PPCISelLowering.cpp revision c25e7581b9b8088910da31702d4ca21c4734c6d7
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/DerivedTypes.h"
38using namespace llvm;
39
40static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
41                                     CCValAssign::LocInfo &LocInfo,
42                                     ISD::ArgFlagsTy &ArgFlags,
43                                     CCState &State);
44static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
45                                            MVT &LocVT,
46                                            CCValAssign::LocInfo &LocInfo,
47                                            ISD::ArgFlagsTy &ArgFlags,
48                                            CCState &State);
49static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
50                                              MVT &LocVT,
51                                              CCValAssign::LocInfo &LocInfo,
52                                              ISD::ArgFlagsTy &ArgFlags,
53                                              CCState &State);
54
55static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
56cl::desc("enable preincrement load/store generation on PPC (experimental)"),
57                                     cl::Hidden);
58
59PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
60  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
61
62  setPow2DivIsCheap();
63
64  // Use _setjmp/_longjmp instead of setjmp/longjmp.
65  setUseUnderscoreSetJmp(true);
66  setUseUnderscoreLongJmp(true);
67
68  // Set up the register classes.
69  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
70  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
71  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
72
73  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
74  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
75  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
76
77  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
78
79  // PowerPC has pre-inc load and store's.
80  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
81  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
82  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
83  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
84  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
85  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
86  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
87  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
88  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
89  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
90
91  // This is used in the ppcf128->int sequence.  Note it has different semantics
92  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
93  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
94
95  // PowerPC has no SREM/UREM instructions
96  setOperationAction(ISD::SREM, MVT::i32, Expand);
97  setOperationAction(ISD::UREM, MVT::i32, Expand);
98  setOperationAction(ISD::SREM, MVT::i64, Expand);
99  setOperationAction(ISD::UREM, MVT::i64, Expand);
100
101  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
102  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
103  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
104  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
105  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
106  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
107  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
108  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
109  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
110
111  // We don't support sin/cos/sqrt/fmod/pow
112  setOperationAction(ISD::FSIN , MVT::f64, Expand);
113  setOperationAction(ISD::FCOS , MVT::f64, Expand);
114  setOperationAction(ISD::FREM , MVT::f64, Expand);
115  setOperationAction(ISD::FPOW , MVT::f64, Expand);
116  setOperationAction(ISD::FSIN , MVT::f32, Expand);
117  setOperationAction(ISD::FCOS , MVT::f32, Expand);
118  setOperationAction(ISD::FREM , MVT::f32, Expand);
119  setOperationAction(ISD::FPOW , MVT::f32, Expand);
120
121  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
122
123  // If we're enabling GP optimizations, use hardware square root
124  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
125    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
126    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
127  }
128
129  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
130  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
131
132  // PowerPC does not have BSWAP, CTPOP or CTTZ
133  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
134  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
135  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
136  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
137  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
138  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
139
140  // PowerPC does not have ROTR
141  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
142  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
143
144  // PowerPC does not have Select
145  setOperationAction(ISD::SELECT, MVT::i32, Expand);
146  setOperationAction(ISD::SELECT, MVT::i64, Expand);
147  setOperationAction(ISD::SELECT, MVT::f32, Expand);
148  setOperationAction(ISD::SELECT, MVT::f64, Expand);
149
150  // PowerPC wants to turn select_cc of FP into fsel when possible.
151  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
152  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
153
154  // PowerPC wants to optimize integer setcc a bit
155  setOperationAction(ISD::SETCC, MVT::i32, Custom);
156
157  // PowerPC does not have BRCOND which requires SetCC
158  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
159
160  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
161
162  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
163  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
164
165  // PowerPC does not have [U|S]INT_TO_FP
166  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
167  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
168
169  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
170  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
171  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
172  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
173
174  // We cannot sextinreg(i1).  Expand to shifts.
175  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
176
177  // Support label based line numbers.
178  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
179  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
180
181  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
182  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
183  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
184  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
185
186
187  // We want to legalize GlobalAddress and ConstantPool nodes into the
188  // appropriate instructions to materialize the address.
189  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
190  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
191  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
192  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
193  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
194  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
195  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
196  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
197
198  // RET must be custom lowered, to meet ABI requirements.
199  setOperationAction(ISD::RET               , MVT::Other, Custom);
200
201  // TRAP is legal.
202  setOperationAction(ISD::TRAP, MVT::Other, Legal);
203
204  // TRAMPOLINE is custom lowered.
205  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
206
207  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
208  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
209
210  // VAARG is custom lowered with the SVR4 ABI
211  if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI())
212    setOperationAction(ISD::VAARG, MVT::Other, Custom);
213  else
214    setOperationAction(ISD::VAARG, MVT::Other, Expand);
215
216  // Use the default implementation.
217  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
218  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
219  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
220  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
221  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
222  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
223
224  // We want to custom lower some of our intrinsics.
225  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
226
227  // Comparisons that require checking two conditions.
228  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
229  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
230  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
231  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
232  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
233  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
234  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
240
241  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
242    // They also have instructions for converting between i64 and fp.
243    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
244    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
245    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
246    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
247    // This is just the low 32 bits of a (signed) fp->i64 conversion.
248    // We cannot do this with Promote because i64 is not a legal type.
249    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
250
251    // FIXME: disable this lowered code.  This generates 64-bit register values,
252    // and we don't model the fact that the top part is clobbered by calls.  We
253    // need to flag these together so that the value isn't live across a call.
254    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
255  } else {
256    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
258  }
259
260  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
261    // 64-bit PowerPC implementations can support i64 types directly
262    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
263    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
264    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
265    // 64-bit PowerPC wants to expand i128 shifts itself.
266    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
267    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
268    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
269  } else {
270    // 32-bit PowerPC wants to expand i64 shifts itself.
271    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
272    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
273    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
274  }
275
276  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
277    // First set operation action for all vector types to expand. Then we
278    // will selectively turn on ones that can be effectively codegen'd.
279    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
280         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
281      MVT VT = (MVT::SimpleValueType)i;
282
283      // add/sub are legal for all supported vector VT's.
284      setOperationAction(ISD::ADD , VT, Legal);
285      setOperationAction(ISD::SUB , VT, Legal);
286
287      // We promote all shuffles to v16i8.
288      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
289      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
290
291      // We promote all non-typed operations to v4i32.
292      setOperationAction(ISD::AND   , VT, Promote);
293      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
294      setOperationAction(ISD::OR    , VT, Promote);
295      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
296      setOperationAction(ISD::XOR   , VT, Promote);
297      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
298      setOperationAction(ISD::LOAD  , VT, Promote);
299      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
300      setOperationAction(ISD::SELECT, VT, Promote);
301      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
302      setOperationAction(ISD::STORE, VT, Promote);
303      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
304
305      // No other operations are legal.
306      setOperationAction(ISD::MUL , VT, Expand);
307      setOperationAction(ISD::SDIV, VT, Expand);
308      setOperationAction(ISD::SREM, VT, Expand);
309      setOperationAction(ISD::UDIV, VT, Expand);
310      setOperationAction(ISD::UREM, VT, Expand);
311      setOperationAction(ISD::FDIV, VT, Expand);
312      setOperationAction(ISD::FNEG, VT, Expand);
313      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
314      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
315      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
316      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
317      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
318      setOperationAction(ISD::UDIVREM, VT, Expand);
319      setOperationAction(ISD::SDIVREM, VT, Expand);
320      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
321      setOperationAction(ISD::FPOW, VT, Expand);
322      setOperationAction(ISD::CTPOP, VT, Expand);
323      setOperationAction(ISD::CTLZ, VT, Expand);
324      setOperationAction(ISD::CTTZ, VT, Expand);
325    }
326
327    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
328    // with merges, splats, etc.
329    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
330
331    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
332    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
333    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
334    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
335    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
336    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
337
338    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
339    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
340    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
341    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
342
343    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
344    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
345    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
346    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
347
348    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
349    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
350
351    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
352    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
353    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
354    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
355  }
356
357  setShiftAmountType(MVT::i32);
358  setBooleanContents(ZeroOrOneBooleanContent);
359
360  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
361    setStackPointerRegisterToSaveRestore(PPC::X1);
362    setExceptionPointerRegister(PPC::X3);
363    setExceptionSelectorRegister(PPC::X4);
364  } else {
365    setStackPointerRegisterToSaveRestore(PPC::R1);
366    setExceptionPointerRegister(PPC::R3);
367    setExceptionSelectorRegister(PPC::R4);
368  }
369
370  // We have target-specific dag combine patterns for the following nodes:
371  setTargetDAGCombine(ISD::SINT_TO_FP);
372  setTargetDAGCombine(ISD::STORE);
373  setTargetDAGCombine(ISD::BR_CC);
374  setTargetDAGCombine(ISD::BSWAP);
375
376  // Darwin long double math library functions have $LDBL128 appended.
377  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
378    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
379    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
380    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
381    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
382    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
383    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
384    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
385    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
386    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
387    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
388  }
389
390  computeRegisterProperties();
391}
392
393/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
394/// function arguments in the caller parameter area.
395unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
396  TargetMachine &TM = getTargetMachine();
397  // Darwin passes everything on 4 byte boundary.
398  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
399    return 4;
400  // FIXME SVR4 TBD
401  return 4;
402}
403
404const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
405  switch (Opcode) {
406  default: return 0;
407  case PPCISD::FSEL:            return "PPCISD::FSEL";
408  case PPCISD::FCFID:           return "PPCISD::FCFID";
409  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
410  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
411  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
412  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
413  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
414  case PPCISD::VPERM:           return "PPCISD::VPERM";
415  case PPCISD::Hi:              return "PPCISD::Hi";
416  case PPCISD::Lo:              return "PPCISD::Lo";
417  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
418  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
419  case PPCISD::SRL:             return "PPCISD::SRL";
420  case PPCISD::SRA:             return "PPCISD::SRA";
421  case PPCISD::SHL:             return "PPCISD::SHL";
422  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
423  case PPCISD::STD_32:          return "PPCISD::STD_32";
424  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
425  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
426  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
427  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
428  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
429  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
430  case PPCISD::MFCR:            return "PPCISD::MFCR";
431  case PPCISD::VCMP:            return "PPCISD::VCMP";
432  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
433  case PPCISD::LBRX:            return "PPCISD::LBRX";
434  case PPCISD::STBRX:           return "PPCISD::STBRX";
435  case PPCISD::LARX:            return "PPCISD::LARX";
436  case PPCISD::STCX:            return "PPCISD::STCX";
437  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
438  case PPCISD::MFFS:            return "PPCISD::MFFS";
439  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
440  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
441  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
442  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
443  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
444  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
445  }
446}
447
448MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
449  return MVT::i32;
450}
451
452/// getFunctionAlignment - Return the Log2 alignment of this function.
453unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
454  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
455    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
456  else
457    return 2;
458}
459
460//===----------------------------------------------------------------------===//
461// Node matching predicates, for use by the tblgen matching code.
462//===----------------------------------------------------------------------===//
463
464/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
465static bool isFloatingPointZero(SDValue Op) {
466  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
467    return CFP->getValueAPF().isZero();
468  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
469    // Maybe this has already been legalized into the constant pool?
470    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
471      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
472        return CFP->getValueAPF().isZero();
473  }
474  return false;
475}
476
477/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
478/// true if Op is undef or if it matches the specified value.
479static bool isConstantOrUndef(int Op, int Val) {
480  return Op < 0 || Op == Val;
481}
482
483/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
484/// VPKUHUM instruction.
485bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
486  if (!isUnary) {
487    for (unsigned i = 0; i != 16; ++i)
488      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
489        return false;
490  } else {
491    for (unsigned i = 0; i != 8; ++i)
492      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
493          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
494        return false;
495  }
496  return true;
497}
498
499/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
500/// VPKUWUM instruction.
501bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
502  if (!isUnary) {
503    for (unsigned i = 0; i != 16; i += 2)
504      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
505          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
506        return false;
507  } else {
508    for (unsigned i = 0; i != 8; i += 2)
509      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
510          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
511          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
512          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
513        return false;
514  }
515  return true;
516}
517
518/// isVMerge - Common function, used to match vmrg* shuffles.
519///
520static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
521                     unsigned LHSStart, unsigned RHSStart) {
522  assert(N->getValueType(0) == MVT::v16i8 &&
523         "PPC only supports shuffles by bytes!");
524  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
525         "Unsupported merge size!");
526
527  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
528    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
529      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
530                             LHSStart+j+i*UnitSize) ||
531          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
532                             RHSStart+j+i*UnitSize))
533        return false;
534    }
535  return true;
536}
537
538/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
539/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
540bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
541                             bool isUnary) {
542  if (!isUnary)
543    return isVMerge(N, UnitSize, 8, 24);
544  return isVMerge(N, UnitSize, 8, 8);
545}
546
547/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
548/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
549bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
550                             bool isUnary) {
551  if (!isUnary)
552    return isVMerge(N, UnitSize, 0, 16);
553  return isVMerge(N, UnitSize, 0, 0);
554}
555
556
557/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
558/// amount, otherwise return -1.
559int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
560  assert(N->getValueType(0) == MVT::v16i8 &&
561         "PPC only supports shuffles by bytes!");
562
563  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
564
565  // Find the first non-undef value in the shuffle mask.
566  unsigned i;
567  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
568    /*search*/;
569
570  if (i == 16) return -1;  // all undef.
571
572  // Otherwise, check to see if the rest of the elements are consecutively
573  // numbered from this value.
574  unsigned ShiftAmt = SVOp->getMaskElt(i);
575  if (ShiftAmt < i) return -1;
576  ShiftAmt -= i;
577
578  if (!isUnary) {
579    // Check the rest of the elements to see if they are consecutive.
580    for (++i; i != 16; ++i)
581      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
582        return -1;
583  } else {
584    // Check the rest of the elements to see if they are consecutive.
585    for (++i; i != 16; ++i)
586      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
587        return -1;
588  }
589  return ShiftAmt;
590}
591
592/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
593/// specifies a splat of a single element that is suitable for input to
594/// VSPLTB/VSPLTH/VSPLTW.
595bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
596  assert(N->getValueType(0) == MVT::v16i8 &&
597         (EltSize == 1 || EltSize == 2 || EltSize == 4));
598
599  // This is a splat operation if each element of the permute is the same, and
600  // if the value doesn't reference the second vector.
601  unsigned ElementBase = N->getMaskElt(0);
602
603  // FIXME: Handle UNDEF elements too!
604  if (ElementBase >= 16)
605    return false;
606
607  // Check that the indices are consecutive, in the case of a multi-byte element
608  // splatted with a v16i8 mask.
609  for (unsigned i = 1; i != EltSize; ++i)
610    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
611      return false;
612
613  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
614    if (N->getMaskElt(i) < 0) continue;
615    for (unsigned j = 0; j != EltSize; ++j)
616      if (N->getMaskElt(i+j) != N->getMaskElt(j))
617        return false;
618  }
619  return true;
620}
621
622/// isAllNegativeZeroVector - Returns true if all elements of build_vector
623/// are -0.0.
624bool PPC::isAllNegativeZeroVector(SDNode *N) {
625  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
626
627  APInt APVal, APUndef;
628  unsigned BitSize;
629  bool HasAnyUndefs;
630
631  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
632    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
633      return CFP->getValueAPF().isNegZero();
634
635  return false;
636}
637
638/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
639/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
640unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
641  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
642  assert(isSplatShuffleMask(SVOp, EltSize));
643  return SVOp->getMaskElt(0) / EltSize;
644}
645
646/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
647/// by using a vspltis[bhw] instruction of the specified element size, return
648/// the constant being splatted.  The ByteSize field indicates the number of
649/// bytes of each element [124] -> [bhw].
650SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
651  SDValue OpVal(0, 0);
652
653  // If ByteSize of the splat is bigger than the element size of the
654  // build_vector, then we have a case where we are checking for a splat where
655  // multiple elements of the buildvector are folded together into a single
656  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
657  unsigned EltSize = 16/N->getNumOperands();
658  if (EltSize < ByteSize) {
659    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
660    SDValue UniquedVals[4];
661    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
662
663    // See if all of the elements in the buildvector agree across.
664    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
665      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
666      // If the element isn't a constant, bail fully out.
667      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
668
669
670      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
671        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
672      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
673        return SDValue();  // no match.
674    }
675
676    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
677    // either constant or undef values that are identical for each chunk.  See
678    // if these chunks can form into a larger vspltis*.
679
680    // Check to see if all of the leading entries are either 0 or -1.  If
681    // neither, then this won't fit into the immediate field.
682    bool LeadingZero = true;
683    bool LeadingOnes = true;
684    for (unsigned i = 0; i != Multiple-1; ++i) {
685      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
686
687      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
688      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
689    }
690    // Finally, check the least significant entry.
691    if (LeadingZero) {
692      if (UniquedVals[Multiple-1].getNode() == 0)
693        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
694      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
695      if (Val < 16)
696        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
697    }
698    if (LeadingOnes) {
699      if (UniquedVals[Multiple-1].getNode() == 0)
700        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
701      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
702      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
703        return DAG.getTargetConstant(Val, MVT::i32);
704    }
705
706    return SDValue();
707  }
708
709  // Check to see if this buildvec has a single non-undef value in its elements.
710  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
711    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
712    if (OpVal.getNode() == 0)
713      OpVal = N->getOperand(i);
714    else if (OpVal != N->getOperand(i))
715      return SDValue();
716  }
717
718  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
719
720  unsigned ValSizeInBytes = EltSize;
721  uint64_t Value = 0;
722  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
723    Value = CN->getZExtValue();
724  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
725    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
726    Value = FloatToBits(CN->getValueAPF().convertToFloat());
727  }
728
729  // If the splat value is larger than the element value, then we can never do
730  // this splat.  The only case that we could fit the replicated bits into our
731  // immediate field for would be zero, and we prefer to use vxor for it.
732  if (ValSizeInBytes < ByteSize) return SDValue();
733
734  // If the element value is larger than the splat value, cut it in half and
735  // check to see if the two halves are equal.  Continue doing this until we
736  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
737  while (ValSizeInBytes > ByteSize) {
738    ValSizeInBytes >>= 1;
739
740    // If the top half equals the bottom half, we're still ok.
741    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
742         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
743      return SDValue();
744  }
745
746  // Properly sign extend the value.
747  int ShAmt = (4-ByteSize)*8;
748  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
749
750  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
751  if (MaskVal == 0) return SDValue();
752
753  // Finally, if this value fits in a 5 bit sext field, return it
754  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
755    return DAG.getTargetConstant(MaskVal, MVT::i32);
756  return SDValue();
757}
758
759//===----------------------------------------------------------------------===//
760//  Addressing Mode Selection
761//===----------------------------------------------------------------------===//
762
763/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
764/// or 64-bit immediate, and if the value can be accurately represented as a
765/// sign extension from a 16-bit value.  If so, this returns true and the
766/// immediate.
767static bool isIntS16Immediate(SDNode *N, short &Imm) {
768  if (N->getOpcode() != ISD::Constant)
769    return false;
770
771  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
772  if (N->getValueType(0) == MVT::i32)
773    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
774  else
775    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
776}
777static bool isIntS16Immediate(SDValue Op, short &Imm) {
778  return isIntS16Immediate(Op.getNode(), Imm);
779}
780
781
782/// SelectAddressRegReg - Given the specified addressed, check to see if it
783/// can be represented as an indexed [r+r] operation.  Returns false if it
784/// can be more efficiently represented with [r+imm].
785bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
786                                            SDValue &Index,
787                                            SelectionDAG &DAG) const {
788  short imm = 0;
789  if (N.getOpcode() == ISD::ADD) {
790    if (isIntS16Immediate(N.getOperand(1), imm))
791      return false;    // r+i
792    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
793      return false;    // r+i
794
795    Base = N.getOperand(0);
796    Index = N.getOperand(1);
797    return true;
798  } else if (N.getOpcode() == ISD::OR) {
799    if (isIntS16Immediate(N.getOperand(1), imm))
800      return false;    // r+i can fold it if we can.
801
802    // If this is an or of disjoint bitfields, we can codegen this as an add
803    // (for better address arithmetic) if the LHS and RHS of the OR are provably
804    // disjoint.
805    APInt LHSKnownZero, LHSKnownOne;
806    APInt RHSKnownZero, RHSKnownOne;
807    DAG.ComputeMaskedBits(N.getOperand(0),
808                          APInt::getAllOnesValue(N.getOperand(0)
809                            .getValueSizeInBits()),
810                          LHSKnownZero, LHSKnownOne);
811
812    if (LHSKnownZero.getBoolValue()) {
813      DAG.ComputeMaskedBits(N.getOperand(1),
814                            APInt::getAllOnesValue(N.getOperand(1)
815                              .getValueSizeInBits()),
816                            RHSKnownZero, RHSKnownOne);
817      // If all of the bits are known zero on the LHS or RHS, the add won't
818      // carry.
819      if (~(LHSKnownZero | RHSKnownZero) == 0) {
820        Base = N.getOperand(0);
821        Index = N.getOperand(1);
822        return true;
823      }
824    }
825  }
826
827  return false;
828}
829
830/// Returns true if the address N can be represented by a base register plus
831/// a signed 16-bit displacement [r+imm], and if it is not better
832/// represented as reg+reg.
833bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
834                                            SDValue &Base,
835                                            SelectionDAG &DAG) const {
836  // FIXME dl should come from parent load or store, not from address
837  DebugLoc dl = N.getDebugLoc();
838  // If this can be more profitably realized as r+r, fail.
839  if (SelectAddressRegReg(N, Disp, Base, DAG))
840    return false;
841
842  if (N.getOpcode() == ISD::ADD) {
843    short imm = 0;
844    if (isIntS16Immediate(N.getOperand(1), imm)) {
845      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
846      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
847        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
848      } else {
849        Base = N.getOperand(0);
850      }
851      return true; // [r+i]
852    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
853      // Match LOAD (ADD (X, Lo(G))).
854     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
855             && "Cannot handle constant offsets yet!");
856      Disp = N.getOperand(1).getOperand(0);  // The global address.
857      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
858             Disp.getOpcode() == ISD::TargetConstantPool ||
859             Disp.getOpcode() == ISD::TargetJumpTable);
860      Base = N.getOperand(0);
861      return true;  // [&g+r]
862    }
863  } else if (N.getOpcode() == ISD::OR) {
864    short imm = 0;
865    if (isIntS16Immediate(N.getOperand(1), imm)) {
866      // If this is an or of disjoint bitfields, we can codegen this as an add
867      // (for better address arithmetic) if the LHS and RHS of the OR are
868      // provably disjoint.
869      APInt LHSKnownZero, LHSKnownOne;
870      DAG.ComputeMaskedBits(N.getOperand(0),
871                            APInt::getAllOnesValue(N.getOperand(0)
872                                                   .getValueSizeInBits()),
873                            LHSKnownZero, LHSKnownOne);
874
875      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
876        // If all of the bits are known zero on the LHS or RHS, the add won't
877        // carry.
878        Base = N.getOperand(0);
879        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
880        return true;
881      }
882    }
883  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
884    // Loading from a constant address.
885
886    // If this address fits entirely in a 16-bit sext immediate field, codegen
887    // this as "d, 0"
888    short Imm;
889    if (isIntS16Immediate(CN, Imm)) {
890      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
891      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
892      return true;
893    }
894
895    // Handle 32-bit sext immediates with LIS + addr mode.
896    if (CN->getValueType(0) == MVT::i32 ||
897        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
898      int Addr = (int)CN->getZExtValue();
899
900      // Otherwise, break this down into an LIS + disp.
901      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
902
903      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
904      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
905      Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
906      return true;
907    }
908  }
909
910  Disp = DAG.getTargetConstant(0, getPointerTy());
911  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
912    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
913  else
914    Base = N;
915  return true;      // [r+0]
916}
917
918/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
919/// represented as an indexed [r+r] operation.
920bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
921                                                SDValue &Index,
922                                                SelectionDAG &DAG) const {
923  // Check to see if we can easily represent this as an [r+r] address.  This
924  // will fail if it thinks that the address is more profitably represented as
925  // reg+imm, e.g. where imm = 0.
926  if (SelectAddressRegReg(N, Base, Index, DAG))
927    return true;
928
929  // If the operand is an addition, always emit this as [r+r], since this is
930  // better (for code size, and execution, as the memop does the add for free)
931  // than emitting an explicit add.
932  if (N.getOpcode() == ISD::ADD) {
933    Base = N.getOperand(0);
934    Index = N.getOperand(1);
935    return true;
936  }
937
938  // Otherwise, do it the hard way, using R0 as the base register.
939  Base = DAG.getRegister(PPC::R0, N.getValueType());
940  Index = N;
941  return true;
942}
943
944/// SelectAddressRegImmShift - Returns true if the address N can be
945/// represented by a base register plus a signed 14-bit displacement
946/// [r+imm*4].  Suitable for use by STD and friends.
947bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
948                                                 SDValue &Base,
949                                                 SelectionDAG &DAG) const {
950  // FIXME dl should come from the parent load or store, not the address
951  DebugLoc dl = N.getDebugLoc();
952  // If this can be more profitably realized as r+r, fail.
953  if (SelectAddressRegReg(N, Disp, Base, DAG))
954    return false;
955
956  if (N.getOpcode() == ISD::ADD) {
957    short imm = 0;
958    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
959      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
960      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
961        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
962      } else {
963        Base = N.getOperand(0);
964      }
965      return true; // [r+i]
966    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
967      // Match LOAD (ADD (X, Lo(G))).
968     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
969             && "Cannot handle constant offsets yet!");
970      Disp = N.getOperand(1).getOperand(0);  // The global address.
971      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
972             Disp.getOpcode() == ISD::TargetConstantPool ||
973             Disp.getOpcode() == ISD::TargetJumpTable);
974      Base = N.getOperand(0);
975      return true;  // [&g+r]
976    }
977  } else if (N.getOpcode() == ISD::OR) {
978    short imm = 0;
979    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
980      // If this is an or of disjoint bitfields, we can codegen this as an add
981      // (for better address arithmetic) if the LHS and RHS of the OR are
982      // provably disjoint.
983      APInt LHSKnownZero, LHSKnownOne;
984      DAG.ComputeMaskedBits(N.getOperand(0),
985                            APInt::getAllOnesValue(N.getOperand(0)
986                                                   .getValueSizeInBits()),
987                            LHSKnownZero, LHSKnownOne);
988      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
989        // If all of the bits are known zero on the LHS or RHS, the add won't
990        // carry.
991        Base = N.getOperand(0);
992        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
993        return true;
994      }
995    }
996  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
997    // Loading from a constant address.  Verify low two bits are clear.
998    if ((CN->getZExtValue() & 3) == 0) {
999      // If this address fits entirely in a 14-bit sext immediate field, codegen
1000      // this as "d, 0"
1001      short Imm;
1002      if (isIntS16Immediate(CN, Imm)) {
1003        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1004        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1005        return true;
1006      }
1007
1008      // Fold the low-part of 32-bit absolute addresses into addr mode.
1009      if (CN->getValueType(0) == MVT::i32 ||
1010          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1011        int Addr = (int)CN->getZExtValue();
1012
1013        // Otherwise, break this down into an LIS + disp.
1014        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1015        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1016        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1017        Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1018        return true;
1019      }
1020    }
1021  }
1022
1023  Disp = DAG.getTargetConstant(0, getPointerTy());
1024  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1025    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1026  else
1027    Base = N;
1028  return true;      // [r+0]
1029}
1030
1031
1032/// getPreIndexedAddressParts - returns true by value, base pointer and
1033/// offset pointer and addressing mode by reference if the node's address
1034/// can be legally represented as pre-indexed load / store address.
1035bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1036                                                  SDValue &Offset,
1037                                                  ISD::MemIndexedMode &AM,
1038                                                  SelectionDAG &DAG) const {
1039  // Disabled by default for now.
1040  if (!EnablePPCPreinc) return false;
1041
1042  SDValue Ptr;
1043  MVT VT;
1044  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1045    Ptr = LD->getBasePtr();
1046    VT = LD->getMemoryVT();
1047
1048  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1049    ST = ST;
1050    Ptr = ST->getBasePtr();
1051    VT  = ST->getMemoryVT();
1052  } else
1053    return false;
1054
1055  // PowerPC doesn't have preinc load/store instructions for vectors.
1056  if (VT.isVector())
1057    return false;
1058
1059  // TODO: Check reg+reg first.
1060
1061  // LDU/STU use reg+imm*4, others use reg+imm.
1062  if (VT != MVT::i64) {
1063    // reg + imm
1064    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1065      return false;
1066  } else {
1067    // reg + imm * 4.
1068    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1069      return false;
1070  }
1071
1072  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1073    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1074    // sext i32 to i64 when addr mode is r+i.
1075    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1076        LD->getExtensionType() == ISD::SEXTLOAD &&
1077        isa<ConstantSDNode>(Offset))
1078      return false;
1079  }
1080
1081  AM = ISD::PRE_INC;
1082  return true;
1083}
1084
1085//===----------------------------------------------------------------------===//
1086//  LowerOperation implementation
1087//===----------------------------------------------------------------------===//
1088
1089SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1090                                             SelectionDAG &DAG) {
1091  MVT PtrVT = Op.getValueType();
1092  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1093  Constant *C = CP->getConstVal();
1094  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1095  SDValue Zero = DAG.getConstant(0, PtrVT);
1096  // FIXME there isn't really any debug info here
1097  DebugLoc dl = Op.getDebugLoc();
1098
1099  const TargetMachine &TM = DAG.getTarget();
1100
1101  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1102  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1103
1104  // If this is a non-darwin platform, we don't support non-static relo models
1105  // yet.
1106  if (TM.getRelocationModel() == Reloc::Static ||
1107      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1108    // Generate non-pic code that has direct accesses to the constant pool.
1109    // The address of the global is just (hi(&g)+lo(&g)).
1110    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1111  }
1112
1113  if (TM.getRelocationModel() == Reloc::PIC_) {
1114    // With PIC, the first instruction is actually "GR+hi(&G)".
1115    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1116                     DAG.getNode(PPCISD::GlobalBaseReg,
1117                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1118  }
1119
1120  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1121  return Lo;
1122}
1123
1124SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1125  MVT PtrVT = Op.getValueType();
1126  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1127  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1128  SDValue Zero = DAG.getConstant(0, PtrVT);
1129  // FIXME there isn't really any debug loc here
1130  DebugLoc dl = Op.getDebugLoc();
1131
1132  const TargetMachine &TM = DAG.getTarget();
1133
1134  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1135  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1136
1137  // If this is a non-darwin platform, we don't support non-static relo models
1138  // yet.
1139  if (TM.getRelocationModel() == Reloc::Static ||
1140      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1141    // Generate non-pic code that has direct accesses to the constant pool.
1142    // The address of the global is just (hi(&g)+lo(&g)).
1143    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1144  }
1145
1146  if (TM.getRelocationModel() == Reloc::PIC_) {
1147    // With PIC, the first instruction is actually "GR+hi(&G)".
1148    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1149                     DAG.getNode(PPCISD::GlobalBaseReg,
1150                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1151  }
1152
1153  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1154  return Lo;
1155}
1156
1157SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1158                                                   SelectionDAG &DAG) {
1159  LLVM_UNREACHABLE("TLS not implemented for PPC.");
1160  return SDValue(); // Not reached
1161}
1162
1163SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1164                                              SelectionDAG &DAG) {
1165  MVT PtrVT = Op.getValueType();
1166  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1167  GlobalValue *GV = GSDN->getGlobal();
1168  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1169  SDValue Zero = DAG.getConstant(0, PtrVT);
1170  // FIXME there isn't really any debug info here
1171  DebugLoc dl = GSDN->getDebugLoc();
1172
1173  const TargetMachine &TM = DAG.getTarget();
1174
1175  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1176  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1177
1178  // If this is a non-darwin platform, we don't support non-static relo models
1179  // yet.
1180  if (TM.getRelocationModel() == Reloc::Static ||
1181      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1182    // Generate non-pic code that has direct accesses to globals.
1183    // The address of the global is just (hi(&g)+lo(&g)).
1184    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1185  }
1186
1187  if (TM.getRelocationModel() == Reloc::PIC_) {
1188    // With PIC, the first instruction is actually "GR+hi(&G)".
1189    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1190                     DAG.getNode(PPCISD::GlobalBaseReg,
1191                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1192  }
1193
1194  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1195
1196  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1197    return Lo;
1198
1199  // If the global is weak or external, we have to go through the lazy
1200  // resolution stub.
1201  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1202}
1203
1204SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1205  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1206  DebugLoc dl = Op.getDebugLoc();
1207
1208  // If we're comparing for equality to zero, expose the fact that this is
1209  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1210  // fold the new nodes.
1211  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1212    if (C->isNullValue() && CC == ISD::SETEQ) {
1213      MVT VT = Op.getOperand(0).getValueType();
1214      SDValue Zext = Op.getOperand(0);
1215      if (VT.bitsLT(MVT::i32)) {
1216        VT = MVT::i32;
1217        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1218      }
1219      unsigned Log2b = Log2_32(VT.getSizeInBits());
1220      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1221      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1222                                DAG.getConstant(Log2b, MVT::i32));
1223      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1224    }
1225    // Leave comparisons against 0 and -1 alone for now, since they're usually
1226    // optimized.  FIXME: revisit this when we can custom lower all setcc
1227    // optimizations.
1228    if (C->isAllOnesValue() || C->isNullValue())
1229      return SDValue();
1230  }
1231
1232  // If we have an integer seteq/setne, turn it into a compare against zero
1233  // by xor'ing the rhs with the lhs, which is faster than setting a
1234  // condition register, reading it back out, and masking the correct bit.  The
1235  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1236  // the result to other bit-twiddling opportunities.
1237  MVT LHSVT = Op.getOperand(0).getValueType();
1238  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1239    MVT VT = Op.getValueType();
1240    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1241                                Op.getOperand(1));
1242    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1243  }
1244  return SDValue();
1245}
1246
1247SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1248                              int VarArgsFrameIndex,
1249                              int VarArgsStackOffset,
1250                              unsigned VarArgsNumGPR,
1251                              unsigned VarArgsNumFPR,
1252                              const PPCSubtarget &Subtarget) {
1253
1254  LLVM_UNREACHABLE("VAARG not yet implemented for the SVR4 ABI!");
1255  return SDValue(); // Not reached
1256}
1257
1258SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1259  SDValue Chain = Op.getOperand(0);
1260  SDValue Trmp = Op.getOperand(1); // trampoline
1261  SDValue FPtr = Op.getOperand(2); // nested function
1262  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1263  DebugLoc dl = Op.getDebugLoc();
1264
1265  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1266  bool isPPC64 = (PtrVT == MVT::i64);
1267  const Type *IntPtrTy =
1268    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1269
1270  TargetLowering::ArgListTy Args;
1271  TargetLowering::ArgListEntry Entry;
1272
1273  Entry.Ty = IntPtrTy;
1274  Entry.Node = Trmp; Args.push_back(Entry);
1275
1276  // TrampSize == (isPPC64 ? 48 : 40);
1277  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1278                               isPPC64 ? MVT::i64 : MVT::i32);
1279  Args.push_back(Entry);
1280
1281  Entry.Node = FPtr; Args.push_back(Entry);
1282  Entry.Node = Nest; Args.push_back(Entry);
1283
1284  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1285  std::pair<SDValue, SDValue> CallResult =
1286    LowerCallTo(Chain, Op.getValueType().getTypeForMVT(*DAG.getContext()),
1287                false, false, false, false, 0, CallingConv::C, false,
1288                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1289                Args, DAG, dl);
1290
1291  SDValue Ops[] =
1292    { CallResult.first, CallResult.second };
1293
1294  return DAG.getMergeValues(Ops, 2, dl);
1295}
1296
1297SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1298                                        int VarArgsFrameIndex,
1299                                        int VarArgsStackOffset,
1300                                        unsigned VarArgsNumGPR,
1301                                        unsigned VarArgsNumFPR,
1302                                        const PPCSubtarget &Subtarget) {
1303  DebugLoc dl = Op.getDebugLoc();
1304
1305  if (Subtarget.isDarwinABI()) {
1306    // vastart just stores the address of the VarArgsFrameIndex slot into the
1307    // memory location argument.
1308    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1309    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1310    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1311    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1312  }
1313
1314  // For the SVR4 ABI we follow the layout of the va_list struct.
1315  // We suppose the given va_list is already allocated.
1316  //
1317  // typedef struct {
1318  //  char gpr;     /* index into the array of 8 GPRs
1319  //                 * stored in the register save area
1320  //                 * gpr=0 corresponds to r3,
1321  //                 * gpr=1 to r4, etc.
1322  //                 */
1323  //  char fpr;     /* index into the array of 8 FPRs
1324  //                 * stored in the register save area
1325  //                 * fpr=0 corresponds to f1,
1326  //                 * fpr=1 to f2, etc.
1327  //                 */
1328  //  char *overflow_arg_area;
1329  //                /* location on stack that holds
1330  //                 * the next overflow argument
1331  //                 */
1332  //  char *reg_save_area;
1333  //               /* where r3:r10 and f1:f8 (if saved)
1334  //                * are stored
1335  //                */
1336  // } va_list[1];
1337
1338
1339  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1340  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1341
1342
1343  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1344
1345  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1346  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1347
1348  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1349  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1350
1351  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1352  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1353
1354  uint64_t FPROffset = 1;
1355  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1356
1357  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1358
1359  // Store first byte : number of int regs
1360  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1361                                         Op.getOperand(1), SV, 0, MVT::i8);
1362  uint64_t nextOffset = FPROffset;
1363  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1364                                  ConstFPROffset);
1365
1366  // Store second byte : number of float regs
1367  SDValue secondStore =
1368    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1369  nextOffset += StackOffset;
1370  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1371
1372  // Store second word : arguments given on stack
1373  SDValue thirdStore =
1374    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1375  nextOffset += FrameOffset;
1376  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1377
1378  // Store third word : arguments given in registers
1379  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1380
1381}
1382
1383#include "PPCGenCallingConv.inc"
1384
1385static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1386                                     CCValAssign::LocInfo &LocInfo,
1387                                     ISD::ArgFlagsTy &ArgFlags,
1388                                     CCState &State) {
1389  return true;
1390}
1391
1392static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1393                                            MVT &LocVT,
1394                                            CCValAssign::LocInfo &LocInfo,
1395                                            ISD::ArgFlagsTy &ArgFlags,
1396                                            CCState &State) {
1397  static const unsigned ArgRegs[] = {
1398    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1399    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1400  };
1401  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1402
1403  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1404
1405  // Skip one register if the first unallocated register has an even register
1406  // number and there are still argument registers available which have not been
1407  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1408  // need to skip a register if RegNum is odd.
1409  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1410    State.AllocateReg(ArgRegs[RegNum]);
1411  }
1412
1413  // Always return false here, as this function only makes sure that the first
1414  // unallocated register has an odd register number and does not actually
1415  // allocate a register for the current argument.
1416  return false;
1417}
1418
1419static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1420                                              MVT &LocVT,
1421                                              CCValAssign::LocInfo &LocInfo,
1422                                              ISD::ArgFlagsTy &ArgFlags,
1423                                              CCState &State) {
1424  static const unsigned ArgRegs[] = {
1425    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1426    PPC::F8
1427  };
1428
1429  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1430
1431  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1432
1433  // If there is only one Floating-point register left we need to put both f64
1434  // values of a split ppc_fp128 value on the stack.
1435  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1436    State.AllocateReg(ArgRegs[RegNum]);
1437  }
1438
1439  // Always return false here, as this function only makes sure that the two f64
1440  // values a ppc_fp128 value is split into are both passed in registers or both
1441  // passed on the stack and does not actually allocate a register for the
1442  // current argument.
1443  return false;
1444}
1445
1446/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1447/// depending on which subtarget is selected.
1448static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1449  if (Subtarget.isDarwinABI()) {
1450    static const unsigned FPR[] = {
1451      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1452      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1453    };
1454    return FPR;
1455  }
1456
1457
1458  static const unsigned FPR[] = {
1459    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1460    PPC::F8
1461  };
1462  return FPR;
1463}
1464
1465/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1466/// the stack.
1467static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1468                                       unsigned PtrByteSize) {
1469  MVT ArgVT = Arg.getValueType();
1470  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1471  if (Flags.isByVal())
1472    ArgSize = Flags.getByValSize();
1473  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1474
1475  return ArgSize;
1476}
1477
1478SDValue
1479PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
1480                                              SelectionDAG &DAG,
1481                                              int &VarArgsFrameIndex,
1482                                              int &VarArgsStackOffset,
1483                                              unsigned &VarArgsNumGPR,
1484                                              unsigned &VarArgsNumFPR,
1485                                              const PPCSubtarget &Subtarget) {
1486  // SVR4 ABI Stack Frame Layout:
1487  //              +-----------------------------------+
1488  //        +-->  |            Back chain             |
1489  //        |     +-----------------------------------+
1490  //        |     | Floating-point register save area |
1491  //        |     +-----------------------------------+
1492  //        |     |    General register save area     |
1493  //        |     +-----------------------------------+
1494  //        |     |          CR save word             |
1495  //        |     +-----------------------------------+
1496  //        |     |         VRSAVE save word          |
1497  //        |     +-----------------------------------+
1498  //        |     |         Alignment padding         |
1499  //        |     +-----------------------------------+
1500  //        |     |     Vector register save area     |
1501  //        |     +-----------------------------------+
1502  //        |     |       Local variable space        |
1503  //        |     +-----------------------------------+
1504  //        |     |        Parameter list area        |
1505  //        |     +-----------------------------------+
1506  //        |     |           LR save word            |
1507  //        |     +-----------------------------------+
1508  // SP-->  +---  |            Back chain             |
1509  //              +-----------------------------------+
1510  //
1511  // Specifications:
1512  //   System V Application Binary Interface PowerPC Processor Supplement
1513  //   AltiVec Technology Programming Interface Manual
1514
1515  MachineFunction &MF = DAG.getMachineFunction();
1516  MachineFrameInfo *MFI = MF.getFrameInfo();
1517  SmallVector<SDValue, 8> ArgValues;
1518  SDValue Root = Op.getOperand(0);
1519  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1520  DebugLoc dl = Op.getDebugLoc();
1521
1522  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1523  // Potential tail calls could cause overwriting of argument stack slots.
1524  unsigned CC = MF.getFunction()->getCallingConv();
1525  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1526  unsigned PtrByteSize = 4;
1527
1528  // Assign locations to all of the incoming arguments.
1529  SmallVector<CCValAssign, 16> ArgLocs;
1530  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
1531
1532  // Reserve space for the linkage area on the stack.
1533  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1534
1535  CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_PPC_SVR4);
1536
1537  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1538    CCValAssign &VA = ArgLocs[i];
1539
1540    // Arguments stored in registers.
1541    if (VA.isRegLoc()) {
1542      TargetRegisterClass *RC;
1543      MVT ValVT = VA.getValVT();
1544
1545      switch (ValVT.getSimpleVT()) {
1546        default:
1547          LLVM_UNREACHABLE("ValVT not supported by FORMAL_ARGUMENTS Lowering");
1548        case MVT::i32:
1549          RC = PPC::GPRCRegisterClass;
1550          break;
1551        case MVT::f32:
1552          RC = PPC::F4RCRegisterClass;
1553          break;
1554        case MVT::f64:
1555          RC = PPC::F8RCRegisterClass;
1556          break;
1557        case MVT::v16i8:
1558        case MVT::v8i16:
1559        case MVT::v4i32:
1560        case MVT::v4f32:
1561          RC = PPC::VRRCRegisterClass;
1562          break;
1563      }
1564
1565      // Transform the arguments stored in physical registers into virtual ones.
1566      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1567      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, ValVT);
1568
1569      ArgValues.push_back(ArgValue);
1570    } else {
1571      // Argument stored in memory.
1572      assert(VA.isMemLoc());
1573
1574      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1575      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1576                                      isImmutable);
1577
1578      // Create load nodes to retrieve arguments from the stack.
1579      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1580      ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1581    }
1582  }
1583
1584  // Assign locations to all of the incoming aggregate by value arguments.
1585  // Aggregates passed by value are stored in the local variable space of the
1586  // caller's stack frame, right above the parameter list area.
1587  SmallVector<CCValAssign, 16> ByValArgLocs;
1588  CCState CCByValInfo(CC, isVarArg, getTargetMachine(),
1589                      ByValArgLocs, DAG.getContext());
1590
1591  // Reserve stack space for the allocations in CCInfo.
1592  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1593
1594  CCByValInfo.AnalyzeFormalArguments(Op.getNode(), CC_PPC_SVR4_ByVal);
1595
1596  // Area that is at least reserved in the caller of this function.
1597  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1598
1599  // Set the size that is at least reserved in caller of this function.  Tail
1600  // call optimized function's reserved stack space needs to be aligned so that
1601  // taking the difference between two stack areas will result in an aligned
1602  // stack.
1603  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1604
1605  MinReservedArea =
1606    std::max(MinReservedArea,
1607             PPCFrameInfo::getMinCallFrameSize(false, false));
1608
1609  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1610    getStackAlignment();
1611  unsigned AlignMask = TargetAlign-1;
1612  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1613
1614  FI->setMinReservedArea(MinReservedArea);
1615
1616  SmallVector<SDValue, 8> MemOps;
1617
1618  // If the function takes variable number of arguments, make a frame index for
1619  // the start of the first vararg value... for expansion of llvm.va_start.
1620  if (isVarArg) {
1621    static const unsigned GPArgRegs[] = {
1622      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1623      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1624    };
1625    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1626
1627    static const unsigned FPArgRegs[] = {
1628      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1629      PPC::F8
1630    };
1631    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1632
1633    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1634    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1635
1636    // Make room for NumGPArgRegs and NumFPArgRegs.
1637    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1638                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
1639
1640    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1641                                                CCInfo.getNextStackOffset());
1642
1643    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1644    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1645
1646    // The fixed integer arguments of a variadic function are
1647    // stored to the VarArgsFrameIndex on the stack.
1648    unsigned GPRIndex = 0;
1649    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1650      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1651      SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1652      MemOps.push_back(Store);
1653      // Increment the address by four for the next argument to store
1654      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1655      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1656    }
1657
1658    // If this function is vararg, store any remaining integer argument regs
1659    // to their spots on the stack so that they may be loaded by deferencing the
1660    // result of va_next.
1661    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1662      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1663
1664      SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1665      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1666      MemOps.push_back(Store);
1667      // Increment the address by four for the next argument to store
1668      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1669      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1670    }
1671
1672    // FIXME SVR4: We only need to save FP argument registers if CR bit 6 is
1673    // set.
1674
1675    // The double arguments are stored to the VarArgsFrameIndex
1676    // on the stack.
1677    unsigned FPRIndex = 0;
1678    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1679      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1680      SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1681      MemOps.push_back(Store);
1682      // Increment the address by eight for the next argument to store
1683      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1684                                         PtrVT);
1685      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1686    }
1687
1688    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1689      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1690
1691      SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::f64);
1692      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1693      MemOps.push_back(Store);
1694      // Increment the address by eight for the next argument to store
1695      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1696                                         PtrVT);
1697      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1698    }
1699  }
1700
1701  if (!MemOps.empty())
1702    Root = DAG.getNode(ISD::TokenFactor, dl,
1703                       MVT::Other, &MemOps[0], MemOps.size());
1704
1705
1706  ArgValues.push_back(Root);
1707
1708  // Return the new list of results.
1709  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1710                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1711}
1712
1713SDValue
1714PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
1715                                                SelectionDAG &DAG,
1716                                                int &VarArgsFrameIndex,
1717                                                const PPCSubtarget &Subtarget) {
1718  // TODO: add description of PPC stack frame format, or at least some docs.
1719  //
1720  MachineFunction &MF = DAG.getMachineFunction();
1721  MachineFrameInfo *MFI = MF.getFrameInfo();
1722  SmallVector<SDValue, 8> ArgValues;
1723  SDValue Root = Op.getOperand(0);
1724  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1725  DebugLoc dl = Op.getDebugLoc();
1726
1727  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1728  bool isPPC64 = PtrVT == MVT::i64;
1729  // Potential tail calls could cause overwriting of argument stack slots.
1730  unsigned CC = MF.getFunction()->getCallingConv();
1731  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1732  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1733
1734  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1735  // Area that is at least reserved in caller of this function.
1736  unsigned MinReservedArea = ArgOffset;
1737
1738  static const unsigned GPR_32[] = {           // 32-bit registers.
1739    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1740    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1741  };
1742  static const unsigned GPR_64[] = {           // 64-bit registers.
1743    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1744    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1745  };
1746
1747  static const unsigned *FPR = GetFPR(Subtarget);
1748
1749  static const unsigned VR[] = {
1750    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1751    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1752  };
1753
1754  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1755  const unsigned Num_FPR_Regs = 13;
1756  const unsigned Num_VR_Regs  = array_lengthof( VR);
1757
1758  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1759
1760  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1761
1762  // In 32-bit non-varargs functions, the stack space for vectors is after the
1763  // stack space for non-vectors.  We do not use this space unless we have
1764  // too many vectors to fit in registers, something that only occurs in
1765  // constructed examples:), but we have to walk the arglist to figure
1766  // that out...for the pathological case, compute VecArgOffset as the
1767  // start of the vector parameter area.  Computing VecArgOffset is the
1768  // entire point of the following loop.
1769  unsigned VecArgOffset = ArgOffset;
1770  if (!isVarArg && !isPPC64) {
1771    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1772         ++ArgNo) {
1773      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1774      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1775      ISD::ArgFlagsTy Flags =
1776        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1777
1778      if (Flags.isByVal()) {
1779        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1780        ObjSize = Flags.getByValSize();
1781        unsigned ArgSize =
1782                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1783        VecArgOffset += ArgSize;
1784        continue;
1785      }
1786
1787      switch(ObjectVT.getSimpleVT()) {
1788      default: LLVM_UNREACHABLE("Unhandled argument type!");
1789      case MVT::i32:
1790      case MVT::f32:
1791        VecArgOffset += isPPC64 ? 8 : 4;
1792        break;
1793      case MVT::i64:  // PPC64
1794      case MVT::f64:
1795        VecArgOffset += 8;
1796        break;
1797      case MVT::v4f32:
1798      case MVT::v4i32:
1799      case MVT::v8i16:
1800      case MVT::v16i8:
1801        // Nothing to do, we're only looking at Nonvector args here.
1802        break;
1803      }
1804    }
1805  }
1806  // We've found where the vector parameter area in memory is.  Skip the
1807  // first 12 parameters; these don't use that memory.
1808  VecArgOffset = ((VecArgOffset+15)/16)*16;
1809  VecArgOffset += 12*16;
1810
1811  // Add DAG nodes to load the arguments or copy them out of registers.  On
1812  // entry to a function on PPC, the arguments start after the linkage area,
1813  // although the first ones are often in registers.
1814
1815  SmallVector<SDValue, 8> MemOps;
1816  unsigned nAltivecParamsAtEnd = 0;
1817  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1818       ArgNo != e; ++ArgNo) {
1819    SDValue ArgVal;
1820    bool needsLoad = false;
1821    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1822    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1823    unsigned ArgSize = ObjSize;
1824    ISD::ArgFlagsTy Flags =
1825      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1826
1827    unsigned CurArgOffset = ArgOffset;
1828
1829    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1830    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1831        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1832      if (isVarArg || isPPC64) {
1833        MinReservedArea = ((MinReservedArea+15)/16)*16;
1834        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1835                                                  Flags,
1836                                                  PtrByteSize);
1837      } else  nAltivecParamsAtEnd++;
1838    } else
1839      // Calculate min reserved area.
1840      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1841                                                Flags,
1842                                                PtrByteSize);
1843
1844    // FIXME the codegen can be much improved in some cases.
1845    // We do not have to keep everything in memory.
1846    if (Flags.isByVal()) {
1847      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1848      ObjSize = Flags.getByValSize();
1849      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1850      // Objects of size 1 and 2 are right justified, everything else is
1851      // left justified.  This means the memory address is adjusted forwards.
1852      if (ObjSize==1 || ObjSize==2) {
1853        CurArgOffset = CurArgOffset + (4 - ObjSize);
1854      }
1855      // The value of the object is its address.
1856      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1857      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1858      ArgValues.push_back(FIN);
1859      if (ObjSize==1 || ObjSize==2) {
1860        if (GPR_idx != Num_GPR_Regs) {
1861          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1862          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1863          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1864                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1865          MemOps.push_back(Store);
1866          ++GPR_idx;
1867        }
1868
1869        ArgOffset += PtrByteSize;
1870
1871        continue;
1872      }
1873      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1874        // Store whatever pieces of the object are in registers
1875        // to memory.  ArgVal will be address of the beginning of
1876        // the object.
1877        if (GPR_idx != Num_GPR_Regs) {
1878          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1879          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1880          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1881          SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1882          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1883          MemOps.push_back(Store);
1884          ++GPR_idx;
1885          ArgOffset += PtrByteSize;
1886        } else {
1887          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1888          break;
1889        }
1890      }
1891      continue;
1892    }
1893
1894    switch (ObjectVT.getSimpleVT()) {
1895    default: LLVM_UNREACHABLE("Unhandled argument type!");
1896    case MVT::i32:
1897      if (!isPPC64) {
1898        if (GPR_idx != Num_GPR_Regs) {
1899          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1900          ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1901          ++GPR_idx;
1902        } else {
1903          needsLoad = true;
1904          ArgSize = PtrByteSize;
1905        }
1906        // All int arguments reserve stack space in the Darwin ABI.
1907        ArgOffset += PtrByteSize;
1908        break;
1909      }
1910      // FALLTHROUGH
1911    case MVT::i64:  // PPC64
1912      if (GPR_idx != Num_GPR_Regs) {
1913        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1914        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1915
1916        if (ObjectVT == MVT::i32) {
1917          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1918          // value to MVT::i64 and then truncate to the correct register size.
1919          if (Flags.isSExt())
1920            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1921                                 DAG.getValueType(ObjectVT));
1922          else if (Flags.isZExt())
1923            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1924                                 DAG.getValueType(ObjectVT));
1925
1926          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1927        }
1928
1929        ++GPR_idx;
1930      } else {
1931        needsLoad = true;
1932        ArgSize = PtrByteSize;
1933      }
1934      // All int arguments reserve stack space in the Darwin ABI.
1935      ArgOffset += 8;
1936      break;
1937
1938    case MVT::f32:
1939    case MVT::f64:
1940      // Every 4 bytes of argument space consumes one of the GPRs available for
1941      // argument passing.
1942      if (GPR_idx != Num_GPR_Regs) {
1943        ++GPR_idx;
1944        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1945          ++GPR_idx;
1946      }
1947      if (FPR_idx != Num_FPR_Regs) {
1948        unsigned VReg;
1949
1950        if (ObjectVT == MVT::f32)
1951          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1952        else
1953          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1954
1955        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1956        ++FPR_idx;
1957      } else {
1958        needsLoad = true;
1959      }
1960
1961      // All FP arguments reserve stack space in the Darwin ABI.
1962      ArgOffset += isPPC64 ? 8 : ObjSize;
1963      break;
1964    case MVT::v4f32:
1965    case MVT::v4i32:
1966    case MVT::v8i16:
1967    case MVT::v16i8:
1968      // Note that vector arguments in registers don't reserve stack space,
1969      // except in varargs functions.
1970      if (VR_idx != Num_VR_Regs) {
1971        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1972        ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1973        if (isVarArg) {
1974          while ((ArgOffset % 16) != 0) {
1975            ArgOffset += PtrByteSize;
1976            if (GPR_idx != Num_GPR_Regs)
1977              GPR_idx++;
1978          }
1979          ArgOffset += 16;
1980          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1981        }
1982        ++VR_idx;
1983      } else {
1984        if (!isVarArg && !isPPC64) {
1985          // Vectors go after all the nonvectors.
1986          CurArgOffset = VecArgOffset;
1987          VecArgOffset += 16;
1988        } else {
1989          // Vectors are aligned.
1990          ArgOffset = ((ArgOffset+15)/16)*16;
1991          CurArgOffset = ArgOffset;
1992          ArgOffset += 16;
1993        }
1994        needsLoad = true;
1995      }
1996      break;
1997    }
1998
1999    // We need to load the argument to a virtual register if we determined above
2000    // that we ran out of physical registers of the appropriate type.
2001    if (needsLoad) {
2002      int FI = MFI->CreateFixedObject(ObjSize,
2003                                      CurArgOffset + (ArgSize - ObjSize),
2004                                      isImmutable);
2005      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2006      ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
2007    }
2008
2009    ArgValues.push_back(ArgVal);
2010  }
2011
2012  // Set the size that is at least reserved in caller of this function.  Tail
2013  // call optimized function's reserved stack space needs to be aligned so that
2014  // taking the difference between two stack areas will result in an aligned
2015  // stack.
2016  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2017  // Add the Altivec parameters at the end, if needed.
2018  if (nAltivecParamsAtEnd) {
2019    MinReservedArea = ((MinReservedArea+15)/16)*16;
2020    MinReservedArea += 16*nAltivecParamsAtEnd;
2021  }
2022  MinReservedArea =
2023    std::max(MinReservedArea,
2024             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2025  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2026    getStackAlignment();
2027  unsigned AlignMask = TargetAlign-1;
2028  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2029  FI->setMinReservedArea(MinReservedArea);
2030
2031  // If the function takes variable number of arguments, make a frame index for
2032  // the start of the first vararg value... for expansion of llvm.va_start.
2033  if (isVarArg) {
2034    int Depth = ArgOffset;
2035
2036    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2037                                               Depth);
2038    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2039
2040    // If this function is vararg, store any remaining integer argument regs
2041    // to their spots on the stack so that they may be loaded by deferencing the
2042    // result of va_next.
2043    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2044      unsigned VReg;
2045
2046      if (isPPC64)
2047        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2048      else
2049        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2050
2051      SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
2052      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2053      MemOps.push_back(Store);
2054      // Increment the address by four for the next argument to store
2055      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2056      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2057    }
2058  }
2059
2060  if (!MemOps.empty())
2061    Root = DAG.getNode(ISD::TokenFactor, dl,
2062                       MVT::Other, &MemOps[0], MemOps.size());
2063
2064  ArgValues.push_back(Root);
2065
2066  // Return the new list of results.
2067  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
2068                     &ArgValues[0], ArgValues.size());
2069}
2070
2071/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2072/// linkage area for the Darwin ABI.
2073static unsigned
2074CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2075                                     bool isPPC64,
2076                                     bool isVarArg,
2077                                     unsigned CC,
2078                                     CallSDNode *TheCall,
2079                                     unsigned &nAltivecParamsAtEnd) {
2080  // Count how many bytes are to be pushed on the stack, including the linkage
2081  // area, and parameter passing area.  We start with 24/48 bytes, which is
2082  // prereserved space for [SP][CR][LR][3 x unused].
2083  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2084  unsigned NumOps = TheCall->getNumArgs();
2085  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2086
2087  // Add up all the space actually used.
2088  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2089  // they all go in registers, but we must reserve stack space for them for
2090  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2091  // assigned stack space in order, with padding so Altivec parameters are
2092  // 16-byte aligned.
2093  nAltivecParamsAtEnd = 0;
2094  for (unsigned i = 0; i != NumOps; ++i) {
2095    SDValue Arg = TheCall->getArg(i);
2096    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2097    MVT ArgVT = Arg.getValueType();
2098    // Varargs Altivec parameters are padded to a 16 byte boundary.
2099    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2100        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2101      if (!isVarArg && !isPPC64) {
2102        // Non-varargs Altivec parameters go after all the non-Altivec
2103        // parameters; handle those later so we know how much padding we need.
2104        nAltivecParamsAtEnd++;
2105        continue;
2106      }
2107      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2108      NumBytes = ((NumBytes+15)/16)*16;
2109    }
2110    NumBytes += CalculateStackSlotSize(Arg, Flags, PtrByteSize);
2111  }
2112
2113   // Allow for Altivec parameters at the end, if needed.
2114  if (nAltivecParamsAtEnd) {
2115    NumBytes = ((NumBytes+15)/16)*16;
2116    NumBytes += 16*nAltivecParamsAtEnd;
2117  }
2118
2119  // The prolog code of the callee may store up to 8 GPR argument registers to
2120  // the stack, allowing va_start to index over them in memory if its varargs.
2121  // Because we cannot tell if this is needed on the caller side, we have to
2122  // conservatively assume that it is needed.  As such, make sure we have at
2123  // least enough stack space for the caller to store the 8 GPRs.
2124  NumBytes = std::max(NumBytes,
2125                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2126
2127  // Tail call needs the stack to be aligned.
2128  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2129    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2130      getStackAlignment();
2131    unsigned AlignMask = TargetAlign-1;
2132    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2133  }
2134
2135  return NumBytes;
2136}
2137
2138/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2139/// adjusted to accomodate the arguments for the tailcall.
2140static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2141                                   unsigned ParamSize) {
2142
2143  if (!IsTailCall) return 0;
2144
2145  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2146  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2147  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2148  // Remember only if the new adjustement is bigger.
2149  if (SPDiff < FI->getTailCallSPDelta())
2150    FI->setTailCallSPDelta(SPDiff);
2151
2152  return SPDiff;
2153}
2154
2155/// IsEligibleForTailCallElimination - Check to see whether the next instruction
2156/// following the call is a return. A function is eligible if caller/callee
2157/// calling conventions match, currently only fastcc supports tail calls, and
2158/// the function CALL is immediatly followed by a RET.
2159bool
2160PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
2161                                                     SDValue Ret,
2162                                                     SelectionDAG& DAG) const {
2163  // Variable argument functions are not supported.
2164  if (!PerformTailCallOpt || TheCall->isVarArg())
2165    return false;
2166
2167  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
2168    MachineFunction &MF = DAG.getMachineFunction();
2169    unsigned CallerCC = MF.getFunction()->getCallingConv();
2170    unsigned CalleeCC = TheCall->getCallingConv();
2171    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2172      // Functions containing by val parameters are not supported.
2173      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
2174         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2175         if (Flags.isByVal()) return false;
2176      }
2177
2178      SDValue Callee = TheCall->getCallee();
2179      // Non PIC/GOT  tail calls are supported.
2180      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2181        return true;
2182
2183      // At the moment we can only do local tail calls (in same module, hidden
2184      // or protected) if we are generating PIC.
2185      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2186        return G->getGlobal()->hasHiddenVisibility()
2187            || G->getGlobal()->hasProtectedVisibility();
2188    }
2189  }
2190
2191  return false;
2192}
2193
2194/// isCallCompatibleAddress - Return the immediate to use if the specified
2195/// 32-bit value is representable in the immediate field of a BxA instruction.
2196static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2197  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2198  if (!C) return 0;
2199
2200  int Addr = C->getZExtValue();
2201  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2202      (Addr << 6 >> 6) != Addr)
2203    return 0;  // Top 6 bits have to be sext of immediate.
2204
2205  return DAG.getConstant((int)C->getZExtValue() >> 2,
2206                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2207}
2208
2209namespace {
2210
2211struct TailCallArgumentInfo {
2212  SDValue Arg;
2213  SDValue FrameIdxOp;
2214  int       FrameIdx;
2215
2216  TailCallArgumentInfo() : FrameIdx(0) {}
2217};
2218
2219}
2220
2221/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2222static void
2223StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2224                                           SDValue Chain,
2225                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2226                   SmallVector<SDValue, 8> &MemOpChains,
2227                   DebugLoc dl) {
2228  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2229    SDValue Arg = TailCallArgs[i].Arg;
2230    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2231    int FI = TailCallArgs[i].FrameIdx;
2232    // Store relative to framepointer.
2233    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2234                                       PseudoSourceValue::getFixedStack(FI),
2235                                       0));
2236  }
2237}
2238
2239/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2240/// the appropriate stack slot for the tail call optimized function call.
2241static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2242                                               MachineFunction &MF,
2243                                               SDValue Chain,
2244                                               SDValue OldRetAddr,
2245                                               SDValue OldFP,
2246                                               int SPDiff,
2247                                               bool isPPC64,
2248                                               bool isDarwinABI,
2249                                               DebugLoc dl) {
2250  if (SPDiff) {
2251    // Calculate the new stack slot for the return address.
2252    int SlotSize = isPPC64 ? 8 : 4;
2253    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2254                                                                   isDarwinABI);
2255    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2256                                                          NewRetAddrLoc);
2257    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2258    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2259    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2260                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2261
2262    // When using the SVR4 ABI there is no need to move the FP stack slot
2263    // as the FP is never overwritten.
2264    if (isDarwinABI) {
2265      int NewFPLoc =
2266        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2267      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2268      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2269      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2270                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2271    }
2272  }
2273  return Chain;
2274}
2275
2276/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2277/// the position of the argument.
2278static void
2279CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2280                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2281                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2282  int Offset = ArgOffset + SPDiff;
2283  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2284  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2285  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2286  SDValue FIN = DAG.getFrameIndex(FI, VT);
2287  TailCallArgumentInfo Info;
2288  Info.Arg = Arg;
2289  Info.FrameIdxOp = FIN;
2290  Info.FrameIdx = FI;
2291  TailCallArguments.push_back(Info);
2292}
2293
2294/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2295/// stack slot. Returns the chain as result and the loaded frame pointers in
2296/// LROpOut/FPOpout. Used when tail calling.
2297SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2298                                                        int SPDiff,
2299                                                        SDValue Chain,
2300                                                        SDValue &LROpOut,
2301                                                        SDValue &FPOpOut,
2302                                                        bool isDarwinABI,
2303                                                        DebugLoc dl) {
2304  if (SPDiff) {
2305    // Load the LR and FP stack slot for later adjusting.
2306    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2307    LROpOut = getReturnAddrFrameIndex(DAG);
2308    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2309    Chain = SDValue(LROpOut.getNode(), 1);
2310
2311    // When using the SVR4 ABI there is no need to load the FP stack slot
2312    // as the FP is never overwritten.
2313    if (isDarwinABI) {
2314      FPOpOut = getFramePointerFrameIndex(DAG);
2315      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2316      Chain = SDValue(FPOpOut.getNode(), 1);
2317    }
2318  }
2319  return Chain;
2320}
2321
2322/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2323/// by "Src" to address "Dst" of size "Size".  Alignment information is
2324/// specified by the specific parameter attribute. The copy will be passed as
2325/// a byval function parameter.
2326/// Sometimes what we are copying is the end of a larger object, the part that
2327/// does not fit in registers.
2328static SDValue
2329CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2330                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2331                          DebugLoc dl) {
2332  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2333  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2334                       false, NULL, 0, NULL, 0);
2335}
2336
2337/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2338/// tail calls.
2339static void
2340LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2341                 SDValue Arg, SDValue PtrOff, int SPDiff,
2342                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2343                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2344                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2345                 DebugLoc dl) {
2346  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2347  if (!isTailCall) {
2348    if (isVector) {
2349      SDValue StackPtr;
2350      if (isPPC64)
2351        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2352      else
2353        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2354      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2355                           DAG.getConstant(ArgOffset, PtrVT));
2356    }
2357    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2358  // Calculate and remember argument location.
2359  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2360                                  TailCallArguments);
2361}
2362
2363static
2364void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2365                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2366                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2367                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2368  MachineFunction &MF = DAG.getMachineFunction();
2369
2370  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2371  // might overwrite each other in case of tail call optimization.
2372  SmallVector<SDValue, 8> MemOpChains2;
2373  // Do not flag preceeding copytoreg stuff together with the following stuff.
2374  InFlag = SDValue();
2375  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2376                                    MemOpChains2, dl);
2377  if (!MemOpChains2.empty())
2378    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2379                        &MemOpChains2[0], MemOpChains2.size());
2380
2381  // Store the return address to the appropriate stack slot.
2382  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2383                                        isPPC64, isDarwinABI, dl);
2384
2385  // Emit callseq_end just before tailcall node.
2386  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2387                             DAG.getIntPtrConstant(0, true), InFlag);
2388  InFlag = Chain.getValue(1);
2389}
2390
2391static
2392unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2393                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2394                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2395                     SmallVector<SDValue, 8> &Ops, std::vector<MVT> &NodeTys,
2396                     bool isSVR4ABI) {
2397  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2398  NodeTys.push_back(MVT::Other);   // Returns a chain
2399  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2400
2401  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2402
2403  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2404  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2405  // node so that legalize doesn't hack it.
2406  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2407    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2408  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2409    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2410  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2411    // If this is an absolute destination address, use the munged value.
2412    Callee = SDValue(Dest, 0);
2413  else {
2414    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2415    // to do the call, we can't use PPCISD::CALL.
2416    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2417    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2418                        2 + (InFlag.getNode() != 0));
2419    InFlag = Chain.getValue(1);
2420
2421    NodeTys.clear();
2422    NodeTys.push_back(MVT::Other);
2423    NodeTys.push_back(MVT::Flag);
2424    Ops.push_back(Chain);
2425    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2426    Callee.setNode(0);
2427    // Add CTR register as callee so a bctr can be emitted later.
2428    if (isTailCall)
2429      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2430  }
2431
2432  // If this is a direct call, pass the chain and the callee.
2433  if (Callee.getNode()) {
2434    Ops.push_back(Chain);
2435    Ops.push_back(Callee);
2436  }
2437  // If this is a tail call add stack pointer delta.
2438  if (isTailCall)
2439    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2440
2441  // Add argument registers to the end of the list so that they are known live
2442  // into the call.
2443  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2444    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2445                                  RegsToPass[i].second.getValueType()));
2446
2447  return CallOpc;
2448}
2449
2450static SDValue LowerCallReturn(SDValue Op, SelectionDAG &DAG, TargetMachine &TM,
2451                               CallSDNode *TheCall, SDValue Chain,
2452                               SDValue InFlag) {
2453  bool isVarArg = TheCall->isVarArg();
2454  DebugLoc dl = TheCall->getDebugLoc();
2455  SmallVector<SDValue, 16> ResultVals;
2456  SmallVector<CCValAssign, 16> RVLocs;
2457  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2458  CCState CCRetInfo(CallerCC, isVarArg, TM, RVLocs, DAG.getContext());
2459  CCRetInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2460
2461  // Copy all of the result registers out of their specified physreg.
2462  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2463    CCValAssign &VA = RVLocs[i];
2464    MVT VT = VA.getValVT();
2465    assert(VA.isRegLoc() && "Can only return in registers!");
2466    Chain = DAG.getCopyFromReg(Chain, dl,
2467                               VA.getLocReg(), VT, InFlag).getValue(1);
2468    ResultVals.push_back(Chain.getValue(0));
2469    InFlag = Chain.getValue(2);
2470  }
2471
2472  // If the function returns void, just return the chain.
2473  if (RVLocs.empty())
2474    return Chain;
2475
2476  // Otherwise, merge everything together with a MERGE_VALUES node.
2477  ResultVals.push_back(Chain);
2478  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
2479                            &ResultVals[0], ResultVals.size());
2480  return Res.getValue(Op.getResNo());
2481}
2482
2483static
2484SDValue FinishCall(SelectionDAG &DAG, CallSDNode *TheCall, TargetMachine &TM,
2485                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2486                   SDValue Op, SDValue InFlag, SDValue Chain, SDValue &Callee,
2487                   int SPDiff, unsigned NumBytes) {
2488  unsigned CC = TheCall->getCallingConv();
2489  DebugLoc dl = TheCall->getDebugLoc();
2490  bool isTailCall = TheCall->isTailCall()
2491                 && CC == CallingConv::Fast && PerformTailCallOpt;
2492
2493  std::vector<MVT> NodeTys;
2494  SmallVector<SDValue, 8> Ops;
2495  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2496                                 isTailCall, RegsToPass, Ops, NodeTys,
2497                                 TM.getSubtarget<PPCSubtarget>().isSVR4ABI());
2498
2499  // When performing tail call optimization the callee pops its arguments off
2500  // the stack. Account for this here so these bytes can be pushed back on in
2501  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2502  int BytesCalleePops =
2503    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2504
2505  if (InFlag.getNode())
2506    Ops.push_back(InFlag);
2507
2508  // Emit tail call.
2509  if (isTailCall) {
2510    assert(InFlag.getNode() &&
2511           "Flag must be set. Depend on flag being set in LowerRET");
2512    Chain = DAG.getNode(PPCISD::TAILCALL, dl,
2513                        TheCall->getVTList(), &Ops[0], Ops.size());
2514    return SDValue(Chain.getNode(), Op.getResNo());
2515  }
2516
2517  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2518  InFlag = Chain.getValue(1);
2519
2520  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2521                             DAG.getIntPtrConstant(BytesCalleePops, true),
2522                             InFlag);
2523  if (TheCall->getValueType(0) != MVT::Other)
2524    InFlag = Chain.getValue(1);
2525
2526  return LowerCallReturn(Op, DAG, TM, TheCall, Chain, InFlag);
2527}
2528
2529SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
2530                                          const PPCSubtarget &Subtarget,
2531                                          TargetMachine &TM) {
2532  // See PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4() for a description
2533  // of the SVR4 ABI stack frame layout.
2534  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2535  SDValue Chain  = TheCall->getChain();
2536  bool isVarArg   = TheCall->isVarArg();
2537  unsigned CC     = TheCall->getCallingConv();
2538  assert((CC == CallingConv::C ||
2539          CC == CallingConv::Fast) && "Unknown calling convention!");
2540  bool isTailCall = TheCall->isTailCall()
2541                 && CC == CallingConv::Fast && PerformTailCallOpt;
2542  SDValue Callee = TheCall->getCallee();
2543  DebugLoc dl = TheCall->getDebugLoc();
2544
2545  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2546  unsigned PtrByteSize = 4;
2547
2548  MachineFunction &MF = DAG.getMachineFunction();
2549
2550  // Mark this function as potentially containing a function that contains a
2551  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2552  // and restoring the callers stack pointer in this functions epilog. This is
2553  // done because by tail calling the called function might overwrite the value
2554  // in this function's (MF) stack pointer stack slot 0(SP).
2555  if (PerformTailCallOpt && CC==CallingConv::Fast)
2556    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2557
2558  // Count how many bytes are to be pushed on the stack, including the linkage
2559  // area, parameter list area and the part of the local variable space which
2560  // contains copies of aggregates which are passed by value.
2561
2562  // Assign locations to all of the outgoing arguments.
2563  SmallVector<CCValAssign, 16> ArgLocs;
2564  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
2565
2566  // Reserve space for the linkage area on the stack.
2567  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2568
2569  if (isVarArg) {
2570    // Handle fixed and variable vector arguments differently.
2571    // Fixed vector arguments go into registers as long as registers are
2572    // available. Variable vector arguments always go into memory.
2573    unsigned NumArgs = TheCall->getNumArgs();
2574    unsigned NumFixedArgs = TheCall->getNumFixedArgs();
2575
2576    for (unsigned i = 0; i != NumArgs; ++i) {
2577      MVT ArgVT = TheCall->getArg(i).getValueType();
2578      ISD::ArgFlagsTy ArgFlags = TheCall->getArgFlags(i);
2579      bool Result;
2580
2581      if (i < NumFixedArgs) {
2582        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2583                             CCInfo);
2584      } else {
2585        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2586                                    ArgFlags, CCInfo);
2587      }
2588
2589      if (Result) {
2590#ifndef NDEBUG
2591        cerr << "Call operand #" << i << " has unhandled type "
2592             << ArgVT.getMVTString() << "\n";
2593#endif
2594        llvm_unreachable();
2595      }
2596    }
2597  } else {
2598    // All arguments are treated the same.
2599    CCInfo.AnalyzeCallOperands(TheCall, CC_PPC_SVR4);
2600  }
2601
2602  // Assign locations to all of the outgoing aggregate by value arguments.
2603  SmallVector<CCValAssign, 16> ByValArgLocs;
2604  CCState CCByValInfo(CC, isVarArg, getTargetMachine(), ByValArgLocs,
2605                      DAG.getContext());
2606
2607  // Reserve stack space for the allocations in CCInfo.
2608  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2609
2610  CCByValInfo.AnalyzeCallOperands(TheCall, CC_PPC_SVR4_ByVal);
2611
2612  // Size of the linkage area, parameter list area and the part of the local
2613  // space variable where copies of aggregates which are passed by value are
2614  // stored.
2615  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2616
2617  // Calculate by how many bytes the stack has to be adjusted in case of tail
2618  // call optimization.
2619  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2620
2621  // Adjust the stack pointer for the new arguments...
2622  // These operations are automatically eliminated by the prolog/epilog pass
2623  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2624  SDValue CallSeqStart = Chain;
2625
2626  // Load the return address and frame pointer so it can be moved somewhere else
2627  // later.
2628  SDValue LROp, FPOp;
2629  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2630                                       dl);
2631
2632  // Set up a copy of the stack pointer for use loading and storing any
2633  // arguments that may not fit in the registers available for argument
2634  // passing.
2635  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2636
2637  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2638  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2639  SmallVector<SDValue, 8> MemOpChains;
2640
2641  // Walk the register/memloc assignments, inserting copies/loads.
2642  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2643       i != e;
2644       ++i) {
2645    CCValAssign &VA = ArgLocs[i];
2646    SDValue Arg = TheCall->getArg(i);
2647    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2648
2649    if (Flags.isByVal()) {
2650      // Argument is an aggregate which is passed by value, thus we need to
2651      // create a copy of it in the local variable space of the current stack
2652      // frame (which is the stack frame of the caller) and pass the address of
2653      // this copy to the callee.
2654      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2655      CCValAssign &ByValVA = ByValArgLocs[j++];
2656      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2657
2658      // Memory reserved in the local variable space of the callers stack frame.
2659      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2660
2661      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2662      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2663
2664      // Create a copy of the argument in the local area of the current
2665      // stack frame.
2666      SDValue MemcpyCall =
2667        CreateCopyOfByValArgument(Arg, PtrOff,
2668                                  CallSeqStart.getNode()->getOperand(0),
2669                                  Flags, DAG, dl);
2670
2671      // This must go outside the CALLSEQ_START..END.
2672      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2673                           CallSeqStart.getNode()->getOperand(1));
2674      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2675                             NewCallSeqStart.getNode());
2676      Chain = CallSeqStart = NewCallSeqStart;
2677
2678      // Pass the address of the aggregate copy on the stack either in a
2679      // physical register or in the parameter list area of the current stack
2680      // frame to the callee.
2681      Arg = PtrOff;
2682    }
2683
2684    if (VA.isRegLoc()) {
2685      // Put argument in a physical register.
2686      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2687    } else {
2688      // Put argument in the parameter list area of the current stack frame.
2689      assert(VA.isMemLoc());
2690      unsigned LocMemOffset = VA.getLocMemOffset();
2691
2692      if (!isTailCall) {
2693        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2694        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2695
2696        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2697                              PseudoSourceValue::getStack(), LocMemOffset));
2698      } else {
2699        // Calculate and remember argument location.
2700        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2701                                 TailCallArguments);
2702      }
2703    }
2704  }
2705
2706  if (!MemOpChains.empty())
2707    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2708                        &MemOpChains[0], MemOpChains.size());
2709
2710  // Build a sequence of copy-to-reg nodes chained together with token chain
2711  // and flag operands which copy the outgoing args into the appropriate regs.
2712  SDValue InFlag;
2713  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2714    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2715                             RegsToPass[i].second, InFlag);
2716    InFlag = Chain.getValue(1);
2717  }
2718
2719  // Set CR6 to true if this is a vararg call.
2720  if (isVarArg) {
2721    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2722    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2723    InFlag = Chain.getValue(1);
2724  }
2725
2726  if (isTailCall) {
2727    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2728                    false, TailCallArguments);
2729  }
2730
2731  return FinishCall(DAG, TheCall, TM, RegsToPass, Op, InFlag, Chain, Callee,
2732                    SPDiff, NumBytes);
2733}
2734
2735SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
2736                                            const PPCSubtarget &Subtarget,
2737                                            TargetMachine &TM) {
2738  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2739  SDValue Chain  = TheCall->getChain();
2740  bool isVarArg   = TheCall->isVarArg();
2741  unsigned CC     = TheCall->getCallingConv();
2742  bool isTailCall = TheCall->isTailCall()
2743                 && CC == CallingConv::Fast && PerformTailCallOpt;
2744  SDValue Callee = TheCall->getCallee();
2745  unsigned NumOps  = TheCall->getNumArgs();
2746  DebugLoc dl = TheCall->getDebugLoc();
2747
2748  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2749  bool isPPC64 = PtrVT == MVT::i64;
2750  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2751
2752  MachineFunction &MF = DAG.getMachineFunction();
2753
2754  // Mark this function as potentially containing a function that contains a
2755  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2756  // and restoring the callers stack pointer in this functions epilog. This is
2757  // done because by tail calling the called function might overwrite the value
2758  // in this function's (MF) stack pointer stack slot 0(SP).
2759  if (PerformTailCallOpt && CC==CallingConv::Fast)
2760    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2761
2762  unsigned nAltivecParamsAtEnd = 0;
2763
2764  // Count how many bytes are to be pushed on the stack, including the linkage
2765  // area, and parameter passing area.  We start with 24/48 bytes, which is
2766  // prereserved space for [SP][CR][LR][3 x unused].
2767  unsigned NumBytes =
2768    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CC, TheCall,
2769                                         nAltivecParamsAtEnd);
2770
2771  // Calculate by how many bytes the stack has to be adjusted in case of tail
2772  // call optimization.
2773  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2774
2775  // Adjust the stack pointer for the new arguments...
2776  // These operations are automatically eliminated by the prolog/epilog pass
2777  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2778  SDValue CallSeqStart = Chain;
2779
2780  // Load the return address and frame pointer so it can be move somewhere else
2781  // later.
2782  SDValue LROp, FPOp;
2783  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2784                                       dl);
2785
2786  // Set up a copy of the stack pointer for use loading and storing any
2787  // arguments that may not fit in the registers available for argument
2788  // passing.
2789  SDValue StackPtr;
2790  if (isPPC64)
2791    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2792  else
2793    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2794
2795  // Figure out which arguments are going to go in registers, and which in
2796  // memory.  Also, if this is a vararg function, floating point operations
2797  // must be stored to our stack, and loaded into integer regs as well, if
2798  // any integer regs are available for argument passing.
2799  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2800  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2801
2802  static const unsigned GPR_32[] = {           // 32-bit registers.
2803    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2804    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2805  };
2806  static const unsigned GPR_64[] = {           // 64-bit registers.
2807    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2808    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2809  };
2810  static const unsigned *FPR = GetFPR(Subtarget);
2811
2812  static const unsigned VR[] = {
2813    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2814    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2815  };
2816  const unsigned NumGPRs = array_lengthof(GPR_32);
2817  const unsigned NumFPRs = 13;
2818  const unsigned NumVRs  = array_lengthof(VR);
2819
2820  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2821
2822  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2823  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2824
2825  SmallVector<SDValue, 8> MemOpChains;
2826  for (unsigned i = 0; i != NumOps; ++i) {
2827    bool inMem = false;
2828    SDValue Arg = TheCall->getArg(i);
2829    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2830
2831    // PtrOff will be used to store the current argument to the stack if a
2832    // register cannot be found for it.
2833    SDValue PtrOff;
2834
2835    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2836
2837    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2838
2839    // On PPC64, promote integers to 64-bit values.
2840    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2841      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2842      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2843      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2844    }
2845
2846    // FIXME memcpy is used way more than necessary.  Correctness first.
2847    if (Flags.isByVal()) {
2848      unsigned Size = Flags.getByValSize();
2849      if (Size==1 || Size==2) {
2850        // Very small objects are passed right-justified.
2851        // Everything else is passed left-justified.
2852        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2853        if (GPR_idx != NumGPRs) {
2854          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2855                                          NULL, 0, VT);
2856          MemOpChains.push_back(Load.getValue(1));
2857          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2858
2859          ArgOffset += PtrByteSize;
2860        } else {
2861          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2862          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2863          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2864                                CallSeqStart.getNode()->getOperand(0),
2865                                Flags, DAG, dl);
2866          // This must go outside the CALLSEQ_START..END.
2867          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2868                               CallSeqStart.getNode()->getOperand(1));
2869          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2870                                 NewCallSeqStart.getNode());
2871          Chain = CallSeqStart = NewCallSeqStart;
2872          ArgOffset += PtrByteSize;
2873        }
2874        continue;
2875      }
2876      // Copy entire object into memory.  There are cases where gcc-generated
2877      // code assumes it is there, even if it could be put entirely into
2878      // registers.  (This is not what the doc says.)
2879      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2880                            CallSeqStart.getNode()->getOperand(0),
2881                            Flags, DAG, dl);
2882      // This must go outside the CALLSEQ_START..END.
2883      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2884                           CallSeqStart.getNode()->getOperand(1));
2885      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2886      Chain = CallSeqStart = NewCallSeqStart;
2887      // And copy the pieces of it that fit into registers.
2888      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2889        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2890        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2891        if (GPR_idx != NumGPRs) {
2892          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2893          MemOpChains.push_back(Load.getValue(1));
2894          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2895          ArgOffset += PtrByteSize;
2896        } else {
2897          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2898          break;
2899        }
2900      }
2901      continue;
2902    }
2903
2904    switch (Arg.getValueType().getSimpleVT()) {
2905    default: LLVM_UNREACHABLE("Unexpected ValueType for argument!");
2906    case MVT::i32:
2907    case MVT::i64:
2908      if (GPR_idx != NumGPRs) {
2909        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2910      } else {
2911        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2912                         isPPC64, isTailCall, false, MemOpChains,
2913                         TailCallArguments, dl);
2914        inMem = true;
2915      }
2916      ArgOffset += PtrByteSize;
2917      break;
2918    case MVT::f32:
2919    case MVT::f64:
2920      if (FPR_idx != NumFPRs) {
2921        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2922
2923        if (isVarArg) {
2924          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2925          MemOpChains.push_back(Store);
2926
2927          // Float varargs are always shadowed in available integer registers
2928          if (GPR_idx != NumGPRs) {
2929            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2930            MemOpChains.push_back(Load.getValue(1));
2931            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2932          }
2933          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2934            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2935            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2936            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2937            MemOpChains.push_back(Load.getValue(1));
2938            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2939          }
2940        } else {
2941          // If we have any FPRs remaining, we may also have GPRs remaining.
2942          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2943          // GPRs.
2944          if (GPR_idx != NumGPRs)
2945            ++GPR_idx;
2946          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2947              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2948            ++GPR_idx;
2949        }
2950      } else {
2951        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2952                         isPPC64, isTailCall, false, MemOpChains,
2953                         TailCallArguments, dl);
2954        inMem = true;
2955      }
2956      if (isPPC64)
2957        ArgOffset += 8;
2958      else
2959        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2960      break;
2961    case MVT::v4f32:
2962    case MVT::v4i32:
2963    case MVT::v8i16:
2964    case MVT::v16i8:
2965      if (isVarArg) {
2966        // These go aligned on the stack, or in the corresponding R registers
2967        // when within range.  The Darwin PPC ABI doc claims they also go in
2968        // V registers; in fact gcc does this only for arguments that are
2969        // prototyped, not for those that match the ...  We do it for all
2970        // arguments, seems to work.
2971        while (ArgOffset % 16 !=0) {
2972          ArgOffset += PtrByteSize;
2973          if (GPR_idx != NumGPRs)
2974            GPR_idx++;
2975        }
2976        // We could elide this store in the case where the object fits
2977        // entirely in R registers.  Maybe later.
2978        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2979                            DAG.getConstant(ArgOffset, PtrVT));
2980        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2981        MemOpChains.push_back(Store);
2982        if (VR_idx != NumVRs) {
2983          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
2984          MemOpChains.push_back(Load.getValue(1));
2985          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2986        }
2987        ArgOffset += 16;
2988        for (unsigned i=0; i<16; i+=PtrByteSize) {
2989          if (GPR_idx == NumGPRs)
2990            break;
2991          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
2992                                  DAG.getConstant(i, PtrVT));
2993          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
2994          MemOpChains.push_back(Load.getValue(1));
2995          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2996        }
2997        break;
2998      }
2999
3000      // Non-varargs Altivec params generally go in registers, but have
3001      // stack space allocated at the end.
3002      if (VR_idx != NumVRs) {
3003        // Doesn't have GPR space allocated.
3004        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3005      } else if (nAltivecParamsAtEnd==0) {
3006        // We are emitting Altivec params in order.
3007        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3008                         isPPC64, isTailCall, true, MemOpChains,
3009                         TailCallArguments, dl);
3010        ArgOffset += 16;
3011      }
3012      break;
3013    }
3014  }
3015  // If all Altivec parameters fit in registers, as they usually do,
3016  // they get stack space following the non-Altivec parameters.  We
3017  // don't track this here because nobody below needs it.
3018  // If there are more Altivec parameters than fit in registers emit
3019  // the stores here.
3020  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3021    unsigned j = 0;
3022    // Offset is aligned; skip 1st 12 params which go in V registers.
3023    ArgOffset = ((ArgOffset+15)/16)*16;
3024    ArgOffset += 12*16;
3025    for (unsigned i = 0; i != NumOps; ++i) {
3026      SDValue Arg = TheCall->getArg(i);
3027      MVT ArgType = Arg.getValueType();
3028      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3029          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3030        if (++j > NumVRs) {
3031          SDValue PtrOff;
3032          // We are emitting Altivec params in order.
3033          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3034                           isPPC64, isTailCall, true, MemOpChains,
3035                           TailCallArguments, dl);
3036          ArgOffset += 16;
3037        }
3038      }
3039    }
3040  }
3041
3042  if (!MemOpChains.empty())
3043    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3044                        &MemOpChains[0], MemOpChains.size());
3045
3046  // Build a sequence of copy-to-reg nodes chained together with token chain
3047  // and flag operands which copy the outgoing args into the appropriate regs.
3048  SDValue InFlag;
3049  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3050    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3051                             RegsToPass[i].second, InFlag);
3052    InFlag = Chain.getValue(1);
3053  }
3054
3055  if (isTailCall) {
3056    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3057                    FPOp, true, TailCallArguments);
3058  }
3059
3060  return FinishCall(DAG, TheCall, TM, RegsToPass, Op, InFlag, Chain, Callee,
3061                    SPDiff, NumBytes);
3062}
3063
3064SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
3065                                      TargetMachine &TM) {
3066  SmallVector<CCValAssign, 16> RVLocs;
3067  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
3068  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
3069  DebugLoc dl = Op.getDebugLoc();
3070  CCState CCInfo(CC, isVarArg, TM, RVLocs, DAG.getContext());
3071  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
3072
3073  // If this is the first return lowered for this function, add the regs to the
3074  // liveout set for the function.
3075  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3076    for (unsigned i = 0; i != RVLocs.size(); ++i)
3077      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3078  }
3079
3080  SDValue Chain = Op.getOperand(0);
3081
3082  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
3083  if (Chain.getOpcode() == PPCISD::TAILCALL) {
3084    SDValue TailCall = Chain;
3085    SDValue TargetAddress = TailCall.getOperand(1);
3086    SDValue StackAdjustment = TailCall.getOperand(2);
3087
3088    assert(((TargetAddress.getOpcode() == ISD::Register &&
3089             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
3090            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
3091            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
3092            isa<ConstantSDNode>(TargetAddress)) &&
3093    "Expecting an global address, external symbol, absolute value or register");
3094
3095    assert(StackAdjustment.getOpcode() == ISD::Constant &&
3096           "Expecting a const value");
3097
3098    SmallVector<SDValue,8> Operands;
3099    Operands.push_back(Chain.getOperand(0));
3100    Operands.push_back(TargetAddress);
3101    Operands.push_back(StackAdjustment);
3102    // Copy registers used by the call. Last operand is a flag so it is not
3103    // copied.
3104    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
3105      Operands.push_back(Chain.getOperand(i));
3106    }
3107    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Operands[0],
3108                       Operands.size());
3109  }
3110
3111  SDValue Flag;
3112
3113  // Copy the result values into the output registers.
3114  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3115    CCValAssign &VA = RVLocs[i];
3116    assert(VA.isRegLoc() && "Can only return in registers!");
3117    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3118                             Op.getOperand(i*2+1), Flag);
3119    Flag = Chain.getValue(1);
3120  }
3121
3122  if (Flag.getNode())
3123    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3124  else
3125    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3126}
3127
3128SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3129                                   const PPCSubtarget &Subtarget) {
3130  // When we pop the dynamic allocation we need to restore the SP link.
3131  DebugLoc dl = Op.getDebugLoc();
3132
3133  // Get the corect type for pointers.
3134  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3135
3136  // Construct the stack pointer operand.
3137  bool IsPPC64 = Subtarget.isPPC64();
3138  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3139  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3140
3141  // Get the operands for the STACKRESTORE.
3142  SDValue Chain = Op.getOperand(0);
3143  SDValue SaveSP = Op.getOperand(1);
3144
3145  // Load the old link SP.
3146  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3147
3148  // Restore the stack pointer.
3149  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3150
3151  // Store the old link SP.
3152  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3153}
3154
3155
3156
3157SDValue
3158PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3159  MachineFunction &MF = DAG.getMachineFunction();
3160  bool IsPPC64 = PPCSubTarget.isPPC64();
3161  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3162  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3163
3164  // Get current frame pointer save index.  The users of this index will be
3165  // primarily DYNALLOC instructions.
3166  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3167  int RASI = FI->getReturnAddrSaveIndex();
3168
3169  // If the frame pointer save index hasn't been defined yet.
3170  if (!RASI) {
3171    // Find out what the fix offset of the frame pointer save area.
3172    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3173    // Allocate the frame index for frame pointer save area.
3174    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3175    // Save the result.
3176    FI->setReturnAddrSaveIndex(RASI);
3177  }
3178  return DAG.getFrameIndex(RASI, PtrVT);
3179}
3180
3181SDValue
3182PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3183  MachineFunction &MF = DAG.getMachineFunction();
3184  bool IsPPC64 = PPCSubTarget.isPPC64();
3185  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3186  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3187
3188  // Get current frame pointer save index.  The users of this index will be
3189  // primarily DYNALLOC instructions.
3190  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3191  int FPSI = FI->getFramePointerSaveIndex();
3192
3193  // If the frame pointer save index hasn't been defined yet.
3194  if (!FPSI) {
3195    // Find out what the fix offset of the frame pointer save area.
3196    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3197                                                           isDarwinABI);
3198
3199    // Allocate the frame index for frame pointer save area.
3200    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3201    // Save the result.
3202    FI->setFramePointerSaveIndex(FPSI);
3203  }
3204  return DAG.getFrameIndex(FPSI, PtrVT);
3205}
3206
3207SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3208                                         SelectionDAG &DAG,
3209                                         const PPCSubtarget &Subtarget) {
3210  // Get the inputs.
3211  SDValue Chain = Op.getOperand(0);
3212  SDValue Size  = Op.getOperand(1);
3213  DebugLoc dl = Op.getDebugLoc();
3214
3215  // Get the corect type for pointers.
3216  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3217  // Negate the size.
3218  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3219                                  DAG.getConstant(0, PtrVT), Size);
3220  // Construct a node for the frame pointer save index.
3221  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3222  // Build a DYNALLOC node.
3223  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3224  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3225  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3226}
3227
3228/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3229/// possible.
3230SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3231  // Not FP? Not a fsel.
3232  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3233      !Op.getOperand(2).getValueType().isFloatingPoint())
3234    return Op;
3235
3236  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3237
3238  // Cannot handle SETEQ/SETNE.
3239  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3240
3241  MVT ResVT = Op.getValueType();
3242  MVT CmpVT = Op.getOperand(0).getValueType();
3243  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3244  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3245  DebugLoc dl = Op.getDebugLoc();
3246
3247  // If the RHS of the comparison is a 0.0, we don't need to do the
3248  // subtraction at all.
3249  if (isFloatingPointZero(RHS))
3250    switch (CC) {
3251    default: break;       // SETUO etc aren't handled by fsel.
3252    case ISD::SETULT:
3253    case ISD::SETLT:
3254      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3255    case ISD::SETOGE:
3256    case ISD::SETGE:
3257      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3258        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3259      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3260    case ISD::SETUGT:
3261    case ISD::SETGT:
3262      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3263    case ISD::SETOLE:
3264    case ISD::SETLE:
3265      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3266        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3267      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3268                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3269    }
3270
3271  SDValue Cmp;
3272  switch (CC) {
3273  default: break;       // SETUO etc aren't handled by fsel.
3274  case ISD::SETULT:
3275  case ISD::SETLT:
3276    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3277    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3278      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3279      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3280  case ISD::SETOGE:
3281  case ISD::SETGE:
3282    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3283    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3284      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3285      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3286  case ISD::SETUGT:
3287  case ISD::SETGT:
3288    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3289    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3290      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3291      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3292  case ISD::SETOLE:
3293  case ISD::SETLE:
3294    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3295    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3296      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3297      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3298  }
3299  return Op;
3300}
3301
3302// FIXME: Split this code up when LegalizeDAGTypes lands.
3303SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3304                                           DebugLoc dl) {
3305  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3306  SDValue Src = Op.getOperand(0);
3307  if (Src.getValueType() == MVT::f32)
3308    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3309
3310  SDValue Tmp;
3311  switch (Op.getValueType().getSimpleVT()) {
3312  default: LLVM_UNREACHABLE("Unhandled FP_TO_INT type in custom expander!");
3313  case MVT::i32:
3314    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3315                                                         PPCISD::FCTIDZ,
3316                      dl, MVT::f64, Src);
3317    break;
3318  case MVT::i64:
3319    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3320    break;
3321  }
3322
3323  // Convert the FP value to an int value through memory.
3324  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3325
3326  // Emit a store to the stack slot.
3327  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3328
3329  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3330  // add in a bias.
3331  if (Op.getValueType() == MVT::i32)
3332    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3333                        DAG.getConstant(4, FIPtr.getValueType()));
3334  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3335}
3336
3337SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3338  DebugLoc dl = Op.getDebugLoc();
3339  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3340  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3341    return SDValue();
3342
3343  if (Op.getOperand(0).getValueType() == MVT::i64) {
3344    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3345                               MVT::f64, Op.getOperand(0));
3346    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3347    if (Op.getValueType() == MVT::f32)
3348      FP = DAG.getNode(ISD::FP_ROUND, dl,
3349                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3350    return FP;
3351  }
3352
3353  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3354         "Unhandled SINT_TO_FP type in custom expander!");
3355  // Since we only generate this in 64-bit mode, we can take advantage of
3356  // 64-bit registers.  In particular, sign extend the input value into the
3357  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3358  // then lfd it and fcfid it.
3359  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3360  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3361  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3362  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3363
3364  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3365                                Op.getOperand(0));
3366
3367  // STD the extended value into the stack slot.
3368  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
3369                       MachineMemOperand::MOStore, 0, 8, 8);
3370  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
3371                                DAG.getEntryNode(), Ext64, FIdx,
3372                                DAG.getMemOperand(MO));
3373  // Load the value as a double.
3374  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3375
3376  // FCFID it and return it.
3377  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3378  if (Op.getValueType() == MVT::f32)
3379    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3380  return FP;
3381}
3382
3383SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3384  DebugLoc dl = Op.getDebugLoc();
3385  /*
3386   The rounding mode is in bits 30:31 of FPSR, and has the following
3387   settings:
3388     00 Round to nearest
3389     01 Round to 0
3390     10 Round to +inf
3391     11 Round to -inf
3392
3393  FLT_ROUNDS, on the other hand, expects the following:
3394    -1 Undefined
3395     0 Round to 0
3396     1 Round to nearest
3397     2 Round to +inf
3398     3 Round to -inf
3399
3400  To perform the conversion, we do:
3401    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3402  */
3403
3404  MachineFunction &MF = DAG.getMachineFunction();
3405  MVT VT = Op.getValueType();
3406  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3407  std::vector<MVT> NodeTys;
3408  SDValue MFFSreg, InFlag;
3409
3410  // Save FP Control Word to register
3411  NodeTys.push_back(MVT::f64);    // return register
3412  NodeTys.push_back(MVT::Flag);   // unused in this context
3413  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3414
3415  // Save FP register to stack slot
3416  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3417  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3418  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3419                                 StackSlot, NULL, 0);
3420
3421  // Load FP Control Word from low 32 bits of stack slot.
3422  SDValue Four = DAG.getConstant(4, PtrVT);
3423  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3424  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3425
3426  // Transform as necessary
3427  SDValue CWD1 =
3428    DAG.getNode(ISD::AND, dl, MVT::i32,
3429                CWD, DAG.getConstant(3, MVT::i32));
3430  SDValue CWD2 =
3431    DAG.getNode(ISD::SRL, dl, MVT::i32,
3432                DAG.getNode(ISD::AND, dl, MVT::i32,
3433                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3434                                        CWD, DAG.getConstant(3, MVT::i32)),
3435                            DAG.getConstant(3, MVT::i32)),
3436                DAG.getConstant(1, MVT::i32));
3437
3438  SDValue RetVal =
3439    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3440
3441  return DAG.getNode((VT.getSizeInBits() < 16 ?
3442                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3443}
3444
3445SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3446  MVT VT = Op.getValueType();
3447  unsigned BitWidth = VT.getSizeInBits();
3448  DebugLoc dl = Op.getDebugLoc();
3449  assert(Op.getNumOperands() == 3 &&
3450         VT == Op.getOperand(1).getValueType() &&
3451         "Unexpected SHL!");
3452
3453  // Expand into a bunch of logical ops.  Note that these ops
3454  // depend on the PPC behavior for oversized shift amounts.
3455  SDValue Lo = Op.getOperand(0);
3456  SDValue Hi = Op.getOperand(1);
3457  SDValue Amt = Op.getOperand(2);
3458  MVT AmtVT = Amt.getValueType();
3459
3460  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3461                             DAG.getConstant(BitWidth, AmtVT), Amt);
3462  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3463  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3464  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3465  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3466                             DAG.getConstant(-BitWidth, AmtVT));
3467  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3468  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3469  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3470  SDValue OutOps[] = { OutLo, OutHi };
3471  return DAG.getMergeValues(OutOps, 2, dl);
3472}
3473
3474SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3475  MVT VT = Op.getValueType();
3476  DebugLoc dl = Op.getDebugLoc();
3477  unsigned BitWidth = VT.getSizeInBits();
3478  assert(Op.getNumOperands() == 3 &&
3479         VT == Op.getOperand(1).getValueType() &&
3480         "Unexpected SRL!");
3481
3482  // Expand into a bunch of logical ops.  Note that these ops
3483  // depend on the PPC behavior for oversized shift amounts.
3484  SDValue Lo = Op.getOperand(0);
3485  SDValue Hi = Op.getOperand(1);
3486  SDValue Amt = Op.getOperand(2);
3487  MVT AmtVT = Amt.getValueType();
3488
3489  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3490                             DAG.getConstant(BitWidth, AmtVT), Amt);
3491  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3492  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3493  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3494  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3495                             DAG.getConstant(-BitWidth, AmtVT));
3496  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3497  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3498  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3499  SDValue OutOps[] = { OutLo, OutHi };
3500  return DAG.getMergeValues(OutOps, 2, dl);
3501}
3502
3503SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3504  DebugLoc dl = Op.getDebugLoc();
3505  MVT VT = Op.getValueType();
3506  unsigned BitWidth = VT.getSizeInBits();
3507  assert(Op.getNumOperands() == 3 &&
3508         VT == Op.getOperand(1).getValueType() &&
3509         "Unexpected SRA!");
3510
3511  // Expand into a bunch of logical ops, followed by a select_cc.
3512  SDValue Lo = Op.getOperand(0);
3513  SDValue Hi = Op.getOperand(1);
3514  SDValue Amt = Op.getOperand(2);
3515  MVT AmtVT = Amt.getValueType();
3516
3517  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3518                             DAG.getConstant(BitWidth, AmtVT), Amt);
3519  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3520  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3521  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3522  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3523                             DAG.getConstant(-BitWidth, AmtVT));
3524  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3525  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3526  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3527                                  Tmp4, Tmp6, ISD::SETLE);
3528  SDValue OutOps[] = { OutLo, OutHi };
3529  return DAG.getMergeValues(OutOps, 2, dl);
3530}
3531
3532//===----------------------------------------------------------------------===//
3533// Vector related lowering.
3534//
3535
3536/// BuildSplatI - Build a canonical splati of Val with an element size of
3537/// SplatSize.  Cast the result to VT.
3538static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3539                             SelectionDAG &DAG, DebugLoc dl) {
3540  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3541
3542  static const MVT VTys[] = { // canonical VT to use for each size.
3543    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3544  };
3545
3546  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3547
3548  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3549  if (Val == -1)
3550    SplatSize = 1;
3551
3552  MVT CanonicalVT = VTys[SplatSize-1];
3553
3554  // Build a canonical splat for this value.
3555  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3556  SmallVector<SDValue, 8> Ops;
3557  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3558  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3559                              &Ops[0], Ops.size());
3560  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3561}
3562
3563/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3564/// specified intrinsic ID.
3565static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3566                                SelectionDAG &DAG, DebugLoc dl,
3567                                MVT DestVT = MVT::Other) {
3568  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3569  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3570                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3571}
3572
3573/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3574/// specified intrinsic ID.
3575static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3576                                SDValue Op2, SelectionDAG &DAG,
3577                                DebugLoc dl, MVT DestVT = MVT::Other) {
3578  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3579  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3580                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3581}
3582
3583
3584/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3585/// amount.  The result has the specified value type.
3586static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3587                             MVT VT, SelectionDAG &DAG, DebugLoc dl) {
3588  // Force LHS/RHS to be the right type.
3589  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3590  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3591
3592  int Ops[16];
3593  for (unsigned i = 0; i != 16; ++i)
3594    Ops[i] = i + Amt;
3595  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3596  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3597}
3598
3599// If this is a case we can't handle, return null and let the default
3600// expansion code take care of it.  If we CAN select this case, and if it
3601// selects to a single instruction, return Op.  Otherwise, if we can codegen
3602// this case more efficiently than a constant pool load, lower it to the
3603// sequence of ops that should be used.
3604SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3605  DebugLoc dl = Op.getDebugLoc();
3606  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3607  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3608
3609  // Check if this is a splat of a constant value.
3610  APInt APSplatBits, APSplatUndef;
3611  unsigned SplatBitSize;
3612  bool HasAnyUndefs;
3613  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3614                             HasAnyUndefs) || SplatBitSize > 32)
3615    return SDValue();
3616
3617  unsigned SplatBits = APSplatBits.getZExtValue();
3618  unsigned SplatUndef = APSplatUndef.getZExtValue();
3619  unsigned SplatSize = SplatBitSize / 8;
3620
3621  // First, handle single instruction cases.
3622
3623  // All zeros?
3624  if (SplatBits == 0) {
3625    // Canonicalize all zero vectors to be v4i32.
3626    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3627      SDValue Z = DAG.getConstant(0, MVT::i32);
3628      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3629      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3630    }
3631    return Op;
3632  }
3633
3634  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3635  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3636                    (32-SplatBitSize));
3637  if (SextVal >= -16 && SextVal <= 15)
3638    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3639
3640
3641  // Two instruction sequences.
3642
3643  // If this value is in the range [-32,30] and is even, use:
3644  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3645  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3646    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3647    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3648    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3649  }
3650
3651  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3652  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3653  // for fneg/fabs.
3654  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3655    // Make -1 and vspltisw -1:
3656    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3657
3658    // Make the VSLW intrinsic, computing 0x8000_0000.
3659    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3660                                   OnesV, DAG, dl);
3661
3662    // xor by OnesV to invert it.
3663    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3664    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3665  }
3666
3667  // Check to see if this is a wide variety of vsplti*, binop self cases.
3668  static const signed char SplatCsts[] = {
3669    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3670    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3671  };
3672
3673  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3674    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3675    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3676    int i = SplatCsts[idx];
3677
3678    // Figure out what shift amount will be used by altivec if shifted by i in
3679    // this splat size.
3680    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3681
3682    // vsplti + shl self.
3683    if (SextVal == (i << (int)TypeShiftAmt)) {
3684      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3685      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3686        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3687        Intrinsic::ppc_altivec_vslw
3688      };
3689      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3690      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3691    }
3692
3693    // vsplti + srl self.
3694    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3695      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3696      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3697        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3698        Intrinsic::ppc_altivec_vsrw
3699      };
3700      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3701      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3702    }
3703
3704    // vsplti + sra self.
3705    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3706      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3707      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3708        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3709        Intrinsic::ppc_altivec_vsraw
3710      };
3711      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3712      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3713    }
3714
3715    // vsplti + rol self.
3716    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3717                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3718      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3719      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3720        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3721        Intrinsic::ppc_altivec_vrlw
3722      };
3723      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3724      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3725    }
3726
3727    // t = vsplti c, result = vsldoi t, t, 1
3728    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3729      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3730      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3731    }
3732    // t = vsplti c, result = vsldoi t, t, 2
3733    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3734      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3735      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3736    }
3737    // t = vsplti c, result = vsldoi t, t, 3
3738    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3739      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3740      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3741    }
3742  }
3743
3744  // Three instruction sequences.
3745
3746  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3747  if (SextVal >= 0 && SextVal <= 31) {
3748    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3749    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3750    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3751    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3752  }
3753  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3754  if (SextVal >= -31 && SextVal <= 0) {
3755    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3756    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3757    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3758    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3759  }
3760
3761  return SDValue();
3762}
3763
3764/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3765/// the specified operations to build the shuffle.
3766static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3767                                      SDValue RHS, SelectionDAG &DAG,
3768                                      DebugLoc dl) {
3769  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3770  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3771  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3772
3773  enum {
3774    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3775    OP_VMRGHW,
3776    OP_VMRGLW,
3777    OP_VSPLTISW0,
3778    OP_VSPLTISW1,
3779    OP_VSPLTISW2,
3780    OP_VSPLTISW3,
3781    OP_VSLDOI4,
3782    OP_VSLDOI8,
3783    OP_VSLDOI12
3784  };
3785
3786  if (OpNum == OP_COPY) {
3787    if (LHSID == (1*9+2)*9+3) return LHS;
3788    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3789    return RHS;
3790  }
3791
3792  SDValue OpLHS, OpRHS;
3793  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3794  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3795
3796  int ShufIdxs[16];
3797  switch (OpNum) {
3798  default: LLVM_UNREACHABLE("Unknown i32 permute!");
3799  case OP_VMRGHW:
3800    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3801    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3802    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3803    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3804    break;
3805  case OP_VMRGLW:
3806    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3807    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3808    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3809    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3810    break;
3811  case OP_VSPLTISW0:
3812    for (unsigned i = 0; i != 16; ++i)
3813      ShufIdxs[i] = (i&3)+0;
3814    break;
3815  case OP_VSPLTISW1:
3816    for (unsigned i = 0; i != 16; ++i)
3817      ShufIdxs[i] = (i&3)+4;
3818    break;
3819  case OP_VSPLTISW2:
3820    for (unsigned i = 0; i != 16; ++i)
3821      ShufIdxs[i] = (i&3)+8;
3822    break;
3823  case OP_VSPLTISW3:
3824    for (unsigned i = 0; i != 16; ++i)
3825      ShufIdxs[i] = (i&3)+12;
3826    break;
3827  case OP_VSLDOI4:
3828    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3829  case OP_VSLDOI8:
3830    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3831  case OP_VSLDOI12:
3832    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3833  }
3834  MVT VT = OpLHS.getValueType();
3835  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3836  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3837  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3838  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3839}
3840
3841/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3842/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3843/// return the code it can be lowered into.  Worst case, it can always be
3844/// lowered into a vperm.
3845SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3846                                               SelectionDAG &DAG) {
3847  DebugLoc dl = Op.getDebugLoc();
3848  SDValue V1 = Op.getOperand(0);
3849  SDValue V2 = Op.getOperand(1);
3850  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3851  MVT VT = Op.getValueType();
3852
3853  // Cases that are handled by instructions that take permute immediates
3854  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3855  // selected by the instruction selector.
3856  if (V2.getOpcode() == ISD::UNDEF) {
3857    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3858        PPC::isSplatShuffleMask(SVOp, 2) ||
3859        PPC::isSplatShuffleMask(SVOp, 4) ||
3860        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3861        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3862        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3863        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3864        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3865        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3866        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3867        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3868        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3869      return Op;
3870    }
3871  }
3872
3873  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3874  // and produce a fixed permutation.  If any of these match, do not lower to
3875  // VPERM.
3876  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3877      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3878      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3879      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3880      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3881      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3882      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3883      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3884      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3885    return Op;
3886
3887  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3888  // perfect shuffle table to emit an optimal matching sequence.
3889  SmallVector<int, 16> PermMask;
3890  SVOp->getMask(PermMask);
3891
3892  unsigned PFIndexes[4];
3893  bool isFourElementShuffle = true;
3894  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3895    unsigned EltNo = 8;   // Start out undef.
3896    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3897      if (PermMask[i*4+j] < 0)
3898        continue;   // Undef, ignore it.
3899
3900      unsigned ByteSource = PermMask[i*4+j];
3901      if ((ByteSource & 3) != j) {
3902        isFourElementShuffle = false;
3903        break;
3904      }
3905
3906      if (EltNo == 8) {
3907        EltNo = ByteSource/4;
3908      } else if (EltNo != ByteSource/4) {
3909        isFourElementShuffle = false;
3910        break;
3911      }
3912    }
3913    PFIndexes[i] = EltNo;
3914  }
3915
3916  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3917  // perfect shuffle vector to determine if it is cost effective to do this as
3918  // discrete instructions, or whether we should use a vperm.
3919  if (isFourElementShuffle) {
3920    // Compute the index in the perfect shuffle table.
3921    unsigned PFTableIndex =
3922      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3923
3924    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3925    unsigned Cost  = (PFEntry >> 30);
3926
3927    // Determining when to avoid vperm is tricky.  Many things affect the cost
3928    // of vperm, particularly how many times the perm mask needs to be computed.
3929    // For example, if the perm mask can be hoisted out of a loop or is already
3930    // used (perhaps because there are multiple permutes with the same shuffle
3931    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3932    // the loop requires an extra register.
3933    //
3934    // As a compromise, we only emit discrete instructions if the shuffle can be
3935    // generated in 3 or fewer operations.  When we have loop information
3936    // available, if this block is within a loop, we should avoid using vperm
3937    // for 3-operation perms and use a constant pool load instead.
3938    if (Cost < 3)
3939      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3940  }
3941
3942  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3943  // vector that will get spilled to the constant pool.
3944  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3945
3946  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3947  // that it is in input element units, not in bytes.  Convert now.
3948  MVT EltVT = V1.getValueType().getVectorElementType();
3949  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3950
3951  SmallVector<SDValue, 16> ResultMask;
3952  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3953    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3954
3955    for (unsigned j = 0; j != BytesPerElement; ++j)
3956      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3957                                           MVT::i32));
3958  }
3959
3960  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3961                                    &ResultMask[0], ResultMask.size());
3962  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3963}
3964
3965/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3966/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3967/// information about the intrinsic.
3968static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3969                                  bool &isDot) {
3970  unsigned IntrinsicID =
3971    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3972  CompareOpc = -1;
3973  isDot = false;
3974  switch (IntrinsicID) {
3975  default: return false;
3976    // Comparison predicates.
3977  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3978  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3979  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3980  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3981  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3982  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3983  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3984  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3985  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3986  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3987  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3988  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3989  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3990
3991    // Normal Comparisons.
3992  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3993  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3994  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3995  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3996  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3997  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3998  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3999  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4000  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4001  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4002  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4003  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4004  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4005  }
4006  return true;
4007}
4008
4009/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4010/// lower, do it, otherwise return null.
4011SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4012                                                     SelectionDAG &DAG) {
4013  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4014  // opcode number of the comparison.
4015  DebugLoc dl = Op.getDebugLoc();
4016  int CompareOpc;
4017  bool isDot;
4018  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4019    return SDValue();    // Don't custom lower most intrinsics.
4020
4021  // If this is a non-dot comparison, make the VCMP node and we are done.
4022  if (!isDot) {
4023    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4024                                Op.getOperand(1), Op.getOperand(2),
4025                                DAG.getConstant(CompareOpc, MVT::i32));
4026    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4027  }
4028
4029  // Create the PPCISD altivec 'dot' comparison node.
4030  SDValue Ops[] = {
4031    Op.getOperand(2),  // LHS
4032    Op.getOperand(3),  // RHS
4033    DAG.getConstant(CompareOpc, MVT::i32)
4034  };
4035  std::vector<MVT> VTs;
4036  VTs.push_back(Op.getOperand(2).getValueType());
4037  VTs.push_back(MVT::Flag);
4038  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4039
4040  // Now that we have the comparison, emit a copy from the CR to a GPR.
4041  // This is flagged to the above dot comparison.
4042  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4043                                DAG.getRegister(PPC::CR6, MVT::i32),
4044                                CompNode.getValue(1));
4045
4046  // Unpack the result based on how the target uses it.
4047  unsigned BitNo;   // Bit # of CR6.
4048  bool InvertBit;   // Invert result?
4049  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4050  default:  // Can't happen, don't crash on invalid number though.
4051  case 0:   // Return the value of the EQ bit of CR6.
4052    BitNo = 0; InvertBit = false;
4053    break;
4054  case 1:   // Return the inverted value of the EQ bit of CR6.
4055    BitNo = 0; InvertBit = true;
4056    break;
4057  case 2:   // Return the value of the LT bit of CR6.
4058    BitNo = 2; InvertBit = false;
4059    break;
4060  case 3:   // Return the inverted value of the LT bit of CR6.
4061    BitNo = 2; InvertBit = true;
4062    break;
4063  }
4064
4065  // Shift the bit into the low position.
4066  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4067                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4068  // Isolate the bit.
4069  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4070                      DAG.getConstant(1, MVT::i32));
4071
4072  // If we are supposed to, toggle the bit.
4073  if (InvertBit)
4074    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4075                        DAG.getConstant(1, MVT::i32));
4076  return Flags;
4077}
4078
4079SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4080                                                   SelectionDAG &DAG) {
4081  DebugLoc dl = Op.getDebugLoc();
4082  // Create a stack slot that is 16-byte aligned.
4083  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4084  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4085  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4086  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4087
4088  // Store the input value into Value#0 of the stack slot.
4089  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4090                                 Op.getOperand(0), FIdx, NULL, 0);
4091  // Load it out.
4092  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4093}
4094
4095SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4096  DebugLoc dl = Op.getDebugLoc();
4097  if (Op.getValueType() == MVT::v4i32) {
4098    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4099
4100    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4101    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4102
4103    SDValue RHSSwap =   // = vrlw RHS, 16
4104      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4105
4106    // Shrinkify inputs to v8i16.
4107    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4108    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4109    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4110
4111    // Low parts multiplied together, generating 32-bit results (we ignore the
4112    // top parts).
4113    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4114                                        LHS, RHS, DAG, dl, MVT::v4i32);
4115
4116    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4117                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4118    // Shift the high parts up 16 bits.
4119    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4120                              Neg16, DAG, dl);
4121    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4122  } else if (Op.getValueType() == MVT::v8i16) {
4123    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4124
4125    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4126
4127    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4128                            LHS, RHS, Zero, DAG, dl);
4129  } else if (Op.getValueType() == MVT::v16i8) {
4130    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4131
4132    // Multiply the even 8-bit parts, producing 16-bit sums.
4133    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4134                                           LHS, RHS, DAG, dl, MVT::v8i16);
4135    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4136
4137    // Multiply the odd 8-bit parts, producing 16-bit sums.
4138    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4139                                          LHS, RHS, DAG, dl, MVT::v8i16);
4140    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4141
4142    // Merge the results together.
4143    int Ops[16];
4144    for (unsigned i = 0; i != 8; ++i) {
4145      Ops[i*2  ] = 2*i+1;
4146      Ops[i*2+1] = 2*i+1+16;
4147    }
4148    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4149  } else {
4150    LLVM_UNREACHABLE("Unknown mul to lower!");
4151  }
4152}
4153
4154/// LowerOperation - Provide custom lowering hooks for some operations.
4155///
4156SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4157  switch (Op.getOpcode()) {
4158  default: LLVM_UNREACHABLE("Wasn't expecting to be able to lower this!");
4159  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4160  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4161  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4162  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4163  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4164  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4165  case ISD::VASTART:
4166    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4167                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4168
4169  case ISD::VAARG:
4170    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4171                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4172
4173  case ISD::FORMAL_ARGUMENTS:
4174    if (PPCSubTarget.isSVR4ABI()) {
4175      return LowerFORMAL_ARGUMENTS_SVR4(Op, DAG, VarArgsFrameIndex,
4176                                        VarArgsStackOffset, VarArgsNumGPR,
4177                                        VarArgsNumFPR, PPCSubTarget);
4178    } else {
4179      return LowerFORMAL_ARGUMENTS_Darwin(Op, DAG, VarArgsFrameIndex,
4180                                          PPCSubTarget);
4181    }
4182
4183  case ISD::CALL:
4184    if (PPCSubTarget.isSVR4ABI()) {
4185      return LowerCALL_SVR4(Op, DAG, PPCSubTarget, getTargetMachine());
4186    } else {
4187      return LowerCALL_Darwin(Op, DAG, PPCSubTarget, getTargetMachine());
4188    }
4189
4190  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
4191  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4192  case ISD::DYNAMIC_STACKALLOC:
4193    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4194
4195  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4196  case ISD::FP_TO_UINT:
4197  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4198                                                       Op.getDebugLoc());
4199  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4200  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4201
4202  // Lower 64-bit shifts.
4203  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4204  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4205  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4206
4207  // Vector-related lowering.
4208  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4209  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4210  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4211  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4212  case ISD::MUL:                return LowerMUL(Op, DAG);
4213
4214  // Frame & Return address.
4215  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4216  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4217  }
4218  return SDValue();
4219}
4220
4221void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4222                                           SmallVectorImpl<SDValue>&Results,
4223                                           SelectionDAG &DAG) {
4224  DebugLoc dl = N->getDebugLoc();
4225  switch (N->getOpcode()) {
4226  default:
4227    assert(false && "Do not know how to custom type legalize this operation!");
4228    return;
4229  case ISD::FP_ROUND_INREG: {
4230    assert(N->getValueType(0) == MVT::ppcf128);
4231    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4232    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4233                             MVT::f64, N->getOperand(0),
4234                             DAG.getIntPtrConstant(0));
4235    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4236                             MVT::f64, N->getOperand(0),
4237                             DAG.getIntPtrConstant(1));
4238
4239    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4240    // of the long double, and puts FPSCR back the way it was.  We do not
4241    // actually model FPSCR.
4242    std::vector<MVT> NodeTys;
4243    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4244
4245    NodeTys.push_back(MVT::f64);   // Return register
4246    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4247    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4248    MFFSreg = Result.getValue(0);
4249    InFlag = Result.getValue(1);
4250
4251    NodeTys.clear();
4252    NodeTys.push_back(MVT::Flag);   // Returns a flag
4253    Ops[0] = DAG.getConstant(31, MVT::i32);
4254    Ops[1] = InFlag;
4255    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4256    InFlag = Result.getValue(0);
4257
4258    NodeTys.clear();
4259    NodeTys.push_back(MVT::Flag);   // Returns a flag
4260    Ops[0] = DAG.getConstant(30, MVT::i32);
4261    Ops[1] = InFlag;
4262    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4263    InFlag = Result.getValue(0);
4264
4265    NodeTys.clear();
4266    NodeTys.push_back(MVT::f64);    // result of add
4267    NodeTys.push_back(MVT::Flag);   // Returns a flag
4268    Ops[0] = Lo;
4269    Ops[1] = Hi;
4270    Ops[2] = InFlag;
4271    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4272    FPreg = Result.getValue(0);
4273    InFlag = Result.getValue(1);
4274
4275    NodeTys.clear();
4276    NodeTys.push_back(MVT::f64);
4277    Ops[0] = DAG.getConstant(1, MVT::i32);
4278    Ops[1] = MFFSreg;
4279    Ops[2] = FPreg;
4280    Ops[3] = InFlag;
4281    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4282    FPreg = Result.getValue(0);
4283
4284    // We know the low half is about to be thrown away, so just use something
4285    // convenient.
4286    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4287                                FPreg, FPreg));
4288    return;
4289  }
4290  case ISD::FP_TO_SINT:
4291    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4292    return;
4293  }
4294}
4295
4296
4297//===----------------------------------------------------------------------===//
4298//  Other Lowering Code
4299//===----------------------------------------------------------------------===//
4300
4301MachineBasicBlock *
4302PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4303                                    bool is64bit, unsigned BinOpcode) const {
4304  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4305  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4306
4307  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4308  MachineFunction *F = BB->getParent();
4309  MachineFunction::iterator It = BB;
4310  ++It;
4311
4312  unsigned dest = MI->getOperand(0).getReg();
4313  unsigned ptrA = MI->getOperand(1).getReg();
4314  unsigned ptrB = MI->getOperand(2).getReg();
4315  unsigned incr = MI->getOperand(3).getReg();
4316  DebugLoc dl = MI->getDebugLoc();
4317
4318  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4319  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4320  F->insert(It, loopMBB);
4321  F->insert(It, exitMBB);
4322  exitMBB->transferSuccessors(BB);
4323
4324  MachineRegisterInfo &RegInfo = F->getRegInfo();
4325  unsigned TmpReg = (!BinOpcode) ? incr :
4326    RegInfo.createVirtualRegister(
4327       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4328                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4329
4330  //  thisMBB:
4331  //   ...
4332  //   fallthrough --> loopMBB
4333  BB->addSuccessor(loopMBB);
4334
4335  //  loopMBB:
4336  //   l[wd]arx dest, ptr
4337  //   add r0, dest, incr
4338  //   st[wd]cx. r0, ptr
4339  //   bne- loopMBB
4340  //   fallthrough --> exitMBB
4341  BB = loopMBB;
4342  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4343    .addReg(ptrA).addReg(ptrB);
4344  if (BinOpcode)
4345    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4346  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4347    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4348  BuildMI(BB, dl, TII->get(PPC::BCC))
4349    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4350  BB->addSuccessor(loopMBB);
4351  BB->addSuccessor(exitMBB);
4352
4353  //  exitMBB:
4354  //   ...
4355  BB = exitMBB;
4356  return BB;
4357}
4358
4359MachineBasicBlock *
4360PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4361                                            MachineBasicBlock *BB,
4362                                            bool is8bit,    // operation
4363                                            unsigned BinOpcode) const {
4364  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4365  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4366  // In 64 bit mode we have to use 64 bits for addresses, even though the
4367  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4368  // registers without caring whether they're 32 or 64, but here we're
4369  // doing actual arithmetic on the addresses.
4370  bool is64bit = PPCSubTarget.isPPC64();
4371
4372  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4373  MachineFunction *F = BB->getParent();
4374  MachineFunction::iterator It = BB;
4375  ++It;
4376
4377  unsigned dest = MI->getOperand(0).getReg();
4378  unsigned ptrA = MI->getOperand(1).getReg();
4379  unsigned ptrB = MI->getOperand(2).getReg();
4380  unsigned incr = MI->getOperand(3).getReg();
4381  DebugLoc dl = MI->getDebugLoc();
4382
4383  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4384  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4385  F->insert(It, loopMBB);
4386  F->insert(It, exitMBB);
4387  exitMBB->transferSuccessors(BB);
4388
4389  MachineRegisterInfo &RegInfo = F->getRegInfo();
4390  const TargetRegisterClass *RC =
4391    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4392              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4393  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4394  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4395  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4396  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4397  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4398  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4399  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4400  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4401  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4402  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4403  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4404  unsigned Ptr1Reg;
4405  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4406
4407  //  thisMBB:
4408  //   ...
4409  //   fallthrough --> loopMBB
4410  BB->addSuccessor(loopMBB);
4411
4412  // The 4-byte load must be aligned, while a char or short may be
4413  // anywhere in the word.  Hence all this nasty bookkeeping code.
4414  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4415  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4416  //   xori shift, shift1, 24 [16]
4417  //   rlwinm ptr, ptr1, 0, 0, 29
4418  //   slw incr2, incr, shift
4419  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4420  //   slw mask, mask2, shift
4421  //  loopMBB:
4422  //   lwarx tmpDest, ptr
4423  //   add tmp, tmpDest, incr2
4424  //   andc tmp2, tmpDest, mask
4425  //   and tmp3, tmp, mask
4426  //   or tmp4, tmp3, tmp2
4427  //   stwcx. tmp4, ptr
4428  //   bne- loopMBB
4429  //   fallthrough --> exitMBB
4430  //   srw dest, tmpDest, shift
4431
4432  if (ptrA!=PPC::R0) {
4433    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4434    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4435      .addReg(ptrA).addReg(ptrB);
4436  } else {
4437    Ptr1Reg = ptrB;
4438  }
4439  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4440      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4441  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4442      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4443  if (is64bit)
4444    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4445      .addReg(Ptr1Reg).addImm(0).addImm(61);
4446  else
4447    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4448      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4449  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4450      .addReg(incr).addReg(ShiftReg);
4451  if (is8bit)
4452    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4453  else {
4454    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4455    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4456  }
4457  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4458      .addReg(Mask2Reg).addReg(ShiftReg);
4459
4460  BB = loopMBB;
4461  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4462    .addReg(PPC::R0).addReg(PtrReg);
4463  if (BinOpcode)
4464    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4465      .addReg(Incr2Reg).addReg(TmpDestReg);
4466  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4467    .addReg(TmpDestReg).addReg(MaskReg);
4468  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4469    .addReg(TmpReg).addReg(MaskReg);
4470  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4471    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4472  BuildMI(BB, dl, TII->get(PPC::STWCX))
4473    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4474  BuildMI(BB, dl, TII->get(PPC::BCC))
4475    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4476  BB->addSuccessor(loopMBB);
4477  BB->addSuccessor(exitMBB);
4478
4479  //  exitMBB:
4480  //   ...
4481  BB = exitMBB;
4482  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4483  return BB;
4484}
4485
4486MachineBasicBlock *
4487PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4488                                               MachineBasicBlock *BB) const {
4489  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4490
4491  // To "insert" these instructions we actually have to insert their
4492  // control-flow patterns.
4493  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4494  MachineFunction::iterator It = BB;
4495  ++It;
4496
4497  MachineFunction *F = BB->getParent();
4498
4499  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4500      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4501      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4502      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4503      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4504
4505    // The incoming instruction knows the destination vreg to set, the
4506    // condition code register to branch on, the true/false values to
4507    // select between, and a branch opcode to use.
4508
4509    //  thisMBB:
4510    //  ...
4511    //   TrueVal = ...
4512    //   cmpTY ccX, r1, r2
4513    //   bCC copy1MBB
4514    //   fallthrough --> copy0MBB
4515    MachineBasicBlock *thisMBB = BB;
4516    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4517    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4518    unsigned SelectPred = MI->getOperand(4).getImm();
4519    DebugLoc dl = MI->getDebugLoc();
4520    BuildMI(BB, dl, TII->get(PPC::BCC))
4521      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4522    F->insert(It, copy0MBB);
4523    F->insert(It, sinkMBB);
4524    // Update machine-CFG edges by transferring all successors of the current
4525    // block to the new block which will contain the Phi node for the select.
4526    sinkMBB->transferSuccessors(BB);
4527    // Next, add the true and fallthrough blocks as its successors.
4528    BB->addSuccessor(copy0MBB);
4529    BB->addSuccessor(sinkMBB);
4530
4531    //  copy0MBB:
4532    //   %FalseValue = ...
4533    //   # fallthrough to sinkMBB
4534    BB = copy0MBB;
4535
4536    // Update machine-CFG edges
4537    BB->addSuccessor(sinkMBB);
4538
4539    //  sinkMBB:
4540    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4541    //  ...
4542    BB = sinkMBB;
4543    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4544      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4545      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4546  }
4547  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4548    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4549  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4550    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4551  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4552    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4553  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4554    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4555
4556  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4557    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4558  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4559    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4560  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4561    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4562  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4563    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4564
4565  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4566    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4567  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4568    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4569  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4570    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4571  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4572    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4573
4574  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4575    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4576  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4577    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4578  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4579    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4580  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4581    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4582
4583  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4584    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4585  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4586    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4587  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4588    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4589  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4590    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4591
4592  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4593    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4594  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4595    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4596  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4597    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4598  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4599    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4600
4601  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4602    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4603  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4604    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4605  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4606    BB = EmitAtomicBinary(MI, BB, false, 0);
4607  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4608    BB = EmitAtomicBinary(MI, BB, true, 0);
4609
4610  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4611           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4612    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4613
4614    unsigned dest   = MI->getOperand(0).getReg();
4615    unsigned ptrA   = MI->getOperand(1).getReg();
4616    unsigned ptrB   = MI->getOperand(2).getReg();
4617    unsigned oldval = MI->getOperand(3).getReg();
4618    unsigned newval = MI->getOperand(4).getReg();
4619    DebugLoc dl     = MI->getDebugLoc();
4620
4621    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4622    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4623    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4624    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4625    F->insert(It, loop1MBB);
4626    F->insert(It, loop2MBB);
4627    F->insert(It, midMBB);
4628    F->insert(It, exitMBB);
4629    exitMBB->transferSuccessors(BB);
4630
4631    //  thisMBB:
4632    //   ...
4633    //   fallthrough --> loopMBB
4634    BB->addSuccessor(loop1MBB);
4635
4636    // loop1MBB:
4637    //   l[wd]arx dest, ptr
4638    //   cmp[wd] dest, oldval
4639    //   bne- midMBB
4640    // loop2MBB:
4641    //   st[wd]cx. newval, ptr
4642    //   bne- loopMBB
4643    //   b exitBB
4644    // midMBB:
4645    //   st[wd]cx. dest, ptr
4646    // exitBB:
4647    BB = loop1MBB;
4648    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4649      .addReg(ptrA).addReg(ptrB);
4650    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4651      .addReg(oldval).addReg(dest);
4652    BuildMI(BB, dl, TII->get(PPC::BCC))
4653      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4654    BB->addSuccessor(loop2MBB);
4655    BB->addSuccessor(midMBB);
4656
4657    BB = loop2MBB;
4658    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4659      .addReg(newval).addReg(ptrA).addReg(ptrB);
4660    BuildMI(BB, dl, TII->get(PPC::BCC))
4661      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4662    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4663    BB->addSuccessor(loop1MBB);
4664    BB->addSuccessor(exitMBB);
4665
4666    BB = midMBB;
4667    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4668      .addReg(dest).addReg(ptrA).addReg(ptrB);
4669    BB->addSuccessor(exitMBB);
4670
4671    //  exitMBB:
4672    //   ...
4673    BB = exitMBB;
4674  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4675             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4676    // We must use 64-bit registers for addresses when targeting 64-bit,
4677    // since we're actually doing arithmetic on them.  Other registers
4678    // can be 32-bit.
4679    bool is64bit = PPCSubTarget.isPPC64();
4680    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4681
4682    unsigned dest   = MI->getOperand(0).getReg();
4683    unsigned ptrA   = MI->getOperand(1).getReg();
4684    unsigned ptrB   = MI->getOperand(2).getReg();
4685    unsigned oldval = MI->getOperand(3).getReg();
4686    unsigned newval = MI->getOperand(4).getReg();
4687    DebugLoc dl     = MI->getDebugLoc();
4688
4689    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4690    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4691    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4692    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4693    F->insert(It, loop1MBB);
4694    F->insert(It, loop2MBB);
4695    F->insert(It, midMBB);
4696    F->insert(It, exitMBB);
4697    exitMBB->transferSuccessors(BB);
4698
4699    MachineRegisterInfo &RegInfo = F->getRegInfo();
4700    const TargetRegisterClass *RC =
4701      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4702                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4703    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4704    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4705    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4706    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4707    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4708    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4709    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4710    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4711    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4712    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4713    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4714    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4715    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4716    unsigned Ptr1Reg;
4717    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4718    //  thisMBB:
4719    //   ...
4720    //   fallthrough --> loopMBB
4721    BB->addSuccessor(loop1MBB);
4722
4723    // The 4-byte load must be aligned, while a char or short may be
4724    // anywhere in the word.  Hence all this nasty bookkeeping code.
4725    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4726    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4727    //   xori shift, shift1, 24 [16]
4728    //   rlwinm ptr, ptr1, 0, 0, 29
4729    //   slw newval2, newval, shift
4730    //   slw oldval2, oldval,shift
4731    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4732    //   slw mask, mask2, shift
4733    //   and newval3, newval2, mask
4734    //   and oldval3, oldval2, mask
4735    // loop1MBB:
4736    //   lwarx tmpDest, ptr
4737    //   and tmp, tmpDest, mask
4738    //   cmpw tmp, oldval3
4739    //   bne- midMBB
4740    // loop2MBB:
4741    //   andc tmp2, tmpDest, mask
4742    //   or tmp4, tmp2, newval3
4743    //   stwcx. tmp4, ptr
4744    //   bne- loop1MBB
4745    //   b exitBB
4746    // midMBB:
4747    //   stwcx. tmpDest, ptr
4748    // exitBB:
4749    //   srw dest, tmpDest, shift
4750    if (ptrA!=PPC::R0) {
4751      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4752      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4753        .addReg(ptrA).addReg(ptrB);
4754    } else {
4755      Ptr1Reg = ptrB;
4756    }
4757    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4758        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4759    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4760        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4761    if (is64bit)
4762      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4763        .addReg(Ptr1Reg).addImm(0).addImm(61);
4764    else
4765      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4766        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4767    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4768        .addReg(newval).addReg(ShiftReg);
4769    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4770        .addReg(oldval).addReg(ShiftReg);
4771    if (is8bit)
4772      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4773    else {
4774      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4775      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4776        .addReg(Mask3Reg).addImm(65535);
4777    }
4778    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4779        .addReg(Mask2Reg).addReg(ShiftReg);
4780    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4781        .addReg(NewVal2Reg).addReg(MaskReg);
4782    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4783        .addReg(OldVal2Reg).addReg(MaskReg);
4784
4785    BB = loop1MBB;
4786    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4787        .addReg(PPC::R0).addReg(PtrReg);
4788    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4789        .addReg(TmpDestReg).addReg(MaskReg);
4790    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4791        .addReg(TmpReg).addReg(OldVal3Reg);
4792    BuildMI(BB, dl, TII->get(PPC::BCC))
4793        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4794    BB->addSuccessor(loop2MBB);
4795    BB->addSuccessor(midMBB);
4796
4797    BB = loop2MBB;
4798    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4799        .addReg(TmpDestReg).addReg(MaskReg);
4800    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4801        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4802    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4803        .addReg(PPC::R0).addReg(PtrReg);
4804    BuildMI(BB, dl, TII->get(PPC::BCC))
4805      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4806    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4807    BB->addSuccessor(loop1MBB);
4808    BB->addSuccessor(exitMBB);
4809
4810    BB = midMBB;
4811    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4812      .addReg(PPC::R0).addReg(PtrReg);
4813    BB->addSuccessor(exitMBB);
4814
4815    //  exitMBB:
4816    //   ...
4817    BB = exitMBB;
4818    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4819  } else {
4820    LLVM_UNREACHABLE("Unexpected instr type to insert");
4821  }
4822
4823  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4824  return BB;
4825}
4826
4827//===----------------------------------------------------------------------===//
4828// Target Optimization Hooks
4829//===----------------------------------------------------------------------===//
4830
4831SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4832                                             DAGCombinerInfo &DCI) const {
4833  TargetMachine &TM = getTargetMachine();
4834  SelectionDAG &DAG = DCI.DAG;
4835  DebugLoc dl = N->getDebugLoc();
4836  switch (N->getOpcode()) {
4837  default: break;
4838  case PPCISD::SHL:
4839    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4840      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4841        return N->getOperand(0);
4842    }
4843    break;
4844  case PPCISD::SRL:
4845    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4846      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4847        return N->getOperand(0);
4848    }
4849    break;
4850  case PPCISD::SRA:
4851    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4852      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4853          C->isAllOnesValue())    // -1 >>s V -> -1.
4854        return N->getOperand(0);
4855    }
4856    break;
4857
4858  case ISD::SINT_TO_FP:
4859    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4860      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4861        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4862        // We allow the src/dst to be either f32/f64, but the intermediate
4863        // type must be i64.
4864        if (N->getOperand(0).getValueType() == MVT::i64 &&
4865            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4866          SDValue Val = N->getOperand(0).getOperand(0);
4867          if (Val.getValueType() == MVT::f32) {
4868            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4869            DCI.AddToWorklist(Val.getNode());
4870          }
4871
4872          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4873          DCI.AddToWorklist(Val.getNode());
4874          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4875          DCI.AddToWorklist(Val.getNode());
4876          if (N->getValueType(0) == MVT::f32) {
4877            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4878                              DAG.getIntPtrConstant(0));
4879            DCI.AddToWorklist(Val.getNode());
4880          }
4881          return Val;
4882        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4883          // If the intermediate type is i32, we can avoid the load/store here
4884          // too.
4885        }
4886      }
4887    }
4888    break;
4889  case ISD::STORE:
4890    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4891    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4892        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4893        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4894        N->getOperand(1).getValueType() == MVT::i32 &&
4895        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4896      SDValue Val = N->getOperand(1).getOperand(0);
4897      if (Val.getValueType() == MVT::f32) {
4898        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4899        DCI.AddToWorklist(Val.getNode());
4900      }
4901      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4902      DCI.AddToWorklist(Val.getNode());
4903
4904      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4905                        N->getOperand(2), N->getOperand(3));
4906      DCI.AddToWorklist(Val.getNode());
4907      return Val;
4908    }
4909
4910    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4911    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4912        N->getOperand(1).getNode()->hasOneUse() &&
4913        (N->getOperand(1).getValueType() == MVT::i32 ||
4914         N->getOperand(1).getValueType() == MVT::i16)) {
4915      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4916      // Do an any-extend to 32-bits if this is a half-word input.
4917      if (BSwapOp.getValueType() == MVT::i16)
4918        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4919
4920      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4921                         BSwapOp, N->getOperand(2), N->getOperand(3),
4922                         DAG.getValueType(N->getOperand(1).getValueType()));
4923    }
4924    break;
4925  case ISD::BSWAP:
4926    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4927    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4928        N->getOperand(0).hasOneUse() &&
4929        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4930      SDValue Load = N->getOperand(0);
4931      LoadSDNode *LD = cast<LoadSDNode>(Load);
4932      // Create the byte-swapping load.
4933      std::vector<MVT> VTs;
4934      VTs.push_back(MVT::i32);
4935      VTs.push_back(MVT::Other);
4936      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4937      SDValue Ops[] = {
4938        LD->getChain(),    // Chain
4939        LD->getBasePtr(),  // Ptr
4940        MO,                // MemOperand
4941        DAG.getValueType(N->getValueType(0)) // VT
4942      };
4943      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4944
4945      // If this is an i16 load, insert the truncate.
4946      SDValue ResVal = BSLoad;
4947      if (N->getValueType(0) == MVT::i16)
4948        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4949
4950      // First, combine the bswap away.  This makes the value produced by the
4951      // load dead.
4952      DCI.CombineTo(N, ResVal);
4953
4954      // Next, combine the load away, we give it a bogus result value but a real
4955      // chain result.  The result value is dead because the bswap is dead.
4956      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4957
4958      // Return N so it doesn't get rechecked!
4959      return SDValue(N, 0);
4960    }
4961
4962    break;
4963  case PPCISD::VCMP: {
4964    // If a VCMPo node already exists with exactly the same operands as this
4965    // node, use its result instead of this node (VCMPo computes both a CR6 and
4966    // a normal output).
4967    //
4968    if (!N->getOperand(0).hasOneUse() &&
4969        !N->getOperand(1).hasOneUse() &&
4970        !N->getOperand(2).hasOneUse()) {
4971
4972      // Scan all of the users of the LHS, looking for VCMPo's that match.
4973      SDNode *VCMPoNode = 0;
4974
4975      SDNode *LHSN = N->getOperand(0).getNode();
4976      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4977           UI != E; ++UI)
4978        if (UI->getOpcode() == PPCISD::VCMPo &&
4979            UI->getOperand(1) == N->getOperand(1) &&
4980            UI->getOperand(2) == N->getOperand(2) &&
4981            UI->getOperand(0) == N->getOperand(0)) {
4982          VCMPoNode = *UI;
4983          break;
4984        }
4985
4986      // If there is no VCMPo node, or if the flag value has a single use, don't
4987      // transform this.
4988      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4989        break;
4990
4991      // Look at the (necessarily single) use of the flag value.  If it has a
4992      // chain, this transformation is more complex.  Note that multiple things
4993      // could use the value result, which we should ignore.
4994      SDNode *FlagUser = 0;
4995      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4996           FlagUser == 0; ++UI) {
4997        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4998        SDNode *User = *UI;
4999        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5000          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5001            FlagUser = User;
5002            break;
5003          }
5004        }
5005      }
5006
5007      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5008      // give up for right now.
5009      if (FlagUser->getOpcode() == PPCISD::MFCR)
5010        return SDValue(VCMPoNode, 0);
5011    }
5012    break;
5013  }
5014  case ISD::BR_CC: {
5015    // If this is a branch on an altivec predicate comparison, lower this so
5016    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5017    // lowering is done pre-legalize, because the legalizer lowers the predicate
5018    // compare down to code that is difficult to reassemble.
5019    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5020    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5021    int CompareOpc;
5022    bool isDot;
5023
5024    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5025        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5026        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5027      assert(isDot && "Can't compare against a vector result!");
5028
5029      // If this is a comparison against something other than 0/1, then we know
5030      // that the condition is never/always true.
5031      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5032      if (Val != 0 && Val != 1) {
5033        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5034          return N->getOperand(0);
5035        // Always !=, turn it into an unconditional branch.
5036        return DAG.getNode(ISD::BR, dl, MVT::Other,
5037                           N->getOperand(0), N->getOperand(4));
5038      }
5039
5040      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5041
5042      // Create the PPCISD altivec 'dot' comparison node.
5043      std::vector<MVT> VTs;
5044      SDValue Ops[] = {
5045        LHS.getOperand(2),  // LHS of compare
5046        LHS.getOperand(3),  // RHS of compare
5047        DAG.getConstant(CompareOpc, MVT::i32)
5048      };
5049      VTs.push_back(LHS.getOperand(2).getValueType());
5050      VTs.push_back(MVT::Flag);
5051      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5052
5053      // Unpack the result based on how the target uses it.
5054      PPC::Predicate CompOpc;
5055      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5056      default:  // Can't happen, don't crash on invalid number though.
5057      case 0:   // Branch on the value of the EQ bit of CR6.
5058        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5059        break;
5060      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5061        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5062        break;
5063      case 2:   // Branch on the value of the LT bit of CR6.
5064        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5065        break;
5066      case 3:   // Branch on the inverted value of the LT bit of CR6.
5067        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5068        break;
5069      }
5070
5071      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5072                         DAG.getConstant(CompOpc, MVT::i32),
5073                         DAG.getRegister(PPC::CR6, MVT::i32),
5074                         N->getOperand(4), CompNode.getValue(1));
5075    }
5076    break;
5077  }
5078  }
5079
5080  return SDValue();
5081}
5082
5083//===----------------------------------------------------------------------===//
5084// Inline Assembly Support
5085//===----------------------------------------------------------------------===//
5086
5087void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5088                                                       const APInt &Mask,
5089                                                       APInt &KnownZero,
5090                                                       APInt &KnownOne,
5091                                                       const SelectionDAG &DAG,
5092                                                       unsigned Depth) const {
5093  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5094  switch (Op.getOpcode()) {
5095  default: break;
5096  case PPCISD::LBRX: {
5097    // lhbrx is known to have the top bits cleared out.
5098    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
5099      KnownZero = 0xFFFF0000;
5100    break;
5101  }
5102  case ISD::INTRINSIC_WO_CHAIN: {
5103    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5104    default: break;
5105    case Intrinsic::ppc_altivec_vcmpbfp_p:
5106    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5107    case Intrinsic::ppc_altivec_vcmpequb_p:
5108    case Intrinsic::ppc_altivec_vcmpequh_p:
5109    case Intrinsic::ppc_altivec_vcmpequw_p:
5110    case Intrinsic::ppc_altivec_vcmpgefp_p:
5111    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5112    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5113    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5114    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5115    case Intrinsic::ppc_altivec_vcmpgtub_p:
5116    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5117    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5118      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5119      break;
5120    }
5121  }
5122  }
5123}
5124
5125
5126/// getConstraintType - Given a constraint, return the type of
5127/// constraint it is for this target.
5128PPCTargetLowering::ConstraintType
5129PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5130  if (Constraint.size() == 1) {
5131    switch (Constraint[0]) {
5132    default: break;
5133    case 'b':
5134    case 'r':
5135    case 'f':
5136    case 'v':
5137    case 'y':
5138      return C_RegisterClass;
5139    }
5140  }
5141  return TargetLowering::getConstraintType(Constraint);
5142}
5143
5144std::pair<unsigned, const TargetRegisterClass*>
5145PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5146                                                MVT VT) const {
5147  if (Constraint.size() == 1) {
5148    // GCC RS6000 Constraint Letters
5149    switch (Constraint[0]) {
5150    case 'b':   // R1-R31
5151    case 'r':   // R0-R31
5152      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5153        return std::make_pair(0U, PPC::G8RCRegisterClass);
5154      return std::make_pair(0U, PPC::GPRCRegisterClass);
5155    case 'f':
5156      if (VT == MVT::f32)
5157        return std::make_pair(0U, PPC::F4RCRegisterClass);
5158      else if (VT == MVT::f64)
5159        return std::make_pair(0U, PPC::F8RCRegisterClass);
5160      break;
5161    case 'v':
5162      return std::make_pair(0U, PPC::VRRCRegisterClass);
5163    case 'y':   // crrc
5164      return std::make_pair(0U, PPC::CRRCRegisterClass);
5165    }
5166  }
5167
5168  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5169}
5170
5171
5172/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5173/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5174/// it means one of the asm constraint of the inline asm instruction being
5175/// processed is 'm'.
5176void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5177                                                     bool hasMemory,
5178                                                     std::vector<SDValue>&Ops,
5179                                                     SelectionDAG &DAG) const {
5180  SDValue Result(0,0);
5181  switch (Letter) {
5182  default: break;
5183  case 'I':
5184  case 'J':
5185  case 'K':
5186  case 'L':
5187  case 'M':
5188  case 'N':
5189  case 'O':
5190  case 'P': {
5191    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5192    if (!CST) return; // Must be an immediate to match.
5193    unsigned Value = CST->getZExtValue();
5194    switch (Letter) {
5195    default: LLVM_UNREACHABLE("Unknown constraint letter!");
5196    case 'I':  // "I" is a signed 16-bit constant.
5197      if ((short)Value == (int)Value)
5198        Result = DAG.getTargetConstant(Value, Op.getValueType());
5199      break;
5200    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5201    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5202      if ((short)Value == 0)
5203        Result = DAG.getTargetConstant(Value, Op.getValueType());
5204      break;
5205    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5206      if ((Value >> 16) == 0)
5207        Result = DAG.getTargetConstant(Value, Op.getValueType());
5208      break;
5209    case 'M':  // "M" is a constant that is greater than 31.
5210      if (Value > 31)
5211        Result = DAG.getTargetConstant(Value, Op.getValueType());
5212      break;
5213    case 'N':  // "N" is a positive constant that is an exact power of two.
5214      if ((int)Value > 0 && isPowerOf2_32(Value))
5215        Result = DAG.getTargetConstant(Value, Op.getValueType());
5216      break;
5217    case 'O':  // "O" is the constant zero.
5218      if (Value == 0)
5219        Result = DAG.getTargetConstant(Value, Op.getValueType());
5220      break;
5221    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5222      if ((short)-Value == (int)-Value)
5223        Result = DAG.getTargetConstant(Value, Op.getValueType());
5224      break;
5225    }
5226    break;
5227  }
5228  }
5229
5230  if (Result.getNode()) {
5231    Ops.push_back(Result);
5232    return;
5233  }
5234
5235  // Handle standard constraint letters.
5236  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5237}
5238
5239// isLegalAddressingMode - Return true if the addressing mode represented
5240// by AM is legal for this target, for a load/store of the specified type.
5241bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5242                                              const Type *Ty) const {
5243  // FIXME: PPC does not allow r+i addressing modes for vectors!
5244
5245  // PPC allows a sign-extended 16-bit immediate field.
5246  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5247    return false;
5248
5249  // No global is ever allowed as a base.
5250  if (AM.BaseGV)
5251    return false;
5252
5253  // PPC only support r+r,
5254  switch (AM.Scale) {
5255  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5256    break;
5257  case 1:
5258    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5259      return false;
5260    // Otherwise we have r+r or r+i.
5261    break;
5262  case 2:
5263    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5264      return false;
5265    // Allow 2*r as r+r.
5266    break;
5267  default:
5268    // No other scales are supported.
5269    return false;
5270  }
5271
5272  return true;
5273}
5274
5275/// isLegalAddressImmediate - Return true if the integer value can be used
5276/// as the offset of the target addressing mode for load / store of the
5277/// given type.
5278bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5279  // PPC allows a sign-extended 16-bit immediate field.
5280  return (V > -(1 << 16) && V < (1 << 16)-1);
5281}
5282
5283bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5284  return false;
5285}
5286
5287SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5288  DebugLoc dl = Op.getDebugLoc();
5289  // Depths > 0 not supported yet!
5290  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5291    return SDValue();
5292
5293  MachineFunction &MF = DAG.getMachineFunction();
5294  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5295
5296  // Just load the return address off the stack.
5297  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5298
5299  // Make sure the function really does not optimize away the store of the RA
5300  // to the stack.
5301  FuncInfo->setLRStoreRequired();
5302  return DAG.getLoad(getPointerTy(), dl,
5303                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5304}
5305
5306SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5307  DebugLoc dl = Op.getDebugLoc();
5308  // Depths > 0 not supported yet!
5309  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5310    return SDValue();
5311
5312  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5313  bool isPPC64 = PtrVT == MVT::i64;
5314
5315  MachineFunction &MF = DAG.getMachineFunction();
5316  MachineFrameInfo *MFI = MF.getFrameInfo();
5317  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5318                  && MFI->getStackSize();
5319
5320  if (isPPC64)
5321    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5322      MVT::i64);
5323  else
5324    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5325      MVT::i32);
5326}
5327
5328bool
5329PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5330  // The PowerPC target isn't yet aware of offsets.
5331  return false;
5332}
5333
5334MVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5335                                           bool isSrcConst, bool isSrcStr,
5336                                           SelectionDAG &DAG) const {
5337  if (this->PPCSubTarget.isPPC64()) {
5338    return MVT::i64;
5339  } else {
5340    return MVT::i32;
5341  }
5342}
5343