
5726  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5727    .addReg(ptrA).addReg(ptrB);
5728  if (BinOpcode)
5729    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5730  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5731    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5732  BuildMI(BB, dl, TII->get(PPC::BCC))
5733    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5734  BB->addSuccessor(loopMBB);
5735  BB->addSuccessor(exitMBB);
5736
5737  //  exitMBB:
5738  //   ...
5739  BB = exitMBB;
5740  return BB;
5741}
5742
5743MachineBasicBlock *
5744PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5745                                            MachineBasicBlock *BB,
5746                                            bool is8bit,    // operation
5747                                            unsigned BinOpcode) const {
5748  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5749  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5750  // In 64 bit mode we have to use 64 bits for addresses, even though the
5751  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5752  // registers without caring whether they're 32 or 64, but here we're
5753  // doing actual arithmetic on the addresses.
5754  bool is64bit = PPCSubTarget.isPPC64();
5755  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5756
5757  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5758  MachineFunction *F = BB->getParent();
5759  MachineFunction::iterator It = BB;
5760  ++It;
5761
5762  unsigned dest = MI->getOperand(0).getReg();
5763  unsigned ptrA = MI->getOperand(1).getReg();
5764  unsigned ptrB = MI->getOperand(2).getReg();
5765  unsigned incr = MI->getOperand(3).getReg();
5766  DebugLoc dl = MI->getDebugLoc();
5767
5768  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5769  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5770  F->insert(It, loopMBB);
5771  F->insert(It, exitMBB);
5772  exitMBB->splice(exitMBB->begin(), BB,
5773                  llvm::next(MachineBasicBlock::iterator(MI)),
5774                  BB->end());
5775  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5776
5777  MachineRegisterInfo &RegInfo = F->getRegInfo();
5778  const TargetRegisterClass *RC =
5779    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5780              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5781  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5782  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5783  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5784  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5785  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5786  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5787  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5788  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5789  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5790  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5791  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5792  unsigned Ptr1Reg;
5793  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5794
5795  //  thisMBB:
5796  //   ...
5797  //   fallthrough --> loopMBB
5798  BB->addSuccessor(loopMBB);
5799
5800  // The 4-byte load must be aligned, while a char or short may be
5801  // anywhere in the word.  Hence all this nasty bookkeeping code.
5802  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5803  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5804  //   xori shift, shift1, 24 [16]
5805  //   rlwinm ptr, ptr1, 0, 0, 29
5806  //   slw incr2, incr, shift
5807  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5808  //   slw mask, mask2, shift
5809  //  loopMBB:
5810  //   lwarx tmpDest, ptr
5811  //   add tmp, tmpDest, incr2
5812  //   andc tmp2, tmpDest, mask
5813  //   and tmp3, tmp, mask
5814  //   or tmp4, tmp3, tmp2
5815  //   stwcx. tmp4, ptr
5816  //   bne- loopMBB
5817  //   fallthrough --> exitMBB
5818  //   srw dest, tmpDest, shift
5819  if (ptrA != ZeroReg) {
5820    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5821    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5822      .addReg(ptrA).addReg(ptrB);
5823  } else {
5824    Ptr1Reg = ptrB;
5825  }
5826  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5827      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5828  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5829      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5830  if (is64bit)
5831    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5832      .addReg(Ptr1Reg).addImm(0).addImm(61);
5833  else
5834    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5835      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5836  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5837      .addReg(incr).addReg(ShiftReg);
5838  if (is8bit)
5839    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5840  else {
5841    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5842    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5843  }
5844  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5845      .addReg(Mask2Reg).addReg(ShiftReg);
5846
5847  BB = loopMBB;
5848  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5849    .addReg(ZeroReg).addReg(PtrReg);
5850  if (BinOpcode)
5851    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5852      .addReg(Incr2Reg).addReg(TmpDestReg);
5853  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5854    .addReg(TmpDestReg).addReg(MaskReg);
5855  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5856    .addReg(TmpReg).addReg(MaskReg);
5857  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5858    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5859  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5860    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5861  BuildMI(BB, dl, TII->get(PPC::BCC))
5862    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5863  BB->addSuccessor(loopMBB);
5864  BB->addSuccessor(exitMBB);
5865
5866  //  exitMBB:
5867  //   ...
5868  BB = exitMBB;
5869  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5870    .addReg(ShiftReg);
5871  return BB;
5872}
5873
5874MachineBasicBlock *
5875PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5876                                               MachineBasicBlock *BB) const {
5877  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5878
5879  // To "insert" these instructions we actually have to insert their
5880  // control-flow patterns.
5881  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5882  MachineFunction::iterator It = BB;
5883  ++It;
5884
5885  MachineFunction *F = BB->getParent();
5886
5887  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5888                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
5889    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
5890                                         PPC::ISEL8 : PPC::ISEL;
5891    unsigned SelectPred = MI->getOperand(4).getImm();
5892    DebugLoc dl = MI->getDebugLoc();
5893
5894    // The SelectPred is ((BI << 5) | BO) for a BCC
5895    unsigned BO = SelectPred & 0xF;
5896    assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
5897
5898    unsigned TrueOpNo, FalseOpNo;
5899    if (BO == 12) {
5900      TrueOpNo = 2;
5901      FalseOpNo = 3;
5902    } else {
5903      TrueOpNo = 3;
5904      FalseOpNo = 2;
5905      SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
5906    }
5907
5908    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
5909      .addReg(MI->getOperand(TrueOpNo).getReg())
5910      .addReg(MI->getOperand(FalseOpNo).getReg())
5911      .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
5912  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5913             MI->getOpcode() == PPC::SELECT_CC_I8 ||
5914             MI->getOpcode() == PPC::SELECT_CC_F4 ||
5915             MI->getOpcode() == PPC::SELECT_CC_F8 ||
5916             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
5917
5918
5919    // The incoming instruction knows the destination vreg to set, the
5920    // condition code register to branch on, the true/false values to
5921    // select between, and a branch opcode to use.
5922
5923    //  thisMBB:
5924    //  ...
5925    //   TrueVal = ...
5926    //   cmpTY ccX, r1, r2
5927    //   bCC copy1MBB
5928    //   fallthrough --> copy0MBB
5929    MachineBasicBlock *thisMBB = BB;
5930    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5931    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
5932    unsigned SelectPred = MI->getOperand(4).getImm();
5933    DebugLoc dl = MI->getDebugLoc();
5934    F->insert(It, copy0MBB);
5935    F->insert(It, sinkMBB);
5936
5937    // Transfer the remainder of BB and its successor edges to sinkMBB.
5938    sinkMBB->splice(sinkMBB->begin(), BB,
5939                    llvm::next(MachineBasicBlock::iterator(MI)),
5940                    BB->end());
5941    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5942
5943    // Next, add the true and fallthrough blocks as its successors.
5944    BB->addSuccessor(copy0MBB);
5945    BB->addSuccessor(sinkMBB);
5946
5947    BuildMI(BB, dl, TII->get(PPC::BCC))
5948      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
5949
5950    //  copy0MBB:
5951    //   %FalseValue = ...
5952    //   # fallthrough to sinkMBB
5953    BB = copy0MBB;
5954
5955    // Update machine-CFG edges
5956    BB->addSuccessor(sinkMBB);
5957
5958    //  sinkMBB:
5959    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5960    //  ...
5961    BB = sinkMBB;
5962    BuildMI(*BB, BB->begin(), dl,
5963            TII->get(PPC::PHI), MI->getOperand(0).getReg())
5964      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
5965      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5966  }
5967  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
5968    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
5969  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
5970    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
5971  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
5972    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
5973  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
5974    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
5975
5976  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
5977    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
5978  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
5979    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
5980  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
5981    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
5982  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
5983    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
5984
5985  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
5986    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
5987  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
5988    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
5989  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
5990    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
5991  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
5992    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
5993
5994  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
5995    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
5996  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
5997    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
5998  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
5999    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6000  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6001    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6002
6003  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6004    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6005  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6006    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6007  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6008    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6009  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6010    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6011
6012  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6013    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6014  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6015    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6016  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6017    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6018  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6019    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6020
6021  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6022    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6023  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6024    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6025  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6026    BB = EmitAtomicBinary(MI, BB, false, 0);
6027  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6028    BB = EmitAtomicBinary(MI, BB, true, 0);
6029
6030  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6031           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6032    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6033
6034    unsigned dest   = MI->getOperand(0).getReg();
6035    unsigned ptrA   = MI->getOperand(1).getReg();
6036    unsigned ptrB   = MI->getOperand(2).getReg();
6037    unsigned oldval = MI->getOperand(3).getReg();
6038    unsigned newval = MI->getOperand(4).getReg();
6039    DebugLoc dl     = MI->getDebugLoc();
6040
6041    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6042    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6043    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6044    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6045    F->insert(It, loop1MBB);
6046    F->insert(It, loop2MBB);
6047    F->insert(It, midMBB);
6048    F->insert(It, exitMBB);
6049    exitMBB->splice(exitMBB->begin(), BB,
6050                    llvm::next(MachineBasicBlock::iterator(MI)),
6051                    BB->end());
6052    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6053
6054    //  thisMBB:
6055    //   ...
6056    //   fallthrough --> loopMBB
6057    BB->addSuccessor(loop1MBB);
6058
6059    // loop1MBB:
6060    //   l[wd]arx dest, ptr
6061    //   cmp[wd] dest, oldval
6062    //   bne- midMBB
6063    // loop2MBB:
6064    //   st[wd]cx. newval, ptr
6065    //   bne- loopMBB
6066    //   b exitBB
6067    // midMBB:
6068    //   st[wd]cx. dest, ptr
6069    // exitBB:
6070    BB = loop1MBB;
6071    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6072      .addReg(ptrA).addReg(ptrB);
6073    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6074      .addReg(oldval).addReg(dest);
6075    BuildMI(BB, dl, TII->get(PPC::BCC))
6076      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6077    BB->addSuccessor(loop2MBB);
6078    BB->addSuccessor(midMBB);
6079
6080    BB = loop2MBB;
6081    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6082      .addReg(newval).addReg(ptrA).addReg(ptrB);
6083    BuildMI(BB, dl, TII->get(PPC::BCC))
6084      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6085    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6086    BB->addSuccessor(loop1MBB);
6087    BB->addSuccessor(exitMBB);
6088
6089    BB = midMBB;
6090    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6091      .addReg(dest).addReg(ptrA).addReg(ptrB);
6092    BB->addSuccessor(exitMBB);
6093
6094    //  exitMBB:
6095    //   ...
6096    BB = exitMBB;
6097  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6098             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6099    // We must use 64-bit registers for addresses when targeting 64-bit,
6100    // since we're actually doing arithmetic on them.  Other registers
6101    // can be 32-bit.
6102    bool is64bit = PPCSubTarget.isPPC64();
6103    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6104
6105    unsigned dest   = MI->getOperand(0).getReg();
6106    unsigned ptrA   = MI->getOperand(1).getReg();
6107    unsigned ptrB   = MI->getOperand(2).getReg();
6108    unsigned oldval = MI->getOperand(3).getReg();
6109    unsigned newval = MI->getOperand(4).getReg();
6110    DebugLoc dl     = MI->getDebugLoc();
6111
6112    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6113    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6114    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6115    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6116    F->insert(It, loop1MBB);
6117    F->insert(It, loop2MBB);
6118    F->insert(It, midMBB);
6119    F->insert(It, exitMBB);
6120    exitMBB->splice(exitMBB->begin(), BB,
6121                    llvm::next(MachineBasicBlock::iterator(MI)),
6122                    BB->end());
6123    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6124
6125    MachineRegisterInfo &RegInfo = F->getRegInfo();
6126    const TargetRegisterClass *RC =
6127      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6128                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6129    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6130    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6131    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6132    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6133    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6134    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6135    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6136    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6137    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6138    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6139    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6140    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6141    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6142    unsigned Ptr1Reg;
6143    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6144    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
6145    //  thisMBB:
6146    //   ...
6147    //   fallthrough --> loopMBB
6148    BB->addSuccessor(loop1MBB);
6149
6150    // The 4-byte load must be aligned, while a char or short may be
6151    // anywhere in the word.  Hence all this nasty bookkeeping code.
6152    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6153    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6154    //   xori shift, shift1, 24 [16]
6155    //   rlwinm ptr, ptr1, 0, 0, 29
6156    //   slw newval2, newval, shift
6157    //   slw oldval2, oldval,shift
6158    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6159    //   slw mask, mask2, shift
6160    //   and newval3, newval2, mask
6161    //   and oldval3, oldval2, mask
6162    // loop1MBB:
6163    //   lwarx tmpDest, ptr
6164    //   and tmp, tmpDest, mask
6165    //   cmpw tmp, oldval3
6166    //   bne- midMBB
6167    // loop2MBB:
6168    //   andc tmp2, tmpDest, mask
6169    //   or tmp4, tmp2, newval3
6170    //   stwcx. tmp4, ptr
6171    //   bne- loop1MBB
6172    //   b exitBB
6173    // midMBB:
6174    //   stwcx. tmpDest, ptr
6175    // exitBB:
6176    //   srw dest, tmpDest, shift
6177    if (ptrA != ZeroReg) {
6178      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6179      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6180        .addReg(ptrA).addReg(ptrB);
6181    } else {
6182      Ptr1Reg = ptrB;
6183    }
6184    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6185        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6186    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6187        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6188    if (is64bit)
6189      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6190        .addReg(Ptr1Reg).addImm(0).addImm(61);
6191    else
6192      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6193        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6194    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6195        .addReg(newval).addReg(ShiftReg);
6196    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6197        .addReg(oldval).addReg(ShiftReg);
6198    if (is8bit)
6199      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6200    else {
6201      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6202      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6203        .addReg(Mask3Reg).addImm(65535);
6204    }
6205    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6206        .addReg(Mask2Reg).addReg(ShiftReg);
6207    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6208        .addReg(NewVal2Reg).addReg(MaskReg);
6209    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6210        .addReg(OldVal2Reg).addReg(MaskReg);
6211
6212    BB = loop1MBB;
6213    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6214        .addReg(ZeroReg).addReg(PtrReg);
6215    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6216        .addReg(TmpDestReg).addReg(MaskReg);
6217    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6218        .addReg(TmpReg).addReg(OldVal3Reg);
6219    BuildMI(BB, dl, TII->get(PPC::BCC))
6220        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6221    BB->addSuccessor(loop2MBB);
6222    BB->addSuccessor(midMBB);
6223
6224    BB = loop2MBB;
6225    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6226        .addReg(TmpDestReg).addReg(MaskReg);
6227    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6228        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6229    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6230        .addReg(ZeroReg).addReg(PtrReg);
6231    BuildMI(BB, dl, TII->get(PPC::BCC))
6232      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6233    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6234    BB->addSuccessor(loop1MBB);
6235    BB->addSuccessor(exitMBB);
6236
6237    BB = midMBB;
6238    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6239      .addReg(ZeroReg).addReg(PtrReg);
6240    BB->addSuccessor(exitMBB);
6241
6242    //  exitMBB:
6243    //   ...
6244    BB = exitMBB;
6245    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6246      .addReg(ShiftReg);
6247  } else {
6248    llvm_unreachable("Unexpected instr type to insert");
6249  }
6250
6251  MI->eraseFromParent();   // The pseudo instruction is gone now.
6252  return BB;
6253}
6254
6255//===----------------------------------------------------------------------===//
6256// Target Optimization Hooks
6257//===----------------------------------------------------------------------===//
6258
6259SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6260                                             DAGCombinerInfo &DCI) const {
6261  const TargetMachine &TM = getTargetMachine();
6262  SelectionDAG &DAG = DCI.DAG;
6263  DebugLoc dl = N->getDebugLoc();
6264  switch (N->getOpcode()) {
6265  default: break;
6266  case PPCISD::SHL:
6267    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6268      if (C->isNullValue())   // 0 << V -> 0.
6269        return N->getOperand(0);
6270    }
6271    break;
6272  case PPCISD::SRL:
6273    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6274      if (C->isNullValue())   // 0 >>u V -> 0.
6275        return N->getOperand(0);
6276    }
6277    break;
6278  case PPCISD::SRA:
6279    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6280      if (C->isNullValue() ||   //  0 >>s V -> 0.
6281          C->isAllOnesValue())    // -1 >>s V -> -1.
6282        return N->getOperand(0);
6283    }
6284    break;
6285
6286  case ISD::SINT_TO_FP:
6287    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6288      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6289        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6290        // We allow the src/dst to be either f32/f64, but the intermediate
6291        // type must be i64.
6292        if (N->getOperand(0).getValueType() == MVT::i64 &&
6293            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6294          SDValue Val = N->getOperand(0).getOperand(0);
6295          if (Val.getValueType() == MVT::f32) {
6296            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6297            DCI.AddToWorklist(Val.getNode());
6298          }
6299
6300          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6301          DCI.AddToWorklist(Val.getNode());
6302          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6303          DCI.AddToWorklist(Val.getNode());
6304          if (N->getValueType(0) == MVT::f32) {
6305            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6306                              DAG.getIntPtrConstant(0));
6307            DCI.AddToWorklist(Val.getNode());
6308          }
6309          return Val;
6310        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6311          // If the intermediate type is i32, we can avoid the load/store here
6312          // too.
6313        }
6314      }
6315    }
6316    break;
6317  case ISD::STORE:
6318    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6319    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6320        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6321        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6322        N->getOperand(1).getValueType() == MVT::i32 &&
6323        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6324      SDValue Val = N->getOperand(1).getOperand(0);
6325      if (Val.getValueType() == MVT::f32) {
6326        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6327        DCI.AddToWorklist(Val.getNode());
6328      }
6329      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6330      DCI.AddToWorklist(Val.getNode());
6331
6332      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
6333                        N->getOperand(2), N->getOperand(3));
6334      DCI.AddToWorklist(Val.getNode());
6335      return Val;
6336    }
6337
6338    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6339    if (cast<StoreSDNode>(N)->isUnindexed() &&
6340        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6341        N->getOperand(1).getNode()->hasOneUse() &&
6342        (N->getOperand(1).getValueType() == MVT::i32 ||
6343         N->getOperand(1).getValueType() == MVT::i16)) {
6344      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6345      // Do an any-extend to 32-bits if this is a half-word input.
6346      if (BSwapOp.getValueType() == MVT::i16)
6347        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6348
6349      SDValue Ops[] = {
6350        N->getOperand(0), BSwapOp, N->getOperand(2),
6351        DAG.getValueType(N->getOperand(1).getValueType())
6352      };
6353      return
6354        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6355                                Ops, array_lengthof(Ops),
6356                                cast<StoreSDNode>(N)->getMemoryVT(),
6357                                cast<StoreSDNode>(N)->getMemOperand());
6358    }
6359    break;
6360  case ISD::BSWAP:
6361    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6362    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6363        N->getOperand(0).hasOneUse() &&
6364        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
6365      SDValue Load = N->getOperand(0);
6366      LoadSDNode *LD = cast<LoadSDNode>(Load);
6367      // Create the byte-swapping load.
6368      SDValue Ops[] = {
6369        LD->getChain(),    // Chain
6370        LD->getBasePtr(),  // Ptr
6371        DAG.getValueType(N->getValueType(0)) // VT
6372      };
6373      SDValue BSLoad =
6374        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6375                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
6376                                LD->getMemoryVT(), LD->getMemOperand());
6377
6378      // If this is an i16 load, insert the truncate.
6379      SDValue ResVal = BSLoad;
6380      if (N->getValueType(0) == MVT::i16)
6381        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6382
6383      // First, combine the bswap away.  This makes the value produced by the
6384      // load dead.
6385      DCI.CombineTo(N, ResVal);
6386
6387      // Next, combine the load away, we give it a bogus result value but a real
6388      // chain result.  The result value is dead because the bswap is dead.
6389      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6390
6391      // Return N so it doesn't get rechecked!
6392      return SDValue(N, 0);
6393    }
6394
6395    break;
6396  case PPCISD::VCMP: {
6397    // If a VCMPo node already exists with exactly the same operands as this
6398    // node, use its result instead of this node (VCMPo computes both a CR6 and
6399    // a normal output).
6400    //
6401    if (!N->getOperand(0).hasOneUse() &&
6402        !N->getOperand(1).hasOneUse() &&
6403        !N->getOperand(2).hasOneUse()) {
6404
6405      // Scan all of the users of the LHS, looking for VCMPo's that match.
6406      SDNode *VCMPoNode = 0;
6407
6408      SDNode *LHSN = N->getOperand(0).getNode();
6409      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6410           UI != E; ++UI)
6411        if (UI->getOpcode() == PPCISD::VCMPo &&
6412            UI->getOperand(1) == N->getOperand(1) &&
6413            UI->getOperand(2) == N->getOperand(2) &&
6414            UI->getOperand(0) == N->getOperand(0)) {
6415          VCMPoNode = *UI;
6416          break;
6417        }
6418
6419      // If there is no VCMPo node, or if the flag value has a single use, don't
6420      // transform this.
6421      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6422        break;
6423
6424      // Look at the (necessarily single) use of the flag value.  If it has a
6425      // chain, this transformation is more complex.  Note that multiple things
6426      // could use the value result, which we should ignore.
6427      SDNode *FlagUser = 0;
6428      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6429           FlagUser == 0; ++UI) {
6430        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6431        SDNode *User = *UI;
6432        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6433          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6434            FlagUser = User;
6435            break;
6436          }
6437        }
6438      }
6439
6440      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
6441      // give up for right now.
6442      if (FlagUser->getOpcode() == PPCISD::MFCR)
6443        return SDValue(VCMPoNode, 0);
6444    }
6445    break;
6446  }
6447  case ISD::BR_CC: {
6448    // If this is a branch on an altivec predicate comparison, lower this so
6449    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
6450    // lowering is done pre-legalize, because the legalizer lowers the predicate
6451    // compare down to code that is difficult to reassemble.
6452    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6453    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6454    int CompareOpc;
6455    bool isDot;
6456
6457    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6458        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6459        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6460      assert(isDot && "Can't compare against a vector result!");
6461
6462      // If this is a comparison against something other than 0/1, then we know
6463      // that the condition is never/always true.
6464      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6465      if (Val != 0 && Val != 1) {
6466        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
6467          return N->getOperand(0);
6468        // Always !=, turn it into an unconditional branch.
6469        return DAG.getNode(ISD::BR, dl, MVT::Other,
6470                           N->getOperand(0), N->getOperand(4));
6471      }
6472
6473      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6474
6475      // Create the PPCISD altivec 'dot' comparison node.
6476      std::vector<EVT> VTs;
6477      SDValue Ops[] = {
6478        LHS.getOperand(2),  // LHS of compare
6479        LHS.getOperand(3),  // RHS of compare
6480        DAG.getConstant(CompareOpc, MVT::i32)
6481      };
6482      VTs.push_back(LHS.getOperand(2).getValueType());
6483      VTs.push_back(MVT::Glue);
6484      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6485
6486      // Unpack the result based on how the target uses it.
6487      PPC::Predicate CompOpc;
6488      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6489      default:  // Can't happen, don't crash on invalid number though.
6490      case 0:   // Branch on the value of the EQ bit of CR6.
6491        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6492        break;
6493      case 1:   // Branch on the inverted value of the EQ bit of CR6.
6494        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6495        break;
6496      case 2:   // Branch on the value of the LT bit of CR6.
6497        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6498        break;
6499      case 3:   // Branch on the inverted value of the LT bit of CR6.
6500        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6501        break;
6502      }
6503
6504      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6505                         DAG.getConstant(CompOpc, MVT::i32),
6506                         DAG.getRegister(PPC::CR6, MVT::i32),
6507                         N->getOperand(4), CompNode.getValue(1));
6508    }
6509    break;
6510  }
6511  }
6512
6513  return SDValue();
6514}
6515
6516//===----------------------------------------------------------------------===//
6517// Inline Assembly Support
6518//===----------------------------------------------------------------------===//
6519
6520void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6521                                                       APInt &KnownZero,
6522                                                       APInt &KnownOne,
6523                                                       const SelectionDAG &DAG,
6524                                                       unsigned Depth) const {
6525  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6526  switch (Op.getOpcode()) {
6527  default: break;
6528  case PPCISD::LBRX: {
6529    // lhbrx is known to have the top bits cleared out.
6530    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6531      KnownZero = 0xFFFF0000;
6532    break;
6533  }
6534  case ISD::INTRINSIC_WO_CHAIN: {
6535    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6536    default: break;
6537    case Intrinsic::ppc_altivec_vcmpbfp_p:
6538    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6539    case Intrinsic::ppc_altivec_vcmpequb_p:
6540    case Intrinsic::ppc_altivec_vcmpequh_p:
6541    case Intrinsic::ppc_altivec_vcmpequw_p:
6542    case Intrinsic::ppc_altivec_vcmpgefp_p:
6543    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6544    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6545    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6546    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6547    case Intrinsic::ppc_altivec_vcmpgtub_p:
6548    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6549    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6550      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6551      break;
6552    }
6553  }
6554  }
6555}
6556
6557
6558/// getConstraintType - Given a constraint, return the type of
6559/// constraint it is for this target.
6560PPCTargetLowering::ConstraintType
6561PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6562  if (Constraint.size() == 1) {
6563    switch (Constraint[0]) {
6564    default: break;
6565    case 'b':
6566    case 'r':
6567    case 'f':
6568    case 'v':
6569    case 'y':
6570      return C_RegisterClass;
6571    case 'Z':
6572      // FIXME: While Z does indicate a memory constraint, it specifically
6573      // indicates an r+r address (used in conjunction with the 'y' modifier
6574      // in the replacement string). Currently, we're forcing the base
6575      // register to be r0 in the asm printer (which is interpreted as zero)
6576      // and forming the complete address in the second register. This is
6577      // suboptimal.
6578      return C_Memory;
6579    }
6580  }
6581  return TargetLowering::getConstraintType(Constraint);
6582}
6583
6584/// Examine constraint type and operand type and determine a weight value.
6585/// This object must already have been set up with the operand type
6586/// and the current alternative constraint selected.
6587TargetLowering::ConstraintWeight
6588PPCTargetLowering::getSingleConstraintMatchWeight(
6589    AsmOperandInfo &info, const char *constraint) const {
6590  ConstraintWeight weight = CW_Invalid;
6591  Value *CallOperandVal = info.CallOperandVal;
6592    // If we don't have a value, we can't do a match,
6593    // but allow it at the lowest weight.
6594  if (CallOperandVal == NULL)
6595    return CW_Default;
6596  Type *type = CallOperandVal->getType();
6597  // Look at the constraint type.
6598  switch (*constraint) {
6599  default:
6600    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6601    break;
6602  case 'b':
6603    if (type->isIntegerTy())
6604      weight = CW_Register;
6605    break;
6606  case 'f':
6607    if (type->isFloatTy())
6608      weight = CW_Register;
6609    break;
6610  case 'd':
6611    if (type->isDoubleTy())
6612      weight = CW_Register;
6613    break;
6614  case 'v':
6615    if (type->isVectorTy())
6616      weight = CW_Register;
6617    break;
6618  case 'y':
6619    weight = CW_Register;
6620    break;
6621  case 'Z':
6622    weight = CW_Memory;
6623    break;
6624  }
6625  return weight;
6626}
6627
6628std::pair<unsigned, const TargetRegisterClass*>
6629PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6630                                                EVT VT) const {
6631  if (Constraint.size() == 1) {
6632    // GCC RS6000 Constraint Letters
6633    switch (Constraint[0]) {
6634    case 'b':   // R1-R31
6635    case 'r':   // R0-R31
6636      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6637        return std::make_pair(0U, &PPC::G8RCRegClass);
6638      return std::make_pair(0U, &PPC::GPRCRegClass);
6639    case 'f':
6640      if (VT == MVT::f32 || VT == MVT::i32)
6641        return std::make_pair(0U, &PPC::F4RCRegClass);
6642      if (VT == MVT::f64 || VT == MVT::i64)
6643        return std::make_pair(0U, &PPC::F8RCRegClass);
6644      break;
6645    case 'v':
6646      return std::make_pair(0U, &PPC::VRRCRegClass);
6647    case 'y':   // crrc
6648      return std::make_pair(0U, &PPC::CRRCRegClass);
6649    }
6650  }
6651
6652  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6653}
6654
6655
6656/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6657/// vector.  If it is invalid, don't add anything to Ops.
6658void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6659                                                     std::string &Constraint,
6660                                                     std::vector<SDValue>&Ops,
6661                                                     SelectionDAG &DAG) const {
6662  SDValue Result(0,0);
6663
6664  // Only support length 1 constraints.
6665  if (Constraint.length() > 1) return;
6666
6667  char Letter = Constraint[0];
6668  switch (Letter) {
6669  default: break;
6670  case 'I':
6671  case 'J':
6672  case 'K':
6673  case 'L':
6674  case 'M':
6675  case 'N':
6676  case 'O':
6677  case 'P': {
6678    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
6679    if (!CST) return; // Must be an immediate to match.
6680    unsigned Value = CST->getZExtValue();
6681    switch (Letter) {
6682    default: llvm_unreachable("Unknown constraint letter!");
6683    case 'I':  // "I" is a signed 16-bit constant.
6684      if ((short)Value == (int)Value)
6685        Result = DAG.getTargetConstant(Value, Op.getValueType());
6686      break;
6687    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
6688    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
6689      if ((short)Value == 0)
6690        Result = DAG.getTargetConstant(Value, Op.getValueType());
6691      break;
6692    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
6693      if ((Value >> 16) == 0)
6694        Result = DAG.getTargetConstant(Value, Op.getValueType());
6695      break;
6696    case 'M':  // "M" is a constant that is greater than 31.
6697      if (Value > 31)
6698        Result = DAG.getTargetConstant(Value, Op.getValueType());
6699      break;
6700    case 'N':  // "N" is a positive constant that is an exact power of two.
6701      if ((int)Value > 0 && isPowerOf2_32(Value))
6702        Result = DAG.getTargetConstant(Value, Op.getValueType());
6703      break;
6704    case 'O':  // "O" is the constant zero.
6705      if (Value == 0)
6706        Result = DAG.getTargetConstant(Value, Op.getValueType());
6707      break;
6708    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
6709      if ((short)-Value == (int)-Value)
6710        Result = DAG.getTargetConstant(Value, Op.getValueType());
6711      break;
6712    }
6713    break;
6714  }
6715  }
6716
6717  if (Result.getNode()) {
6718    Ops.push_back(Result);
6719    return;
6720  }
6721
6722  // Handle standard constraint letters.
6723  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6724}
6725
6726// isLegalAddressingMode - Return true if the addressing mode represented
6727// by AM is legal for this target, for a load/store of the specified type.
6728bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6729                                              Type *Ty) const {
6730  // FIXME: PPC does not allow r+i addressing modes for vectors!
6731
6732  // PPC allows a sign-extended 16-bit immediate field.
6733  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
6734    return false;
6735
6736  // No global is ever allowed as a base.
6737  if (AM.BaseGV)
6738    return false;
6739
6740  // PPC only support r+r,
6741  switch (AM.Scale) {
6742  case 0:  // "r+i" or just "i", depending on HasBaseReg.
6743    break;
6744  case 1:
6745    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
6746      return false;
6747    // Otherwise we have r+r or r+i.
6748    break;
6749  case 2:
6750    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
6751      return false;
6752    // Allow 2*r as r+r.
6753    break;
6754  default:
6755    // No other scales are supported.
6756    return false;
6757  }
6758
6759  return true;
6760}
6761
6762/// isLegalAddressImmediate - Return true if the integer value can be used
6763/// as the offset of the target addressing mode for load / store of the
6764/// given type.
6765bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
6766  // PPC allows a sign-extended 16-bit immediate field.
6767  return (V > -(1 << 16) && V < (1 << 16)-1);
6768}
6769
6770bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
6771  return false;
6772}
6773
6774SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
6775                                           SelectionDAG &DAG) const {
6776  MachineFunction &MF = DAG.getMachineFunction();
6777  MachineFrameInfo *MFI = MF.getFrameInfo();
6778  MFI->setReturnAddressIsTaken(true);
6779
6780  DebugLoc dl = Op.getDebugLoc();
6781  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6782
6783  // Make sure the function does not optimize away the store of the RA to
6784  // the stack.
6785  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6786  FuncInfo->setLRStoreRequired();
6787  bool isPPC64 = PPCSubTarget.isPPC64();
6788  bool isDarwinABI = PPCSubTarget.isDarwinABI();
6789
6790  if (Depth > 0) {
6791    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6792    SDValue Offset =
6793
6794      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
6795                      isPPC64? MVT::i64 : MVT::i32);
6796    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6797                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6798                                   FrameAddr, Offset),
6799                       MachinePointerInfo(), false, false, false, 0);
6800  }
6801
6802  // Just load the return address off the stack.
6803  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
6804  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6805                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
6806}
6807
6808SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
6809                                          SelectionDAG &DAG) const {
6810  DebugLoc dl = Op.getDebugLoc();
6811  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6812
6813  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6814  bool isPPC64 = PtrVT == MVT::i64;
6815
6816  MachineFunction &MF = DAG.getMachineFunction();
6817  MachineFrameInfo *MFI = MF.getFrameInfo();
6818  MFI->setFrameAddressIsTaken(true);
6819  bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
6820               MFI->hasVarSizedObjects()) &&
6821                  MFI->getStackSize() &&
6822                  !MF.getFunction()->getFnAttributes().
6823                    hasAttribute(Attributes::Naked);
6824  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
6825                                (is31 ? PPC::R31 : PPC::R1);
6826  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
6827                                         PtrVT);
6828  while (Depth--)
6829    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
6830                            FrameAddr, MachinePointerInfo(), false, false,
6831                            false, 0);
6832  return FrameAddr;
6833}
6834
6835bool
6836PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6837  // The PowerPC target isn't yet aware of offsets.
6838  return false;
6839}
6840
6841/// getOptimalMemOpType - Returns the target specific optimal type for load
6842/// and store operations as a result of memset, memcpy, and memmove
6843/// lowering. If DstAlign is zero that means it's safe to destination
6844/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
6845/// means there isn't a need to check it against alignment requirement,
6846/// probably because the source does not need to be loaded. If 'IsMemset' is
6847/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
6848/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
6849/// source is constant so it does not need to be loaded.
6850/// It returns EVT::Other if the type should be determined using generic
6851/// target-independent logic.
6852EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
6853                                           unsigned DstAlign, unsigned SrcAlign,
6854                                           bool IsMemset, bool ZeroMemset,
6855                                           bool MemcpyStrSrc,
6856                                           MachineFunction &MF) const {
6857  if (this->PPCSubTarget.isPPC64()) {
6858    return MVT::i64;
6859  } else {
6860    return MVT::i32;
6861  }
6862}
6863
6864/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
6865/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
6866/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
6867/// is expanded to mul + add.
6868bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
6869  if (!VT.isSimple())
6870    return false;
6871
6872  switch (VT.getSimpleVT().SimpleTy) {
6873  case MVT::f32:
6874  case MVT::f64:
6875  case MVT::v4f32:
6876    return true;
6877  default:
6878    break;
6879  }
6880
6881  return false;
6882}
6883
6884Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
6885  if (DisableILPPref)
6886    return TargetLowering::getSchedulingPreference(N);
6887
6888  return Sched::ILP;
6889}
6890
6891