PPCISelLowering.cpp revision bf125583f8bd8196a34921276add7f304b7c1433
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF();
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  // Support label based line numbers.
186  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
187  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
200  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
201  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
203  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
204  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
205
206  // TRAP is legal.
207  setOperationAction(ISD::TRAP, MVT::Other, Legal);
208
209  // TRAMPOLINE is custom lowered.
210  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
211
212  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
213  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
214
215  // VAARG is custom lowered with the 32-bit SVR4 ABI.
216  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
217      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
218    setOperationAction(ISD::VAARG, MVT::Other, Custom);
219  else
220    setOperationAction(ISD::VAARG, MVT::Other, Expand);
221
222  // Use the default implementation.
223  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
224  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
225  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
226  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
227  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
228  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
229
230  // We want to custom lower some of our intrinsics.
231  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
232
233  // Comparisons that require checking two conditions.
234  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
246
247  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
248    // They also have instructions for converting between i64 and fp.
249    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
250    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
251    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
252    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
253    // This is just the low 32 bits of a (signed) fp->i64 conversion.
254    // We cannot do this with Promote because i64 is not a legal type.
255    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
256
257    // FIXME: disable this lowered code.  This generates 64-bit register values,
258    // and we don't model the fact that the top part is clobbered by calls.  We
259    // need to flag these together so that the value isn't live across a call.
260    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
261  } else {
262    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
263    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
264  }
265
266  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
267    // 64-bit PowerPC implementations can support i64 types directly
268    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
269    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
270    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
271    // 64-bit PowerPC wants to expand i128 shifts itself.
272    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
273    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
274    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
275  } else {
276    // 32-bit PowerPC wants to expand i64 shifts itself.
277    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
278    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
279    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
280  }
281
282  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
283    // First set operation action for all vector types to expand. Then we
284    // will selectively turn on ones that can be effectively codegen'd.
285    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
286         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
287      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
288
289      // add/sub are legal for all supported vector VT's.
290      setOperationAction(ISD::ADD , VT, Legal);
291      setOperationAction(ISD::SUB , VT, Legal);
292
293      // We promote all shuffles to v16i8.
294      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
295      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
296
297      // We promote all non-typed operations to v4i32.
298      setOperationAction(ISD::AND   , VT, Promote);
299      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
300      setOperationAction(ISD::OR    , VT, Promote);
301      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
302      setOperationAction(ISD::XOR   , VT, Promote);
303      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
304      setOperationAction(ISD::LOAD  , VT, Promote);
305      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
306      setOperationAction(ISD::SELECT, VT, Promote);
307      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
308      setOperationAction(ISD::STORE, VT, Promote);
309      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
310
311      // No other operations are legal.
312      setOperationAction(ISD::MUL , VT, Expand);
313      setOperationAction(ISD::SDIV, VT, Expand);
314      setOperationAction(ISD::SREM, VT, Expand);
315      setOperationAction(ISD::UDIV, VT, Expand);
316      setOperationAction(ISD::UREM, VT, Expand);
317      setOperationAction(ISD::FDIV, VT, Expand);
318      setOperationAction(ISD::FNEG, VT, Expand);
319      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
320      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
321      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
322      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
323      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
324      setOperationAction(ISD::UDIVREM, VT, Expand);
325      setOperationAction(ISD::SDIVREM, VT, Expand);
326      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
327      setOperationAction(ISD::FPOW, VT, Expand);
328      setOperationAction(ISD::CTPOP, VT, Expand);
329      setOperationAction(ISD::CTLZ, VT, Expand);
330      setOperationAction(ISD::CTTZ, VT, Expand);
331    }
332
333    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
334    // with merges, splats, etc.
335    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
336
337    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
338    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
339    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
340    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
341    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
342    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
343
344    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
346    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
348
349    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
350    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
351    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
352    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
353
354    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
355    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
356
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
361  }
362
363  setShiftAmountType(MVT::i32);
364  setBooleanContents(ZeroOrOneBooleanContent);
365
366  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
367    setStackPointerRegisterToSaveRestore(PPC::X1);
368    setExceptionPointerRegister(PPC::X3);
369    setExceptionSelectorRegister(PPC::X4);
370  } else {
371    setStackPointerRegisterToSaveRestore(PPC::R1);
372    setExceptionPointerRegister(PPC::R3);
373    setExceptionSelectorRegister(PPC::R4);
374  }
375
376  // We have target-specific dag combine patterns for the following nodes:
377  setTargetDAGCombine(ISD::SINT_TO_FP);
378  setTargetDAGCombine(ISD::STORE);
379  setTargetDAGCombine(ISD::BR_CC);
380  setTargetDAGCombine(ISD::BSWAP);
381
382  // Darwin long double math library functions have $LDBL128 appended.
383  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
384    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
385    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
386    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
387    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
388    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
389    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
390    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
391    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
392    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
393    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
394  }
395
396  computeRegisterProperties();
397}
398
399/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
400/// function arguments in the caller parameter area.
401unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
402  TargetMachine &TM = getTargetMachine();
403  // Darwin passes everything on 4 byte boundary.
404  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
405    return 4;
406  // FIXME SVR4 TBD
407  return 4;
408}
409
410const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
411  switch (Opcode) {
412  default: return 0;
413  case PPCISD::FSEL:            return "PPCISD::FSEL";
414  case PPCISD::FCFID:           return "PPCISD::FCFID";
415  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
416  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
417  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
418  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
419  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
420  case PPCISD::VPERM:           return "PPCISD::VPERM";
421  case PPCISD::Hi:              return "PPCISD::Hi";
422  case PPCISD::Lo:              return "PPCISD::Lo";
423  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
424  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
425  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
426  case PPCISD::SRL:             return "PPCISD::SRL";
427  case PPCISD::SRA:             return "PPCISD::SRA";
428  case PPCISD::SHL:             return "PPCISD::SHL";
429  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
430  case PPCISD::STD_32:          return "PPCISD::STD_32";
431  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
432  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
433  case PPCISD::NOP:             return "PPCISD::NOP";
434  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
435  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
436  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
437  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
438  case PPCISD::MFCR:            return "PPCISD::MFCR";
439  case PPCISD::VCMP:            return "PPCISD::VCMP";
440  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
441  case PPCISD::LBRX:            return "PPCISD::LBRX";
442  case PPCISD::STBRX:           return "PPCISD::STBRX";
443  case PPCISD::LARX:            return "PPCISD::LARX";
444  case PPCISD::STCX:            return "PPCISD::STCX";
445  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
446  case PPCISD::MFFS:            return "PPCISD::MFFS";
447  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
448  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
449  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
450  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
451  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
452  }
453}
454
455MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
456  return MVT::i32;
457}
458
459/// getFunctionAlignment - Return the Log2 alignment of this function.
460unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
461  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
462    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
463  else
464    return 2;
465}
466
467//===----------------------------------------------------------------------===//
468// Node matching predicates, for use by the tblgen matching code.
469//===----------------------------------------------------------------------===//
470
471/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
472static bool isFloatingPointZero(SDValue Op) {
473  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
474    return CFP->getValueAPF().isZero();
475  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
476    // Maybe this has already been legalized into the constant pool?
477    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
478      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
479        return CFP->getValueAPF().isZero();
480  }
481  return false;
482}
483
484/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
485/// true if Op is undef or if it matches the specified value.
486static bool isConstantOrUndef(int Op, int Val) {
487  return Op < 0 || Op == Val;
488}
489
490/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
491/// VPKUHUM instruction.
492bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
493  if (!isUnary) {
494    for (unsigned i = 0; i != 16; ++i)
495      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
496        return false;
497  } else {
498    for (unsigned i = 0; i != 8; ++i)
499      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
500          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
501        return false;
502  }
503  return true;
504}
505
506/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
507/// VPKUWUM instruction.
508bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
509  if (!isUnary) {
510    for (unsigned i = 0; i != 16; i += 2)
511      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
512          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
513        return false;
514  } else {
515    for (unsigned i = 0; i != 8; i += 2)
516      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
518          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
519          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
520        return false;
521  }
522  return true;
523}
524
525/// isVMerge - Common function, used to match vmrg* shuffles.
526///
527static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
528                     unsigned LHSStart, unsigned RHSStart) {
529  assert(N->getValueType(0) == MVT::v16i8 &&
530         "PPC only supports shuffles by bytes!");
531  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
532         "Unsupported merge size!");
533
534  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
535    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
536      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
537                             LHSStart+j+i*UnitSize) ||
538          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
539                             RHSStart+j+i*UnitSize))
540        return false;
541    }
542  return true;
543}
544
545/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
546/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
547bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
548                             bool isUnary) {
549  if (!isUnary)
550    return isVMerge(N, UnitSize, 8, 24);
551  return isVMerge(N, UnitSize, 8, 8);
552}
553
554/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
555/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
556bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
557                             bool isUnary) {
558  if (!isUnary)
559    return isVMerge(N, UnitSize, 0, 16);
560  return isVMerge(N, UnitSize, 0, 0);
561}
562
563
564/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
565/// amount, otherwise return -1.
566int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
567  assert(N->getValueType(0) == MVT::v16i8 &&
568         "PPC only supports shuffles by bytes!");
569
570  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
571
572  // Find the first non-undef value in the shuffle mask.
573  unsigned i;
574  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
575    /*search*/;
576
577  if (i == 16) return -1;  // all undef.
578
579  // Otherwise, check to see if the rest of the elements are consecutively
580  // numbered from this value.
581  unsigned ShiftAmt = SVOp->getMaskElt(i);
582  if (ShiftAmt < i) return -1;
583  ShiftAmt -= i;
584
585  if (!isUnary) {
586    // Check the rest of the elements to see if they are consecutive.
587    for (++i; i != 16; ++i)
588      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
589        return -1;
590  } else {
591    // Check the rest of the elements to see if they are consecutive.
592    for (++i; i != 16; ++i)
593      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
594        return -1;
595  }
596  return ShiftAmt;
597}
598
599/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
600/// specifies a splat of a single element that is suitable for input to
601/// VSPLTB/VSPLTH/VSPLTW.
602bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
603  assert(N->getValueType(0) == MVT::v16i8 &&
604         (EltSize == 1 || EltSize == 2 || EltSize == 4));
605
606  // This is a splat operation if each element of the permute is the same, and
607  // if the value doesn't reference the second vector.
608  unsigned ElementBase = N->getMaskElt(0);
609
610  // FIXME: Handle UNDEF elements too!
611  if (ElementBase >= 16)
612    return false;
613
614  // Check that the indices are consecutive, in the case of a multi-byte element
615  // splatted with a v16i8 mask.
616  for (unsigned i = 1; i != EltSize; ++i)
617    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
618      return false;
619
620  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
621    if (N->getMaskElt(i) < 0) continue;
622    for (unsigned j = 0; j != EltSize; ++j)
623      if (N->getMaskElt(i+j) != N->getMaskElt(j))
624        return false;
625  }
626  return true;
627}
628
629/// isAllNegativeZeroVector - Returns true if all elements of build_vector
630/// are -0.0.
631bool PPC::isAllNegativeZeroVector(SDNode *N) {
632  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
633
634  APInt APVal, APUndef;
635  unsigned BitSize;
636  bool HasAnyUndefs;
637
638  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
639    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
640      return CFP->getValueAPF().isNegZero();
641
642  return false;
643}
644
645/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
646/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
647unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
648  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
649  assert(isSplatShuffleMask(SVOp, EltSize));
650  return SVOp->getMaskElt(0) / EltSize;
651}
652
653/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
654/// by using a vspltis[bhw] instruction of the specified element size, return
655/// the constant being splatted.  The ByteSize field indicates the number of
656/// bytes of each element [124] -> [bhw].
657SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
658  SDValue OpVal(0, 0);
659
660  // If ByteSize of the splat is bigger than the element size of the
661  // build_vector, then we have a case where we are checking for a splat where
662  // multiple elements of the buildvector are folded together into a single
663  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
664  unsigned EltSize = 16/N->getNumOperands();
665  if (EltSize < ByteSize) {
666    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
667    SDValue UniquedVals[4];
668    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
669
670    // See if all of the elements in the buildvector agree across.
671    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
672      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
673      // If the element isn't a constant, bail fully out.
674      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
675
676
677      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
678        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
679      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
680        return SDValue();  // no match.
681    }
682
683    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
684    // either constant or undef values that are identical for each chunk.  See
685    // if these chunks can form into a larger vspltis*.
686
687    // Check to see if all of the leading entries are either 0 or -1.  If
688    // neither, then this won't fit into the immediate field.
689    bool LeadingZero = true;
690    bool LeadingOnes = true;
691    for (unsigned i = 0; i != Multiple-1; ++i) {
692      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
693
694      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
695      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
696    }
697    // Finally, check the least significant entry.
698    if (LeadingZero) {
699      if (UniquedVals[Multiple-1].getNode() == 0)
700        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
701      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
702      if (Val < 16)
703        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
704    }
705    if (LeadingOnes) {
706      if (UniquedVals[Multiple-1].getNode() == 0)
707        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
708      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
709      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
710        return DAG.getTargetConstant(Val, MVT::i32);
711    }
712
713    return SDValue();
714  }
715
716  // Check to see if this buildvec has a single non-undef value in its elements.
717  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
718    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
719    if (OpVal.getNode() == 0)
720      OpVal = N->getOperand(i);
721    else if (OpVal != N->getOperand(i))
722      return SDValue();
723  }
724
725  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
726
727  unsigned ValSizeInBytes = EltSize;
728  uint64_t Value = 0;
729  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
730    Value = CN->getZExtValue();
731  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
732    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
733    Value = FloatToBits(CN->getValueAPF().convertToFloat());
734  }
735
736  // If the splat value is larger than the element value, then we can never do
737  // this splat.  The only case that we could fit the replicated bits into our
738  // immediate field for would be zero, and we prefer to use vxor for it.
739  if (ValSizeInBytes < ByteSize) return SDValue();
740
741  // If the element value is larger than the splat value, cut it in half and
742  // check to see if the two halves are equal.  Continue doing this until we
743  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
744  while (ValSizeInBytes > ByteSize) {
745    ValSizeInBytes >>= 1;
746
747    // If the top half equals the bottom half, we're still ok.
748    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
749         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
750      return SDValue();
751  }
752
753  // Properly sign extend the value.
754  int ShAmt = (4-ByteSize)*8;
755  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
756
757  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
758  if (MaskVal == 0) return SDValue();
759
760  // Finally, if this value fits in a 5 bit sext field, return it
761  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
762    return DAG.getTargetConstant(MaskVal, MVT::i32);
763  return SDValue();
764}
765
766//===----------------------------------------------------------------------===//
767//  Addressing Mode Selection
768//===----------------------------------------------------------------------===//
769
770/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
771/// or 64-bit immediate, and if the value can be accurately represented as a
772/// sign extension from a 16-bit value.  If so, this returns true and the
773/// immediate.
774static bool isIntS16Immediate(SDNode *N, short &Imm) {
775  if (N->getOpcode() != ISD::Constant)
776    return false;
777
778  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
779  if (N->getValueType(0) == MVT::i32)
780    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
781  else
782    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
783}
784static bool isIntS16Immediate(SDValue Op, short &Imm) {
785  return isIntS16Immediate(Op.getNode(), Imm);
786}
787
788
789/// SelectAddressRegReg - Given the specified addressed, check to see if it
790/// can be represented as an indexed [r+r] operation.  Returns false if it
791/// can be more efficiently represented with [r+imm].
792bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
793                                            SDValue &Index,
794                                            SelectionDAG &DAG) const {
795  short imm = 0;
796  if (N.getOpcode() == ISD::ADD) {
797    if (isIntS16Immediate(N.getOperand(1), imm))
798      return false;    // r+i
799    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
800      return false;    // r+i
801
802    Base = N.getOperand(0);
803    Index = N.getOperand(1);
804    return true;
805  } else if (N.getOpcode() == ISD::OR) {
806    if (isIntS16Immediate(N.getOperand(1), imm))
807      return false;    // r+i can fold it if we can.
808
809    // If this is an or of disjoint bitfields, we can codegen this as an add
810    // (for better address arithmetic) if the LHS and RHS of the OR are provably
811    // disjoint.
812    APInt LHSKnownZero, LHSKnownOne;
813    APInt RHSKnownZero, RHSKnownOne;
814    DAG.ComputeMaskedBits(N.getOperand(0),
815                          APInt::getAllOnesValue(N.getOperand(0)
816                            .getValueSizeInBits()),
817                          LHSKnownZero, LHSKnownOne);
818
819    if (LHSKnownZero.getBoolValue()) {
820      DAG.ComputeMaskedBits(N.getOperand(1),
821                            APInt::getAllOnesValue(N.getOperand(1)
822                              .getValueSizeInBits()),
823                            RHSKnownZero, RHSKnownOne);
824      // If all of the bits are known zero on the LHS or RHS, the add won't
825      // carry.
826      if (~(LHSKnownZero | RHSKnownZero) == 0) {
827        Base = N.getOperand(0);
828        Index = N.getOperand(1);
829        return true;
830      }
831    }
832  }
833
834  return false;
835}
836
837/// Returns true if the address N can be represented by a base register plus
838/// a signed 16-bit displacement [r+imm], and if it is not better
839/// represented as reg+reg.
840bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
841                                            SDValue &Base,
842                                            SelectionDAG &DAG) const {
843  // FIXME dl should come from parent load or store, not from address
844  DebugLoc dl = N.getDebugLoc();
845  // If this can be more profitably realized as r+r, fail.
846  if (SelectAddressRegReg(N, Disp, Base, DAG))
847    return false;
848
849  if (N.getOpcode() == ISD::ADD) {
850    short imm = 0;
851    if (isIntS16Immediate(N.getOperand(1), imm)) {
852      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
853      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
854        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
855      } else {
856        Base = N.getOperand(0);
857      }
858      return true; // [r+i]
859    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
860      // Match LOAD (ADD (X, Lo(G))).
861     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
862             && "Cannot handle constant offsets yet!");
863      Disp = N.getOperand(1).getOperand(0);  // The global address.
864      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
865             Disp.getOpcode() == ISD::TargetConstantPool ||
866             Disp.getOpcode() == ISD::TargetJumpTable);
867      Base = N.getOperand(0);
868      return true;  // [&g+r]
869    }
870  } else if (N.getOpcode() == ISD::OR) {
871    short imm = 0;
872    if (isIntS16Immediate(N.getOperand(1), imm)) {
873      // If this is an or of disjoint bitfields, we can codegen this as an add
874      // (for better address arithmetic) if the LHS and RHS of the OR are
875      // provably disjoint.
876      APInt LHSKnownZero, LHSKnownOne;
877      DAG.ComputeMaskedBits(N.getOperand(0),
878                            APInt::getAllOnesValue(N.getOperand(0)
879                                                   .getValueSizeInBits()),
880                            LHSKnownZero, LHSKnownOne);
881
882      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
883        // If all of the bits are known zero on the LHS or RHS, the add won't
884        // carry.
885        Base = N.getOperand(0);
886        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
887        return true;
888      }
889    }
890  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
891    // Loading from a constant address.
892
893    // If this address fits entirely in a 16-bit sext immediate field, codegen
894    // this as "d, 0"
895    short Imm;
896    if (isIntS16Immediate(CN, Imm)) {
897      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
898      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
899      return true;
900    }
901
902    // Handle 32-bit sext immediates with LIS + addr mode.
903    if (CN->getValueType(0) == MVT::i32 ||
904        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
905      int Addr = (int)CN->getZExtValue();
906
907      // Otherwise, break this down into an LIS + disp.
908      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
909
910      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
911      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
912      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
913      return true;
914    }
915  }
916
917  Disp = DAG.getTargetConstant(0, getPointerTy());
918  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
919    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
920  else
921    Base = N;
922  return true;      // [r+0]
923}
924
925/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
926/// represented as an indexed [r+r] operation.
927bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
928                                                SDValue &Index,
929                                                SelectionDAG &DAG) const {
930  // Check to see if we can easily represent this as an [r+r] address.  This
931  // will fail if it thinks that the address is more profitably represented as
932  // reg+imm, e.g. where imm = 0.
933  if (SelectAddressRegReg(N, Base, Index, DAG))
934    return true;
935
936  // If the operand is an addition, always emit this as [r+r], since this is
937  // better (for code size, and execution, as the memop does the add for free)
938  // than emitting an explicit add.
939  if (N.getOpcode() == ISD::ADD) {
940    Base = N.getOperand(0);
941    Index = N.getOperand(1);
942    return true;
943  }
944
945  // Otherwise, do it the hard way, using R0 as the base register.
946  Base = DAG.getRegister(PPC::R0, N.getValueType());
947  Index = N;
948  return true;
949}
950
951/// SelectAddressRegImmShift - Returns true if the address N can be
952/// represented by a base register plus a signed 14-bit displacement
953/// [r+imm*4].  Suitable for use by STD and friends.
954bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
955                                                 SDValue &Base,
956                                                 SelectionDAG &DAG) const {
957  // FIXME dl should come from the parent load or store, not the address
958  DebugLoc dl = N.getDebugLoc();
959  // If this can be more profitably realized as r+r, fail.
960  if (SelectAddressRegReg(N, Disp, Base, DAG))
961    return false;
962
963  if (N.getOpcode() == ISD::ADD) {
964    short imm = 0;
965    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
966      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
967      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
968        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
969      } else {
970        Base = N.getOperand(0);
971      }
972      return true; // [r+i]
973    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
974      // Match LOAD (ADD (X, Lo(G))).
975     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
976             && "Cannot handle constant offsets yet!");
977      Disp = N.getOperand(1).getOperand(0);  // The global address.
978      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
979             Disp.getOpcode() == ISD::TargetConstantPool ||
980             Disp.getOpcode() == ISD::TargetJumpTable);
981      Base = N.getOperand(0);
982      return true;  // [&g+r]
983    }
984  } else if (N.getOpcode() == ISD::OR) {
985    short imm = 0;
986    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
987      // If this is an or of disjoint bitfields, we can codegen this as an add
988      // (for better address arithmetic) if the LHS and RHS of the OR are
989      // provably disjoint.
990      APInt LHSKnownZero, LHSKnownOne;
991      DAG.ComputeMaskedBits(N.getOperand(0),
992                            APInt::getAllOnesValue(N.getOperand(0)
993                                                   .getValueSizeInBits()),
994                            LHSKnownZero, LHSKnownOne);
995      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
996        // If all of the bits are known zero on the LHS or RHS, the add won't
997        // carry.
998        Base = N.getOperand(0);
999        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1000        return true;
1001      }
1002    }
1003  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1004    // Loading from a constant address.  Verify low two bits are clear.
1005    if ((CN->getZExtValue() & 3) == 0) {
1006      // If this address fits entirely in a 14-bit sext immediate field, codegen
1007      // this as "d, 0"
1008      short Imm;
1009      if (isIntS16Immediate(CN, Imm)) {
1010        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1011        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1012        return true;
1013      }
1014
1015      // Fold the low-part of 32-bit absolute addresses into addr mode.
1016      if (CN->getValueType(0) == MVT::i32 ||
1017          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1018        int Addr = (int)CN->getZExtValue();
1019
1020        // Otherwise, break this down into an LIS + disp.
1021        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1022        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1023        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1024        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1025        return true;
1026      }
1027    }
1028  }
1029
1030  Disp = DAG.getTargetConstant(0, getPointerTy());
1031  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1032    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1033  else
1034    Base = N;
1035  return true;      // [r+0]
1036}
1037
1038
1039/// getPreIndexedAddressParts - returns true by value, base pointer and
1040/// offset pointer and addressing mode by reference if the node's address
1041/// can be legally represented as pre-indexed load / store address.
1042bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1043                                                  SDValue &Offset,
1044                                                  ISD::MemIndexedMode &AM,
1045                                                  SelectionDAG &DAG) const {
1046  // Disabled by default for now.
1047  if (!EnablePPCPreinc) return false;
1048
1049  SDValue Ptr;
1050  EVT VT;
1051  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1052    Ptr = LD->getBasePtr();
1053    VT = LD->getMemoryVT();
1054
1055  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1056    ST = ST;
1057    Ptr = ST->getBasePtr();
1058    VT  = ST->getMemoryVT();
1059  } else
1060    return false;
1061
1062  // PowerPC doesn't have preinc load/store instructions for vectors.
1063  if (VT.isVector())
1064    return false;
1065
1066  // TODO: Check reg+reg first.
1067
1068  // LDU/STU use reg+imm*4, others use reg+imm.
1069  if (VT != MVT::i64) {
1070    // reg + imm
1071    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1072      return false;
1073  } else {
1074    // reg + imm * 4.
1075    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1076      return false;
1077  }
1078
1079  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1080    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1081    // sext i32 to i64 when addr mode is r+i.
1082    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1083        LD->getExtensionType() == ISD::SEXTLOAD &&
1084        isa<ConstantSDNode>(Offset))
1085      return false;
1086  }
1087
1088  AM = ISD::PRE_INC;
1089  return true;
1090}
1091
1092//===----------------------------------------------------------------------===//
1093//  LowerOperation implementation
1094//===----------------------------------------------------------------------===//
1095
1096SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1097                                             SelectionDAG &DAG) {
1098  EVT PtrVT = Op.getValueType();
1099  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1100  Constant *C = CP->getConstVal();
1101  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1102  SDValue Zero = DAG.getConstant(0, PtrVT);
1103  // FIXME there isn't really any debug info here
1104  DebugLoc dl = Op.getDebugLoc();
1105
1106  const TargetMachine &TM = DAG.getTarget();
1107
1108  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1109  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1110
1111  // If this is a non-darwin platform, we don't support non-static relo models
1112  // yet.
1113  if (TM.getRelocationModel() == Reloc::Static ||
1114      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1115    // Generate non-pic code that has direct accesses to the constant pool.
1116    // The address of the global is just (hi(&g)+lo(&g)).
1117    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1118  }
1119
1120  if (TM.getRelocationModel() == Reloc::PIC_) {
1121    // With PIC, the first instruction is actually "GR+hi(&G)".
1122    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1123                     DAG.getNode(PPCISD::GlobalBaseReg,
1124                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1125  }
1126
1127  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1128  return Lo;
1129}
1130
1131SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1132  EVT PtrVT = Op.getValueType();
1133  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1134  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1135  SDValue Zero = DAG.getConstant(0, PtrVT);
1136  // FIXME there isn't really any debug loc here
1137  DebugLoc dl = Op.getDebugLoc();
1138
1139  const TargetMachine &TM = DAG.getTarget();
1140
1141  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1142  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1143
1144  // If this is a non-darwin platform, we don't support non-static relo models
1145  // yet.
1146  if (TM.getRelocationModel() == Reloc::Static ||
1147      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1148    // Generate non-pic code that has direct accesses to the constant pool.
1149    // The address of the global is just (hi(&g)+lo(&g)).
1150    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1151  }
1152
1153  if (TM.getRelocationModel() == Reloc::PIC_) {
1154    // With PIC, the first instruction is actually "GR+hi(&G)".
1155    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1156                     DAG.getNode(PPCISD::GlobalBaseReg,
1157                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1158  }
1159
1160  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1161  return Lo;
1162}
1163
1164SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1165                                                   SelectionDAG &DAG) {
1166  llvm_unreachable("TLS not implemented for PPC.");
1167  return SDValue(); // Not reached
1168}
1169
1170SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1171                                              SelectionDAG &DAG) {
1172  EVT PtrVT = Op.getValueType();
1173  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1174  GlobalValue *GV = GSDN->getGlobal();
1175  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1176  SDValue Zero = DAG.getConstant(0, PtrVT);
1177  // FIXME there isn't really any debug info here
1178  DebugLoc dl = GSDN->getDebugLoc();
1179
1180  const TargetMachine &TM = DAG.getTarget();
1181
1182  // 64-bit SVR4 ABI code is always position-independent.
1183  // The actual address of the GlobalValue is stored in the TOC.
1184  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1185    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1186                       DAG.getRegister(PPC::X2, MVT::i64));
1187  }
1188
1189  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1190  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1191
1192  // If this is a non-darwin platform, we don't support non-static relo models
1193  // yet.
1194  if (TM.getRelocationModel() == Reloc::Static ||
1195      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1196    // Generate non-pic code that has direct accesses to globals.
1197    // The address of the global is just (hi(&g)+lo(&g)).
1198    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1199  }
1200
1201  if (TM.getRelocationModel() == Reloc::PIC_) {
1202    // With PIC, the first instruction is actually "GR+hi(&G)".
1203    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1204                     DAG.getNode(PPCISD::GlobalBaseReg,
1205                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1206  }
1207
1208  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1209
1210  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1211    return Lo;
1212
1213  // If the global is weak or external, we have to go through the lazy
1214  // resolution stub.
1215  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1216}
1217
1218SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1219  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1220  DebugLoc dl = Op.getDebugLoc();
1221
1222  // If we're comparing for equality to zero, expose the fact that this is
1223  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1224  // fold the new nodes.
1225  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1226    if (C->isNullValue() && CC == ISD::SETEQ) {
1227      EVT VT = Op.getOperand(0).getValueType();
1228      SDValue Zext = Op.getOperand(0);
1229      if (VT.bitsLT(MVT::i32)) {
1230        VT = MVT::i32;
1231        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1232      }
1233      unsigned Log2b = Log2_32(VT.getSizeInBits());
1234      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1235      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1236                                DAG.getConstant(Log2b, MVT::i32));
1237      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1238    }
1239    // Leave comparisons against 0 and -1 alone for now, since they're usually
1240    // optimized.  FIXME: revisit this when we can custom lower all setcc
1241    // optimizations.
1242    if (C->isAllOnesValue() || C->isNullValue())
1243      return SDValue();
1244  }
1245
1246  // If we have an integer seteq/setne, turn it into a compare against zero
1247  // by xor'ing the rhs with the lhs, which is faster than setting a
1248  // condition register, reading it back out, and masking the correct bit.  The
1249  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1250  // the result to other bit-twiddling opportunities.
1251  EVT LHSVT = Op.getOperand(0).getValueType();
1252  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1253    EVT VT = Op.getValueType();
1254    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1255                                Op.getOperand(1));
1256    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1257  }
1258  return SDValue();
1259}
1260
1261SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1262                              int VarArgsFrameIndex,
1263                              int VarArgsStackOffset,
1264                              unsigned VarArgsNumGPR,
1265                              unsigned VarArgsNumFPR,
1266                              const PPCSubtarget &Subtarget) {
1267
1268  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1269  return SDValue(); // Not reached
1270}
1271
1272SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1273  SDValue Chain = Op.getOperand(0);
1274  SDValue Trmp = Op.getOperand(1); // trampoline
1275  SDValue FPtr = Op.getOperand(2); // nested function
1276  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1277  DebugLoc dl = Op.getDebugLoc();
1278
1279  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1280  bool isPPC64 = (PtrVT == MVT::i64);
1281  const Type *IntPtrTy =
1282    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1283                                                             *DAG.getContext());
1284
1285  TargetLowering::ArgListTy Args;
1286  TargetLowering::ArgListEntry Entry;
1287
1288  Entry.Ty = IntPtrTy;
1289  Entry.Node = Trmp; Args.push_back(Entry);
1290
1291  // TrampSize == (isPPC64 ? 48 : 40);
1292  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1293                               isPPC64 ? MVT::i64 : MVT::i32);
1294  Args.push_back(Entry);
1295
1296  Entry.Node = FPtr; Args.push_back(Entry);
1297  Entry.Node = Nest; Args.push_back(Entry);
1298
1299  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1300  std::pair<SDValue, SDValue> CallResult =
1301    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1302                false, false, false, false, 0, CallingConv::C, false,
1303                /*isReturnValueUsed=*/true,
1304                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1305                Args, DAG, dl);
1306
1307  SDValue Ops[] =
1308    { CallResult.first, CallResult.second };
1309
1310  return DAG.getMergeValues(Ops, 2, dl);
1311}
1312
1313SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1314                                        int VarArgsFrameIndex,
1315                                        int VarArgsStackOffset,
1316                                        unsigned VarArgsNumGPR,
1317                                        unsigned VarArgsNumFPR,
1318                                        const PPCSubtarget &Subtarget) {
1319  DebugLoc dl = Op.getDebugLoc();
1320
1321  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1322    // vastart just stores the address of the VarArgsFrameIndex slot into the
1323    // memory location argument.
1324    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1325    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1326    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1327    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1328  }
1329
1330  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1331  // We suppose the given va_list is already allocated.
1332  //
1333  // typedef struct {
1334  //  char gpr;     /* index into the array of 8 GPRs
1335  //                 * stored in the register save area
1336  //                 * gpr=0 corresponds to r3,
1337  //                 * gpr=1 to r4, etc.
1338  //                 */
1339  //  char fpr;     /* index into the array of 8 FPRs
1340  //                 * stored in the register save area
1341  //                 * fpr=0 corresponds to f1,
1342  //                 * fpr=1 to f2, etc.
1343  //                 */
1344  //  char *overflow_arg_area;
1345  //                /* location on stack that holds
1346  //                 * the next overflow argument
1347  //                 */
1348  //  char *reg_save_area;
1349  //               /* where r3:r10 and f1:f8 (if saved)
1350  //                * are stored
1351  //                */
1352  // } va_list[1];
1353
1354
1355  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1356  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1357
1358
1359  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1360
1361  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1362  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1363
1364  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1365  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1366
1367  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1368  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1369
1370  uint64_t FPROffset = 1;
1371  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1372
1373  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1374
1375  // Store first byte : number of int regs
1376  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1377                                         Op.getOperand(1), SV, 0, MVT::i8);
1378  uint64_t nextOffset = FPROffset;
1379  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1380                                  ConstFPROffset);
1381
1382  // Store second byte : number of float regs
1383  SDValue secondStore =
1384    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1385  nextOffset += StackOffset;
1386  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1387
1388  // Store second word : arguments given on stack
1389  SDValue thirdStore =
1390    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1391  nextOffset += FrameOffset;
1392  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1393
1394  // Store third word : arguments given in registers
1395  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1396
1397}
1398
1399#include "PPCGenCallingConv.inc"
1400
1401static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1402                                     CCValAssign::LocInfo &LocInfo,
1403                                     ISD::ArgFlagsTy &ArgFlags,
1404                                     CCState &State) {
1405  return true;
1406}
1407
1408static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1409                                            EVT &LocVT,
1410                                            CCValAssign::LocInfo &LocInfo,
1411                                            ISD::ArgFlagsTy &ArgFlags,
1412                                            CCState &State) {
1413  static const unsigned ArgRegs[] = {
1414    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1415    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1416  };
1417  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1418
1419  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1420
1421  // Skip one register if the first unallocated register has an even register
1422  // number and there are still argument registers available which have not been
1423  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1424  // need to skip a register if RegNum is odd.
1425  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1426    State.AllocateReg(ArgRegs[RegNum]);
1427  }
1428
1429  // Always return false here, as this function only makes sure that the first
1430  // unallocated register has an odd register number and does not actually
1431  // allocate a register for the current argument.
1432  return false;
1433}
1434
1435static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1436                                              EVT &LocVT,
1437                                              CCValAssign::LocInfo &LocInfo,
1438                                              ISD::ArgFlagsTy &ArgFlags,
1439                                              CCState &State) {
1440  static const unsigned ArgRegs[] = {
1441    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1442    PPC::F8
1443  };
1444
1445  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1446
1447  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1448
1449  // If there is only one Floating-point register left we need to put both f64
1450  // values of a split ppc_fp128 value on the stack.
1451  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1452    State.AllocateReg(ArgRegs[RegNum]);
1453  }
1454
1455  // Always return false here, as this function only makes sure that the two f64
1456  // values a ppc_fp128 value is split into are both passed in registers or both
1457  // passed on the stack and does not actually allocate a register for the
1458  // current argument.
1459  return false;
1460}
1461
1462/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1463/// on Darwin.
1464static const unsigned *GetFPR() {
1465  static const unsigned FPR[] = {
1466    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1467    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1468  };
1469
1470  return FPR;
1471}
1472
1473/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1474/// the stack.
1475static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1476                                       unsigned PtrByteSize) {
1477  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1478  if (Flags.isByVal())
1479    ArgSize = Flags.getByValSize();
1480  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1481
1482  return ArgSize;
1483}
1484
1485SDValue
1486PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1487                                        CallingConv::ID CallConv, bool isVarArg,
1488                                        const SmallVectorImpl<ISD::InputArg>
1489                                          &Ins,
1490                                        DebugLoc dl, SelectionDAG &DAG,
1491                                        SmallVectorImpl<SDValue> &InVals) {
1492  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1493    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1494                                     dl, DAG, InVals);
1495  } else {
1496    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1497                                       dl, DAG, InVals);
1498  }
1499}
1500
1501SDValue
1502PPCTargetLowering::LowerFormalArguments_SVR4(
1503                                      SDValue Chain,
1504                                      CallingConv::ID CallConv, bool isVarArg,
1505                                      const SmallVectorImpl<ISD::InputArg>
1506                                        &Ins,
1507                                      DebugLoc dl, SelectionDAG &DAG,
1508                                      SmallVectorImpl<SDValue> &InVals) {
1509
1510  // 32-bit SVR4 ABI Stack Frame Layout:
1511  //              +-----------------------------------+
1512  //        +-->  |            Back chain             |
1513  //        |     +-----------------------------------+
1514  //        |     | Floating-point register save area |
1515  //        |     +-----------------------------------+
1516  //        |     |    General register save area     |
1517  //        |     +-----------------------------------+
1518  //        |     |          CR save word             |
1519  //        |     +-----------------------------------+
1520  //        |     |         VRSAVE save word          |
1521  //        |     +-----------------------------------+
1522  //        |     |         Alignment padding         |
1523  //        |     +-----------------------------------+
1524  //        |     |     Vector register save area     |
1525  //        |     +-----------------------------------+
1526  //        |     |       Local variable space        |
1527  //        |     +-----------------------------------+
1528  //        |     |        Parameter list area        |
1529  //        |     +-----------------------------------+
1530  //        |     |           LR save word            |
1531  //        |     +-----------------------------------+
1532  // SP-->  +---  |            Back chain             |
1533  //              +-----------------------------------+
1534  //
1535  // Specifications:
1536  //   System V Application Binary Interface PowerPC Processor Supplement
1537  //   AltiVec Technology Programming Interface Manual
1538
1539  MachineFunction &MF = DAG.getMachineFunction();
1540  MachineFrameInfo *MFI = MF.getFrameInfo();
1541
1542  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1543  // Potential tail calls could cause overwriting of argument stack slots.
1544  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1545  unsigned PtrByteSize = 4;
1546
1547  // Assign locations to all of the incoming arguments.
1548  SmallVector<CCValAssign, 16> ArgLocs;
1549  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1550                 *DAG.getContext());
1551
1552  // Reserve space for the linkage area on the stack.
1553  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1554
1555  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1556
1557  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1558    CCValAssign &VA = ArgLocs[i];
1559
1560    // Arguments stored in registers.
1561    if (VA.isRegLoc()) {
1562      TargetRegisterClass *RC;
1563      EVT ValVT = VA.getValVT();
1564
1565      switch (ValVT.getSimpleVT().SimpleTy) {
1566        default:
1567          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1568        case MVT::i32:
1569          RC = PPC::GPRCRegisterClass;
1570          break;
1571        case MVT::f32:
1572          RC = PPC::F4RCRegisterClass;
1573          break;
1574        case MVT::f64:
1575          RC = PPC::F8RCRegisterClass;
1576          break;
1577        case MVT::v16i8:
1578        case MVT::v8i16:
1579        case MVT::v4i32:
1580        case MVT::v4f32:
1581          RC = PPC::VRRCRegisterClass;
1582          break;
1583      }
1584
1585      // Transform the arguments stored in physical registers into virtual ones.
1586      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1587      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1588
1589      InVals.push_back(ArgValue);
1590    } else {
1591      // Argument stored in memory.
1592      assert(VA.isMemLoc());
1593
1594      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1595      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1596                                      isImmutable);
1597
1598      // Create load nodes to retrieve arguments from the stack.
1599      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1600      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1601    }
1602  }
1603
1604  // Assign locations to all of the incoming aggregate by value arguments.
1605  // Aggregates passed by value are stored in the local variable space of the
1606  // caller's stack frame, right above the parameter list area.
1607  SmallVector<CCValAssign, 16> ByValArgLocs;
1608  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1609                      ByValArgLocs, *DAG.getContext());
1610
1611  // Reserve stack space for the allocations in CCInfo.
1612  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1613
1614  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1615
1616  // Area that is at least reserved in the caller of this function.
1617  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1618
1619  // Set the size that is at least reserved in caller of this function.  Tail
1620  // call optimized function's reserved stack space needs to be aligned so that
1621  // taking the difference between two stack areas will result in an aligned
1622  // stack.
1623  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1624
1625  MinReservedArea =
1626    std::max(MinReservedArea,
1627             PPCFrameInfo::getMinCallFrameSize(false, false));
1628
1629  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1630    getStackAlignment();
1631  unsigned AlignMask = TargetAlign-1;
1632  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1633
1634  FI->setMinReservedArea(MinReservedArea);
1635
1636  SmallVector<SDValue, 8> MemOps;
1637
1638  // If the function takes variable number of arguments, make a frame index for
1639  // the start of the first vararg value... for expansion of llvm.va_start.
1640  if (isVarArg) {
1641    static const unsigned GPArgRegs[] = {
1642      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1643      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1644    };
1645    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1646
1647    static const unsigned FPArgRegs[] = {
1648      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1649      PPC::F8
1650    };
1651    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1652
1653    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1654    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1655
1656    // Make room for NumGPArgRegs and NumFPArgRegs.
1657    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1658                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1659
1660    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1661                                                CCInfo.getNextStackOffset());
1662
1663    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1664    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1665
1666    // The fixed integer arguments of a variadic function are
1667    // stored to the VarArgsFrameIndex on the stack.
1668    unsigned GPRIndex = 0;
1669    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1670      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1671      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1672      MemOps.push_back(Store);
1673      // Increment the address by four for the next argument to store
1674      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1675      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1676    }
1677
1678    // If this function is vararg, store any remaining integer argument regs
1679    // to their spots on the stack so that they may be loaded by deferencing the
1680    // result of va_next.
1681    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1682      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1683
1684      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1685      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1686      MemOps.push_back(Store);
1687      // Increment the address by four for the next argument to store
1688      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1689      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1690    }
1691
1692    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1693    // is set.
1694
1695    // The double arguments are stored to the VarArgsFrameIndex
1696    // on the stack.
1697    unsigned FPRIndex = 0;
1698    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1699      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1700      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1701      MemOps.push_back(Store);
1702      // Increment the address by eight for the next argument to store
1703      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1704                                         PtrVT);
1705      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1706    }
1707
1708    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1709      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1710
1711      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1712      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1713      MemOps.push_back(Store);
1714      // Increment the address by eight for the next argument to store
1715      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1716                                         PtrVT);
1717      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1718    }
1719  }
1720
1721  if (!MemOps.empty())
1722    Chain = DAG.getNode(ISD::TokenFactor, dl,
1723                        MVT::Other, &MemOps[0], MemOps.size());
1724
1725  return Chain;
1726}
1727
1728SDValue
1729PPCTargetLowering::LowerFormalArguments_Darwin(
1730                                      SDValue Chain,
1731                                      CallingConv::ID CallConv, bool isVarArg,
1732                                      const SmallVectorImpl<ISD::InputArg>
1733                                        &Ins,
1734                                      DebugLoc dl, SelectionDAG &DAG,
1735                                      SmallVectorImpl<SDValue> &InVals) {
1736  // TODO: add description of PPC stack frame format, or at least some docs.
1737  //
1738  MachineFunction &MF = DAG.getMachineFunction();
1739  MachineFrameInfo *MFI = MF.getFrameInfo();
1740
1741  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1742  bool isPPC64 = PtrVT == MVT::i64;
1743  // Potential tail calls could cause overwriting of argument stack slots.
1744  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1745  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1746
1747  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1748  // Area that is at least reserved in caller of this function.
1749  unsigned MinReservedArea = ArgOffset;
1750
1751  static const unsigned GPR_32[] = {           // 32-bit registers.
1752    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1753    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1754  };
1755  static const unsigned GPR_64[] = {           // 64-bit registers.
1756    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1757    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1758  };
1759
1760  static const unsigned *FPR = GetFPR();
1761
1762  static const unsigned VR[] = {
1763    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1764    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1765  };
1766
1767  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1768  const unsigned Num_FPR_Regs = 13;
1769  const unsigned Num_VR_Regs  = array_lengthof( VR);
1770
1771  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1772
1773  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1774
1775  // In 32-bit non-varargs functions, the stack space for vectors is after the
1776  // stack space for non-vectors.  We do not use this space unless we have
1777  // too many vectors to fit in registers, something that only occurs in
1778  // constructed examples:), but we have to walk the arglist to figure
1779  // that out...for the pathological case, compute VecArgOffset as the
1780  // start of the vector parameter area.  Computing VecArgOffset is the
1781  // entire point of the following loop.
1782  unsigned VecArgOffset = ArgOffset;
1783  if (!isVarArg && !isPPC64) {
1784    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1785         ++ArgNo) {
1786      EVT ObjectVT = Ins[ArgNo].VT;
1787      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1788      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1789
1790      if (Flags.isByVal()) {
1791        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1792        ObjSize = Flags.getByValSize();
1793        unsigned ArgSize =
1794                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1795        VecArgOffset += ArgSize;
1796        continue;
1797      }
1798
1799      switch(ObjectVT.getSimpleVT().SimpleTy) {
1800      default: llvm_unreachable("Unhandled argument type!");
1801      case MVT::i32:
1802      case MVT::f32:
1803        VecArgOffset += isPPC64 ? 8 : 4;
1804        break;
1805      case MVT::i64:  // PPC64
1806      case MVT::f64:
1807        VecArgOffset += 8;
1808        break;
1809      case MVT::v4f32:
1810      case MVT::v4i32:
1811      case MVT::v8i16:
1812      case MVT::v16i8:
1813        // Nothing to do, we're only looking at Nonvector args here.
1814        break;
1815      }
1816    }
1817  }
1818  // We've found where the vector parameter area in memory is.  Skip the
1819  // first 12 parameters; these don't use that memory.
1820  VecArgOffset = ((VecArgOffset+15)/16)*16;
1821  VecArgOffset += 12*16;
1822
1823  // Add DAG nodes to load the arguments or copy them out of registers.  On
1824  // entry to a function on PPC, the arguments start after the linkage area,
1825  // although the first ones are often in registers.
1826
1827  SmallVector<SDValue, 8> MemOps;
1828  unsigned nAltivecParamsAtEnd = 0;
1829  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1830    SDValue ArgVal;
1831    bool needsLoad = false;
1832    EVT ObjectVT = Ins[ArgNo].VT;
1833    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1834    unsigned ArgSize = ObjSize;
1835    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1836
1837    unsigned CurArgOffset = ArgOffset;
1838
1839    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1840    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1841        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1842      if (isVarArg || isPPC64) {
1843        MinReservedArea = ((MinReservedArea+15)/16)*16;
1844        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1845                                                  Flags,
1846                                                  PtrByteSize);
1847      } else  nAltivecParamsAtEnd++;
1848    } else
1849      // Calculate min reserved area.
1850      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1851                                                Flags,
1852                                                PtrByteSize);
1853
1854    // FIXME the codegen can be much improved in some cases.
1855    // We do not have to keep everything in memory.
1856    if (Flags.isByVal()) {
1857      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1858      ObjSize = Flags.getByValSize();
1859      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1860      // Objects of size 1 and 2 are right justified, everything else is
1861      // left justified.  This means the memory address is adjusted forwards.
1862      if (ObjSize==1 || ObjSize==2) {
1863        CurArgOffset = CurArgOffset + (4 - ObjSize);
1864      }
1865      // The value of the object is its address.
1866      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1867      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1868      InVals.push_back(FIN);
1869      if (ObjSize==1 || ObjSize==2) {
1870        if (GPR_idx != Num_GPR_Regs) {
1871          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1872          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1873          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1874                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1875          MemOps.push_back(Store);
1876          ++GPR_idx;
1877        }
1878
1879        ArgOffset += PtrByteSize;
1880
1881        continue;
1882      }
1883      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1884        // Store whatever pieces of the object are in registers
1885        // to memory.  ArgVal will be address of the beginning of
1886        // the object.
1887        if (GPR_idx != Num_GPR_Regs) {
1888          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1889          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1890          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1891          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1892          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1893          MemOps.push_back(Store);
1894          ++GPR_idx;
1895          ArgOffset += PtrByteSize;
1896        } else {
1897          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1898          break;
1899        }
1900      }
1901      continue;
1902    }
1903
1904    switch (ObjectVT.getSimpleVT().SimpleTy) {
1905    default: llvm_unreachable("Unhandled argument type!");
1906    case MVT::i32:
1907      if (!isPPC64) {
1908        if (GPR_idx != Num_GPR_Regs) {
1909          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1910          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1911          ++GPR_idx;
1912        } else {
1913          needsLoad = true;
1914          ArgSize = PtrByteSize;
1915        }
1916        // All int arguments reserve stack space in the Darwin ABI.
1917        ArgOffset += PtrByteSize;
1918        break;
1919      }
1920      // FALLTHROUGH
1921    case MVT::i64:  // PPC64
1922      if (GPR_idx != Num_GPR_Regs) {
1923        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1924        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1925
1926        if (ObjectVT == MVT::i32) {
1927          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1928          // value to MVT::i64 and then truncate to the correct register size.
1929          if (Flags.isSExt())
1930            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1931                                 DAG.getValueType(ObjectVT));
1932          else if (Flags.isZExt())
1933            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1934                                 DAG.getValueType(ObjectVT));
1935
1936          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1937        }
1938
1939        ++GPR_idx;
1940      } else {
1941        needsLoad = true;
1942        ArgSize = PtrByteSize;
1943      }
1944      // All int arguments reserve stack space in the Darwin ABI.
1945      ArgOffset += 8;
1946      break;
1947
1948    case MVT::f32:
1949    case MVT::f64:
1950      // Every 4 bytes of argument space consumes one of the GPRs available for
1951      // argument passing.
1952      if (GPR_idx != Num_GPR_Regs) {
1953        ++GPR_idx;
1954        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1955          ++GPR_idx;
1956      }
1957      if (FPR_idx != Num_FPR_Regs) {
1958        unsigned VReg;
1959
1960        if (ObjectVT == MVT::f32)
1961          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1962        else
1963          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1964
1965        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1966        ++FPR_idx;
1967      } else {
1968        needsLoad = true;
1969      }
1970
1971      // All FP arguments reserve stack space in the Darwin ABI.
1972      ArgOffset += isPPC64 ? 8 : ObjSize;
1973      break;
1974    case MVT::v4f32:
1975    case MVT::v4i32:
1976    case MVT::v8i16:
1977    case MVT::v16i8:
1978      // Note that vector arguments in registers don't reserve stack space,
1979      // except in varargs functions.
1980      if (VR_idx != Num_VR_Regs) {
1981        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1982        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1983        if (isVarArg) {
1984          while ((ArgOffset % 16) != 0) {
1985            ArgOffset += PtrByteSize;
1986            if (GPR_idx != Num_GPR_Regs)
1987              GPR_idx++;
1988          }
1989          ArgOffset += 16;
1990          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
1991        }
1992        ++VR_idx;
1993      } else {
1994        if (!isVarArg && !isPPC64) {
1995          // Vectors go after all the nonvectors.
1996          CurArgOffset = VecArgOffset;
1997          VecArgOffset += 16;
1998        } else {
1999          // Vectors are aligned.
2000          ArgOffset = ((ArgOffset+15)/16)*16;
2001          CurArgOffset = ArgOffset;
2002          ArgOffset += 16;
2003        }
2004        needsLoad = true;
2005      }
2006      break;
2007    }
2008
2009    // We need to load the argument to a virtual register if we determined above
2010    // that we ran out of physical registers of the appropriate type.
2011    if (needsLoad) {
2012      int FI = MFI->CreateFixedObject(ObjSize,
2013                                      CurArgOffset + (ArgSize - ObjSize),
2014                                      isImmutable);
2015      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2016      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2017    }
2018
2019    InVals.push_back(ArgVal);
2020  }
2021
2022  // Set the size that is at least reserved in caller of this function.  Tail
2023  // call optimized function's reserved stack space needs to be aligned so that
2024  // taking the difference between two stack areas will result in an aligned
2025  // stack.
2026  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2027  // Add the Altivec parameters at the end, if needed.
2028  if (nAltivecParamsAtEnd) {
2029    MinReservedArea = ((MinReservedArea+15)/16)*16;
2030    MinReservedArea += 16*nAltivecParamsAtEnd;
2031  }
2032  MinReservedArea =
2033    std::max(MinReservedArea,
2034             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2035  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2036    getStackAlignment();
2037  unsigned AlignMask = TargetAlign-1;
2038  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2039  FI->setMinReservedArea(MinReservedArea);
2040
2041  // If the function takes variable number of arguments, make a frame index for
2042  // the start of the first vararg value... for expansion of llvm.va_start.
2043  if (isVarArg) {
2044    int Depth = ArgOffset;
2045
2046    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2047                                               Depth);
2048    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2049
2050    // If this function is vararg, store any remaining integer argument regs
2051    // to their spots on the stack so that they may be loaded by deferencing the
2052    // result of va_next.
2053    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2054      unsigned VReg;
2055
2056      if (isPPC64)
2057        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2058      else
2059        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2060
2061      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2062      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2063      MemOps.push_back(Store);
2064      // Increment the address by four for the next argument to store
2065      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2066      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2067    }
2068  }
2069
2070  if (!MemOps.empty())
2071    Chain = DAG.getNode(ISD::TokenFactor, dl,
2072                        MVT::Other, &MemOps[0], MemOps.size());
2073
2074  return Chain;
2075}
2076
2077/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2078/// linkage area for the Darwin ABI.
2079static unsigned
2080CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2081                                     bool isPPC64,
2082                                     bool isVarArg,
2083                                     unsigned CC,
2084                                     const SmallVectorImpl<ISD::OutputArg>
2085                                       &Outs,
2086                                     unsigned &nAltivecParamsAtEnd) {
2087  // Count how many bytes are to be pushed on the stack, including the linkage
2088  // area, and parameter passing area.  We start with 24/48 bytes, which is
2089  // prereserved space for [SP][CR][LR][3 x unused].
2090  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2091  unsigned NumOps = Outs.size();
2092  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2093
2094  // Add up all the space actually used.
2095  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2096  // they all go in registers, but we must reserve stack space for them for
2097  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2098  // assigned stack space in order, with padding so Altivec parameters are
2099  // 16-byte aligned.
2100  nAltivecParamsAtEnd = 0;
2101  for (unsigned i = 0; i != NumOps; ++i) {
2102    SDValue Arg = Outs[i].Val;
2103    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2104    EVT ArgVT = Arg.getValueType();
2105    // Varargs Altivec parameters are padded to a 16 byte boundary.
2106    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2107        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2108      if (!isVarArg && !isPPC64) {
2109        // Non-varargs Altivec parameters go after all the non-Altivec
2110        // parameters; handle those later so we know how much padding we need.
2111        nAltivecParamsAtEnd++;
2112        continue;
2113      }
2114      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2115      NumBytes = ((NumBytes+15)/16)*16;
2116    }
2117    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2118  }
2119
2120   // Allow for Altivec parameters at the end, if needed.
2121  if (nAltivecParamsAtEnd) {
2122    NumBytes = ((NumBytes+15)/16)*16;
2123    NumBytes += 16*nAltivecParamsAtEnd;
2124  }
2125
2126  // The prolog code of the callee may store up to 8 GPR argument registers to
2127  // the stack, allowing va_start to index over them in memory if its varargs.
2128  // Because we cannot tell if this is needed on the caller side, we have to
2129  // conservatively assume that it is needed.  As such, make sure we have at
2130  // least enough stack space for the caller to store the 8 GPRs.
2131  NumBytes = std::max(NumBytes,
2132                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2133
2134  // Tail call needs the stack to be aligned.
2135  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2136    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2137      getStackAlignment();
2138    unsigned AlignMask = TargetAlign-1;
2139    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2140  }
2141
2142  return NumBytes;
2143}
2144
2145/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2146/// adjusted to accomodate the arguments for the tailcall.
2147static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2148                                   unsigned ParamSize) {
2149
2150  if (!IsTailCall) return 0;
2151
2152  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2153  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2154  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2155  // Remember only if the new adjustement is bigger.
2156  if (SPDiff < FI->getTailCallSPDelta())
2157    FI->setTailCallSPDelta(SPDiff);
2158
2159  return SPDiff;
2160}
2161
2162/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2163/// for tail call optimization. Targets which want to do tail call
2164/// optimization should implement this function.
2165bool
2166PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2167                                                     CallingConv::ID CalleeCC,
2168                                                     bool isVarArg,
2169                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2170                                                     SelectionDAG& DAG) const {
2171  // Variable argument functions are not supported.
2172  if (isVarArg)
2173    return false;
2174
2175  MachineFunction &MF = DAG.getMachineFunction();
2176  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2177  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2178    // Functions containing by val parameters are not supported.
2179    for (unsigned i = 0; i != Ins.size(); i++) {
2180       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2181       if (Flags.isByVal()) return false;
2182    }
2183
2184    // Non PIC/GOT  tail calls are supported.
2185    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2186      return true;
2187
2188    // At the moment we can only do local tail calls (in same module, hidden
2189    // or protected) if we are generating PIC.
2190    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2191      return G->getGlobal()->hasHiddenVisibility()
2192          || G->getGlobal()->hasProtectedVisibility();
2193  }
2194
2195  return false;
2196}
2197
2198/// isCallCompatibleAddress - Return the immediate to use if the specified
2199/// 32-bit value is representable in the immediate field of a BxA instruction.
2200static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2201  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2202  if (!C) return 0;
2203
2204  int Addr = C->getZExtValue();
2205  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2206      (Addr << 6 >> 6) != Addr)
2207    return 0;  // Top 6 bits have to be sext of immediate.
2208
2209  return DAG.getConstant((int)C->getZExtValue() >> 2,
2210                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2211}
2212
2213namespace {
2214
2215struct TailCallArgumentInfo {
2216  SDValue Arg;
2217  SDValue FrameIdxOp;
2218  int       FrameIdx;
2219
2220  TailCallArgumentInfo() : FrameIdx(0) {}
2221};
2222
2223}
2224
2225/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2226static void
2227StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2228                                           SDValue Chain,
2229                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2230                   SmallVector<SDValue, 8> &MemOpChains,
2231                   DebugLoc dl) {
2232  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2233    SDValue Arg = TailCallArgs[i].Arg;
2234    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2235    int FI = TailCallArgs[i].FrameIdx;
2236    // Store relative to framepointer.
2237    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2238                                       PseudoSourceValue::getStackObject(FI),
2239                                       0));
2240  }
2241}
2242
2243/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2244/// the appropriate stack slot for the tail call optimized function call.
2245static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2246                                               MachineFunction &MF,
2247                                               SDValue Chain,
2248                                               SDValue OldRetAddr,
2249                                               SDValue OldFP,
2250                                               int SPDiff,
2251                                               bool isPPC64,
2252                                               bool isDarwinABI,
2253                                               DebugLoc dl) {
2254  if (SPDiff) {
2255    // Calculate the new stack slot for the return address.
2256    int SlotSize = isPPC64 ? 8 : 4;
2257    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2258                                                                   isDarwinABI);
2259    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2260                                                          NewRetAddrLoc);
2261    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2262    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2263    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2264                         PseudoSourceValue::getStackObject(NewRetAddr), 0);
2265
2266    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2267    // slot as the FP is never overwritten.
2268    if (isDarwinABI) {
2269      int NewFPLoc =
2270        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2271      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2272      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2273      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2274                           PseudoSourceValue::getStackObject(NewFPIdx), 0);
2275    }
2276  }
2277  return Chain;
2278}
2279
2280/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2281/// the position of the argument.
2282static void
2283CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2284                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2285                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2286  int Offset = ArgOffset + SPDiff;
2287  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2288  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2289  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2290  SDValue FIN = DAG.getFrameIndex(FI, VT);
2291  TailCallArgumentInfo Info;
2292  Info.Arg = Arg;
2293  Info.FrameIdxOp = FIN;
2294  Info.FrameIdx = FI;
2295  TailCallArguments.push_back(Info);
2296}
2297
2298/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2299/// stack slot. Returns the chain as result and the loaded frame pointers in
2300/// LROpOut/FPOpout. Used when tail calling.
2301SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2302                                                        int SPDiff,
2303                                                        SDValue Chain,
2304                                                        SDValue &LROpOut,
2305                                                        SDValue &FPOpOut,
2306                                                        bool isDarwinABI,
2307                                                        DebugLoc dl) {
2308  if (SPDiff) {
2309    // Load the LR and FP stack slot for later adjusting.
2310    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2311    LROpOut = getReturnAddrFrameIndex(DAG);
2312    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2313    Chain = SDValue(LROpOut.getNode(), 1);
2314
2315    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2316    // slot as the FP is never overwritten.
2317    if (isDarwinABI) {
2318      FPOpOut = getFramePointerFrameIndex(DAG);
2319      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2320      Chain = SDValue(FPOpOut.getNode(), 1);
2321    }
2322  }
2323  return Chain;
2324}
2325
2326/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2327/// by "Src" to address "Dst" of size "Size".  Alignment information is
2328/// specified by the specific parameter attribute. The copy will be passed as
2329/// a byval function parameter.
2330/// Sometimes what we are copying is the end of a larger object, the part that
2331/// does not fit in registers.
2332static SDValue
2333CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2334                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2335                          DebugLoc dl) {
2336  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2337  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2338                       false, NULL, 0, NULL, 0);
2339}
2340
2341/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2342/// tail calls.
2343static void
2344LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2345                 SDValue Arg, SDValue PtrOff, int SPDiff,
2346                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2347                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2348                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2349                 DebugLoc dl) {
2350  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2351  if (!isTailCall) {
2352    if (isVector) {
2353      SDValue StackPtr;
2354      if (isPPC64)
2355        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2356      else
2357        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2358      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2359                           DAG.getConstant(ArgOffset, PtrVT));
2360    }
2361    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2362  // Calculate and remember argument location.
2363  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2364                                  TailCallArguments);
2365}
2366
2367static
2368void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2369                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2370                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2371                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2372  MachineFunction &MF = DAG.getMachineFunction();
2373
2374  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2375  // might overwrite each other in case of tail call optimization.
2376  SmallVector<SDValue, 8> MemOpChains2;
2377  // Do not flag preceeding copytoreg stuff together with the following stuff.
2378  InFlag = SDValue();
2379  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2380                                    MemOpChains2, dl);
2381  if (!MemOpChains2.empty())
2382    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2383                        &MemOpChains2[0], MemOpChains2.size());
2384
2385  // Store the return address to the appropriate stack slot.
2386  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2387                                        isPPC64, isDarwinABI, dl);
2388
2389  // Emit callseq_end just before tailcall node.
2390  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2391                             DAG.getIntPtrConstant(0, true), InFlag);
2392  InFlag = Chain.getValue(1);
2393}
2394
2395static
2396unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2397                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2398                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2399                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2400                     bool isSVR4ABI) {
2401  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2402  NodeTys.push_back(MVT::Other);   // Returns a chain
2403  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2404
2405  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2406
2407  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2408  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2409  // node so that legalize doesn't hack it.
2410  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2411    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2412  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2413    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2414  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2415    // If this is an absolute destination address, use the munged value.
2416    Callee = SDValue(Dest, 0);
2417  else {
2418    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2419    // to do the call, we can't use PPCISD::CALL.
2420    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2421    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2422                        2 + (InFlag.getNode() != 0));
2423    InFlag = Chain.getValue(1);
2424
2425    NodeTys.clear();
2426    NodeTys.push_back(MVT::Other);
2427    NodeTys.push_back(MVT::Flag);
2428    Ops.push_back(Chain);
2429    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2430    Callee.setNode(0);
2431    // Add CTR register as callee so a bctr can be emitted later.
2432    if (isTailCall)
2433      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2434  }
2435
2436  // If this is a direct call, pass the chain and the callee.
2437  if (Callee.getNode()) {
2438    Ops.push_back(Chain);
2439    Ops.push_back(Callee);
2440  }
2441  // If this is a tail call add stack pointer delta.
2442  if (isTailCall)
2443    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2444
2445  // Add argument registers to the end of the list so that they are known live
2446  // into the call.
2447  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2448    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2449                                  RegsToPass[i].second.getValueType()));
2450
2451  return CallOpc;
2452}
2453
2454SDValue
2455PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2456                                   CallingConv::ID CallConv, bool isVarArg,
2457                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2458                                   DebugLoc dl, SelectionDAG &DAG,
2459                                   SmallVectorImpl<SDValue> &InVals) {
2460
2461  SmallVector<CCValAssign, 16> RVLocs;
2462  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2463                    RVLocs, *DAG.getContext());
2464  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2465
2466  // Copy all of the result registers out of their specified physreg.
2467  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2468    CCValAssign &VA = RVLocs[i];
2469    EVT VT = VA.getValVT();
2470    assert(VA.isRegLoc() && "Can only return in registers!");
2471    Chain = DAG.getCopyFromReg(Chain, dl,
2472                               VA.getLocReg(), VT, InFlag).getValue(1);
2473    InVals.push_back(Chain.getValue(0));
2474    InFlag = Chain.getValue(2);
2475  }
2476
2477  return Chain;
2478}
2479
2480SDValue
2481PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2482                              bool isTailCall, bool isVarArg,
2483                              SelectionDAG &DAG,
2484                              SmallVector<std::pair<unsigned, SDValue>, 8>
2485                                &RegsToPass,
2486                              SDValue InFlag, SDValue Chain,
2487                              SDValue &Callee,
2488                              int SPDiff, unsigned NumBytes,
2489                              const SmallVectorImpl<ISD::InputArg> &Ins,
2490                              SmallVectorImpl<SDValue> &InVals) {
2491  std::vector<EVT> NodeTys;
2492  SmallVector<SDValue, 8> Ops;
2493  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2494                                 isTailCall, RegsToPass, Ops, NodeTys,
2495                                 PPCSubTarget.isSVR4ABI());
2496
2497  // When performing tail call optimization the callee pops its arguments off
2498  // the stack. Account for this here so these bytes can be pushed back on in
2499  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2500  int BytesCalleePops =
2501    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2502
2503  if (InFlag.getNode())
2504    Ops.push_back(InFlag);
2505
2506  // Emit tail call.
2507  if (isTailCall) {
2508    // If this is the first return lowered for this function, add the regs
2509    // to the liveout set for the function.
2510    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2511      SmallVector<CCValAssign, 16> RVLocs;
2512      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2513                     *DAG.getContext());
2514      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2515      for (unsigned i = 0; i != RVLocs.size(); ++i)
2516        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2517    }
2518
2519    assert(((Callee.getOpcode() == ISD::Register &&
2520             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2521            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2522            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2523            isa<ConstantSDNode>(Callee)) &&
2524    "Expecting an global address, external symbol, absolute value or register");
2525
2526    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2527  }
2528
2529  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2530  InFlag = Chain.getValue(1);
2531
2532  // Add a NOP immediately after the branch instruction when using the 64-bit
2533  // SVR4 ABI. At link time, if caller and callee are in a different module and
2534  // thus have a different TOC, the call will be replaced with a call to a stub
2535  // function which saves the current TOC, loads the TOC of the callee and
2536  // branches to the callee. The NOP will be replaced with a load instruction
2537  // which restores the TOC of the caller from the TOC save slot of the current
2538  // stack frame. If caller and callee belong to the same module (and have the
2539  // same TOC), the NOP will remain unchanged.
2540  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2541    // Insert NOP.
2542    InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2543  }
2544
2545  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2546                             DAG.getIntPtrConstant(BytesCalleePops, true),
2547                             InFlag);
2548  if (!Ins.empty())
2549    InFlag = Chain.getValue(1);
2550
2551  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2552                         Ins, dl, DAG, InVals);
2553}
2554
2555SDValue
2556PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2557                             CallingConv::ID CallConv, bool isVarArg,
2558                             bool isTailCall,
2559                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2560                             const SmallVectorImpl<ISD::InputArg> &Ins,
2561                             DebugLoc dl, SelectionDAG &DAG,
2562                             SmallVectorImpl<SDValue> &InVals) {
2563  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2564    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2565                          isTailCall, Outs, Ins,
2566                          dl, DAG, InVals);
2567  } else {
2568    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2569                            isTailCall, Outs, Ins,
2570                            dl, DAG, InVals);
2571  }
2572}
2573
2574SDValue
2575PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2576                                  CallingConv::ID CallConv, bool isVarArg,
2577                                  bool isTailCall,
2578                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2579                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2580                                  DebugLoc dl, SelectionDAG &DAG,
2581                                  SmallVectorImpl<SDValue> &InVals) {
2582  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2583  // of the 32-bit SVR4 ABI stack frame layout.
2584
2585  assert((!isTailCall ||
2586          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2587         "IsEligibleForTailCallOptimization missed a case!");
2588
2589  assert((CallConv == CallingConv::C ||
2590          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2591
2592  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2593  unsigned PtrByteSize = 4;
2594
2595  MachineFunction &MF = DAG.getMachineFunction();
2596
2597  // Mark this function as potentially containing a function that contains a
2598  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2599  // and restoring the callers stack pointer in this functions epilog. This is
2600  // done because by tail calling the called function might overwrite the value
2601  // in this function's (MF) stack pointer stack slot 0(SP).
2602  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2603    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2604
2605  // Count how many bytes are to be pushed on the stack, including the linkage
2606  // area, parameter list area and the part of the local variable space which
2607  // contains copies of aggregates which are passed by value.
2608
2609  // Assign locations to all of the outgoing arguments.
2610  SmallVector<CCValAssign, 16> ArgLocs;
2611  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2612                 ArgLocs, *DAG.getContext());
2613
2614  // Reserve space for the linkage area on the stack.
2615  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2616
2617  if (isVarArg) {
2618    // Handle fixed and variable vector arguments differently.
2619    // Fixed vector arguments go into registers as long as registers are
2620    // available. Variable vector arguments always go into memory.
2621    unsigned NumArgs = Outs.size();
2622
2623    for (unsigned i = 0; i != NumArgs; ++i) {
2624      EVT ArgVT = Outs[i].Val.getValueType();
2625      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2626      bool Result;
2627
2628      if (Outs[i].IsFixed) {
2629        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2630                             CCInfo);
2631      } else {
2632        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2633                                    ArgFlags, CCInfo);
2634      }
2635
2636      if (Result) {
2637#ifndef NDEBUG
2638        errs() << "Call operand #" << i << " has unhandled type "
2639             << ArgVT.getEVTString() << "\n";
2640#endif
2641        llvm_unreachable(0);
2642      }
2643    }
2644  } else {
2645    // All arguments are treated the same.
2646    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2647  }
2648
2649  // Assign locations to all of the outgoing aggregate by value arguments.
2650  SmallVector<CCValAssign, 16> ByValArgLocs;
2651  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2652                      *DAG.getContext());
2653
2654  // Reserve stack space for the allocations in CCInfo.
2655  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2656
2657  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2658
2659  // Size of the linkage area, parameter list area and the part of the local
2660  // space variable where copies of aggregates which are passed by value are
2661  // stored.
2662  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2663
2664  // Calculate by how many bytes the stack has to be adjusted in case of tail
2665  // call optimization.
2666  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2667
2668  // Adjust the stack pointer for the new arguments...
2669  // These operations are automatically eliminated by the prolog/epilog pass
2670  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2671  SDValue CallSeqStart = Chain;
2672
2673  // Load the return address and frame pointer so it can be moved somewhere else
2674  // later.
2675  SDValue LROp, FPOp;
2676  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2677                                       dl);
2678
2679  // Set up a copy of the stack pointer for use loading and storing any
2680  // arguments that may not fit in the registers available for argument
2681  // passing.
2682  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2683
2684  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2685  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2686  SmallVector<SDValue, 8> MemOpChains;
2687
2688  // Walk the register/memloc assignments, inserting copies/loads.
2689  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2690       i != e;
2691       ++i) {
2692    CCValAssign &VA = ArgLocs[i];
2693    SDValue Arg = Outs[i].Val;
2694    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2695
2696    if (Flags.isByVal()) {
2697      // Argument is an aggregate which is passed by value, thus we need to
2698      // create a copy of it in the local variable space of the current stack
2699      // frame (which is the stack frame of the caller) and pass the address of
2700      // this copy to the callee.
2701      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2702      CCValAssign &ByValVA = ByValArgLocs[j++];
2703      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2704
2705      // Memory reserved in the local variable space of the callers stack frame.
2706      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2707
2708      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2709      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2710
2711      // Create a copy of the argument in the local area of the current
2712      // stack frame.
2713      SDValue MemcpyCall =
2714        CreateCopyOfByValArgument(Arg, PtrOff,
2715                                  CallSeqStart.getNode()->getOperand(0),
2716                                  Flags, DAG, dl);
2717
2718      // This must go outside the CALLSEQ_START..END.
2719      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2720                           CallSeqStart.getNode()->getOperand(1));
2721      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2722                             NewCallSeqStart.getNode());
2723      Chain = CallSeqStart = NewCallSeqStart;
2724
2725      // Pass the address of the aggregate copy on the stack either in a
2726      // physical register or in the parameter list area of the current stack
2727      // frame to the callee.
2728      Arg = PtrOff;
2729    }
2730
2731    if (VA.isRegLoc()) {
2732      // Put argument in a physical register.
2733      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2734    } else {
2735      // Put argument in the parameter list area of the current stack frame.
2736      assert(VA.isMemLoc());
2737      unsigned LocMemOffset = VA.getLocMemOffset();
2738
2739      if (!isTailCall) {
2740        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2741        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2742
2743        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2744                              PseudoSourceValue::getStack(), LocMemOffset));
2745      } else {
2746        // Calculate and remember argument location.
2747        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2748                                 TailCallArguments);
2749      }
2750    }
2751  }
2752
2753  if (!MemOpChains.empty())
2754    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2755                        &MemOpChains[0], MemOpChains.size());
2756
2757  // Build a sequence of copy-to-reg nodes chained together with token chain
2758  // and flag operands which copy the outgoing args into the appropriate regs.
2759  SDValue InFlag;
2760  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2761    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2762                             RegsToPass[i].second, InFlag);
2763    InFlag = Chain.getValue(1);
2764  }
2765
2766  // Set CR6 to true if this is a vararg call.
2767  if (isVarArg) {
2768    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2769    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2770    InFlag = Chain.getValue(1);
2771  }
2772
2773  if (isTailCall) {
2774    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2775                    false, TailCallArguments);
2776  }
2777
2778  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2779                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2780                    Ins, InVals);
2781}
2782
2783SDValue
2784PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2785                                    CallingConv::ID CallConv, bool isVarArg,
2786                                    bool isTailCall,
2787                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2788                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2789                                    DebugLoc dl, SelectionDAG &DAG,
2790                                    SmallVectorImpl<SDValue> &InVals) {
2791
2792  unsigned NumOps  = Outs.size();
2793
2794  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2795  bool isPPC64 = PtrVT == MVT::i64;
2796  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2797
2798  MachineFunction &MF = DAG.getMachineFunction();
2799
2800  // Mark this function as potentially containing a function that contains a
2801  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2802  // and restoring the callers stack pointer in this functions epilog. This is
2803  // done because by tail calling the called function might overwrite the value
2804  // in this function's (MF) stack pointer stack slot 0(SP).
2805  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2806    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2807
2808  unsigned nAltivecParamsAtEnd = 0;
2809
2810  // Count how many bytes are to be pushed on the stack, including the linkage
2811  // area, and parameter passing area.  We start with 24/48 bytes, which is
2812  // prereserved space for [SP][CR][LR][3 x unused].
2813  unsigned NumBytes =
2814    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2815                                         Outs,
2816                                         nAltivecParamsAtEnd);
2817
2818  // Calculate by how many bytes the stack has to be adjusted in case of tail
2819  // call optimization.
2820  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2821
2822  // To protect arguments on the stack from being clobbered in a tail call,
2823  // force all the loads to happen before doing any other lowering.
2824  if (isTailCall)
2825    Chain = DAG.getStackArgumentTokenFactor(Chain);
2826
2827  // Adjust the stack pointer for the new arguments...
2828  // These operations are automatically eliminated by the prolog/epilog pass
2829  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2830  SDValue CallSeqStart = Chain;
2831
2832  // Load the return address and frame pointer so it can be move somewhere else
2833  // later.
2834  SDValue LROp, FPOp;
2835  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2836                                       dl);
2837
2838  // Set up a copy of the stack pointer for use loading and storing any
2839  // arguments that may not fit in the registers available for argument
2840  // passing.
2841  SDValue StackPtr;
2842  if (isPPC64)
2843    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2844  else
2845    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2846
2847  // Figure out which arguments are going to go in registers, and which in
2848  // memory.  Also, if this is a vararg function, floating point operations
2849  // must be stored to our stack, and loaded into integer regs as well, if
2850  // any integer regs are available for argument passing.
2851  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2852  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2853
2854  static const unsigned GPR_32[] = {           // 32-bit registers.
2855    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2856    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2857  };
2858  static const unsigned GPR_64[] = {           // 64-bit registers.
2859    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2860    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2861  };
2862  static const unsigned *FPR = GetFPR();
2863
2864  static const unsigned VR[] = {
2865    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2866    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2867  };
2868  const unsigned NumGPRs = array_lengthof(GPR_32);
2869  const unsigned NumFPRs = 13;
2870  const unsigned NumVRs  = array_lengthof(VR);
2871
2872  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2873
2874  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2875  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2876
2877  SmallVector<SDValue, 8> MemOpChains;
2878  for (unsigned i = 0; i != NumOps; ++i) {
2879    SDValue Arg = Outs[i].Val;
2880    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2881
2882    // PtrOff will be used to store the current argument to the stack if a
2883    // register cannot be found for it.
2884    SDValue PtrOff;
2885
2886    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2887
2888    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2889
2890    // On PPC64, promote integers to 64-bit values.
2891    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2892      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2893      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2894      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2895    }
2896
2897    // FIXME memcpy is used way more than necessary.  Correctness first.
2898    if (Flags.isByVal()) {
2899      unsigned Size = Flags.getByValSize();
2900      if (Size==1 || Size==2) {
2901        // Very small objects are passed right-justified.
2902        // Everything else is passed left-justified.
2903        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2904        if (GPR_idx != NumGPRs) {
2905          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2906                                          NULL, 0, VT);
2907          MemOpChains.push_back(Load.getValue(1));
2908          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2909
2910          ArgOffset += PtrByteSize;
2911        } else {
2912          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2913          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2914          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2915                                CallSeqStart.getNode()->getOperand(0),
2916                                Flags, DAG, dl);
2917          // This must go outside the CALLSEQ_START..END.
2918          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2919                               CallSeqStart.getNode()->getOperand(1));
2920          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2921                                 NewCallSeqStart.getNode());
2922          Chain = CallSeqStart = NewCallSeqStart;
2923          ArgOffset += PtrByteSize;
2924        }
2925        continue;
2926      }
2927      // Copy entire object into memory.  There are cases where gcc-generated
2928      // code assumes it is there, even if it could be put entirely into
2929      // registers.  (This is not what the doc says.)
2930      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2931                            CallSeqStart.getNode()->getOperand(0),
2932                            Flags, DAG, dl);
2933      // This must go outside the CALLSEQ_START..END.
2934      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2935                           CallSeqStart.getNode()->getOperand(1));
2936      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2937      Chain = CallSeqStart = NewCallSeqStart;
2938      // And copy the pieces of it that fit into registers.
2939      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2940        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2941        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2942        if (GPR_idx != NumGPRs) {
2943          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2944          MemOpChains.push_back(Load.getValue(1));
2945          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2946          ArgOffset += PtrByteSize;
2947        } else {
2948          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2949          break;
2950        }
2951      }
2952      continue;
2953    }
2954
2955    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
2956    default: llvm_unreachable("Unexpected ValueType for argument!");
2957    case MVT::i32:
2958    case MVT::i64:
2959      if (GPR_idx != NumGPRs) {
2960        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2961      } else {
2962        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2963                         isPPC64, isTailCall, false, MemOpChains,
2964                         TailCallArguments, dl);
2965      }
2966      ArgOffset += PtrByteSize;
2967      break;
2968    case MVT::f32:
2969    case MVT::f64:
2970      if (FPR_idx != NumFPRs) {
2971        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2972
2973        if (isVarArg) {
2974          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2975          MemOpChains.push_back(Store);
2976
2977          // Float varargs are always shadowed in available integer registers
2978          if (GPR_idx != NumGPRs) {
2979            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2980            MemOpChains.push_back(Load.getValue(1));
2981            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2982          }
2983          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2984            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2985            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2986            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2987            MemOpChains.push_back(Load.getValue(1));
2988            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2989          }
2990        } else {
2991          // If we have any FPRs remaining, we may also have GPRs remaining.
2992          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2993          // GPRs.
2994          if (GPR_idx != NumGPRs)
2995            ++GPR_idx;
2996          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2997              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2998            ++GPR_idx;
2999        }
3000      } else {
3001        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3002                         isPPC64, isTailCall, false, MemOpChains,
3003                         TailCallArguments, dl);
3004      }
3005      if (isPPC64)
3006        ArgOffset += 8;
3007      else
3008        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3009      break;
3010    case MVT::v4f32:
3011    case MVT::v4i32:
3012    case MVT::v8i16:
3013    case MVT::v16i8:
3014      if (isVarArg) {
3015        // These go aligned on the stack, or in the corresponding R registers
3016        // when within range.  The Darwin PPC ABI doc claims they also go in
3017        // V registers; in fact gcc does this only for arguments that are
3018        // prototyped, not for those that match the ...  We do it for all
3019        // arguments, seems to work.
3020        while (ArgOffset % 16 !=0) {
3021          ArgOffset += PtrByteSize;
3022          if (GPR_idx != NumGPRs)
3023            GPR_idx++;
3024        }
3025        // We could elide this store in the case where the object fits
3026        // entirely in R registers.  Maybe later.
3027        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3028                            DAG.getConstant(ArgOffset, PtrVT));
3029        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3030        MemOpChains.push_back(Store);
3031        if (VR_idx != NumVRs) {
3032          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3033          MemOpChains.push_back(Load.getValue(1));
3034          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3035        }
3036        ArgOffset += 16;
3037        for (unsigned i=0; i<16; i+=PtrByteSize) {
3038          if (GPR_idx == NumGPRs)
3039            break;
3040          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3041                                  DAG.getConstant(i, PtrVT));
3042          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3043          MemOpChains.push_back(Load.getValue(1));
3044          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3045        }
3046        break;
3047      }
3048
3049      // Non-varargs Altivec params generally go in registers, but have
3050      // stack space allocated at the end.
3051      if (VR_idx != NumVRs) {
3052        // Doesn't have GPR space allocated.
3053        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3054      } else if (nAltivecParamsAtEnd==0) {
3055        // We are emitting Altivec params in order.
3056        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3057                         isPPC64, isTailCall, true, MemOpChains,
3058                         TailCallArguments, dl);
3059        ArgOffset += 16;
3060      }
3061      break;
3062    }
3063  }
3064  // If all Altivec parameters fit in registers, as they usually do,
3065  // they get stack space following the non-Altivec parameters.  We
3066  // don't track this here because nobody below needs it.
3067  // If there are more Altivec parameters than fit in registers emit
3068  // the stores here.
3069  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3070    unsigned j = 0;
3071    // Offset is aligned; skip 1st 12 params which go in V registers.
3072    ArgOffset = ((ArgOffset+15)/16)*16;
3073    ArgOffset += 12*16;
3074    for (unsigned i = 0; i != NumOps; ++i) {
3075      SDValue Arg = Outs[i].Val;
3076      EVT ArgType = Arg.getValueType();
3077      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3078          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3079        if (++j > NumVRs) {
3080          SDValue PtrOff;
3081          // We are emitting Altivec params in order.
3082          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3083                           isPPC64, isTailCall, true, MemOpChains,
3084                           TailCallArguments, dl);
3085          ArgOffset += 16;
3086        }
3087      }
3088    }
3089  }
3090
3091  if (!MemOpChains.empty())
3092    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3093                        &MemOpChains[0], MemOpChains.size());
3094
3095  // Build a sequence of copy-to-reg nodes chained together with token chain
3096  // and flag operands which copy the outgoing args into the appropriate regs.
3097  SDValue InFlag;
3098  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3099    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3100                             RegsToPass[i].second, InFlag);
3101    InFlag = Chain.getValue(1);
3102  }
3103
3104  if (isTailCall) {
3105    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3106                    FPOp, true, TailCallArguments);
3107  }
3108
3109  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3110                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3111                    Ins, InVals);
3112}
3113
3114SDValue
3115PPCTargetLowering::LowerReturn(SDValue Chain,
3116                               CallingConv::ID CallConv, bool isVarArg,
3117                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3118                               DebugLoc dl, SelectionDAG &DAG) {
3119
3120  SmallVector<CCValAssign, 16> RVLocs;
3121  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3122                 RVLocs, *DAG.getContext());
3123  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3124
3125  // If this is the first return lowered for this function, add the regs to the
3126  // liveout set for the function.
3127  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3128    for (unsigned i = 0; i != RVLocs.size(); ++i)
3129      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3130  }
3131
3132  SDValue Flag;
3133
3134  // Copy the result values into the output registers.
3135  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3136    CCValAssign &VA = RVLocs[i];
3137    assert(VA.isRegLoc() && "Can only return in registers!");
3138    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3139                             Outs[i].Val, Flag);
3140    Flag = Chain.getValue(1);
3141  }
3142
3143  if (Flag.getNode())
3144    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3145  else
3146    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3147}
3148
3149SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3150                                   const PPCSubtarget &Subtarget) {
3151  // When we pop the dynamic allocation we need to restore the SP link.
3152  DebugLoc dl = Op.getDebugLoc();
3153
3154  // Get the corect type for pointers.
3155  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3156
3157  // Construct the stack pointer operand.
3158  bool IsPPC64 = Subtarget.isPPC64();
3159  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3160  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3161
3162  // Get the operands for the STACKRESTORE.
3163  SDValue Chain = Op.getOperand(0);
3164  SDValue SaveSP = Op.getOperand(1);
3165
3166  // Load the old link SP.
3167  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3168
3169  // Restore the stack pointer.
3170  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3171
3172  // Store the old link SP.
3173  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3174}
3175
3176
3177
3178SDValue
3179PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3180  MachineFunction &MF = DAG.getMachineFunction();
3181  bool IsPPC64 = PPCSubTarget.isPPC64();
3182  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3183  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3184
3185  // Get current frame pointer save index.  The users of this index will be
3186  // primarily DYNALLOC instructions.
3187  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3188  int RASI = FI->getReturnAddrSaveIndex();
3189
3190  // If the frame pointer save index hasn't been defined yet.
3191  if (!RASI) {
3192    // Find out what the fix offset of the frame pointer save area.
3193    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3194    // Allocate the frame index for frame pointer save area.
3195    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3196    // Save the result.
3197    FI->setReturnAddrSaveIndex(RASI);
3198  }
3199  return DAG.getFrameIndex(RASI, PtrVT);
3200}
3201
3202SDValue
3203PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3204  MachineFunction &MF = DAG.getMachineFunction();
3205  bool IsPPC64 = PPCSubTarget.isPPC64();
3206  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3207  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3208
3209  // Get current frame pointer save index.  The users of this index will be
3210  // primarily DYNALLOC instructions.
3211  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3212  int FPSI = FI->getFramePointerSaveIndex();
3213
3214  // If the frame pointer save index hasn't been defined yet.
3215  if (!FPSI) {
3216    // Find out what the fix offset of the frame pointer save area.
3217    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3218                                                           isDarwinABI);
3219
3220    // Allocate the frame index for frame pointer save area.
3221    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3222    // Save the result.
3223    FI->setFramePointerSaveIndex(FPSI);
3224  }
3225  return DAG.getFrameIndex(FPSI, PtrVT);
3226}
3227
3228SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3229                                         SelectionDAG &DAG,
3230                                         const PPCSubtarget &Subtarget) {
3231  // Get the inputs.
3232  SDValue Chain = Op.getOperand(0);
3233  SDValue Size  = Op.getOperand(1);
3234  DebugLoc dl = Op.getDebugLoc();
3235
3236  // Get the corect type for pointers.
3237  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3238  // Negate the size.
3239  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3240                                  DAG.getConstant(0, PtrVT), Size);
3241  // Construct a node for the frame pointer save index.
3242  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3243  // Build a DYNALLOC node.
3244  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3245  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3246  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3247}
3248
3249/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3250/// possible.
3251SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3252  // Not FP? Not a fsel.
3253  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3254      !Op.getOperand(2).getValueType().isFloatingPoint())
3255    return Op;
3256
3257  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3258
3259  // Cannot handle SETEQ/SETNE.
3260  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3261
3262  EVT ResVT = Op.getValueType();
3263  EVT CmpVT = Op.getOperand(0).getValueType();
3264  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3265  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3266  DebugLoc dl = Op.getDebugLoc();
3267
3268  // If the RHS of the comparison is a 0.0, we don't need to do the
3269  // subtraction at all.
3270  if (isFloatingPointZero(RHS))
3271    switch (CC) {
3272    default: break;       // SETUO etc aren't handled by fsel.
3273    case ISD::SETULT:
3274    case ISD::SETLT:
3275      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3276    case ISD::SETOGE:
3277    case ISD::SETGE:
3278      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3279        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3280      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3281    case ISD::SETUGT:
3282    case ISD::SETGT:
3283      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3284    case ISD::SETOLE:
3285    case ISD::SETLE:
3286      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3287        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3288      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3289                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3290    }
3291
3292  SDValue Cmp;
3293  switch (CC) {
3294  default: break;       // SETUO etc aren't handled by fsel.
3295  case ISD::SETULT:
3296  case ISD::SETLT:
3297    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3298    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3299      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3300      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3301  case ISD::SETOGE:
3302  case ISD::SETGE:
3303    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3304    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3305      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3306      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3307  case ISD::SETUGT:
3308  case ISD::SETGT:
3309    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3310    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3311      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3312      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3313  case ISD::SETOLE:
3314  case ISD::SETLE:
3315    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3316    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3317      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3318      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3319  }
3320  return Op;
3321}
3322
3323// FIXME: Split this code up when LegalizeDAGTypes lands.
3324SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3325                                           DebugLoc dl) {
3326  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3327  SDValue Src = Op.getOperand(0);
3328  if (Src.getValueType() == MVT::f32)
3329    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3330
3331  SDValue Tmp;
3332  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3333  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3334  case MVT::i32:
3335    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3336                                                         PPCISD::FCTIDZ,
3337                      dl, MVT::f64, Src);
3338    break;
3339  case MVT::i64:
3340    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3341    break;
3342  }
3343
3344  // Convert the FP value to an int value through memory.
3345  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3346
3347  // Emit a store to the stack slot.
3348  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3349
3350  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3351  // add in a bias.
3352  if (Op.getValueType() == MVT::i32)
3353    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3354                        DAG.getConstant(4, FIPtr.getValueType()));
3355  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3356}
3357
3358SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3359  DebugLoc dl = Op.getDebugLoc();
3360  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3361  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3362    return SDValue();
3363
3364  if (Op.getOperand(0).getValueType() == MVT::i64) {
3365    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3366                               MVT::f64, Op.getOperand(0));
3367    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3368    if (Op.getValueType() == MVT::f32)
3369      FP = DAG.getNode(ISD::FP_ROUND, dl,
3370                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3371    return FP;
3372  }
3373
3374  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3375         "Unhandled SINT_TO_FP type in custom expander!");
3376  // Since we only generate this in 64-bit mode, we can take advantage of
3377  // 64-bit registers.  In particular, sign extend the input value into the
3378  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3379  // then lfd it and fcfid it.
3380  MachineFunction &MF = DAG.getMachineFunction();
3381  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3382  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3383  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3384  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3385
3386  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3387                                Op.getOperand(0));
3388
3389  // STD the extended value into the stack slot.
3390  MachineMemOperand *MMO =
3391    MF.getMachineMemOperand(PseudoSourceValue::getStackObject(FrameIdx),
3392                            MachineMemOperand::MOStore, 0, 8, 8);
3393  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3394  SDValue Store =
3395    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3396                            Ops, 4, MVT::i64, MMO);
3397  // Load the value as a double.
3398  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3399
3400  // FCFID it and return it.
3401  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3402  if (Op.getValueType() == MVT::f32)
3403    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3404  return FP;
3405}
3406
3407SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3408  DebugLoc dl = Op.getDebugLoc();
3409  /*
3410   The rounding mode is in bits 30:31 of FPSR, and has the following
3411   settings:
3412     00 Round to nearest
3413     01 Round to 0
3414     10 Round to +inf
3415     11 Round to -inf
3416
3417  FLT_ROUNDS, on the other hand, expects the following:
3418    -1 Undefined
3419     0 Round to 0
3420     1 Round to nearest
3421     2 Round to +inf
3422     3 Round to -inf
3423
3424  To perform the conversion, we do:
3425    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3426  */
3427
3428  MachineFunction &MF = DAG.getMachineFunction();
3429  EVT VT = Op.getValueType();
3430  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3431  std::vector<EVT> NodeTys;
3432  SDValue MFFSreg, InFlag;
3433
3434  // Save FP Control Word to register
3435  NodeTys.push_back(MVT::f64);    // return register
3436  NodeTys.push_back(MVT::Flag);   // unused in this context
3437  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3438
3439  // Save FP register to stack slot
3440  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3441  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3442  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3443                                 StackSlot, NULL, 0);
3444
3445  // Load FP Control Word from low 32 bits of stack slot.
3446  SDValue Four = DAG.getConstant(4, PtrVT);
3447  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3448  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3449
3450  // Transform as necessary
3451  SDValue CWD1 =
3452    DAG.getNode(ISD::AND, dl, MVT::i32,
3453                CWD, DAG.getConstant(3, MVT::i32));
3454  SDValue CWD2 =
3455    DAG.getNode(ISD::SRL, dl, MVT::i32,
3456                DAG.getNode(ISD::AND, dl, MVT::i32,
3457                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3458                                        CWD, DAG.getConstant(3, MVT::i32)),
3459                            DAG.getConstant(3, MVT::i32)),
3460                DAG.getConstant(1, MVT::i32));
3461
3462  SDValue RetVal =
3463    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3464
3465  return DAG.getNode((VT.getSizeInBits() < 16 ?
3466                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3467}
3468
3469SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3470  EVT VT = Op.getValueType();
3471  unsigned BitWidth = VT.getSizeInBits();
3472  DebugLoc dl = Op.getDebugLoc();
3473  assert(Op.getNumOperands() == 3 &&
3474         VT == Op.getOperand(1).getValueType() &&
3475         "Unexpected SHL!");
3476
3477  // Expand into a bunch of logical ops.  Note that these ops
3478  // depend on the PPC behavior for oversized shift amounts.
3479  SDValue Lo = Op.getOperand(0);
3480  SDValue Hi = Op.getOperand(1);
3481  SDValue Amt = Op.getOperand(2);
3482  EVT AmtVT = Amt.getValueType();
3483
3484  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3485                             DAG.getConstant(BitWidth, AmtVT), Amt);
3486  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3487  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3488  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3489  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3490                             DAG.getConstant(-BitWidth, AmtVT));
3491  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3492  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3493  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3494  SDValue OutOps[] = { OutLo, OutHi };
3495  return DAG.getMergeValues(OutOps, 2, dl);
3496}
3497
3498SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3499  EVT VT = Op.getValueType();
3500  DebugLoc dl = Op.getDebugLoc();
3501  unsigned BitWidth = VT.getSizeInBits();
3502  assert(Op.getNumOperands() == 3 &&
3503         VT == Op.getOperand(1).getValueType() &&
3504         "Unexpected SRL!");
3505
3506  // Expand into a bunch of logical ops.  Note that these ops
3507  // depend on the PPC behavior for oversized shift amounts.
3508  SDValue Lo = Op.getOperand(0);
3509  SDValue Hi = Op.getOperand(1);
3510  SDValue Amt = Op.getOperand(2);
3511  EVT AmtVT = Amt.getValueType();
3512
3513  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3514                             DAG.getConstant(BitWidth, AmtVT), Amt);
3515  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3516  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3517  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3518  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3519                             DAG.getConstant(-BitWidth, AmtVT));
3520  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3521  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3522  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3523  SDValue OutOps[] = { OutLo, OutHi };
3524  return DAG.getMergeValues(OutOps, 2, dl);
3525}
3526
3527SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3528  DebugLoc dl = Op.getDebugLoc();
3529  EVT VT = Op.getValueType();
3530  unsigned BitWidth = VT.getSizeInBits();
3531  assert(Op.getNumOperands() == 3 &&
3532         VT == Op.getOperand(1).getValueType() &&
3533         "Unexpected SRA!");
3534
3535  // Expand into a bunch of logical ops, followed by a select_cc.
3536  SDValue Lo = Op.getOperand(0);
3537  SDValue Hi = Op.getOperand(1);
3538  SDValue Amt = Op.getOperand(2);
3539  EVT AmtVT = Amt.getValueType();
3540
3541  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3542                             DAG.getConstant(BitWidth, AmtVT), Amt);
3543  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3544  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3545  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3546  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3547                             DAG.getConstant(-BitWidth, AmtVT));
3548  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3549  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3550  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3551                                  Tmp4, Tmp6, ISD::SETLE);
3552  SDValue OutOps[] = { OutLo, OutHi };
3553  return DAG.getMergeValues(OutOps, 2, dl);
3554}
3555
3556//===----------------------------------------------------------------------===//
3557// Vector related lowering.
3558//
3559
3560/// BuildSplatI - Build a canonical splati of Val with an element size of
3561/// SplatSize.  Cast the result to VT.
3562static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3563                             SelectionDAG &DAG, DebugLoc dl) {
3564  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3565
3566  static const EVT VTys[] = { // canonical VT to use for each size.
3567    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3568  };
3569
3570  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3571
3572  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3573  if (Val == -1)
3574    SplatSize = 1;
3575
3576  EVT CanonicalVT = VTys[SplatSize-1];
3577
3578  // Build a canonical splat for this value.
3579  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3580  SmallVector<SDValue, 8> Ops;
3581  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3582  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3583                              &Ops[0], Ops.size());
3584  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3585}
3586
3587/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3588/// specified intrinsic ID.
3589static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3590                                SelectionDAG &DAG, DebugLoc dl,
3591                                EVT DestVT = MVT::Other) {
3592  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3593  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3594                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3595}
3596
3597/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3598/// specified intrinsic ID.
3599static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3600                                SDValue Op2, SelectionDAG &DAG,
3601                                DebugLoc dl, EVT DestVT = MVT::Other) {
3602  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3603  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3604                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3605}
3606
3607
3608/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3609/// amount.  The result has the specified value type.
3610static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3611                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3612  // Force LHS/RHS to be the right type.
3613  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3614  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3615
3616  int Ops[16];
3617  for (unsigned i = 0; i != 16; ++i)
3618    Ops[i] = i + Amt;
3619  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3620  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3621}
3622
3623// If this is a case we can't handle, return null and let the default
3624// expansion code take care of it.  If we CAN select this case, and if it
3625// selects to a single instruction, return Op.  Otherwise, if we can codegen
3626// this case more efficiently than a constant pool load, lower it to the
3627// sequence of ops that should be used.
3628SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3629  DebugLoc dl = Op.getDebugLoc();
3630  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3631  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3632
3633  // Check if this is a splat of a constant value.
3634  APInt APSplatBits, APSplatUndef;
3635  unsigned SplatBitSize;
3636  bool HasAnyUndefs;
3637  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3638                             HasAnyUndefs) || SplatBitSize > 32)
3639    return SDValue();
3640
3641  unsigned SplatBits = APSplatBits.getZExtValue();
3642  unsigned SplatUndef = APSplatUndef.getZExtValue();
3643  unsigned SplatSize = SplatBitSize / 8;
3644
3645  // First, handle single instruction cases.
3646
3647  // All zeros?
3648  if (SplatBits == 0) {
3649    // Canonicalize all zero vectors to be v4i32.
3650    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3651      SDValue Z = DAG.getConstant(0, MVT::i32);
3652      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3653      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3654    }
3655    return Op;
3656  }
3657
3658  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3659  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3660                    (32-SplatBitSize));
3661  if (SextVal >= -16 && SextVal <= 15)
3662    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3663
3664
3665  // Two instruction sequences.
3666
3667  // If this value is in the range [-32,30] and is even, use:
3668  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3669  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3670    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3671    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3672    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3673  }
3674
3675  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3676  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3677  // for fneg/fabs.
3678  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3679    // Make -1 and vspltisw -1:
3680    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3681
3682    // Make the VSLW intrinsic, computing 0x8000_0000.
3683    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3684                                   OnesV, DAG, dl);
3685
3686    // xor by OnesV to invert it.
3687    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3688    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3689  }
3690
3691  // Check to see if this is a wide variety of vsplti*, binop self cases.
3692  static const signed char SplatCsts[] = {
3693    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3694    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3695  };
3696
3697  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3698    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3699    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3700    int i = SplatCsts[idx];
3701
3702    // Figure out what shift amount will be used by altivec if shifted by i in
3703    // this splat size.
3704    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3705
3706    // vsplti + shl self.
3707    if (SextVal == (i << (int)TypeShiftAmt)) {
3708      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3709      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3710        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3711        Intrinsic::ppc_altivec_vslw
3712      };
3713      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3714      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3715    }
3716
3717    // vsplti + srl self.
3718    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3719      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3720      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3721        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3722        Intrinsic::ppc_altivec_vsrw
3723      };
3724      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3725      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3726    }
3727
3728    // vsplti + sra self.
3729    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3730      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3731      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3732        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3733        Intrinsic::ppc_altivec_vsraw
3734      };
3735      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3736      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3737    }
3738
3739    // vsplti + rol self.
3740    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3741                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3742      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3743      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3744        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3745        Intrinsic::ppc_altivec_vrlw
3746      };
3747      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3748      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3749    }
3750
3751    // t = vsplti c, result = vsldoi t, t, 1
3752    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3753      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3754      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3755    }
3756    // t = vsplti c, result = vsldoi t, t, 2
3757    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3758      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3759      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3760    }
3761    // t = vsplti c, result = vsldoi t, t, 3
3762    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3763      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3764      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3765    }
3766  }
3767
3768  // Three instruction sequences.
3769
3770  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3771  if (SextVal >= 0 && SextVal <= 31) {
3772    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3773    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3774    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3775    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3776  }
3777  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3778  if (SextVal >= -31 && SextVal <= 0) {
3779    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3780    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3781    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3782    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3783  }
3784
3785  return SDValue();
3786}
3787
3788/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3789/// the specified operations to build the shuffle.
3790static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3791                                      SDValue RHS, SelectionDAG &DAG,
3792                                      DebugLoc dl) {
3793  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3794  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3795  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3796
3797  enum {
3798    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3799    OP_VMRGHW,
3800    OP_VMRGLW,
3801    OP_VSPLTISW0,
3802    OP_VSPLTISW1,
3803    OP_VSPLTISW2,
3804    OP_VSPLTISW3,
3805    OP_VSLDOI4,
3806    OP_VSLDOI8,
3807    OP_VSLDOI12
3808  };
3809
3810  if (OpNum == OP_COPY) {
3811    if (LHSID == (1*9+2)*9+3) return LHS;
3812    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3813    return RHS;
3814  }
3815
3816  SDValue OpLHS, OpRHS;
3817  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3818  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3819
3820  int ShufIdxs[16];
3821  switch (OpNum) {
3822  default: llvm_unreachable("Unknown i32 permute!");
3823  case OP_VMRGHW:
3824    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3825    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3826    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3827    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3828    break;
3829  case OP_VMRGLW:
3830    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3831    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3832    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3833    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3834    break;
3835  case OP_VSPLTISW0:
3836    for (unsigned i = 0; i != 16; ++i)
3837      ShufIdxs[i] = (i&3)+0;
3838    break;
3839  case OP_VSPLTISW1:
3840    for (unsigned i = 0; i != 16; ++i)
3841      ShufIdxs[i] = (i&3)+4;
3842    break;
3843  case OP_VSPLTISW2:
3844    for (unsigned i = 0; i != 16; ++i)
3845      ShufIdxs[i] = (i&3)+8;
3846    break;
3847  case OP_VSPLTISW3:
3848    for (unsigned i = 0; i != 16; ++i)
3849      ShufIdxs[i] = (i&3)+12;
3850    break;
3851  case OP_VSLDOI4:
3852    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3853  case OP_VSLDOI8:
3854    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3855  case OP_VSLDOI12:
3856    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3857  }
3858  EVT VT = OpLHS.getValueType();
3859  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3860  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3861  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3862  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3863}
3864
3865/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3866/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3867/// return the code it can be lowered into.  Worst case, it can always be
3868/// lowered into a vperm.
3869SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3870                                               SelectionDAG &DAG) {
3871  DebugLoc dl = Op.getDebugLoc();
3872  SDValue V1 = Op.getOperand(0);
3873  SDValue V2 = Op.getOperand(1);
3874  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3875  EVT VT = Op.getValueType();
3876
3877  // Cases that are handled by instructions that take permute immediates
3878  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3879  // selected by the instruction selector.
3880  if (V2.getOpcode() == ISD::UNDEF) {
3881    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3882        PPC::isSplatShuffleMask(SVOp, 2) ||
3883        PPC::isSplatShuffleMask(SVOp, 4) ||
3884        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3885        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3886        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3887        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3888        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3889        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3890        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3891        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3892        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3893      return Op;
3894    }
3895  }
3896
3897  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3898  // and produce a fixed permutation.  If any of these match, do not lower to
3899  // VPERM.
3900  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3901      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3902      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3903      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3904      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3905      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3906      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3907      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3908      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3909    return Op;
3910
3911  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3912  // perfect shuffle table to emit an optimal matching sequence.
3913  SmallVector<int, 16> PermMask;
3914  SVOp->getMask(PermMask);
3915
3916  unsigned PFIndexes[4];
3917  bool isFourElementShuffle = true;
3918  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3919    unsigned EltNo = 8;   // Start out undef.
3920    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3921      if (PermMask[i*4+j] < 0)
3922        continue;   // Undef, ignore it.
3923
3924      unsigned ByteSource = PermMask[i*4+j];
3925      if ((ByteSource & 3) != j) {
3926        isFourElementShuffle = false;
3927        break;
3928      }
3929
3930      if (EltNo == 8) {
3931        EltNo = ByteSource/4;
3932      } else if (EltNo != ByteSource/4) {
3933        isFourElementShuffle = false;
3934        break;
3935      }
3936    }
3937    PFIndexes[i] = EltNo;
3938  }
3939
3940  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3941  // perfect shuffle vector to determine if it is cost effective to do this as
3942  // discrete instructions, or whether we should use a vperm.
3943  if (isFourElementShuffle) {
3944    // Compute the index in the perfect shuffle table.
3945    unsigned PFTableIndex =
3946      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3947
3948    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3949    unsigned Cost  = (PFEntry >> 30);
3950
3951    // Determining when to avoid vperm is tricky.  Many things affect the cost
3952    // of vperm, particularly how many times the perm mask needs to be computed.
3953    // For example, if the perm mask can be hoisted out of a loop or is already
3954    // used (perhaps because there are multiple permutes with the same shuffle
3955    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3956    // the loop requires an extra register.
3957    //
3958    // As a compromise, we only emit discrete instructions if the shuffle can be
3959    // generated in 3 or fewer operations.  When we have loop information
3960    // available, if this block is within a loop, we should avoid using vperm
3961    // for 3-operation perms and use a constant pool load instead.
3962    if (Cost < 3)
3963      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3964  }
3965
3966  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3967  // vector that will get spilled to the constant pool.
3968  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3969
3970  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3971  // that it is in input element units, not in bytes.  Convert now.
3972  EVT EltVT = V1.getValueType().getVectorElementType();
3973  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3974
3975  SmallVector<SDValue, 16> ResultMask;
3976  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3977    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3978
3979    for (unsigned j = 0; j != BytesPerElement; ++j)
3980      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3981                                           MVT::i32));
3982  }
3983
3984  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3985                                    &ResultMask[0], ResultMask.size());
3986  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3987}
3988
3989/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3990/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3991/// information about the intrinsic.
3992static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3993                                  bool &isDot) {
3994  unsigned IntrinsicID =
3995    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3996  CompareOpc = -1;
3997  isDot = false;
3998  switch (IntrinsicID) {
3999  default: return false;
4000    // Comparison predicates.
4001  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4002  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4003  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4004  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4005  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4006  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4007  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4008  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4009  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4010  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4011  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4012  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4013  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4014
4015    // Normal Comparisons.
4016  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4017  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4018  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4019  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4020  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4021  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4022  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4023  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4024  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4025  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4026  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4027  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4028  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4029  }
4030  return true;
4031}
4032
4033/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4034/// lower, do it, otherwise return null.
4035SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4036                                                     SelectionDAG &DAG) {
4037  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4038  // opcode number of the comparison.
4039  DebugLoc dl = Op.getDebugLoc();
4040  int CompareOpc;
4041  bool isDot;
4042  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4043    return SDValue();    // Don't custom lower most intrinsics.
4044
4045  // If this is a non-dot comparison, make the VCMP node and we are done.
4046  if (!isDot) {
4047    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4048                                Op.getOperand(1), Op.getOperand(2),
4049                                DAG.getConstant(CompareOpc, MVT::i32));
4050    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4051  }
4052
4053  // Create the PPCISD altivec 'dot' comparison node.
4054  SDValue Ops[] = {
4055    Op.getOperand(2),  // LHS
4056    Op.getOperand(3),  // RHS
4057    DAG.getConstant(CompareOpc, MVT::i32)
4058  };
4059  std::vector<EVT> VTs;
4060  VTs.push_back(Op.getOperand(2).getValueType());
4061  VTs.push_back(MVT::Flag);
4062  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4063
4064  // Now that we have the comparison, emit a copy from the CR to a GPR.
4065  // This is flagged to the above dot comparison.
4066  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4067                                DAG.getRegister(PPC::CR6, MVT::i32),
4068                                CompNode.getValue(1));
4069
4070  // Unpack the result based on how the target uses it.
4071  unsigned BitNo;   // Bit # of CR6.
4072  bool InvertBit;   // Invert result?
4073  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4074  default:  // Can't happen, don't crash on invalid number though.
4075  case 0:   // Return the value of the EQ bit of CR6.
4076    BitNo = 0; InvertBit = false;
4077    break;
4078  case 1:   // Return the inverted value of the EQ bit of CR6.
4079    BitNo = 0; InvertBit = true;
4080    break;
4081  case 2:   // Return the value of the LT bit of CR6.
4082    BitNo = 2; InvertBit = false;
4083    break;
4084  case 3:   // Return the inverted value of the LT bit of CR6.
4085    BitNo = 2; InvertBit = true;
4086    break;
4087  }
4088
4089  // Shift the bit into the low position.
4090  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4091                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4092  // Isolate the bit.
4093  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4094                      DAG.getConstant(1, MVT::i32));
4095
4096  // If we are supposed to, toggle the bit.
4097  if (InvertBit)
4098    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4099                        DAG.getConstant(1, MVT::i32));
4100  return Flags;
4101}
4102
4103SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4104                                                   SelectionDAG &DAG) {
4105  DebugLoc dl = Op.getDebugLoc();
4106  // Create a stack slot that is 16-byte aligned.
4107  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4108  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4109  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4110  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4111
4112  // Store the input value into Value#0 of the stack slot.
4113  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4114                                 Op.getOperand(0), FIdx, NULL, 0);
4115  // Load it out.
4116  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4117}
4118
4119SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4120  DebugLoc dl = Op.getDebugLoc();
4121  if (Op.getValueType() == MVT::v4i32) {
4122    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4123
4124    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4125    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4126
4127    SDValue RHSSwap =   // = vrlw RHS, 16
4128      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4129
4130    // Shrinkify inputs to v8i16.
4131    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4132    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4133    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4134
4135    // Low parts multiplied together, generating 32-bit results (we ignore the
4136    // top parts).
4137    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4138                                        LHS, RHS, DAG, dl, MVT::v4i32);
4139
4140    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4141                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4142    // Shift the high parts up 16 bits.
4143    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4144                              Neg16, DAG, dl);
4145    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4146  } else if (Op.getValueType() == MVT::v8i16) {
4147    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4148
4149    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4150
4151    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4152                            LHS, RHS, Zero, DAG, dl);
4153  } else if (Op.getValueType() == MVT::v16i8) {
4154    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4155
4156    // Multiply the even 8-bit parts, producing 16-bit sums.
4157    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4158                                           LHS, RHS, DAG, dl, MVT::v8i16);
4159    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4160
4161    // Multiply the odd 8-bit parts, producing 16-bit sums.
4162    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4163                                          LHS, RHS, DAG, dl, MVT::v8i16);
4164    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4165
4166    // Merge the results together.
4167    int Ops[16];
4168    for (unsigned i = 0; i != 8; ++i) {
4169      Ops[i*2  ] = 2*i+1;
4170      Ops[i*2+1] = 2*i+1+16;
4171    }
4172    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4173  } else {
4174    llvm_unreachable("Unknown mul to lower!");
4175  }
4176}
4177
4178/// LowerOperation - Provide custom lowering hooks for some operations.
4179///
4180SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4181  switch (Op.getOpcode()) {
4182  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4183  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4184  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4185  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4186  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4187  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4188  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4189  case ISD::VASTART:
4190    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4191                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4192
4193  case ISD::VAARG:
4194    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4195                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4196
4197  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4198  case ISD::DYNAMIC_STACKALLOC:
4199    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4200
4201  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4202  case ISD::FP_TO_UINT:
4203  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4204                                                       Op.getDebugLoc());
4205  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4206  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4207
4208  // Lower 64-bit shifts.
4209  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4210  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4211  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4212
4213  // Vector-related lowering.
4214  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4215  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4216  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4217  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4218  case ISD::MUL:                return LowerMUL(Op, DAG);
4219
4220  // Frame & Return address.
4221  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4222  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4223  }
4224  return SDValue();
4225}
4226
4227void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4228                                           SmallVectorImpl<SDValue>&Results,
4229                                           SelectionDAG &DAG) {
4230  DebugLoc dl = N->getDebugLoc();
4231  switch (N->getOpcode()) {
4232  default:
4233    assert(false && "Do not know how to custom type legalize this operation!");
4234    return;
4235  case ISD::FP_ROUND_INREG: {
4236    assert(N->getValueType(0) == MVT::ppcf128);
4237    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4238    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4239                             MVT::f64, N->getOperand(0),
4240                             DAG.getIntPtrConstant(0));
4241    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4242                             MVT::f64, N->getOperand(0),
4243                             DAG.getIntPtrConstant(1));
4244
4245    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4246    // of the long double, and puts FPSCR back the way it was.  We do not
4247    // actually model FPSCR.
4248    std::vector<EVT> NodeTys;
4249    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4250
4251    NodeTys.push_back(MVT::f64);   // Return register
4252    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4253    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4254    MFFSreg = Result.getValue(0);
4255    InFlag = Result.getValue(1);
4256
4257    NodeTys.clear();
4258    NodeTys.push_back(MVT::Flag);   // Returns a flag
4259    Ops[0] = DAG.getConstant(31, MVT::i32);
4260    Ops[1] = InFlag;
4261    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4262    InFlag = Result.getValue(0);
4263
4264    NodeTys.clear();
4265    NodeTys.push_back(MVT::Flag);   // Returns a flag
4266    Ops[0] = DAG.getConstant(30, MVT::i32);
4267    Ops[1] = InFlag;
4268    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4269    InFlag = Result.getValue(0);
4270
4271    NodeTys.clear();
4272    NodeTys.push_back(MVT::f64);    // result of add
4273    NodeTys.push_back(MVT::Flag);   // Returns a flag
4274    Ops[0] = Lo;
4275    Ops[1] = Hi;
4276    Ops[2] = InFlag;
4277    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4278    FPreg = Result.getValue(0);
4279    InFlag = Result.getValue(1);
4280
4281    NodeTys.clear();
4282    NodeTys.push_back(MVT::f64);
4283    Ops[0] = DAG.getConstant(1, MVT::i32);
4284    Ops[1] = MFFSreg;
4285    Ops[2] = FPreg;
4286    Ops[3] = InFlag;
4287    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4288    FPreg = Result.getValue(0);
4289
4290    // We know the low half is about to be thrown away, so just use something
4291    // convenient.
4292    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4293                                FPreg, FPreg));
4294    return;
4295  }
4296  case ISD::FP_TO_SINT:
4297    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4298    return;
4299  }
4300}
4301
4302
4303//===----------------------------------------------------------------------===//
4304//  Other Lowering Code
4305//===----------------------------------------------------------------------===//
4306
4307MachineBasicBlock *
4308PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4309                                    bool is64bit, unsigned BinOpcode) const {
4310  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4311  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4312
4313  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4314  MachineFunction *F = BB->getParent();
4315  MachineFunction::iterator It = BB;
4316  ++It;
4317
4318  unsigned dest = MI->getOperand(0).getReg();
4319  unsigned ptrA = MI->getOperand(1).getReg();
4320  unsigned ptrB = MI->getOperand(2).getReg();
4321  unsigned incr = MI->getOperand(3).getReg();
4322  DebugLoc dl = MI->getDebugLoc();
4323
4324  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4325  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4326  F->insert(It, loopMBB);
4327  F->insert(It, exitMBB);
4328  exitMBB->transferSuccessors(BB);
4329
4330  MachineRegisterInfo &RegInfo = F->getRegInfo();
4331  unsigned TmpReg = (!BinOpcode) ? incr :
4332    RegInfo.createVirtualRegister(
4333       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4334                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4335
4336  //  thisMBB:
4337  //   ...
4338  //   fallthrough --> loopMBB
4339  BB->addSuccessor(loopMBB);
4340
4341  //  loopMBB:
4342  //   l[wd]arx dest, ptr
4343  //   add r0, dest, incr
4344  //   st[wd]cx. r0, ptr
4345  //   bne- loopMBB
4346  //   fallthrough --> exitMBB
4347  BB = loopMBB;
4348  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4349    .addReg(ptrA).addReg(ptrB);
4350  if (BinOpcode)
4351    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4352  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4353    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4354  BuildMI(BB, dl, TII->get(PPC::BCC))
4355    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4356  BB->addSuccessor(loopMBB);
4357  BB->addSuccessor(exitMBB);
4358
4359  //  exitMBB:
4360  //   ...
4361  BB = exitMBB;
4362  return BB;
4363}
4364
4365MachineBasicBlock *
4366PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4367                                            MachineBasicBlock *BB,
4368                                            bool is8bit,    // operation
4369                                            unsigned BinOpcode) const {
4370  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4371  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4372  // In 64 bit mode we have to use 64 bits for addresses, even though the
4373  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4374  // registers without caring whether they're 32 or 64, but here we're
4375  // doing actual arithmetic on the addresses.
4376  bool is64bit = PPCSubTarget.isPPC64();
4377
4378  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4379  MachineFunction *F = BB->getParent();
4380  MachineFunction::iterator It = BB;
4381  ++It;
4382
4383  unsigned dest = MI->getOperand(0).getReg();
4384  unsigned ptrA = MI->getOperand(1).getReg();
4385  unsigned ptrB = MI->getOperand(2).getReg();
4386  unsigned incr = MI->getOperand(3).getReg();
4387  DebugLoc dl = MI->getDebugLoc();
4388
4389  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4390  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4391  F->insert(It, loopMBB);
4392  F->insert(It, exitMBB);
4393  exitMBB->transferSuccessors(BB);
4394
4395  MachineRegisterInfo &RegInfo = F->getRegInfo();
4396  const TargetRegisterClass *RC =
4397    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4398              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4399  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4400  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4401  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4402  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4403  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4404  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4405  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4406  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4407  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4408  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4409  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4410  unsigned Ptr1Reg;
4411  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4412
4413  //  thisMBB:
4414  //   ...
4415  //   fallthrough --> loopMBB
4416  BB->addSuccessor(loopMBB);
4417
4418  // The 4-byte load must be aligned, while a char or short may be
4419  // anywhere in the word.  Hence all this nasty bookkeeping code.
4420  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4421  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4422  //   xori shift, shift1, 24 [16]
4423  //   rlwinm ptr, ptr1, 0, 0, 29
4424  //   slw incr2, incr, shift
4425  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4426  //   slw mask, mask2, shift
4427  //  loopMBB:
4428  //   lwarx tmpDest, ptr
4429  //   add tmp, tmpDest, incr2
4430  //   andc tmp2, tmpDest, mask
4431  //   and tmp3, tmp, mask
4432  //   or tmp4, tmp3, tmp2
4433  //   stwcx. tmp4, ptr
4434  //   bne- loopMBB
4435  //   fallthrough --> exitMBB
4436  //   srw dest, tmpDest, shift
4437
4438  if (ptrA!=PPC::R0) {
4439    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4440    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4441      .addReg(ptrA).addReg(ptrB);
4442  } else {
4443    Ptr1Reg = ptrB;
4444  }
4445  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4446      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4447  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4448      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4449  if (is64bit)
4450    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4451      .addReg(Ptr1Reg).addImm(0).addImm(61);
4452  else
4453    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4454      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4455  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4456      .addReg(incr).addReg(ShiftReg);
4457  if (is8bit)
4458    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4459  else {
4460    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4461    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4462  }
4463  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4464      .addReg(Mask2Reg).addReg(ShiftReg);
4465
4466  BB = loopMBB;
4467  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4468    .addReg(PPC::R0).addReg(PtrReg);
4469  if (BinOpcode)
4470    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4471      .addReg(Incr2Reg).addReg(TmpDestReg);
4472  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4473    .addReg(TmpDestReg).addReg(MaskReg);
4474  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4475    .addReg(TmpReg).addReg(MaskReg);
4476  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4477    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4478  BuildMI(BB, dl, TII->get(PPC::STWCX))
4479    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4480  BuildMI(BB, dl, TII->get(PPC::BCC))
4481    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4482  BB->addSuccessor(loopMBB);
4483  BB->addSuccessor(exitMBB);
4484
4485  //  exitMBB:
4486  //   ...
4487  BB = exitMBB;
4488  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4489  return BB;
4490}
4491
4492MachineBasicBlock *
4493PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4494                                               MachineBasicBlock *BB,
4495                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
4496  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4497
4498  // To "insert" these instructions we actually have to insert their
4499  // control-flow patterns.
4500  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4501  MachineFunction::iterator It = BB;
4502  ++It;
4503
4504  MachineFunction *F = BB->getParent();
4505
4506  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4507      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4508      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4509      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4510      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4511
4512    // The incoming instruction knows the destination vreg to set, the
4513    // condition code register to branch on, the true/false values to
4514    // select between, and a branch opcode to use.
4515
4516    //  thisMBB:
4517    //  ...
4518    //   TrueVal = ...
4519    //   cmpTY ccX, r1, r2
4520    //   bCC copy1MBB
4521    //   fallthrough --> copy0MBB
4522    MachineBasicBlock *thisMBB = BB;
4523    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4524    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4525    unsigned SelectPred = MI->getOperand(4).getImm();
4526    DebugLoc dl = MI->getDebugLoc();
4527    BuildMI(BB, dl, TII->get(PPC::BCC))
4528      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4529    F->insert(It, copy0MBB);
4530    F->insert(It, sinkMBB);
4531    // Update machine-CFG edges by first adding all successors of the current
4532    // block to the new block which will contain the Phi node for the select.
4533    // Also inform sdisel of the edge changes.
4534    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
4535           E = BB->succ_end(); I != E; ++I) {
4536      EM->insert(std::make_pair(*I, sinkMBB));
4537      sinkMBB->addSuccessor(*I);
4538    }
4539    // Next, remove all successors of the current block, and add the true
4540    // and fallthrough blocks as its successors.
4541    while (!BB->succ_empty())
4542      BB->removeSuccessor(BB->succ_begin());
4543    // Next, add the true and fallthrough blocks as its successors.
4544    BB->addSuccessor(copy0MBB);
4545    BB->addSuccessor(sinkMBB);
4546
4547    //  copy0MBB:
4548    //   %FalseValue = ...
4549    //   # fallthrough to sinkMBB
4550    BB = copy0MBB;
4551
4552    // Update machine-CFG edges
4553    BB->addSuccessor(sinkMBB);
4554
4555    //  sinkMBB:
4556    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4557    //  ...
4558    BB = sinkMBB;
4559    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4560      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4561      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4562  }
4563  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4564    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4565  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4566    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4567  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4568    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4569  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4570    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4571
4572  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4573    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4574  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4575    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4576  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4577    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4578  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4579    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4580
4581  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4582    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4583  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4584    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4585  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4586    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4587  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4588    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4589
4590  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4591    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4592  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4593    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4594  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4595    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4596  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4597    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4598
4599  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4600    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4601  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4602    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4603  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4604    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4605  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4606    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4607
4608  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4609    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4610  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4611    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4612  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4613    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4614  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4615    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4616
4617  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4618    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4619  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4620    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4621  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4622    BB = EmitAtomicBinary(MI, BB, false, 0);
4623  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4624    BB = EmitAtomicBinary(MI, BB, true, 0);
4625
4626  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4627           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4628    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4629
4630    unsigned dest   = MI->getOperand(0).getReg();
4631    unsigned ptrA   = MI->getOperand(1).getReg();
4632    unsigned ptrB   = MI->getOperand(2).getReg();
4633    unsigned oldval = MI->getOperand(3).getReg();
4634    unsigned newval = MI->getOperand(4).getReg();
4635    DebugLoc dl     = MI->getDebugLoc();
4636
4637    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4638    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4639    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4640    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4641    F->insert(It, loop1MBB);
4642    F->insert(It, loop2MBB);
4643    F->insert(It, midMBB);
4644    F->insert(It, exitMBB);
4645    exitMBB->transferSuccessors(BB);
4646
4647    //  thisMBB:
4648    //   ...
4649    //   fallthrough --> loopMBB
4650    BB->addSuccessor(loop1MBB);
4651
4652    // loop1MBB:
4653    //   l[wd]arx dest, ptr
4654    //   cmp[wd] dest, oldval
4655    //   bne- midMBB
4656    // loop2MBB:
4657    //   st[wd]cx. newval, ptr
4658    //   bne- loopMBB
4659    //   b exitBB
4660    // midMBB:
4661    //   st[wd]cx. dest, ptr
4662    // exitBB:
4663    BB = loop1MBB;
4664    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4665      .addReg(ptrA).addReg(ptrB);
4666    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4667      .addReg(oldval).addReg(dest);
4668    BuildMI(BB, dl, TII->get(PPC::BCC))
4669      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4670    BB->addSuccessor(loop2MBB);
4671    BB->addSuccessor(midMBB);
4672
4673    BB = loop2MBB;
4674    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4675      .addReg(newval).addReg(ptrA).addReg(ptrB);
4676    BuildMI(BB, dl, TII->get(PPC::BCC))
4677      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4678    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4679    BB->addSuccessor(loop1MBB);
4680    BB->addSuccessor(exitMBB);
4681
4682    BB = midMBB;
4683    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4684      .addReg(dest).addReg(ptrA).addReg(ptrB);
4685    BB->addSuccessor(exitMBB);
4686
4687    //  exitMBB:
4688    //   ...
4689    BB = exitMBB;
4690  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4691             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4692    // We must use 64-bit registers for addresses when targeting 64-bit,
4693    // since we're actually doing arithmetic on them.  Other registers
4694    // can be 32-bit.
4695    bool is64bit = PPCSubTarget.isPPC64();
4696    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4697
4698    unsigned dest   = MI->getOperand(0).getReg();
4699    unsigned ptrA   = MI->getOperand(1).getReg();
4700    unsigned ptrB   = MI->getOperand(2).getReg();
4701    unsigned oldval = MI->getOperand(3).getReg();
4702    unsigned newval = MI->getOperand(4).getReg();
4703    DebugLoc dl     = MI->getDebugLoc();
4704
4705    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4706    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4707    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4708    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4709    F->insert(It, loop1MBB);
4710    F->insert(It, loop2MBB);
4711    F->insert(It, midMBB);
4712    F->insert(It, exitMBB);
4713    exitMBB->transferSuccessors(BB);
4714
4715    MachineRegisterInfo &RegInfo = F->getRegInfo();
4716    const TargetRegisterClass *RC =
4717      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4718                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4719    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4720    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4721    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4722    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4723    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4724    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4725    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4726    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4727    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4728    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4729    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4730    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4731    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4732    unsigned Ptr1Reg;
4733    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4734    //  thisMBB:
4735    //   ...
4736    //   fallthrough --> loopMBB
4737    BB->addSuccessor(loop1MBB);
4738
4739    // The 4-byte load must be aligned, while a char or short may be
4740    // anywhere in the word.  Hence all this nasty bookkeeping code.
4741    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4742    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4743    //   xori shift, shift1, 24 [16]
4744    //   rlwinm ptr, ptr1, 0, 0, 29
4745    //   slw newval2, newval, shift
4746    //   slw oldval2, oldval,shift
4747    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4748    //   slw mask, mask2, shift
4749    //   and newval3, newval2, mask
4750    //   and oldval3, oldval2, mask
4751    // loop1MBB:
4752    //   lwarx tmpDest, ptr
4753    //   and tmp, tmpDest, mask
4754    //   cmpw tmp, oldval3
4755    //   bne- midMBB
4756    // loop2MBB:
4757    //   andc tmp2, tmpDest, mask
4758    //   or tmp4, tmp2, newval3
4759    //   stwcx. tmp4, ptr
4760    //   bne- loop1MBB
4761    //   b exitBB
4762    // midMBB:
4763    //   stwcx. tmpDest, ptr
4764    // exitBB:
4765    //   srw dest, tmpDest, shift
4766    if (ptrA!=PPC::R0) {
4767      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4768      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4769        .addReg(ptrA).addReg(ptrB);
4770    } else {
4771      Ptr1Reg = ptrB;
4772    }
4773    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4774        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4775    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4776        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4777    if (is64bit)
4778      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4779        .addReg(Ptr1Reg).addImm(0).addImm(61);
4780    else
4781      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4782        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4783    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4784        .addReg(newval).addReg(ShiftReg);
4785    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4786        .addReg(oldval).addReg(ShiftReg);
4787    if (is8bit)
4788      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4789    else {
4790      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4791      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4792        .addReg(Mask3Reg).addImm(65535);
4793    }
4794    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4795        .addReg(Mask2Reg).addReg(ShiftReg);
4796    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4797        .addReg(NewVal2Reg).addReg(MaskReg);
4798    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4799        .addReg(OldVal2Reg).addReg(MaskReg);
4800
4801    BB = loop1MBB;
4802    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4803        .addReg(PPC::R0).addReg(PtrReg);
4804    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4805        .addReg(TmpDestReg).addReg(MaskReg);
4806    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4807        .addReg(TmpReg).addReg(OldVal3Reg);
4808    BuildMI(BB, dl, TII->get(PPC::BCC))
4809        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4810    BB->addSuccessor(loop2MBB);
4811    BB->addSuccessor(midMBB);
4812
4813    BB = loop2MBB;
4814    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4815        .addReg(TmpDestReg).addReg(MaskReg);
4816    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4817        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4818    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4819        .addReg(PPC::R0).addReg(PtrReg);
4820    BuildMI(BB, dl, TII->get(PPC::BCC))
4821      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4822    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4823    BB->addSuccessor(loop1MBB);
4824    BB->addSuccessor(exitMBB);
4825
4826    BB = midMBB;
4827    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4828      .addReg(PPC::R0).addReg(PtrReg);
4829    BB->addSuccessor(exitMBB);
4830
4831    //  exitMBB:
4832    //   ...
4833    BB = exitMBB;
4834    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4835  } else {
4836    llvm_unreachable("Unexpected instr type to insert");
4837  }
4838
4839  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4840  return BB;
4841}
4842
4843//===----------------------------------------------------------------------===//
4844// Target Optimization Hooks
4845//===----------------------------------------------------------------------===//
4846
4847SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4848                                             DAGCombinerInfo &DCI) const {
4849  TargetMachine &TM = getTargetMachine();
4850  SelectionDAG &DAG = DCI.DAG;
4851  DebugLoc dl = N->getDebugLoc();
4852  switch (N->getOpcode()) {
4853  default: break;
4854  case PPCISD::SHL:
4855    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4856      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4857        return N->getOperand(0);
4858    }
4859    break;
4860  case PPCISD::SRL:
4861    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4862      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4863        return N->getOperand(0);
4864    }
4865    break;
4866  case PPCISD::SRA:
4867    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4868      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4869          C->isAllOnesValue())    // -1 >>s V -> -1.
4870        return N->getOperand(0);
4871    }
4872    break;
4873
4874  case ISD::SINT_TO_FP:
4875    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4876      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4877        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4878        // We allow the src/dst to be either f32/f64, but the intermediate
4879        // type must be i64.
4880        if (N->getOperand(0).getValueType() == MVT::i64 &&
4881            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4882          SDValue Val = N->getOperand(0).getOperand(0);
4883          if (Val.getValueType() == MVT::f32) {
4884            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4885            DCI.AddToWorklist(Val.getNode());
4886          }
4887
4888          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4889          DCI.AddToWorklist(Val.getNode());
4890          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4891          DCI.AddToWorklist(Val.getNode());
4892          if (N->getValueType(0) == MVT::f32) {
4893            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4894                              DAG.getIntPtrConstant(0));
4895            DCI.AddToWorklist(Val.getNode());
4896          }
4897          return Val;
4898        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4899          // If the intermediate type is i32, we can avoid the load/store here
4900          // too.
4901        }
4902      }
4903    }
4904    break;
4905  case ISD::STORE:
4906    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4907    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4908        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4909        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4910        N->getOperand(1).getValueType() == MVT::i32 &&
4911        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4912      SDValue Val = N->getOperand(1).getOperand(0);
4913      if (Val.getValueType() == MVT::f32) {
4914        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4915        DCI.AddToWorklist(Val.getNode());
4916      }
4917      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4918      DCI.AddToWorklist(Val.getNode());
4919
4920      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4921                        N->getOperand(2), N->getOperand(3));
4922      DCI.AddToWorklist(Val.getNode());
4923      return Val;
4924    }
4925
4926    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4927    if (cast<StoreSDNode>(N)->isUnindexed() &&
4928        N->getOperand(1).getOpcode() == ISD::BSWAP &&
4929        N->getOperand(1).getNode()->hasOneUse() &&
4930        (N->getOperand(1).getValueType() == MVT::i32 ||
4931         N->getOperand(1).getValueType() == MVT::i16)) {
4932      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4933      // Do an any-extend to 32-bits if this is a half-word input.
4934      if (BSwapOp.getValueType() == MVT::i16)
4935        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4936
4937      SDValue Ops[] = {
4938        N->getOperand(0), BSwapOp, N->getOperand(2),
4939        DAG.getValueType(N->getOperand(1).getValueType())
4940      };
4941      return
4942        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
4943                                Ops, array_lengthof(Ops),
4944                                cast<StoreSDNode>(N)->getMemoryVT(),
4945                                cast<StoreSDNode>(N)->getMemOperand());
4946    }
4947    break;
4948  case ISD::BSWAP:
4949    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4950    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4951        N->getOperand(0).hasOneUse() &&
4952        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4953      SDValue Load = N->getOperand(0);
4954      LoadSDNode *LD = cast<LoadSDNode>(Load);
4955      // Create the byte-swapping load.
4956      SDValue Ops[] = {
4957        LD->getChain(),    // Chain
4958        LD->getBasePtr(),  // Ptr
4959        DAG.getValueType(N->getValueType(0)) // VT
4960      };
4961      SDValue BSLoad =
4962        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
4963                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
4964                                LD->getMemoryVT(), LD->getMemOperand());
4965
4966      // If this is an i16 load, insert the truncate.
4967      SDValue ResVal = BSLoad;
4968      if (N->getValueType(0) == MVT::i16)
4969        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4970
4971      // First, combine the bswap away.  This makes the value produced by the
4972      // load dead.
4973      DCI.CombineTo(N, ResVal);
4974
4975      // Next, combine the load away, we give it a bogus result value but a real
4976      // chain result.  The result value is dead because the bswap is dead.
4977      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4978
4979      // Return N so it doesn't get rechecked!
4980      return SDValue(N, 0);
4981    }
4982
4983    break;
4984  case PPCISD::VCMP: {
4985    // If a VCMPo node already exists with exactly the same operands as this
4986    // node, use its result instead of this node (VCMPo computes both a CR6 and
4987    // a normal output).
4988    //
4989    if (!N->getOperand(0).hasOneUse() &&
4990        !N->getOperand(1).hasOneUse() &&
4991        !N->getOperand(2).hasOneUse()) {
4992
4993      // Scan all of the users of the LHS, looking for VCMPo's that match.
4994      SDNode *VCMPoNode = 0;
4995
4996      SDNode *LHSN = N->getOperand(0).getNode();
4997      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4998           UI != E; ++UI)
4999        if (UI->getOpcode() == PPCISD::VCMPo &&
5000            UI->getOperand(1) == N->getOperand(1) &&
5001            UI->getOperand(2) == N->getOperand(2) &&
5002            UI->getOperand(0) == N->getOperand(0)) {
5003          VCMPoNode = *UI;
5004          break;
5005        }
5006
5007      // If there is no VCMPo node, or if the flag value has a single use, don't
5008      // transform this.
5009      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5010        break;
5011
5012      // Look at the (necessarily single) use of the flag value.  If it has a
5013      // chain, this transformation is more complex.  Note that multiple things
5014      // could use the value result, which we should ignore.
5015      SDNode *FlagUser = 0;
5016      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5017           FlagUser == 0; ++UI) {
5018        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5019        SDNode *User = *UI;
5020        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5021          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5022            FlagUser = User;
5023            break;
5024          }
5025        }
5026      }
5027
5028      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5029      // give up for right now.
5030      if (FlagUser->getOpcode() == PPCISD::MFCR)
5031        return SDValue(VCMPoNode, 0);
5032    }
5033    break;
5034  }
5035  case ISD::BR_CC: {
5036    // If this is a branch on an altivec predicate comparison, lower this so
5037    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5038    // lowering is done pre-legalize, because the legalizer lowers the predicate
5039    // compare down to code that is difficult to reassemble.
5040    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5041    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5042    int CompareOpc;
5043    bool isDot;
5044
5045    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5046        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5047        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5048      assert(isDot && "Can't compare against a vector result!");
5049
5050      // If this is a comparison against something other than 0/1, then we know
5051      // that the condition is never/always true.
5052      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5053      if (Val != 0 && Val != 1) {
5054        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5055          return N->getOperand(0);
5056        // Always !=, turn it into an unconditional branch.
5057        return DAG.getNode(ISD::BR, dl, MVT::Other,
5058                           N->getOperand(0), N->getOperand(4));
5059      }
5060
5061      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5062
5063      // Create the PPCISD altivec 'dot' comparison node.
5064      std::vector<EVT> VTs;
5065      SDValue Ops[] = {
5066        LHS.getOperand(2),  // LHS of compare
5067        LHS.getOperand(3),  // RHS of compare
5068        DAG.getConstant(CompareOpc, MVT::i32)
5069      };
5070      VTs.push_back(LHS.getOperand(2).getValueType());
5071      VTs.push_back(MVT::Flag);
5072      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5073
5074      // Unpack the result based on how the target uses it.
5075      PPC::Predicate CompOpc;
5076      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5077      default:  // Can't happen, don't crash on invalid number though.
5078      case 0:   // Branch on the value of the EQ bit of CR6.
5079        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5080        break;
5081      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5082        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5083        break;
5084      case 2:   // Branch on the value of the LT bit of CR6.
5085        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5086        break;
5087      case 3:   // Branch on the inverted value of the LT bit of CR6.
5088        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5089        break;
5090      }
5091
5092      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5093                         DAG.getConstant(CompOpc, MVT::i32),
5094                         DAG.getRegister(PPC::CR6, MVT::i32),
5095                         N->getOperand(4), CompNode.getValue(1));
5096    }
5097    break;
5098  }
5099  }
5100
5101  return SDValue();
5102}
5103
5104//===----------------------------------------------------------------------===//
5105// Inline Assembly Support
5106//===----------------------------------------------------------------------===//
5107
5108void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5109                                                       const APInt &Mask,
5110                                                       APInt &KnownZero,
5111                                                       APInt &KnownOne,
5112                                                       const SelectionDAG &DAG,
5113                                                       unsigned Depth) const {
5114  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5115  switch (Op.getOpcode()) {
5116  default: break;
5117  case PPCISD::LBRX: {
5118    // lhbrx is known to have the top bits cleared out.
5119    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5120      KnownZero = 0xFFFF0000;
5121    break;
5122  }
5123  case ISD::INTRINSIC_WO_CHAIN: {
5124    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5125    default: break;
5126    case Intrinsic::ppc_altivec_vcmpbfp_p:
5127    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5128    case Intrinsic::ppc_altivec_vcmpequb_p:
5129    case Intrinsic::ppc_altivec_vcmpequh_p:
5130    case Intrinsic::ppc_altivec_vcmpequw_p:
5131    case Intrinsic::ppc_altivec_vcmpgefp_p:
5132    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5133    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5134    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5135    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5136    case Intrinsic::ppc_altivec_vcmpgtub_p:
5137    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5138    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5139      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5140      break;
5141    }
5142  }
5143  }
5144}
5145
5146
5147/// getConstraintType - Given a constraint, return the type of
5148/// constraint it is for this target.
5149PPCTargetLowering::ConstraintType
5150PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5151  if (Constraint.size() == 1) {
5152    switch (Constraint[0]) {
5153    default: break;
5154    case 'b':
5155    case 'r':
5156    case 'f':
5157    case 'v':
5158    case 'y':
5159      return C_RegisterClass;
5160    }
5161  }
5162  return TargetLowering::getConstraintType(Constraint);
5163}
5164
5165std::pair<unsigned, const TargetRegisterClass*>
5166PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5167                                                EVT VT) const {
5168  if (Constraint.size() == 1) {
5169    // GCC RS6000 Constraint Letters
5170    switch (Constraint[0]) {
5171    case 'b':   // R1-R31
5172    case 'r':   // R0-R31
5173      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5174        return std::make_pair(0U, PPC::G8RCRegisterClass);
5175      return std::make_pair(0U, PPC::GPRCRegisterClass);
5176    case 'f':
5177      if (VT == MVT::f32)
5178        return std::make_pair(0U, PPC::F4RCRegisterClass);
5179      else if (VT == MVT::f64)
5180        return std::make_pair(0U, PPC::F8RCRegisterClass);
5181      break;
5182    case 'v':
5183      return std::make_pair(0U, PPC::VRRCRegisterClass);
5184    case 'y':   // crrc
5185      return std::make_pair(0U, PPC::CRRCRegisterClass);
5186    }
5187  }
5188
5189  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5190}
5191
5192
5193/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5194/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5195/// it means one of the asm constraint of the inline asm instruction being
5196/// processed is 'm'.
5197void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5198                                                     bool hasMemory,
5199                                                     std::vector<SDValue>&Ops,
5200                                                     SelectionDAG &DAG) const {
5201  SDValue Result(0,0);
5202  switch (Letter) {
5203  default: break;
5204  case 'I':
5205  case 'J':
5206  case 'K':
5207  case 'L':
5208  case 'M':
5209  case 'N':
5210  case 'O':
5211  case 'P': {
5212    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5213    if (!CST) return; // Must be an immediate to match.
5214    unsigned Value = CST->getZExtValue();
5215    switch (Letter) {
5216    default: llvm_unreachable("Unknown constraint letter!");
5217    case 'I':  // "I" is a signed 16-bit constant.
5218      if ((short)Value == (int)Value)
5219        Result = DAG.getTargetConstant(Value, Op.getValueType());
5220      break;
5221    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5222    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5223      if ((short)Value == 0)
5224        Result = DAG.getTargetConstant(Value, Op.getValueType());
5225      break;
5226    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5227      if ((Value >> 16) == 0)
5228        Result = DAG.getTargetConstant(Value, Op.getValueType());
5229      break;
5230    case 'M':  // "M" is a constant that is greater than 31.
5231      if (Value > 31)
5232        Result = DAG.getTargetConstant(Value, Op.getValueType());
5233      break;
5234    case 'N':  // "N" is a positive constant that is an exact power of two.
5235      if ((int)Value > 0 && isPowerOf2_32(Value))
5236        Result = DAG.getTargetConstant(Value, Op.getValueType());
5237      break;
5238    case 'O':  // "O" is the constant zero.
5239      if (Value == 0)
5240        Result = DAG.getTargetConstant(Value, Op.getValueType());
5241      break;
5242    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5243      if ((short)-Value == (int)-Value)
5244        Result = DAG.getTargetConstant(Value, Op.getValueType());
5245      break;
5246    }
5247    break;
5248  }
5249  }
5250
5251  if (Result.getNode()) {
5252    Ops.push_back(Result);
5253    return;
5254  }
5255
5256  // Handle standard constraint letters.
5257  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5258}
5259
5260// isLegalAddressingMode - Return true if the addressing mode represented
5261// by AM is legal for this target, for a load/store of the specified type.
5262bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5263                                              const Type *Ty) const {
5264  // FIXME: PPC does not allow r+i addressing modes for vectors!
5265
5266  // PPC allows a sign-extended 16-bit immediate field.
5267  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5268    return false;
5269
5270  // No global is ever allowed as a base.
5271  if (AM.BaseGV)
5272    return false;
5273
5274  // PPC only support r+r,
5275  switch (AM.Scale) {
5276  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5277    break;
5278  case 1:
5279    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5280      return false;
5281    // Otherwise we have r+r or r+i.
5282    break;
5283  case 2:
5284    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5285      return false;
5286    // Allow 2*r as r+r.
5287    break;
5288  default:
5289    // No other scales are supported.
5290    return false;
5291  }
5292
5293  return true;
5294}
5295
5296/// isLegalAddressImmediate - Return true if the integer value can be used
5297/// as the offset of the target addressing mode for load / store of the
5298/// given type.
5299bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5300  // PPC allows a sign-extended 16-bit immediate field.
5301  return (V > -(1 << 16) && V < (1 << 16)-1);
5302}
5303
5304bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5305  return false;
5306}
5307
5308SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5309  DebugLoc dl = Op.getDebugLoc();
5310  // Depths > 0 not supported yet!
5311  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5312    return SDValue();
5313
5314  MachineFunction &MF = DAG.getMachineFunction();
5315  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5316
5317  // Just load the return address off the stack.
5318  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5319
5320  // Make sure the function really does not optimize away the store of the RA
5321  // to the stack.
5322  FuncInfo->setLRStoreRequired();
5323  return DAG.getLoad(getPointerTy(), dl,
5324                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5325}
5326
5327SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5328  DebugLoc dl = Op.getDebugLoc();
5329  // Depths > 0 not supported yet!
5330  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5331    return SDValue();
5332
5333  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5334  bool isPPC64 = PtrVT == MVT::i64;
5335
5336  MachineFunction &MF = DAG.getMachineFunction();
5337  MachineFrameInfo *MFI = MF.getFrameInfo();
5338  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5339                  && MFI->getStackSize();
5340
5341  if (isPPC64)
5342    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5343      MVT::i64);
5344  else
5345    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5346      MVT::i32);
5347}
5348
5349bool
5350PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5351  // The PowerPC target isn't yet aware of offsets.
5352  return false;
5353}
5354
5355EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5356                                           bool isSrcConst, bool isSrcStr,
5357                                           SelectionDAG &DAG) const {
5358  if (this->PPCSubTarget.isPPC64()) {
5359    return MVT::i64;
5360  } else {
5361    return MVT::i32;
5362  }
5363}
5364