PPCISelLowering.cpp revision c0cb28fd3abee9a8b40856990e04f1af2f9bd7b8
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76  // This is used in the ppcf128->int sequence.  Note it has different semantics
77  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
78  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
79
80  // PowerPC has no intrinsics for these particular operations
81  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
82
83  // PowerPC has no SREM/UREM instructions
84  setOperationAction(ISD::SREM, MVT::i32, Expand);
85  setOperationAction(ISD::UREM, MVT::i32, Expand);
86  setOperationAction(ISD::SREM, MVT::i64, Expand);
87  setOperationAction(ISD::UREM, MVT::i64, Expand);
88
89  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
90  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
91  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
92  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
93  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
94  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
95  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
96  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
97  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
98
99  // We don't support sin/cos/sqrt/fmod/pow
100  setOperationAction(ISD::FSIN , MVT::f64, Expand);
101  setOperationAction(ISD::FCOS , MVT::f64, Expand);
102  setOperationAction(ISD::FREM , MVT::f64, Expand);
103  setOperationAction(ISD::FPOW , MVT::f64, Expand);
104  setOperationAction(ISD::FSIN , MVT::f32, Expand);
105  setOperationAction(ISD::FCOS , MVT::f32, Expand);
106  setOperationAction(ISD::FREM , MVT::f32, Expand);
107  setOperationAction(ISD::FPOW , MVT::f32, Expand);
108
109  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
110
111  // If we're enabling GP optimizations, use hardware square root
112  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
113    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
114    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
115  }
116
117  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
118  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
119
120  // PowerPC does not have BSWAP, CTPOP or CTTZ
121  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
122  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
123  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
124  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
125  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
126  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
127
128  // PowerPC does not have ROTR
129  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
130
131  // PowerPC does not have Select
132  setOperationAction(ISD::SELECT, MVT::i32, Expand);
133  setOperationAction(ISD::SELECT, MVT::i64, Expand);
134  setOperationAction(ISD::SELECT, MVT::f32, Expand);
135  setOperationAction(ISD::SELECT, MVT::f64, Expand);
136
137  // PowerPC wants to turn select_cc of FP into fsel when possible.
138  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
139  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
140
141  // PowerPC wants to optimize integer setcc a bit
142  setOperationAction(ISD::SETCC, MVT::i32, Custom);
143
144  // PowerPC does not have BRCOND which requires SetCC
145  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
146
147  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
148
149  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
150  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
151
152  // PowerPC does not have [U|S]INT_TO_FP
153  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
154  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
155
156  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
157  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
158  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
160
161  // We cannot sextinreg(i1).  Expand to shifts.
162  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
163
164  // Support label based line numbers.
165  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
166  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
167
168  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
169  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
170  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
171  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
172
173
174  // We want to legalize GlobalAddress and ConstantPool nodes into the
175  // appropriate instructions to materialize the address.
176  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
177  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
178  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
179  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
180  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
181  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
182  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
183  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
184
185  // RET must be custom lowered, to meet ABI requirements
186  setOperationAction(ISD::RET               , MVT::Other, Custom);
187
188  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
189  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
190
191  // VAARG is custom lowered with ELF 32 ABI
192  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
193    setOperationAction(ISD::VAARG, MVT::Other, Custom);
194  else
195    setOperationAction(ISD::VAARG, MVT::Other, Expand);
196
197  // Use the default implementation.
198  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
199  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
200  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
201  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
202  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
203  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
204
205  // We want to custom lower some of our intrinsics.
206  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
207
208  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
209    // They also have instructions for converting between i64 and fp.
210    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
211    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
212    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
213    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
215
216    // FIXME: disable this lowered code.  This generates 64-bit register values,
217    // and we don't model the fact that the top part is clobbered by calls.  We
218    // need to flag these together so that the value isn't live across a call.
219    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
220
221    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
222    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
223  } else {
224    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
226  }
227
228  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
229    // 64-bit PowerPC implementations can support i64 types directly
230    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
231    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
232    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
233    // 64-bit PowerPC wants to expand i128 shifts itself.
234    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
235    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
236    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
237  } else {
238    // 32-bit PowerPC wants to expand i64 shifts itself.
239    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
240    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
241    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
242  }
243
244  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
245    // First set operation action for all vector types to expand. Then we
246    // will selectively turn on ones that can be effectively codegen'd.
247    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
248         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
249      // add/sub are legal for all supported vector VT's.
250      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
251      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
252
253      // We promote all shuffles to v16i8.
254      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
255      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
256
257      // We promote all non-typed operations to v4i32.
258      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
259      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
260      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
261      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
262      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
263      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
264      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
265      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
266      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
267      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
268      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
269      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
270
271      // No other operations are legal.
272      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
273      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
291    }
292
293    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
294    // with merges, splats, etc.
295    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
296
297    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
298    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
299    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
300    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
301    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
302    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
303
304    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
305    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
306    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
307    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
308
309    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
310    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
311    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
312    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
313
314    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
315    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
316
317    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
318    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
319    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
321  }
322
323  setShiftAmountType(MVT::i32);
324  setSetCCResultContents(ZeroOrOneSetCCResult);
325
326  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
327    setStackPointerRegisterToSaveRestore(PPC::X1);
328    setExceptionPointerRegister(PPC::X3);
329    setExceptionSelectorRegister(PPC::X4);
330  } else {
331    setStackPointerRegisterToSaveRestore(PPC::R1);
332    setExceptionPointerRegister(PPC::R3);
333    setExceptionSelectorRegister(PPC::R4);
334  }
335
336  // We have target-specific dag combine patterns for the following nodes:
337  setTargetDAGCombine(ISD::SINT_TO_FP);
338  setTargetDAGCombine(ISD::STORE);
339  setTargetDAGCombine(ISD::BR_CC);
340  setTargetDAGCombine(ISD::BSWAP);
341
342  // Darwin long double math library functions have $LDBL128 appended.
343  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
344    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
345    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
346    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
347    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
348    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
349  }
350
351  computeRegisterProperties();
352}
353
354/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
355/// function arguments in the caller parameter area.
356unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
357  TargetMachine &TM = getTargetMachine();
358  // Darwin passes everything on 4 byte boundary.
359  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
360    return 4;
361  // FIXME Elf TBD
362  return 4;
363}
364
365const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
366  switch (Opcode) {
367  default: return 0;
368  case PPCISD::FSEL:          return "PPCISD::FSEL";
369  case PPCISD::FCFID:         return "PPCISD::FCFID";
370  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
371  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
372  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
373  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
374  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
375  case PPCISD::VPERM:         return "PPCISD::VPERM";
376  case PPCISD::Hi:            return "PPCISD::Hi";
377  case PPCISD::Lo:            return "PPCISD::Lo";
378  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
379  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
380  case PPCISD::SRL:           return "PPCISD::SRL";
381  case PPCISD::SRA:           return "PPCISD::SRA";
382  case PPCISD::SHL:           return "PPCISD::SHL";
383  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
384  case PPCISD::STD_32:        return "PPCISD::STD_32";
385  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
386  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
387  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
388  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
389  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
390  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
391  case PPCISD::MFCR:          return "PPCISD::MFCR";
392  case PPCISD::VCMP:          return "PPCISD::VCMP";
393  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
394  case PPCISD::LBRX:          return "PPCISD::LBRX";
395  case PPCISD::STBRX:         return "PPCISD::STBRX";
396  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
397  case PPCISD::MFFS:          return "PPCISD::MFFS";
398  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
399  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
400  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
401  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
402  }
403}
404
405
406MVT::ValueType
407PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
408  return MVT::i32;
409}
410
411
412//===----------------------------------------------------------------------===//
413// Node matching predicates, for use by the tblgen matching code.
414//===----------------------------------------------------------------------===//
415
416/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
417static bool isFloatingPointZero(SDOperand Op) {
418  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
419    return CFP->getValueAPF().isZero();
420  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
421    // Maybe this has already been legalized into the constant pool?
422    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
423      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
424        return CFP->getValueAPF().isZero();
425  }
426  return false;
427}
428
429/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
430/// true if Op is undef or if it matches the specified value.
431static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
432  return Op.getOpcode() == ISD::UNDEF ||
433         cast<ConstantSDNode>(Op)->getValue() == Val;
434}
435
436/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
437/// VPKUHUM instruction.
438bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
439  if (!isUnary) {
440    for (unsigned i = 0; i != 16; ++i)
441      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
442        return false;
443  } else {
444    for (unsigned i = 0; i != 8; ++i)
445      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
446          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
447        return false;
448  }
449  return true;
450}
451
452/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
453/// VPKUWUM instruction.
454bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
455  if (!isUnary) {
456    for (unsigned i = 0; i != 16; i += 2)
457      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
458          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
459        return false;
460  } else {
461    for (unsigned i = 0; i != 8; i += 2)
462      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
463          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
464          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
465          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
466        return false;
467  }
468  return true;
469}
470
471/// isVMerge - Common function, used to match vmrg* shuffles.
472///
473static bool isVMerge(SDNode *N, unsigned UnitSize,
474                     unsigned LHSStart, unsigned RHSStart) {
475  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
476         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
477  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
478         "Unsupported merge size!");
479
480  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
481    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
482      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
483                             LHSStart+j+i*UnitSize) ||
484          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
485                             RHSStart+j+i*UnitSize))
486        return false;
487    }
488      return true;
489}
490
491/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
492/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
493bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
494  if (!isUnary)
495    return isVMerge(N, UnitSize, 8, 24);
496  return isVMerge(N, UnitSize, 8, 8);
497}
498
499/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
500/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
501bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
502  if (!isUnary)
503    return isVMerge(N, UnitSize, 0, 16);
504  return isVMerge(N, UnitSize, 0, 0);
505}
506
507
508/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
509/// amount, otherwise return -1.
510int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
511  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
512         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
513  // Find the first non-undef value in the shuffle mask.
514  unsigned i;
515  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
516    /*search*/;
517
518  if (i == 16) return -1;  // all undef.
519
520  // Otherwise, check to see if the rest of the elements are consequtively
521  // numbered from this value.
522  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
523  if (ShiftAmt < i) return -1;
524  ShiftAmt -= i;
525
526  if (!isUnary) {
527    // Check the rest of the elements to see if they are consequtive.
528    for (++i; i != 16; ++i)
529      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
530        return -1;
531  } else {
532    // Check the rest of the elements to see if they are consequtive.
533    for (++i; i != 16; ++i)
534      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
535        return -1;
536  }
537
538  return ShiftAmt;
539}
540
541/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
542/// specifies a splat of a single element that is suitable for input to
543/// VSPLTB/VSPLTH/VSPLTW.
544bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
545  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
546         N->getNumOperands() == 16 &&
547         (EltSize == 1 || EltSize == 2 || EltSize == 4));
548
549  // This is a splat operation if each element of the permute is the same, and
550  // if the value doesn't reference the second vector.
551  unsigned ElementBase = 0;
552  SDOperand Elt = N->getOperand(0);
553  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
554    ElementBase = EltV->getValue();
555  else
556    return false;   // FIXME: Handle UNDEF elements too!
557
558  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
559    return false;
560
561  // Check that they are consequtive.
562  for (unsigned i = 1; i != EltSize; ++i) {
563    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
564        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
565      return false;
566  }
567
568  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
569  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
570    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
571    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
572           "Invalid VECTOR_SHUFFLE mask!");
573    for (unsigned j = 0; j != EltSize; ++j)
574      if (N->getOperand(i+j) != N->getOperand(j))
575        return false;
576  }
577
578  return true;
579}
580
581/// isAllNegativeZeroVector - Returns true if all elements of build_vector
582/// are -0.0.
583bool PPC::isAllNegativeZeroVector(SDNode *N) {
584  assert(N->getOpcode() == ISD::BUILD_VECTOR);
585  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
586    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
587      return CFP->getValueAPF().isNegZero();
588  return false;
589}
590
591/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
592/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
593unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
594  assert(isSplatShuffleMask(N, EltSize));
595  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
596}
597
598/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
599/// by using a vspltis[bhw] instruction of the specified element size, return
600/// the constant being splatted.  The ByteSize field indicates the number of
601/// bytes of each element [124] -> [bhw].
602SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
603  SDOperand OpVal(0, 0);
604
605  // If ByteSize of the splat is bigger than the element size of the
606  // build_vector, then we have a case where we are checking for a splat where
607  // multiple elements of the buildvector are folded together into a single
608  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
609  unsigned EltSize = 16/N->getNumOperands();
610  if (EltSize < ByteSize) {
611    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
612    SDOperand UniquedVals[4];
613    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
614
615    // See if all of the elements in the buildvector agree across.
616    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
617      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
618      // If the element isn't a constant, bail fully out.
619      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
620
621
622      if (UniquedVals[i&(Multiple-1)].Val == 0)
623        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
624      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
625        return SDOperand();  // no match.
626    }
627
628    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
629    // either constant or undef values that are identical for each chunk.  See
630    // if these chunks can form into a larger vspltis*.
631
632    // Check to see if all of the leading entries are either 0 or -1.  If
633    // neither, then this won't fit into the immediate field.
634    bool LeadingZero = true;
635    bool LeadingOnes = true;
636    for (unsigned i = 0; i != Multiple-1; ++i) {
637      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
638
639      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
640      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
641    }
642    // Finally, check the least significant entry.
643    if (LeadingZero) {
644      if (UniquedVals[Multiple-1].Val == 0)
645        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
646      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
647      if (Val < 16)
648        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
649    }
650    if (LeadingOnes) {
651      if (UniquedVals[Multiple-1].Val == 0)
652        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
653      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
654      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
655        return DAG.getTargetConstant(Val, MVT::i32);
656    }
657
658    return SDOperand();
659  }
660
661  // Check to see if this buildvec has a single non-undef value in its elements.
662  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
663    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
664    if (OpVal.Val == 0)
665      OpVal = N->getOperand(i);
666    else if (OpVal != N->getOperand(i))
667      return SDOperand();
668  }
669
670  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
671
672  unsigned ValSizeInBytes = 0;
673  uint64_t Value = 0;
674  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
675    Value = CN->getValue();
676    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
677  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
678    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
679    Value = FloatToBits(CN->getValueAPF().convertToFloat());
680    ValSizeInBytes = 4;
681  }
682
683  // If the splat value is larger than the element value, then we can never do
684  // this splat.  The only case that we could fit the replicated bits into our
685  // immediate field for would be zero, and we prefer to use vxor for it.
686  if (ValSizeInBytes < ByteSize) return SDOperand();
687
688  // If the element value is larger than the splat value, cut it in half and
689  // check to see if the two halves are equal.  Continue doing this until we
690  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
691  while (ValSizeInBytes > ByteSize) {
692    ValSizeInBytes >>= 1;
693
694    // If the top half equals the bottom half, we're still ok.
695    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
696         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
697      return SDOperand();
698  }
699
700  // Properly sign extend the value.
701  int ShAmt = (4-ByteSize)*8;
702  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
703
704  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
705  if (MaskVal == 0) return SDOperand();
706
707  // Finally, if this value fits in a 5 bit sext field, return it
708  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
709    return DAG.getTargetConstant(MaskVal, MVT::i32);
710  return SDOperand();
711}
712
713//===----------------------------------------------------------------------===//
714//  Addressing Mode Selection
715//===----------------------------------------------------------------------===//
716
717/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
718/// or 64-bit immediate, and if the value can be accurately represented as a
719/// sign extension from a 16-bit value.  If so, this returns true and the
720/// immediate.
721static bool isIntS16Immediate(SDNode *N, short &Imm) {
722  if (N->getOpcode() != ISD::Constant)
723    return false;
724
725  Imm = (short)cast<ConstantSDNode>(N)->getValue();
726  if (N->getValueType(0) == MVT::i32)
727    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
728  else
729    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
730}
731static bool isIntS16Immediate(SDOperand Op, short &Imm) {
732  return isIntS16Immediate(Op.Val, Imm);
733}
734
735
736/// SelectAddressRegReg - Given the specified addressed, check to see if it
737/// can be represented as an indexed [r+r] operation.  Returns false if it
738/// can be more efficiently represented with [r+imm].
739bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
740                                            SDOperand &Index,
741                                            SelectionDAG &DAG) {
742  short imm = 0;
743  if (N.getOpcode() == ISD::ADD) {
744    if (isIntS16Immediate(N.getOperand(1), imm))
745      return false;    // r+i
746    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
747      return false;    // r+i
748
749    Base = N.getOperand(0);
750    Index = N.getOperand(1);
751    return true;
752  } else if (N.getOpcode() == ISD::OR) {
753    if (isIntS16Immediate(N.getOperand(1), imm))
754      return false;    // r+i can fold it if we can.
755
756    // If this is an or of disjoint bitfields, we can codegen this as an add
757    // (for better address arithmetic) if the LHS and RHS of the OR are provably
758    // disjoint.
759    APInt LHSKnownZero, LHSKnownOne;
760    APInt RHSKnownZero, RHSKnownOne;
761    DAG.ComputeMaskedBits(N.getOperand(0),
762                          APInt::getAllOnesValue(N.getOperand(0)
763                            .getValueSizeInBits()),
764                          LHSKnownZero, LHSKnownOne);
765
766    if (LHSKnownZero.getBoolValue()) {
767      DAG.ComputeMaskedBits(N.getOperand(1),
768                            APInt::getAllOnesValue(N.getOperand(1)
769                              .getValueSizeInBits()),
770                            RHSKnownZero, RHSKnownOne);
771      // If all of the bits are known zero on the LHS or RHS, the add won't
772      // carry.
773      if (~(LHSKnownZero | RHSKnownZero) == 0) {
774        Base = N.getOperand(0);
775        Index = N.getOperand(1);
776        return true;
777      }
778    }
779  }
780
781  return false;
782}
783
784/// Returns true if the address N can be represented by a base register plus
785/// a signed 16-bit displacement [r+imm], and if it is not better
786/// represented as reg+reg.
787bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
788                                            SDOperand &Base, SelectionDAG &DAG){
789  // If this can be more profitably realized as r+r, fail.
790  if (SelectAddressRegReg(N, Disp, Base, DAG))
791    return false;
792
793  if (N.getOpcode() == ISD::ADD) {
794    short imm = 0;
795    if (isIntS16Immediate(N.getOperand(1), imm)) {
796      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
797      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
798        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
799      } else {
800        Base = N.getOperand(0);
801      }
802      return true; // [r+i]
803    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
804      // Match LOAD (ADD (X, Lo(G))).
805      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
806             && "Cannot handle constant offsets yet!");
807      Disp = N.getOperand(1).getOperand(0);  // The global address.
808      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
809             Disp.getOpcode() == ISD::TargetConstantPool ||
810             Disp.getOpcode() == ISD::TargetJumpTable);
811      Base = N.getOperand(0);
812      return true;  // [&g+r]
813    }
814  } else if (N.getOpcode() == ISD::OR) {
815    short imm = 0;
816    if (isIntS16Immediate(N.getOperand(1), imm)) {
817      // If this is an or of disjoint bitfields, we can codegen this as an add
818      // (for better address arithmetic) if the LHS and RHS of the OR are
819      // provably disjoint.
820      APInt LHSKnownZero, LHSKnownOne;
821      DAG.ComputeMaskedBits(N.getOperand(0),
822                            APInt::getAllOnesValue(N.getOperand(0)
823                                                   .getValueSizeInBits()),
824                            LHSKnownZero, LHSKnownOne);
825
826      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
827        // If all of the bits are known zero on the LHS or RHS, the add won't
828        // carry.
829        Base = N.getOperand(0);
830        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
831        return true;
832      }
833    }
834  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
835    // Loading from a constant address.
836
837    // If this address fits entirely in a 16-bit sext immediate field, codegen
838    // this as "d, 0"
839    short Imm;
840    if (isIntS16Immediate(CN, Imm)) {
841      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
842      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
843      return true;
844    }
845
846    // Handle 32-bit sext immediates with LIS + addr mode.
847    if (CN->getValueType(0) == MVT::i32 ||
848        (int64_t)CN->getValue() == (int)CN->getValue()) {
849      int Addr = (int)CN->getValue();
850
851      // Otherwise, break this down into an LIS + disp.
852      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
853
854      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
855      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
856      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
857      return true;
858    }
859  }
860
861  Disp = DAG.getTargetConstant(0, getPointerTy());
862  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
863    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
864  else
865    Base = N;
866  return true;      // [r+0]
867}
868
869/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
870/// represented as an indexed [r+r] operation.
871bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
872                                                SDOperand &Index,
873                                                SelectionDAG &DAG) {
874  // Check to see if we can easily represent this as an [r+r] address.  This
875  // will fail if it thinks that the address is more profitably represented as
876  // reg+imm, e.g. where imm = 0.
877  if (SelectAddressRegReg(N, Base, Index, DAG))
878    return true;
879
880  // If the operand is an addition, always emit this as [r+r], since this is
881  // better (for code size, and execution, as the memop does the add for free)
882  // than emitting an explicit add.
883  if (N.getOpcode() == ISD::ADD) {
884    Base = N.getOperand(0);
885    Index = N.getOperand(1);
886    return true;
887  }
888
889  // Otherwise, do it the hard way, using R0 as the base register.
890  Base = DAG.getRegister(PPC::R0, N.getValueType());
891  Index = N;
892  return true;
893}
894
895/// SelectAddressRegImmShift - Returns true if the address N can be
896/// represented by a base register plus a signed 14-bit displacement
897/// [r+imm*4].  Suitable for use by STD and friends.
898bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
899                                                 SDOperand &Base,
900                                                 SelectionDAG &DAG) {
901  // If this can be more profitably realized as r+r, fail.
902  if (SelectAddressRegReg(N, Disp, Base, DAG))
903    return false;
904
905  if (N.getOpcode() == ISD::ADD) {
906    short imm = 0;
907    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
908      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
909      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
910        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
911      } else {
912        Base = N.getOperand(0);
913      }
914      return true; // [r+i]
915    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
916      // Match LOAD (ADD (X, Lo(G))).
917      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
918             && "Cannot handle constant offsets yet!");
919      Disp = N.getOperand(1).getOperand(0);  // The global address.
920      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
921             Disp.getOpcode() == ISD::TargetConstantPool ||
922             Disp.getOpcode() == ISD::TargetJumpTable);
923      Base = N.getOperand(0);
924      return true;  // [&g+r]
925    }
926  } else if (N.getOpcode() == ISD::OR) {
927    short imm = 0;
928    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
929      // If this is an or of disjoint bitfields, we can codegen this as an add
930      // (for better address arithmetic) if the LHS and RHS of the OR are
931      // provably disjoint.
932      APInt LHSKnownZero, LHSKnownOne;
933      DAG.ComputeMaskedBits(N.getOperand(0),
934                            APInt::getAllOnesValue(N.getOperand(0)
935                                                   .getValueSizeInBits()),
936                            LHSKnownZero, LHSKnownOne);
937      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
938        // If all of the bits are known zero on the LHS or RHS, the add won't
939        // carry.
940        Base = N.getOperand(0);
941        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
942        return true;
943      }
944    }
945  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
946    // Loading from a constant address.  Verify low two bits are clear.
947    if ((CN->getValue() & 3) == 0) {
948      // If this address fits entirely in a 14-bit sext immediate field, codegen
949      // this as "d, 0"
950      short Imm;
951      if (isIntS16Immediate(CN, Imm)) {
952        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
953        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
954        return true;
955      }
956
957      // Fold the low-part of 32-bit absolute addresses into addr mode.
958      if (CN->getValueType(0) == MVT::i32 ||
959          (int64_t)CN->getValue() == (int)CN->getValue()) {
960        int Addr = (int)CN->getValue();
961
962        // Otherwise, break this down into an LIS + disp.
963        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
964
965        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
966        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
967        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
968        return true;
969      }
970    }
971  }
972
973  Disp = DAG.getTargetConstant(0, getPointerTy());
974  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
975    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
976  else
977    Base = N;
978  return true;      // [r+0]
979}
980
981
982/// getPreIndexedAddressParts - returns true by value, base pointer and
983/// offset pointer and addressing mode by reference if the node's address
984/// can be legally represented as pre-indexed load / store address.
985bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
986                                                  SDOperand &Offset,
987                                                  ISD::MemIndexedMode &AM,
988                                                  SelectionDAG &DAG) {
989  // Disabled by default for now.
990  if (!EnablePPCPreinc) return false;
991
992  SDOperand Ptr;
993  MVT::ValueType VT;
994  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
995    Ptr = LD->getBasePtr();
996    VT = LD->getMemoryVT();
997
998  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
999    ST = ST;
1000    Ptr = ST->getBasePtr();
1001    VT  = ST->getMemoryVT();
1002  } else
1003    return false;
1004
1005  // PowerPC doesn't have preinc load/store instructions for vectors.
1006  if (MVT::isVector(VT))
1007    return false;
1008
1009  // TODO: Check reg+reg first.
1010
1011  // LDU/STU use reg+imm*4, others use reg+imm.
1012  if (VT != MVT::i64) {
1013    // reg + imm
1014    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1015      return false;
1016  } else {
1017    // reg + imm * 4.
1018    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1019      return false;
1020  }
1021
1022  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1023    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1024    // sext i32 to i64 when addr mode is r+i.
1025    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1026        LD->getExtensionType() == ISD::SEXTLOAD &&
1027        isa<ConstantSDNode>(Offset))
1028      return false;
1029  }
1030
1031  AM = ISD::PRE_INC;
1032  return true;
1033}
1034
1035//===----------------------------------------------------------------------===//
1036//  LowerOperation implementation
1037//===----------------------------------------------------------------------===//
1038
1039SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1040                                             SelectionDAG &DAG) {
1041  MVT::ValueType PtrVT = Op.getValueType();
1042  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1043  Constant *C = CP->getConstVal();
1044  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1045  SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047  const TargetMachine &TM = DAG.getTarget();
1048
1049  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1050  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1051
1052  // If this is a non-darwin platform, we don't support non-static relo models
1053  // yet.
1054  if (TM.getRelocationModel() == Reloc::Static ||
1055      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056    // Generate non-pic code that has direct accesses to the constant pool.
1057    // The address of the global is just (hi(&g)+lo(&g)).
1058    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  }
1060
1061  if (TM.getRelocationModel() == Reloc::PIC_) {
1062    // With PIC, the first instruction is actually "GR+hi(&G)".
1063    Hi = DAG.getNode(ISD::ADD, PtrVT,
1064                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065  }
1066
1067  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068  return Lo;
1069}
1070
1071SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1072  MVT::ValueType PtrVT = Op.getValueType();
1073  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1074  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1075  SDOperand Zero = DAG.getConstant(0, PtrVT);
1076
1077  const TargetMachine &TM = DAG.getTarget();
1078
1079  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1080  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1081
1082  // If this is a non-darwin platform, we don't support non-static relo models
1083  // yet.
1084  if (TM.getRelocationModel() == Reloc::Static ||
1085      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1086    // Generate non-pic code that has direct accesses to the constant pool.
1087    // The address of the global is just (hi(&g)+lo(&g)).
1088    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089  }
1090
1091  if (TM.getRelocationModel() == Reloc::PIC_) {
1092    // With PIC, the first instruction is actually "GR+hi(&G)".
1093    Hi = DAG.getNode(ISD::ADD, PtrVT,
1094                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1095  }
1096
1097  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1098  return Lo;
1099}
1100
1101SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1102                                                   SelectionDAG &DAG) {
1103  assert(0 && "TLS not implemented for PPC.");
1104  return SDOperand(); // Not reached
1105}
1106
1107SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1108                                                SelectionDAG &DAG) {
1109  MVT::ValueType PtrVT = Op.getValueType();
1110  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1111  GlobalValue *GV = GSDN->getGlobal();
1112  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1113  // If it's a debug information descriptor, don't mess with it.
1114  if (DAG.isVerifiedDebugInfoDesc(Op))
1115    return GA;
1116  SDOperand Zero = DAG.getConstant(0, PtrVT);
1117
1118  const TargetMachine &TM = DAG.getTarget();
1119
1120  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1121  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1122
1123  // If this is a non-darwin platform, we don't support non-static relo models
1124  // yet.
1125  if (TM.getRelocationModel() == Reloc::Static ||
1126      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1127    // Generate non-pic code that has direct accesses to globals.
1128    // The address of the global is just (hi(&g)+lo(&g)).
1129    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1130  }
1131
1132  if (TM.getRelocationModel() == Reloc::PIC_) {
1133    // With PIC, the first instruction is actually "GR+hi(&G)".
1134    Hi = DAG.getNode(ISD::ADD, PtrVT,
1135                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1136  }
1137
1138  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1139
1140  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1141    return Lo;
1142
1143  // If the global is weak or external, we have to go through the lazy
1144  // resolution stub.
1145  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1146}
1147
1148SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1149  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1150
1151  // If we're comparing for equality to zero, expose the fact that this is
1152  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1153  // fold the new nodes.
1154  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1155    if (C->isNullValue() && CC == ISD::SETEQ) {
1156      MVT::ValueType VT = Op.getOperand(0).getValueType();
1157      SDOperand Zext = Op.getOperand(0);
1158      if (VT < MVT::i32) {
1159        VT = MVT::i32;
1160        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1161      }
1162      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1163      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1164      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1165                                  DAG.getConstant(Log2b, MVT::i32));
1166      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1167    }
1168    // Leave comparisons against 0 and -1 alone for now, since they're usually
1169    // optimized.  FIXME: revisit this when we can custom lower all setcc
1170    // optimizations.
1171    if (C->isAllOnesValue() || C->isNullValue())
1172      return SDOperand();
1173  }
1174
1175  // If we have an integer seteq/setne, turn it into a compare against zero
1176  // by xor'ing the rhs with the lhs, which is faster than setting a
1177  // condition register, reading it back out, and masking the correct bit.  The
1178  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1179  // the result to other bit-twiddling opportunities.
1180  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1181  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1182    MVT::ValueType VT = Op.getValueType();
1183    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1184                                Op.getOperand(1));
1185    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1186  }
1187  return SDOperand();
1188}
1189
1190SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1191                              int VarArgsFrameIndex,
1192                              int VarArgsStackOffset,
1193                              unsigned VarArgsNumGPR,
1194                              unsigned VarArgsNumFPR,
1195                              const PPCSubtarget &Subtarget) {
1196
1197  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1198  return SDOperand(); // Not reached
1199}
1200
1201SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1202                              int VarArgsFrameIndex,
1203                              int VarArgsStackOffset,
1204                              unsigned VarArgsNumGPR,
1205                              unsigned VarArgsNumFPR,
1206                              const PPCSubtarget &Subtarget) {
1207
1208  if (Subtarget.isMachoABI()) {
1209    // vastart just stores the address of the VarArgsFrameIndex slot into the
1210    // memory location argument.
1211    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1212    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1213    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1214    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1215  }
1216
1217  // For ELF 32 ABI we follow the layout of the va_list struct.
1218  // We suppose the given va_list is already allocated.
1219  //
1220  // typedef struct {
1221  //  char gpr;     /* index into the array of 8 GPRs
1222  //                 * stored in the register save area
1223  //                 * gpr=0 corresponds to r3,
1224  //                 * gpr=1 to r4, etc.
1225  //                 */
1226  //  char fpr;     /* index into the array of 8 FPRs
1227  //                 * stored in the register save area
1228  //                 * fpr=0 corresponds to f1,
1229  //                 * fpr=1 to f2, etc.
1230  //                 */
1231  //  char *overflow_arg_area;
1232  //                /* location on stack that holds
1233  //                 * the next overflow argument
1234  //                 */
1235  //  char *reg_save_area;
1236  //               /* where r3:r10 and f1:f8 (if saved)
1237  //                * are stored
1238  //                */
1239  // } va_list[1];
1240
1241
1242  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1243  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1244
1245
1246  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1247
1248  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1249  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1250
1251  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1252  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1253
1254  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1255  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1256
1257  uint64_t FPROffset = 1;
1258  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1259
1260  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1261
1262  // Store first byte : number of int regs
1263  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1264                                      Op.getOperand(1), SV, 0);
1265  uint64_t nextOffset = FPROffset;
1266  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1267                                  ConstFPROffset);
1268
1269  // Store second byte : number of float regs
1270  SDOperand secondStore =
1271    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1272  nextOffset += StackOffset;
1273  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1274
1275  // Store second word : arguments given on stack
1276  SDOperand thirdStore =
1277    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1278  nextOffset += FrameOffset;
1279  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1280
1281  // Store third word : arguments given in registers
1282  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1283
1284}
1285
1286#include "PPCGenCallingConv.inc"
1287
1288/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1289/// depending on which subtarget is selected.
1290static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1291  if (Subtarget.isMachoABI()) {
1292    static const unsigned FPR[] = {
1293      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1294      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1295    };
1296    return FPR;
1297  }
1298
1299
1300  static const unsigned FPR[] = {
1301    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1302    PPC::F8
1303  };
1304  return FPR;
1305}
1306
1307SDOperand
1308PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1309                                         SelectionDAG &DAG,
1310                                         int &VarArgsFrameIndex,
1311                                         int &VarArgsStackOffset,
1312                                         unsigned &VarArgsNumGPR,
1313                                         unsigned &VarArgsNumFPR,
1314                                         const PPCSubtarget &Subtarget) {
1315  // TODO: add description of PPC stack frame format, or at least some docs.
1316  //
1317  MachineFunction &MF = DAG.getMachineFunction();
1318  MachineFrameInfo *MFI = MF.getFrameInfo();
1319  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1320  SmallVector<SDOperand, 8> ArgValues;
1321  SDOperand Root = Op.getOperand(0);
1322  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1323
1324  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1325  bool isPPC64 = PtrVT == MVT::i64;
1326  bool isMachoABI = Subtarget.isMachoABI();
1327  bool isELF32_ABI = Subtarget.isELF32_ABI();
1328  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1329
1330  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1331
1332  static const unsigned GPR_32[] = {           // 32-bit registers.
1333    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1334    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1335  };
1336  static const unsigned GPR_64[] = {           // 64-bit registers.
1337    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1338    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1339  };
1340
1341  static const unsigned *FPR = GetFPR(Subtarget);
1342
1343  static const unsigned VR[] = {
1344    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1345    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1346  };
1347
1348  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1349  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1350  const unsigned Num_VR_Regs  = array_lengthof( VR);
1351
1352  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1353
1354  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1355
1356  // In 32-bit non-varargs functions, the stack space for vectors is after the
1357  // stack space for non-vectors.  We do not use this space unless we have
1358  // too many vectors to fit in registers, something that only occurs in
1359  // constructed examples:), but we have to walk the arglist to figure
1360  // that out...for the pathological case, compute VecArgOffset as the
1361  // start of the vector parameter area.  Computing VecArgOffset is the
1362  // entire point of the following loop.
1363  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1364  // to handle Elf here.
1365  unsigned VecArgOffset = ArgOffset;
1366  if (!isVarArg && !isPPC64) {
1367    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1368         ++ArgNo) {
1369      MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1370      unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1371      ISD::ArgFlagsTy Flags =
1372        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1373
1374      if (Flags.isByVal()) {
1375        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1376        ObjSize = Flags.getByValSize();
1377        unsigned ArgSize =
1378                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1379        VecArgOffset += ArgSize;
1380        continue;
1381      }
1382
1383      switch(ObjectVT) {
1384      default: assert(0 && "Unhandled argument type!");
1385      case MVT::i32:
1386      case MVT::f32:
1387        VecArgOffset += isPPC64 ? 8 : 4;
1388        break;
1389      case MVT::i64:  // PPC64
1390      case MVT::f64:
1391        VecArgOffset += 8;
1392        break;
1393      case MVT::v4f32:
1394      case MVT::v4i32:
1395      case MVT::v8i16:
1396      case MVT::v16i8:
1397        // Nothing to do, we're only looking at Nonvector args here.
1398        break;
1399      }
1400    }
1401  }
1402  // We've found where the vector parameter area in memory is.  Skip the
1403  // first 12 parameters; these don't use that memory.
1404  VecArgOffset = ((VecArgOffset+15)/16)*16;
1405  VecArgOffset += 12*16;
1406
1407  // Add DAG nodes to load the arguments or copy them out of registers.  On
1408  // entry to a function on PPC, the arguments start after the linkage area,
1409  // although the first ones are often in registers.
1410  //
1411  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1412  // represented with two words (long long or double) must be copied to an
1413  // even GPR_idx value or to an even ArgOffset value.
1414
1415  SmallVector<SDOperand, 8> MemOps;
1416
1417  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1418    SDOperand ArgVal;
1419    bool needsLoad = false;
1420    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1421    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1422    unsigned ArgSize = ObjSize;
1423    ISD::ArgFlagsTy Flags =
1424      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1425    // See if next argument requires stack alignment in ELF
1426    bool Align = Flags.isDivided();
1427
1428    unsigned CurArgOffset = ArgOffset;
1429
1430    // FIXME alignment for ELF may not be right
1431    // FIXME the codegen can be much improved in some cases.
1432    // We do not have to keep everything in memory.
1433    if (Flags.isByVal()) {
1434      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1435      ObjSize = Flags.getByValSize();
1436      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1437      // Double word align in ELF
1438      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1439      // Objects of size 1 and 2 are right justified, everything else is
1440      // left justified.  This means the memory address is adjusted forwards.
1441      if (ObjSize==1 || ObjSize==2) {
1442        CurArgOffset = CurArgOffset + (4 - ObjSize);
1443      }
1444      // The value of the object is its address.
1445      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1446      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1447      ArgValues.push_back(FIN);
1448      if (ObjSize==1 || ObjSize==2) {
1449        if (GPR_idx != Num_GPR_Regs) {
1450          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1451          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1452          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1453          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1454                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1455          MemOps.push_back(Store);
1456          ++GPR_idx;
1457          if (isMachoABI) ArgOffset += PtrByteSize;
1458        } else {
1459          ArgOffset += PtrByteSize;
1460        }
1461        continue;
1462      }
1463      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1464        // Store whatever pieces of the object are in registers
1465        // to memory.  ArgVal will be address of the beginning of
1466        // the object.
1467        if (GPR_idx != Num_GPR_Regs) {
1468          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1469          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1470          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1471          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1472          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1473          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1474          MemOps.push_back(Store);
1475          ++GPR_idx;
1476          if (isMachoABI) ArgOffset += PtrByteSize;
1477        } else {
1478          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1479          break;
1480        }
1481      }
1482      continue;
1483    }
1484
1485    switch (ObjectVT) {
1486    default: assert(0 && "Unhandled argument type!");
1487    case MVT::i32:
1488      if (!isPPC64) {
1489        // Double word align in ELF
1490        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1491
1492        if (GPR_idx != Num_GPR_Regs) {
1493          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1494          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1495          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1496          ++GPR_idx;
1497        } else {
1498          needsLoad = true;
1499          ArgSize = PtrByteSize;
1500        }
1501        // Stack align in ELF
1502        if (needsLoad && Align && isELF32_ABI)
1503          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1504        // All int arguments reserve stack space in Macho ABI.
1505        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1506        break;
1507      }
1508      // FALLTHROUGH
1509    case MVT::i64:  // PPC64
1510      if (GPR_idx != Num_GPR_Regs) {
1511        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1512        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1513        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1514
1515        if (ObjectVT == MVT::i32) {
1516          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1517          // value to MVT::i64 and then truncate to the correct register size.
1518          if (Flags.isSExt())
1519            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1520                                 DAG.getValueType(ObjectVT));
1521          else if (Flags.isZExt())
1522            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1523                                 DAG.getValueType(ObjectVT));
1524
1525          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1526        }
1527
1528        ++GPR_idx;
1529      } else {
1530        needsLoad = true;
1531      }
1532      // All int arguments reserve stack space in Macho ABI.
1533      if (isMachoABI || needsLoad) ArgOffset += 8;
1534      break;
1535
1536    case MVT::f32:
1537    case MVT::f64:
1538      // Every 4 bytes of argument space consumes one of the GPRs available for
1539      // argument passing.
1540      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1541        ++GPR_idx;
1542        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1543          ++GPR_idx;
1544      }
1545      if (FPR_idx != Num_FPR_Regs) {
1546        unsigned VReg;
1547        if (ObjectVT == MVT::f32)
1548          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1549        else
1550          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1551        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1552        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1553        ++FPR_idx;
1554      } else {
1555        needsLoad = true;
1556      }
1557
1558      // Stack align in ELF
1559      if (needsLoad && Align && isELF32_ABI)
1560        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1561      // All FP arguments reserve stack space in Macho ABI.
1562      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1563      break;
1564    case MVT::v4f32:
1565    case MVT::v4i32:
1566    case MVT::v8i16:
1567    case MVT::v16i8:
1568      // Note that vector arguments in registers don't reserve stack space,
1569      // except in varargs functions.
1570      if (VR_idx != Num_VR_Regs) {
1571        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1572        RegInfo.addLiveIn(VR[VR_idx], VReg);
1573        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1574        if (isVarArg) {
1575          while ((ArgOffset % 16) != 0) {
1576            ArgOffset += PtrByteSize;
1577            if (GPR_idx != Num_GPR_Regs)
1578              GPR_idx++;
1579          }
1580          ArgOffset += 16;
1581          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1582        }
1583        ++VR_idx;
1584      } else {
1585        if (!isVarArg && !isPPC64) {
1586          // Vectors go after all the nonvectors.
1587          CurArgOffset = VecArgOffset;
1588          VecArgOffset += 16;
1589        } else {
1590          // Vectors are aligned.
1591          ArgOffset = ((ArgOffset+15)/16)*16;
1592          CurArgOffset = ArgOffset;
1593          ArgOffset += 16;
1594        }
1595        needsLoad = true;
1596      }
1597      break;
1598    }
1599
1600    // We need to load the argument to a virtual register if we determined above
1601    // that we ran out of physical registers of the appropriate type.
1602    if (needsLoad) {
1603      int FI = MFI->CreateFixedObject(ObjSize,
1604                                      CurArgOffset + (ArgSize - ObjSize));
1605      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1606      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1607    }
1608
1609    ArgValues.push_back(ArgVal);
1610  }
1611
1612  // If the function takes variable number of arguments, make a frame index for
1613  // the start of the first vararg value... for expansion of llvm.va_start.
1614  if (isVarArg) {
1615
1616    int depth;
1617    if (isELF32_ABI) {
1618      VarArgsNumGPR = GPR_idx;
1619      VarArgsNumFPR = FPR_idx;
1620
1621      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1622      // pointer.
1623      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1624                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1625                MVT::getSizeInBits(PtrVT)/8);
1626
1627      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1628                                                  ArgOffset);
1629
1630    }
1631    else
1632      depth = ArgOffset;
1633
1634    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1635                                               depth);
1636    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1637
1638    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1639    // stored to the VarArgsFrameIndex on the stack.
1640    if (isELF32_ABI) {
1641      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1642        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1643        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1644        MemOps.push_back(Store);
1645        // Increment the address by four for the next argument to store
1646        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1647        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1648      }
1649    }
1650
1651    // If this function is vararg, store any remaining integer argument regs
1652    // to their spots on the stack so that they may be loaded by deferencing the
1653    // result of va_next.
1654    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1655      unsigned VReg;
1656      if (isPPC64)
1657        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1658      else
1659        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1660
1661      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1662      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1663      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1664      MemOps.push_back(Store);
1665      // Increment the address by four for the next argument to store
1666      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1667      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1668    }
1669
1670    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1671    // on the stack.
1672    if (isELF32_ABI) {
1673      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1674        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1675        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1676        MemOps.push_back(Store);
1677        // Increment the address by eight for the next argument to store
1678        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1679                                           PtrVT);
1680        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1681      }
1682
1683      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1684        unsigned VReg;
1685        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1686
1687        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1688        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1689        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1690        MemOps.push_back(Store);
1691        // Increment the address by eight for the next argument to store
1692        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1693                                           PtrVT);
1694        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1695      }
1696    }
1697  }
1698
1699  if (!MemOps.empty())
1700    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1701
1702  ArgValues.push_back(Root);
1703
1704  // Return the new list of results.
1705  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1706                                    Op.Val->value_end());
1707  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1708}
1709
1710/// isCallCompatibleAddress - Return the immediate to use if the specified
1711/// 32-bit value is representable in the immediate field of a BxA instruction.
1712static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1713  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1714  if (!C) return 0;
1715
1716  int Addr = C->getValue();
1717  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1718      (Addr << 6 >> 6) != Addr)
1719    return 0;  // Top 6 bits have to be sext of immediate.
1720
1721  return DAG.getConstant((int)C->getValue() >> 2,
1722                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1723}
1724
1725/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1726/// by "Src" to address "Dst" of size "Size".  Alignment information is
1727/// specified by the specific parameter attribute. The copy will be passed as
1728/// a byval function parameter.
1729/// Sometimes what we are copying is the end of a larger object, the part that
1730/// does not fit in registers.
1731static SDOperand
1732CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1733                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1734                          unsigned Size) {
1735  SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1736  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
1737                       NULL, 0, NULL, 0);
1738}
1739
1740SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1741                                       const PPCSubtarget &Subtarget,
1742                                       TargetMachine &TM) {
1743  SDOperand Chain  = Op.getOperand(0);
1744  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1745  SDOperand Callee = Op.getOperand(4);
1746  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1747
1748  bool isMachoABI = Subtarget.isMachoABI();
1749  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1750
1751  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1752  bool isPPC64 = PtrVT == MVT::i64;
1753  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1754
1755  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1756  // SelectExpr to use to put the arguments in the appropriate registers.
1757  std::vector<SDOperand> args_to_use;
1758
1759  // Count how many bytes are to be pushed on the stack, including the linkage
1760  // area, and parameter passing area.  We start with 24/48 bytes, which is
1761  // prereserved space for [SP][CR][LR][3 x unused].
1762  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1763
1764  // Add up all the space actually used.
1765  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1766  // they all go in registers, but we must reserve stack space for them for
1767  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1768  // assigned stack space in order, with padding so Altivec parameters are
1769  // 16-byte aligned.
1770  unsigned nAltivecParamsAtEnd = 0;
1771  for (unsigned i = 0; i != NumOps; ++i) {
1772    SDOperand Arg = Op.getOperand(5+2*i);
1773    MVT::ValueType ArgVT = Arg.getValueType();
1774    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1775        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1776      if (!isVarArg && !isPPC64) {
1777      // Non-varargs Altivec parameters go after all the non-Altivec parameters;
1778      // do those last so we know how much padding we need.
1779        nAltivecParamsAtEnd++;
1780        continue;
1781      } else {
1782        // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1783        NumBytes = ((NumBytes+15)/16)*16;
1784      }
1785    }
1786    ISD::ArgFlagsTy Flags =
1787      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
1788    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1789    if (Flags.isByVal())
1790      ArgSize = Flags.getByValSize();
1791    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1792    NumBytes += ArgSize;
1793  }
1794  // Allow for Altivec parameters at the end, if needed.
1795  if (nAltivecParamsAtEnd) {
1796    NumBytes = ((NumBytes+15)/16)*16;
1797    NumBytes += 16*nAltivecParamsAtEnd;
1798  }
1799
1800  // The prolog code of the callee may store up to 8 GPR argument registers to
1801  // the stack, allowing va_start to index over them in memory if its varargs.
1802  // Because we cannot tell if this is needed on the caller side, we have to
1803  // conservatively assume that it is needed.  As such, make sure we have at
1804  // least enough stack space for the caller to store the 8 GPRs.
1805  NumBytes = std::max(NumBytes,
1806                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1807
1808  // Adjust the stack pointer for the new arguments...
1809  // These operations are automatically eliminated by the prolog/epilog pass
1810  Chain = DAG.getCALLSEQ_START(Chain,
1811                               DAG.getConstant(NumBytes, PtrVT));
1812  SDOperand CallSeqStart = Chain;
1813
1814  // Set up a copy of the stack pointer for use loading and storing any
1815  // arguments that may not fit in the registers available for argument
1816  // passing.
1817  SDOperand StackPtr;
1818  if (isPPC64)
1819    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1820  else
1821    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1822
1823  // Figure out which arguments are going to go in registers, and which in
1824  // memory.  Also, if this is a vararg function, floating point operations
1825  // must be stored to our stack, and loaded into integer regs as well, if
1826  // any integer regs are available for argument passing.
1827  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1828  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1829
1830  static const unsigned GPR_32[] = {           // 32-bit registers.
1831    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1832    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1833  };
1834  static const unsigned GPR_64[] = {           // 64-bit registers.
1835    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1836    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1837  };
1838  static const unsigned *FPR = GetFPR(Subtarget);
1839
1840  static const unsigned VR[] = {
1841    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1842    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1843  };
1844  const unsigned NumGPRs = array_lengthof(GPR_32);
1845  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1846  const unsigned NumVRs  = array_lengthof( VR);
1847
1848  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1849
1850  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1851  SmallVector<SDOperand, 8> MemOpChains;
1852  for (unsigned i = 0; i != NumOps; ++i) {
1853    bool inMem = false;
1854    SDOperand Arg = Op.getOperand(5+2*i);
1855    ISD::ArgFlagsTy Flags =
1856      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
1857    // See if next argument requires stack alignment in ELF
1858    bool Align = Flags.isDivided();
1859
1860    // PtrOff will be used to store the current argument to the stack if a
1861    // register cannot be found for it.
1862    SDOperand PtrOff;
1863
1864    // Stack align in ELF 32
1865    if (isELF32_ABI && Align)
1866      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1867                               StackPtr.getValueType());
1868    else
1869      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1870
1871    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1872
1873    // On PPC64, promote integers to 64-bit values.
1874    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1875      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
1876      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1877      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1878    }
1879
1880    // FIXME Elf untested, what are alignment rules?
1881    // FIXME memcpy is used way more than necessary.  Correctness first.
1882    if (Flags.isByVal()) {
1883      unsigned Size = Flags.getByValSize();
1884      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
1885      if (Size==1 || Size==2) {
1886        // Very small objects are passed right-justified.
1887        // Everything else is passed left-justified.
1888        MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1889        if (GPR_idx != NumGPRs) {
1890          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1891                                          NULL, 0, VT);
1892          MemOpChains.push_back(Load.getValue(1));
1893          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1894          if (isMachoABI)
1895            ArgOffset += PtrByteSize;
1896        } else {
1897          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1898          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1899          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1900                                CallSeqStart.Val->getOperand(0),
1901                                Flags, DAG, Size);
1902          // This must go outside the CALLSEQ_START..END.
1903          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1904                               CallSeqStart.Val->getOperand(1));
1905          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1906          Chain = CallSeqStart = NewCallSeqStart;
1907          ArgOffset += PtrByteSize;
1908        }
1909        continue;
1910      }
1911      // Copy entire object into memory.  There are cases where gcc-generated
1912      // code assumes it is there, even if it could be put entirely into
1913      // registers.  (This is not what the doc says.)
1914      SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
1915                            CallSeqStart.Val->getOperand(0),
1916                            Flags, DAG, Size);
1917      // This must go outside the CALLSEQ_START..END.
1918      SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1919                           CallSeqStart.Val->getOperand(1));
1920      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1921      Chain = CallSeqStart = NewCallSeqStart;
1922      // And copy the pieces of it that fit into registers.
1923      for (unsigned j=0; j<Size; j+=PtrByteSize) {
1924        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1925        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1926        if (GPR_idx != NumGPRs) {
1927          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1928          MemOpChains.push_back(Load.getValue(1));
1929          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1930          if (isMachoABI)
1931            ArgOffset += PtrByteSize;
1932        } else {
1933          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
1934          break;
1935        }
1936      }
1937      continue;
1938    }
1939
1940    switch (Arg.getValueType()) {
1941    default: assert(0 && "Unexpected ValueType for argument!");
1942    case MVT::i32:
1943    case MVT::i64:
1944      // Double word align in ELF
1945      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
1946      if (GPR_idx != NumGPRs) {
1947        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1948      } else {
1949        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1950        inMem = true;
1951      }
1952      if (inMem || isMachoABI) {
1953        // Stack align in ELF
1954        if (isELF32_ABI && Align)
1955          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1956
1957        ArgOffset += PtrByteSize;
1958      }
1959      break;
1960    case MVT::f32:
1961    case MVT::f64:
1962      if (FPR_idx != NumFPRs) {
1963        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1964
1965        if (isVarArg) {
1966          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1967          MemOpChains.push_back(Store);
1968
1969          // Float varargs are always shadowed in available integer registers
1970          if (GPR_idx != NumGPRs) {
1971            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1972            MemOpChains.push_back(Load.getValue(1));
1973            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1974                                                                Load));
1975          }
1976          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1977            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1978            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1979            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1980            MemOpChains.push_back(Load.getValue(1));
1981            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1982                                                                Load));
1983          }
1984        } else {
1985          // If we have any FPRs remaining, we may also have GPRs remaining.
1986          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1987          // GPRs.
1988          if (isMachoABI) {
1989            if (GPR_idx != NumGPRs)
1990              ++GPR_idx;
1991            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1992                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1993              ++GPR_idx;
1994          }
1995        }
1996      } else {
1997        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1998        inMem = true;
1999      }
2000      if (inMem || isMachoABI) {
2001        // Stack align in ELF
2002        if (isELF32_ABI && Align)
2003          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2004        if (isPPC64)
2005          ArgOffset += 8;
2006        else
2007          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2008      }
2009      break;
2010    case MVT::v4f32:
2011    case MVT::v4i32:
2012    case MVT::v8i16:
2013    case MVT::v16i8:
2014      if (isVarArg) {
2015        // These go aligned on the stack, or in the corresponding R registers
2016        // when within range.  The Darwin PPC ABI doc claims they also go in
2017        // V registers; in fact gcc does this only for arguments that are
2018        // prototyped, not for those that match the ...  We do it for all
2019        // arguments, seems to work.
2020        while (ArgOffset % 16 !=0) {
2021          ArgOffset += PtrByteSize;
2022          if (GPR_idx != NumGPRs)
2023            GPR_idx++;
2024        }
2025        // We could elide this store in the case where the object fits
2026        // entirely in R registers.  Maybe later.
2027        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2028                            DAG.getConstant(ArgOffset, PtrVT));
2029        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2030        MemOpChains.push_back(Store);
2031        if (VR_idx != NumVRs) {
2032          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2033          MemOpChains.push_back(Load.getValue(1));
2034          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2035        }
2036        ArgOffset += 16;
2037        for (unsigned i=0; i<16; i+=PtrByteSize) {
2038          if (GPR_idx == NumGPRs)
2039            break;
2040          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2041                                  DAG.getConstant(i, PtrVT));
2042          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2043          MemOpChains.push_back(Load.getValue(1));
2044          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2045        }
2046        break;
2047      }
2048      // Non-varargs Altivec params generally go in registers, but have
2049      // stack space allocated at the end.
2050      if (VR_idx != NumVRs) {
2051        // Doesn't have GPR space allocated.
2052        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2053      } else if (nAltivecParamsAtEnd==0) {
2054        // We are emitting Altivec params in order.
2055        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2056                            DAG.getConstant(ArgOffset, PtrVT));
2057        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2058        MemOpChains.push_back(Store);
2059        ArgOffset += 16;
2060      }
2061      break;
2062    }
2063  }
2064  // If all Altivec parameters fit in registers, as they usually do,
2065  // they get stack space following the non-Altivec parameters.  We
2066  // don't track this here because nobody below needs it.
2067  // If there are more Altivec parameters than fit in registers emit
2068  // the stores here.
2069  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2070    unsigned j = 0;
2071    // Offset is aligned; skip 1st 12 params which go in V registers.
2072    ArgOffset = ((ArgOffset+15)/16)*16;
2073    ArgOffset += 12*16;
2074    for (unsigned i = 0; i != NumOps; ++i) {
2075      SDOperand Arg = Op.getOperand(5+2*i);
2076      MVT::ValueType ArgType = Arg.getValueType();
2077      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2078          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2079        if (++j > NumVRs) {
2080          SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2081                              DAG.getConstant(ArgOffset, PtrVT));
2082          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2083          MemOpChains.push_back(Store);
2084          ArgOffset += 16;
2085        }
2086      }
2087    }
2088  }
2089
2090  if (!MemOpChains.empty())
2091    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2092                        &MemOpChains[0], MemOpChains.size());
2093
2094  // Build a sequence of copy-to-reg nodes chained together with token chain
2095  // and flag operands which copy the outgoing args into the appropriate regs.
2096  SDOperand InFlag;
2097  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2098    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2099                             InFlag);
2100    InFlag = Chain.getValue(1);
2101  }
2102
2103  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2104  if (isVarArg && isELF32_ABI) {
2105    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2106    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2107    InFlag = Chain.getValue(1);
2108  }
2109
2110  std::vector<MVT::ValueType> NodeTys;
2111  NodeTys.push_back(MVT::Other);   // Returns a chain
2112  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2113
2114  SmallVector<SDOperand, 8> Ops;
2115  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2116
2117  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2118  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2119  // node so that legalize doesn't hack it.
2120  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2121    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2122  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2123    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2124  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2125    // If this is an absolute destination address, use the munged value.
2126    Callee = SDOperand(Dest, 0);
2127  else {
2128    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2129    // to do the call, we can't use PPCISD::CALL.
2130    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2131    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2132    InFlag = Chain.getValue(1);
2133
2134    // Copy the callee address into R12/X12 on darwin.
2135    if (isMachoABI) {
2136      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2137      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2138      InFlag = Chain.getValue(1);
2139    }
2140
2141    NodeTys.clear();
2142    NodeTys.push_back(MVT::Other);
2143    NodeTys.push_back(MVT::Flag);
2144    Ops.push_back(Chain);
2145    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2146    Callee.Val = 0;
2147  }
2148
2149  // If this is a direct call, pass the chain and the callee.
2150  if (Callee.Val) {
2151    Ops.push_back(Chain);
2152    Ops.push_back(Callee);
2153  }
2154
2155  // Add argument registers to the end of the list so that they are known live
2156  // into the call.
2157  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2158    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2159                                  RegsToPass[i].second.getValueType()));
2160
2161  if (InFlag.Val)
2162    Ops.push_back(InFlag);
2163  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2164  InFlag = Chain.getValue(1);
2165
2166  Chain = DAG.getCALLSEQ_END(Chain,
2167                             DAG.getConstant(NumBytes, PtrVT),
2168                             DAG.getConstant(0, PtrVT),
2169                             InFlag);
2170  if (Op.Val->getValueType(0) != MVT::Other)
2171    InFlag = Chain.getValue(1);
2172
2173  SmallVector<SDOperand, 16> ResultVals;
2174  SmallVector<CCValAssign, 16> RVLocs;
2175  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2176  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2177  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2178
2179  // Copy all of the result registers out of their specified physreg.
2180  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2181    CCValAssign &VA = RVLocs[i];
2182    MVT::ValueType VT = VA.getValVT();
2183    assert(VA.isRegLoc() && "Can only return in registers!");
2184    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2185    ResultVals.push_back(Chain.getValue(0));
2186    InFlag = Chain.getValue(2);
2187  }
2188
2189  // If the function returns void, just return the chain.
2190  if (RVLocs.empty())
2191    return Chain;
2192
2193  // Otherwise, merge everything together with a MERGE_VALUES node.
2194  ResultVals.push_back(Chain);
2195  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2196                              &ResultVals[0], ResultVals.size());
2197  return Res.getValue(Op.ResNo);
2198}
2199
2200SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2201                                      TargetMachine &TM) {
2202  SmallVector<CCValAssign, 16> RVLocs;
2203  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2205  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2206  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2207
2208  // If this is the first return lowered for this function, add the regs to the
2209  // liveout set for the function.
2210  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2211    for (unsigned i = 0; i != RVLocs.size(); ++i)
2212      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2213  }
2214
2215  SDOperand Chain = Op.getOperand(0);
2216  SDOperand Flag;
2217
2218  // Copy the result values into the output registers.
2219  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2220    CCValAssign &VA = RVLocs[i];
2221    assert(VA.isRegLoc() && "Can only return in registers!");
2222    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2223    Flag = Chain.getValue(1);
2224  }
2225
2226  if (Flag.Val)
2227    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2228  else
2229    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2230}
2231
2232SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2233                                   const PPCSubtarget &Subtarget) {
2234  // When we pop the dynamic allocation we need to restore the SP link.
2235
2236  // Get the corect type for pointers.
2237  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2238
2239  // Construct the stack pointer operand.
2240  bool IsPPC64 = Subtarget.isPPC64();
2241  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2242  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2243
2244  // Get the operands for the STACKRESTORE.
2245  SDOperand Chain = Op.getOperand(0);
2246  SDOperand SaveSP = Op.getOperand(1);
2247
2248  // Load the old link SP.
2249  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2250
2251  // Restore the stack pointer.
2252  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2253
2254  // Store the old link SP.
2255  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2256}
2257
2258SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2259                                         SelectionDAG &DAG,
2260                                         const PPCSubtarget &Subtarget) {
2261  MachineFunction &MF = DAG.getMachineFunction();
2262  bool IsPPC64 = Subtarget.isPPC64();
2263  bool isMachoABI = Subtarget.isMachoABI();
2264
2265  // Get current frame pointer save index.  The users of this index will be
2266  // primarily DYNALLOC instructions.
2267  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2268  int FPSI = FI->getFramePointerSaveIndex();
2269
2270  // If the frame pointer save index hasn't been defined yet.
2271  if (!FPSI) {
2272    // Find out what the fix offset of the frame pointer save area.
2273    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2274
2275    // Allocate the frame index for frame pointer save area.
2276    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2277    // Save the result.
2278    FI->setFramePointerSaveIndex(FPSI);
2279  }
2280
2281  // Get the inputs.
2282  SDOperand Chain = Op.getOperand(0);
2283  SDOperand Size  = Op.getOperand(1);
2284
2285  // Get the corect type for pointers.
2286  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2287  // Negate the size.
2288  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2289                                  DAG.getConstant(0, PtrVT), Size);
2290  // Construct a node for the frame pointer save index.
2291  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2292  // Build a DYNALLOC node.
2293  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2294  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2295  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2296}
2297
2298
2299/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2300/// possible.
2301SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2302  // Not FP? Not a fsel.
2303  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2304      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2305    return SDOperand();
2306
2307  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2308
2309  // Cannot handle SETEQ/SETNE.
2310  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2311
2312  MVT::ValueType ResVT = Op.getValueType();
2313  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2314  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2315  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2316
2317  // If the RHS of the comparison is a 0.0, we don't need to do the
2318  // subtraction at all.
2319  if (isFloatingPointZero(RHS))
2320    switch (CC) {
2321    default: break;       // SETUO etc aren't handled by fsel.
2322    case ISD::SETULT:
2323    case ISD::SETOLT:
2324    case ISD::SETLT:
2325      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2326    case ISD::SETUGE:
2327    case ISD::SETOGE:
2328    case ISD::SETGE:
2329      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2330        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2331      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2332    case ISD::SETUGT:
2333    case ISD::SETOGT:
2334    case ISD::SETGT:
2335      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2336    case ISD::SETULE:
2337    case ISD::SETOLE:
2338    case ISD::SETLE:
2339      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2340        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2341      return DAG.getNode(PPCISD::FSEL, ResVT,
2342                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2343    }
2344
2345  SDOperand Cmp;
2346  switch (CC) {
2347  default: break;       // SETUO etc aren't handled by fsel.
2348  case ISD::SETULT:
2349  case ISD::SETOLT:
2350  case ISD::SETLT:
2351    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2352    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2353      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2354      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2355  case ISD::SETUGE:
2356  case ISD::SETOGE:
2357  case ISD::SETGE:
2358    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2359    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2360      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2361      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2362  case ISD::SETUGT:
2363  case ISD::SETOGT:
2364  case ISD::SETGT:
2365    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2366    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2367      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2368      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2369  case ISD::SETULE:
2370  case ISD::SETOLE:
2371  case ISD::SETLE:
2372    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2373    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2374      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2375      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2376  }
2377  return SDOperand();
2378}
2379
2380// FIXME: Split this code up when LegalizeDAGTypes lands.
2381SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2382  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2383  SDOperand Src = Op.getOperand(0);
2384  if (Src.getValueType() == MVT::f32)
2385    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2386
2387  SDOperand Tmp;
2388  switch (Op.getValueType()) {
2389  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2390  case MVT::i32:
2391    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2392    break;
2393  case MVT::i64:
2394    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2395    break;
2396  }
2397
2398  // Convert the FP value to an int value through memory.
2399  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2400
2401  // Emit a store to the stack slot.
2402  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2403
2404  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2405  // add in a bias.
2406  if (Op.getValueType() == MVT::i32)
2407    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2408                        DAG.getConstant(4, FIPtr.getValueType()));
2409  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2410}
2411
2412SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2413                                                 SelectionDAG &DAG) {
2414  assert(Op.getValueType() == MVT::ppcf128);
2415  SDNode *Node = Op.Val;
2416  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2417  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2418  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2419  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2420
2421  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2422  // of the long double, and puts FPSCR back the way it was.  We do not
2423  // actually model FPSCR.
2424  std::vector<MVT::ValueType> NodeTys;
2425  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2426
2427  NodeTys.push_back(MVT::f64);   // Return register
2428  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2429  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2430  MFFSreg = Result.getValue(0);
2431  InFlag = Result.getValue(1);
2432
2433  NodeTys.clear();
2434  NodeTys.push_back(MVT::Flag);   // Returns a flag
2435  Ops[0] = DAG.getConstant(31, MVT::i32);
2436  Ops[1] = InFlag;
2437  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2438  InFlag = Result.getValue(0);
2439
2440  NodeTys.clear();
2441  NodeTys.push_back(MVT::Flag);   // Returns a flag
2442  Ops[0] = DAG.getConstant(30, MVT::i32);
2443  Ops[1] = InFlag;
2444  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2445  InFlag = Result.getValue(0);
2446
2447  NodeTys.clear();
2448  NodeTys.push_back(MVT::f64);    // result of add
2449  NodeTys.push_back(MVT::Flag);   // Returns a flag
2450  Ops[0] = Lo;
2451  Ops[1] = Hi;
2452  Ops[2] = InFlag;
2453  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2454  FPreg = Result.getValue(0);
2455  InFlag = Result.getValue(1);
2456
2457  NodeTys.clear();
2458  NodeTys.push_back(MVT::f64);
2459  Ops[0] = DAG.getConstant(1, MVT::i32);
2460  Ops[1] = MFFSreg;
2461  Ops[2] = FPreg;
2462  Ops[3] = InFlag;
2463  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2464  FPreg = Result.getValue(0);
2465
2466  // We know the low half is about to be thrown away, so just use something
2467  // convenient.
2468  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2469}
2470
2471SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2472  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2473  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2474    return SDOperand();
2475
2476  if (Op.getOperand(0).getValueType() == MVT::i64) {
2477    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2478    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2479    if (Op.getValueType() == MVT::f32)
2480      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2481    return FP;
2482  }
2483
2484  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2485         "Unhandled SINT_TO_FP type in custom expander!");
2486  // Since we only generate this in 64-bit mode, we can take advantage of
2487  // 64-bit registers.  In particular, sign extend the input value into the
2488  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2489  // then lfd it and fcfid it.
2490  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2491  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2492  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2493  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2494
2495  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2496                                Op.getOperand(0));
2497
2498  // STD the extended value into the stack slot.
2499  MachineMemOperand MO(PseudoSourceValue::getFixedStack(),
2500                       MachineMemOperand::MOStore, FrameIdx, 8, 8);
2501  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2502                                DAG.getEntryNode(), Ext64, FIdx,
2503                                DAG.getMemOperand(MO));
2504  // Load the value as a double.
2505  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2506
2507  // FCFID it and return it.
2508  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2509  if (Op.getValueType() == MVT::f32)
2510    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2511  return FP;
2512}
2513
2514SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2515  /*
2516   The rounding mode is in bits 30:31 of FPSR, and has the following
2517   settings:
2518     00 Round to nearest
2519     01 Round to 0
2520     10 Round to +inf
2521     11 Round to -inf
2522
2523  FLT_ROUNDS, on the other hand, expects the following:
2524    -1 Undefined
2525     0 Round to 0
2526     1 Round to nearest
2527     2 Round to +inf
2528     3 Round to -inf
2529
2530  To perform the conversion, we do:
2531    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2532  */
2533
2534  MachineFunction &MF = DAG.getMachineFunction();
2535  MVT::ValueType VT = Op.getValueType();
2536  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2537  std::vector<MVT::ValueType> NodeTys;
2538  SDOperand MFFSreg, InFlag;
2539
2540  // Save FP Control Word to register
2541  NodeTys.push_back(MVT::f64);    // return register
2542  NodeTys.push_back(MVT::Flag);   // unused in this context
2543  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2544
2545  // Save FP register to stack slot
2546  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2547  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2548  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2549                                 StackSlot, NULL, 0);
2550
2551  // Load FP Control Word from low 32 bits of stack slot.
2552  SDOperand Four = DAG.getConstant(4, PtrVT);
2553  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2554  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2555
2556  // Transform as necessary
2557  SDOperand CWD1 =
2558    DAG.getNode(ISD::AND, MVT::i32,
2559                CWD, DAG.getConstant(3, MVT::i32));
2560  SDOperand CWD2 =
2561    DAG.getNode(ISD::SRL, MVT::i32,
2562                DAG.getNode(ISD::AND, MVT::i32,
2563                            DAG.getNode(ISD::XOR, MVT::i32,
2564                                        CWD, DAG.getConstant(3, MVT::i32)),
2565                            DAG.getConstant(3, MVT::i32)),
2566                DAG.getConstant(1, MVT::i8));
2567
2568  SDOperand RetVal =
2569    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2570
2571  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2572                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2573}
2574
2575SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2576  MVT::ValueType VT = Op.getValueType();
2577  unsigned BitWidth = MVT::getSizeInBits(VT);
2578  assert(Op.getNumOperands() == 3 &&
2579         VT == Op.getOperand(1).getValueType() &&
2580         "Unexpected SHL!");
2581
2582  // Expand into a bunch of logical ops.  Note that these ops
2583  // depend on the PPC behavior for oversized shift amounts.
2584  SDOperand Lo = Op.getOperand(0);
2585  SDOperand Hi = Op.getOperand(1);
2586  SDOperand Amt = Op.getOperand(2);
2587  MVT::ValueType AmtVT = Amt.getValueType();
2588
2589  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2590                               DAG.getConstant(BitWidth, AmtVT), Amt);
2591  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2592  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2593  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2594  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2595                               DAG.getConstant(-BitWidth, AmtVT));
2596  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2597  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2598  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
2599  SDOperand OutOps[] = { OutLo, OutHi };
2600  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2601                     OutOps, 2);
2602}
2603
2604SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2605  MVT::ValueType VT = Op.getValueType();
2606  unsigned BitWidth = MVT::getSizeInBits(VT);
2607  assert(Op.getNumOperands() == 3 &&
2608         VT == Op.getOperand(1).getValueType() &&
2609         "Unexpected SRL!");
2610
2611  // Expand into a bunch of logical ops.  Note that these ops
2612  // depend on the PPC behavior for oversized shift amounts.
2613  SDOperand Lo = Op.getOperand(0);
2614  SDOperand Hi = Op.getOperand(1);
2615  SDOperand Amt = Op.getOperand(2);
2616  MVT::ValueType AmtVT = Amt.getValueType();
2617
2618  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2619                               DAG.getConstant(BitWidth, AmtVT), Amt);
2620  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2621  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2622  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2623  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2624                               DAG.getConstant(-BitWidth, AmtVT));
2625  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2626  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2627  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
2628  SDOperand OutOps[] = { OutLo, OutHi };
2629  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2630                     OutOps, 2);
2631}
2632
2633SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2634  MVT::ValueType VT = Op.getValueType();
2635  unsigned BitWidth = MVT::getSizeInBits(VT);
2636  assert(Op.getNumOperands() == 3 &&
2637         VT == Op.getOperand(1).getValueType() &&
2638         "Unexpected SRA!");
2639
2640  // Expand into a bunch of logical ops, followed by a select_cc.
2641  SDOperand Lo = Op.getOperand(0);
2642  SDOperand Hi = Op.getOperand(1);
2643  SDOperand Amt = Op.getOperand(2);
2644  MVT::ValueType AmtVT = Amt.getValueType();
2645
2646  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2647                               DAG.getConstant(BitWidth, AmtVT), Amt);
2648  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2649  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2650  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2651  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2652                               DAG.getConstant(-BitWidth, AmtVT));
2653  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2654  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2655  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
2656                                    Tmp4, Tmp6, ISD::SETLE);
2657  SDOperand OutOps[] = { OutLo, OutHi };
2658  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
2659                     OutOps, 2);
2660}
2661
2662//===----------------------------------------------------------------------===//
2663// Vector related lowering.
2664//
2665
2666// If this is a vector of constants or undefs, get the bits.  A bit in
2667// UndefBits is set if the corresponding element of the vector is an
2668// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2669// zero.   Return true if this is not an array of constants, false if it is.
2670//
2671static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2672                                       uint64_t UndefBits[2]) {
2673  // Start with zero'd results.
2674  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2675
2676  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2677  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2678    SDOperand OpVal = BV->getOperand(i);
2679
2680    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2681    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2682
2683    uint64_t EltBits = 0;
2684    if (OpVal.getOpcode() == ISD::UNDEF) {
2685      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2686      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2687      continue;
2688    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2689      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2690    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2691      assert(CN->getValueType(0) == MVT::f32 &&
2692             "Only one legal FP vector type!");
2693      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2694    } else {
2695      // Nonconstant element.
2696      return true;
2697    }
2698
2699    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2700  }
2701
2702  //printf("%llx %llx  %llx %llx\n",
2703  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2704  return false;
2705}
2706
2707// If this is a splat (repetition) of a value across the whole vector, return
2708// the smallest size that splats it.  For example, "0x01010101010101..." is a
2709// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2710// SplatSize = 1 byte.
2711static bool isConstantSplat(const uint64_t Bits128[2],
2712                            const uint64_t Undef128[2],
2713                            unsigned &SplatBits, unsigned &SplatUndef,
2714                            unsigned &SplatSize) {
2715
2716  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2717  // the same as the lower 64-bits, ignoring undefs.
2718  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2719    return false;  // Can't be a splat if two pieces don't match.
2720
2721  uint64_t Bits64  = Bits128[0] | Bits128[1];
2722  uint64_t Undef64 = Undef128[0] & Undef128[1];
2723
2724  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2725  // undefs.
2726  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2727    return false;  // Can't be a splat if two pieces don't match.
2728
2729  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2730  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2731
2732  // If the top 16-bits are different than the lower 16-bits, ignoring
2733  // undefs, we have an i32 splat.
2734  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2735    SplatBits = Bits32;
2736    SplatUndef = Undef32;
2737    SplatSize = 4;
2738    return true;
2739  }
2740
2741  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2742  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2743
2744  // If the top 8-bits are different than the lower 8-bits, ignoring
2745  // undefs, we have an i16 splat.
2746  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2747    SplatBits = Bits16;
2748    SplatUndef = Undef16;
2749    SplatSize = 2;
2750    return true;
2751  }
2752
2753  // Otherwise, we have an 8-bit splat.
2754  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2755  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2756  SplatSize = 1;
2757  return true;
2758}
2759
2760/// BuildSplatI - Build a canonical splati of Val with an element size of
2761/// SplatSize.  Cast the result to VT.
2762static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2763                             SelectionDAG &DAG) {
2764  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2765
2766  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2767    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2768  };
2769
2770  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2771
2772  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2773  if (Val == -1)
2774    SplatSize = 1;
2775
2776  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2777
2778  // Build a canonical splat for this value.
2779  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2780  SmallVector<SDOperand, 8> Ops;
2781  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2782  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2783                              &Ops[0], Ops.size());
2784  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2785}
2786
2787/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2788/// specified intrinsic ID.
2789static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2790                                  SelectionDAG &DAG,
2791                                  MVT::ValueType DestVT = MVT::Other) {
2792  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2793  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2794                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2795}
2796
2797/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2798/// specified intrinsic ID.
2799static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2800                                  SDOperand Op2, SelectionDAG &DAG,
2801                                  MVT::ValueType DestVT = MVT::Other) {
2802  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2803  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2804                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2805}
2806
2807
2808/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2809/// amount.  The result has the specified value type.
2810static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2811                             MVT::ValueType VT, SelectionDAG &DAG) {
2812  // Force LHS/RHS to be the right type.
2813  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2814  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2815
2816  SDOperand Ops[16];
2817  for (unsigned i = 0; i != 16; ++i)
2818    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2819  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2820                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2821  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2822}
2823
2824// If this is a case we can't handle, return null and let the default
2825// expansion code take care of it.  If we CAN select this case, and if it
2826// selects to a single instruction, return Op.  Otherwise, if we can codegen
2827// this case more efficiently than a constant pool load, lower it to the
2828// sequence of ops that should be used.
2829SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2830                                               SelectionDAG &DAG) {
2831  // If this is a vector of constants or undefs, get the bits.  A bit in
2832  // UndefBits is set if the corresponding element of the vector is an
2833  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2834  // zero.
2835  uint64_t VectorBits[2];
2836  uint64_t UndefBits[2];
2837  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2838    return SDOperand();   // Not a constant vector.
2839
2840  // If this is a splat (repetition) of a value across the whole vector, return
2841  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2842  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2843  // SplatSize = 1 byte.
2844  unsigned SplatBits, SplatUndef, SplatSize;
2845  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2846    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2847
2848    // First, handle single instruction cases.
2849
2850    // All zeros?
2851    if (SplatBits == 0) {
2852      // Canonicalize all zero vectors to be v4i32.
2853      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2854        SDOperand Z = DAG.getConstant(0, MVT::i32);
2855        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2856        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2857      }
2858      return Op;
2859    }
2860
2861    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2862    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2863    if (SextVal >= -16 && SextVal <= 15)
2864      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2865
2866
2867    // Two instruction sequences.
2868
2869    // If this value is in the range [-32,30] and is even, use:
2870    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2871    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2872      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2873      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2874    }
2875
2876    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2877    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2878    // for fneg/fabs.
2879    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2880      // Make -1 and vspltisw -1:
2881      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2882
2883      // Make the VSLW intrinsic, computing 0x8000_0000.
2884      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2885                                       OnesV, DAG);
2886
2887      // xor by OnesV to invert it.
2888      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2889      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2890    }
2891
2892    // Check to see if this is a wide variety of vsplti*, binop self cases.
2893    unsigned SplatBitSize = SplatSize*8;
2894    static const signed char SplatCsts[] = {
2895      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2896      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2897    };
2898
2899    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2900      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2901      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2902      int i = SplatCsts[idx];
2903
2904      // Figure out what shift amount will be used by altivec if shifted by i in
2905      // this splat size.
2906      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2907
2908      // vsplti + shl self.
2909      if (SextVal == (i << (int)TypeShiftAmt)) {
2910        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2911        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2912          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2913          Intrinsic::ppc_altivec_vslw
2914        };
2915        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2916        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2917      }
2918
2919      // vsplti + srl self.
2920      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2921        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2922        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2923          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2924          Intrinsic::ppc_altivec_vsrw
2925        };
2926        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2927        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2928      }
2929
2930      // vsplti + sra self.
2931      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2932        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2933        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2934          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2935          Intrinsic::ppc_altivec_vsraw
2936        };
2937        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2938        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2939      }
2940
2941      // vsplti + rol self.
2942      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2943                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2944        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2945        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2946          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2947          Intrinsic::ppc_altivec_vrlw
2948        };
2949        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2950        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2951      }
2952
2953      // t = vsplti c, result = vsldoi t, t, 1
2954      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2955        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2956        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2957      }
2958      // t = vsplti c, result = vsldoi t, t, 2
2959      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2960        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2961        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2962      }
2963      // t = vsplti c, result = vsldoi t, t, 3
2964      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2965        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2966        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2967      }
2968    }
2969
2970    // Three instruction sequences.
2971
2972    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2973    if (SextVal >= 0 && SextVal <= 31) {
2974      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2975      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2976      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2977      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2978    }
2979    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2980    if (SextVal >= -31 && SextVal <= 0) {
2981      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2982      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2983      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2984      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2985    }
2986  }
2987
2988  return SDOperand();
2989}
2990
2991/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2992/// the specified operations to build the shuffle.
2993static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2994                                        SDOperand RHS, SelectionDAG &DAG) {
2995  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2996  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2997  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2998
2999  enum {
3000    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3001    OP_VMRGHW,
3002    OP_VMRGLW,
3003    OP_VSPLTISW0,
3004    OP_VSPLTISW1,
3005    OP_VSPLTISW2,
3006    OP_VSPLTISW3,
3007    OP_VSLDOI4,
3008    OP_VSLDOI8,
3009    OP_VSLDOI12
3010  };
3011
3012  if (OpNum == OP_COPY) {
3013    if (LHSID == (1*9+2)*9+3) return LHS;
3014    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3015    return RHS;
3016  }
3017
3018  SDOperand OpLHS, OpRHS;
3019  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3020  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3021
3022  unsigned ShufIdxs[16];
3023  switch (OpNum) {
3024  default: assert(0 && "Unknown i32 permute!");
3025  case OP_VMRGHW:
3026    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3027    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3028    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3029    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3030    break;
3031  case OP_VMRGLW:
3032    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3033    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3034    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3035    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3036    break;
3037  case OP_VSPLTISW0:
3038    for (unsigned i = 0; i != 16; ++i)
3039      ShufIdxs[i] = (i&3)+0;
3040    break;
3041  case OP_VSPLTISW1:
3042    for (unsigned i = 0; i != 16; ++i)
3043      ShufIdxs[i] = (i&3)+4;
3044    break;
3045  case OP_VSPLTISW2:
3046    for (unsigned i = 0; i != 16; ++i)
3047      ShufIdxs[i] = (i&3)+8;
3048    break;
3049  case OP_VSPLTISW3:
3050    for (unsigned i = 0; i != 16; ++i)
3051      ShufIdxs[i] = (i&3)+12;
3052    break;
3053  case OP_VSLDOI4:
3054    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3055  case OP_VSLDOI8:
3056    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3057  case OP_VSLDOI12:
3058    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3059  }
3060  SDOperand Ops[16];
3061  for (unsigned i = 0; i != 16; ++i)
3062    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3063
3064  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3065                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3066}
3067
3068/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3069/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3070/// return the code it can be lowered into.  Worst case, it can always be
3071/// lowered into a vperm.
3072SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3073                                                 SelectionDAG &DAG) {
3074  SDOperand V1 = Op.getOperand(0);
3075  SDOperand V2 = Op.getOperand(1);
3076  SDOperand PermMask = Op.getOperand(2);
3077
3078  // Cases that are handled by instructions that take permute immediates
3079  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3080  // selected by the instruction selector.
3081  if (V2.getOpcode() == ISD::UNDEF) {
3082    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3083        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3084        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3085        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3086        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3087        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3088        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3089        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3090        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3091        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3092        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3093        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3094      return Op;
3095    }
3096  }
3097
3098  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3099  // and produce a fixed permutation.  If any of these match, do not lower to
3100  // VPERM.
3101  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3102      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3103      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3104      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3105      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3106      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3107      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3108      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3109      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3110    return Op;
3111
3112  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3113  // perfect shuffle table to emit an optimal matching sequence.
3114  unsigned PFIndexes[4];
3115  bool isFourElementShuffle = true;
3116  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3117    unsigned EltNo = 8;   // Start out undef.
3118    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3119      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3120        continue;   // Undef, ignore it.
3121
3122      unsigned ByteSource =
3123        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3124      if ((ByteSource & 3) != j) {
3125        isFourElementShuffle = false;
3126        break;
3127      }
3128
3129      if (EltNo == 8) {
3130        EltNo = ByteSource/4;
3131      } else if (EltNo != ByteSource/4) {
3132        isFourElementShuffle = false;
3133        break;
3134      }
3135    }
3136    PFIndexes[i] = EltNo;
3137  }
3138
3139  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3140  // perfect shuffle vector to determine if it is cost effective to do this as
3141  // discrete instructions, or whether we should use a vperm.
3142  if (isFourElementShuffle) {
3143    // Compute the index in the perfect shuffle table.
3144    unsigned PFTableIndex =
3145      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3146
3147    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3148    unsigned Cost  = (PFEntry >> 30);
3149
3150    // Determining when to avoid vperm is tricky.  Many things affect the cost
3151    // of vperm, particularly how many times the perm mask needs to be computed.
3152    // For example, if the perm mask can be hoisted out of a loop or is already
3153    // used (perhaps because there are multiple permutes with the same shuffle
3154    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3155    // the loop requires an extra register.
3156    //
3157    // As a compromise, we only emit discrete instructions if the shuffle can be
3158    // generated in 3 or fewer operations.  When we have loop information
3159    // available, if this block is within a loop, we should avoid using vperm
3160    // for 3-operation perms and use a constant pool load instead.
3161    if (Cost < 3)
3162      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3163  }
3164
3165  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3166  // vector that will get spilled to the constant pool.
3167  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3168
3169  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3170  // that it is in input element units, not in bytes.  Convert now.
3171  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3172  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3173
3174  SmallVector<SDOperand, 16> ResultMask;
3175  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3176    unsigned SrcElt;
3177    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3178      SrcElt = 0;
3179    else
3180      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3181
3182    for (unsigned j = 0; j != BytesPerElement; ++j)
3183      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3184                                           MVT::i8));
3185  }
3186
3187  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3188                                    &ResultMask[0], ResultMask.size());
3189  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3190}
3191
3192/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3193/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3194/// information about the intrinsic.
3195static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3196                                  bool &isDot) {
3197  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3198  CompareOpc = -1;
3199  isDot = false;
3200  switch (IntrinsicID) {
3201  default: return false;
3202    // Comparison predicates.
3203  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3204  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3205  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3206  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3207  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3208  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3209  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3210  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3211  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3212  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3213  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3214  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3215  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3216
3217    // Normal Comparisons.
3218  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3219  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3220  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3221  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3222  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3223  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3224  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3225  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3226  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3227  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3228  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3229  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3230  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3231  }
3232  return true;
3233}
3234
3235/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3236/// lower, do it, otherwise return null.
3237SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3238                                                     SelectionDAG &DAG) {
3239  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3240  // opcode number of the comparison.
3241  int CompareOpc;
3242  bool isDot;
3243  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3244    return SDOperand();    // Don't custom lower most intrinsics.
3245
3246  // If this is a non-dot comparison, make the VCMP node and we are done.
3247  if (!isDot) {
3248    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3249                                Op.getOperand(1), Op.getOperand(2),
3250                                DAG.getConstant(CompareOpc, MVT::i32));
3251    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3252  }
3253
3254  // Create the PPCISD altivec 'dot' comparison node.
3255  SDOperand Ops[] = {
3256    Op.getOperand(2),  // LHS
3257    Op.getOperand(3),  // RHS
3258    DAG.getConstant(CompareOpc, MVT::i32)
3259  };
3260  std::vector<MVT::ValueType> VTs;
3261  VTs.push_back(Op.getOperand(2).getValueType());
3262  VTs.push_back(MVT::Flag);
3263  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3264
3265  // Now that we have the comparison, emit a copy from the CR to a GPR.
3266  // This is flagged to the above dot comparison.
3267  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3268                                DAG.getRegister(PPC::CR6, MVT::i32),
3269                                CompNode.getValue(1));
3270
3271  // Unpack the result based on how the target uses it.
3272  unsigned BitNo;   // Bit # of CR6.
3273  bool InvertBit;   // Invert result?
3274  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3275  default:  // Can't happen, don't crash on invalid number though.
3276  case 0:   // Return the value of the EQ bit of CR6.
3277    BitNo = 0; InvertBit = false;
3278    break;
3279  case 1:   // Return the inverted value of the EQ bit of CR6.
3280    BitNo = 0; InvertBit = true;
3281    break;
3282  case 2:   // Return the value of the LT bit of CR6.
3283    BitNo = 2; InvertBit = false;
3284    break;
3285  case 3:   // Return the inverted value of the LT bit of CR6.
3286    BitNo = 2; InvertBit = true;
3287    break;
3288  }
3289
3290  // Shift the bit into the low position.
3291  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3292                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3293  // Isolate the bit.
3294  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3295                      DAG.getConstant(1, MVT::i32));
3296
3297  // If we are supposed to, toggle the bit.
3298  if (InvertBit)
3299    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3300                        DAG.getConstant(1, MVT::i32));
3301  return Flags;
3302}
3303
3304SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3305                                                   SelectionDAG &DAG) {
3306  // Create a stack slot that is 16-byte aligned.
3307  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3308  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3309  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3310  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3311
3312  // Store the input value into Value#0 of the stack slot.
3313  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3314                                 Op.getOperand(0), FIdx, NULL, 0);
3315  // Load it out.
3316  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3317}
3318
3319SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3320  if (Op.getValueType() == MVT::v4i32) {
3321    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3322
3323    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3324    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3325
3326    SDOperand RHSSwap =   // = vrlw RHS, 16
3327      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3328
3329    // Shrinkify inputs to v8i16.
3330    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3331    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3332    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3333
3334    // Low parts multiplied together, generating 32-bit results (we ignore the
3335    // top parts).
3336    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3337                                        LHS, RHS, DAG, MVT::v4i32);
3338
3339    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3340                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3341    // Shift the high parts up 16 bits.
3342    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3343    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3344  } else if (Op.getValueType() == MVT::v8i16) {
3345    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3346
3347    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3348
3349    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3350                            LHS, RHS, Zero, DAG);
3351  } else if (Op.getValueType() == MVT::v16i8) {
3352    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3353
3354    // Multiply the even 8-bit parts, producing 16-bit sums.
3355    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3356                                           LHS, RHS, DAG, MVT::v8i16);
3357    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3358
3359    // Multiply the odd 8-bit parts, producing 16-bit sums.
3360    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3361                                          LHS, RHS, DAG, MVT::v8i16);
3362    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3363
3364    // Merge the results together.
3365    SDOperand Ops[16];
3366    for (unsigned i = 0; i != 8; ++i) {
3367      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3368      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3369    }
3370    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3371                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3372  } else {
3373    assert(0 && "Unknown mul to lower!");
3374    abort();
3375  }
3376}
3377
3378/// LowerOperation - Provide custom lowering hooks for some operations.
3379///
3380SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3381  switch (Op.getOpcode()) {
3382  default: assert(0 && "Wasn't expecting to be able to lower this!");
3383  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3384  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3385  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3386  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3387  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3388  case ISD::VASTART:
3389    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3390                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3391
3392  case ISD::VAARG:
3393    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3394                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3395
3396  case ISD::FORMAL_ARGUMENTS:
3397    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3398                                 VarArgsStackOffset, VarArgsNumGPR,
3399                                 VarArgsNumFPR, PPCSubTarget);
3400
3401  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3402                                                 getTargetMachine());
3403  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3404  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3405  case ISD::DYNAMIC_STACKALLOC:
3406    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3407
3408  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3409  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3410  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3411  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3412  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3413
3414  // Lower 64-bit shifts.
3415  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3416  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3417  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3418
3419  // Vector-related lowering.
3420  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3421  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3422  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3423  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3424  case ISD::MUL:                return LowerMUL(Op, DAG);
3425
3426  // Frame & Return address.
3427  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3428  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3429  }
3430  return SDOperand();
3431}
3432
3433SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3434  switch (N->getOpcode()) {
3435  default: assert(0 && "Wasn't expecting to be able to lower this!");
3436  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3437  }
3438}
3439
3440
3441//===----------------------------------------------------------------------===//
3442//  Other Lowering Code
3443//===----------------------------------------------------------------------===//
3444
3445MachineBasicBlock *
3446PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3447                                               MachineBasicBlock *BB) {
3448  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3449  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3450          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3451          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3452          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3453          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3454         "Unexpected instr type to insert");
3455
3456  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3457  // control-flow pattern.  The incoming instruction knows the destination vreg
3458  // to set, the condition code register to branch on, the true/false values to
3459  // select between, and a branch opcode to use.
3460  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3461  ilist<MachineBasicBlock>::iterator It = BB;
3462  ++It;
3463
3464  //  thisMBB:
3465  //  ...
3466  //   TrueVal = ...
3467  //   cmpTY ccX, r1, r2
3468  //   bCC copy1MBB
3469  //   fallthrough --> copy0MBB
3470  MachineBasicBlock *thisMBB = BB;
3471  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3472  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3473  unsigned SelectPred = MI->getOperand(4).getImm();
3474  BuildMI(BB, TII->get(PPC::BCC))
3475    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3476  MachineFunction *F = BB->getParent();
3477  F->getBasicBlockList().insert(It, copy0MBB);
3478  F->getBasicBlockList().insert(It, sinkMBB);
3479  // Update machine-CFG edges by first adding all successors of the current
3480  // block to the new block which will contain the Phi node for the select.
3481  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3482      e = BB->succ_end(); i != e; ++i)
3483    sinkMBB->addSuccessor(*i);
3484  // Next, remove all successors of the current block, and add the true
3485  // and fallthrough blocks as its successors.
3486  while(!BB->succ_empty())
3487    BB->removeSuccessor(BB->succ_begin());
3488  BB->addSuccessor(copy0MBB);
3489  BB->addSuccessor(sinkMBB);
3490
3491  //  copy0MBB:
3492  //   %FalseValue = ...
3493  //   # fallthrough to sinkMBB
3494  BB = copy0MBB;
3495
3496  // Update machine-CFG edges
3497  BB->addSuccessor(sinkMBB);
3498
3499  //  sinkMBB:
3500  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3501  //  ...
3502  BB = sinkMBB;
3503  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3504    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3505    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3506
3507  delete MI;   // The pseudo instruction is gone now.
3508  return BB;
3509}
3510
3511//===----------------------------------------------------------------------===//
3512// Target Optimization Hooks
3513//===----------------------------------------------------------------------===//
3514
3515SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3516                                               DAGCombinerInfo &DCI) const {
3517  TargetMachine &TM = getTargetMachine();
3518  SelectionDAG &DAG = DCI.DAG;
3519  switch (N->getOpcode()) {
3520  default: break;
3521  case PPCISD::SHL:
3522    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3523      if (C->getValue() == 0)   // 0 << V -> 0.
3524        return N->getOperand(0);
3525    }
3526    break;
3527  case PPCISD::SRL:
3528    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3529      if (C->getValue() == 0)   // 0 >>u V -> 0.
3530        return N->getOperand(0);
3531    }
3532    break;
3533  case PPCISD::SRA:
3534    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3535      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3536          C->isAllOnesValue())    // -1 >>s V -> -1.
3537        return N->getOperand(0);
3538    }
3539    break;
3540
3541  case ISD::SINT_TO_FP:
3542    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3543      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3544        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3545        // We allow the src/dst to be either f32/f64, but the intermediate
3546        // type must be i64.
3547        if (N->getOperand(0).getValueType() == MVT::i64 &&
3548            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3549          SDOperand Val = N->getOperand(0).getOperand(0);
3550          if (Val.getValueType() == MVT::f32) {
3551            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3552            DCI.AddToWorklist(Val.Val);
3553          }
3554
3555          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3556          DCI.AddToWorklist(Val.Val);
3557          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3558          DCI.AddToWorklist(Val.Val);
3559          if (N->getValueType(0) == MVT::f32) {
3560            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3561                              DAG.getIntPtrConstant(0));
3562            DCI.AddToWorklist(Val.Val);
3563          }
3564          return Val;
3565        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3566          // If the intermediate type is i32, we can avoid the load/store here
3567          // too.
3568        }
3569      }
3570    }
3571    break;
3572  case ISD::STORE:
3573    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3574    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3575        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3576        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3577        N->getOperand(1).getValueType() == MVT::i32 &&
3578        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3579      SDOperand Val = N->getOperand(1).getOperand(0);
3580      if (Val.getValueType() == MVT::f32) {
3581        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3582        DCI.AddToWorklist(Val.Val);
3583      }
3584      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3585      DCI.AddToWorklist(Val.Val);
3586
3587      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3588                        N->getOperand(2), N->getOperand(3));
3589      DCI.AddToWorklist(Val.Val);
3590      return Val;
3591    }
3592
3593    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3594    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3595        N->getOperand(1).Val->hasOneUse() &&
3596        (N->getOperand(1).getValueType() == MVT::i32 ||
3597         N->getOperand(1).getValueType() == MVT::i16)) {
3598      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3599      // Do an any-extend to 32-bits if this is a half-word input.
3600      if (BSwapOp.getValueType() == MVT::i16)
3601        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3602
3603      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3604                         N->getOperand(2), N->getOperand(3),
3605                         DAG.getValueType(N->getOperand(1).getValueType()));
3606    }
3607    break;
3608  case ISD::BSWAP:
3609    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3610    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3611        N->getOperand(0).hasOneUse() &&
3612        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3613      SDOperand Load = N->getOperand(0);
3614      LoadSDNode *LD = cast<LoadSDNode>(Load);
3615      // Create the byte-swapping load.
3616      std::vector<MVT::ValueType> VTs;
3617      VTs.push_back(MVT::i32);
3618      VTs.push_back(MVT::Other);
3619      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3620      SDOperand Ops[] = {
3621        LD->getChain(),    // Chain
3622        LD->getBasePtr(),  // Ptr
3623        MO,                // MemOperand
3624        DAG.getValueType(N->getValueType(0)) // VT
3625      };
3626      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3627
3628      // If this is an i16 load, insert the truncate.
3629      SDOperand ResVal = BSLoad;
3630      if (N->getValueType(0) == MVT::i16)
3631        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3632
3633      // First, combine the bswap away.  This makes the value produced by the
3634      // load dead.
3635      DCI.CombineTo(N, ResVal);
3636
3637      // Next, combine the load away, we give it a bogus result value but a real
3638      // chain result.  The result value is dead because the bswap is dead.
3639      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3640
3641      // Return N so it doesn't get rechecked!
3642      return SDOperand(N, 0);
3643    }
3644
3645    break;
3646  case PPCISD::VCMP: {
3647    // If a VCMPo node already exists with exactly the same operands as this
3648    // node, use its result instead of this node (VCMPo computes both a CR6 and
3649    // a normal output).
3650    //
3651    if (!N->getOperand(0).hasOneUse() &&
3652        !N->getOperand(1).hasOneUse() &&
3653        !N->getOperand(2).hasOneUse()) {
3654
3655      // Scan all of the users of the LHS, looking for VCMPo's that match.
3656      SDNode *VCMPoNode = 0;
3657
3658      SDNode *LHSN = N->getOperand(0).Val;
3659      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3660           UI != E; ++UI)
3661        if ((*UI).getUser()->getOpcode() == PPCISD::VCMPo &&
3662            (*UI).getUser()->getOperand(1) == N->getOperand(1) &&
3663            (*UI).getUser()->getOperand(2) == N->getOperand(2) &&
3664            (*UI).getUser()->getOperand(0) == N->getOperand(0)) {
3665          VCMPoNode = UI->getUser();
3666          break;
3667        }
3668
3669      // If there is no VCMPo node, or if the flag value has a single use, don't
3670      // transform this.
3671      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3672        break;
3673
3674      // Look at the (necessarily single) use of the flag value.  If it has a
3675      // chain, this transformation is more complex.  Note that multiple things
3676      // could use the value result, which we should ignore.
3677      SDNode *FlagUser = 0;
3678      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3679           FlagUser == 0; ++UI) {
3680        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3681        SDNode *User = UI->getUser();
3682        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3683          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3684            FlagUser = User;
3685            break;
3686          }
3687        }
3688      }
3689
3690      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3691      // give up for right now.
3692      if (FlagUser->getOpcode() == PPCISD::MFCR)
3693        return SDOperand(VCMPoNode, 0);
3694    }
3695    break;
3696  }
3697  case ISD::BR_CC: {
3698    // If this is a branch on an altivec predicate comparison, lower this so
3699    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3700    // lowering is done pre-legalize, because the legalizer lowers the predicate
3701    // compare down to code that is difficult to reassemble.
3702    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3703    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3704    int CompareOpc;
3705    bool isDot;
3706
3707    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3708        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3709        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3710      assert(isDot && "Can't compare against a vector result!");
3711
3712      // If this is a comparison against something other than 0/1, then we know
3713      // that the condition is never/always true.
3714      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3715      if (Val != 0 && Val != 1) {
3716        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3717          return N->getOperand(0);
3718        // Always !=, turn it into an unconditional branch.
3719        return DAG.getNode(ISD::BR, MVT::Other,
3720                           N->getOperand(0), N->getOperand(4));
3721      }
3722
3723      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3724
3725      // Create the PPCISD altivec 'dot' comparison node.
3726      std::vector<MVT::ValueType> VTs;
3727      SDOperand Ops[] = {
3728        LHS.getOperand(2),  // LHS of compare
3729        LHS.getOperand(3),  // RHS of compare
3730        DAG.getConstant(CompareOpc, MVT::i32)
3731      };
3732      VTs.push_back(LHS.getOperand(2).getValueType());
3733      VTs.push_back(MVT::Flag);
3734      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3735
3736      // Unpack the result based on how the target uses it.
3737      PPC::Predicate CompOpc;
3738      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3739      default:  // Can't happen, don't crash on invalid number though.
3740      case 0:   // Branch on the value of the EQ bit of CR6.
3741        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3742        break;
3743      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3744        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3745        break;
3746      case 2:   // Branch on the value of the LT bit of CR6.
3747        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3748        break;
3749      case 3:   // Branch on the inverted value of the LT bit of CR6.
3750        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3751        break;
3752      }
3753
3754      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3755                         DAG.getConstant(CompOpc, MVT::i32),
3756                         DAG.getRegister(PPC::CR6, MVT::i32),
3757                         N->getOperand(4), CompNode.getValue(1));
3758    }
3759    break;
3760  }
3761  }
3762
3763  return SDOperand();
3764}
3765
3766//===----------------------------------------------------------------------===//
3767// Inline Assembly Support
3768//===----------------------------------------------------------------------===//
3769
3770void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3771                                                       const APInt &Mask,
3772                                                       APInt &KnownZero,
3773                                                       APInt &KnownOne,
3774                                                       const SelectionDAG &DAG,
3775                                                       unsigned Depth) const {
3776  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3777  switch (Op.getOpcode()) {
3778  default: break;
3779  case PPCISD::LBRX: {
3780    // lhbrx is known to have the top bits cleared out.
3781    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3782      KnownZero = 0xFFFF0000;
3783    break;
3784  }
3785  case ISD::INTRINSIC_WO_CHAIN: {
3786    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3787    default: break;
3788    case Intrinsic::ppc_altivec_vcmpbfp_p:
3789    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3790    case Intrinsic::ppc_altivec_vcmpequb_p:
3791    case Intrinsic::ppc_altivec_vcmpequh_p:
3792    case Intrinsic::ppc_altivec_vcmpequw_p:
3793    case Intrinsic::ppc_altivec_vcmpgefp_p:
3794    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3795    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3796    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3797    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3798    case Intrinsic::ppc_altivec_vcmpgtub_p:
3799    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3800    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3801      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3802      break;
3803    }
3804  }
3805  }
3806}
3807
3808
3809/// getConstraintType - Given a constraint, return the type of
3810/// constraint it is for this target.
3811PPCTargetLowering::ConstraintType
3812PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3813  if (Constraint.size() == 1) {
3814    switch (Constraint[0]) {
3815    default: break;
3816    case 'b':
3817    case 'r':
3818    case 'f':
3819    case 'v':
3820    case 'y':
3821      return C_RegisterClass;
3822    }
3823  }
3824  return TargetLowering::getConstraintType(Constraint);
3825}
3826
3827std::pair<unsigned, const TargetRegisterClass*>
3828PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3829                                                MVT::ValueType VT) const {
3830  if (Constraint.size() == 1) {
3831    // GCC RS6000 Constraint Letters
3832    switch (Constraint[0]) {
3833    case 'b':   // R1-R31
3834    case 'r':   // R0-R31
3835      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3836        return std::make_pair(0U, PPC::G8RCRegisterClass);
3837      return std::make_pair(0U, PPC::GPRCRegisterClass);
3838    case 'f':
3839      if (VT == MVT::f32)
3840        return std::make_pair(0U, PPC::F4RCRegisterClass);
3841      else if (VT == MVT::f64)
3842        return std::make_pair(0U, PPC::F8RCRegisterClass);
3843      break;
3844    case 'v':
3845      return std::make_pair(0U, PPC::VRRCRegisterClass);
3846    case 'y':   // crrc
3847      return std::make_pair(0U, PPC::CRRCRegisterClass);
3848    }
3849  }
3850
3851  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3852}
3853
3854
3855/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3856/// vector.  If it is invalid, don't add anything to Ops.
3857void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3858                                                     std::vector<SDOperand>&Ops,
3859                                                     SelectionDAG &DAG) {
3860  SDOperand Result(0,0);
3861  switch (Letter) {
3862  default: break;
3863  case 'I':
3864  case 'J':
3865  case 'K':
3866  case 'L':
3867  case 'M':
3868  case 'N':
3869  case 'O':
3870  case 'P': {
3871    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3872    if (!CST) return; // Must be an immediate to match.
3873    unsigned Value = CST->getValue();
3874    switch (Letter) {
3875    default: assert(0 && "Unknown constraint letter!");
3876    case 'I':  // "I" is a signed 16-bit constant.
3877      if ((short)Value == (int)Value)
3878        Result = DAG.getTargetConstant(Value, Op.getValueType());
3879      break;
3880    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3881    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3882      if ((short)Value == 0)
3883        Result = DAG.getTargetConstant(Value, Op.getValueType());
3884      break;
3885    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3886      if ((Value >> 16) == 0)
3887        Result = DAG.getTargetConstant(Value, Op.getValueType());
3888      break;
3889    case 'M':  // "M" is a constant that is greater than 31.
3890      if (Value > 31)
3891        Result = DAG.getTargetConstant(Value, Op.getValueType());
3892      break;
3893    case 'N':  // "N" is a positive constant that is an exact power of two.
3894      if ((int)Value > 0 && isPowerOf2_32(Value))
3895        Result = DAG.getTargetConstant(Value, Op.getValueType());
3896      break;
3897    case 'O':  // "O" is the constant zero.
3898      if (Value == 0)
3899        Result = DAG.getTargetConstant(Value, Op.getValueType());
3900      break;
3901    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3902      if ((short)-Value == (int)-Value)
3903        Result = DAG.getTargetConstant(Value, Op.getValueType());
3904      break;
3905    }
3906    break;
3907  }
3908  }
3909
3910  if (Result.Val) {
3911    Ops.push_back(Result);
3912    return;
3913  }
3914
3915  // Handle standard constraint letters.
3916  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3917}
3918
3919// isLegalAddressingMode - Return true if the addressing mode represented
3920// by AM is legal for this target, for a load/store of the specified type.
3921bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3922                                              const Type *Ty) const {
3923  // FIXME: PPC does not allow r+i addressing modes for vectors!
3924
3925  // PPC allows a sign-extended 16-bit immediate field.
3926  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3927    return false;
3928
3929  // No global is ever allowed as a base.
3930  if (AM.BaseGV)
3931    return false;
3932
3933  // PPC only support r+r,
3934  switch (AM.Scale) {
3935  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3936    break;
3937  case 1:
3938    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3939      return false;
3940    // Otherwise we have r+r or r+i.
3941    break;
3942  case 2:
3943    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3944      return false;
3945    // Allow 2*r as r+r.
3946    break;
3947  default:
3948    // No other scales are supported.
3949    return false;
3950  }
3951
3952  return true;
3953}
3954
3955/// isLegalAddressImmediate - Return true if the integer value can be used
3956/// as the offset of the target addressing mode for load / store of the
3957/// given type.
3958bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3959  // PPC allows a sign-extended 16-bit immediate field.
3960  return (V > -(1 << 16) && V < (1 << 16)-1);
3961}
3962
3963bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3964  return false;
3965}
3966
3967SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3968  // Depths > 0 not supported yet!
3969  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3970    return SDOperand();
3971
3972  MachineFunction &MF = DAG.getMachineFunction();
3973  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3974  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3975  if (RAIdx == 0) {
3976    bool isPPC64 = PPCSubTarget.isPPC64();
3977    int Offset =
3978      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3979
3980    // Set up a frame object for the return address.
3981    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3982
3983    // Remember it for next time.
3984    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3985
3986    // Make sure the function really does not optimize away the store of the RA
3987    // to the stack.
3988    FuncInfo->setLRStoreRequired();
3989  }
3990
3991  // Just load the return address off the stack.
3992  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3993  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3994}
3995
3996SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3997  // Depths > 0 not supported yet!
3998  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3999    return SDOperand();
4000
4001  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4002  bool isPPC64 = PtrVT == MVT::i64;
4003
4004  MachineFunction &MF = DAG.getMachineFunction();
4005  MachineFrameInfo *MFI = MF.getFrameInfo();
4006  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4007                  && MFI->getStackSize();
4008
4009  if (isPPC64)
4010    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4011      MVT::i64);
4012  else
4013    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4014      MVT::i32);
4015}
4016